Science.gov

Sample records for oxides lnmo8o14 ln

  1. Ln polyoxocations: yttrium oxide solution speciation & solution deposited thin films.

    PubMed

    Marsh, David A; Goberna-Ferrón, Sara; Baumeister, Mary K; Zakharov, Lev N; Nyman, May; Johnson, Darren W

    2017-01-17

    Rare earth oxide materials, including thin film coatings, are critically important in magnetic, luminescent and microelectric devices, and few substitutes have been discovered with comparable performance. Thin film coatings from solution are almost unknown for rare earth oxides, likely due to their high activity towards hydrolysis which yields poor quality thin films. The hexamer [Ln6(O)(OH)8(H2O)12(NO3)6](2+) is a rare example of a metal-oxo cluster isolated and stabilized without additional supporting organic ligands. Herein we report a new method for both the preparation and stabilization in non-aqueous media, which makes these clusters valuable precursors for solution-processed thin films. Solution characterization (NMR, small-angle X-ray scattering and Raman spectroscopy) in wet organic solvents indicated that the clusters evolve via a fragmentation and reaggregation process. This is especially true for hexamers of the smaller Ln(3+)-ions: the higher charge density yields higher hydration rates. This process produced an entirely new hexadecameric cluster formulated Y16O3(OH)24(NO3)18(OSMe2)16(OCMe2)2(H2O)4. The new structure represents an intermediate hydrolysis product on the pathway from hexanuclear clusters to metal oxyhydroxide bulk solid. DMSO solvent ligands displace aqua ligands on the cluster and likely explain the additional stability observed for these clusters in organic solvents. The enhanced cluster stability in DMF and DMSO also enables solution-processing methods to create high quality thin films.

  2. Exploring the effect of the Ln(III)/Ln(II) redox potential on C-F activation and on oxidation of some lanthanoid organoamides.

    PubMed

    Deacon, Glen B; Junk, Peter C; Kelly, Rory P; Wang, Jun

    2016-01-28

    The divalent europium complexes, and (L(Me/Et) = p-HC6F4N(CH2)2NMe2/Et2), have been prepared from redox-transmetallation/protolysis (RTP) reactions between Eu metal, Hg(C6F5)2 and L(Me/Et)H in thf. The complexes exhibit close (C)F-Ln interactions and the amide ligands feature tridentate N,N',F chelation. The complexes are thermally robust but on exposure to light they undergo C-F activation. From exposure of to light, the Eu(III) mixed fluoride/oxide cluster, was isolated, but other well-defined C-F activation products have proven elusive due to the stability of Eu(II). Oxidation of [Ln(L(R))2(thf)2] (Ln = Eu, R = Me; Ln = Yb, R = Et) with I2 afforded the heteroleptic iodo complexes, [Ln(L(R))2I(thf)n] (Ln = Eu, n = 1; Ln = Yb, n = 0), and the homoleptic complexes, [Ln(L(R))3]. The formation of the iodo complexes and the heteroleptic complexes appear to occur by different routes. shows interesting structural differences from reported [Ln(L(Et))3] (Ln = La, Ce, Nd) complexes, and highlights an incomplete shift towards N,N' chelation to the much smaller Yb ion. was prepared from a protolysis reaction between [Sm(CH2C6H4-NMe2-o)3] and L(Me)H. Heating a solution of in toluene at 110 °C for three days did not afford any samarium fluoride complex. An RTP reaction with Sm afforded the heteroleptic samarium complex, , in very low yield. From an attempted protolysis reaction between [Sm(DippForm)2(thf)2] and L(Me)H, the mixed ligand samarium fluoride complex, , was isolated. Overall, the instability of Sm(II) precludes control over the C-F activation reactions.

  3. Magnetic interactions in new fluorite-related rare earth oxides LnLn'2RuO7 (Ln, Ln'=rare earths)

    NASA Astrophysics Data System (ADS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2016-07-01

    New fluorite-related quaternary rare earth oxides Pr2YRuO7 and La2TbRuO7 have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Through magnetic susceptibility and specific heat measurements, Pr2YRuO7 shows an antiferromagnetic transition at 27 K, which is considerably lowered compared with that for Pr3RuO7. Analysis of the magnetic specific heat indicates that the magnetic behavior observed at 27 K for Pr2YRuO7 is predominantly due to the magnetic interactions between Ru ions, and that the interactions between the Pr3+ and Ru5+ ions are also important. La2TbRuO7 shows magnetic ordering at 9.0 K, which is ascribed to the magnetic ordering between Ru5+ ions from the analysis of the magnetic specific heat data.

  4. Structures and magnetic properties of new fluorite-related quaternary rare earth oxides LnY2TaO7 and LaLn2RuO7 (Ln=rare earths)

    NASA Astrophysics Data System (ADS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2016-01-01

    New fluorite-related quaternary rare earth oxides LnY2TaO7 (Ln=La-Dy) and LaLn2RuO7 (Ln=Eu-Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space groups C2221 and Cmcm, respectively. The results of the Rietveld analysis for LnY2TaO7 (Ln=La-Dy) indicate that there exists no structural ordering of the Ln and Y ions at the eight-coordinate 4b site and the seven-coordinate 8c site, but the larger Ln ions occupy the eight-coordinate 4b site rather than the seven-coordinate 8c site, with increasing the Ln ionic radius. On the other hand, the results of the Rietveld analysis for the X-ray diffraction profiles of LaTb2RuO7 showed that La and Tb atoms are almost situated at the eight-coordinated site (4a site) and seven-coordinated site (8g site), respectively, i.e., cation ordering occurs on the 4a and 8g sites. All compounds LnY2TaO7 (Ln=La-Dy) are paramagnetic down to 1.8 K. On the other hand, LaTb2RuO7 shows an antiferromagnetic transition at 17 K. In addition, another magnetic anomaly has been found at 10 K. Analysis of the magnetic specific heat for LaTb2RuO7 indicates that the magnetic transitions at 10 and 17 K are due to the magnetic ordering of Tb3+ and Ru5+ ions, respectively.

  5. Structures and magnetic properties of new fluorite-related quaternary rare earth oxides LnY{sub 2}TaO{sub 7} and LaLn{sub 2}RuO{sub 7} (Ln=rare earths)

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro

    2016-01-15

    New fluorite-related quaternary rare earth oxides LnY{sub 2}TaO{sub 7} (Ln=La–Dy) and LaLn{sub 2}RuO{sub 7} (Ln=Eu–Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space groups C222{sub 1} and Cmcm, respectively. The results of the Rietveld analysis for LnY{sub 2}TaO{sub 7} (Ln=La–Dy) indicate that there exists no structural ordering of the Ln and Y ions at the eight-coordinate 4b site and the seven-coordinate 8c site, but the larger Ln ions occupy the eight-coordinate 4b site rather than the seven-coordinate 8c site, with increasing the Ln ionic radius. On the other hand, the results of the Rietveld analysis for the X-ray diffraction profiles of LaTb{sub 2}RuO{sub 7} showed that La and Tb atoms are almost situated at the eight-coordinated site (4a site) and seven-coordinated site (8g site), respectively, i.e., cation ordering occurs on the 4a and 8g sites. All compounds LnY{sub 2}TaO{sub 7} (Ln=La–Dy) are paramagnetic down to 1.8 K. On the other hand, LaTb{sub 2}RuO{sub 7} shows an antiferromagnetic transition at 17 K. In addition, another magnetic anomaly has been found at 10 K. Analysis of the magnetic specific heat for LaTb{sub 2}RuO{sub 7} indicates that the magnetic transitions at 10 and 17 K are due to the magnetic ordering of Tb{sup 3+} and Ru{sup 5+} ions, respectively. - Graphical abstract: Two magnetic anomalies have been observed in the temperature dependence of ∂(χT)/∂T for LaTb{sub 2}RuO{sub 7}. It is discussed that the anomalies at 10 and 17 K are due to the magnetic ordering of Tb{sup 3+} and Ru{sup 5+} ions, respectively. - Highlights: • New fluorite-related quaternary rare earth oxides Ln′Ln″{sub 2}MO{sub 7} have been prepared. • All compounds LnY{sub 2}TaO{sub 7} (Ln=La–Dy) are paramagnetic down to 1.8 K. • LaTb{sub 2}RuO{sub 7} shows two magnetic anomalies at 10 and 17 K.

  6. Structure and oxide anion conductivity in Ln{sub 2}(TO{sub 4})O (Ln=La, Nd; T=Ge, Si)

    SciTech Connect

    Leon-Reina, Laura; Porras-Vazquez, Jose M.; Losilla, Enrique R.; Moreno-Real, Laureano; Aranda, Miguel A.G.

    2008-09-15

    Oxy-silicate and oxy-germanate, Ln{sub 2}(TO{sub 4})O (Ln=La and Nd, T=Ge and Si) compounds have been prepared. Oxy-germanates can be readily obtained as highly crystalline single phases, while, the oxy-silicates are difficult to prepare as pure phases. The crystal structure of Nd{sub 2}(SiO{sub 4})O has been studied from a joint Rietveld refinement of neutron and laboratory X-ray powder diffraction data. The electrochemical characterisation indicates that these compounds display oxide anion conductivity with p-type electronic contribution under oxidising conditions. The apparent activation energies under dry flowing nitrogen, where p-type contribution is minimised, are 0.97(1), 1.05(3) and 1.17(4) eV, for Nd{sub 2}(SiO{sub 4})O, La{sub 2}(GeO{sub 4})O and Nd{sub 2}(GeO{sub 4})O, respectively. The overall conductivities at 1173 K range from 1.2x10{sup -4} S cm{sup -1} for Nd{sub 2}(SiO{sub 4})O to 1.3x10{sup -6} S cm{sup -1} for La{sub 2}(GeO{sub 4})O. Finally, the stability of these compounds under very reducing conditions has been studied and partial degradation is reported. - Graphical abstract: Ln{sub 2}(TO{sub 4})O oxy-silicates and oxy-germanates show ionic conductivities {approx}10{sup -4} S cm{sup -1} at 1173 K with p-type electronic contribution under oxidising conditions. Furthermore, the studied materials are not stable under strongly reducing conditions as shown in the attached figure. Display Omitted.

  7. Morphotropy, isomorphism, and polymorphism of Ln{sub 2}M{sub 2}O{sub 7}-based (Ln = La-Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides

    SciTech Connect

    Shlyakhtina, A. V.

    2013-07-15

    Structural studies of compounds of variable composition and measurements of their conductivity have made it possible to identify new oxygen-ion-conducting rare-earth pyrochlores, Ln{sub 2}Ti{sub 2}O{sub 7} (Ln = Dy-Lu) and Ln{sub 2}Hf{sub 2}O{sub 7} (Ln = Eu, Gd), with intrinsic high-temperature oxygen ion conductivity (up to 1.4 Multiplication-Sign 10{sup -2} S/cm at 800 Degree-Sign C). Twenty six systems have been studied, and more than 50 phases based on the Ln{sub 2}M{sub 2}O{sub 7} (Ln= La-Lu; M = Ti, Zr, Hf) oxides have been synthesized and shown to be potential oxygen ion conductors. The morphotropy and polymorphism of the Ln{sub 2}M{sub 2}O{sub 7} (Ln = La-Lu; M = Ti, Zr, Hf) rare-earth pyrochlores have been analyzed in detail for the first time. Thermodynamic and kinetic (growth-related) phase transitions have been classified with application to the pyrochlore family.

  8. Synthesis and characterization of ultrafine Ln{sub 2}Ti{sub 2}O{sub 7} (Ln = Sm, Gd, Dy, Er) pyrochlore oxides by stearic acid method

    SciTech Connect

    Zhang Weiguang; Zhang Lili; Zhong Hui; Lu Lude; Yang Xujie; Wang Xin

    2010-02-15

    Stearic acid method (SAM) was developed to synthesize series of pyrochlore Ln{sub 2}Ti{sub 2}O{sub 7} (Ln = Sm, Gd, Dy, Er) nanocrystals. The synthesis process was monitored by X-ray diffraction, Thermal-gravimetric-differential thermal analysis and Fourier Transform InfraRed methods. Comparing with traditional solid-state reaction (SSR), Ln{sub 2}Ti{sub 2}O{sub 7} can be synthesized at relatively low temperature (700-800 deg. C) with shortened reaction time (2-4 h). The average particle size of Ln{sub 2}Ti{sub 2}O{sub 7} was greatly reduced (ca. 40 nm) and the BET surface area was increased (ca. 12 m{sup 2}/g) by using SAM. From the X-ray diffraction patterns, we found that Ln has an effect on the crystal structure of Ln{sub 2}Ti{sub 2}O{sub 7}, every lattice peak shifted to larger angle slightly with the increasing atomic number of Ln. Also, the lattice constant of Ln{sub 2}Ti{sub 2}O{sub 7} was calculated by Jade.5 and found it decreased along with the decrease of ionic radius of Ln{sup 3+}. The morphology of obtained Ln{sub 2}Ti{sub 2}O{sub 7} was determined by transmission electron microscopy technique. Results showed that the obtained Ln{sub 2}Ti{sub 2}O{sub 7} were all square-like and the interplanar distance of Ln{sub 2}Ti{sub 2}O{sub 7} (Ln = Sm, Gd, Dy, Er) according to (111) plane was 0.65, 0.64, 0.63, and 0.62 nm respectively, which was measured from High Resolution Transmission Electron Microscopy images. Possible reason for this phenomenon was presented.

  9. Partial oxidation of methane to synthesis gas using LnCoO{sub 3} perovskites as catalyst precursors

    SciTech Connect

    Lago, R.; Pena, M.A.; Fierro, J.L.G.

    1997-04-01

    In this work, a series of cobalt-containing perovskites LnCoO{sub 3} (Ln = La, Pr, Nd, Sm, and Gd) has been studied as catalyst precursors for the partial oxidation of methane to synthesis gas. All the perovskite precursors were prereduced in situ, producing cobalt metal finely dispersed over the rare earth sesquioxide support described here as Ln-Co-O. Of the catalyst tested, the system Gd-Co-O showed exceptionally better performance for CO and H{sub 2} production (with methane conversion of 73% and selectivities of 79 and 81% for CO and H{sub 2}, respectively, at 1009 K). The production of synthesis gas over the other catalysts decreased in the following order: Sm-Co-O {much_gt} Nd-Co-O > Pr-Co-O. The catalyst La-Co-O was active for methane combustion and only traces of CO and H{sub 2} were observed under the reaction conditions. Based on results obtained here, it is proposed that the deactivation of the catalysts Ln-Co-O by reoxidation of cobalt metal is related to the thermodynamic stability of the parent perovskite structure. The authors also present evidence that hydroxyl groups on the rare earth oxide, specially in the La-Co-O system, might make some contribution to the reoxidation of cobalt metal during the reaction via a reverse spillover process. 48 refs., 12 figs., 2 tabs.

  10. Magnetic interactions in new fluorite-related rare earth oxides LnLn’{sub 2}RuO{sub 7} (Ln, Ln’=rare earths)

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro

    2016-07-15

    New fluorite-related quaternary rare earth oxides Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Through magnetic susceptibility and specific heat measurements, Pr{sub 2}YRuO{sub 7} shows an antiferromagnetic transition at 27 K, which is considerably lowered compared with that for Pr{sub 3}RuO{sub 7}. Analysis of the magnetic specific heat indicates that the magnetic behavior observed at 27 K for Pr{sub 2}YRuO{sub 7} is predominantly due to the magnetic interactions between Ru ions, and that the interactions between the Pr{sup 3+} and Ru{sup 5+} ions are also important. La{sub 2}TbRuO{sub 7} shows magnetic ordering at 9.0 K, which is ascribed to the magnetic ordering between Ru{sup 5+} ions from the analysis of the magnetic specific heat data. - Graphical abstract: New fluorite-related quaternary rare earth oxides Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} have been prepared. Through magnetic susceptibility and specific heat measurements, Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} show an antiferromagnetic transition at 27 and 9.0 K, respectively. Display Omitted - Highlights: • New fluorite-related quaternary rare earth oxides LnLn’{sub 2}RuO{sub 7} have been prepared. • Pr{sub 2}YRuO{sub 7} shows an antiferromagnetic transition at 27 K. • La{sub 2}TbRuO{sub 7} shows magnetic ordering at 9.0 K. • Their magnetic exchange mechanism has been elucidated by the magnetic entropy change.

  11. Dopant-induced modification of active site structure and surface bonding mode for high-performance nanocatalysts: CO oxidation on capping-free (110)-oriented CeO2:Ln (Ln = La-Lu) nanowires.

    PubMed

    Ke, Jun; Xiao, Jia-Wen; Zhu, Wei; Liu, Haichao; Si, Rui; Zhang, Ya-Wen; Yan, Chun-Hua

    2013-10-09

    Active center engineering at atomic level is a grand challenge for catalyst design and optimization in many industrial catalytic processes. Exploring new strategies to delicately tailor the structures of active centers and bonding modes of surface reactive intermediates for nanocatalysts is crucial to high-efficiency nanocatalysis that bridges heterogeneous and homogeneous catalysis. Here we demonstrate a robust approach to tune the CO oxidation activity over CeO2 nanowires (NWs) through the modulation of the local structure and surface state around Ln(Ce)' defect centers by doping other lanthanides (Ln), based on the continuous variation of the ionic radius of lanthanide dopants caused by the lanthanide contraction. Homogeneously doped (110)-oriented CeO2:Ln NWs with no residual capping agents were synthesized by controlling the redox chemistry of Ce(III)/Ce(IV) in a mild hydrothermal process. The CO oxidation reactivity over CeO2:Ln NWs was dependent on the Ln dopants, and the reactivity reached the maximum in turnover rates over Nd-doped samples. On the basis of the results obtained from combined experimentations and density functional theory simulations, the decisive factors of the modulation effect along the lanthanide dopant series were deduced as surface oxygen release capability and the bonding configuration of the surface adsorbed species (i.e., carbonates and bicarbonates) formed during catalytic process, which resulted in the existence of an optimal doping effect from the lanthanide with moderate ionic radius.

  12. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  13. X-ray photoelectron spectroscopic study of direct reforming catalysts Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) for high temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Keunsoo; Jeong, Jihoon; Azad, Abul K.; Jin, Sang Beom; Kim, Jung Hyun

    2016-03-01

    Chemical states of lanthanide doped perovskite for direct reforming anode catalysts, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) have been studied by X-ray Photoelectron Spectroscopy (XPS) in order to determine the effects of various lanthanide substitution in complex perovskites for high temperature-operating solid oxide fuel cells (HT-SOFC). The charge state of lanthanide ions remained at 3+ and the binding energies of the lanthanide ions in Ln0.5Sr0.5Ti0.5Mn0.5O3±d were located in a relatively lower range compared to those of conventional lanthanide oxides. Mn and Ti were regarded as charge compensation components in Ln0.5Sr0.5Ti0.5Mn0.5O3±d; Mn was more influential than Ti. In the cases of substituting Nd and Sm into Ln0.5Sr0.5Ti0.5Mn0.5O3±d, some portion of Ti showed metallic behavior; the specific Mn satellite peak indicating an electro-catalytic effect had occurred. Three types of oxygen species comprised of lattice oxygen, carbonate species, and adsorbed oxygen species were observed in Ln0.5Sr0.5Ti0.5Mn0.5O3±d from the O 1s spectra; a high portion of lattice oxygen was observed in both Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM). In various respects, NSTM and SSTM will be desirable reforming catalysts and anode candidates for high temperature solid oxide fuel cell.

  14. Systematic evaluation of cobalt-free Ln0.5Sr0·5Fe0·8Cu0·2O3-δ (Ln = La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Pang, Shengli; Wang, Wenzhi; Chen, Tao; Shen, Xiangqian; Wang, Yonggang; Xu, Kaijie; Xi, Xiaoming

    2016-09-01

    Cobalt-free perovskites, Ln0.5Sr0·5Fe0·8Cu0·2O3-δ (Ln = La, Pr, and Nd), are systematically evaluated as the cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) using Gd0.1Ce0·9O1.95 as the electrolyte. The samples exhibit an orthorhombic perovskite structures, and their cell volumes decrease as the ionic radius of Ln decreases. Both the oxygen vacancy content and the magnitude of lattice oxygen release per formula unit increase in the temperature range from 370 °C to 850 °C as the ionic radius of Ln decreases. Ln0.5Sr0.5Fe0.8Cu0.2O3-δ is chemically and thermally compatible with the Gd0.1Ce0·9O1.95 electrolyte. In the temperature range of 600 °C-750 °C, Nd0.5Sr0·5Fe0·8Cu0·2O3-δ possesses the highest catalytic activity for the oxygen reduction reaction with area specific resistance values of 0.071 Ω cm2 and 0.141 Ω cm2 at 750 °C and 700 °C, respectively. The maximum power densities of the anode-supported single cells at 800 °C and 700 °C are 1003.7 mW cm-2 and 516.7 mW cm-2 for Pr0.5Sr0·5Fe0·8Cu0·2O3-δ and 944.5 mW cm-2 and 530.2 mW cm-2 for Nd0.5Sr0·5Fe0·8Cu0·2O3-δ, respectively. Ln0.5Sr0.5Fe0.8Cu0.2O3-δ is shown to be a promising cathode material for IT-SOFCs.

  15. Structural, thermal and electrical conductivity characteristics of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    SciTech Connect

    Jeong, Jihoon; Azad, Abul K.; Schlegl, Harald; Kim, Byungjun; Baek, Seung-Wook; Kim, Keunsoo; Kang, Hyunil; Kim, Jung Hyun

    2015-03-15

    The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttria stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti

  16. Solvothermal syntheses, crystal structures, and properties of lanthanide(III) thioarsenates [Ln(dien)2(μ-1κ,2κ2-AsS4)]n (Ln==Sm, Eu, Gd) and [Ln(dien)2(1κ2-AsS4)] (Ln==Tb, Dy, Ho)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Tang, Chunying; Chen, Ruihong; Zhang, Yong; Jia, Dingxian

    2013-10-01

    Solvothermal reactions of Ln2O3, As and S in diethylenetriamine (dien) at 170 °C for 6 days afforded two structural types of lanthanide thioarsenates with the general formulae [Ln(dien)2(μ-1κ,2κ2-AsS4)]n [Ln=Sm(1), Eu(2), Gd(3)] and [Ln(dien)2(1κ2-AsS4)] [Ln=Tb(4), Dy(5), Ho(6)]. The Ln2O3 oxides were converted to [Ln(dien)2]3+ complex units in the solvothermal reactions. The As atom binds four S atoms, forming a tetrahedral AsS4 unit. In 1-3, the AsS4 units interconnect the [Ln(dien)2]3+ cations via Ln-S bonds as tridentate μ-1κ,2κ2-AsS4 bridging ligands, resulting in the neutral coordination polymers [Ln(dien)2(μ-1κ,2κ2-AsS4)]n (Ln1). In 4-6, the AsS4 units coordinate with the Ln3+ ion of [Ln(dien)2]3+ as 1κ2-AsS4 chelating ligands to form neutral coordination compounds [Ln(dien)2(1κ2-AsS4)] (Ln2). The Ln3+ ions are in nine- and eight-coordinated environments in Ln1 and Ln2, respectively. The formation of Ln1 and Ln2 is related with ionic size of the Ln3+ ions. Optical absorption spectra showed that 1-6 have potential use as semiconductors with the band gaps in the range 2.18-3.21 eV.

  17. Magnetic properties of EuLn{sub 2}O{sub 4} (Ln=rare earths)

    SciTech Connect

    Hirose, Keiichi; Doi, Yoshihiro; Hinatsu, Yukio

    2009-07-15

    Ternary rare earth oxides EuLn{sub 2}O{sub 4} (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe{sub 2}O{sub 4}-type structure with space group Pnma. {sup 151}Eu Moessbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu{sub 2}O{sub 4}, it is considered that ferromagnetic chains of Eu{sup 2+} are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu{sup 2+} chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu{sup 2+} ions interact with the Ln{sup 3+} ions, which would overcome the magnetic frustration of triangularly aligned Ln{sup 3+} ions and the EuLn{sub 2}O{sub 4} compounds show a simple antiferromagnetic behavior. - Graphical abstract: Ternary rare earth oxides EuLn{sub 2}O{sub 4} (Ln=Gd, Dy-Lu) crystallized in an orthorhombic CaFe{sub 2}O{sub 4}-type structure with space group Pnma. Moessbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. It is considered that ferromagnetic chains of Eu{sup 2+} are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu{sup 2+} chains antiparallel.

  18. Ln 0.6Sr 0.4Co 1- yFe yO 3- δ (Ln = La and Nd; y = 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Torres-Garibay, Claudia; Kovar, Desiderio; Manthiram, Arumugam

    The electrochemical performances of the solid oxide fuel cells (SOFC) fabricated with Ln 0.6Sr 0.4Co 1- yFe yO 3- δ (Ln = La, Nd; y = 0, 0.5) perovskite cathodes, thin yttria-stabilized zirconia (YSZ) electrolytes, and YSZ-Ni anodes by tape casting, co-firing, and screen printing are evaluated at 600-800 °C. Peak power densities of ∼550 mW cm -2 are achieved at 800 °C with a La 0.6Sr 0.4CoO 3- δ (LSC) cathode that is known to have high electrical conductivity. Substitution of La by Nd (Nd 0.6Sr 0.4CoO 3- δ) to reduce the thermal expansion coefficient (TEC) results in only a slight decrease in power density despite a lower electrical conductivity. Conversely, substitution of Fe for Co (La 0.6Sr 0.4Co 0.5Fe 0.5O 3- δ or Nd 0.6Sr 0.4Co 0.5Fe 0.5O 3- δ) to reduce the TEC further reduces the cell performance greatly due to a significant decrease in electrical conductivity. However, infiltration of the Fe-substituted cathodes with Ag to increase the electrical conductivity increases the cell performance while preserving the low TEC.

  19. Vibrational and excited electronic states of six-coordinate rare earth complexes with 2,6-lutidine n-oxide: [Ln(C 7H 9NO) 6](ClO 4) 3·H 2O (Ln=Pr,Nd,Sm,Eu,Gd,Dy)

    NASA Astrophysics Data System (ADS)

    Ban-Oganowska, H.; Godlewska, P.; Macalik, L.; Hanuza, J.; Oganowski, W.; Hermanowicz, K.

    2002-09-01

    A series of six-coordinate complexes of 2,6-lutidine N-oxide (C 7H 9NO) with praseodymium, neodymium, samarium, europium, gadolinium and dysprosium has been synthesised and chemically characterised. FT-IR and FT-Raman spectra in the range 80-4000 cm -1 as well as electronic absorption and emission spectra in the range 4000-50,000 cm -1 have been measured. The Lorenzian deconvolution of the vibrational contour in the 100-300 cm -1 region has been used in the discussion of the molecular and site symmetries of the Ln 3+ ion situated in the oxygen polyhedron. The sequence of the electronic levels for all RE ions has been obtained and assigned to the respective transitions.

  20. Homoleptic rare earth dipyridylamides [Ln2(N(NC5H4)2)6], Ln = Ce, Nd, Sm, Ho, Er, Tm, Yb, and Sc: metal oxidation by the amine melt and in 1,2,3,4-tetrahydroquinoline with the focus of different metal activation by amalgams, liquid ammonia, and microwaves.

    PubMed

    Müller-Buschbaum, Klaus; Quitmann, Catharina C

    2006-03-20

    Homoleptic dimeric dipyridylamide complexes of the rare earth elements are obtained by solvent-free oxidation reactions of the metals with melts of 2,2'-dipyridylamine. As the thermal stabilities of the ligand as well as the amide complexes are limiting factors in these high-temperature syntheses, several different metal activation procedures have been investigated: the formation of Ln amalgams and dissolution of the metals in liquid ammonia as well as coupling to microwaves. For comparison with a solvent that shows low solubility of the metals and products, reactions in 1,2,3,4-tetrahydroquinoline were also carried out. For all lanthanides and group 3 metals used homoleptic dimers of the formula [Ln(2)(Dpa)(6)], Ln = Ce (1), Nd (2), Sm (3), Ho (4), Er (5), Tm (6), Yb (7), and Sc (8) and Dpa- = (C5H4N)2N-, were obtained, all containing trivalent rare earth ions with a distorted square antiprismatic nitrogen coordination. Due to the large differences in the ionic radii of the metal ions, two different structure types are found that crystallize in the space groups P2(1)/c and P2(1)/n with the border of the two types being between Tm and Yb. The orientations of two 1,3/1,3-double chelating and linking dipyridylamide ligands (Dpa(-) = (C(5)H(4)N)(2)N(-)) result in different overall orientations of the dimers and thus two structure types. All compounds were identified by single-crystal X-ray analysis. Mid-IR, far IR, and Raman spectroscopy, microanalyses, and simultaneous DTA/TG as well as mass spectrometry regarding their thermal behavior were also carried out to characterize the products. Crystal data for the two types follow. Ce (1): P2(1)/n; T = 170(2) K; a = 1063.0(1), b = 1536.0(1), c = 1652.0(2) pm; beta = 101.60(1) degrees ; V = 2642.2(3) x 10(6) pm(3); R(1) for F(o) > 4sigma(F(o)) = 0.046, wR(2) = 0.120. Sc (8): P2(1)/c; T = 170(2) K; a = 1073.0(1), b = 1506.2(2), c = 1619.8(2) pm; beta = 103.16(9) degrees ; V = 2548.9(5) x 10(6) pm(3); R(1) for F(o) > 4sigma

  1. Solvothermal syntheses, crystal structures, and properties of lanthanide(III) thioarsenates [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} (Ln==Sm, Eu, Gd) and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] (Ln==Tb, Dy, Ho)

    SciTech Connect

    Wang, Fang; Tang, Chunying; Chen, Ruihong; Zhang, Yong; Jia, Dingxian

    2013-10-15

    Solvothermal reactions of Ln{sub 2}O{sub 3}, As and S in diethylenetriamine (dien) at 170 °C for 6 days afforded two structural types of lanthanide thioarsenates with the general formulae [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} [Ln=Sm(1), Eu(2), Gd(3)] and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] [Ln=Tb(4), Dy(5), Ho(6)]. The Ln{sub 2}O{sub 3} oxides were converted to [Ln(dien){sub 2}]{sup 3+} complex units in the solvothermal reactions. The As atom binds four S atoms, forming a tetrahedral AsS{sub 4} unit. In 1−3, the AsS{sub 4} units interconnect the [Ln(dien){sub 2}]{sup 3+} cations via Ln−S bonds as tridentate μ-1κ,2κ{sup 2}-AsS{sub 4} bridging ligands, resulting in the neutral coordination polymers [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} (Ln1). In 4−6, the AsS{sub 4} units coordinate with the Ln{sup 3+} ion of [Ln(dien){sub 2}]{sup 3+} as 1κ{sup 2}-AsS{sub 4} chelating ligands to form neutral coordination compounds [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] (Ln2). The Ln{sup 3+} ions are in nine- and eight-coordinated environments in Ln1 and Ln2, respectively. The formation of Ln1 and Ln2 is related with ionic size of the Ln{sup 3+} ions. Optical absorption spectra showed that 1−6 have potential use as semiconductors with the band gaps in the range 2.18−3.21 eV. - Graphical abstract: Two types of Ln-thioarsenates [Ln(dien){sub 2}(μ-1κ,2κ{sup 2}-AsS{sub 4})]{sub n} and [Ln(dien){sub 2}(1κ{sup 2}-AsS{sub 4})] were prepared by solvothermal methods and the soft Lewis basic AsS{sub 4}{sup 3–} ligand to Ln(III) centers with polyamine co-ligand was obtained. Display Omitted - Highlights: • Lanthanide thioarsenates were prepared by solvothermal methods. • The soft Lewis basic AsS{sub 4} ligand coordinate Ln{sup 3+} ions with coexistence polyamine ligands. • Two structural types of Ln-thioarsenates with structural turnover at Tb were obtained along Ln series. • The Ln-thioarsenates are potential semiconductors

  2. Magnetic ordering of divalent europium in double perovskites Eu{sub 2}LnTaO{sub 6} (Ln=rare earths)

    SciTech Connect

    Misawa, Yoshitaka; Doi, Yoshihiro; Hinatsu, Yukio

    2011-06-15

    Structures and magnetic properties of double perovskite-type oxides Eu{sub 2}LnTaO{sub 6} (Ln=Eu, Dy-Lu) were investigated. These compounds adopt a distorted double perovskite structure with space group P2{sub 1}/n. Magnetic susceptibility, specific heat, and {sup 151}Eu Moessbauer spectrum measurements show that the Eu{sup 2+} ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at {approx}4 K, and that Ln{sup 3+} ions at the 6-coordinate site are in the paramagnetic state down to 1.8 K. - Graphical abstract: Magnetic properties of double perovskite-type oxides Eu{sub 2}LnTaO{sub 6} (Ln=Eu, Dy-Lu) were investigated. Magnetic susceptibility, specific heat, and {sup 151}Eu Moessbauer spectrum measurements show that the Eu{sup 2+} ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at {approx}4 K. Highlights: > Crystal structures of double perovskites Eu{sub 2}LnTaO{sub 6} (Ln=rare earth) were determined. > We found that these compounds show an antiferromagnetic ordering at {approx}4 K. > The magnetic ordering is due to the interactions of Eu{sup 2+} ions. > It was elucidated by specific heat and {sup 151}Eu Moessbauer spectrum measurements.

  3. Normal coordinate analysis and DFT calculations of the vibrational spectra for lanthanide(III) complexes with 3-bromo-4-methoxy-2,6-lutidine N-oxide: LnCl 3(3Br4CH 3OC 7H 7NO) 3 (Ln=Pr, Nd, Sm, Eu, Gd, Dy)

    NASA Astrophysics Data System (ADS)

    Godlewska, P.; Ban-Oganowska, H.; Macalik, L.; Hanuza, J.; Oganowski, W.; Roszak, S.; Lipkowski, P.

    2006-01-01

    The results of the FT-Raman and FT-IR studies of the LnCl 3(LNO) 3 type complexes (where Ln=Pr, Nd, Sm, Eu, Gd, Dy and LNO=3-Br-4-CH 3OC 7H 7NO) are presented. The spectral contours observed in the regions of the lanthanide-oxygen, lanthanide-chlorine and nitrogen-oxygen vibrations are employed in the discussion of the molecular structure of the complex ions and the local symmetry of the LnCl 3(ON) 3 polyhedron. The discussion of the vibrational spectra is based on the classical normal coordinate analysis and its results are compared to the results of DFT quantum chemical calculations performed for complete molecule. The normal coordinate analysis has been performed for PrCl 3(ON) 3 and DyCl 3(ON) 3 molecular systems, which have been treated as a different 'isotopic units'. Basing on the predominant PED contributions of the respective internal coordinates the assignment of the normal vibrations has been proposed.

  4. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr)

    SciTech Connect

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J.

    2016-07-15

    The A-site ordered double-perovskite oxides, LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn{sub 2}O{sub 5+δ}. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn{sub 2}O{sub 5+δ}. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln{sup 3+} ions larger than Y{sup 3+}. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn{sub 2}O{sub 5} and fully-oxidized LnBaMn{sub 2}O{sub 6} during changes of the oxygen partial pressure between air and 1.99% H{sub 2}/Ar. In addition, the oxygen non-stoichiometries of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} were determined as a function of pO{sub 2} at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching ~6. The stabilities of the LnBaMn{sub 2}O{sub 5+δ} phases extend over a wide range of oxygen partial pressures (∼10{sup −25}≤pO{sub 2} (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln{sup 3+} cation the lower pO{sub 2} for phase conversion. At some temperatures and pO{sub 2} conditions, the LnBaMn{sub 2}O{sub 5+δ} compounds are unstable with respect to decomposition to BaMnO{sub 3−δ} and LnMnO{sub 3}. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions. - Graphical abstract: Structure of Ln

  5. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5+δ (Ln=Gd, Pr)

    NASA Astrophysics Data System (ADS)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J.

    2016-07-01

    The A-site ordered double-perovskite oxides, LnBaMn2O5+δ (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn2O5+δ. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn2O5+δ. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln3+ ions larger than Y3+. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn2O5 and fully-oxidized LnBaMn2O6 during changes of the oxygen partial pressure between air and 1.99% H2/Ar. In addition, the oxygen non-stoichiometries of GdBaMn2O5+δ and PrBaMn2O5+δ were determined as a function of pO2 at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching 6. The stabilities of the LnBaMn2O5+δ phases extend over a wide range of oxygen partial pressures (∼10-25≤pO2 (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln3+ cation the lower pO2 for phase conversion. At some temperatures and pO2 conditions, the LnBaMn2O5+δ compounds are unstable with respect to decomposition to BaMnO3-δ and LnMnO3. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions.

  6. Preparation and structure of the light rare-earth copper selenides LnCuSe 2 ( Ln=La, Ce, Pr, Nd, Sm)

    NASA Astrophysics Data System (ADS)

    Ijjaali, Ismail; Mitchell, Kwasi; Ibers, James A.

    2004-03-01

    The ternary selenides LnCuSe 2 ( Ln=La, Ce, Pr, Nd, Sm) have been synthesized by the reaction at 1173 K of Ln, Cu, and Se in a KBr or KI flux. The compounds, which are isostructural with LaCuS 2, crystallize with four formula units in the space group P2 1/ c of the monoclinic system. The structure may be thought of as consisting of layers of CuSe 4 tetrahedra separated by double layers of LnSe 7 monocapped trigonal prisms along the a-axis. Cell constants (Å or deg) at 153 K are: LaCuSe 2, 6.8142(5), 7.5817(6), 7.2052(6), 97.573(1)°; CeCuSe 2, 6.7630(5), 7.5311(6), 7.1650(6), 97.392(1)°; PrCuSe 2, 6.740(1), 7.481(1), 7.141(1), 97.374(2)°; NdCuSe 2, 6.7149(6), 7.4452(7), 7.1192(6), 97.310(1)°; SmCuSe 2, 6.6655(6), 7.3825(7), 7.0724(6), 97.115(1)°. There are no Se-Se bonds in the structure of LnCuSe 2; the formal oxidation states of Ln/Cu/Se are 3+/1+/2-.

  7. Structures and magnetic properties of rare earth double perovskites containing antimony or bismuth Ba{sub 2}LnMO{sub 6} (Ln=rare earths; M=Sb, Bi)

    SciTech Connect

    Otsuka, Shumpei Hinatsu, Yukio

    2015-07-15

    A series of double perovskite-type oxides Ba{sub 2}LnMO{sub 6} (Ln=lanthanides; M=Sb, Bi) were synthesized and their structures were studied. The Ln and M are structurally ordered in the rock-salt type at the B-site of the perovskite ABO{sub 3}. For Ba{sub 2}PrBiO{sub 6} and Ba{sub 2}TbBiO{sub 6}, it has been found that the disordering between Ln ion and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data. Magnetic susceptibility measurements show that all these compounds are paramagnetic and have no magnetic ordering down to 1.8 K. - Graphical abstract: Tolerance factor for Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) plotted against the ionic radius of Ln{sup 3+}. We have found that there is a clear relation between crystal structures and tolerance factors. - Highlights: • The Ln and M ions are structurally ordered in the rock-salt type at the B-site. • The disordering between Pr (Tb) ion and Bi ion occurs at the B-site. • Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) have no magnetic ordering down to 1.8 K.

  8. Computational study of LnGaO3 (Ln = La Gd) perovskites

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Ehrenberg, H.; Vasylechko, L.; Gale, J. D.; Bismayer, U.

    2005-10-01

    Atomistic simulation techniques have been used to study the thermal properties of perovskite-type LnGaO3 (Ln = La-Gd). A set of interatomic potentials describing interatomic interactions in these compounds was developed and tested over a wide temperature range through utilizing free energy minimization. The predicted dielectric constants, thermal expansion coefficients, phonon density of states and its projections, heat capacity and entropy, elastic moduli, Grüneisen parameters, surface energies for main crystallographic directions and Debye temperatures are in good agreement with the limited available experimental data. Perovskite-type LnGaO3 (Ln = La-Gd) compounds have been examined under conditions to which substrate materials are typically subjected. Only a narrow region in the phase diagram of LnGaO3 (Ln = La-Gd) and their solid solutions is recommended for use in substrate applications.

  9. Phase transformations during HLnTiO{sub 4} (Ln=La, Nd) thermolysis and photocatalytic activity of obtained compounds

    SciTech Connect

    Silyukov, Oleg I. Abdulaeva, Liliia D.; Burovikhina, Alena A.; Rodionov, Ivan A.; Zvereva, Irina A.

    2015-03-15

    Layered HLnTiO{sub 4} (Ln=La, Nd) compounds belonging to Ruddlesden–Popper phases were found to form partially hydrated compounds Ln{sub 2}Ti{sub 2}O{sub 7}·xH{sub 2}O during thermal dehydration as well as defect oxides Ln{sub 2}□Ti{sub 2}O{sub 7} as final products. Further heating of metastable defect Ln{sub 2}□Ti{sub 2}O{sub 7} substances leads to the formation of pyrochlore-type oxides Ln{sub 2}Ti{sub 2}O{sub 7} {sub (p)}, with subsequent transformation under higher temperatures to stable layered 110-type perovskites Ln{sub 2}Ti{sub 2}O{sub 7}. The occurring structure transformations lead to an increase of photocatalytic activity in the order of HLnTiO{sub 4}<Ln{sub 2}Ti{sub 2}O{sub 7}·yH{sub 2}O<Ln{sub 2}□Ti{sub 2}O{sub 7}<Ln{sub 2}Ti{sub 2}O{sub 7} {sub (p)}<Ln{sub 2}Ti{sub 2}O{sub 7} in the reaction of hydrogen evolution from aqueous isopropanol solution. - Graphical abstract: Layered HLnTiO{sub 4} (Ln=La, Nd) compounds form partially hydrated Ln{sub 2}Ti{sub 2}O{sub 7}·xH{sub 2}O compounds during thermal dehydration, further heating results to the formation to defect oxides Ln{sub 2}□Ti{sub 2}O{sub 7}, pyrochlor-type oxides Ln{sub 2}Ti{sub 2}O{sub 7} {sub (p)}, with subsequent transformation to layered 110-type perovskites Ln{sub 2}Ti{sub 2}O{sub 7}. Structure transformations lead to an increase of photocatalytic activity in the order of HLnTiO{sub 4}<Ln{sub 2}Ti{sub 2}O{sub 7}·yH{sub 2}O<Ln{sub 2}□Ti{sub 2}O{sub 7}<Ln{sub 2}Ti{sub 2}O{sub 7} {sub (p)}<Ln{sub 2}Ti{sub 2}O{sub 7}. - Highlights: • We studied dehydration and further thermolysis of HLnTiO{sub 4} (Ln=La, Nd) compounds. • XRD, STA and solid state IR studies were carried out. • A new series of metastable Ln{sub 2}Ti{sub 2}O{sub 7}·yH{sub 2}O compounds was obtained. • We examined the photocatalytic activity of all obtained compounds. The hydrogen evolution rate increased in the course of the structure changes during thermolysis.

  10. Formation enthalpies of LaLn'O{sub 3} (Ln'=Ho, Er, Tm and Yb) interlanthanide perovskites

    SciTech Connect

    Qi, Jianqi; Guo, Xiaofeng; Mielewczyk-Gryn, Aleksandra

    2015-07-15

    High-temperature oxide melt solution calorimetry using 3Na{sub 2}O·MoO{sub 3} at 802 °C was performed for interlanthanide perovskites LaLn'O{sub 3} (Ln'=Ho, Er, Tm and Yb) and lanthanide oxides (La{sub 2}O{sub 3}, Ho{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Tm{sub 2}O{sub 3} and Yb{sub 2}O{sub 3}). The enthalpies of formation of these interlanthanide perovskites from binary lanthanide oxides at room temperature (25 °C) were determined to be −8.3±3.4 kJ/mol for LaHoO{sub 3}, −9.9±3.0 kJ/mol for LaErO{sub 3}, −10.8±2.7 kJ/mol for LaTmO{sub 3} and −12.3±2.9 kJ/mol for LaYbO{sub 3}. There is a roughly linear relationships between these enthalpy values and the tolerance factor for these and for other LaM{sup 3+}O{sub 3} (M=In, Sc, Ga, Al, Fe and Cr) perovskites, confirming that the distortion of the perovskites as results from ionic radius difference of A-site and B-site cations, is the main factor determining the stability of these compounds. - Graphical abstract: A linear relationship between the enthalpy of formation and the tolerance factor for interlanthanide LaLn'O{sub 3} (Ln'=Ho, Er, Tm, and Yb) and other LaM{sup 3+}O{sub 3} (M=In, Sc, Ga, Al, Fe and Cr) perovskites. - Highlights: • Interlanthanide perovskites were synthesized by solid state reactions. • Their enthalpies of formation were measured by oxide melt solution calorimetry. • ΔH{sub f,ox} shows a linear relationship with tolerance factor.

  11. Formation enthalpies of LaLn'O3 (Ln'=Ho, Er, Tm and Yb) interlanthanide perovskites

    NASA Astrophysics Data System (ADS)

    Qi, Jianqi; Guo, Xiaofeng; Mielewczyk-Gryn, Aleksandra; Navrotsky, Alexandra

    2015-07-01

    High-temperature oxide melt solution calorimetry using 3Na2O·MoO3 at 802 °C was performed for interlanthanide perovskites LaLn'O3 (Ln'=Ho, Er, Tm and Yb) and lanthanide oxides (La2O3, Ho2O3, Er2O3, Tm2O3 and Yb2O3). The enthalpies of formation of these interlanthanide perovskites from binary lanthanide oxides at room temperature (25 °C) were determined to be -8.3±3.4 kJ/mol for LaHoO3, -9.9±3.0 kJ/mol for LaErO3, -10.8±2.7 kJ/mol for LaTmO3 and -12.3±2.9 kJ/mol for LaYbO3. There is a roughly linear relationships between these enthalpy values and the tolerance factor for these and for other LaM3+O3 (M=In, Sc, Ga, Al, Fe and Cr) perovskites, confirming that the distortion of the perovskites as results from ionic radius difference of A-site and B-site cations, is the main factor determining the stability of these compounds.

  12. Sonochemical synthesis of highly luminescent Ln2O3:Eu3+ (Y, La, Gd) nanocrystals

    DOE PAGES

    Alammar, Tarek; Cybinska, Joanna; Campbell, Paul S.; ...

    2015-05-12

    In this study, sonication of Ln(CH3COO)3·H2O, Eu(CH3COO)3·H2O and NaOH dissolved in the ionic liquid-butyl-3-methylimidazolium bis(trifluoromethane)sulfonylamide lead to Ln(OH)3:Eu (Ln: Gd, La, Y) nanoparticles. Subsequent calcination at 800 °C for 3 h allowed to obtain Ln2O3:Eu nanopowders. Gd2O3 and Y2O3 were obtained in the C-type lanthanide sequioxide structure, whereas La2O3 crystallized in the A-type. Structure, morphology, and luminescent properties of the nano-oxides were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dispersive X-ray (EDX), and photoluminescence (PL). SEM studies revealed that the synthesized Gd2O3:Eu, La2O3:Eu, and Y2O3:Eu formed nano-spindle, -sheets, and -rods in shape, respectively. The nanoscale materials showmore » very efficient red emission due to the intraconfigurational f–f transitions of Eu3+. The quantum yields for Ln2O3:Eu (5%) were determined to be 4.2% for Ln=Gd, 13.8% for Ln=Y and 5.2% for Ln=La. The asymmetric ratio I02/I01 of Eu3+ varies from 5.3 for Gd2O3, to 5.6 for Y2O3 to 6.5 for La2O3, which increased the color chromaticity.« less

  13. Structurally characterized luminescent lanthanide zinc carboxylate precursors for Ln-Zn-O nanomaterials.

    PubMed

    Boyle, Timothy J; Raymond, Rebecca; Boye, Daniel M; Ottley, Leigh Anna M; Lu, Ping

    2010-09-14

    A novel family of lanthanide zinc carboxylate compounds was synthesized, characterized (structural determination and luminescent behavior), and investigated for utility as single-source precursors to Ln-Zn-O nanoparticles. Carboxylic acids [H-ORc = H-OPc (H-O(2)CCH(CH(3))(2), H-OBc (H-O(2)CC(CH(3))(3), H-ONc (H-O(2)CCH(2)C(CH(3))(3))] were individually reacted with diethyl zinc (ZnEt(2)) to yield a set of previously unidentified zinc carboxylates: (i) [Zn(mu-ORc)(3)Zn(mu-ORc)](n) [ORc = OPc (1), ONc (2)], (ii) [(py)Zn](2)(mu-ORc)(4) [ORc = OBc (3), ONc (4), and py = pyridine], or (iii) Zn(ORc)(2)(solv)(2) [ORc/solv = OPc/py (5), O(c)Nc/H(2)O (6) (O(c)Rc = chelating)]. Introduction of lanthanide cation [Ln[N(SiMe(3))(2)](3), ZnEt(2), and HOBc in py] yielded the mixed cationic species structurally characterized as: (i) (O(c)Bc)Ln[(mu-OBc)(3)Zn(py)](2) [Ln = Pr (7), Nd (8), Sm (9)] or (ii) (py)(2)Zn(mu-OBc)(3)Ln(O(c)Bc)(2)(py) [Ln = Tb (10), Dy (11), Er (12), Y (13), Yb (14)]. Exploration of alternative starting materials [Ln(NO(3))(3).nH(2)O, Zn(O(2)CCH(3))(2), HOBc in py] led to the isolation of (NO(3)(c))Ln[(mu-OBc)(3)Zn(py)](2) [Ln = La (15), Ce (16), Pr (17), Nd (18), Sm (19), Eu (20), Gd (21), Tb (22) Dy (23), and Er (24); NO(3)(c) = chelating]. The UV-vis spectra of 7-24 revealed standard absorption spectra for the Ln cations. Representative compounds were used to generate nanoparticles from an established 1,4-butanediol-based solution precipitation route. The nanoproducts isolated adopted either a mixed zincite/lanthanum oxide (18n or 22n) or pure zincite (8n or 10n) phase dependent on NO(3) or OBc moiety. Fluorescence was not observed for any of these nanomaterials possibly due to phase separation, low crystallinity, surface traps, and/or quenching based on elevated Ln cation content.

  14. High temperature Aurivillius piezoelectrics: the effect of (Li, Ln) modification on the structure and properties of (Li, Ln)0.06(Na, Bi)0.44Bi(2)Nb2O9 (Ln = Ce, Nd, La and Y).

    PubMed

    Long, Changbai; Fan, Huiqing; Li, Mengmeng

    2013-03-14

    High temperature Aurivillius piezoelectrics, (Li, Ln)(0.06)(Na, Bi)(0.44)Bi(2)Nb(2)O(9) (NBN-LiLn), with Li and Ln (Ce, Nd, La and Y) co-substitution at the A site, were prepared using a solid-state reaction process. Taking cation disordering between A site and the (Bi(2)O(2))(2+) layers into consideration, the crystal structure of (Li, Nd)(0.06)(Na, Bi)(0.44)Bi(2)Nb(2)O(9) (NBN-LiNd) was refined by using the Rietveld method with powder X-ray diffraction, which was confirmed to be a two-layer Aurivillius oxide with an orthorhombic space group, A2(1)am [a = 5.48666(9) Å, b = 5.46046(8) Å, c = 24.9122(4) Å and Z = 4], at room temperature. LiNd substitution induced a decrease in cation disorder and an increase in orthorhombic distortion. The ferroelectric to paraelectric phase transition temperature (T(c)) of the NBN-LiLn (Ln = Ce, Nd, La and Y) ceramics ranged from 751 to 842 °C and the T(c) increased as the radii of the Ln(3+) (Ce(3+), Nd(3+), La(3+) and Y(3+)) was decreased. The NBN-LiCe and NBN-LiNd had a d(33) of 31 and 29 pC N(-1), respectively, which is much higher than the reported d(33) values of other Aurivillius ceramics with a high T(c) (T(c) > 650 °C, d(33) < 20 pC N(-1)). With increasing annealing temperature, a significant degradation in d(33) was observed for NBN-LiCe, while no drop in d(33) was observed up to 650 °C for NBN-LiNd. The inhomogeneous domain structures determined the dissimilar piezoelectric behaviors of NBN-LiCe and NBN-LiNd.

  15. Estimate of the basicity of Ln[sub 2]O[sub 3]-Bi[sub 2]O[sub 3] catalysts for oxidative couping of methane through diffuse reflectance UV-vis experiments

    SciTech Connect

    Centeno, M.A.; Capitan, M.J.; Malet, P.; Carrizosa, I.; Odriozola, J.A. )

    1994-07-01

    The present work is aimed toward estimating the basicity rare earth oxide/bismuth oxide catalysts based in the electronic structure of the solid. The stabilization of the [beta]-Bi[sub 2]O[sub 3] phase due to the presence of rare earth cations allows the separation of the role of the basicity of the catalysts from the influence of the crystalline structure in the activity in the oxidative coupling of methane. 13 refs., 3 figs., 2 tabs.

  16. Enthalpies of melting of LnSF compounds (Ln = La, Ce, Pr, Nd, Sm)

    NASA Astrophysics Data System (ADS)

    Andreev, P. O.; Mikhalkina, O. G.; Andreev, O. V.; Elyshev, A. V.

    2015-05-01

    The melting temperatures and enthalpies of such congruently melting compounds as LaSF ( T m = 1713 ± 7 K, Δ H = 45.7 ± 4.6 kJ/mol), CeSF ( T m = 1683 ± 7 K, Δ H = 40.7 ± 4.1 kJ/mol), PrSF ( T m = 1661 ± 7 K, Δ H = 39.7 ± 4.0 kJ/mol), NdSF ( T m = 1654 ± 7 K, Δ H = 40.2 ± 4.0 kJ/mol), and SmSF ( T m = 1587 ± 7 K, Δ H = 36.1 ± 3.6 kJ/mol) are determined via synchronous thermal analysis. The tetrad effect is evident in the change of the melting temperatures and enthalpies of LnSF compounds (Ln = La, Ce, Pr, Nd, Sm) depending on r(Ln3+).

  17. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln=La, Nd and Sm).

    PubMed

    Wang, Zhongpeng; Zhu, Hongjian; Ai, Lijie; Liu, Xuhui; Lv, Min; Wang, Liguo; Ma, Zhenmin; Zhang, Zhaoliang

    2016-09-15

    Catalytic combustion is one of the most promising methods for diesel soot removal. Ln2Sn2O7 pyrochlores substituted with different rare-earth (RE) elements (Ln=La, Nd and Sm) were prepared through co-precipitation method for catalytic combustion of soot particulates. The structural, textural and redox properties, together with the oxygen vacancy of the catalysts were investigated systematically. Their catalytic activities were evaluated by both temperature-programmed oxidation and isothermal reaction techniques. With the increasing in RE ionic radius (r), the SnO bond strength in Ln2Sn2O7 pyrochlores evaluated from the stretching IR band was decreased, resulting in the improved reducibility and enhanced oxygen vacancies of catalysts. The increase of oxygen vacancy concentration was further confirmed by photoluminescence (PL) investigations wherein upon excitation with UV radiation, the pyrochlores nanoparticles exhibited strong and sharp transition at 408nm attributed to oxygen vacancies. Catalytic combustion and isothermal reactions revealed that the ignition activity (ignition temperature, T5) and the intrinsic activity (turnover frequency, TOF) were shown to depend correlatedly on redox properties and oxygen vacancy concentrations, both of which were influenced by the substitution of different RE elements. Among the pyrochlore oxides, the as-synthesized La2Sn2O7 sample displayed relatively the highest ignition activity and the largest intrinsic activity with TOF of 2.33×10(-3)s(-1).

  18. Crystal growth, structure and magnetic properties of the double perovskites Ln{sub 2}MgIrO{sub 6} (Ln=Pr, Nd, Sm-Gd)

    SciTech Connect

    Mugavero, Samuel J. III; Fox, Adam H.; Smith, Mark D.; Loye, Hans-Conrad zur

    2010-02-15

    Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln{sub 2}MgIrO{sub 6} (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P2{sub 1}/n, consisting of corner shared MO{sub 6} (M=Mg{sup 2+} and Ir{sup 4+}) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr{sub 2}MgIrO{sub 6}, Nd{sub 2}MgIrO{sub 6}, Sm{sub 2}MgIrO{sub 6}, and Eu{sub 2}MgIrO{sub 6} order antiferromagnetically around 10-15 K. - Graphical abstract: A SEM image of a typical crystal of Ln{sub 2}MgIrO{sub 6}, which forms in the monoclinic double perovskite structure, is shown.

  19. Thermoelectric properties of binary LnN (Ln=La and Lu): First principles study

    SciTech Connect

    Sreeparvathy, P. C.; Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; Svane, A.; Christensen, N. E.

    2015-06-24

    First principles density functional calculations were carried out to study the electronic structure and thermoelectric properties of LnN (Ln = La and Lu) using the full potential linearized augmented plane wave (FP-LAPW) method. The thermoelectric properties were calculated by solving the Boltzmann transport equation within the constant relaxation time approximation. The obtained lattice parameters are in good agreement with the available experimental and other theoretical results. The calculated band gaps using the Tran-Blaha modified Becke-Johnson potential (TB-mBJ), of both compounds are in good agreement with the available experimental values. Thermoelectric properties like thermopower (S), electrical conductivity scaled by relaxation time (σ/τ) and power-factor (S{sup 2}σ/τ) are calculated as functions of the carrier concentration and temperature for both compounds. The calculated thermoelectric properties are compared with the available experimental results of the similar material ScN.

  20. The formation of the complex manganites LnSr{sub 2}Mn{sub 2}O{sub 7} (Ln = La, Nd, Gd)

    SciTech Connect

    Missyul, A.B.; Zvereva, I.A.; Palstra, T.T.M.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Formation of the LnSr{sub 2}Mn{sub 2}O{sub 7} phases proceeds according to two different pathways. ► Cationic composition of the obtained phase depends on the formation pathway. ► Step-by-step synthesis allows obtaining single-phase material. ► Structure and magnetic properties of the single-phase NdSr{sub 2}Mn{sub 2}O{sub 7} were investigated. -- Abstract: The process of formation of the Ruddlesden–Popper phases LnSr{sub 2}Mn{sub 2}O{sub 7} (Ln = La, Nd, Gd) was investigated by means of X-ray diffraction, thermal analysis and microprobe analysis. Two parallel pathways were found for the reaction. The first one includes the formation of the intermediate K{sub 2}NiF{sub 4}-type compound by interaction of Sr{sub 7}Mn{sub 4}O{sub 15} and perovskite-type solid solution (Ln,Sr)MnO{sub 3}, while in the second one the K{sub 2}NiF{sub 4}-type intermediate is formed during the reaction of the same perovskite-type solid solution with the corresponding rare earth oxide. This result gives an explanation for the formation of two phases with slightly different cationic compositions. The kinetics of the reaction was investigated for both mechanisms resulting in determination of their relative contribution to the final composition. Pure NdSr{sub 2}Mn{sub 2}O{sub 7} was obtained using a step-by-step process according to the first mechanism, and the magnetic properties of this phase were investigated.

  1. Molybdate templated assembly of Ln12Mo4-type clusters (Ln = Sm, Eu, Gd) containing a truncated tetrahedron core.

    PubMed

    Zheng, Yong; Zhang, Qian-Chong; Long, La-Sheng; Huang, Rong-Bin; Müller, Achim; Schnack, Jürgen; Zheng, Lan-Sun; Zheng, Zhiping

    2013-01-04

    Three heterometallic cluster complexes {Ln(12)Mo(4)} featuring an Ln(12) core of a distorted truncated tetrahedron were synthesized with the assistance of four MoO(4)(2-) anions as ancillary ligands. Magnetic studies of the {Gd(12)Mo(4)} cluster revealed a large magnetocaloric effect due to the presence of the large number of weakly coupled Gd(III) ions.

  2. Computational study on the complexation behavior of tetrapropyl diglycolamide with Ln3+ (Ln = Nd, Pm, Sm, and Eu) cation series

    NASA Astrophysics Data System (ADS)

    Hosseinnejad, Tayebeh; Nikoo, Sepideh

    2015-09-01

    In the present study, we have focused mainly on the survey of interactions in Ln3+ (Ln = Nd, Pm, Sm, Eu) complexes with tetrapropyl diglycolamide (TPDGA) by means of density functional theory (DFT) methods. In the first step, the interaction of TPDGA ligand with Ln3+ cation series has been assessed thermodynamically in the gas phase and in presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) calculations. The trend of metal-ligand interaction strength has been investigated and compared with the trend of ionic hardness within the series of lanthanide cations. Our results for the gas and solution phases demonstrate a consistency between the increasing trend in the hardness of Ln3+ cation series with the increasing in thermodynamical stability of [Ln(TPDGA)]3+ complex series. Moreover, our PCM calculations show that using n-hexane as a solvent is more favorable thermodynamically than chloroform and toluene for the complexation reaction of all [Ln(TPDGA)]3+ complex series. It should be stated that this issue has been observed in many experimental calculations. Finally the assessment of calculated deformation energies and also the variation in bond order of some selected key bonds in [Ln(TPDGA)]3+ complex series shows a similar trend with increasing in the hardness of Ln3+ cation series.

  3. On the Crystal Structure of Ln

    SciTech Connect

    Olafsen, Anja; Larsson, Ann-Kristin; Fjellvaag, Helmer; Hauback, Bjoern C.

    2001-04-01

    The crystal structures of La{sub 2}O{sub 2}CO{sub 3} II and Nd{sub 2}O{sub 2}CO{sub 3} II have been shown by means of high-resolution powder neutron (PND) and synchrotron X-ray diffraction (SXRD) combined with selected area electron diffraction (SAED) studies to be far more complex than earlier anticipated, owing to ordering of carbonate groups between (Ln{sub 2}O{sub 2}{sup +2}){sub n} layers. In contrast to earlier descriptions, the carbonate groups appear to be rather regular. Relative to an average model, the SAED patterns show additional scattering in the form of closely distributed, but essentially discrete, spots along < 1/3, 1/3, 1 >. Most of the observed scattering, H, can be described as H=G{+-}m q{sub 1}+n q{sub 2}, where G is the Bragg reflections of the underlying average P6{sub 3}/mmc lattice, q1=[1/3, 1/3, {+-}1/2]*, q2=[1/3, 1/3, {+-}2/3]*, and m and n are integers. The additional scattering reflects ordering of the carbonate groups into trigonal layers between the (Ln{sub 2}O{sub 2}{sup +2}){sub n} layers, but it remains open whether q{sub 1} and q{sub 2} represent two separate structures with different stacking sequences of such layers or whether they correspond to an even more complex stacking sequence. In any case, some disorder and rotational domain twinning are present. Two structure models, one for each modulation wave vector, were constructed. Rietveld-type refinements of PND data of La{sub 2}O{sub 2}CO{sub 3} II were performed, approximating the complex, and at least partly disordered, stacking sequence as a two-phase mixture of the two modulated phases. Satisfactory convergence was achieved with R{sub p}=6.4%, R{sub wp}=8.3%, and {chi}{sup 2}=3.32. The isothermal expansivities, {alpha}{sub p}, for La{sub 2}O{sub 2}CO{sub 3} II and Nd{sub 2}O{sub 2}CO{sub 3} II between 298 and 893 K were determined as 2.92x10{sup {minus}5} and 2.70x10{sup {minus}5} K{sup {minus}1}, respectively.

  4. 2,5-Dioxido-1,4-benzoquinonediimine (H2L2-), a hydrogen-bonding noninnocent bridging ligand related to aminated topaquinone: different oxidation state distributions in complexes [{(bpy)2Ru}2(mu-H2L)]n (n=0,+,2+,3+,4+) and [{(acac)2Ru}2(mu-H2L)]m (m=2-,-,0,+,2+).

    PubMed

    Kar, Sanjib; Sarkar, Biprajit; Ghumaan, Sandeep; Janardanan, Deepa; van Slageren, Joris; Fiedler, Jan; Puranik, Vedavati G; Sunoj, Raghavan B; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2005-08-19

    The symmetrically dinuclear title compounds were isolated as diamagnetic [(bpy)2Ru(mu-H2L)Ru(bpy)2](ClO4)2 (1-(ClO4)2) and as paramagnetic [(acac)2Ru(mu-H2L)Ru(acac)2] (2) complexes (bpy=2,2'-bipyridine; acac- = acetylacetonate = 2,4-pentanedionato; H2L = 2,5-dioxido-1,4-benzoquinonediimine). The crystal structure of 22 H2O reveals an intricate hydrogen-bonding network: Two symmetry-related molecules 2 are closely connected through two NH(H2L2-)O(acac-) interactions, while the oxygen atoms of H2L2- of two such pairs are bridged by an (H2O)8 cluster at half-occupancy. The cluster consists of cyclic (H2O)6 arrangements with the remaining two exo-H2O molecules connecting two opposite sides of the cyclo-(H2O)6 cluster, and oxido oxygen atoms forming hydrogen bonds with the molecules of 2. Weak antiferromagnetic coupling of the two ruthenium(III) centers in 2 was established by using SQUID magnetometry and EPR spectroscopy. Geometry optimization by means of DFT calculations was carried out for 1(2+) and 2 in their singlet and triplet ground states, respectively. The nature of low-energy electronic transitions was explored by using time-dependent DFT methods. Five redox states were reversibly accessible for each of the complexes; all odd-electron intermediates exhibit comproportionation constants K(c)>10(8). UV-visible-NIR spectroelectrochemistry and EPR spectroscopy of the electrogenerated paramagnetic intermediates were used to ascertain the oxidation-state distribution. In general, the complexes 1n+ prefer the ruthenium(II) configuration with electron transfer occurring largely at the bridging ligand (mu-H2Ln-), as evident from radical-type EPR spectra for 13+ and (+. Higher metal oxidation states (iii, iv) appear to be favored by the complexes 2m; intense long-wavelength absorption bands and RuIII-type EPR signals suggest mixed-valent dimetal configurations of the paramagnetic intermediates 2+ and 2-.

  5. The Ba 2LnFeNb 4O 15 "tetragonal tungsten bronze": Towards RT composite multiferroics

    NASA Astrophysics Data System (ADS)

    Josse, M.; Bidault, O.; Roulland, F.; Castel, E.; Simon, A.; Michau, D.; Von der Mühll, R.; Nguyen, O.; Maglione, M.

    2009-06-01

    Several Niobium oxides of formula Ba 2LnFeNb 4O 15 (Ln = La, Pr, Nd, Sm, Eu, Gd) with the "tetragonal tungsten bronze" (TTB) structure have been synthesised by conventional solid state methods. The neodymium, samarium and europium compounds are ferroelectric with Curie temperature ranging from 320 to 440 K. The praseodymium and gadolinium compounds behave as relaxors below 170 and 300 K respectively. The praseodymium, neodymium, samarium, europium and gadolinium compounds exhibit magnetic hysteresis loops at room temperature originating from traces of a barium ferrite secondary phase. The presence of both ferroelectric and magnetic hysteresis loops at room temperature allows considering these materials as composites multiferroic. Based on crystal-chemical analysis we propose some relationships between the introduction of Ln 3+ ions in the TTB framework and the chemical, structural and physical properties of these materials.

  6. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-02-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  7. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with <50 ppm of sulfur. There was no degradation in the microstructure and mechanical properties of the A-TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  8. Thermodynamic properties of liquid Mg-ln-Cd ternary solutions

    NASA Astrophysics Data System (ADS)

    Moser, Z.; Gasior, W.; Panek, Z.

    1984-09-01

    By means of concentration cells of the following type: Mg(s)∣MgCl2 in (LiCl-KCl)eut( l)∣Mg-In or Mg-ln-Cd( l), the partial thermodynamic data of Mg in Mg-ln and Mg-ln-Cd liquid solutions have been obtained in the composition range 0.1 ≤ XMg ≤ 0.7 for binary while for ternary alloys for t = 0.4, 0.6, and 0.8 (where t = XIn/(XIn + XCd)) and at various mangesium concentrations 0.1≤ XMg ≤ 0.6. Both ternary and binary alloys were investigated at a temperature range 750 to 900 K. Experimental partial excess Gibbs energies of Mg were interpreted by the Pelton and Flengas method. Results for Mg-ln system show a slight difference in comparison with previously published data for the same system also from emf studies. Results of this study for Mg-ln system exhibit negative and positive excess entropies of magnesium and the same is observed in ternary system Mg-ln-Cd at the range of concentration close to Mg-ln.

  9. Uniform hollow Lu2O3:Ln (Ln = Eu3+, Tb3+) spheres: facile synthesis and luminescent properties.

    PubMed

    Yang, Piaoping; Gai, Shili; Liu, Yanchao; Wang, Wenxin; Li, Chunxia; Lin, Jun

    2011-03-21

    Uniform hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) phosphors have been successfully prepared via a urea-assisted homogeneous precipitation method using carbon spheres as templates, followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), photoluminescence (PL) spectra, cathodoluminescence (CL) spectra, kinetic decays, quantum yields (QY), and UV-visible diffuse reflectance spectra were employed to characterize the samples. The results show that hollow Lu(2)O(3):Ln spheres can be indexed to cubic Gd(2)O(3) phase with high purity. The as-prepared hollow Lu(2)O(3):Ln phosphors are confirmed to be uniform in shape and size with diameter of about 300 nm and shell thickness of approximate 20 nm. The possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow Lu(2)O(3):Ln microspheres has been proposed. Upon ultraviolet (UV) and low-voltage electron beams excitation, the hollow Lu(2)O(3):Ln (Ln = Eu(3+), Tb(3+)) spheres exhibit bright red (Eu(3+), (5)D(0)-(7)F(2)) and green (Tb(3+), (5)D(4)-(7)F(5)) luminescence, which may find potential applications in the fields of color display and biomedicine.

  10. PERSPECTIVE VIEW LOOKING SOUTHWEST AT THE CYANAMIDE (LN) OVEN BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW LOOKING SOUTHWEST AT THE CYANAMIDE (L-N) OVEN BUILDING, AMMONIA SPHERES IN FOREGROUND. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  11. DETAIL INTERIOR VIEW OF THE CYANAMIDE (LN) OVEN BUILDING LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL INTERIOR VIEW OF THE CYANAMIDE (L-N) OVEN BUILDING LOOKING NORTHWEST AT A C. 1932 CHICAGO PNEUMATIC COMPRESSOR. (NOT ORIGINAL LOCATION). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  12. DETAIL INTERIOR VIEW OF THE CYANAMIDE (LN) OVEN BUILDING LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL INTERIOR VIEW OF THE CYANAMIDE (L-N) OVEN BUILDING LOOKING WEST AT INGERSOLL-RAND COMPRESSORS #BE565 & 564. (NOT ORIGINAL LOCATION). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  13. PERSPECTIVE VIEW LOOKING NORTHWEST AT CYANAMIDE (LN) COOLING SHED, MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW LOOKING NORTHWEST AT CYANAMIDE (L-N) COOLING SHED, MILL BUILDING AND CONVEYOR BRIDGE. NOTE CORNERSTONE ON THE MILL BUILDING. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  14. DETAIL INTERIOR VIEW OF THE CYANAMIDE (LN) OVEN BUILDING LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL INTERIOR VIEW OF THE CYANAMIDE (L-N) OVEN BUILDING LOOKING NORTHEAST AT A C. 1932 CHICAGO PNEUMATIC COMPRESSOR. (NOT ORIGINAL LOCATION). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  15. DETAIL INTERIOR VIEW OF THE CYANAMIDE (LN) OVEN BUILDING LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL INTERIOR VIEW OF THE CYANAMIDE (L-N) OVEN BUILDING LOOKING SOUTHEAST AT INGERSOLL-RAND COMPRESSORS #BE565 & 564. (NOT ORIGINAL LOCATION). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  16. Heat capacity, entropy of Ln2(MoO4)3 (Ln = La, Sm, and Gd), and the high-temperature enthalpy of Ln2(MoO4)3 (Ln = Eu, Dy, and Ho)

    NASA Astrophysics Data System (ADS)

    Lazarev, V. M.; Suponitskiy, Y. L.; Liashenko, S. E.

    2016-05-01

    The low-temperature heat capacity of Ln2(MoO4)3 (Ln = La, Sm, and Gd) is investigated by means of adiabatic calorimetry within the range of 60-300 K. The temperature dependences of the heat capacity are found and the values of the standard entropy are calculated, based on extrapolations to 0 K. Characteristic temperatures for molybdates are determined from the results of IR spectroscopic studies. The high-temperature enthalpy of Ln2(MoO4)3 (Ln = Eu, Dy, and Ho) is measured via high-temperature microcalorimetry, and the temperature dependence of heat capacity is calculated in the range of 298-1000 K. Since samarium and gadolinium molybdates are of the same structural type as terbium molybdate, we can estimate the anomaly of the heat capacity in the low-temperature region using the data for terbium molybdate and find the entropy of samarium and gadolinium molybdates.

  17. High pressure luminescence spectra of CaMoO4:Ln3+ (Ln = Pr, Tb).

    PubMed

    Mahlik, S; Behrendt, M; Grinberg, M; Cavalli, E; Bettinelli, M

    2013-03-13

    Photoluminescence spectra and luminescence kinetics of pure CaMoO(4) and CaMoO(4) doped with Ln(3+) (Ln = Pr or Tb) are presented. The spectra were obtained at high hydrostatic pressure up to 240 kbar applied in a diamond anvil cell. At ambient pressure undoped and doped samples exhibit a broad band emission extending between 380 and 700 nm with a maximum at 520 nm attributed to the MoO(4)(2-) luminescence. CaMoO(4) doped with Pr(3+) or Tb(3+) additionally yields narrow emission lines related to f-f transitions. The undoped CaMoO(4) crystal was characterized by a strong MoO(4)(2-) emission up to 240 kbar. In the cases of CaMoO(4):Pr(3+) and CaMoO(4):Tb(3+), high hydrostatic pressure caused quenching of Pr(3+) and Tb(3+) emission, and this effect was accompanied by a strong shortening of the luminescence lifetime. In doped samples, CaMoO(4):Pr(3+) and CaMoO(4):Tb(3+), quenching of the emission band attributed to MoO(4)(2-) was also observed, and at pressure above 130 kbar this luminescence was totally quenched. The effects mentioned above were related to the influence of the praseodymium (terbium) trapped exciton PTE (ITE-impurity trapped exciton) on the efficiency of the Pr(3+) (Tb(3+)) and MoO(4)(2-) emissions.

  18. Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln(2+) ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: the variable nature of Dy(2+) and Nd(2+).

    PubMed

    Fieser, Megan E; MacDonald, Matthew R; Krull, Brandon T; Bates, Jefferson E; Ziller, Joseph W; Furche, Filipp; Evans, William J

    2015-01-14

    The Ln(3+) and Ln(2+) complexes, Cp'3Ln, 1, (Cp' = C5H4SiMe3) and [K(2.2.2-cryptand)][Cp'3Ln], 2, respectively, have been synthesized for the six lanthanides traditionally known in +2 oxidation states, i.e., Ln = Eu, Yb, Sm, Tm, Dy, and Nd, to allow direct structural and spectroscopic comparison with the recently discovered Ln(2+) ions of Ln = Pr, Gd, Tb, Ho, Y, Er, and Lu in 2. 2-La and 2-Ce were also prepared to allow the first comparison of all the lanthanides in the same coordination environment in both +2 and +3 oxidation states. 2-La and 2-Ce show the same unusual structural feature of the recently discovered +2 complexes, that the Ln-(Cp' ring centroid) distances are only about 0.03 Å longer than in the +3 analogs, 1. The Eu, Yb, Sm, Tm, Dy, and Nd complexes were expected to show much larger differences, but this was observed for only four of these traditional six lanthanides. 2-Dy and 2-Nd are like the new nine ions in this tris(cyclopentadienyl) coordination geometry. A DFT-based model explains the results and shows that a 4f (n)5d(1) electron configuration is appropriate not only for the nine recently discovered Ln(2+) ions in 2 but also for Dy(2+) and Nd(2+), which traditionally have 4f (n+1) electron configurations like Eu(2+), Yb(2+), Sm(2+), and Tm(2+). These results indicate that the ground state of a lanthanide ion in a molecule can be changed by the ligand set, a previously unknown option with these metals due to the limited radial extension of the 4f orbitals.

  19. Rare-earth transition-metal chalcogenides Ln{sub 3}MGaS{sub 7} (Ln=Nd, Sm, Dy, Er; M=Co, Ni) and Ln{sub 3}MGaSe{sub 7} (Ln=Nd, Sm, Gd, Dy, M=Co; Ln=Nd, Gd, Dy, M=Ni)

    SciTech Connect

    Yin, Wenlong; Shi, Youguo; Kang, Bin; Deng, Jianguo; Yao, Jiyong; Wu, Yicheng

    2014-05-01

    Fifteen new rare-earth transition-metal chalcogenides, Ln{sub 3}MGaS{sub 7} (Ln=Nd, Sm, Dy, Er; M=Co, Ni) and Ln{sub 3}MGaSe{sub 7} (Ln=Nd, Sm, Gd, Dy, M=Co; Ln=Nd, Gd, Dy, M=Ni), have been synthesized by solid state reactions. They are isostructural, adopt Ce{sub 3}Al{sub 1.67}S{sub 7}—related structure type, and crystallize in the non-centrosymmetric hexagonal space group P6{sub 3}. They adopt a three-dimensional framework composed of LnQ{sub 7} monocapped trigonal prisms with the interesting [MQ{sub 3}]{sup 4−} chains and isolated GaQ{sub 4} tetrahedra lying in two sets of channels in the framework. The magnetic susceptibility measurements on Ln{sub 3}CoGaQ{sub 7} (Ln=Dy, Er, Q=S; Ln=Dy, Q=Se) indicate that they are paramagnetic and obey the Curie–Weiss law over the entire experimental temperature, while the magnetic susceptibility of Sm{sub 3}CoGaSe{sub 7} deviates from the Curie–Weiss law as a result of the crystal field splitting. - Graphical abstract: Ln{sub 3}MGaS{sub 7} (Ln=Nd, Sm, Dy, Er; M=Co, Ni) and Ln{sub 3}MGaSe{sub 7} (Ln=Nd, Sm, Gd, Dy, M=Co; Ln=Nd, Gd, Dy, M=Ni) adopt a three-dimensional framework composed of LnQ{sub 7} monocapped trigonal prisms with interesting [MQ{sub 3}]{sup 4−} chains and isolated GaQ{sub 4} tetrahedra lying in two sets of channels in the framework. - Highlights: • New compounds, Ln{sub 3}MGaQ{sub 7} (Ln=rare-earth; M=Co, Ni; Q=S, Se), were synthesized. • They are isostructural and crystallize in the noncentrosymmetric space group P6{sub 3}. • They adopt a three-dimensional framework built by LnQ{sub 7} monocapped trigonal prisms. • Ln{sub 3}CoGaQ{sub 7} (Ln=Dy, Er; Q=S, Se) are paramagnetic and obey the Curie–Weiss law. • The magnetic susceptibility of Sm{sub 3}CoGaSe{sub 7} deviates from the Curie–Weiss law.

  20. Crystal growth of a series of lithium garnets Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} (Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity

    SciTech Connect

    Roof, Irina P.; Smith, Mark D.; Cussen, Edmund J.; Loye, Hans-Conrad zur

    2009-02-15

    We report the single crystal structures of a series of lanthanide containing tantalates, Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} (Ln=La, Pr, Nd) that were obtained out of a reactive lithium hydroxide flux. The structures of Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} were determined by single crystal X-ray diffraction, where the Li{sup +} positions and Li{sup +} site occupancies were fixed based on previously reported neutron diffraction data for isostructural compounds. All three oxides crystallize in the cubic space group Ia3-bard (No. 230) with lattice parameters a=12.7735(1), 12.6527(1), and 12.5967(1) A for La{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, Pr{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, and Nd{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, respectively. A UV-Vis diffuse reflectance spectrum of Nd{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} was collected to explain its unusual Alexandrite-like optical behavior. To evaluate the transport properties of Nd{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, the impedance data were collected in air in the temperature range 300{<=}T(deg. C){<=}500. - Graphical abstract: Crystal structure of garnets Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} (Ln=La, Pr, Nd). TaO{sub 6} polyhedra are shown in yellow and Ln{sup 3+} are shown as light blue spheres. Octahedrally and tetrahedrally coordinated Li{sup +} ions are shown in green and brown, respectively. Oxygen atoms are omitted for clarity.

  1. High Specific Power Motors in LN2 and LH2

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Jansen, Ralph H.; Trudell, Jeffrey J.

    2007-01-01

    A switched reluctance motor has been operated in liquid nitrogen (LN2) with a power density as high as that reported for any motor or generator. The high performance stems from the low resistivity of Cu at LN2 temperature and from the geometry of the windings, the combination of which permits steady-state rms current density up to 7000 A/sq cm, about 10 times that possible in coils cooled by natural convection at room temperature. The Joule heating in the coils is conducted to the end turns for rejection to the LN2 bath. Minimal heat rejection occurs in the motor slots, preserving that region for conductor. In the end turns, the conductor layers are spaced to form a heat-exchanger-like structure that permits nucleate boiling over a large surface area. Although tests were performed in LN2 for convenience, this motor was designed as a prototype for use with liquid hydrogen (LH2) as the coolant. End-cooled coils would perform even better in LH2 because of further increases in copper electrical and thermal conductivities. Thermal analyses comparing LN2 and LH2 cooling are presented verifying that end-cooled coils in LH2 could be either much longer or could operate at higher current density without thermal runaway than in LN2.

  2. High Specific Power Motors in LN2 and LH2

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Jansen, Ralph H.; Trudell, Jeffrey J.

    2007-01-01

    A switched reluctance motor has been operated in liquid nitrogen (LN2) with a power density as high as that reported for any motor or generator. The high performance stems from the low resistivity of Cu at LN2 temperature and from the geometry of the windings, the combination of which permits steady-state rms current density up to 7000 A/cm2, about 10 times that possible in coils cooled by natural convection at room temperature. The Joule heating in the coils is conducted to the end turns for rejection to the LN2 bath. Minimal heat rejection occurs in the motor slots, preserving that region for conductor. In the end turns, the conductor layers are spaced to form a heat-exchanger-like structure that permits nucleate boiling over a large surface area. Although tests were performed in LN2 for convenience, this motor was designed as a prototype for use with liquid hydrogen (LH2) as the coolant. End-cooled coils would perform even better in LH2 because of further increases in copper electrical and thermal conductivities. Thermal analyses comparing LN2 and LH2 cooling are presented verifying that end-cooled coils in LH2 could be either much longer or could operate at higher current density without thermal runaway than in LN2.

  3. Influence of thermal aging on the intergranular corrosion resistance of types 304LN and 316LN stainless steels

    NASA Astrophysics Data System (ADS)

    Mudali, U. Kamachi; Dayal, R. K.; Gnanamoorthy, J. B.; Rodriguez, P.

    1996-10-01

    Intergranular corrosion (IGC) resistance of types 304LN and 316LN stainless steels (SS) thermally aged at 823, 873, and 923 K for various durations was assessed by ASTM A262 practice A test (electrolytic etch test) and electrochemical potentiodynamic reactivation (EPR) test. The results indicated that the type 316LN SS has significantly improved IGC resistance compared to 304LN SS. Based on the results of these tests, time-temperature-sensitization (TTS) diagrams were developed for both alloys. The secondary precipitates formed during thermal aging treatments were electrochemically extracted and analyzed by X-ray diffraction (XRD) to determine the types of precipitates formed during the aging treatments. The results indicated that the precipitates were mostly of M23C6 carbides.

  4. Influence of thermal aging on the intergranular corrosion resistance of types 304LN and 316LN stainless steels

    SciTech Connect

    Mudali, U.K.; Dayal, R.K.; Gnanamoorthy, J.B.; Rodriguez, P.

    1996-10-01

    Intergranular corrosion (IGC) resistance of types 304LN and 316LN stainless steels (SS) thermally aged at 823, 873, and 923 K for various durations was assessed by ASTM A262 practice A test (electrolytic etch test) and electrochemical potentiodynamic reactivation (EPR) test. The results indicated that the type 316LN SS has significantly improved IGC resistance compared to 304LN SS. Based on the results of these tests, time-temperature-sensitization (TTS) diagrams were developed for both alloys. The secondary precipitates formed during thermal aging treatments were electrochemically extracted and analyzed by X-ray diffraction (XRD) to determine the types of precipitates formed during the aging treatments. The results indicated that the precipitates were mostly of M{sub 23}C{sub 6} carbides.

  5. Luminescence of Bi 3+ in the metaphosphates LnP 3O 9 ( Ln = Sc, Lu, Y, Gd, La)

    NASA Astrophysics Data System (ADS)

    Oomen, E. W. J. L.; Blasse, G.

    1988-07-01

    The luminescence of the Bi 3+ ion (6 s2) is studied in the metaphosphates LnP 3O 9 ( Ln = Sc, Lu, Y, Gd, La). For Ln = Sc, Lu, Y, Gd the metaphosphates have a monoclinic structure with four slightly different sites for the trivalent cations. For Ln = Sc, Lu, Y the Stokes shift of the Bi 3+ luminescence increased with increasing radius of the host lattice cation. Concentration quenching of the Bi 3+ luminescence is observed. In the case of GdP 3O 9-Bi 3+ the excitation energy is transferred to the Gd 3+ ions. LaP 3O 9 adopts an orthorhombic structure with only one site available for the trivalent cations. The different coordination of the Bi 3+ ion leads to a large increase of the Stokes shift of the Bi 3+ luminescence.

  6. MOLTEN SALT SYNTHESIS OF YF3:Yb3+/Ln3+(Ln = Er3+, Tm3+) MICROSHEETS WITH MULTICOLOR UPCONVERSION LUMINESCENCE

    NASA Astrophysics Data System (ADS)

    Ding, Mingye; Lu, Chunhua; Cao, Linhai; Ni, Yaru; Xu, Zhongzi

    2013-09-01

    In this paper, highly crystalline YF3:Yb3+/Ln3+(Ln = Er3+, Tm3+) microsheets were successfully synthesized by a surfactant-free molten salt method for the first time. The results indicated that the as-obtained samples belonged to orthorhombic system and exhibited microsheets morphology with side lengths of 30 to 80 μm and wall thickness from 1 to 1.5 μm. By changing the dopant's species (Ln3+), multicolor (yellow and blue) upconversion emission can be observed in YF3:Yb3+/Ln3+ microsheets under 980 nm laser diode (LD) excitation. The upconversion mechanisms in co-doping YF3 samples were analyzed in detail based on the emission spectra. Importantly, this approach not only proposes a new alternative in synthesizing such materials, but also opens the possibility to meet the increasing commercial demand.

  7. New Antimony Lanthanide Disulfide Dibromides LnSbS

    SciTech Connect

    Gout, D.; Jobic, S.; Evain, M.; Brec, R.

    2001-05-01

    CeSbS{sub 2}Br{sub 2} (I), Ce{sub 1/2}La{sub 1/2}SbS{sub 2}Br{sub 2} (II), and LaSbS{sub 2}Br{sub 2} (III) have been synthesized at 700 C from a mixture of LnBr{sub 3}, Ln{sub 2}S{sub 3}, Sb, and S and characterized by single-crystal X-ray diffraction. The three phases are isostructural (space group P2{sub 1}/c, Z=4) and crystallize in a novel, dense, bidimensional structure with cell parameters a=8.709(3) {angstrom}, b=9.187(2) {angstrom}, c=17.397(5) {angstrom} {beta}=104.26(3) for I, a=8.739(7) {angstrom}, b=9.219(7) {angstrom}, c=17.41(2) {angstrom}, =104.3(1) for II, and a=8.785(1) {angstrom}, b=9.236(2) {angstrom}, c=17.372(3) {angstrom}, {beta}=104.09(2) for III. In these compounds, [Ln S{sub 5}Br{sub 4}] and [Ln S{sub 3}Br{sub 6}] (Ln=Ce, La) distorted tricapped trigonal prisms define infinite {sub {infinity}}{sup 2}[LnS{sub 2}Br{sub 2}] layers counterbalanced and capped by antimony cations. In good accordance with the structural features, the charge balance in these materials is to be written Ln{sup III}Sb{sup III}S{sup -II}{sub 2}Br{sup -I}{sub 2}. These compounds exhibit a yellow hue with a measured absorption threshold of 2.42(1), 2.55(1), and 2.72(1) eV for I, II, and III, respectively. In the two cerium containing bromothioantimonates I and II, the origin of the color is assigned to a Ce-4f{yields}Ce-5d electronic transition, which shifts to higher energy from I to II due either to a matrix effect (increase of the mean Ln-S distances under the substitution of Ce for La) or to an atomic ordering between Ce and La cations on the Ln(1) and Ln(2) crystallographic sites. In contrast, the electronic transition at play in III involves a charge transfer from the bromine and sulfur ions to the antimony ions, the latter contributing substantially to the lowermost levels of the conduction band.

  8. On the origin of the anomalous electrical resistivity of LnMo 5O 8 (Ln=TRIVALENT rare earth)

    NASA Astrophysics Data System (ADS)

    Koo, H.-J.; Whangbo, M.-H.; McCarroll, W. H.; Greenblatt, M.; Gautier, R.; Halet, J.-F.; Gougeon, P.

    1998-10-01

    Electronic structures of AMo 5O 8 (A=rare earth, alkaline earth) and the solid solution Sr 1- xLa xMo 5O 8 ( x=0-1) were examined using the extended Hückel tight binding method. AMo 5O 8 phases with divalent A cations (A=Sr, Ca, Eu) are normal semiconductors with small band gap. The Fermi surfaces of Sr 1- xLa xMo 5O 8 (0.0< x≤1.0) and LnMo 5O 8 (Ln=trivalent rare earth) do not exhibit any nesting. In the electronic structures of LnMo 5O 8 (Ln=trivalent rare earth) phases, the Fermi level is dominated by the d-orbitals of the Mo(2) atoms of their Mo 10 clusters. With decreasing x from 1.0 in Sr 1- xLa xMo 5O 8, the dominance of the Mo(2) atoms at the Fermi level sharply diminishes. Based on this observation, we proposed a probable reason for the weakly semiconducting state above 180 K and the metallic state below 180 K in LnMo 5O 8 (Ln=trivalent rare earth).

  9. The luminescence of the Sb 3+ ion in Ln(PO 3) 3 ( Ln = Sc, Lu, Y, Gd, La)

    NASA Astrophysics Data System (ADS)

    Oomen, E. W. J. L.; Peeters, R. C. M.; Smit, W. M. A.; Blasse, G.

    1988-03-01

    The efficient luminescence of the 5 s2 ion Sb 3+ in Ln(PO 3) 3 ( Ln = Sc, Lu, Y, Gd, La) is reported. The compounds Ln(PO 3) 3 ( Ln = Sc, Lu, Y, Gd) adopt the Yb(PO 3) 3 structure in which four slightly different octahedral sites are available for the trivalent cation, while La(PO 3) 3 has the Nd(PO 3) 3 structure in which only one position with eight coordination is available for the cation. The emission and excitation spectra of Ln(PO 3) 3Sb 3+ ( Ln = Sc, Lu, Gd) show broad bands, caused by the strongly overlapping bands of the four Sb 3+ centers. The spectra and decay time measurements show that the differences in luminescence characteristics between the four Sb 3+ centers become more apparent with decreasing radius of the host lattice cation. The luminescence properties of Y(PO 3) 3Sb 3+ are rather complex and lead to the conclusion that the relaxed excited state of some of the Sb 3+ centers is distorted by a Jahn-Teller effect. The luminescence of La(PO 3) 3Sb 3+ originates from one Sb 3+ center and can be described by usual models

  10. Decanuclear Ln10 Wheels and Vertex-Shared Spirocyclic Ln5 Cores: Synthesis, Structure, SMM Behavior, and MCE Properties.

    PubMed

    Das, Sourav; Dey, Atanu; Kundu, Subrata; Biswas, Sourav; Narayanan, Ramakirushnan Suriya; Titos-Padilla, Silvia; Lorusso, Giulia; Evangelisti, Marco; Colacio, Enrique; Chandrasekhar, Vadapalli

    2015-11-16

    The reaction of a Schiff base ligand (LH3) with lanthanide salts, pivalic acid and triethylamine in 1:1:1:3 and 4:5:8:20 stoichiometric ratios results in the formation of decanuclear Ln10 (Ln = Dy (1), Tb (2), and Gd (3)) and pentanuclear Ln5 complexes (Ln = Gd (4), Tb (5), and Dy (6)), respectively. The formation of Ln10 and Ln5 complexes are fully governed by the stoichiometry of the reagents used. Detailed magnetic studies on these complexes (1-6) have been carried out. Complex 1 shows a SMM behavior with an effective energy barrier for the reversal of the magnetization (Ueff) = 16.12(8) K and relaxation time (τo) = 3.3×10(-5) s under 4000 Oe direct current (dc) field. Complex 6 shows the frequency dependent maxima in the out-of-phase signal under zero dc field, without achieving maxima above 2 K. Complexes 3 and 4 show a large magnetocaloric effect with the following characteristic values: -ΔSm = 26.6 J kg(-1) K(-1) at T = 2.2 K for 3 and -ΔSm = 27.1 J kg(-1) K(-1) at T = 2.4 K for 4, both for an applied field change of 7 T.

  11. Structure and magnetic properties of LnMnSbO ( Ln=La and Ce)

    DOE PAGES

    Zhang, Qiang; Kumar, C. M. N.; Tian, Wei; ...

    2016-03-11

    Here, a neutron powder diffraction (NPD) study of LnMnSbO (Ln = La or Ce) reveals differences between the magnetic ground state of the two compounds due to the strong Ce-Mn coupling compared to La-Mn. The two compounds adopt the P4/nmm space group down to 2 K, and whereas magnetization measurements do not show obvious anomaly at high temperatures, NPD reveals a C-type antiferromagnetic (AFM) order below TN = 255K for LaMnSbO and 240 K for CeMnSbO. While the magnetic structure of LaMnSbO is preserved to base temperature, a sharp transition at TSR = 4.5K is observed in CeMnSbO due tomore » a spin-reorientation (SR) transition of the Mn2+ magnetic moments from pointing along the c axis to the ab plane. The SR transition in CeMnSbO is accompanied by a simultaneous long-range AFM ordering of the Ce moments, which indicates that the Mn SR transition is driven by the Ce-Mn coupling. The ordered moments are found to be somewhat smaller than those expected for Mn2+ (S = 5/2) in insulators, but large enough to suggest that these compounds belong to the class of local-moment antiferromagnets. The lower TN found in these two compounds compared to the As-based counterparts (TN = 317 for LaMnAsO, TN = 347K for CeMnAsO) indicates that the Mn-Pn (Pn=As or Sb) hybridization that mediates the superexchange Mn-Pn-Mn coupling is weaker for the Sb-based compounds.« less

  12. Nine members of a family of nine-membered cyclic coordination clusters; Fe6Ln3 wheels (Ln = Gd to Lu and Y).

    PubMed

    Kühne, Irina A; Mereacre, Valeriu; Anson, Christopher E; Powell, Annie K

    2016-01-18

    We report a family of isostructural nonanuclear Fe(III)-Ln(III) cyclic coordination clusters [Fe(III)(6)Ln(III)(3)(μ-OMe)9(vanox)6(benz)6]. (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6), Lu (7), Y (8) and Gd (9)), containing an odd number of metal ions. The planar cyclic coordination cluster cores are built up from three [Fe2Ln] subunits.

  13. (BMI)3LnCl6 crystals as models for the coordination environment of LnCl3 (Ln = Sm, Eu, Dy, Er, Yb) in 1-butyl-3-methylimidazolium chloride ionic-liquid solution.

    PubMed

    Han, Yulun; Lin, Cuikun; Meng, Qingguo; Dai, Fengrong; Sykes, Andrew G; Berry, Mary T; May, P Stanley

    2014-06-02

    A series of (BMI)3LnCl6 (Ln = Sm, Eu, Dy, Er, Yb) crystals was prepared from solutions of LnCl3 dissolved in the ionic liquid, 1-butyl-3-methylimidazolium chloride (BMICl). Crystals with Ln = 5% Sm + 95% Gd and with Ln = 5% Dy + 95% Gd were also grown to assess the importance of cross-relaxation in the Sm and Dy samples. The crystals are isostructural, with monoclinic space group P21/c and four formula units per unit cell. The first coordination sphere of Ln(3+) consists of six Cl(-) anions forming a slightly distorted octahedral LnCl6(3-) center. The second coordination sphere is composed of nine BMI(+) cations. The emission spectra and luminescence lifetimes of both (BMI)3LnCl6 crystals and LnCl3 in BMICl solution were measured. The spectroscopic similarities suggest that crystalline (BMI)3LnCl6 provides a good model of the Ln(3+) coordination environment in BMICl solution.

  14. Cationic ordering and role of the B-site lanthanide(III) and molybdenum(V) cations on the structure and magnetism of double perovskites Sr{sub 2}LnMoO{sub 6}

    SciTech Connect

    Pinacca, R.M.; Larrégola, S.A.; López, C.A.; Pedregosa, J.C.; Pomjakushin, Vladimir; Sánchez, R.D.; Alonso, J.A.

    2015-06-15

    Highlights: • Five new double perovskites of formula Sr{sub 2}LnMoO{sub 6} were synthesized. • All the samples crystallize in the monoclinic P2{sub 1}/n space group. • Strong reducing conditions were used in order to stabilized Mo(V) cations. • A complete ordering between the rare earth and molybdenum ions was observed. • Magnetism agrees with the crystal distortions observed from Rietveld analysis. - Abstract: We describe the preparation, crystal structure determination and magnetic properties of a new series of ordered double perovskite oxides Sr{sub 2}LnMoO{sub 6} (Ln = Eu, Gd, Dy, Ho, Er, Yb) with Mo{sup 5+} and Ln{sup 3+} electronic configurations. These compounds have been obtained by solid state reaction under reducing conditions in order to stabilize Mo{sup 5+} cations. Structural characterization by XRPD and NPD was performed when Ln = Ho, Er, Yb and just XRPD for absorbing Ln = Eu, Gd, Dy. At room temperature, an excellent Rietveld fit was obtained for all the samples in a monoclinic symmetry, space group P2{sub 1}/n, with long-range ordering of Ln and Mo atoms. Magnetic susceptibility measurements show that some of these materials present magnetic ordering below 25 K and the determined effective magnetic moments are consistent with those expected for the pair Ln{sup 3+}–Mo{sup 5+}. All the phases have negative values​​ of the Weiss temperature indicating dominance of antiferromagnetic interactions.

  15. A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln{sub 2}O{sub 2}S

    SciTech Connect

    De Crom, N.

    2012-07-15

    A continuous two-step molecular precursor pathway is designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu). This new route involves a first oxidation step leading to the rare-earth oxysulfate Ln{sub 2}O{sub 2}SO{sub 4} which is subsequently reduced to the rare-earth oxysulfide Ln{sub 2}O{sub 2}S by switching to a H{sub 2}-Ar atmosphere. The whole process occurs at a temperature significantly lower than usual solid state synthesis (T{<=}650 Degree-Sign C) and avoids the use of dangerous sulfur-based gases, providing a convenient route to the synthesis of the entire series of Ln{sub 2}O{sub 2}S. The molecular precursors consist in heteroleptic dithiocarbamate complexes [Ln(Et{sub 2}dtc){sub 3}(phen)] and [Ln(Et{sub 2}dtc){sub 3}(bipy)] (Et{sub 2}dtc=N,N-diethyldithiocarbamate; phen=1,10-phenanthroline; bipy=2,2 Prime -bipyridine) and were synthesized by a new high yield and high purity synthesis route. The nature of the molecular precursor determines the minimum synthesis temperature and influences therefore the purity of the final Ln{sub 2}O{sub 2}S crystalline phase. - Graphical abstract: A continuous two-step molecular precursor pathway was designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu), starting from heteroleptic dithiocarbamate complexes. The influence of the nature of the molecular precursor on the minimum synthesis temperature and on the purity of the final Ln{sub 2}O{sub 2}S crystalline phase is discussed. Highlights: Black-Right-Pointing-Pointer A new high yield and high purity synthesis route of rare earth dithiocarbamates is described. Black-Right-Pointing-Pointer These compounds are used as precursors in a continuous process leading to rare-earth oxysulfides. Black-Right-Pointing-Pointer The oxysulfides are obtained under much more moderate conditions than previously described.

  16. Sulfate Exchange of the Nitrate-Type Layered Hydroxide Nanosheets of Ln2(OH)5NO3· nH2O for Better Dispersed and Multi-color Luminescent Ln2O3 Nanophosphors (Ln = Y0.98RE0.02, RE = Pr, Sm, Eu, Tb, Dy, Ho, Er, and Tm)

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoli; Liu, Weigang; Li, Ji-Guang; Zhu, Qi; Li, Xiaodong; Sun, Xudong

    2016-07-01

    Through restricting thickness growth by performing coprecipitation at the freezing temperature of ~4 °C, solid-solution nanosheets (up to 5-nm thick) of the Ln2(OH)5NO3· nH2O layered hydroxide (Ln = Y0.98RE0.02; RE = Pr, Sm, Eu, Tb, Dy, Ho, Er, and Tm, respectively) were directly synthesized without performing conventional exfoliation. In situ exchange of the interlayer NO3 - with SO4 2- produced a sulfate derivative [Ln2(OH)5(SO4)0.5· nH2O] of the same layered structure and two-dimensional crystallite morphology but substantially contracted d 002 basal spacing (from ~0.886 to 0.841 nm). The sulfate derivative was systematically compared against its nitrate parent in terms of crystal structure and phase/morphology evolution upon heating. It is shown that the interlayer SO4 2-, owing to its bonding with the hydroxide main layer, significantly raises the decomposition temperature from ~600 to 1000 °C to yield remarkably better dispersed oxide nanopowders via a monoclinic Ln2O2SO4 intermediate. The resultant (Y0.98RE0.02)2O3 nanophosphors were studied for their photoluminescence to show that the emission color, depending on RE3+, spans a wide range in the Commission Internationale de l'Eclairage (CIE) chromaticity diagram, from blue to deep red via green, yellow, orange, and orange red.

  17. Studies on supercritical hydrothermal syntheses of uranium and lanthanide oxide particles and their reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa

    2015-11-01

    In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.

  18. Pressure dependence of Tc in LnFeAsO1-y (Ln = La, Ce, Nd, Tb)

    NASA Astrophysics Data System (ADS)

    Takeshita, N.; Miyazawa, K.; Iyo, A.; Furuta, S.; Mito, M.; Eisaki, H.

    2014-12-01

    We measured the temperature dependence of electrical resistivity of non-fluorine- substituted, oxygen-deficient LnFeAsO1-y (Ln = La, Ce, Nd, Tb) under hydrostatic high pressure up to '8 GPa in order to observe pressure dependence of superconducting transition temperature Tc. In LaFeAsO0.65, onset Tc initially enhances below 4 GPa, then decreases by applying further pressure. However, the zero-resistivity temperature does not show enhancement by applying pressure. In the case of NdFeAsO1-y and TbFeAsO1-y, Tc shows monotonic decrease as increasing pressure. Tc is much more likely to go down faster if Ln with small ionic size was taken. Therefore, the bulk superconductivity is suppressed finally at ~7 GPa in TbFeAsO0.7.

  19. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y).

    PubMed

    Liu, Z K; Yang, L X; Wu, S-C; Shekhar, C; Jiang, J; Yang, H F; Zhang, Y; Mo, S-K; Hussain, Z; Yan, B; Felser, C; Chen, Y L

    2016-09-27

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states on these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.

  20. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)

    NASA Astrophysics Data System (ADS)

    Liu, Z. K.; Yang, L. X.; Wu, S.-C.; Shekhar, C.; Jiang, J.; Yang, H. F.; Zhang, Y.; Mo, S.-K.; Hussain, Z.; Yan, B.; Felser, C.; Chen, Y. L.

    2016-09-01

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states on these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.

  1. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)

    PubMed Central

    Liu, Z. K.; Yang, L. X.; Wu, S.-C.; Shekhar, C.; Jiang, J.; Yang, H. F.; Zhang, Y.; Mo, S.-K.; Hussain, Z.; Yan, B.; Felser, C.; Chen, Y. L.

    2016-01-01

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states on these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors. PMID:27671444

  2. Synthesis, crystal and electronic structures, and magnetic properties of LiLn9Mo16O35 (Ln = La, Ce, Pr, and Nd) compounds containing the original cluster Mo16O36.

    PubMed

    Gougeon, Patrick; Gall, Philippe; Cuny, Jérôme; Gautier, Régis; Le Pollès, Laurent; Delevoye, Laurent; Trébosc, Julien

    2011-12-02

    The new compounds LiLn(9)Mo(16)O(35) (Ln=La, Ce, Pr, and Nd) were synthesized from stoichiometric mixtures of Li(2)MoO(4), Ln(2)O(3), Pr(6)O(11) or CeO(2), MoO(3), and Mo heated at 1600 °C for 48 h in a molybdenum crucible sealed under a low argon pressure. The crystal structure, determined from a single crystal of the Nd member, showed that the main building block is the Mo(16)O(36) unit, the Mo(16) core of which is totally new and results from the fusion of two bioctahedral Mo(10) clusters. It can also be viewed as a fragment of an infinite twin chain of edge-sharing Mo(6) octahedra. The Mo(16)O(36) cluster units share some oxygen atoms to form infinite chains running parallel to the b axis, which are separated by the rare-earth and lithium cations. (7)Li-NMR experiments, carried out at high field on the nonmagnetic LiLa(9)Mo(16)O(35), provided insights into the local environment of the lithium ions. Magnetic susceptibility measurements confirmed the trivalent oxidation state of the magnetic rare-earth cations and indicated the absence of localized moments on the Mo(16) clusters. The electronic structure of the LiLn(9)Mo(16)O(35) compounds was analyzed using molecular and periodic quantum calculations. The study of the molecular orbital diagrams of isolated Mo(16)O(36) models allowed the understanding of this unique metallic architecture. Periodic density functional theory calculations demonstrated that few interactions occur between the Mo(16) clusters, and predicted semiconducting properties for LiLn(9)Mo(16)O(35) as a band gap of 0.57 eV was computed for the lanthanum phase.

  3. Method for synthesizing fine-grained phosphor powders of the type (RE.sub.1- Ln.sub.x)(P.sub.1-y V.sub.y)O.sub.4

    DOEpatents

    Phillips, Mark L. F.

    1998-01-01

    A method for generating well-crystallized photo- and cathodoluminescent oxide phosphor powders. The method of this invention uses hydrothermal synthesis and annealing to produce nearly monosized (RE.sub.1-x Ln.sub.x)(P.sub.1-y V.sub.y)O.sub.4 (Ln.dbd.Ce.fwdarw.Lu) phosphor grains with crystallite sizes from 0.04 to 5 .mu.m. Such phosphors find application in cathode-ray tube, flat-panel, and projection displays.

  4. Luminescent LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres for encapsulation of biomolecules

    NASA Astrophysics Data System (ADS)

    Li, Dan; Liu, Chunlei; Jiang, Lianzhou

    2015-10-01

    In this study, LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres, synthesized via self-sacrificing templated route, are developed for enzyme immobilization and protein adsorption. The four LuVO4 hollow spheres with diameter of 180 nm, 280 nm, 370 nm and 480 nm were obtained. The size of LuVO4 hollow sphere is dependent on Lu(OH)CO3 template. Upon excitation by UV light, hollow LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) spheres exhibit red (Eu3+), orange (Sm3+), yellow-green (Dy3+), and green (Er3+) emissions. The good biocompatibility of sample is validated by MTT assay. Due to structure feature and size of obtained sample, the rapid encapsulation of biomolecules within samples has been achieved. Furthermore, the hollow spheres show different biomolecules adsorption capacities at different buffer solution pH values. The release behaviors of two kinds of biomolecules (lysozyme and bovine serum albumin) are also investigated. LuVO4 hollow spheres are suitable carriers for biomolecules. The emission intensity of Eu3+ in the LuVO4:Eu3+ varies with the released amount of LYZ. This enables the monitoring of release process by the change in the luminescence intensity.

  5. Antiferromagnetic transitions of osmium-containing rare earth double perovskites Ba{sub 2}LnOsO{sub 6} (Ln=rare earths)

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro; Wakeshima, Makoto

    2013-10-15

    The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Os{sup 5+} ions are structurally ordered at the M site of the perovskite BaMO{sub 3}. Magnetic susceptibility and specific heat measurements show that an antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Magnetic ordering of Ln{sup 3+} moments occurs when the temperature is furthermore decreased. - Graphical abstract: The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. An antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Measurements and analysis of the specific heat for Ba{sub 2}PrOsO{sub 6} show that magnetic ordering of the Pr{sup 3+} moments should have occurred at ∼20 K. Display Omitted.

  6. Luminescent pillared Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands

    SciTech Connect

    Liu, Sui-Jun; Jia, Ji-Min; Cui, Yu; Han, Song-De; Chang, Ze

    2014-04-01

    In our efforts toward rational design and systematic synthesis of ‘pillar-layer’ structure coordination frameworks, four new Ln{sup III}–Zn{sup II} heterometallic coordination polymers (CPs) based on two kinds of N-heterocyclic carboxylic ligands with formula ([LnZn(L1){sub 2}(L2)(H{sub 2}O){sub m}]·nH{sub 2}O){sub ∞} (Ln=La (1), Eu (2), Gd (3) and Dy (4), m=3 (for 1) and 2 (for 2–4), n=8 (for 1) and 7 (for 2–4), H{sub 2}L1=pyridine-2,3-dicarboxylate acid, HL2=isonicotinic acid), have been synthesized under hydrothermal reaction of Ln{sub 2}O{sub 3}, ZnO, H{sub 2}L1 and HL2. CP 1 has a three-dimensional (3D) structure with a (3,6)-connected sit topology network, while CPs 2–4 are isostructural with 3D single-node pcu alpha-Po topology network. Also, luminescent properties of these CPs have also been investigated. The emission of 1 and 3 should be attributed to the coordination-perturbed ligand-centered luminescence and the emission spectra of 2 and 4 show the characteristic bands of the corresponding Ln{sup III} ions. - Graphical abstract: Four new 3D Ln{sup III}–Zn{sup II} coordination frameworks with “pillar-layer” sit or pcu alpha-Po topology have been successfully obtained. Moreover, the photoluminescent properties of compounds 1–4 have also been investigated. - Highlights: • Four new Ln{sup III}–Zn{sup II} heterometallic coordination frameworks with two types of topologies have been synthesized. • Metal oxides and two kinds of N-heterocyclic carboxylate ligands were used for the construction of targeted coordination polymers. • The luminescent properties of the coordination polymers are investigated.

  7. Structure and ionic conductivity of NaLnTiO{sub 4}: Comparison with those of Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = La, Nd, Sm, and Gd)

    SciTech Connect

    Byeon, Song-Ho; Park, Kileung; Itoh, Mitsuru

    1996-02-01

    The crystal structures of NaLnTiO{sub 4} (Ln = La, Nd, Sm, and Gd) were determined by Rietveld refinements on their powder X-ray diffraction patterns. They had K{sub 2}NiF{sub 4}-type related superstructure (space group P4/nmm (D{sub 4h}{sup 7})) in which NaO and LnO double layers are 1:1 ordered perpendicular to the c axis. Although the c parameter decreases form Ln-La to Nd, Sm, and Gd, the Na-O distance along the c axis was not proportional to the variation of the unit cell parameter. A strong corrugation parameter was observed, which would be induced by the poor charge compensation between NaO and LnO layers. Due to such a corrugation, the a parameter did not show decreasing tendency despite the fact that the constituting lanthanide ion becomes smaller. Ionic conductivity of NaLnTiO{sub 4} lower than that of Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = La, Nd, Sm, and Gd) also resulted from the corrugation of LnO layer with coordination number 9 accompanied by contraction of the NaO layer.

  8. Crystal structures and magnetic properties of lanthanide containing borates LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr)

    SciTech Connect

    Doi, Yoshihiro Satou, Tatsuya; Hinatsu, Yukio

    2013-10-15

    The synthesis, crystal structures and magnetic properties of LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr) were investigated. The LnCr(BO{sub 3}){sub 2} compounds crystallize in the dolomite-type structure with space group R3{sup ¯}, in which the Ln and Cr ions occupy two octahedral sites. From the result of structural analysis, it was found that there is an anti-site disorder between these two sites and its chemical formula is more exactly Ln{sub 1−r}Cr{sub r}[Cr{sub 1−r}Ln{sub r}](BO{sub 3}){sub 2}. On the other hand, the LnSc(BO{sub 3}){sub 2} adopt the calcite-type structure with space group R3{sup ¯}c. The Ln and Sc ions randomly occupy an octahedral site and the chemical formula is represented as (Ln{sub 0.5}Sc{sub 0.5})BO{sub 3}. From the magnetic susceptibility and specific heat measurements, we found that all the LnCr(BO{sub 3}){sub 2} show an antiferromagnetic transition at 6.1–8.1 K. This transition is mainly due to the ordering of Cr{sup 3+} magnetic moments. Among the compounds with magnetic Ln{sup 3+} ions, only YbCr(BO{sub 3}){sub 2} shows an antiferromagnetic ordering of Ln{sup 3+} ion at 2.1 K. - Graphical abstract: The lanthanide containing borates LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr) have the dolomite-type (Ln=Cr) and calcite-type (Ln=Sc) structures. Both structures are similar to each other except for the difference in the partially or fully disordered arrangements of octahedral sites. At low temperatures, the LnCr(BO{sub 3}){sub 2} compounds show an antiferromagnetic transition due to a long-range ordering of Cr{sup 3+} moments. Among them only YbCr(BO{sub 3}){sub 2} shows an antiferromagnetic ordering of Ln{sup 3+} ion at 2.1 K. Display Omitted - Highlights: • Lanthanide containing borates LnM(BO{sub 3}){sub 2} (Ln=Y, Ho–Lu; M=Sc, Cr) have been synthesized. • LnCr(BO{sub 3}){sub 2} has the dolomite-type structure with an anti-site disorder between Ln and Cr sites. • LnSc(BO{sub 3}){sub 2} has the calcite

  9. Linear Dependence of Photoluminescence in Mixed Ln-MOFs for Color Tunability and Barcode Application.

    PubMed

    Yang, Qing-Yuan; Pan, Mei; Wei, Shi-Chao; Li, Kang; Du, Bin-Bin; Su, Cheng-Yong

    2015-06-15

    Multicolored photoluminescence tuning in a single-phase material has invaluable potential in display and security applications. By deliberate design of a multifunctional antenna ligand and precise control of mixed metal ionic compositions in lanthanide metal-organic frameworks (Ln-MOFs), we achieved dichromatic fine-tuning among red, green, or blue primary colors through growth of a series of isomorphous Ln-MOF crystals·solvents of formula [LnnLn'1-n(TTP)2·H2O]Cl3 (Ln = Ln' = Eu, Tb, and Gd, 1-3; Ln = Eu, Ln' = Tb, 4-8; Ln = Gd, Ln' = Eu, 9-11; Ln = Gd, Ln' = Tb, 12-14; 0 < n < 1; TTP = 1',1″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)tris(pyridine-4(1H)-one)). The linear dependence of the emissions were analyzed, and the mathematical matrix models were established, which are useful to control the synthetic conditions and to predict the color chromaticity coordinates under varied excitation wavelengths. The potential relevance of these multicolored photoluminescent Ln-MOFs to barcoded materials was demonstrated.

  10. Synthesis and Photoluminescent Properties of Nanorod Bundle Ln4O(OH)9NO3:Eu(Ln = Y, Lu) Prepared by Hydrothermal Method.

    PubMed

    Li, Ling; Noh, Hyeon Mi; Liu, Xiaoguang; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun

    2015-07-01

    Well-crystallized nanorod bundles Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu) have been successfully prepared by hydrothermal method. The crystalline phase, size and optical properties were characterized using powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), infrared (IR) spectrograph and photoluminescent (PL) spectra. Site occupations of Eu3+ in crystals Ln4O(OH)9NO3:Eu(Ln = Y, Lu) were discussed based on excitation spectra and the empirical relationship formula between the charge transfer (CT) energy and the environmental factor. The emission spectra exhibited that the strongest emission peaks with an excitation wavelength of 395 nm were at 617 and 626 nm in crystal Lu4O(OH)9NO3:1%Eu and Y4O(OH)9NO3:1%Eu, respectively, both of which come from 5D0-7F2 transition of the Eu3+ ions. The broad excitation peaks at about 254 and 255 nm were found when monitored at 617 and 628 nm in crystal Lu4O(OH)9NO3:1%Eu and Y4O(OH)9NO3:1%Eu, respectively, which were due to O-Eu CT transition. Based on the dielectric theory of complex crystal, the CT bands at about 254 and 255 nm in Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu) were assigned to the transition of O-Eu at Ln3(Ln = Y, Lu) site, from which we can conclude that Eu3+ ions occupied the site of Ln3(Ln = Y, Lu) in crystal Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu). It put forward a new route to investigate site occupation of luminescent center ions in rare earth doped complex inorganic luminescence materials.

  11. LN2 Dewar 42 Delivery Overfill Inlet Solution

    SciTech Connect

    Wu, J.; Mulholland, G.T.; /Fermilab

    1991-02-26

    Pressure vessels must be protected against overpressure scenarios. A scenario of particular concern is that from a high pressure LN2 pump, now standard on LN2 delivery trailers. A safety mechanism must be in place to prevent the overfilling, and subsequent overpressure from occurring because these pumps have a higher mass flow output than reasonably sized relief valves provide. The original solution to the problem was to close a valve on the fill line when a certain liquid level in the dewar is reached. The valve remains closed until the level drops below that threshold. The trigger level was about 13,000 gallons for the 20,000 gallon capacity dewar. The solution was in place from 1989 until present, 2004.

  12. Dual shell-like magnetic clusters containing Ni(II) and Ln(III) (Ln = La, Pr, and Nd) ions.

    PubMed

    Kong, Xiang-Jian; Ren, Yan-Ping; Long, La-Sheng; Zheng, Zhiping; Nichol, Gary; Huang, Rong-Bin; Zheng, Lan-Sun

    2008-04-07

    Dual shell-like nanoscopic magnetic clusters featuring a polynuclear nickel(II) framework encapsulating that of lanthanide ions (Ln = La, Pr, and Nd) were synthesized using Ni(NO3)(2).6H2O, Ln(NO3)(3).6H2O, and iminodiacetic acid (IDA) under hydrothermal conditions. Structurally established by crystallographic studies, these clusters are [La20Ni30(IDA)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)(6).72H2O (1), [Ln20Ni21(C4H5NO4)21(OH)24(C2H2O3)6(C2O4)3(NO3)9(H2O)12](NO3)9.nH2O [C2H2O3 is the alkoxide form of glycolate; Ln = Pr (2), n = 42; Nd (3), n = 50], and {[La4Ni5Na(IDA)5(CO3)(NO3)4(OH)5(H2O)5][CO3].10H2O} infinity (4). Carbonate, oxalate, and glycolate are products of hydrothermal decomposition of IDA. Compositions of these compounds were confirmed by satisfactory elemental analyses. It has been found that the cluster structure is dependent on the identity of the lanthanide ion as well as the starting Ln/Ni/IDA ratio. The cationic cluster of 1 features a core of the Keplerate type with an outer icosidodecahedron of Ni(II) ions encaging a dodecahedral kernel of La(III). Clusters 2 and 3, distinctly different from 1, are isostructural, possessing a core of an outer shell of 21 Ni(II) ions encapsulating an inner shell of 20 Ln(III) ions. Complex 4 is a three-dimensional assembly of cluster building blocks connected by units of Na(NO3)/La(NO3)3; the structure of the building block resembles closely that of 1, with a hydrated La(III) ion internalized in the decanuclear cage being an extra feature. Magnetic studies indicated ferromagnetic interactions in 1, while overall antiferromagnetic interactions were revealed for 2 and 3. The polymeric, three-dimensional cluster network 4 displayed interesting ferrimagnetic interactions.

  13. The crystal structure and luminescence of Ce3+, Tb3+ and Eu3+ in KBaLn3+(BO3)2 [Ln3+ = Sc, Y, Lu, Gd

    NASA Astrophysics Data System (ADS)

    Camardello, S. J.; Her, J. H.; Toscano, P. J.; Srivastava, A. M.

    2015-11-01

    The structure of KBaLn3+(BO3)2 [Ln3+ = Sc, Lu, Gd] was solved by Rietveld refinement of the powder X-ray diffraction data. The materials crystallize with the mineral Buetschliite [K2Ca(CO3)2] structure. The lattice parameters of KBaLn3+(BO3)2 [Ln3+ = Sc, Lu, Gd] increased with increasing ionic radius of the Ln3+ cation. In this structure, the Ln3+ cations are octahedrally coordinated. The phase formation region is dependent on the ionic radii of the Ln3+ cation. The optical properties of Ce3+, Tb3+ and Eu3+ and their dependence on the host lattice composition are investigated and discussed. It is noteworthy that the optical properties of these ions are independent of the Ln3+ cation in KBaLn3+(BO3)2. It is concluded that in this family of materials, the crystalline field strength and the covalence at the rare earth site is independent of the host lattice composition.

  14. Crystal growth of a series of lithium garnets Ln3Li 5Ta 2O 12 ( Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity

    NASA Astrophysics Data System (ADS)

    Roof, Irina P.; Smith, Mark D.; Cussen, Edmund J.; zur Loye, Hans-Conrad

    2009-02-01

    We report the single crystal structures of a series of lanthanide containing tantalates, Ln3Li 5Ta 2O 12 ( Ln=La, Pr, Nd) that were obtained out of a reactive lithium hydroxide flux. The structures of Ln3Li 5Ta 2O 12 were determined by single crystal X-ray diffraction, where the Li + positions and Li + site occupancies were fixed based on previously reported neutron diffraction data for isostructural compounds. All three oxides crystallize in the cubic space group Ia3¯d (No. 230) with lattice parameters a=12.7735(1), 12.6527(1), and 12.5967(1) Å for La 3Li 5Ta 2O 12, Pr 3Li 5Ta 2O 12, and Nd 3Li 5Ta 2O 12, respectively. A UV-Vis diffuse reflectance spectrum of Nd 3Li 5Ta 2O 12 was collected to explain its unusual Alexandrite-like optical behavior. To evaluate the transport properties of Nd 3Li 5Ta 2O 12, the impedance data were collected in air in the temperature range 300⩽ T(°C)⩽500.

  15. Single crystal synthesis and magnetism of the BaLn2O4 family (Ln = lanthanide)

    DOE PAGES

    Besara, Tiglet; Lundberg, Matthew S.; Sun, Jifeng; ...

    2014-05-27

    The series of compounds in the BaLn2O4 family (Ln = La–Lu, Y) has been synthesized for the first time in single crystalline form, using a molten metal flux. The series crystallizes in the CaV2O4 structure type with primitive orthorhombic symmetry (space group Pnma, #62), and a complete structural study of atomic positions, bonds, angles, and distortions across the lanthanide series is presented. With the exception of the Y, La, Eu, and Lu members, magnetic susceptibility measurements were performed between 2 K and 300 K. BaCe2O4 and BaYb2O4 display large crystal fields effects and suppression of magnetic ordering. As a result,more » all compounds show signs of magnetic frustration due to the trigonal arrangements of the trivalent lanthanide cations in the structure.« less

  16. Chemical Substitution and High Pressure Effects on Superconductors in the LnOBiS$_2$ (Ln = La-Nd) System

    SciTech Connect

    Fang, Yuankan; Wolowiec, Christian T.; Yazici, Duygu; Maple, M. Brian

    2015-12-14

    A large number of compounds which contain BiS$_2$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$_2$-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$_2$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$_2$-based compounds, with special attention given to the compounds in the LnOBiSS$_2$ (Ln = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.

  17. Anisotropy and hysteresis of transport critical currents in high temperature Ln-Y-Ba-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Noto, K.; Morita, H.; Fujimori, H.; Mizuno, K.; Aomine, T.; Ni, B.; Matsushita, T.; Yamafuji, K.; Muto, Y.

    1989-03-01

    Following the measurements of anisotropy and hysteresis in transport critical currents with changing temperature and polarity of magnetic field, a.c. magnetic measurements by the Campbell method were performed for sintered Ln-Y-Ba-Cu-O superconductors. The information derived from them indicated that hysteresis does not occur in the intragrain current but in the intergrain one. The results are interpreted in terms of flux pinning, where the anisotropy originates from the texture structure and hysteresis is associated with the superconducting weak links of the sintered oxide pellets.

  18. Structure and stability of the low-temperature modification compounds Cs[sub 3]LnCl[sub 6] (Ln = La-Gd)

    SciTech Connect

    Seifert, H.J.; Fink, H. ); Baumgartner, B. )

    1993-11-01

    The crystal structure of the low-temperature modification of Cs[sub 3]LaCl[sub 6] has been determined from X-ray powder diffraction data by the Rietveld method. The monoclinic lattice with a = 27.286(5) [angstrom]; b = 8.291(1) [angstrom]; c = 13.305(2) [angstrom]; [beta] = 99.64(1)[degrees] belongs to the Cs[sub 3]BiCl[sub 6]-type (space group C2/c). All other compounds Cs[sub 3]LnCl[sub 6] (Ln = Gd) and the analogous Rb-compounds are isotypic. Emf measurements in a galvanic cell for solid electrolytes for the reactions CsCl + Cs[sub 2]LnCl[sub 5] = Cs[sub 3]LnCl[sub 6] reveal that the compounds with Ln = La,Ce,Pr,Nd are formed with a loss of lattice enthalpy, compensated by a considerable gain in entropy; they therefore are stable only at temperatures higher than O K. The compounds with Ln = Sm,Eu,Dg are formed with a gain in lattice enthalpy and are stable at T = OK, too. This difference is attributed to the different crystal structures of the neighboring compounds Cs[sub 2]LnCl[sub 5]: they crystallize with the K[sub 2]PrCl[sub 5]-structure (CN = 7 for Ln[sup 3+]) for the compounds with Ln = La-Nd, while the other compounds belong to the Cs[sub 2]DyCl[sub 5]-type with octahedral surroundings for the Ln[sup 3+] ions.

  19. Lanthanide stannate pyrochlores Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: Synthesis, characterization, and photocatalytic properties

    SciTech Connect

    Wang, Wanjun; Liang, Shijing; Bi, Jinhong; Yu, Jimmy C.; Wong, Po Keung; Wu, Ling

    2014-08-15

    Highlights: • Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) are synthesized by hydrothermal method. • Light absorption edge shows red shift with decreasing Ln{sup 3+} radius from Nd{sup 3+} to Yb{sup 3+}. • Ln{sub 2}Sn{sub 2}O{sub 7} shows increasing photocatalytic activity with the decease of Ln{sup 3+} radius. • Electronic configuration reaches 4f{sup 14} under light irradiation may decrease photocatalytic activity. • Hydroxyl radicals are detected to be the major reactive species. - Abstract: A series of lanthanide stannate pyrochlores Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals have been successfully synthesized via a facile hydrothermal route. With the decrease of Ln{sup 3+} radius, the light absorption edge of the as-prepared Ln{sub 2}Sn{sub 2}O{sub 7} shows a red shift from Nd{sup 3+} to Yb{sup 3+}. Their photocatalytic activities are found to be improved with the decrease of Ln{sup 3+} radius. However, the photocatalytic activity of Yb{sub 2}Sn{sub 2}O{sub 7} is a little lower than Er{sub 2}Sn{sub 2}O{sub 7}, although the Yb{sup 3+} radius is smaller than Er{sup 3+}, which may be attributed to the full-filled electronic configuration (4f{sup 14}) of surface Yb{sup 2+} intermediates (formed by Yb{sup 3+} trapping a photo-excited electron). The crystallite size and surface area play the most important role in determining the activities. Furthermore, hydroxyl radicals are detected to be the major reactive species during the photo-degradation process. Our findings provide insights in the fabrication of highly efficient stannate photocatalysts, thus enlarging the family of photocatalysts available.

  20. Sonochemical synthesis of highly luminescent Ln2O3:Eu3+ (Y, La, Gd) nanocrystals

    SciTech Connect

    Alammar, Tarek; Cybinska, Joanna; Campbell, Paul S.; Mudring, Anja -Verena

    2015-05-12

    In this study, sonication of Ln(CH3COO)3·H2O, Eu(CH3COO)3·H2O and NaOH dissolved in the ionic liquid-butyl-3-methylimidazolium bis(trifluoromethane)sulfonylamide lead to Ln(OH)3:Eu (Ln: Gd, La, Y) nanoparticles. Subsequent calcination at 800 °C for 3 h allowed to obtain Ln2O3:Eu nanopowders. Gd2O3 and Y2O3 were obtained in the C-type lanthanide sequioxide structure, whereas La2O3 crystallized in the A-type. Structure, morphology, and luminescent properties of the nano-oxides were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dispersive X-ray (EDX), and photoluminescence (PL). SEM studies revealed that the synthesized Gd2O3:Eu, La2O3:Eu, and Y2O3:Eu formed nano-spindle, -sheets, and -rods in shape, respectively. The nanoscale materials show very efficient red emission due to the intraconfigurational f–f transitions of Eu3+. The quantum yields for Ln2O3:Eu (5%) were determined to be 4.2% for Ln=Gd, 13.8% for Ln=Y and 5.2% for Ln=La. The asymmetric ratio I02/I01 of Eu3+ varies from 5.3 for Gd2O3, to 5.6 for Y2O3 to 6.5 for La2O3, which increased the color chromaticity.

  1. Nd2K2IrO7 and Sm2K2IrO7: Iridium(VI) Oxides Prepared under Ambient Pressure

    SciTech Connect

    Mugavero, III, S.; Smith, M; Yoon, W; zur Loye, H

    2009-01-01

    The most-oxidized iridium oxides known to date are prepared in a hydroxide flux under normal pressure. They contain iridium centers exclusively in the +VI oxidation state and are characterized crystallographically. The picture shows the structure of the Ln2K2IrO7 (Ln=Nd, Sm) and its structural components: IrO6 octahedra (black), KO10 polyhedra (beige), LnO10 polyhedra (blue).

  2. Rhombus-shaped tetranuclear [Ln4] complexes [Ln = Dy(III) and Ho(III)]: synthesis, structure, and SMM behavior.

    PubMed

    Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal

    2013-06-03

    The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.

  3. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  4. Superconducting Critical Temperature of Overdoped LnBa2Cu3Oy+Δy (Ln=La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm and Yb)

    NASA Astrophysics Data System (ADS)

    Okai, Bin; Ono, Akira

    1999-09-01

    A series of overdoped LnBa2Cu3Oy+Δy (Ln=La˜Yb) was synthesized at high oxygen pressure for investigating the relationship between the superconducting critical temperature Tc, overdoping oxygen content Δy, and Ln. Tc of 1-2-3 compound LnBa2Cu3Oy+Δy remains almost unchanged through various levels of overdoping for small ionic radii of Ln. As the ionic radus of Ln increases, Tc decreases with the level of overdoping. The decrease changes systematically from EuBa2Cu3Oy+Δy to LaBa2Cu3Oy+Δy; the decrease for LaBa2Cu3Oy+Δy is the steepest. Tc is also reduced probably by the mixing of Ln and Ba, as observed in NdBa2Cu3Oy+Δy and LaBa2Cu3Oy+Δy.

  5. Enhanced visible light-responsive photocatalytic activity of LnFeO{sub 3} (Ln = La, Sm) nanoparticles by synergistic catalysis

    SciTech Connect

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-02-01

    Highlights: • LnFeO{sub 3} (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO{sub 3} (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO{sub 3} was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO{sub 3} nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO{sub 3} nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results.

  6. Tetradecanuclearity in 3d-4f chemistry: relaxation and magnetocaloric effects in [NiLn] species.

    PubMed

    Canaj, Angelos B; Kalofolias, Dimitris A; Siczek, Milosz; Lis, Tadeusz; McNab, Robbie; Lorusso, Giulia; Inglis, Ross; Evangelisti, Marco; Milios, Constantinos J

    2017-03-14

    The employment of 2-amino-isobutyric acid, Haib, and 2-hydroxy-1-naphthaldehyde, Hnaphth, in Ni(II)/Ln(III) chemistry has led to the isolation and characterization of two new isostructural 3d-4f tetradecanuclear [NiLn] clusters (Ln = Gd(III), Dy(III)), with the Dy analogue displaying temperature and frequency dependent out-of-phase signals, and the Gd analogue showing interesting magnetocaloric properties.

  7. Synthesis, properties and phase transitions of pyrochlore- and fluorite-like Ln{sub 2}RMO{sub 7} (Ln = Sm, Ho; R = Lu, Sc; M = Nb, Ta)

    SciTech Connect

    Shlyakhtina, A.V.; Belov, D.A.; Pigalskiy, K.S.; Shchegolikhin, A.N.; Kolbanev, I.V.; Karyagina, O.K.

    2014-01-01

    Graphical abstract: Temperature dependences of bulk conductivity for Sm{sub 2}ScTaO{sub 7} pyrochlore prepared at (1) 1400 °C, 20 h; and (2) 1200 °C, 40 h. - Highlights: • The phase formation of Ln{sub 2}RMO{sub 7} (Ln = Sm, Ho; R = Lu, Sc; M = Nb, Ta) at 1200–1600 °C. • The bulk conductivity and magnetic susceptibility were measured. • The bulk conductivity of Sm{sub 2}ScTaO{sub 7} has oxygen ion type at T ≥ 750 °C. • The first-order structural phase transition was observed in Sm{sub 2}ScTaO{sub 7} at ∼650–700 °C. • This phase transformation is not typical for defect fluorites. - Abstract: We have studied the new compounds with fluorite-like (Ho{sub 2}RNbO{sub 7} (R = Lu, Sc)) and pyrochlore-like (Sm{sub 2}ScTaO{sub 7}) structure as potential oxide ion conductors. The phase formation process (from 1200 to 1600 °C) and physical properties (electrical, thermo mechanical, and magnetic) for these compounds were investigated. Among the niobate materials the highest bulk conductivity is offered by the fluorite-like Ho{sub 2}ScNbO{sub 7} synthesized at 1600 °C: 3.8 × 10{sup −5} S/cm at 750 °C, whereas in Sm system the highest bulk conductivity, 7.3 × 10{sup −6} S/cm at 750 °C, is offered by the pyrochlore Sm{sub 2}ScTaO{sub 7} synthesized at 1400 °C. In Sm{sub 2}ScTaO{sub 7} pyrochlore we have observed the first-order phase transformation at ∼650–700 °C is related to rearrangement process in the oxygen sublattice of the pyrochlore structure containing B-site cations in different valence state and actually is absent in the defect fluorites. The two holmium niobates show Curie–Weiss paramagnetic behavior, with the prevalence of antiferromagnetic coupling. The magnetic susceptibility of Sm{sub 2}ScTaO{sub 7} is a weak function of temperature, corresponding to Van Vleck paramagnetism.

  8. A quantum chemistry investigation on the structure of lanthanide triflates Ln(OTf)3 where Ln = La, Ce, Nd, Eu, Gd, Er, Yb and Lu.

    PubMed

    Hannachi, Douniazed; Ouddai, Nadia; Chermette, Henry

    2010-04-21

    Density functional theory has been used to probe the electronic structure, coordination number, optical properties and the vibration spectra of monolanthanide trifluoromethane sulfonate Ln(OTf)(3) complexes where Ln = La, Ce, Nd, Eu, Gd, Er, Yb and Lu. The study reveals that the OTf group is bonded to Ln as a bidentate ligand. TDDFT calculations show that, for La(OTf)(3), MLTC and HOMO-LUMO transitions in the UV-vis are strongly bathochromically shifted compared to those of Lu(OTf)(3.).

  9. Deliverable for FαST project: Ln Resin based PLE

    SciTech Connect

    Peterson, Dominic S.; Armenta, Claudine E.; Rim, Jung H.

    2012-05-03

    This memo describes the fabrication of a polymer ligand extractant based on Eichrom's LN-1 resin. This work has been in support of the Fast Alpha Spectrometry Tool (F{alpha}ST) project. The first part of LANL's role in this project is to evaluate new extractants for use in polymer ligand extractants (PLEs). The first new extractant evaluated is Di(2-ethyl hexyl) phosphoric acid (HDEHP), which is an effective metal extractant. It has very efficient chelating properties for a wide variety of metal ions. HDEHP is an amphiphillic molecule with two long hydrocarbon chains and a polar end with a phosphoryl oxygen (P=O) and an acidic -OH group as shown in Figure 1. HDEHP has shown effectiveness in extracting lanthanides, selective actinides, and other trivalent elements. Several authors have reported that lanthanides and elements with +3 oxidation state have similar extraction behavior in nitric acid. The distribution ratio for lanthanides rapidly decreases at lower nitric concentration then start to increase at higher concentration as shown in. The trivalent americium, curium, and yttrium exhibit similar trend as trivalent lanthanides. This extraction trend can be also observed from hydrogen chloride solution. This work describes the use of this ligand in a PLE to extract plutonium from solution. Polymer ligand films were prepared by dissolving HDEHP ligands and polystyrene beads in THF. The solution was directly deposited onto a 40 mm diameter stainless steel substrate using an automated pipette. HDEHP based PLEs with direct stippling method are shown in Figure 2. The solution was air dried at room temperature overnight to ensure complete evaporation of THF. The plutonium tracer solution was prepared in 0.01, 0.1, 1, and 8M nitric solutions to study the effect of nitric concentration in plutonium extraction. 0.1667 Bq {sup 239}Pu tracer solution was directly stippled on each PLE and was allowed to equilibrate for 3 hours before removing the solution. The plutonium

  10. Chemical Substitution and High Pressure Effects on Superconductors in the LnOBiS$$_2$$ (Ln = La-Nd) System

    DOE PAGES

    Fang, Yuankan; Wolowiec, Christian T.; Yazici, Duygu; ...

    2015-12-14

    A large number of compounds which contain BiSmore » $$_2$$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$$_2$$-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$$_2$$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$$_2$$-based compounds, with special attention given to the compounds in the LnOBiSS$$_2$$ (Ln = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.« less

  11. Effect of LN2 injection station location on the drive fan power and LN2 requirements of a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Adcock, J. B.

    1977-01-01

    A theoretical analysis comparing the fan power and coolant (LN2) flow rates resulting from injection of the LN2 either upstream or downstream of the drive fan of a closed circuit transonic cryogenic tunnel is presented. The analysis is restricted to steady state tunnel operation and to the condition that the tunnel walls are adiabatic. The stagnation pressure and temperature range of the tunnel is from 1.0 to 8.8 atm and from 300 K to liquefaction temperature, respectively. Calculations are made using real gas properties of nitrogen. Results show that the fan power and LN2 flow rates are lower if the LN2 is injected upstream of the fan. The lower fan inlet temperature resulting from injecting upstream of the fan has a greater influence on the power than does the additional mass flow going through the fan.

  12. Ultralarge 3d/4f Coordination Wheels: From Carboxylate/Amino Alcohol-Supported {Fe4Ln2} to {Fe18Ln6} Rings

    PubMed Central

    2017-01-01

    A family of wheel-shaped charge-neutral heterometallic {FeIII4LnIII2}- and {FeIII18MIII6}-type coordination clusters demonstrates the intricate interplay of solvent effects and structure-directing roles of semiflexible bridging ligands. The {Fe4Ln2}-type compounds [Fe4Ln2(O2CCMe3)6(N3)4(Htea)4]·2(EtOH), Ln = Dy (1a), Er (1b), Ho (1c); [Fe4Tb2(O2CCMe3)6(N3)4(Htea)4] (1d); [Fe4Ln2(O2CCMe3)6(N3)4(Htea)4]·2(CH2Cl2), Ln = Dy (2a), Er (2b); [Fe4Ln2(O2CCMe3)4(N3)6(Htea)4]·2(EtOH)·2(CH2Cl2), Ln = Dy (3a), Er (3b) and the {Fe18M6}-type compounds [Fe18M6(O2CCHMe2)12(Htea)18(tea)6(N3)6]·n(solvent), M = Dy (4, 4a), Gd (5), Tb (6), Ho (7), Sm (8), Eu (9), and Y (10) form in ca. 20–40% yields in direct reaction of trinuclear FeIII pivalate or isobutyrate clusters, lanthanide/yttrium nitrates, and bridging triethanolamine (H3tea) and azide ligands in different solvents: EtOH for the smaller {Fe4Ln2} wheels and MeOH/MeCN or MeOH/EtOH for the larger {Fe18M6} wheels. Single-crystal X-ray diffraction analyses revealed that 1–3 consist of planar centrosymmetric hexanuclear clusters built from FeIII and LnIII ions linked by an array of bridging carboxylate, azide, and aminopolyalcoholato-based ligands into a cyclic structure with a cavity, and with distinct sets of crystal solvents (2 EtOH per formula unit in 1a–c, 2 CH2Cl2 in 2, and 2 EtOH and 2 CH2Cl2 in 3). In 4–10, the largest 3d/4f wheels currently known, nearly linear Fe3 fragments are joined via mononuclear Ln/Y units by a set of isobutyrates and amino alcohol ligands into virtually planar rings. The magnetic properties of 1–10 reveal slow magnetization relaxation for {Fe4Tb2} (1d) and slow relaxation for {Fe4Ho2} (1c), {Fe18Dy6} (4), and {Fe18Tb6} (6). PMID:28135085

  13. Effect of inclining strain on the crystal lattice along an extended series of lanthanide hydroxysulfates Ln(OH)SO4 (Ln = Pr-Yb, except Pm).

    PubMed

    Zehnder, Ralph A; Wilson, Christopher S; Christy, Hunter T; Harris, Kenneth S; Chauhan, Varun; Schutz, Victor; Sullivan, Matthew; Zeller, Matthias; Fronczek, Frank R; Myers, Jacob A; Dammann, Kyle; Duck, James; Smith, Peter M; Okuma, Antony; Johnson, Kristin; Sovesky, Robert; Stroudt, Cameron; Renn, Robert A

    2011-02-07

    A series of trivalent lanthanide hydroxysulfates, Ln(OH)SO(4), (Ln = Pr through Yb, except radioactive Pm) has been synthesized via hydrothermal methods from Ln(2)(SO(4))(3)·8H(2)O by reaction with aqueous NaOH at 170 °C in Teflon lined Parr steel autoclaves, and were characterized by single crystal X-ray diffraction and FT-IR spectroscopy. Two types of arrangements were found in the solid state. The lighter (Ln = Pr-Nd, Sm-Gd) and heavier lanthanide(III) hydroxysulfates (Tb-Yb) are each isostructural. Both structure types exhibit the monoclinic space group P2(1)/n, but the unit cell content is doubled with two crystallographically distinct LnO(8) polyhedra for the heavier lanthanide compounds. The lighter complexes maintain the coordination number 9, forming a three-dimensional extended lattice. The heavier counterparts exhibit the coordination number 8, and arrange as infinite columns of two crystallographically different LnO(8) polyhedra, while extending along the "c" axis. These columns of LnO(8) polyhedra are surrounded and separated by six columns of sulfate ions, also elongating in the "c" direction. The rigid sulfate entities seem to obstruct the closing in of the lighter LnO(9) polyhedra, and show an inclining degree of torsion into the "ac" layers. The crystal lattice of the lighter 4f complexes can sufficiently withstand the tension buildup, caused by the decreasing Ln(3+) radius, up to Gd(OH)SO(4). The energy profile of this structural arrangement then seems to exceed levels at which this structure type is favorable. The lattice arrangement of the heavier Ln-analogues seems to offer a lower energy profile. This appears to be the preferred arrangement for the heavier lanthanide hydroxysulfates, whose crystal lattice exhibits more flexibility, as the coordination sphere of these analogues is less crowded. The IR absorbance frequencies of the hydroxide ligands correlate as a function of the Ln(3+) ionic radius. This corresponds well with the X-ray single

  14. Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process.

    PubMed

    Hou, Zhiyao; Chai, Ruitao; Zhang, Milin; Zhang, Cuimiao; Chong, Peng; Xu, Zhenhe; Li, Guogang; Lin, Jun

    2009-10-20

    One-dimensional CaMoO(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO(4):Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO(4) samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO(4)(2-) groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO(4):Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation. The energy transfer process was further studied by the emission spectra and the kinetic decay curves of Ln(3+) upon excitation into the MoO(4)(2-) groups in the CaMoO(4):x mol % Ln(3+) samples (x = 0-5). Furthermore, the emission colors of CaMoO(4):Ln(3+) nanofibers can be tuned from blue-green to green, yellow, and orange-red easily by changing the doping concentrations (x) of Ln(3+) ions, making the materials have potential applications in fluorescent lamps and field emission displays (FEDs).

  15. Chloride derivatives of lanthanoid(III) ortho-oxidotungstates(VI) with the formula LnCl[WO4] (Ln=Gd-Lu): Syntheses, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Schustereit, Tanja; Schleid, Thomas; Höppe, Henning A.; Kazmierczak, Karolina; Hartenbach, Ingo

    2015-03-01

    The lanthanoid(III) chloride ortho-oxidotungstates(VI) with the formula LnCl[WO4] crystallize monoclinically in space group C2/m (a=1019-1032, b=721-733, c=682-689 pm and β=107-108°, Z=4) for Ln=Gd-Er and triclinically in space group P1¯ (a=593-596, b=719-721, c=684-686 pm, α=93-94, β≈103 and γ≈122°, Z=2) for Ln=Tm-Lu. The monoclinic structure contains crystallographically unique Ln3+ cations, which are surrounded by two Cl- and six O2- anions forming distorted trigonal dodecahedra. Their fusion via common edges leads to anionic layers ∞ 2 {[ LnCl2/2eO4/2eO2/1t ] 6 - }. The polyhedra around the Ln3+ cations in the triclinic crystal structure are also built up by two Cl-, but only five O2- anions to form distorted monocapped trigonal prisms. Their linkage through edges constitutes anionic strands ∞ 1 {[ LnCl2/2eO2/2eO3/1t ] 6 - } along [100]. The complex anionic entities of both LnCl[WO4] arrangements become interconnected by W6+ cations to complete the structures by generating discrete [WO4]2- tetrahedra. Since the title compounds emerge as pure phases according to X-ray powder diffractometry, spectroscopic measurements such as single crystal Raman as well as diffuse reflectance spectroscopy (DRS) were performed. Furthermore, GdCl[WO4] and LuCl[WO4] are suitable host materials for doping with Eu3+, which leads to materials with a red luminescence upon excitation with UV light for both structures. Moreover, TbCl[WO4] exhibits a Tb3+-typical yellow-green bulk luminescence upon UV excitation, which could be analyzed by luminescence spectroscopy.

  16. B-site disordering in Ba{sub 3}Ln{sub 2}MoO{sub 9} (Ln=Ho, Er) perovskites: A neutron diffraction study

    SciTech Connect

    Larregola, S.A.; Alonso, J.A.; Garcia Hernandez, M.; Fernandez-Diaz, M.T.; Pedregosa, J.C.

    2009-06-15

    We describe the preparation, structure determination and magnetic properties of two Ba perovskites containing rare-earth cations at the B-sublattice. Ba{sub 3}Ln{sub 2}MoO{sub 9} (Ln=Ho{sup 3+} and Er{sup 3+}) were synthesized by ceramic procedures. Joint X-ray (XRPD) and neutron (NPD) powder diffraction refinements were carried out to analyse the crystal structure. At room temperature, both phases are tetragonal, space group I4/mcm, Z=4. Ln and Mo atoms are found to be distributed at random over the octahedral sites of the perovskites. Magnetic measurements at 0.1 T show that both samples are paramagnetic between 3 and 300 K, following a Curie-Weiss law. M vs. H curves show a region of paramagnetic behaviour and above 2.5 T a magnetic saturated system is observed. Finally, the temperature evolution of the NPD patterns of Ba{sub 3}Ho{sub 2}MoO{sub 9} reveals the absence of long-range magnetic ordering down to 2 K. - Graphical Abstract: Preparation, structure and magnetic properties of Ba{sub 3}Ln{sub 2}MoO{sub 9} (Ln=Ho{sup 3+} and Er{sup 3+}) are descripted. Joint XRPD and NPD refinements confirm a tetragonal I4/mcm structure. Ln and Mo atoms are found to be distributed at random over the octahedral sites of the perovskites.

  17. Enhanced near-infrared emission in phase and size controlled NaLnF4: Pr3+-Yb3+ (Ln = Gd3+ and Y3+) nanocrystals

    NASA Astrophysics Data System (ADS)

    Ye, Song; Hu, Rongxuan; Wang, Huiyun; Wang, Deping

    2015-01-01

    NaLnF4 (Ln = Y, Gd): Pr3+, Yb3+ nanocrystals were prepared through a facile modified solvothermal method, in which the cubic to hexagonal phase transformation and size evaluation of NaLnF4 nanocrystals could be well controlled by carefully adjusting Gd3+ content. In this system, the infrared emission associated with Yb3+: 2F5/2 → 2F7/2 transition could be obtained under the excitation of Pr3+: 3P0 energy level as a result of efficient energy transfer from Pr3+ to Yb3+. The structural and spectral measurement indicated that the energy transfer efficiency from Pr3+ to Yb3+ firstly increased with the increase of Gd3+ content due to the formation of a higher percentage of hexagonal phase NaLnF4 in the final production, and then decreased with further increase in Gd3+ content due to the expansion of NaLnF4 unit-cell volume. However, a monotonous increase in Yb3+ infrared emission intensity could be observed with the increasing of Gd3+ content until the radiative emission was suppressed by the nonradiative transition originating from the surface defects in smaller NaLnF4 nanocrystals.

  18. Structural and electrical properties of T'-type Ln2CuO4 (Ln = Pr, Nd, Sm, Eu and Gd) ceramics

    NASA Astrophysics Data System (ADS)

    Salame, Paresh Hiralal

    2016-05-01

    T'-type Ln2CuO4 (Ln = Pr, Nd, Sm, Eu and Gd) were successfully synthesized in phase pure form using conventional solid state reaction and sintering route. For all the Ln2CuO4 samples, the solid state reaction temperature was found to be 950 °C and pure phase was realized only after 2-3 intermediate milling and solid state reaction cycles, irrespective of the lanthanide ion radius. Effect of lanthanide ion contraction on the structural properties was clearly revealed by the powder X-ray diffraction, with the XRD peaks observed to be shifting towards higher 2θ values with the decrease in Ln ionic radii. The optimum sintering temperature of these solid state reacted Ln2CuO4 powder was found to be 1100 °C except for Pr2CuO4 powder. The conductivity of these samples were tested over a wide temperature range (-100 to 150 °C), an anomaly was observed in the conductivity of all the Ln2CuO4 samples near the antiferromagnetic ordering temperature of Cu (~ 30 °C), thus suggesting the bearing of ordering of magnetic moments on the electrical properties.

  19. [Theoretical and experimental vibrational spectroscopy study of K3Ln(PO4)2 phosphates].

    PubMed

    Benarafa, L; Rghioui, L; Nejjar, R; Saidi Idrissi, M; Knidiri, M; Lorriaux, A; Wallart, F

    2005-01-14

    The monoclinic phosphates with K3Ln(PO4)2 (Ln=rare earth) formula were synthesized. Their infrared and Raman spectra have been reported and analysed. The results of a force field calculation for K3Nd(PO4)2 are presented.

  20. Linking two distinct layered networks of nanosized {Ln18} and {Cu24} wheels through isonicotinate ligands.

    PubMed

    Cheng, Jian-Wen; Zhang, Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2008-01-01

    A new series of heterolanthanide(III)-copper(I) wheel-cluster complexes [Ln6(micro3-O)2](IN)18-[Cu8(micro4-I)2(micro2-I)3].H3O (IN=isonicotinate; Ln=Y 1, Nd 2, Dy 3, Gd 4, Sm 5, Eu 6, Tb 7) were prepared by hydrothermal reaction at low pH. X-ray crystallographic studies reveal that two unusual trinuclear [Ln3(micro3-O)] and tetranuclear [Cu4(micro4-I)] cores are successfully used as secondary building units to make two different nanosized wheels [Ln18(micro3-O)6(CO2)48](6-), {Ln18}, and [Cu24(micro4-I)6(micro2-I)12]6+, {Cu24}, with 12-rings and a diameter of 26.7 and 26.4 A, respectively. The wheels are further assembled into two-dimensional (2D) {Ln18} and {Cu24} networks, the linkages between two distinct layered networks of {Ln18} and {Cu24} wheels by IN pillars along the c axis giving a series of unprecedented three-dimensional (3D) sandwich frameworks. To our knowledge, compounds 1-7 are the first examples containing two different layered networks of nanosized Ln and transition metal (TM) wheels in wheel-cluster chemistry. The IR, UV/Vis, thermogravimetric analysis (TGA), luminescent, and magnetic properties of these complexes were also studied.

  1. Intracluster interactions in "butterfly" {Fe3LnO2} molecules

    NASA Astrophysics Data System (ADS)

    Badía-Romano, L.; Rubín, J.; Bartolomé, F.; Bartolomé, J.; Luzón, J.; Prodius, D.; Turta, C.; Mereacre, V.; Wilhelm, F.; Rogalev, A.

    2016-02-01

    The magnetization contributions of the Fe3 and Ln subcluster in the "butterfly" molecule [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3], in brief {Fe3LnO2}, with Ln=Lu, Gd, Tb, Dy and Ho, have been determined by a combination of vibrating sample magnetometry and x-ray circular magnetic dichroism at low temperature and magnetic field up to 14 T. These contributions have been explained in terms of an effective spin model where the Fe3 is described by a SFe3 = 5 / 2 spin, Gd by an isotropic J=7/2, Dy by a Kramers doublet, and non-Kramers ions Tb and Ho by a ligand field split doublet. The intracluster interactions JFeLn have been found to amount to a few K.

  2. Method for synthesizing fine-grained phosphor powders of the type (RE{sub 1{minus}x}Ln{sub x})(P{sub 1{minus}y}V{sub y})O{sub 4}

    DOEpatents

    Phillips, M.L.F.

    1998-04-28

    A method for generating well-crystallized photo- and cathodoluminescent oxide phosphor powders is disclosed. The method of this invention uses hydrothermal synthesis and annealing to produce nearly monosized (RE{sub 1{minus}x}Ln{sub x})(P{sub 1{minus}y}V{sub y}O{sub 4}) (Ln{double_bond}Ce{yields}Lu) phosphor grains with crystallite sizes from 0.04 to 5 {micro}m. Such phosphors find application in cathode-ray tube, flat-panel, and projection displays. 4 figs.

  3. Synthesis method dependence of the lattice effects in Ln0.5M0.5FeO3 perovskites (Ln = La and (Nd or Gd); M = Ba and (Ca or Sr))

    NASA Astrophysics Data System (ADS)

    Ortega-San-Martín, L.; Vidal, K.; Roldán-Pozo, B.; Coello, Y.; Larrañaga, A.; Arriortua, M. I.

    2016-05-01

    A new series of cubic iron perovskites with the composition Ln0.5M0.5FeO3 (Ln = La and Nd (or Gd); M = Ba and Sr (or Ca)) with the same average A-site radius ( = 1.3 Å) but different A-site size disorder, σ 2(r A), from 0.0114 to 0.0230 Å2, has been prepared by three different synthesis routes: (a) ceramic method, (b) combustion method and (c) the Pechini method. A strong correlation of the structural parameters with σ 2(r A) and the synthesis method is observed. The unit cell volume increases with σ 2(r A) in all the cases but the overall isotropic displacement factor of the atoms and the lattice microstrain do not show the same trends. Samples synthesised by the low temperature routes show a σ 2(r A)-dependence of the microstrain whereas in the oxides prepared by the ceramic method microstrain seems to be σ 2(r A)-independent.

  4. Giant Hollow Heterometallic Polyoxoniobates with Sodalite-Type Lanthanide-Tungsten-Oxide Cages: Discrete Nanoclusters and Extended Frameworks.

    PubMed

    Jin, Lu; Li, Xin-Xiong; Qi, Yan-Jie; Niu, Ping-Ping; Zheng, Shou-Tian

    2016-10-24

    The first series of niobium-tungsten-lanthanide (Nb-W-Ln) heterometallic polyoxometalates {Ln12 W12 O36 (H2 O)24 (Nb6 O19 )12 } (Ln=Y, La, Sm, Eu, Yb) have been obtained, which are comprised of giant cluster-in-cluster-like ({Ln12 W12 }-in-{Nb72 }) structures built from 12 hexaniobate {Nb6 O19 } clusters gathered together by a rare 24-nuclearity sodalite-type heterometal-oxide cage {Ln12 W12 O36 (H2 O)24 }. The Nb-W-Ln clusters present the largest multi-metal polyoxoniobates and a series of rare high-nuclearity 4d-5d-4f multicomponent clusters. Furthermore, the giant Nb-W-Ln clusters may be isolated as discrete inorganic alkali salts and can be used as building blocks to form high-dimensional inorganic-organic hybrid frameworks.

  5. Monodisperse lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm): morphology controlled synthesis, up-conversion luminescence and in vitro cell imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Li, Xuejiao; Hou, Zhiyao; Lin, Jun

    2014-05-01

    Lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm) nano/micro-materials with a variety of well-defined morphologies including nanorods, nanospindles, nanorod-bundles and nanospheres, have been successfully synthesized via a facile precipitation technique followed by a heating treatment. It is found that the pH values, fluoride sources and dosage of urea in the initial reaction systems play critical roles in the morphology determination of the LnOF products and the possible formation mechanism for these diverse architectures has been presented. XRD, FT-IR, TG-DTA, SEM, TEM, as well as up-conversion (UC) luminescence spectra are used to characterize the synthesized samples. Under 980 nm NIR laser excitation, red, green and blue UC luminescence are observed from Yb3+/Er3+, Yb3+/Ho3+ and Yb3+/Tm3+ co-doped YOF nanospheres. The MTT assay indicates that YOF nanospheres exhibit good biocompatibility. Especially, the emission spectrum of YOF: 0.20Yb3+, 0.04Er3+ nanospheres is dominated by a single red emission at 660 nm, which falls into the ``optical window'' of biological tissues. The application of YOF: 0.20Yb3+, 0.04Er3+ nanospheres in the cell imaging is also investigated, which shows a bright-red emission without background noise.Lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm) nano/micro-materials with a variety of well-defined morphologies including nanorods, nanospindles, nanorod-bundles and nanospheres, have been successfully synthesized via a facile precipitation technique followed by a heating treatment. It is found that the pH values, fluoride sources and dosage of urea in the initial reaction systems play critical roles in the morphology determination of the LnOF products and the possible formation mechanism for these diverse architectures has been presented. XRD, FT-IR, TG-DTA, SEM, TEM, as well as up-conversion (UC) luminescence spectra are used to characterize the synthesized samples. Under 980 nm NIR laser excitation, red, green and blue UC luminescence are

  6. Synthesis and photoluminescence properties of Ln3+ (Ln3+=Tb3+, Dy3+, Sm3+, Er3+)-doped Ca2Nb2O7 phosphors

    NASA Astrophysics Data System (ADS)

    Xian, Jieqiang; Yi, Shuangping; Deng, Yaomin; Zhang, Lu; Hu, Xiaoxue; Wang, Yinhai

    2016-02-01

    A series of Ln3+ (Ln3+=Tb3+/Dy3+/Sm3+/Er3+) ions doped Ca2Nb2O7 phosphors have been synthesized by high-temperature solid-state reaction. The Ln3+-doped samples are well indexed to the pure Ca2Nb2O7 phase which revealed for the X-ray diffraction (XRD) result. Under the ultraviolet light, the prepared Ca2-xNb2O7:xLn3+ (Ln3+=Tb3+/Dy3+/Sm3+/Er3+) phosphors show the characteristic cyan (Tb3+), green-white (Sm3+), yellowish (Dy3+) and green (Er3+) emissions. The energy transfer mechanisms in Ca2Nb2O7: Tb3+/Dy3+/Sm3+/Er3+ phosphors have been investigated and it deduced to be a resonant type via an electric dipole-dipole interaction. In addition, their critical distances have been calculated by concentration quenching methods. The luminescence properties of Ca2Nb2O7:Tb3+/Dy3+/Sm3+/Er3+ phosphors indicated that the Ca2Nb2O7 is a suitable host for rare earth doped laser crystal and optical materials.

  7. Ce3+ and Ln3+ (Ln = Dy, Eu, Sm, Tb) Codoped SrF2 Nanoparticles: Synthesis and Multicolor Light Emission.

    PubMed

    Su, Yiguo; Liu, Mengqing; Han, Dan; Li, Lv; Wang, Tingting; Wang, Xiaojing

    2016-04-01

    For optically active Ln3+ ions, fluoride is a very good luminescent substrate that has been used in the field of lasers, solid-phase optical transmitters, optical communications, up/down conversion. This work reports a systematic study on bridging between structure and tunable luminescence for SrF2:Ce3+/Ln3+ (Ln = Dy, Eu, Sm, Tb) nanoparticles. Regardless of the dopant level, all nano-crystals crystallized in a single cubic phase with the diameter of ~20-30 nm. It was found that SrF2:Ce3+ exhibited intense ultraviolet emission under 288 nm excitation which can be attributed to the typical 4f-5d transition of Ce3+ ions. After the incorporation of Ln3+ ions, multicolor emission can be achieved when excited by the 4f-5d transition of Ce3+. This result gave an evidence that the excitation energy of Ce3+ can be transferred to Ln3+ leading to multicolor emission. The findings reported in this work may provide useful information in designing novel luminescent materials for tailored performances.

  8. Seven new rare-earth transition-metal oxychalcogenides: Syntheses and characterization of Ln{sub 4}MnOSe{sub 6} (Ln=La, Ce, Nd), Ln{sub 4}FeOSe{sub 6} (Ln=La, Ce, Sm), and La{sub 4}MnOS{sub 6}

    SciTech Connect

    Ijjaali, Ismail; Deng Bin; Ibers, James A. . E-mail: ibers@chem.northwestern.edu

    2005-05-15

    The quaternary oxychalcogenides Ln{sub 4}MnOSe{sub 6} (Ln=La, Ce, Nd), Ln{sub 4}FeOSe{sub 6} (Ln=La, Ce, Sm), and La{sub 4}MnOS{sub 6} have been synthesized by the reactions of Ln (Ln=La, Ce, Nd, Sm), M (M=Mn, Fe), Se, and SeO{sub 2} at 1173K for the selenides or by the reaction of La{sub 2}S{sub 3} and MnO at 1173K for the sulfide. Warning: These reactions frequently end in explosions. These isostructural compounds crystallize with two formula units in space group C{sub 6v}{sup 4}-P6{sub 3}mc of the hexagonal system. The cell constants (a, c in A) at 153K are: La{sub 4}MnOSe{sub 6}, 9.7596(3), 7.0722(4); La{sub 4}FeOSe{sub 6}, 9.7388(4), 7.0512(5); Ce{sub 4}MnOSe{sub 6}, 9.6795(4), 7.0235(5); Ce{sub 4}FeOSe{sub 6}, 9.6405(6), 6.9888(4); Nd{sub 4}MnOSe{sub 6}, 9.5553(5), 6.9516(5); Sm{sub 4}FeOSe{sub 6}, 9.4489(5), 6.8784(5); and La{sub 4}MnOS{sub 6}, 9.4766(6), 6.8246(6). The structure of these Ln{sub 4}MOQ{sub 6} compounds comprises a three-dimensional framework of interconnected LnOQ{sub 7} bicapped trigonal prisms, MQ{sub 6} octahedra, and the unusual LnOQ{sub 6} tricapped tetrahedra.

  9. Synthesis, structures, and luminescent and magnetic properties of Ln-Ag heterometal-organic frameworks.

    PubMed

    Zhao, Xiao-Qing; Zhao, Bin; Wei, Shi; Cheng, Peng

    2009-12-07

    A series of Ln-Ag heterometal-organic frameworks based on 4-hydroxylpyridine-2,6-dicarboxylic acid (H(3)CAM) with formulas {LaAg(2)(CAM)(HCAM)(H(2)O)(2)}(n) (1), {LnAg(HCAM)(2)(H(2)O)(3)}(n) (Ln = Pr, 2; Nd, 3; Sm, 4; Eu, 5), and {LnAg(3)(CAM)(2)(H(2)O)}(n) (Ln = Gd, 6; Tb, 7; Dy, 8; Tm, 9; Yb, 10), have been synthesized with the hydrothermal reaction of Ln(OH)(3), Ag(2)O, and H(3)CAM at 160 degrees C. The single-crystal X-ray diffraction analyses reveal that three kinds of structures are exclusively governed by the size of lanthanide ions and the progression of structures is mainly ascribed to the lanthanide contraction effect. Compound 1 consists of a 3D network with an alpha-polonium-like Ag(+)-homometallic net and helical La(3+) chain. Compounds 2-5 display a 2D honeycomb-like structure with 18-membered Ln(3)Ag(3)O(12) motifs, and compounds 6-10 can be described as a sandwich-like 3D framework built of a 3D Ag(+)-homometallic net and 2D Ln(3+)-4(4) layer. In 4 (Sm), 5 (Eu), 7 (Tb), and 8 (Dy) samples, the efficient energy transfer from CAM to Ln(III) ions was observed, which results in the typical intense emissions of corresponding Ln(III) ions in the visible region, and the strongest emissions are (4)G(5/2) --> (6)H(7/2) (602 nm), (5)D(0) --> (7)F(2) (614 nm), (5)D(4) --> (7)F(5) (548 nm), and (4)F(9/2) --> (6)H(13/2) (576 nm) transitions. Variable-temperature magnetic susceptibility measurements of 6-10 show that the ferromagnetic interaction between gadolinium(III) ions appears in 6, whereas the mu(eff) values of 7-10 smoothly decrease on cooling. For the orbital contribution of Ln(III) ions, it is very difficult to determine the intrinsic magnetic interactions between Ln(III) ions.

  10. Pressure-induced phase transitions in LnTe (Ln=La, Gd, Ho, Yb) and AmTe.

    PubMed

    Zvoriste-Walters, C E; Heathman, S; Klimczuk, T

    2013-07-03

    The structural behaviour under compression of different lanthanide (La, Gd, Ho, Yb) and actinide (Am) monochalcogenides is studied by means of in situ high-pressure x-ray diffraction. All the investigated compounds crystallize at ambient conditions within a cubic (B1) NaCl-type structure but show different behaviours at high pressures. LaTe and AmTe undergo B1 to B2 (CsCl-type structure) phase transitions, starting at 9 GPa and 12 GPa, respectively. The high-pressure phase of AmTe exhibits an electronic transition, identified by an anomaly in the compression curve which is accompanied by a sample colour change. The other three monochalcogenides studied here show clear evidence of decomposition and amorphization under pressure and are, to the best of our knowledge, the first in the LnTe series to show a pressure-induced amorphization. The bulk moduli of all B1-type structure compounds are calculated using the third-order Birch-Murnaghan equation of state.

  11. PNBE-supported metallopolymer-type optical materials through grafting of Zn-Ln (Ln = Nd, Yb or Er) benzimidazole complex monomers with efficient NIR luminescence

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Li, Hongyan; Feng, Weixu; Fu, Guorui; Lü, Xingqiang; Wong, Wai-Kwok; Jones, Richard A.

    2017-02-01

    Through the ring-opening metathesis polymerization (ROMP) of norbornene (NBE) with each of obtained allyl-containing complex monomers [Zn(L)2(Py)Ln(NO3)3] (Ln = La, 1; Nd, 2; Yb, 3; Er, 4 or Gd, 5; HL = 4-allyl-2-(1H-benzo[d]imidazol-2-yl)-6-methoxyphenol; Py = pyridine), a series of metallopolymers Poly(NBE-co-[Zn(L)2Ln(Py)(NO3)3)]) were obtained, respectively. Especially for Poly(NBE-co-2) and Poly(NBE-co-3), covalently-bonded grafting endows significantly improved physical properties including efficient NIR luminescence (ΦNdL = 0.63% and ΦYbL = 1.43%) in solid state.

  12. Crystal structure of Ln1/3NbO 3 ( Ln=Nd, Pr) and phase transition in Nd 1/3NbO 3

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoming; Howard, Christopher J.; Kennedy, Brendan J.; Knight, Kevin S.; Zhou, Qingdi

    2007-06-01

    The crystal structure of the A-site deficient perovskite Ln1/3NbO 3 ( Ln=Nd, Pr) at room temperature has been determined, for the first time, as orthorhombic in space group Cmmm using high-resolution neutron powder diffraction. Pertinent features are the alternation of unoccupied layers of A-sites and layers partly occupied by Ln cations, as well as out-of-phase tilting of the NbO 6 octahedra around an axis perpendicular to the direction of the cation/vacancy ordering. The phase transition behaviour of Nd 1/3NbO 3 has also been studied in situ. This compound undergoes a continuous phase transition at around 650 °C to a tetragonal structure in space group P4/ mmm due to the disappearance of the octahedral tilting. The analysis of spontaneous strains shows that this phase transition is tricritical in nature.

  13. Local Reversion of Cold Formed AISI 301LN

    NASA Astrophysics Data System (ADS)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    This study demonstrates applying laser heat treatment for reversion treatments of cold-formed AISI 301LN. Sheets were cold- rolled to final thicknesses of 1.5 and 3 mm (65pct reduction), having martensite fraction of 70-95%. Sheets were heated locally by a laser beam to various peak temperatures to obtain different degrees of martensite reversion to austenite. Mechanical properties and formability of grain-refined and coarse-grained structures were measured by tensile, bending and Erichsen cup tests. In addition to standard Erichsen cup test, additional interrupted tests were carried out, where cups were first stretched close to the critical strain. Drawn cups were then heated locally by a laser beam to revitalize the structure and thereby enhance the formability in the following cupping test until failure. Various structures were produced: completely reverted microstructures (T > 700 °C) with grain sizes 0.9 - 2 μm in addition to partially reverted structure (T < 700 °C) containing nano- and ultrafine-grained austenite (0.6 μm) with some martensite. Results showed that local laser heat treatment is suitable for the reversion treatment to refine the austenite grain size. Refinement of the austenitic structures increased strength properties and the formability was better than with coarse grained structures having the same strength. Especially the yield strength was significantly enhanced, being around 900 MPa in the strongest reverted structure compared to the 300-400 MPa of the coarse grained austenitic structure. It was demonstrated that the local laser treatment restored formability of the drawn cups, allowing stretching to be continued.

  14. Predictable self-assembled [2×2] Ln(III)4 square grids (Ln = Dy,Tb)-SMM behaviour in a new lanthanide cluster motif.

    PubMed

    Anwar, Muhammad Usman; Thompson, Laurence Kenneth; Dawe, Louise Nicole; Habib, Fatemah; Murugesu, Muralee

    2012-05-14

    The ditopic carbohydrazone ligand (L1) produces the square, self-assembled [2×2] grids [Dy(4)(L1)(4)(OH)(4)]Cl(2) (1) and [Ln(4)(L1)(4)(μ(4)-O)(μ(2)-1,1-N(3))(4)] (Ln = Dy (2), Tb (3)), with 2 exhibiting SMM behaviour. Two relaxation processes occur with U(eff) = 51 K, 91 K in the absence of an external field, and one with U(eff) = 270 K in the presence of a 1600 Oe optimum field.

  15. Hydrothermal synthesis and luminescent properties of SrF2 and SrF2:Ln3+ (Ln = Eu, Ce, Tb) nano-assembly with controllable morphology.

    PubMed

    Sun, Yuanping; Jia, Peiyun

    2014-05-01

    SrF2 and SrF2:Ln3+ (Ln = Eu, Ce, Tb) nano-assemblies with controllable size and morphology have been successfully prepared via a facile hydrothermal process. X-ray diffraction, scanning electron microscopy, and photoluminescence spectrum were used to characterize the samples. The experimental results indicate that chelating reagent and acidity play important roles in the formation of micro-crystals with uniform size and peculiar morphology. As-obtained SrF2:Eu3+ and SrF2:Ce3+, SrF2:Tb3+ samples show red, ultraviolet and green emission under the irradiation of ultraviolet.

  16. Synthesis, structural characterization and magnetic behaviour of a family of [CoLn] butterfly compounds.

    PubMed

    Funes, Alejandro V; Carrella, Luca; Rechkemmer, Yvonne; van Slageren, Joris; Rentschler, Eva; Alborés, Pablo

    2017-03-07

    We have successfully prepared and structurally characterized a family of butterfly-like [CoLn] complexes where all magnetic properties are due to the Ln(iii) ions. The complexes with Ln = Tb(1), Dy(2), Ho(3), Er(4) and Yb(5) are iso-structural. An exception is the complex with Ln = Gd(6) which strings in a one dimensional chain. The structural similarity together with the high tendency of the crystallites to align under an applied magnetic field allowed an overall DC magnetic data treatment to extract phenomenological crystal field parameters and hence to determine the ground state multiplet energy level splitting. The Dy(iii) member is the only one showing slow relaxation of magnetization under zero DC applied field, while all the others need a small DC applied field.

  17. Syntheses, crystal structures and optical spectroscopy of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O

    SciTech Connect

    Kazmierczak, Karolina; Hoeppe, Henning A.

    2011-05-15

    The lanthanide sulphate octahydrates Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and the respective tetrahydrate Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, a{sub Ho}=13.4421(4) A, b{sub Ho}=6.6745(2) A, c{sub Ho}=18.1642(5) A, {beta}{sub Ho}=102.006(1) A{sup 3} and a{sub Tm}=13.4118(14) A, b{sub Tm}=6.6402(6) A, c{sub Tm}=18.1040(16) A, {beta}{sub Tm}=101.980(8) A{sup 3}), Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O adopts space group P2{sub 1}/n (a=13.051(3) A, b=7.2047(14) A, c=13.316(3) A, {beta}=92.55(3) A{sup 3}). The vibrational and optical spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O are also reported. -- Graphical abstract: In the lanthanide sulphate octahydrates the cations form slightly undulated layers. Between the layers are voids in which sulphate tetrahedra and water molecules are located. The holmium compound exhibits an Alexandrite effect. Display Omitted Highlights: {yields} Determination of the optimum conditions for the growth of single-crystals of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O. {yields} Single-crystal structure elucidation of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) including hydrogen bonds. {yields} Single-crystal structure determination of Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O including hydrogen bonds. {yields} UV-vis spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted: Assignation of bands and clarification of the Alexandrite effect of the Ho compound. {yields} IR and Raman spectra of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted.

  18. Magnetic interactions in rhenium-containing rare earth double perovskites Sr2LnReO6 (Ln=rare earths)

    NASA Astrophysics Data System (ADS)

    Nishiyama, Atsuhide; Doi, Yoshihiro; Hinatsu, Yukio

    2017-04-01

    The perovskite-type compounds containing both rare earth and rhenium Sr2LnReO6 (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln3+ and Re5+ ions are structurally ordered at the B site of the perovskite SrBO3. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6-20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re5+ ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr2YReO6 and Sr2LuReO6 indicate that the antiferromagnetic interactions between Re5+ ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr2YbReO6 shows that both the Yb3+ and Re5+ ions magnetically order at 20 K. For the case of Sr2DyReO6, magnetic ordering of the Re5+ moments occurs at 93 K, and with decreasing temperature, the moments of Dy3+ ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat.

  19. Infrared and Raman spectra of tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu)

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Sliznev, Valery V.; Christen, Dines

    2017-03-01

    The infrared and Raman vibrational spectra of the series of solid tris(dipivaloylmethanato) lanthanides, Ln(thd)3 (Ln = La, Nd, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu), have been recorded at room temperature over wide ranges (4000-50 cm-1 and 3500-80 cm-1, respectively). The experimental spectra obtained in the present study were successfully assigned based on the quantum chemical calculations (DFT/PBE0) performed for the monomer Ln(thd)3 molecules. The experimental vibrational spectra for all complexes studied are rather similar as are the theoretical simulations. The data analysis shows that the main contributions to vibrational modes arise from the vibrations of the ligand possessing practically the same geometry for all complexes. According to the calculation results the structure of the coordination polyhedron is increasingly distorted in the series from La(thd)3 to Lu(thd)3. Although the contributions of the polyhedron vibrations in vibrational modes are not predominant, there is rise in the frequencies associated with vibrations of the coordination polyhedron LnO6 in this series. This increase has been explained by the concept of lanthanide contraction.

  20. Fluorescent naphthalene diols as bridging ligands in Ln(III) cluster chemistry: synthetic, structural, magnetic, and photophysical characterization of Ln(III)8 "Christmas stars".

    PubMed

    Alexandropoulos, Dimitris I; Fournet, Adeline; Cunha-Silva, Luís; Mowson, Andrew M; Bekiari, Vlasoula; Christou, George; Stamatatos, Theocharis C

    2014-06-02

    The initial employment of the fluorescent bridging ligand naphthalene-2,3-diol in 4f-metal coordination chemistry has provided access to a new family of Ln(III)8 clusters with a "Christmas-star" topology, single-molecule magnetism behavior, and ligand-centered emissions.

  1. Explanation for the variance of the Ce 3+ emission energy in LnI 3 [Ln = Lu 3+, Y 3+, Gd 3+

    NASA Astrophysics Data System (ADS)

    Srivastava, A. M.; Camardello, S. J.; Comanzo, H. A.; Aycibin, M.; Happek, U.

    2010-07-01

    The experimental result that the energy of the emitted photon increases with decreasing ionic radii of the host lattice is a remarkable feature of the Ce 3+ luminescence in the isostructural LnI 3 [Ln 3+ = Lu 3+, Y 3+, Gd 3+] family of materials. To understand this variation, the optical properties of YI 3:Ce 3+ is measured and compared with those reported for Ce 3+ activated LuI 3 and GdI 3. The results indicate that the crystal field splitting and the centroid shift of the Ce 3+ 5d 1 electronic configuration in these iodides are of the same order of magnitude. The lowest energy Ce 3+ 4f 1 → 5d 1 excitation transition in LnI 3 [Ln 3+ = Lu 3+, Y 3+, Gd 3+] is practically uninfluenced by the ionic radii of the host lattice cation, which the Ce 3+ ion substitutionally replaces. The increase in energy of the emitted photon with decreasing ionic radii of the host lattice is a result of the increasing Stokes shift of the Ce 3+ emission in the sequence LuI 3-YI 3-GdI 3. The quenching temperature of the Ce 3+ emission in YI 3 is high.

  2. Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln2 (Ln = Dy and Gd) Complexes.

    PubMed

    Mukherjee, Soumya; Lu, Jingjing; Velmurugan, Gunasekaran; Singh, Shweta; Rajaraman, Gopalan; Tang, Jinkui; Ghosh, Sujit K

    2016-11-07

    A coordination complex family comprising of six new dinuclear symmetric lanthanide complexes, namely, [Ln2(Lx)2(L')2(CH3OH)2]·yG (H2Lx: three related yet distinct Schiff-base linkers; x = 1-3, according to the nomenclature of the Schiff-base linker employed herein. HL': 2,6-dimethoxyphenol. yG refers to crystallographically assigned guest solvent species in the respective complexes; y = number of solvent molecules; Ln(III) = Dy/Gd) were isolated employing a mixed-ligand strategy stemming out of a strategic variation of the functionalities introduced among the constituent Schiff-base linkers. The purposeful introduction of three diverse auxiliary groups with delicate differences in their electrostatic natures affects the local anisotropy and magnetic coupling of Ln(III) ion-environment in the ensuing Ln2 dinuclear complexes, consequentially resulting into distinctly dynamical magnetic behaviors among the investigated new-fangled family of isotypic Ln2 complexes. Among the entire family, subtle alterations in the chemical moieties render two of the Dy2 analogues to behave as single molecule magnets, while the other Dy2 congener merely exhibits slow relaxation of the magnetization. The current observation marks one of the rare paradigms, wherein magnetic behavior modulation was achieved by virtue of the omnipresent influence of subtly tuned linker functionalities among the constituent motifs of the lanthanide nanomagnets. To rationalize the observed difference in the magnetic coupling, density functional theory and ab initio calculations (CASSCF/RASSI-SO/POLY_ANISO) were performed on all six complexes. Subtle difference in the bond angles leads to difference in the J values observed for Gd2 complexes, while difference in the tunnel splitting associated with the structural alterations lead to variation in the magnetization blockade in the Dy2 complexes.

  3. Characterization and luminescence properties of sol–gel derived M′-type LuTaO{sub 4}:Ln{sup 3+} (Ln = Pr, Sm, Dy) phosphors

    SciTech Connect

    Wu, Mengqiu; Liu, Xiaolin Gu, Mu; Ni, Chen; Liu, Bo; Huang, Shiming

    2014-12-15

    Graphical abstract: Emission spectra of LuTaO{sub 4}:Ln (Ln = Pr, Sm and Dy) phosphors under X-ray excitation. The insets illustrate their SEM micrographs. - Highlights: • M′-type LuTaO{sub 4}:Ln{sup 3+} (Ln = Pr, Sm, Dy) phosphors were synthesized by sol–gel technique. • The phosphors exhibited an efficient energy transfer from the host to activators. • High intensity of activator emission was achieved under X-ray excitation. • The phosphors are encouraging for application in high-spatial-resolution X-ray CT imaging. - Abstract: M′-type Lu{sub 1−x}Ln{sub x}TaO{sub 4} (Ln = Pr, Sm, Dy) phosphors have been successfully synthesized by sol–gel technique, their crystallization, morphology, photoluminescence and X-ray excited luminescence properties were investigated in detail. The phosphors had good crystallization behavior. The optimum doping concentrations of Pr{sup 3+}, Sm{sup 3+} and Dy{sup 3+} in LuTaO{sub 4} were at x = 0.003, 0.025, 0.02, respectively. They exhibited a more efficient host excitation relative to the 4f–4f excitations of the rare-earth ions, and a dominant {sup 1}D{sub 2} → {sup 3}H{sub 4}, {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} or {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} emission for Pr{sup 3+}, Sm{sup 3+} or Dy{sup 3+}, respectively, which corresponds to the average decay time of 21.7, 745.7 or 10.0 μs, respectively. It is expected that Pr{sup 3+}- or Dy{sup 3+}-doped LuTaO{sub 4} phosphors with a microsecond level decay time are very encouraging for applications in X-ray computerized tomographic imaging with high spatial resolution.

  4. Crystal chemistry of the orthorhombic Ln{sub 2}TiO{sub 5} compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy

    SciTech Connect

    Aughterson, Robert D.; Lumpkin, Gregory R.; Thorogood, Gordon J.; Zhang, Zhaoming; Gault, Baptiste; Cairney, Julie M.

    2015-07-15

    The crystal structures of seven samples of orthorhombic (Pnma) Ln{sub 2}TiO{sub 5} compounds with Ln=La, Pr, Nd, Sm, Gd, Tb and Dy were refined by Rietveld analysis of synchrotron X-ray powder diffraction (S-XRD) data. With increasing size of the lanthanide cation, the lattice parameters increase systematically: c by only ~1.5% whereas both a and b by ~6% from Dy{sub 2}TiO{sub 5} to La{sub 2}TiO{sub 5}. The mean Ti–O bond length only increases by ~1% with increasing radius of the Ln cation from Gd to La, primarily due to expansion of the pair of Ti–O{sub 3} bonds to opposite corners of the Ti–O{sub 5} square based pyramid polyhedra. For Dy{sub 2}TiO{sub 5} and Tb{sub 2}TiO{sub 5}, a significant variation in Ti–O{sub 1} and Ti–O{sub 4} bond lengths results in an increased deformation of the Ti–O{sub 5} base. The particular configuration consists of large rhombic shaped tunnels and smaller triangular tunnels along the b axis, which have implications for defect formation and migration caused by radiation damage or the ionic conductivity. - Graphical abstract: Figure: The crystallographic study of a systematic series of compounds with nominal stoichiometry Ln{sub 2}TiO{sub 5} (with Ln representing La, Pr, Nd, Sm, Gd, Tb and Dy) and orthorhombic, Pnma, symmetry shows changes in cell parameters which fit a linear trend. However, bond lengths are shown to deviate from trend with compounds containing the smaller, heavier lanthanides. - Highlights: • First fabrication and crystallographic refinement of compound Pr{sub 2}TiO{sub 5}. • First systematic study of the crystallography, using S-XRD, for Ln{sub 2}TiO{sub 5} series. • Cation to anion bonding trends and valence states are investigated. • The densities and band-gaps of the series are experimentally determined.

  5. Multifunctionality in bimetallic Ln(III)[W(V)(CN)8]3- (Ln = Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling.

    PubMed

    Chorazy, Szymon; Nakabayashi, Koji; Arczynski, Mirosław; Pełka, Robert; Ohkoshi, Shin-ichi; Sieklucka, Barbara

    2014-06-02

    Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)-iPr-Pybox (2,6-bis[4-isopropyl-2-oxazolin-2-yl]pyridine) and (SRSR/RSRS)-Ind-Pybox (2,6-bis[8H-indeno[1,2-d]oxazolin-2-yl]pyridine), have been combined with lanthanide ions (Gd(3+), Nd(3+)) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN(-)-bridged coordination chains: {[Ln(III)(SS/RR-iPr-Pybox)(dmf)4]3[W(V)(CN)8]3}n ⋅dmf⋅4 H2O (Ln = Gd, 1-SS and 1-RR; Ln = Nd, 2-SS and 2-RR) and {[Ln(III)(SRSR/RSRS-Ind-Pybox)(dmf)4][W(V)(CN)8]}n⋅5 MeCN⋅4 MeOH (Ln = Gd, 3-SRSR and 3-RSRS; Ln = Nd, 4-SRSR and 4-RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200-450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the Gd(III)-W(V) chains show dominant ligand-based red phosphorescence, with λmax ≈660 nm for 1-(SS/RR) and 680 nm for 3-(SRSR/RSRS). The Nd(III)-W(V) chains, 2-(SS/RR) and 4-(SRSR/RSRS), exhibit near-infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra-f (4)F3/2 → (4)I9/2,11/2,13/2 transitions of the Nd(III) centers. This emission is realized through efficient ligand-to-metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [W(V)(CN)8](3-) moieties connected by cyanide bridges, 1-(SS/RR) and 3-(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between Gd(III) (SGd = 7/2) and W(V) (SW = 1/2) centers with J1-(SS) = -0.96(1) cm(-1), J1-(RR) =-0.95(1) cm(-1), J3-(SRSR) = -0.91(1) cm(-1), and J3-(RSRS) =-0.94(1) cm(-1). 2-(SS/RR) and 4-(SRSR/RSRS) display ferromagnetic coupling within their Nd(III)-NC-W(V) linkages.

  6. Fabrication of Ln-MOFs with color-tunable photoluminescence and sensing for small molecules

    NASA Astrophysics Data System (ADS)

    Wang, Shengyan; Shan, Liang; Fan, Yong; Jia, Jia; Xu, Jianing; Wang, Li

    2017-01-01

    Three isomorphic lanthanide metal-organic frameworks (Ln-MOFs) [LnL(H2O)2]·2H2O (Ln=Tb for 1, Eu for 2, Gd for 3) have been constructed from flexible organic ligand 4-(2-carboxyphenoxy)benzene-1,3-dioic acid (H3L). They exhibit two-dimensional (2D) layered structure with the rhombus windows along the b axis. This network can be described as a shubnikov plane net with Schäfli symbol of (43)2(46.66.83). Solid state luminescent studies indicate that 1 and 2 show the characteristic red, and green emissions of the corresponding Ln3+ ions, respectively, while 3 exhibits blue emission arising from the organic ligand. Then by adjusting the relative amounts of different luminescent components into the well-defined host framework, a series of new co-doped Ln-MOF, Tb1-xEuxL (4) (x refers to the molar ratios of Eu3+ and Tb3+), with tunable luminescence have been fabricated. The luminescent color of 4 can be tuned from green to red due to the energy transfer from the Tb3+ to Eu3+ ions by changing the doping concentration of the Eu3+ ions. In addition, 2 exhibits good stability in different solvents and excellent fluorescence sensing for small molecules, especially for CH3CN and nitrobenzene.

  7. Consideration of sub-cooled LN2 circulation system for HTS power machines

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

    2012-06-01

    We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

  8. Towards hybrid biocompatible magnetic rHuman serum albumin-based nanoparticles: use of ultra-small (CeLn)3/4+ cation-doped maghemite nanoparticles as functional shell

    NASA Astrophysics Data System (ADS)

    Israel, Liron L.; Kovalenko, Elena I.; Boyko, Anna A.; Sapozhnikov, Alexander M.; Rosenberger, Ina; Kreuter, Jörg; Passoni, Lorena; Lellouche, Jean-Paul

    2015-01-01

    Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeLn)3/4+-γ-Fe2O3) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeLn)3/4+-γ-Fe2O3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeLn)3/4+-γ-Fe2O3 NPs enabled to exploit both rHSA (protein functionalities) and (CeLn)3/4+-γ-Fe2O3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H2O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes.

  9. Two nanosized 3d-4f clusters featuring four Ln6 octahedra encapsulating a Zn4 tetrahedron.

    PubMed

    Zheng, Xiu-Ying; Wang, Shi-Qiang; Tang, Wen; Zhuang, Gui-Lin; Kong, Xiang-Jian; Ren, Yan-Ping; Long, La-Sheng; Zheng, Lan-Sun

    2015-07-07

    Two high-nuclearity 3d-4f clusters Ln24Zn4 (Ln = Gd and Sm) featuring four Ln6 octahedra encapsulating a Zn4 tetrahedron were obtained through the self-assembly of Zn(OAc)2 and Ln(ClO4)3. Quantum Monte Carlo (QMC) simulations show the antiferromagnetic coupling between Gd(3+) ions. Studies of the magnetocaloric effect (MCE) show that the Gd24Zn4 cluster exhibits the entropy change (-ΔSm) of 31.4 J kg(-1) K(-1).

  10. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.

    PubMed

    He, Enjie; Zheng, Hairong; Dong, Jun; Gao, Wei; Han, Qingyan; Li, Junna; Hui, Le; Lu, Ying; Tian, Huani

    2014-01-31

    A novel hybrid nanostructure, that is a Ag nanoparticle decorated LaF(3):Yb(3+)/Ln(3+)@SiO(2) nanosphere (Ln=Er, Tm), was constructed by a facile strategy, and characterized by XRD, TEM, FTIR, XPS and UV-vis-NIR absorption. Obvious spectral broadening and red-shift on the surface plasmon resonance were obtained by adjusting the size and configuration of Ag nanoparticles. Effective upconversion luminescence enhancements for Er(3+) and Tm(3+) containing samples were obtained. It is suggested that the luminescence enhancement results from both the excitation and emission processes, and the configuration of the studied hybrid nanostructure is an efficient system to enhance the luminescence emission of rare earth doped nanomaterials. It is believed that the enhancement from the hybrid nanostructure will find great potential in the development of photovoltaic solar cells.

  11. Synthesis and luminescent properties of spindle-like YVO4:Ln3+ (Ln=Eu, Dy) self-assembled of nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Lihui; You, Hongpeng; Yang, Mei

    2012-02-01

    Large-scale spindle-like YVO4 particles with an euatorial diameter of 100-150 nm and a length of 300-350 nm were synthesized by utilizing the Y(OH)CO3 colloid spheres as the precursor and NH4VO3 as the vanadium source through a simple solution-based hydrothermal process, for the first time. In the first stage of the reaction, hierarchical flower-like YVO4 spheres were formed. Then, petals of spindle-like YVO4 particles were obtained via a following self-abscission process from these flower spheres. The possible formation mechanism has been discussed in detail. Moreover, the photoluminescent properties of spindle-like YVO4:Ln3+ (Ln=Eu, Dy) nanoparticles were investigated. They might have potential application in advanced flat panel display, minioptoelectronic devices, and biological labeling.

  12. Temperature-dependent electrical, elastic and magnetic properties of sol-gel synthesized Bi0.9Ln0.1FeO3 (Ln = Nd, Sm)

    NASA Astrophysics Data System (ADS)

    Schiemer, J.; Withers, R. L.; Carpenter, M. A.; Liu, Y.; Wang, J. L.; Norén, L.; Li, Q.; Hutchison, W.

    2012-03-01

    This report details correlated electrical, mechanical and magnetic behaviour in BiFeO3 ceramics doped with 10% Ln (Ln = Sm, Nd) ions on the Bi, or perovskite A, site and synthesized by a sol-gel method. The ceramics exhibit bulk piezoelectric and ferroelectric properties and clear ferroelectric domain patterns through piezoresponse force microscopy. Resonant ultrasound spectroscopy, dielectric spectroscopy and magnetometry studies show correlated magnetoelectromechanical behaviour and the existence of weak ferromagnetism for both compositions. An anomaly with simultaneous mechanical and magnetic signatures is discovered in both materials near room temperature, while previously reported transitions and anomalies are found to exhibit electro- and/or magnetomechanical coupling. Magnetism is significantly enhanced in the Sm doped sample, which is a promising multiferroic material.

  13. Investigation of the structural properties of an extended series of lanthanide bis-hydroxychlorides Ln(OH)(2)Cl (Ln = Nd-Lu, except Pm and Sm).

    PubMed

    Zehnder, Ralph A; Clark, David L; Scott, Brian L; Donohoe, Robert J; Palmer, Phillip D; Runde, Wolfgang H; Hobart, David E

    2010-06-07

    The trivalent lanthanide bis-hydroxychloride compounds, Ln(OH)(2)Cl, (Ln = Nd through Lu, with the exception of Pm and Sm) have been prepared by hydrothermal synthesis starting with LnCl(3).nH(2)O. These compounds were synthesized at temperatures not exceeding the melting point of the Teflon liners in the Parr autoclaves ( approximately 220 degrees C). The compounds obtained were characterized by single crystal X-ray diffraction analysis, diffuse reflectance, FT-IR, and FT-Raman spectroscopies. Most of the lanthanide(III) bis-hydroxychlorides are isostructural and generally crystallize in the monoclinic space group P2(1)/m. The bis-hydroxychlorides of the heavier lanthanide(III) atoms with smaller ionic radii also crystallize in the orthorhombic crystal system. Apparently hydrogen bonds between the OH groups and the Cl atoms connect the layers in the "c" direction. These H-bonds seem to be the driving force for the angle beta of the monoclinic complexes to decrease with decreasing ionic radius of the Ln(III) ion and also for tying the layers together more strongly. As a result of this behavior, the structure of the heavier 4f analogues significantly resembles that of their orthorhombic counterparts. The heavier lanthanide bis-hydroxychlorides preferentially crystallize in the orthorhombic modification. The IR absorbance and Raman frequencies of the hydroxide ligands correlate as a function of the central lanthanide(III) ionic radius. This observation is corroborated by X-ray diffraction (XRD) structural data. These compounds are quite insoluble in near-neutral and basic aqueous solutions, but soluble in acidic solutions. It is expected that the analogue actinide bis-hydroxychlorides exhibit similar behavior and that this may have important implications in the immobilization and safe disposal of nuclear waste.

  14. The size confinement effect for Ln3+ (Ln = Tm or Eu) concentration quenching and energy transfer in Y2O3 nanocrystals.

    PubMed

    Wang, Changwen; Meng, Qingyu

    2014-05-01

    Y2O3:Ln (Ln = Tm or Eu) nano-powders with different particle sizes and various doping concentrations were prepared by using a combustion method. The bulk powders doped with the same concentrations were obtained by annealing the nano-powders at high temperatures. Emission spectra of the phosphors were measured. The crystal structure and morphology of the phosphors were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy), respectively. The concentration quenching of luminescent centers and energy transfer between luminescent centers in Y2O3:Ln nanocrystal powders were investigated. It is found that the behavior of luminescent concentration quenching for Eu3+ 5D0 --> 7F2 in nano-powders is similar to that in bulk powders. On the contrary, the quenching concentration for Tm3+ 1D2 --> 3H4 is distinctly higher than that in bulk powders. This owes to the size confinement effect which will restrain the electric dipole-dipole interaction as a long-rang interaction (e.g., energy transfer between Tm3+ ions), and will hardly affect the exchange interaction which is a short-rang interaction (e.g., energy transfer between Eu3+ ions).

  15. Multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics.

    PubMed

    Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin

    2014-10-29

    Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La(3+), Mg(2+) and Al(3+) ions with large ionic radius Ba(2+), Zn(2+) and Ti(4+), respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings.

  16. Monodisperse lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm): morphology controlled synthesis, up-conversion luminescence and in vitro cell imaging.

    PubMed

    Zhang, Yang; Li, Xuejiao; Hou, Zhiyao; Lin, Jun

    2014-06-21

    Lanthanide oxyfluorides LnOF (Ln = Y, La, Pr-Tm) nano/micro-materials with a variety of well-defined morphologies including nanorods, nanospindles, nanorod-bundles and nanospheres, have been successfully synthesized via a facile precipitation technique followed by a heating treatment. It is found that the pH values, fluoride sources and dosage of urea in the initial reaction systems play critical roles in the morphology determination of the LnOF products and the possible formation mechanism for these diverse architectures has been presented. XRD, FT-IR, TG-DTA, SEM, TEM, as well as up-conversion (UC) luminescence spectra are used to characterize the synthesized samples. Under 980 nm NIR laser excitation, red, green and blue UC luminescence are observed from Yb(3+)/Er(3+), Yb(3+)/Ho(3+) and Yb(3+)/Tm(3+) co-doped YOF nanospheres. The MTT assay indicates that YOF nanospheres exhibit good biocompatibility. Especially, the emission spectrum of YOF: 0.20Yb(3+), 0.04Er(3+) nanospheres is dominated by a single red emission at 660 nm, which falls into the "optical window" of biological tissues. The application of YOF: 0.20Yb(3+), 0.04Er(3+) nanospheres in the cell imaging is also investigated, which shows a bright-red emission without background noise.

  17. Controllable synthesis and up-conversion properties of tetragonal BaYF5:Yb/Ln (Ln=Er, Tm, and Ho) nanocrystals.

    PubMed

    Niu, Na; Yang, Piaoping; Liu, Yanchao; Li, Chunxia; Wang, Dong; Gai, Shili; He, Fei

    2011-10-15

    The nanocrystals (NCs) of tetragonal barium yttrium fluoride (BaYF(5)) doped 1 mol% Ln(3+) (Ln=Er, Tm, Ho) and 20 mol% Yb(3+) with different morphologies and sizes have been successfully synthesized through a facile hydrothermal method. The influences of pH values of the initial solution and fluorine sources on the final structure and morphology of the products have been well investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure and morphology of these samples prepared at different conditions. And it is found that BaYF(5):Yb/Ln NCs prepared at pH value of 10 using NaBF(4) as F(-) source have a uniform spherical morphology with average diameter of 25 nm. Additionally, the up-conversion (UC) properties of Yb/Er, Yb/Tm, and Yb/Ho doped BaYF(5) nanoparticles were also discussed. Under 980 nm laser excitation, the BaYF(5):Yb/Er, BaYF(5):Yb/Tm, and BaYF(5):Yb/Ho NCs exhibit green, whitish blue, and yellow green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.

  18. Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics

    PubMed Central

    Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin

    2014-01-01

    Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings. PMID:25351166

  19. Self-assembled Ln(III)4 (Ln = Eu, Gd, Dy, Ho, Yb) [2 × 2] square grids: a new class of lanthanide cluster.

    PubMed

    Randell, Nicholas M; Anwar, Muhammad U; Drover, Marcus W; Dawe, Louise N; Thompson, Laurence K

    2013-06-03

    Self-assembly of the Ln(III) ions (Ln = Eu, Gd, Dy, Ho, Yb) into square [2 × 2] grid-like arrays has been readily effected using simple, symmetric ditopic ligands based on a carbohydrazone core. The metal ions are connected via single atom bridges (e.g., μ2-O(hydrazone), μ2-OH, μ2-OMe, μ2-1,1-N3(-), μ4-O), depending on reaction conditions. The Gd(III)4 examples exhibit intramolecular antiferromagnetic exchange (-J < 0.11 cm(-1)), and in one Dy(III)4 example, with a combination of μ2-1,1-N3(-), and μ4-O bridges linking adjacent metal ions, SMM behavior is observed. One thermally driven relaxation process is observed in the temperature range 10-25 K (τ0 = 6.5(1) × 10(-7) s, U(eff) = 110(1) K) in the presence of an 1800 Oe external field, employed to suppress a second quantum based relaxation process. The extended group of Ln(III) ions which submit to this controlled self-assembly, typical of the transition metal ions, indicates the general applicability of this approach to the lanthanides. This occurs despite the anticipated limitations based on larger ionic radii and coordination numbers, and is an encouraging sign for extension to larger grids with appropriately chosen polytopic ligands.

  20. Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin

    2014-10-01

    Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings.

  1. Structures and crystal chemistry of the double perovskites Ba{sub 2}LnB'O{sub 6} (Ln=lanthanide and B'=Nb, Ta):

    SciTech Connect

    Saines, Paul J.; Spencer, Jarrah R.; Kennedy, Brendan J. Kubota, Yoshiki; Minakata, Chiharu; Hano, Hiroko; Kato, Kenichi; Takata, Masaki

    2007-11-15

    The structures of eight members of the series of double perovskites of the type Ba{sub 2}LnB'O{sub 6} (Ln=La{sup 3+}-Sm{sup 3+} and Y{sup 3+} and B'=Nb{sup 5+} and Ta{sup 5+}) were examined both above and below room temperature using synchrotron X-ray powder diffraction. The La{sup 3+} and Pr{sup 3+} containing compounds had an intermediate rhombohedral phase whereas the other tantalates and niobates studied have a tetragonal intermediate. This difference in symmetry appears to be a consequence of the larger size of the La{sup 3+} and Pr{sup 3+} cations compared to the other lanthanides. The temperature range over which the intermediate symmetry is stable is reduced in those compounds near the point where the preferred intermediate symmetry changes from tetragonal to rhombohedral. In such compounds the transition to the cubic phase involves higher order terms in the Landau expression. This suggests that in this region the stability of the two intermediate phases is similar. - Graphical abstract: Variable temperature structural studies of Ba{sub 2}LaTaO{sub 6} show the presence of a unexpected rhombohedral phase. Other Ba{sub 2}LnB'O{sub 6} (B'=Nb, Ta) have a tetragonal intermediate phase.

  2. Infrared detector Dewars - Increased LN2 hold time and vacuum jacket life spans

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyd, W. J.; Blass, W. E.

    1976-01-01

    IR detector Dewars commonly suffer from shorter than desired LN2 hold times and insulation jacket vacuum corruption over relatively short time periods. In an attempt to solve this problem for a 9144 detector Dewar, small 1 liter/s appendage ion pumps were selected for continuous pumping of the vacuum jackets. This procedure extended LN2 hold times from 20 to 60 h and virtually eliminated vacuum jacket corruption. Thus the detector systems are usable continuously over periods of 6 months or more.

  3. The extended chain compounds Ln {sub 12}(C{sub 2}){sub 3}I{sub 17} (Ln=Pr, Nd, Gd, Dy): Synthesis, structure and physical properties

    SciTech Connect

    Ryazanov, Mikhail; Mattausch, Hansjuergen; Simon, Arndt

    2007-04-15

    The title compounds are obtained in high yield from stoichiometric mixtures of Ln, LnI{sub 3} and graphite, heated at 900-950 deg. C in welded Ta containers. The crystal structures of new Pr and Nd phases determined by single-crystal X-ray diffraction are related to those of other Ln {sub 12}(C{sub 2}){sub 3}I{sub 17}-type compounds (C 2/c, a=19.610(1) and 19.574(4) A, b=12.406(2) and 12.393(3) A, c=19.062(5) and 19.003(5) A, {beta}=90.45(3){sup o} and 90.41(3){sup o}, for Pr{sub 12}(C{sub 2}){sub 3}I{sub 17} and Nd{sub 12}(C{sub 2}){sub 3}I{sub 17}, respectively). All compounds contain infinite zigzag chains of C{sub 2}-centered metal atom octahedra condensed by edge-sharing into the [tcc] {sub {infinity}} sequence (c=cis, t=trans) and surrounded by edge-bridging iodine atoms as well as by apical iodine atoms that bridge between chains. The polycrystalline Gd{sub 12}(C{sub 2}){sub 3}I{sub 17} sample exhibits semiconducting thermal behavior which is consistent with an ionic formulation (Ln {sup 3+}){sub 12}(C{sub 2} {sup 6-}){sub 3}(I{sup -}){sub 17}(e{sup -}) under the assumption that one extra electron is localized in metal-metal bonding. The magnetization measurements on Nd{sub 12}(C{sub 2}){sub 3}I{sub 17}, Gd{sub 12}(C{sub 2}){sub 3}I{sub 17} and Dy{sub 12}(C{sub 2}){sub 3}I{sub 17} indicate the coexistence of competing magnetic interactions leading to spin freezing at T {sub f}=5 K for the Gd phase. The Nd and Dy compounds order antiferromagnetically at T {sub N}=25 and 29 K, respectively. For Dy{sub 12}(C{sub 2}){sub 3}I{sub 17}, a metamagnetic transition is observed at a critical magnetic field H{approx}25 kOe. - Graphical abstract: Zigzag chains of edge-sharing metal atom octahedra in Ln {sub 12}(C{sub 2}){sub 3}I{sub 17}.

  4. Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {Co(III)2Ln(III)2} (Ln = Dy, Tb, Ho) "Butterfly" Complexes.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan

    2017-03-06

    The synthesis and magnetic and theoretical studies of three isostructural heterometallic [Co(III)2Ln(III)2(μ3-OH)2(o-tol)4(mdea)2(NO3)2] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea)(2-) = doubly deprotonated N-methyldiethanolamine). The Co(III) ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two Ln(III) ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier Ueff of 81.2 cm(-1), while complexes 2 and 3 exhibit field induced SMM behavior, with a Ueff value of 34.2 cm(-1) for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the Ln(III)-Ln(III) magnetic coupling and to develop an understanding of the role the diamagnetic Co(III) ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the Co(III) ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic Co(III) ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {Dy(III)2} complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {K(I)2Dy(III)2} (1b), {Zn(II)2Dy(III)2} (1c), and {Ti(IV)2Dy(III)2} (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics

  5. Crystal structure and properties of complexes [Ln(Gly)4Im·(ClO4)4]n (Ln:Nd, Sm) constructed from eight-coordination containing square antiprism

    NASA Astrophysics Data System (ADS)

    Pan, Lu; Gao, Xiao-han; Lv, Xue-chuan; Tan, Zhi-cheng; Cao, Hui

    2016-08-01

    Two eight-coordination containing square antiprism polyhedra, [Ln(Gly)4Im·(ClO4)4]n (Ln:Nd, Sm) were synthesized through the self-assembly of Ln3+ (Ln:Nd, Sm) ions, glycine and imidazole in aqueous solution and characterized by X-ray single crystal diffraction. Both of the complexes crystallized in the C2/c space group. In the cluster, each Ln3+ ions was eight-coordination by eight oxygen atoms of the glycine. The coordination sphere of each Ln3+ ions could be described as a distorted square antiprism. Two central Ln3+ ions were connected by four bridging carboxyl groups from four glycine molecules. The Ln-O bond distances were related to the coordination geometries of the ligands. The complexes had two special solid-solid phase transitions at 224 K and 248 K, which were interpreted as a freezing-in phenomenon of the reorientational motion of perchlorate ions ClO4- and the orientational order/disorder process of ClO4- ions. The decomposition mechanism of the complexes was deduced to be three stages from 300 to 700 K. The fluorescent excitation and emission spectra showed that the complexes had strong fluorescent property.

  6. Phase relations and crystal structures in the systems (Bi,Ln){sub 2}WO{sub 6} and (Bi,Ln){sub 2}MoO{sub 6} (Ln=lanthanide)

    SciTech Connect

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip . E-mail: pl@st-and.ac.uk

    2006-11-15

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln){sub 2}WO{sub 6} and (Bi,Ln){sub 2}MoO{sub 6} (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi{sub 1.8}La{sub 0.2}WO{sub 6} (L-Bi{sub 2}WO{sub 6} type) and BiLaWO{sub 6}, BiNdWO{sub 6}, Bi{sub 0.7}Yb{sub 1.3}WO{sub 6} and Bi{sub 0.7}Yb{sub 1.3}WO{sub 6} (all H-Bi{sub 2}WO{sub 6} type). Phase evolution within the solid solution Bi{sub 2-} {sub x} La {sub x} MoO{sub 6} has been re-examined, and a crossover from {gamma}(H)-Bi{sub 2}MoO{sub 6} type to {gamma}-R{sub 2}MoO{sub 6} type is observed at x{approx}1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO{sub 6} has confirmed the {alpha}-R{sub 2}MoO{sub 6} type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases.

  7. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    SciTech Connect

    Zhao Jing; Liang Jingjing; Pan Yingli; Zhang Yong; Jia Dingxian

    2011-06-15

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en){sub 2}(dien)({eta}{sup 2}-SbSe{sub 4})] (Ln=Ce(1a), Nd(1b)), [Ln(en){sub 2}(dien)(SbSe{sub 4})] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)({mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4})]{sub {infinity}} (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)({eta}{sup 2}-SbSe{sub 4})] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe{sub 4}]{sup 3-} acts as a monodentate ligand mono-SbSe{sub 4}, a bidentate chelating ligand {eta}{sup 2}-SbSe{sub 4} or a tridentate bridging ligand {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} to the lanthanide(III) center depending on the Ln{sup 3+} ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E{sub g} between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: > Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. > The [SbSe{sub 4}]{sup 3-} anion acts as a mono-SbSe{sub 4}, a {eta}{sup 2}-SbSe{sub 4} or a {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} ligand to the Ln{sup 3+} ions. > The soft base ligand [SbSe{sub 4}]{sup 3-} can be controlled to coordinate to the Ln{sup 3+} ions with en+dien and en+trien as co-ligands.

  8. Anion dependent self-assembly of 56-metal Cd-Ln nanoclusters with enhanced near-infrared luminescence properties

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Schipper, Desmond; Zhang, Lijie; Yang, Keqin; Huang, Shaoming; Jiang, Jijun; Su, Chengyong; Jones, Richard A.

    2014-08-01

    Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined.Two series of Cd-Ln clusters: nano-drum [Ln8Cd24L12(OAc)48] and nano-double-drum [Ln12Cd44L20Cl30(OAc)54] (Ln = Nd and Yb) were prepared using a flexible Schiff base ligand bearing two aryl-Br groups. Chloride (Cl-) ions, together with the interactions of Br with other electronegative atoms, play a key role in the formation of the nano-double-drums. The structures were studied by TEM and photophysical properties were determined. Electronic supplementary information (ESI) available: Full experimental and characterization details for 1-4. CCDC 972369-972372. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr03075c

  9. Modeling and control of a LN2-GN2 operated closed circuit cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Thibodeaux, J. J.

    1979-01-01

    An explicit but simple lumped parameter nonlinear multivariable model of a LN2-GN2-operated closed circuit cryogenic wind tunnel has been developed and its basic features have been experimentally validated. The model describes the mass-energy interaction involved in the cryogenic tunnel process and includes the real gas properties of nitrogen gas.

  10. Ball Indentation Studies on the Effect of Nitrogen on the Tensile Properties of 316LN SS

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2015-12-01

    Type 316L(N) stainless steel (SS) containing 0.02-0.03 wt% carbon and 0.06-0.08 wt% nitrogen is used as the major structural material for the components of fast reactors. Research is underway to improve the high-temperature mechanical properties of 316LN SS by increasing the nitrogen content in the steel above the level of 0.08 wt%. In this investigation, ball indentation (BI) technique was used to evaluate the effect of nitrogen content on the tensile properties of 316LN SS. BI tests were conducted on four different heats of 316LN SS containing 0.07, 0.11, 0.14 and 0.22 wt% nitrogen in the temperature range 300-923 K. The tensile properties such as yield strength and ultimate tensile strength increased with increase in nitrogen content at all the investigated temperatures. These results were consistent with the corresponding uniaxial tensile test results. These studies showed that BI technique can be used to optimize the chemical composition during alloy development by evaluating tensile properties with minimum volume of material.

  11. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean.

    PubMed

    Jeong, Namhee; Suh, Su Jeoung; Kim, Min-Hee; Lee, Seukki; Moon, Jung-Kyung; Kim, Hong Sig; Jeong, Soon-Chun

    2012-12-01

    Narrow leaflet soybean (Glycine max) varieties tend to have more seeds per pod than broad leaflet varieties. Narrow leaflet in soybean is conferred by a single recessive gene, ln. Here, we show that the transition from broad (Ln) to narrow leaflet (ln) is associated with an amino acid substitution in the EAR motif encoded by a gene (designated Gm-JAGGED1) homologous to Arabidopsis JAGGED (JAG) that regulates lateral organ development and the variant exerts a pleiotropic effect on fruit patterning. The genomic region that regulates both the traits was mapped to a 12.6-kb region containing only one gene, Gm-JAG1. Introducing the Gm-JAG1 allele into a loss-of-function Arabidopsis jagged mutant partially restored the wild-type JAG phenotypes, including leaf shape, flower opening, and fruit shape, but the Gm-jag1 (ln) and EAR-deleted Gm-JAG1 alleles in the jagged mutant did not result in an apparent phenotypic change. These observations indicate that despite some degree of functional change of Gm-JAG1 due to the divergence from Arabidopsis JAG, Gm-JAG1 complemented the functions of JAG in Arabidopsis thaliana. However, the Gm-JAG1 homoeolog, Gm-JAG2, appears to be sub- or neofunctionalized, as revealed by the differential expression of the two genes in multiple plant tissues, a complementation test, and an allelic analysis at both loci.

  12. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles.

  13. Aqueous Synthesis and Structural Comparison of Rare Earth Niobates and Tantalates: (La,K,[vacancy])[subscript 2]Nb[subscript 2]O[subscript 7-x](OH)[subscript 2] and Ln2Ta2O7(OH)2 ([vacancy] = vacancy; Ln = La-Sm)

    SciTech Connect

    Nyman, May; Rodriguez, Mark A.; Alam, Todd M.; Anderson, Travis M.; Ambrosini, Andrea

    2009-06-30

    Rare-earth niobates and tantalates are functional materials that are exploited as photocatalysts, host lattices for phosphors, and ion conductors. These phases are extremely challenging to synthesize by methods other than solid-state processing, which limits expansion of this useful class of materials. Hydrothermal processing in particular is hampered by the incompatibility of base-soluble tantalate or niobate with acid-soluble rare-earth oxides. Furthermore, an added challenge with tantalates is they are especially inert and insoluble. We present here a general hydrothermal process that has produced a range of rare-earth niobate/tantalate materials; including new phases, (La,K,{sub {open_square}}){sub 2}Nb{sub 2}O{sub 7-x}(OH){sub 2} (1) and Ln{sub 2}Ta{sub 2}O{sub 7}(OH){sub 2} (2) ({open_square} = vacancy, Ln = La-Sm -- excluding radioactive promethium). The structures of 1 and the La-analogue of 2 were determined from powder X-ray diffraction data collected at the APS 11-BM line and corroborated by compositional analyses, infrared spectroscopy, {sup 139}La and {sup 1}H MAS NMR, and thermogravimetric analyses. The synthesis and characterization studies reveal that the tantalate (2) is compositionally pure with no vacancies or dopants, while the niobate (1) formed under identical conditions has both vacancies and potassium dopants. We attribute these features to the greater flexibility of Nb{sup 5+} in oxide lattices to accommodate distorted and lower coordination geometries, whereas Ta{sup 5+} is found predominantly in octahedral environments. Other differences in aqueous niobate and tantalate chemistry are noted by the different phases that form as a function of the Ln{sup 3+} radius.

  14. Ln{sub 2}Sr{sub 2}PtO{sub 7+{delta}} (Ln=La, Pr, and Nd): Three new Pt-containing [A{sub 2}{sup '}O{sub 1+{delta}}] [A{sub n}B{sub n-1}O{sub 3n}]-type hexagonal perovskites

    SciTech Connect

    Ebbinghaus, Stefan G. Erztoument, Chasanoglou; Marozau, Ivan

    2007-12-15

    Polycrystalline samples of Ln{sub 2}Sr{sub 2}PtO{sub 7+{delta}} (Ln=La, Pr, Nd) were prepared by conventional solid state synthesis. The three compounds are new examples for n=2 members of the [A{sub 2}{sup '}O{sub 1+{delta}}][A{sub n}B{sub n-1}O{sub 3n}] family of hexagonal perovskites containing platinum as the B-type cation. XRD Rietveld refinements show the platinates to crystallize in space group R3-bar and, in the case of Pr and Nd, revealed a complete ordering of Ln/Sr on the two distinct A-type positions, while for La a partial disorder was observed. By XANES investigations at the Pt-L{sub III} threshold the oxidation state +4 for platinum was found. Thermogravimetry revealed a small oxygen excess for Ln=La and Pr ({delta}=0.13 and 0.07), pointing to the presence of peroxide ions as already observed for isostructural Ru- and Ir-based compounds. UV-Vis measurements were done for the yellow lanthanum and the green neodymium compound. They revealed two optical band gaps of 2.52 and 3.05 eV, respectively. Magnetic measurements showed La{sub 2}Sr{sub 2}PtO{sub 7+{delta}} to be diamagnetic as expected for Pt{sup 4+} with low-spin (t{sub 2g}{sup 6}) configuration. For Ln=Pr and Nd the observed strong paramagnetism can be explained solely by the magnetic moments of the rare earths. - Graphical abstract: Hexagonal perovskites of the [A{sub 2}{sup '}O{sub 1+{delta}}][A{sub n}B{sub n-1}O{sub 3n}] family have so far only been known for the transition metals Mn, Nb, Ru, and Ir. In this paper, three new n=2 examples containing platinum as B-type cation are presented. The structure and physical properties of the three title compounds were investigated by XRD Rietveld refinements, thermogravimetry, X-ray absorption spectroscopy, magnetic measurements and optical spectroscopy.

  15. Synthesis and photoluminescence characteristics of Ln3+ (Ln = Sm, Er and Dy)-doped BaGd2(MoO4)4 phosphors

    NASA Astrophysics Data System (ADS)

    Deng, Yaomin; Yi, Shuangping; Wang, Yinhai; Xian, Jieqiang

    2014-06-01

    BaGd2(MoO4)4 phosphor powders activated with the trivalent rare-earth Ln3+ (Ln = Sm, Er and Dy) were synthesized by a traditional high temperature solid-state reaction. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. XRD results demonstrate that Ln3+-doped samples can be well indexed to the pure monoclinic scheelite-type structure BaGd2(MoO4)4. The photoluminescence investigations revealed that the phosphors exhibit apparent characteristic emissions from the 4G5/2 to 6H5/2, 7/2, 9/2 state for Sm3+, 2H11/2 and 4S3/2 state to the 4I15/2 ground state for Er3+, 4I15/2, 4F9/2 to 6H15/2 and 4F9/2 to 6H13/2 for Dy3+ under near ultraviolet excitation. BaGd1.95(MoO4)4:0.05Sm3+, BaGd1.93(MoO4)4:0.07Er3+ and BaGd1.90(MoO4)4:0.10Dy3+ emit bright orange-red, green and white light with the CIE coordinates of (0.5381, 0.4544), (0.2307, 0.6096) and (0.3314, 0.3853) respectively. The sharp emission peaks and excellent luminescence properties show that BaGd2(MoO4)4 is a suitable host for rare earth doped phosphors, which may be potentially applied in the applications of the optical materials.

  16. An investigation of structural parameters and magnetic and optical properties of EuLn{sub 2}Q{sub 4} (Ln=Tb-Lu, Q=S, Se)

    SciTech Connect

    Jin Gengbang; Choi, Eun Sang; Guertin, Robert P.; Albrecht-Schmitt, Thomas E.

    2008-01-15

    EuLn{sub 2}Q{sub 4} (Ln=Tb-Lu; Q=S, Se) has been synthesized using Sb{sub 2}Q{sub 3} (Q=S, Se) fluxes at 1000 deg. C. These compounds crystallize in a CaFe{sub 2}O{sub 4}-type three-dimensional channel structure that is built from edge-shared double rutile chains of [LnQ{sub 6}] octahedra running down the b-axis. Each double chain is connected at the vertices to four other double chains to form open channels where bicapped trigonal prismatic Eu{sup 2+} ions reside. All of these compounds show antiferromagnetic ordering with Neel temperatures, T{sub N}{approx}3-4 K. The optical band gaps for EuTb{sub 2}Se{sub 4}, EuDy{sub 2}Se{sub 4}, EuHo{sub 2}Se{sub 4}, EuEr{sub 2}Se{sub 4}, EuTm{sub 2}Se{sub 4}, EuYb{sub 2}Se{sub 4} EuLu{sub 2}Se{sub 4}, and EuYb{sub 2}S{sub 4} are found to be 2.0, 1.8, 1.8, 1.7, 1.8, 1.3, 1.7, and 1.6 eV, respectively. - Graphical abstract: A view of the three-dimensional channel structure of EuYb{sub 2}S{sub 4} down the b-axis.

  17. Vanadium oxide bronzes containing rare-earth elements

    SciTech Connect

    Volkov, V.L.; Zubkov, V.G.; Fedyukov, A.S.; Zainulin, Yu.G.

    1988-05-01

    We attempted to make phases having the general formula Ln/sub x/V/sub 2/O/sub 5/ (Ln = La, Eu, Yb) without success; the specimens usually consisted of three phases: the rare-earth orthovanadate LnVO/sub 4/, vanadium(V) oxide, and VO/sub 2/. To shift the process to give Ln/sub x/V/sub 2/O/sub 5/, heat treatment was applied to mixtures of the initial high-purity substances. The x-ray patterns were recorded with a DRON-UM1 apparatus with Cr K..cap alpha.. radiation and were processed by the Poroshok program. The IR spectra were recorded with UR-20 spectrometer with oil mulls.

  18. Luminescence properties and energy transfer in the novel red emitting phosphors Ba2Ln(BO3)2Cl:Sm3+, Eu3+ (Ln=Y, Gd)

    NASA Astrophysics Data System (ADS)

    Fan, Yan; Hu, Yihua; Chen, Li; Wang, Xiaojuan; Ju, Guifang

    2014-10-01

    A series of Sm3+/Eu3+ singly and co-doped Ba2Ln(BO3)2Cl (Ln=Y3+, Gd3+) phosphors were prepared via the solid-state method. The XRD results indicate that the as-prepared products keep the monoclinic structure with a P21/m space group of Ba2Ln(BO3)2Cl, which belongs to the isomorphic substitution for Ln3+ sites in the Ba2Yb(BO3)2Cl host. The photoluminescence (PL) spectra demonstrate that Ba2Ln(BO3)2Cl:Sm3+,Eu3+ emits red light centered at 593 nm under the 393 nm excitation which is in good agreement with the emission wavelength from near ultraviolet light-emitting diodes (LEDs). The luminescence decays suggest that the energy transfer from Sm3+ to Eu3+ ions in Ba2Ln(BO3)2Cl:Eu3+, Sm3+ occurs. All results mean that Ba2Ln(BO3)2Cl:Eu3+, Sm3+ phosphors exhibit potential to act as a kind of red phosphor for near ultraviolet white light-emitting diodes (w-LEDs).

  19. Syntheses and crystal structures of the quaternary uranium lanthanide oxyselenides UYb2O2Se3 and U2Ln2O4Se3 (Ln=Pr, Sm, Gd)

    NASA Astrophysics Data System (ADS)

    Raw, Adam D.; Ibers, James A.

    2012-02-01

    Single crystals of the new uranium lanthanide oxyselenide compounds UYb2O2Se3 and U2Ln2O4Se3 (Ln=Pr, Sm, Gd) have been synthesized from an Sb2Se3 flux. The structures have been determined from single-crystal X-ray diffraction data. UYb2O2Se3 is isostructural to UYb2O2S3. The structure comprises layers of edge-sharing YbSe6 octahedra and double layers of disordered (U/Ln)O4Se4 square antiprisms. The U2Ln2O4Se3 (Ln=Pr, Sm, Gd) compounds are isostructural to U2Ln2O4S3 (Ln=La-Gd) whose structure had been deduced previously from X-ray powder diffraction data. In the structure a dodecahedron of four O atoms and four Se atoms surrounds a site primarily occupied by U and a distorted bicapped octahedron of five Se atoms and three O atoms surrounds a site primarily occupied by the lanthanide. These compounds represent the first examples of quaternary uranium oxyselenides.

  20. Ultralong well-aligned TiO2:Ln(3+) (Ln = Eu, Sm, or Er) fibres prepared by modified electrospinning and their temperature-dependent luminescence.

    PubMed

    Yu, Hongquan; Li, Yue; Song, Yang; Wu, Yanbo; Lan, Xijie; Liu, Shimin; Tang, Yanning; Xu, Shasha; Chen, Baojiu

    2017-03-07

    Electrospinning has emerged as an attractive technique for the fabrication of ultrafine fibres in micro-/nano-scale fineness: however, it remains a significant technological challenge to assemble aligned fibre arrays via an conventional electrospinning method due to the inherent whipping instability of the polymeric jet. We herein have first developed a simple modified electrospinning method with which to prepare ultralong (>300 mm) well-aligned inorganic fibre arrays, i.e., using an ultrahigh molecular weight polymer to suppress or eliminate the whipping motion of the electrospun jet, has emerged as a facile approach for the continuous fabrication of well-aligned, ultralong fibres through simply using a rotating cylinder as the collector (it was not found necessary to use a very high rotating speed, extra magnetic, electrical field) in the electrospinning process. As result, the ultralong well-aligned TiO2:Ln(3+) (Ln = Eu, Sm, or Er) fibre arrays can be obtained from ultrahigh molecular weight poly(ethylene oxide), tetra-n-butyl titanate (Ti(OC4H9)4) and lanthanide nitrate in the modified electrospinning approach. The grow mechanism and luminescent properties of these ultralong well-aligned TiO2:Ln(3+) fibre arrays were also investigated.

  1. Ultralong well-aligned TiO2:Ln3+ (Ln = Eu, Sm, or Er) fibres prepared by modified electrospinning and their temperature-dependent luminescence

    NASA Astrophysics Data System (ADS)

    Yu, Hongquan; Li, Yue; Song, Yang; Wu, Yanbo; Lan, Xijie; Liu, Shimin; Tang, Yanning; Xu, Shasha; Chen, Baojiu

    2017-03-01

    Electrospinning has emerged as an attractive technique for the fabrication of ultrafine fibres in micro-/nano-scale fineness: however, it remains a significant technological challenge to assemble aligned fibre arrays via an conventional electrospinning method due to the inherent whipping instability of the polymeric jet. We herein have first developed a simple modified electrospinning method with which to prepare ultralong (>300 mm) well-aligned inorganic fibre arrays, i.e., using an ultrahigh molecular weight polymer to suppress or eliminate the whipping motion of the electrospun jet, has emerged as a facile approach for the continuous fabrication of well-aligned, ultralong fibres through simply using a rotating cylinder as the collector (it was not found necessary to use a very high rotating speed, extra magnetic, electrical field) in the electrospinning process. As result, the ultralong well-aligned TiO2:Ln3+ (Ln = Eu, Sm, or Er) fibre arrays can be obtained from ultrahigh molecular weight poly(ethylene oxide), tetra-n-butyl titanate (Ti(OC4H9)4) and lanthanide nitrate in the modified electrospinning approach. The grow mechanism and luminescent properties of these ultralong well-aligned TiO2:Ln3+ fibre arrays were also investigated.

  2. Ultralong well-aligned TiO2:Ln3+ (Ln = Eu, Sm, or Er) fibres prepared by modified electrospinning and their temperature-dependent luminescence

    PubMed Central

    Yu, Hongquan; Li, Yue; Song, Yang; Wu, Yanbo; Lan, Xijie; Liu, Shimin; Tang, Yanning; Xu, Shasha; Chen, Baojiu

    2017-01-01

    Electrospinning has emerged as an attractive technique for the fabrication of ultrafine fibres in micro-/nano-scale fineness: however, it remains a significant technological challenge to assemble aligned fibre arrays via an conventional electrospinning method due to the inherent whipping instability of the polymeric jet. We herein have first developed a simple modified electrospinning method with which to prepare ultralong (>300 mm) well-aligned inorganic fibre arrays, i.e., using an ultrahigh molecular weight polymer to suppress or eliminate the whipping motion of the electrospun jet, has emerged as a facile approach for the continuous fabrication of well-aligned, ultralong fibres through simply using a rotating cylinder as the collector (it was not found necessary to use a very high rotating speed, extra magnetic, electrical field) in the electrospinning process. As result, the ultralong well-aligned TiO2:Ln3+ (Ln = Eu, Sm, or Er) fibre arrays can be obtained from ultrahigh molecular weight poly(ethylene oxide), tetra-n-butyl titanate (Ti(OC4H9)4) and lanthanide nitrate in the modified electrospinning approach. The grow mechanism and luminescent properties of these ultralong well-aligned TiO2:Ln3+ fibre arrays were also investigated. PMID:28266593

  3. Assessment of surface relief and short cracks under cyclic creep in a type 316LN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.

    2015-12-01

    Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.

  4. Single crystal synthesis and magnetism of the BaLn2O4 family (Ln = lanthanide)

    SciTech Connect

    Besara, Tiglet; Lundberg, Matthew S.; Sun, Jifeng; Ramirez, Daniel; Dong, Lianyang; Whalen, Jeffrey B.; Vasquez, Rafael; Herrera, Felix; Allen, John R.; Davidson, Michael W.; Siegrist, Theo

    2014-05-27

    The series of compounds in the BaLn2O4 family (Ln = La–Lu, Y) has been synthesized for the first time in single crystalline form, using a molten metal flux. The series crystallizes in the CaV2O4 structure type with primitive orthorhombic symmetry (space group Pnma, #62), and a complete structural study of atomic positions, bonds, angles, and distortions across the lanthanide series is presented. With the exception of the Y, La, Eu, and Lu members, magnetic susceptibility measurements were performed between 2 K and 300 K. BaCe2O4 and BaYb2O4 display large crystal fields effects and suppression of magnetic ordering. As a result, all compounds show signs of magnetic frustration due to the trigonal arrangements of the trivalent lanthanide cations in the structure.

  5. Emission Enhancement and Color Tuning for GdVO4:Ln(3+) (Ln = Dy, Eu) by Surface Modification at Single Wavelength Excitation.

    PubMed

    Song, Yan; Shao, Baiqi; Feng, Yang; Lü, Wei; Huo, Jiansheng; Zhao, Shuang; Liu, Man; Liu, Guixia; You, Hongpeng

    2017-01-03

    The surface modification can realize systematically the emission enhancement of GdVO4:Ln(3+) (Ln = Dy, Eu) microstructures and multicolor emission at single component. The structure, morphology, composition, and the surface ligands modification of as-prepared samples were studied in detail. It is found that the surface-modified ligands can act as sensitizer to improve the emission of the Eu(3+) and Dy(3+) ions via the energy transfer besides the VO4(3-)-Eu(3+)/Dy(3+) process. More importantly, under a single wavelength excitation, the emission color can be effectively tuned by manipulating the doping ratio of the Eu(3+) ions in the internal crystal lattice and the Tb(3+) ions in the external surface ligands, simultaneously. And further, multicolor emissions are obtained under single wavelength excitation due to the high overlapping between the VO4(3-) absorption and the π-π* electron transition of the ligands. These findings may open new avenues to design and develop new highly efficient luminescent materials.

  6. Hardness of Carburized Surfaces in 316LN Stainless Steel after Low Temperature Neutron Irradiation

    SciTech Connect

    Byun, TS

    2005-01-31

    A proprietary surface carburization treatment is being considered to minimize possible cavitation pitting of the inner surfaces of the stainless steel target vessel of the SNS. The treatment gives a large supersaturation of carbon in the surface layers and causes substantial hardening of the surface. To answer the question of whether such a hardened layer will remain hard and stable during neutron irradiation, specimens of the candidate materials were irradiated in the High Flux Isotope Reactor (HFIR) to an atomic displacement level of 1 dpa. Considerable radiation hardening occurred in annealed 316LN stainless steel and 20% cold rolled 316LN stainless steel, and lesser radiation hardening in Kolsterised layers on these materials. These observations coupled with optical microscopy examinations indicate that the carbon-supersaturated layers did not suffer radiation-induced decomposition and softening.

  7. TES/Aura L2 Ozone (O3) Lite Nadir (TL2O3LN)

    Atmospheric Science Data Center

    2015-08-26

    TES/Aura L2 Ozone (O3) Lite Nadir (TL2O3LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ozone Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Ozone Order Data:  Search and Order:   Earthdata Search ...

  8. Mechanical properties of cold-rolled AISI 304LN steel at low temperatures

    SciTech Connect

    Ilola, R.J.; Haenninen, H.E.; Heinaekari, M.J.

    1996-12-01

    Mechanical properties of 0--70% cold-rolled AISI 304LN steel (0, 16 wt.% N) were investigated by means of tensile and Charpy V-notch impact tests between room temperature and {minus}196 C. Fracture surfaces of the tested specimens were investigated using SEM (scanning electron microscope). Austenite stability against {alpha}{prime}-martensite formation during cooling and during deformation in cold-rolling and mechanical testing was determined using magnetic measurements.

  9. TES/Aura L2 Ammonia (NH3) Lite Nadir (TL2NH3LN)

    Atmospheric Science Data Center

    2015-08-26

    TES/Aura L2 Ammonia (NH3) Lite Nadir (TL2NH3LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Ammonia Order Data:  Search and Order:   Order Data ...

  10. Equipping an FPGA-Based Mars Rover With an LN-200 IMU

    NASA Technical Reports Server (NTRS)

    Zola, Nicholas J.

    2005-01-01

    The Mars Exploration Rovers (MER) currently navigating the surface of Mars are outfitted with an advanced stereovision correlation algorithm which allows them to "see" three-dimensionally and autonomously avoid obstac'les in their path. A bottleneck of this system is that it is computationally intense and requires 3 minutes of processing for every correlated image and path choice. Taking advantage of the optimization and reprogrammability of FPGAs, the Mobility Avionics lab has reduced this process to under a second. The lab is demonstrating the advancement with a prototype rover, complete with an LN-200 inertial measurement unit (IMU), which is a flight spare from MER. The LN-200 is a space-grade, six degrees-of-freedom IMU using three fiber-optic gyroscopes and three silicon accelerometers and no moving parts. It has particular power-sequencing needs and communicates with a specialized serial protocol (SDLC over RS-422), requiring specific hardware and software for proper functionality and interfacing with an FPGA. The process of incorporating the LN-200 into the system is described herein.

  11. Deterioration in Fracture Toughness of 304LN Austenitic Stainless Steel Due to Sensitization

    NASA Astrophysics Data System (ADS)

    Ghosh, Swati; Kain, V.; Ray, A.; Roy, H.; Sivaprasad, S.; Tarafder, S.; Ray, K. K.

    2009-12-01

    The aim of this report is to examine the influence of sensitization on the mechanical properties of AISI grade 304LN stainless steel with special emphasis on its fracture toughness. A series of stainless steel samples has been sensitized by holding at 1023 K for different time periods ranging from 1 to 100 hours followed by water quenching. The degree of sensitization (DOS) for each type of the varyingly heat-treated samples has been measured by an electrochemical potentiodynamic reactivation (EPR) test. The microstructures of these samples have been characterized by optical metallography, scanning electron microscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses, together with measurements of their hardness and tensile properties. The fracture toughness of the samples has been measured by the ball indentation (BI) technique and the results are validated by conducting conventional J-integral tests. It is revealed for the first time that the fracture toughness and ductility of AISI 304LN stainless steel deteriorate significantly with increased DOS, while the tensile strength (TS) values remain almost unaltered. The results have been critically discussed in terms of the depletion of solid solution strengtheners, the nature of the grain boundary precipitations, and the strain-induced martensite formation with the increasing DOS of the 304LN stainless steel.

  12. High-temperature X-ray diffraction measurements of fluorite-related rare earth antimonates Ln{sub 3}SbO{sub 7} (Ln=Nd, Tb) and their magnetic properties

    SciTech Connect

    Hinatsu, Yukio Doi, Yoshihiro

    2014-09-15

    Ternary rare-earth antimonates Ln{sub 3}SbO{sub 7} (Ln=rare earths) were prepared, and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr; Ccmm for Ln=Sm–Dy), in which Ln{sup 3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated). For Ln=Nd, two phases with the Cmcm and Ccmm space groups coexist at room temperature. When the temperature was increased, the Nd{sub 3}SbO{sub 7} compound transformed into a single phase with the space group Cmcm. Through magnetic susceptibility measurements, an antiferromagnetic transition was observed at 3.0 K (Ln=Nd) and 7.8 K (Ln=Tb). Analysis of the magnetic specific heat for Tb{sub 3}SbO{sub 7} indicates that the 8-coordinated Tb ions magnetically orders at 7.8 K, and with furthermore decreasing temperature, the 7-coordinated Tb ions shows antiferromagnetic ordering at 3.0 K. - Graphical abstract: Temperature dependence of the specific heat divided by temperature (C{sub p}/T) and the magnetic entropy (S{sub mag}) for Tb{sub 3}SbO{sub 7}. Two-step magnetic transition has been observed. - Highlights: • The phase transition of Nd{sub 3}SbO{sub 7} is from the Ccmm space group to the Cmcm one. • Nd{sub 3}SbO{sub 7} shows an antiferromagnetic transition at 3.0 K. • For Tb{sub 3}SbO{sub 7}, two-step magnetic transition has been observed at 7.8 and 3.0 K.

  13. Enneanuclear [Ni6Ln3] Cages: [Ln(III)3] Triangles Capping [Ni(II)6] Trigonal Prisms Including a [Ni6Dy3] Single-Molecule Magnet.

    PubMed

    Canaj, Angelos B; Tzimopoulos, Demetrios I; Siczek, Milosz; Lis, Tadeusz; Inglis, Ross; Milios, Constantinos J

    2015-07-20

    The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) ligand, H3L, in Ni/Ln chemistry has led to the isolation of three new isostructural [Ni(II)6Ln(III)3] metallic cages. More specifically, the reaction of Ni(ClO4)2·6H2O, the corresponding lanthanide nitrate salt, and H3L in MeCN, under solvothermal conditions in the presence of NEt3, led to the isolation of three complexes with the formulas [Ni6Gd3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (1·5.75MeCN·2Et2O·1.5H2O), [Ni6Dy3(OH)6(HL)6(NO3)3]·2MeCN·2.7Et2O·2.4H2O (2·2MeCN·2.7Et2O·2.4H2O), and [Ni6Er3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (3·5.75MeCN·2Et2O·1.5H2O). The structure of all three clusters describes a [Ln(III)3] triangle capping a [Ni(II)6] trigonal prism. Direct current magnetic susceptibility studies in the 5-300 K range for complexes 1-3 reveal the different nature of the magnetic interactions within the clusters: dominant antiferromagnetic exchange interactions for the Dy(III) and Er(III) analogues and dominant ferromagnetic interactions for the Gd(III) example. Alternating current magnetic susceptibility measurements under zero external dc field displayed fully formed temperature- and frequency-dependent out-of-phase peaks for the [Ni(II)6Dy(III)3] analogue, establishing its single molecule magnetism behavior with Ueff = 24 K.

  14. Oxygen non-stoichiometry of Ln4Ni 2.7Fe 0.3O 10-δ ( Ln=La, Pr)

    NASA Astrophysics Data System (ADS)

    Tsipis, E. V.; Patrakeev, M. V.; Waerenborgh, J. C.; Pivak, Y. V.; Markov, A. A.; Gaczyński, P.; Naumovich, E. N.; Kharton, V. V.

    2007-06-01

    The oxygen deficiency of iron-substituted nickelates Ln4Ni 2.7Fe 0.3O 10-δ ( Ln=La, Pr) with the orthorhombic Ruddlesden-Popper structure was studied by thermogravimetric analysis and coulometric titration in the oxygen partial pressure range 6×10 -5 to 0.7 atm at 973-1223 K. In air, the non-stoichiometry values vary in the relatively narrow ranges (2.4-4.2)×10 -2 for La- and (0.01-2.0)×10 -2 for Pr-containing compositions, increasing with temperature. Due to the smaller size of praseodymium cations, Pr 4Ni 2.7Fe 0.3O 10-δ exhibits a substantially lower thermodynamic stability in comparison with La 4Ni 2.7Fe 0.3O 10-δ and La 4Ni 3O 10-δ, although the oxygen content in Pr 4Ni 2.7Fe 0.3O 10-δ lattice is higher. The partial substitution of iron for nickel has no essential effect on the low- p(O 2) stability limit corresponding to the transition of Pr 4Ni 3O 10-δ into K 2NiF 4-type Pr 2NiO 4+δ. On the contrary, doping of La 4Ni 3O 10-δ with iron decreases the oxygen vacancy concentration and shifts the phase stability boundary towards lower oxygen chemical potentials, suggesting a stabilization of the transition metal-oxygen octahedra in lanthanum nickelate lattice. The Mössbauer spectroscopy showed that the predominant state of iron cations, statistically distributed between the nickel sites, is trivalent.

  15. Host-sensitized luminescence properties in CaNb2O6:Ln(3+) (Ln(3+) = Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+)) phosphors with abundant colors.

    PubMed

    Li, Kai; Liu, Xiaoming; Zhang, Yang; Li, Xuejiao; Lian, Hongzhou; Lin, Jun

    2015-01-05

    A series of Ln(3+) (Ln(3+) = Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+)) ion doped CaNb2O6 (CNO) phosphors have been prepared via the conventional high-temperature solid-state reaction route. The X-ray diffraction (XRD) and structure refinement, diffuse reflection, photoluminescence (PL), and fluorescent decay curves were used to characterize the as-prepared samples. Under UV radiation, the CNO host present a broad emission band from about 355 to 605 nm centered around 460 nm originating from the NbO6 octahedral groups, which has spectral overlaps with the excitation of f-f transitions of Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) in CNO:Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) samples. They show both host emission and respective emission lines derived from the characteristic f-f transitions of activators, which present different emission colors owing to the energy transfer from the NbO6 group in the host to Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) with increasing activator concentrations. The decreases of decay lifetimes of host emissions in CNO:Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) demonstrate the energy transfer from the hosts to Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+). The energy transfer mechanisms in CNO:Eu(3+)/Tb(3+)/Dy(3+) phosphors have been determined to be a resonant type via dipole-dipole mechanisms. For CNO:Sm(3+), the metal-metal charge transfer transition (MMCT) might contribute to the different variations of decay lifetimes and emission intensity from CNO:Eu(3+)/Tb(3+)/Dy(3+) samples. The best quantum efficiency is 71.2% for CNO:0.01/0.02Dy(3+). The PL properties of as-prepared materials indicate the promising application in UV-pumped white-emitting lighting diodes field.

  16. A Green Route to Hexagonal and Monoclinic BiPO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) Nanocrystallites for Tailoring Luminescent Performance.

    PubMed

    Yang, Errui; Li, Guangshe; Zheng, Yunlong; Li, Liping

    2016-04-01

    Selective synthesis of specific phased nanomaterials via a green route is a promising yet challeng- ing task. In the present work, the hexagonal and monoclinic phases of BiPO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) were prepared via room temperature co-precipitation method. For adjusting the phase of the products, the prepared mediums selected were the most common solvents, i.e., water and ethanol. It was very important that the prepared mediums could be easily recycled and reused by evapo- rating the filtrate. The formation mechanisms of hexagonal in water and monoclinic in ethanol were investigated. Interestingly, the growth behaviors of these phases were quite distinct and thus gave rise to distinct morphology and particle size. The hexagonal phase possesses a rod-like morphol- ogy with diameters of 50-160 nm and lengths of 65-400 nm while the monoclinic phase consists of almost entirely irregular nanoparticles. Also, it was found that the bending and stretching vibrations of O-H and PO4 tetrahedra were quite different for the products prepared in water and ethanol. Moreover, it was found that the luminescence properties, including emission intensity, lifetime, quan- tum efficiency, and color, could be readily tailored through controlling the phase structures and microstructures. The results showed that the monoclinic phase exhibited superior luminescent per- formance to the hexagonal phase. The methodologies reported in this work were fundamentally important, which could be easily extended to large-scale synthesis of other phased nanomaterials for potential applications as electroluminescent devices, optical integrated circuits, or biomarkers.

  17. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography-mass spectrometry.

    PubMed

    Zeb, Alam

    2012-07-01

    Camellia seed oil is one of most important edible oil, rich in oleic acid and contains many natural antioxidants with various biological activities. During preparation of foods or storage camellia oil oxidizes by the auto-oxidation and produce oxidized compounds. Traditional analytical techniques like FFA, POV are used for the determination of oxidation and adulteration of oils and fats. These methods were rarely able to detect the oxidized compounds produced and extent of oxidation. This paper presents the uses of liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) for the analysis of triacylglycerols (TAGs) composition and evaluation of auto-oxidation and oxidation products of camellia seed oil. The camellia oil was auto-oxidized for 12 months at room temperature. The TAGs were identified from their characteristics fragmentations such as protonated molecular ion, ammonium and sodium adducts, diacylglycerols, epoxy-diacylglycerols fragments and mono-acylglycerol fragments in ESI-MS mass spectra. HPLC-ESI-MS data revealed the separation and identification of 15 TAGs. The major TAGs separated and identified in camellia seed oil were POO, OOO, OLO, PLO/POL, OLL, SOO, ALO and OLLn. The auto-oxidation studies revealed a total loss of LnLLn, LnOLn, LLLn and OLLn amounting about 13.5% total oxidation. The auto-oxidation products were epoxy hydroperoxides, epoxy epidioxides, and mono-epoxides. It was observed that these were characteristic compounds produced in high oleic oils.

  18. Facile synthesis and multicolor luminescent properties of uniform Lu2O3:Ln (Ln=Eu3+, Tb3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanospheres.

    PubMed

    Li, Rumin; Gai, Shili; Wang, Liuzhen; Wang, Jun; Yang, Piaoping

    2012-02-15

    Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.

  19. Hydrothermal synthesis and luminescence properties of hierarchical SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures

    SciTech Connect

    Peng, Jing; Hou, Suying; Liu, Xianchun; Feng, Jing; Yu, Xiaodan; Xing, Yan; Su, Zhongmin

    2012-02-15

    Graphical abstract: Uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microsphere assembled by numerous nanoplates have been successfully synthesized via a facile hydrothermal process in the presence of chelating reagent. Highlights: Black-Right-Pointing-Pointer Uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microsphere were obtained by a simple hydrothermal method. Black-Right-Pointing-Pointer The reaction time, chelating reagent and F source play important roles for the formation of hierarchical microspheres. Black-Right-Pointing-Pointer The luminescence properties of lanthanide ion-doped SrF{sub 2} hierarchical microstructures were discussed. -- Abstract: Highly uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microspheres assembled by 2D nanoplates have been successfully synthesized by a facile and friendly hydrothermal route. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The experimental results indicate that reaction time and chelating reagent play a key role in forming the hierarchical microspheres. The formation mechanism was proposed based on the evolution of this morphology as a function of hydrothermal time. The near-infrared luminescence of lanthanide ions (Er, Nd, and Yb) doped SrF{sub 2} microspheres were discussed in detail. In addition, the as-obtained SrF{sub 2}:Eu{sup 3+} sample exhibits orange-red emission centered at 590 nm under excitation at 393 nm, while the SrF{sub 2}:Tb{sup 3+} exhibits a strong green emission at 540 nm. The as-synthesized SrF{sub 2}:Ln{sup 3+} luminescent microspheres might find some potential applications in areas of photoluminescence, telecommunication and laser emission.

  20. Single crystals of LnFeAsO 1-xF x (Ln = La, Pr, Nd, Sm, Gd) and Ba 1-xRb xFe 2As 2: Growth, structure and superconducting properties

    NASA Astrophysics Data System (ADS)

    Karpinski, J.; Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; Moll, P.; Weyeneth, S.; Keller, H.; Puzniak, R.; Tortello, M.; Daghero, D.; Gonnelli, R.; Maggio-Aprile, I.; Fasano, Y.; Fischer, Ø.; Rogacki, K.; Batlogg, B.

    2009-05-01

    A review of our investigations on single crystals of LnFeAsO 1-xF x (Ln = La, Pr, Nd, Sm, Gd) and Ba 1-xRb xFe 2As 2 is presented. A high-pressure technique has been applied for the growth of LnFeAsO 1-xF x crystals, while Ba 1-xRb xFe 2As 2 crystals were grown using a quartz ampoule method. Single crystals were used for electrical transport, structure, magnetic torque and spectroscopic studies. Investigations of the crystal structure confirmed high structural perfection and show incomplete occupation of the (O, F) position in superconducting LnFeAsO 1-xF x crystals. Resistivity measurements on LnFeAsO 1-xF x crystals show a significant broadening of the transition in high magnetic fields, whereas the resistive transition in Ba 1-xRb xFe 2As 2 simply shifts to lower temperature. The critical current density for both compounds is relatively high and exceeds 2 × 10 9 A/m 2 at 15 K in 7 T. The anisotropy of magnetic penetration depth, measured on LnFeAsO 1-xF x crystals by torque magnetometry is temperature dependent and apparently larger than the anisotropy of the upper critical field. Ba 1-xRb xFe 2As 2 crystals are electronically significantly less anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the existence of two energy gaps in LnFeAsO 1-xF x. Scanning Tunneling Spectroscopy reveals in addition to a superconducting gap, also some feature at high energy (∼20 meV).

  1. D0 Silicon Upgrade: Vapor Pressure Thermometry System Near LN2 Subcooler

    SciTech Connect

    Kuwazaki, Andrew; /Fermilab

    1996-07-01

    Fermi National Accelerator Laboratory (Fermilab) is in the process of upgrading its detectors. Among these upgrades is the need for more transfer lines containing both liquid nitrogen and helium gas. These two fluids are used to provide the necessary operating cryogenic temperatures for the various detectors, such as the Visible Light Photon Counter (VLPC) and the solenoid inside the detector's calorimeter. With additional piping, it is important to monitor the temperatures to assure that the detectors can operate correctly. This can be done two ways. The first method is to use a Resistance Temperature Device, called a RTD, which is made using either a carbon resistor or a platinum resistor and measures the temperature based on resistance. The second method is to use a vapor-pressure thermometry system. This design will focus on the second method. A nitrogen Vapor Pressure Thermometer (VPT) system is designed to determine the temperature of the liquid nitrogen (LN{sub 2}) supply line, after exiting the LN{sub 2} subcooler, inside the D-Zero Assembly Hall. The operating temperature range is designed from 77 to 300 Kelvin with an initial charge pressure of 100 psia. A cylindrical bulb with a 0.1875-inch diameter and 0.625-inch length allows for minimum cold and warm 1/4-inch O.D. SS 304L tubing lengths, 12-inch and 18-inch respectively, and maintains a liquid level of 50% inside the bulb during cold operation. The amount of nitrogen needed to fill the cylindrical bulb approximately half full is 0.149 grams. In order to conform to the conventional cold volume and warm volume VPT systems, we need to enlarge the existing 1/2-inch x 2-inch SCH. 10 LN{sub 2} supply line over a one foot section to 1-inch x 3-inch SCH. 10 piping.

  2. Agreement between a smart-phone pulse sensor application and ECG for determining lnRMSSD.

    PubMed

    Esco, Michael R; Flatt, Andrew A; Nakamura, Fabio Y

    2016-06-27

    The purpose of this study was to determine the agreement between a smartphone pulse finger sensor (SPFS) and electrocardiography (ECG) for determining ultra-short-term heart rate variability (HRV) in three different positions. Thirty college-aged men (n = 15) and women (n = 15) volunteered to participate in this study. Sixty second heart rate measures were simultaneously taken with the SPFS and ECG in supine, seated and standing positions. lnRMSSD was calculated from the SPFS and ECG. The lnRMSSD values were 81.5 ± 11.7 via ECG and 81.6 ± 11.3 via SPFS (p = 0.63, Cohen's d = 0.01) in the supine position, 76.5 ± 8.2 via ECG and 77.5 ± 8.2 via SPFS (p = 0.007, Cohen's d = 0.11) in the seated position, and 66.5 ± 9.2 via ECG and 67.8 ± 9.1 via SPFS (p < 0.001, Cohen's d = 0.15) in the standing positions. The SPFS showed a possibly strong correlation to the ECG in all three positions (r values from 0.98 to 0.99). In addition, the limits of agreement (CE ± 1.98 SD) were -0.13 ± 2.83 for the supine values, -0.94± 3.47 for the seated values, and -1.37 ± 3.56 for the standing values. The results of the study suggest good agreement between the SPFS and ECG for measuring lnRMSSD in supine, seated, and standing positions. Though significant differences were noted between the two methods in the seated and standing positions, the effect sizes were trivial.

  3. Synthesis of complex metal oxides using hydroxide, cyanide, and nitrate solid solution precursors

    NASA Astrophysics Data System (ADS)

    Vidyasagar, K.; Gopalakrishnan, J.; Rao, C. N. R.

    1985-06-01

    Precursor solid solutions provide convenient routes for preparing complex metal oxides. Hydroxide solid solutions of the general formula Ln1- xMx(OH) 3 (where Ln = La or Nd and M = Al, Cr, Fe, Co, or Ni) and La 1- x- yM' xM″ y(OH) 3 (where M' = Ni and M″ = Co or Cu) crystallize in the rare earth trihydroxide structure and can be decomposed at relatively low temperatures to yield complex metal oxides. Several oxides of the type LaNiO 3, NdNiO 3, LaNi 1- xCo xO 3, and LaNi 1- xCu xO 3 have been prepared by the hydroxide precursor route. Thermal decomposition of cyanide precursors of the type Ln[ M1- xM' x(CN) 6] · 5H 2O and Ln1- xLn' x[ M(CN) 6] · 5H 2O yields the quaternary oxides which are not readily made by ceramic methods. Nitrate solid solution precursors of the type Ba 1- xPb x(NO 3) 2, Sr 1- xPb x(NO 3) 2, and BaSrPb(NO 3) 6 have been used for preparing several interesting oxides such as BaPbO 3, Ba 2PbO 4, and BaSrPbO 4.

  4. First-order Judd-Ofelt optical characterization of DNA-Ln3+ complexes

    NASA Astrophysics Data System (ADS)

    Paulson, Bjorn; Sauer, Gregor; Cheon, Seungwuk; Dugasani, Sreekantha Reddy; Oh, Kyunghwan

    2016-09-01

    Complexes formed of deoxyribose nucleic acid (DNA) and trivalent lanthanide ions (Ln3+) promise a combination of high optical gain and low optical loss in an organic polymer host matrix. However, there has been some dispute about the binding mechanism between the DNA helix and the positively-charged lanthanide ions. Here we introduce an attempt to resolve the mechanism for binding through Judd-Ofelt analysis on DNA-Eu3+, DNA-Tb3+, and DNA-Sm3+ to first order. From initial Judd-Ofelt parameters extrapolations can be made to the line strengths, Einstein coefficients, and fluorescence lifetimes.

  5. Agreement Between a Smartphone Pulse Sensor Application and Electrocardiography for Determining lnRMSSD.

    PubMed

    Esco, Michael R; Flatt, Andrew A; Nakamura, Fábio Y

    2017-02-01

    Esco, MR, Flatt, AA, and Nakamura, FY. Agreement between a smartphone pulse sensor application and electrocardiography for determining lnRMSSD. J Strength Cond Res 31(2): 380-385, 2017-The purpose of this study was to determine the agreement between a smartphone pulse finger sensor (SPFS) and electrocardiography (ECG) for determining ultra-short-term heart rate variability in 3 different positions. Thirty college-aged men (n = 15) and women (n = 15) volunteered to participate in this study. Sixty-second heart rate measures were simultaneously taken with the SPFS and ECG in supine, seated, and standing positions. The log transformed root mean square of successive R-R interval differences (lnRMSSD) was calculated from the SPFS and ECG. The lnRMSSD values were 81.5 ± 11.7 using ECG and 81.6 ± 11.3 using SPFS (p = 0.63, Cohen's d = 0.01) in the supine position, 76.5 ± 8.2 using ECG and 77.5 ± 8.2 using SPFS (p = 0.007, Cohen's d = 0.11) in the seated position, and 66.5 ± 9.2 using ECG and 67.8 ± 9.1 using SPFS (p < 0.001, Cohen's d = 0.15) in the standing position. The SPFS showed a possibly strong correlation to the ECG in all 3 positions (r values from 0.98 to 0.99). In addition, the limits of agreement (constant error ± 1.98 SD) were -0.13 ± 2.83 for the supine values, -0.94 ± 3.47 for the seated values, and -1.37 ± 3.56 for the standing values. The results of the study suggest good agreement between the SPFS and ECG for measuring lnRMSSD in supine, seated, and standing positions. Although significant differences were noted between the 2 methods in the seated and standing positions, the effect sizes were trivial.

  6. Screening Test Results of Fatigue Properties of type 316LN Stainless Steel in Mercury

    SciTech Connect

    Pawel, S.J.

    1999-05-20

    Fully reversed, load-controlled uniaxial push-pull fatigue tests at room temperature have been performed in air and in mercury on specimens of type 316LN stainless steel. The results indicate a significant influence of mercury on fatigue properties. Compared to specimens tested in air, specimens tested in mercury had reproducibly shorter fatigue lives (by a factor of 2-3), and fracture faces exhibiting intergranular cracking. Preliminary indications are that crack initiation in each environment is similar, but mercury significantly accelerates crack propagation.

  7. Fatigue Properties of Type 316 LN Stainless Steels as a Function of Frequency and Waveform

    SciTech Connect

    DiStefano, J.R.

    2001-01-30

    The low cycle fatigue behavior of type 316LN stainless steel was investigated in air and mercury at frequencies from 0.1 to 10 Hz. Cyclic stress ratios (R) of {minus}1 and 0.1 were used with sinusoidal, triangular and positive sawtooth wave forms. Mercury appears to reduce fatigue life at high stress amplitudes, but the endurance limit may be unaffected. Low frequency and mean stress decreased the fatigue endurance limit, but type of waveform did not appear to affect fatigue life under the conditions of these tests.

  8. Tuning the Energy Transfer Efficiency between Ce(3+) and Ln(3+) Ions (Ln=Tm, Sm, Tb, Dy) by Controlling the Crystal Phase of NaYF4 Nanocrystals.

    PubMed

    Adusumalli, Venkata N K B; Koppisetti, Heramba V S R M; Ganguli, Sagar; Sarkar, Shyam; Mahalingam, Venkataramanan

    2017-01-23

    NaYF4 is a superior host matrix to study the luminescence properties of lanthanide (Ln(3+) ) ions. Ln(3+) ions in hexagonal-phase NaYF4 (β-phase) nanocrystals (NCs) exhibit strong luminescence via an upconversion process compared to cubic NaYF4 (α-phase) NCs. However, in Ce(3+) /Ln(3+) -doped NaYF4 NCs (Ln=Tm, Tb, Sm, Dy) the α-phase NaYF4 NCs shows strong luminescence compared to their counterpart β-phase NCs despite the latter being much larger in size. This is attributed to comparatively large overlap between Ce(3+) ions emission band with excited energy levels of those Ln(3+) ions in α-phase compared to β-phase NCs. This difference is attributed to different crystal-field splitting of Ce(3+) ions 4f-5d band in different crystal environments of the α-phase (cubic crystal field environment) and β-phase (trigonal prismatic with equatorials crystal field environment) NaYF4 NCs with respect to their barycenter. The enhanced luminescence from α-phase NaYF4 NCs is advantageous as they are prepared at a relatively lower temperature and shorter reaction times compared to β-NaYF4 NCs.

  9. Family of defect-dicubane Ni4Ln2 (Ln = Gd, Tb, Dy, Ho) and Ni4Y2 complexes: rare Tb(III) and Ho(III) examples showing SMM behavior.

    PubMed

    Zhao, Lang; Wu, Jianfeng; Ke, Hongshan; Tang, Jinkui

    2014-04-07

    Reactions of Ln(III) perchlorate (Ln = Gd, Tb, Dy, and Ho), NiCl2·6H2O, and a polydentate Schiff base resulted in the assembly of novel isostructural hexanuclear Ni4Ln2 complexes [Ln = Gd (1), Tb (2), Dy (3), Ho (4)] with an unprecedented 3d-4f metal topology consisting of two defect-dicubane units. The corresponding Ni4Y2 (5) complex containing diamagnetic Y(III) atoms was also isolated to assist the magnetic studies. Interestingly, complexes 2 and 3 exhibit SMM characteristics and 4 shows slow relaxation of the magnetization. The absence of frequency-dependent in-phase and out-of-phase signals for the Ni-Y species suggests that the Ln ions' contribution to the slow relaxation must be effectual as previously observed in other Ni-Dy samples. However, the observation of χ″ signals with zero dc field for the Ni-Tb and Ni-Ho derivatives is notable. Indeed, this is the first time that such a behavior is observed in the Ni-Tb and Ni-Ho complexes.

  10. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions.

    PubMed

    Tabacco, E; Piano, S; Revello-Chion, A; Borreani, G

    2011-11-01

    This study determined the efficacy of the use of 2 commercial inoculants containing Lactobacillus buchneri alone or in combination with homofermentative lactic acid bacteria in improving aerobic stability of corn silage stored in commercial farm silos in northern Italy. In the first survey, samples were collected from 10 farms that did not inoculate their silages and from 10 farms that applied a Pioneer 11A44 inoculant (L. buchneri strain LN4637; Pioneer Hi-Bred International, Des Moines, IA). In the second survey, corn silage samples were collected from 11 farms that did not inoculate their silages and from 11 farms that applied a Pioneer 11CFT inoculant (L. buchneri strain LN40177; Pioneer Hi-Bred International). Inoculants were applied directly through self-propelled forage harvesters, at the recommended rate of 1 g/t of fresh forage, to achieve a final application rate of 1.0 × 10(5) cfu/g of L. buchneri. One corn bunker silo, which had been open for at least 10 d, was examined in detail on each farm. The silages inoculated with L. buchneri had lower concentrations of lactic acid, a lower lactic-to-acetic acid ratio, a lower yeast count, and higher aerobic stability compared with the untreated silages. Unexpectedly, concentrations of acetic acid and 1,2-propanediol, 2 hallmarks of L. buchneri activity, did not differ between treatments and were only numerically higher in the inoculated silages compared with untreated ones, in both surveys. Aerobic stability, on average, was 107 and 121 h in the inoculated silages and 64 and 74 h in the untreated silages, for surveys 1 and 2, respectively, and decreased exponentially as the yeast count in the silage at the time of sampling increased, regardless of treatment. Inoculation with L. buchneri proved to be effective in reducing the yeast count to <2 log cfu/g of silage in 16 of 21 of the studied farm silages, confirming the ability of this inoculum to enhance the aerobic stability of corn silages in farm bunker silos.

  11. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for

  12. The series of rare earth complexes [Ln2Cl6 (μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm-Yb: a molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4'-bipyridine.

    PubMed

    Matthes, Philipp R; Nitsch, Jörn; Kuzmanoski, Ana; Feldmann, Claus; Steffen, Andreas; Marder, Todd B; Müller-Buschbaum, Klaus

    2013-12-16

    A series of 12 dinuclear complexes [Ln2Cl6(μ-4,4'-bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, (1-12, respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4'-bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4-bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln-N-MOFs (∞)(2)[Ln2Cl6(4,4'-bipy)3]·2(4,4'-bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, (1, 4-8) were determined, showing an antenna effect through a ligand-metal energy transfer. The highest efficiency of luminescence is observed for the terbium-based compound 7 displaying a high quantum yield (QY of 86%). Excitation with UV light reveals typical emission colors of lanthanide-dependent intra 4f-4f-transition emissions in the visible range (Tb(III) : green, Eu(III) : red, Sm(III) : salmon red, Dy(III) : yellow). For the Gd(III)- and Y(III)-containing compounds 6 and 1, blue emission based on triplet phosphorescence is observed. Furthermore, ligand-to-metal charge-transfer (LMCT) states, based on the interaction of Cl(-) with Eu(III), were observed for the Eu(III) compound 5 including energy-transfer processes to the Eu(III) ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln-independent quantum yields in the related MOFs.

  13. O-2p holes in tetravalent oxides of Ce and Pr and the Fehrenbacher-Rice hybrid in PrBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Hu, Z.; Meier, R.; Schüßler-Langeheine, C.; Weschke, E.; Kaindl, G.; Felner, I.; Merz, M.; Nücker, N.; Schuppler, S.; Erb, A.

    1999-07-01

    We report on an x-ray absorption near-edge structure (XANES) study of O-2p holes induced by Ln-4f/O-2p covalence in LnO2 (Ln=Ce,Pr) and BaLnO3 (Ln=Ce,Pr,Tb). The pre-edge peak in the O-1s XANES spectra, associated with O-2p holes, shifts to lower energy from Ce to Pr, in agreement with theoretical expectation, and its intensity scales with the strength of the 4f/2p covalence. In Pr(IV) oxides, the pre-edge peak is at the energy of the ``Fehrenbacher-Rice'' state in PrBa2Cu3O7-δ , supporting the view that the suppression of superconductivity in PrBa2Cu3O7-δ is due to Pr-4f/O-2p hybridization.

  14. Damage structure of austenitic stainless steel 316LN irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Grossbeck, M.L.; Rowcliffe, A.F.; Wakai, E.

    1998-03-01

    TEM disk specimens of austenitic stainless steel 316LN irradiated to damage levels of about 3 dpa at irradiation temperatures of either about 90 C or 250 C have been investigated by using transmission electron microscopy. The irradiation at 90 C and 250 C induced a dislocation loop density of 3.5 {times} 10{sup 22} m{sup {minus}3} and 6.5 {times} 10{sup 22} m{sup {minus}3}, a black dot density of 2.2 {times} 10{sup 23} m{sup {minus}3} and 1.6 {times} 10{sup 23} m{sup {minus}3}, respectively, in the steels, and a high density (<1 {times} 10{sup 22} m{sup {minus}3}) of precipitates in matrix. Cavities could be observed in the specimens after the irradiation. It is suggested that the dislocation loops, the black dots, and the precipitates cause irradiation hardening, an increase in the yield strength and a decrease in the uniform elongation, in the 316LN steel irradiated at low temperature.

  15. ln-Timişoara Molecular Activity Combined Models toward Interspecies Toxicity Assessment

    PubMed Central

    Chicu, Sergiu A.; Putz, Mihai V.

    2009-01-01

    Aiming to provide a unified picture of computed activity – quantitative structure activity relationships, the so called Köln (ESIP-ElementSpecificInfluenceParameter) model for activity and Timisoara (Spectral-SAR) formulation of QSAR were pooled in order to assess the toxicity modeling and inter-toxicity correlation maps for aquatic organisms against paradigmatic organic compounds. The Köln ESIP model for estimation of a compound toxicity is based on the experimental measurement expressing the direct action of chemicals on the organism Hydractinia echinata so that the structural influence parameters are reflected by the metamorphosis degree itself. As such, the calculation of the structural parameters is absolutely necessary for correct evaluation and interpretation of the evolution of M(easured) and the C(computed) values. On the other hand, the Timişoara Spectral-SAR analysis offers correlation models and paths for H.e. species as well as for four other different organisms with which the toxicity may be inter-changed by means of the same mechanism of action induced by certain common chemicals. PMID:20057956

  16. Effect of rare earth substitution in the density of electronic states of LnOFeAs

    NASA Astrophysics Data System (ADS)

    García Saravia Ortíz de Montellano, A.; Mustre de León, J.; Saini, N. L.; Bianconi, A.

    2012-06-01

    Measurements of the Fe K-edge x-ray absorption near edge (XANES) spectra of LnOFeAs (Ln being a lanthanide) high Tc superconductors exhibit significant changes in the pre-edge peak region upon rare earth substitution. Ab initio XANES calculations, based on the local structure centered at the Fe site obtained by crystallographic investigations, reproduce the observed changes in the spectra, indicating variations of the Fe d-local unoccupied electronic states. The calculated Fe density of states (DOS) at the Fermi energy shows an increase of the Fe d-density of states with increasing height of the arsenic atomic position with respect to the iron plane, similar to that observed for the superconducting transition temperature, Tc. These calculations show that not only the atomic position variation of the Fe-As layers induced by the rare earth substitution is relevant in the increase of the DOS at the Fermi-level, but the actual change in electronic configuration of the rare earth also plays a role in the increase of Fe d-density of states at the Fermi energy.

  17. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    PubMed

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  18. Hall Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Rajasekhara, S.; Ferreira, P. J.; Karjalainen, L. P.; Kyröläinen, A.

    2007-06-01

    An ultra-fine-grained AISI 301LN austenitic stainless steel has been achieved by heavy cold rolling, to induce the formation of martensite, and subsequent annealing at 800 °C, 900 °C, and 1000 °C, from 1 to 100 seconds. The microstructural evolution was analyzed using transmission electron microscopy and the yield strength determined by tension testing. Ultra-fine austenite grains, as small as ˜0.54 μm, were obtained in samples annealed at 800 °C for 1 second. For these samples, tensile tests revealed a very high yield strength of ˜700 MPa, which is twice the typical yield strength of conventional fully annealed AISI 301LN stainless steels. An analysis of the relationship between yield strength and grain size in these submicron-grained stainless steels indicates a classical Hall Petch behavior. Furthermore, when the yield dependence on annealing temperature is considered, the results show that the Hall Petch relation is due to an interplay between fine-grained austenite, solid solution strengthening, precipitate hardening, and strain hardening.

  19. Hydrothermal phase equilibria in Ln 2O 3-H 2O-CO 2 systems . I. The lighter lanthanides

    NASA Astrophysics Data System (ADS)

    Tareen, J. A. K.; Kutty, T. R. N.

    1980-10-01

    Phase diagrams for Nd 2O 3-H 2O-CO 2 and Gd 2O 3-H 2O-CO 2 systems at 1500 atm are given along with the results of selected runs in La, Sm and Eu systems. The stable phases in systems of La and Nd, are Ln(OH)CO 3-B, Ln 2O 2CO 3-II and LnOOH, in addition to the Ln(OH) 3 phase at extremely low partial pressures of CO 2 in the system. The systems become more and more complex with decreasing ionic radi and the number of stable carbonate phases increases. Ln 2(CO 3) 3 · 3H 2O orthorhombic (tengerate-like phase) is stable from Sm to Gd in addition to the other phases. The Gd(OH)CO 3-A (ancylite-like phase) is hydrothermally stable at XCO 2 ⩾ 0.5 while its hexagonal polymorph, Gd(OH)CO 3-B is stable at low partial pressures of CO 2 in the system.

  20. Self-Assembly of Tunable Heterometallic Ln-Ru Coordination Polymers with Near-Infrared Luminescence and Magnetocaloric Effect.

    PubMed

    Wang, Lei; Xie, Zhigang; Dang, Song; Sun, Zhong-Ming

    2017-02-24

    A series of heterometallic lanthanide (Ln)-Ru coordination polymers, denoted Gd-1, Yb-2, and Nd-3, were prepared by solvothermal reaction of a carboxylate derivative of [Ru(bpy)3 ](2+) (Rubpy, bpy=2,2'-bipyridine), oxalic acid, and Ln(OAc)3 by using the metalloligand strategy. Single-crystal X-ray diffraction indicated that the resulting isostructural heterometallic complexes have 1D butterfly-shaped Ln-Ru-based coordination chains but show slight differences in the coordination environments of the Ln centers. The introduced Ru(bpy) metalloligands could act as good light-harvesting antennas to effectively sensitize near-infrared (NIR) luminescence by energy transfer from the triplet metal-to ligand charge transfer state of Rubpy units to Ln (Yb or Nd) under the excitation in the visible-light region. Additionally, dopant-concentration-dependent behavior of the Ru-based emission and sensitized NIR emission was demonstrated in Gd-1. Finally, the magnetocaloric effect of Gd-1 was studied. The preparation of such heterometallic coordination polymers offers a versatile platform to investigate dimensionally controlled properties.

  1. FATIGUE PROPERTIES OF MODIFIED 316LN STAINLESS STEEL AT 4 K FOR HIGH FIELD CABLE-IN-CONDUIT APPLICATIONS

    SciTech Connect

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-08

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb{sub 3}Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  2. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  3. Equilibrium and formation/dissociation kinetics of some Ln(III)PCTA complexes.

    PubMed

    Tircsó, Gyula; Kovacs, Zoltan; Sherry, A Dean

    2006-11-13

    The protonation constants () of 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA) and stability constants of complexes formed between this pyridine-containing macrocycle and several different metal ions have been determined in 1.0 M KCl at 25 degrees C and compared to previous literature values. The first protonation constant was found to be 0.5-0.6 log units higher than the value reported previously, and a total of five protonation steps were detected (log = 11.36, 7.35, 3.83, 2.12, and 1.29). The stability constants of complexes formed between PCTA and Mg2+, Ca2+, Cu2+, and Zn2+ were also somewhat higher than those previously reported, but this difference could be largely attributed to the higher first protonation constant of the ligand. Stability constants of complexes formed between PCTA and the Ln3+ series of ions and Y3+ were determined by using an "out-of-cell" potentiometric method. These values ranged from log K = 18.15 for Ce(PCTA) to log K = 20.63 for Yb(PCTA), increasing along the Ln series in proportion to decreasing Ln3+ cation size. The rates of complex formation for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA) were followed by conventional UV-vis spectroscopy in the pH range 3.5-4.4. First-order rate constants (saturation kinetics) obtained for different ligand-to-metal ion ratios were consistent with the rapid formation of a diprotonated intermediate, Ln(H(2)PCTA)(2+). The stabilities of the intermediates as determined from the kinetic data were 2.81, 3.12, 2.97, and 2.69 log K units for Ce(H(2)PCTA), Eu(H(2)PCTA), Y(H(2)PCTA), and Yb(H(2)PCTA), respectively. Rearrangement of these intermediates to the fully chelated complexes was the rate-determining step, and the rate constant (k(r)) for this process was found to be inversely proportional to the proton concentration. The formation rates (k(OH)) increased with a decrease in the lanthanide ion size [9.68 x 10(7), 1.74 x 10(8), 1.13 x 10(8), and 1.11 x 10(9) M(-1

  4. Chemical bond properties and charge transfer bands of O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+) in Eu(3+)-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors.

    PubMed

    Liu, Xiaoguang; Li, Ling; Noh, Hyeon Mi; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun

    2014-06-21

    Charge transfer (CT) energy from the ligand to the central ions is an important factor in luminescence properties for rare earth doped inorganic phosphors. The dielectric theory of complex crystals was used to calculate chemical bond properties. Combining the photoluminescence and the dielectric theory of complex crystals, the CT bands of O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+) for Eu(3+)-doped inorganic phosphors have been investigated experimentally and theoretically. Taking Eu(3+)-doped Ln3M5O12 (Ln = Y, Lu and M = Al, Ga), Gd3Ga5O12, MMoO4 (M = Ca, Sr, Ba) and MWO4 (M = Ca, Sr, Ba) as typical phosphors, we investigated the effects of the cation size on the CT bands and chemical bond properties including the bond length (d), the covalency (fc), the bond polarizability (αb) and the environmental factor (he) of O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+), respectively. For systematic isostructural Ln3M5O12 (Ln = Y, Lu and M = Al, Ga) phosphors, with the increasing M ion radius, the bond length of Ln-O decreases, but fc and αb increase, which is the main reason that the environmental factor increased. For the isostructural MMoO4:Eu, with the increasing M ion radius, the Mo-O bond length increases, but fc and αb decrease, and thus he decreases. However, in the compound system MWO4:Eu (M = Ca, Ba) with the increasing M ion radius, the O-W bond length increases, but fc and αb increase, and thus he increases and the O-W CT energy decreases. Their O(2-)-Eu(3+), O(2-)-Mo(6+) and O(2-)-W(6+) CT bands as well as their full width at half maximum (FWHM) were directly influenced by he. And with the increasing he, CT bands of O-Eu or O-Mo or O-W decrease and their FWHM increases. These results indicate a promising approach for changing the material properties, searching for new Eu(3+) doped molybdate, tungstate or other oxide phosphors and analyzing the experimental result.

  5. High-throughput and microwave investigation of rare earth phosphonatoethanesulfonates-Ln(O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}) (Ln=Ho, Er, Tm, Yb, Lu, Y)

    SciTech Connect

    Sonnauer, Andreas

    2008-11-15

    Following the strategy of using bifunctional phosphonic acids for the synthesis of new metal phosphonates, the flexible ligand 2-phosphonoethanesulfonic acid, H{sub 2}O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}H (H{sub 3}L), was used in a high-throughput (HT) and microwave investigation of rare earth phosphonatoethanesulfonates. The HT-investigation led to six isotypic compounds Ln(O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}) with Ln=Ho (1), Er (2), Tm (3), Yb (4), Lu (5) and Y (6). The syntheses were scaled-up in glass reactor tubes in order to obtain larger amounts for a detailed characterization. Based on these results all compounds could be also synthesized by microwave-assisted heating and the influence of reaction time and stirring rate during the synthesis was established. For compound 2 the crystal structure was determined by single-crystal X-ray diffraction. The compounds contain isolated slightly distorted LnO{sub 6} octahedra that are connected by the phosphonate and sulfonate groups into a three-dimensional framework. Thermogravimetric investigations demonstrate the high thermal stability of the compounds up to 460 deg. C. - Graphical abstract: A high-throughput and microwave investigation of the System LnX{sub 3}/H{sub 2}O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}/NaOH/H{sub 2}O led to six new compounds Ln(O{sub 3}P-C{sub 2}H{sub 4}-SO{sub 3}) with Ln=Ho, Er, Tm, Yb, Lu, Y.

  6. Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS₂-based superconductors LnO₀.₅F₀.₅BiS₂ (Ln = La, Ce, Pr, Nd).

    PubMed

    Wolowiec, C T; White, B D; Jeon, I; Yazici, D; Huang, K; Maple, M B

    2013-10-23

    Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln=Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivity with critical temperatures Tc of 3.5 and 3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ∼0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln=La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln=La, Ce, Pr, Nd).

  7. On the crystal structures of Ln{sub 3}MO{sub 7} (Ln=Nd, Sm, Y and M=Sb, Ta)-Rietveld refinement using X-ray powder diffraction data

    SciTech Connect

    Fu, W.T.; IJdo, D.J.W.

    2009-09-15

    We have investigated, using X-ray powder diffraction data, the crystal structures of some fluorite derivatives with the formula Ln{sub 3}MO{sub 7} (Ln=lanthanide or Y and M=Sb and Ta). In these compounds ordering of Ln and M occurs, leading to a parent structure in Cmmm. Tilting of the MO{sub 6} octahedra causes doubling of one of the cubic axes, leading to a number of non-isomorphic subgroups, e.g. Cmcm, Ccmm and Cccm. We have identified an alternative space group Ccmm instead of C222{sub 1} for those compounds containing a medium sized lanthanide or Y and M being Sb or Ta. Interestingly this is an alternative setting for the space group of the structure obtained when Ln is large (Cmcm). However, there tilting of the octahedra is around the a-axis of the parent structure, rather than around the b-axis as it is found in the compounds which we are reporting on here. In one compound, Nd{sub 3}TaO{sub 7}, both tilts occur. The phase transition between the two possible structures is a slow and difficult process above 80 K, allowing both phases to coexist. - Graphical abstract: (a) A projected view of Ln{sub 3}MO{sub 7} along the a-axis showing the ordering of Ln and M cations in the fluoride lattice. Note that the unit cells of the fluorite (dashed line), the parent Cmmm (dashed line) and the Cmcm/Ccmm structures (continuous line) are indicated. (b) Schematic representations of the crystal structures of Y{sub 3}SbO{sub 7} showing SbO{sub 6} octahedra and Y. Oxygens that do not bond to M cations are also shown.

  8. Solvothermal synthesis of SrMoO{sub 4}:Ln (Ln = Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanoparticles and its photoluminescence properties at room temperature

    SciTech Connect

    Niu, Na; Yang, Piaoping; Wang, Wenxin; He, Fei; Gai, Shili; Wang, Dong; Lin, Jun

    2011-03-15

    Research highlights: {yields} A facile hydrothermal process was used to fabricate luminescent nanocrystals. {yields} The PL emissions the nanocrystals can be tuned by doping different rare-earth ions. {yields} A possible formation scheme for the as-synthesized nanocrystals was presented. -- Abstract: Rare-earth ions (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped SrMoO{sub 4} nanoparticles were prepared by solvothermal route using oleic acid as surfactant to control the particle shape and size. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), photoluminescence spectra (PL) and the kinetic decay times were applied to characterize the obtained samples. The XRD patterns reveal that all the doped samples are assigned to the scheelite-type tetragonal structure of SrMoO{sub 4} phase. In addition, the as-synthesized SrMoO{sub 4}:Ln (Ln = Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) particles are high purity well crystallized and with the average size of 30-50 nm. The possible formation process of SrMoO{sub 4}:Ln (Ln = Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanoparticles have been discussed as well. Upon excitation by ultraviolet radiation, the as-synthesized SrMoO{sub 4}:Ln (Ln = Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanoparticles exhibit the characteristic emission lines of corresponding Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, respectively.

  9. Thermodynamic modeling of REE behavior in oxidized hydrothermal fluids of high sulfate sulfur concentrations

    NASA Astrophysics Data System (ADS)

    Shironosova, G. P.; Kolonin, G. R.; Borovikov, A. A.; Borisenko, A. S.

    2016-08-01

    Thermodynamic calculations using the HCh software were made for mineral equilibriums including REEs in the fluoride-sulfide-chloride-carbonate-sulfate-system in the presence of Na, Ca, and P with fluids of various acidities-alkalinities [11]. The obtained thermodynamic characteristics of thenardite allowed us to carry out the calculations for this phase under complicated hydrothermal conditions simulating the presence of oxidized fluids at 500-100°C and 2000-125 bar. Among other solid phases, REEs-fluorite, monazite, and REE-F-apatite were formed as CaF2-(Ln,Y)F3, LnPO4, and Ca5(PO4)3F-(Ln,Y)3(PO4)3 ideal solid solutions, respectively, where Ln is La, Ce, Pr, Nd, Sm, Eu, and Gd. Xenotime, anhydrite, elemental sulfur, and calcite were found as well.

  10. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb).

    PubMed

    Cardona-Serra, S; Clemente-Juan, J M; Coronado, E; Gaita-Ariño, A; Camón, A; Evangelisti, M; Luis, F; Martínez-Pérez, M J; Sesé, J

    2012-09-12

    A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP(5)W(30)O(110)](12-) (Ln(3+) = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory.

  11. Synthesis, structure and spectroscopy of the complexes tetrakis (. mu. -trichloroacetato)bis(trichloroacetatoethanol-(1,10-phenanthroline-N,N prime )Ln(III)) (Ln = Pr, Nd and Er)

    SciTech Connect

    Nan Dong ); Hong Wang; Barton, R.J.; Robertson, B.E. )

    1990-01-01

    Tetrakis({mu}-trichloroacetato)bis(trichloroacetatoethanol-(1,10-phenanthroline-N,N{prime})Ln(III)) (Ln = Pr, Nd and Er) complexes have been synthesized and their crystal structures have been determined by X-ray diffraction at reduced temperatures. The three structures are isomorphous: monoclinic, P2{sub 1}/c. Each lanthanide ion is coordinated by four bridging bidentate trichloroacetate ligands, one monodentate trichloroacetate ligand, one ethanol ligand and one phenanthroline ligand, yielding a distorted square antiprismatic configuration. The two lanthanide ions are connected by the four bridging bidentate trichloroacetate ligands to form a dimer. The NMR spectra of the complexes confirm the coordination of ethanol ligands to the lanthanide ions.

  12. P-type conductive amorphous oxides of transition metals from solution processing

    NASA Astrophysics Data System (ADS)

    Li, Jinwang; Kaneda, Toshihiko; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-07-01

    We report a series of solution-processed p-type conductive amorphous Ln-M-O (a-Ln-M-O, where M = Ru, Ir, and Ln is a lanthanide element except Ce) having low resistivities (10-3 to 10-2 Ω cm). These oxides are thermally stable to a high degree, being amorphous up to 800 °C, and processable below 400 °C. Their film surfaces are smooth on the atomic scale, and the process allows patterning simply by direct imprinting without distortion of the pattern after annealing. These properties have high potential for use in printed electronics. The electron configurations of these oxides are apparently different from existing p-type oxides.

  13. Stratification and Destratification of Liquid Nitrogen LN2 in a Cryogenic Tank

    NASA Astrophysics Data System (ADS)

    Arndt, Tim

    Interactions between thermodynamic aspects and sloshing propellant occur frequently in cryogenic upper stages, particularly during the lift off phase, where typical rolling and rotation maneuvers are carried out that lead to larger sloshing motions during the first minutes after lift off and during missions including multiple restarts. Experimental investigations of these phenomena are of major importance concerning the next generation of cryogenic upper stages. In order to investigate the coupled phenomena, benchmark analyses are currently being carried out that focus on sloshing of LN2 in a cylindrical container. This paper concerns on the characteristics of sloshing liquid nitrogen LN2 in a closed cylindrical glass Dewar vessel in a 1g environment. The pressure and the temperature are measured inside the vessel, whereas the temperature sensors are located at defined positions in the ullage and the liquid phase. The pressure is measured in the ullage assuming a constant pressure in the vessel. The lateral vessel motion is induced by an electric engine equipped with a crank drive to generate the approximately harmonic oscillation for the excitation. In order to investigate occurring pressure drop phenomena, the vessel in filled with LN2 up to a constant fill level. As a thermal boundary condition, a heater is installed at the top inside of the Dewar vessel. The heat input without heater in a closed system is measured to be 4 W. After closing the vessel, a thermal stratification is developed in the ullage. With increasing pressure the temperature increases assuming that gaseous nitrogen can be considered as ideal gas. Reaching a certain pressure level, sloshing is induced and the pressure as well as the temperature in the ullage decrease in the order of 20 to 50 kPa. For a given liquid, this pressure drop phenomenon is in the first instance a function of the liquid subcooling caused by the selfpressurization but also depended on sloshing parameters such as

  14. Intracluster interactions in butterfly {Fe3LnO2} molecules with the non-Kramers ions Tb(III) and Ho(III)

    NASA Astrophysics Data System (ADS)

    Badía-Romano, L.; Rubín, J.; Bartolomé, F.; Bartolomé, J.; Luzón, J.; Prodius, D.; Turta, C.; Mereacre, V.; Wilhelm, F.; Rogalev, A.

    2015-08-01

    The intracluster exchange interactions within the "butterfly" [Fe3Ln (μ3-O )2(CCl3COO )8(H2O )(THF )3] molecules, where Ln(III) represents a lanthanide cation, have been determined by a combination of x-ray magnetic circular dichroism (XMCD) and vibrating sample magnetometry (VSM) along with an interaction model. We have studied the compounds with Ln =Tb and Ho, both non-Kramers lanthanides and with high uniaxial anisotropy, and Ln =Lu (III) and Y(III) as pseudolanthanides, which supply nonmagnetic Ln reference cases. At low temperature, the three Fe atoms can be considered as a self-unit with total spin SFe 3=5 /2 . Using the element selectivity of the XMCD magnetometry, measured at the Ln L2 ,3 edges, together with the VSM measurements, the local magnetization of the Ln ion and the Fe3 subcluster, as a function of the field and low temperature (T ≈2.5 K ), has been determined separately. These results are described quantitatively in the framework of a theoretical model based on an effective spin Hamiltonian, which considers the competing effects of intracluster interactions and the external applied magnetic field. The Ln -Fe3 exchange interaction within the {Fe3LnO2} cluster has been determined to be antiferromagnetic, in both Tb and Ho compounds, with JFeTb/kB=-0.13 (1 ) K and JFeHo/kB=-0.18 (1 ) K , respectively. In both cases, a field-induced reorientation of the Fe3 and Ln spins from antiparallel to parallel orientation takes place at a threshold field μ0H =1.1 and 2 T, for the {Fe3TbO2} and {Fe3HoO2} compounds, respectively. By comparison with other compounds of the series with uniaxial anisotropy, it is concluded that the polarizability of the Fe3 subcluster magnetic moment decreases in the trend {Fe3YO2}→{Fe3TbO2}→{Fe3HoO2}→{Fe3DyO2} , because of the increasing opposition of the exchange antiferromagnetic field caused by the Ln ion. In the Ln =Tb , Ho, and Dy, the magnetization of the whole molecule is dominated by the anisotropy of the Ln ion

  15. Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties.

    PubMed

    Datcu, Angela; Roques, Nans; Jubera, Véronique; Imaz, Inhar; Maspoch, Daniel; Sutter, Jean-Pascal; Rovira, Concepció; Veciana, Jaume

    2011-03-21

    A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems.

  16. Generation of Constant Life Diagram under Elevated Temperature Ratcheting of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Sandhya, R.; Mathew, M. D.

    2016-04-01

    Combined influence of mean stress and stress amplitude on the cyclic life under elevated temperature (823-923 K) ratcheting of 316LN austenitic stainless steel is discussed. Constant life Haigh diagrams have been generated, using different combinations of stress amplitude and mean stress. In the plastic domain, the allowable stress was found to increase or decrease with mean stress depending on the temperature and combination of mean stress - stress amplitude employed. Strong influence of dynamic strain aging (DSA) was found at 823 K which affected the mode of deformation of the material in comparison with 923 K. Failure mode expressed through a fracture mechanism map was found to change from fatigue to necking depending on the test temperature as well as combinations of mean stress and stress amplitude. Occurrence of DSA at 823 K proved to be beneficial by way of extending the safe zone of operation to higher R-ratios in comparison with 923 K.

  17. Aqueous Ln(III) Luminescence Agents Derived from a Tasty Precursor

    SciTech Connect

    Jocher, C.J.; Moore, E.G.; Pierce, J.D.; Raymond, K.N.

    2008-06-02

    The synthesis, aqueous stability and photophysical properties are reported for a novel tetradentate ligand derived from maltol, a commonly used flavor enhancer. In aqueous solution, this chelate forms stable complexes with Ln(III) cations, and sensitized emission was observed from Eu(III), Yb(III), and Nd(III). A comparison with recently reported and structurally analogous ligands reveals a slightly higher basicity but lower complex stability with Eu(III) [pEu = 14.7 (1)]. A very poor metal centered quantum yield with Eu(III) was observed ({Phi}{sub tot} = 0.04%), which can be rationalized by the similar energy of the ligand triplet state and the Eu(III) {sup 5}D{sub 0} emissive level. Instead, sensitized emission from the Yb(III) and Nd(III) cations was observed, which emit in the Near Infra-Red (NIR).

  18. Effect of surface polishing and vacuum firing on electron stimulated desorption from 316LN stainless steel

    SciTech Connect

    Malyshev, Oleg B. Hogan, Benjamin T.; Pendleton, Mark

    2014-09-01

    The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces only the H{sub 2} ESD yield by a factor 2.

  19. Evaluation of Cavitation-Erosion Resistance of 316LN Stainless Steel in Mercury Containing Metallic Solutes

    SciTech Connect

    Pawel, Steven J; Mansur, Louis K

    2006-08-01

    Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure Hg and in Hg with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included 1 wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure Hg. Qualitatively, each solute appeared to increase the post-test wetting tenacity of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape.

  20. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    SciTech Connect

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  1. Up/down conversion luminescence and charge compensation investigation of Ca0.5Y1-x(WO4)2:xLn3+ (Ln = Pr, Sm, Eu, Tb, Dy, Yb/Er) phosphors

    NASA Astrophysics Data System (ADS)

    Mahalingam, Venkatakrishnan; Thirumalai, Jagannathan; Krishnan, Rajagopalan; Mantha, Srinivas

    2016-01-01

    Microstructures of Ca0.5Y(1-x)(WO4)2:xLn3+ (Ln = Pr, Sm, Eu, Tb, Dy, Yb/Er) phosphors were prepared via the solid-state reaction method. X-ray diffraction, scanning electron microscopy and photoluminescence were used to characterize the prepared phosphor samples. The results reveal that the phosphor samples have single phase scheelite structures with tetragonal symmetry of I41/a. The down/up conversion photoluminescence of the Ca0.5Y(1-x)(WO4)2:xLn3+ (Ln = Pr, Sm, Eu, Tb, Dy, Yb/Er) phosphors properties reveal characteristic visible emissions. The energy transfer process, fluorescence lifetime and color coordinates are discussed in detail. Furthermore, the phosphor Ca0.5Y(1-x)(WO4)2:xPr3+ co-doped with alkali chlorides shows the enhancement of luminescence, which was found in the sodium chloride co-doped powder phosphor. The photometric characteristics indicate the suitability of the inorganic powder phosphors for solid-state lighting and display applications.

  2. Synthesis and crystal structure of Ln{sub 2}M{sup 2+}Ge{sub 4}O{sub 12}, Ln=rare-earth element or Y; M=Ca, Mn, Zn

    SciTech Connect

    Zubkov, Vladimir G.; Tarakina, Nadezda V.; Leonidov, Ivan I.; Tyutyunnik, Alexander P.; Surat, Ludmila L.; Melkozerova, Marina A.; Zabolotskaya, Elena V.; Kellerman, Dina G.

    2010-05-15

    The crystal structure of the promising optical materials Ln{sub 2}M{sup 2+}Ge{sub 4}O{sub 12}, where Ln=rare-earth element or Y; M=Ca, Mn, Zn and their solid solutions has been studied in detail. The tendency of rare-earth elements to occupy six- or eight-coordinated sites upon iso- and heterovalent substitution has been studied for the Y{sub 2-x}Er{sub x}CaGe{sub 4}O{sub 12} (x=0-2), Y{sub 2-2x}Ce{sub x}Ca{sub 1+x}Ge{sub 4}O{sub 12} (x=0-1), Y{sub 2}Ca{sub 1-x}Mn{sub x}Ge{sub 4}O{sub 12} (x=0-1) and Y{sub 2-x}Pr{sub x}MnGe{sub 4}O{sub 12} (x=0-0.5) solid solutions. A complex heterovalent state of Eu and Mn in Eu{sub 2}MnGe{sub 4}O{sub 12} has been found. - Graphical abstract: Crystal structure of Ln{sub 2}MGe{sub 4}O{sub 12}, where Ln=rare-earth element or Y; M=Ca, Mn, Zn.

  3. High-pressure synthesis and structures of lanthanide germanides of LnGe{sub 5} (Ln=Ce, Pr, Nd, and Sm) isotypic with LaGe{sub 5}

    SciTech Connect

    Fukuoka, Hiroshi; Baba, Kazuya; Yoshikawa, Mayumi; Ohtsu, Fumiko; Yamanaka, Shoji

    2009-08-15

    A series of lanthanide penta-germanides LnGe{sub 5} (Ln=Ce, Pr, Nd and Sm) has been prepared by high-pressure (5-13 GPa) and high-temperature (500-1200 deg. C) reaction. CeGe{sub 5} crystallizes in an orthorhombic unit cell (S.G. Immm (71)) with a=4.000(5) A, b=6.192(5) A, c=9.86(1) A, and V=244.1(5) A{sup 3}. The new germanides are isotypic with LaGe{sub 5} consisting of a Ge covalent network with tunnels where guest ions Ln{sup 3+} are situated. The network is composed of sublayers with edge-sharing Ge six-membered rings with only boat conformation. The sublayers are connected by rare eight-coordinated Ge atoms. The cell volume of the compounds systematically decreases from La to Sm compounds, except for CeGe{sub 5,} owing to the lanthanide contraction. The lattice constants of CeGe{sub 5} are smaller than those of the Pr compound because it contains Ce{sup 4+} ions. CeGe{sub 5} is paramagnetic above 2 K, but does not obey the Curie-Weiss law. PrGe{sub 5} and NdGe{sub 5} are Curie-Weiss type paramagnets with Weiss temperatures of -3.3 and -18.4 K. SmGe{sub 5} shows an antiferromagnetic transition at 10.4 K. - Graphical abstract: A series of lanthanide penta-germanides LnGe{sub 5} (Ln=Ce, Pr, Nd and Sm) has been prepared by high-pressure (5-13 GPa) and high-temperature (500-1200 deg. C) reaction.

  4. Perovskite-Like Polar Lanthanide Formate Frameworks of [NH2NH3][Ln(HCOO)4] (Ln = Tb-Lu and Y): Synthesis, Structures, Magnetism, and Anisotropic Thermal Expansion.

    PubMed

    Zhao, Tian-Meng; Chen, Sa; Shang, Ran; Wang, Bing-Wu; Wang, Zhe-Ming; Gao, Song

    2016-10-17

    A series of isostructural hydrazinium lanthanide (Ln) formate framework compounds of [NH2NH3][Ln(HCOO)4] for Ln(3+) ions from Tb(3+) to Lu(3+) and Y(3+) have been successfully prepared by utilizing NH2NH3(+). The compounds crystallize in orthorhombic polar space group Pca21, with cell parameters at 180 K of a = 18.2526(7)-18.1048(5) Å, b = 6.5815(2)-6.5261(2) Å, c = 7.6362(3)-7.5044(2) Å, and V = 917.33(6)-886.67(4) Å(3), showing the effect of lanthanide contraction. The compounds possess polar perovskite-like structures incorporating the hydrazinium cations in the cavities of the NaCl-like framework, in which the Ln(3+) ions in a bicapped trigonal prism are connected by anti-anti and syn-anti formate groups. The N-H···Oformate hydrogen-bonding interactions are between the hydrazinium cations and the anionic framework. One anti-anti formate group is frustrated by the competitive N-H···Oformate hydrogen-bonding interactions. It thus twists or flips upon warming, resulting in large anisotropic thermal expansion and negative thermal expansion below 180 K. A comparison with the transition metal and magnesium analogues revealed that the structural compactness, tighter binding of the hydrazinium cation by the framework, and symmetrically better match between the framework and ammonium cation for Ln compounds could inhibit the occurrence of phase transition in the series. The IR spectroscopic, thermal, and magnetic properties are investigated.

  5. Synthesis, crystal structure and optical investigation of the new phosphates: Na{sub 7}Mg{sub 13}Ln(PO{sub 4}){sub 12} (Ln=La, Eu)

    SciTech Connect

    Jerbi, Hasna; Hidouri, Mourad; Glorieux, Benoit; Darriet, Jacques; Garcia, Alain; Jubera, Veronique; Ben Amara, Mongi

    2010-08-15

    Two new isostructural rare earth phosphates Na{sub 7}Mg{sub 13}Ln(PO{sub 4}){sub 12} (Ln=La, Eu) have been synthesized and investigated by X-ray diffraction and optical measurements. They crystallize in the orthorhombic system with the Cmc2{sub 1} space group (Z=4). The crystal structure exhibits a new type of framework built up from LnO{sub 8} (Ln=La, Eu), MO{sub 6} (M=0.5Mg+0.5Na) and MgO{sub x} (x=5, 6) polyhedra and PO{sub 4} tetrahedra linked by common corner, edge or face. It can be described in terms of [Mg{sub 4}MP{sub 4}O{sub 22}]{sub {infinity}} layers stacked along the a direction. These layers are interconnected by [Mg{sub 4}LnP{sub 4}O{sub 36}]{sub {infinity}} undulating chains spreading along the b direction. This framework delimits 6 distinct cavities occupied by Na{sup +} cations. The results of the optical study of Na{sub 7}Mg{sub 13}La{sub 1-x}Eu{sub x}(PO{sub 4}){sub 12} (x=0, 0.02, 0.1, 1) reveal the presence of two different Eu{sup 3+} ion environments whereas the X-ray study predicts the existence of only one Eu site. This difference can be explained by the possible presence of the europium element in the sodium sites with small occupancies which cannot be detected by the X-ray structural determination. - Graphical abstract: Emission spectra of Na{sub 7}Mg{sub 13}Eu(PO{sub 4}){sub 12} and Na{sub 7}Mg{sub 13}La{sub 0.9}Eu{sub 0.1}(PO{sub 4}){sub 12} compounds for {lambda}{sub exc}=240, 290 and 393.2 nm.

  6. Chiroptical Spectra of Tetrakis (+)-3-Heptafluorobutylrylcamphorate Ln(III) Complexes with an Encapsulated Alkali Metal Ion: Solution Structures as Revealed by Chiroptical Spectra

    PubMed Central

    Shirotani, Dai; Yamanari, Kazuaki; Kuroda, Reiko; Harada, Takunori; Lunkley, Jamie L.; Muller, Gilles; Sato, Hisako; Kaizaki, Sumio

    2012-01-01

    The preparation of tetrakis((+)-hfbc) lanthanide(III) complexes with an encapsulated alkali metal and ammonium ions M[Ln((+)-hfbc)4] (hereafter abbreviated as M-Ln : (+)-hfbc, (+)-heptafluorobutyrylcamphorate; M, ammonium or benzyl ammonium ions as well as alkali metal ions) was reported and discussed. The electronic circular dichroism (CD) spectra in the intraligand π–π* transition of M–Ln were examined in view of the solvent effect. Here, the concentration, alkali metal, and ammonium ion dependences are compared with the solid CD, 5D0 ← 7F0(Eu(III)) excitation spectra, circularly polarized luminescence, and vibrational circular dichroism. It has been revealed that the dodecahedral eight coordinate DD-8-M-Ln complexes in crystals are equilibrated between the diastereoselectively formed square antiprism eight coordinate SAPR-8-M-Ln and [Ln((+)-hfbc)3] in EtOH and CH3CN solutions or between the SAPR-8-M-Ln and DD-D2d(mmmm)-8-M-Ln complexes in CHCl3 solution. The observed CD couplets are found to reflect the exciton CD couplets which are useful to determine the four-bladed SAPR-(llll) absolute configuration around the lanthanide(III) ion. PMID:22945448

  7. [W(bipy)(CN)6]-: a suitable metalloligand in the design of heterotrimetallic complexes. The first Cu(II)Ln(III)W(V) trinuclear complexes.

    PubMed

    Alexandru, Maria-Gabriela; Visinescu, Diana; Madalan, Augustin M; Lloret, Francesc; Julve, Miguel; Andruh, Marius

    2012-05-07

    The first 3d-4f-5d heterotrimetallic complexes using [W(V)(bipy)(CN)(6)](-) as a metalloligand were synthesized (bipy = 2,2'-bipyridine). The structural and magnetic properties of three [Cu(II)Ln(III)W(V)] complexes (Ln = Gd, Ho, Tb) are discussed.

  8. Boiling phenomenon due to quasi-steadily and rapidly increasing heat inputs in LN 2 and LHe I

    NASA Astrophysics Data System (ADS)

    Sakurai, A.; Shiotsu, M.; Hata, K.

    Dynamic boiling processes, including the transition from a single-phase non-boiling regime to film boiling caused by exponentially increasing heat inputs, Q 0e t/τ for a wide range of periods and pressures on horizontal wires in LN 2 and LHe I were investigated. The main problem is that there are no active cavities on the wire surfaces for initial boiling in the liquids. The heat transfer processes due to increasing heat inputs with increasing rates ranging from quasi-steady to rapidly increasing ones in LN 2 were classified into three types for the pressures. The dynamic boiling processes in LHe I due to rapidly increasing heat inputs at the pressures tested here correspond to Type 3 processes including semi-direct transitions in LN 2 at pressures higher than about 1 MPa. The lower limit temperatures of boiling initiation on the wire surfaces for initial boiling in liquids at pressures due to quasi-steadily increasing heat inputs are clearly lower than the homogeneous spontaneous nucleation temperatures corresponding to these pressures. Liquid superheat close to the solid surface in LHe I was evaluated from the value of the wire surface temperature, taking off the temperature drop due to Kapitza resistance. The initial boiling temperatures due to quasi-steady heat inputs at pressures in saturated LN 2 and LHe I agreed with the values derived from the theoretical model based on the heterogeneous spontaneous nucleation in flooded cavities on the solid surface.

  9. Phthalocyanine supported dinuclear Ln(III) complexes: the solvent-induced change of magnetic properties in dysprosium(iii) analogues.

    PubMed

    Ge, Jing-Yuan; Wang, Hai-Ying; Li, Jing; Xie, Jia-Ze; Song, You; Zuo, Jing-Lin

    2017-02-24

    Three dinuclear lanthanide complexes, [Ln2(thd)4Pc]·2C6H6 (Hthd = 2,2,6,6-tetramethylheptanedione, Ln = Sm (1), Tb (2), Dy (3)), have been synthesized based on phthalocyanine (Pc). They can be reversibly transformed into [Ln2(thd)4Pc] (Ln = Sm (1'), Tb (2'), Dy (3')) via desolvation and resolvation of the lattice benzene molecules. This change generates dramatic influences on the structural and magnetic properties of the dysprosium analogue. In complex 3, one crystallographically independent metal center is observed, and it exhibits a single relaxation process of magnetization with an energy barrier of 55.7 K. Upon desolvation, the resulting complex 3' contains two types of metal centers, and shows the field-induced single-molecule magnetic behavior with two thermally activated magnetic relaxation processes. The anisotropy barriers for 3' are as high as 63.3 K and 109.6 K, respectively. This work confirms that the solvated molecules can finely tune the magnetic relaxation mechanisms.

  10. Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts.

    PubMed

    Rodríguez-Rodríguez, Aurora; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Botta, Mauro; Tripier, Raphaël; Platas-Iglesias, Carlos

    2012-12-17

    Herein, we present a new approach that combines DFT calculations and the analysis of Tb(III)-induced (1)H NMR shifts to quantitatively and accurately account for the contact contribution to the paramagnetic shift in Ln(III) complexes. Geometry optimizations of different Gd(III) complexes with macrocyclic ligands were carried out using the hybrid meta-GGA TPSSh functional and a 46 + 4f(7) effective core potential (ECP) for Gd. The complexes investigated include [Ln(Me-DODPA)](+) (H(2)Me-DODPA = 6,6'-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid, [Ln(DOTA)(H(2)O)](-) (H(4)DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), [Ln(DOTAM)(H(2)O)](3+) (DOTAM = 1,4,7,10- tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane), and related systems containing pyridyl units (Ln = Gd, Tb). Subsequent all-electron relativistic calculations based on the DKH2 approximation, or small-core ECP calculations, were used to compute the (1)H hyperfine coupling constants (HFCCs) at the ligand nuclei (A(iso) values). The calculated A(iso) values provided direct access to contact contributions to the (1)H NMR shifts of the corresponding Tb(III) complexes under the assumption that Gd and Tb complexes with a given ligand present similar HFCCs. These contact shifts were used to obtain the pseudocontact shifts, which encode structural information as they depend on the position of the nucleus with respect to the lanthanide ion. An excellent agreement was observed between the experimental and calculated pseudocontact shifts using the DFT-optimized geometries as structural models of the complexes in solution, which demonstrates that the computational approach used provides (i) good structural models for the complexes, (ii) accurate HFCCs at the ligand nuclei. The methodology presented in this work can be classified in the context of model-dependent methods, as it relies on the use of a specific molecular structure obtained from DFT

  11. Examination of Compatibility of Potentially Cavitation-Resistant Modifications of Type 316LN Stainless Steel with Mercury in a Thermal Convection Loop

    SciTech Connect

    Pawel, SJ

    2002-08-29

    A 316L stainless steel thermal convection loop (TCL) containing a variety of stainless steel coupons circulated mercury for 2000 h. The TCL conditions included a maximum temperature of 307 C, a maximum temperature gradient of 90 C, and a Hg velocity of about 1.4 m/min. In addition to mill-annealed/surface-ground 316LN coupons serving as the baseline material, other coupons included 316LN that was 50% cold-worked, 316LN that was given a proprietary surface hardening treatment termed ''kolsterizing,'' and Nitronic 60. The purpose of this test was to examine Hg compatibility with these modest variations of annealed 31 6LN stainless steel that are considered potential improvements over annealed 31 6LN for cavitation-erosion resistance in the Spallation Neutron Source (SNS) target containment system. The results indicated negligible weight change for each coupon type, no significant indication of attack or surface roughening, and generally no interaction with Hg.

  12. A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties.

    PubMed

    Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique

    2016-06-21

    Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region.

  13. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  14. Syntheses, structure, and luminescent properties of novel hydrated rare earth borates Ln2B6O10OH4•H2O (Ln = Pr, Nd, Sm, Eu, Gd, Dy, Ho, and Y).

    PubMed

    Cong, Rihong; Yang, Tao; Wang, Zheming; Sun, Junliang; Liao, Fuhui; Wang, Yingxia; Lin, Jianhua

    2011-03-07

    Ln(2)B(6)O(10)(OH)(4)•H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) Å, and β = 108.29(3)°. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)•H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(6)O(10)(OH)(4)•H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)•H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11)(OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)•H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)•H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) → (7)F(2) transition), which may be potential red phosphors.

  15. Heptanuclear lanthanide [Ln7] clusters: from blue-emitting solution-stable complexes to hybrid clusters.

    PubMed

    Canaj, Angelos B; Tsikalas, George K; Philippidis, Aggelos; Spyros, Apostolos; Milios, Constantinos J

    2014-09-07

    The use of LH3 (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) and aibH (2-amino-isobutyric acid) in 4f chemistry has led to the isolation of eight new isostructural lanthanide complexes. More specifically, the reaction of the corresponding lanthanide nitrate salt with LH3 and aibH in MeOH, under solvothermal conditions in the presence of NEt3, led to the isolation and characterization of seven complexes with the general formulae [Ln(III)7(OH)2(L')9(aib)]·4MeOH (Ln = Gd, ·4MeOH; Tb, ·4MeOH; Dy, ·4MeOH; Ho, ·4MeOH; Er, ·4MeOH; Tm, ·4MeOH; Yb, ·4MeOH L' = the dianion of the Schiff base between naphthalene aldehyde and 2-amino-isobutyric acid). Furthermore, the isostructural Y(III) analogue, cluster [Y(III)7(OH)2(L')9(aib)]·4MeOH (·4MeOH), was synthesized in a similar manner to . The structure of all eight clusters describes a distorted [M(III)6] octahedron which encapsulates a seventh M(III) ion in an off-centre fashion. Dc magnetic susceptibility studies in the 5-300 K range for complexes reveal the presence of dominant antiferromagnetic exchange interactions within the metallic clusters as evidenced by the negative Weiss constant, θ, while ac magnetic susceptibility measurements show temperature and frequency dependent out-of-phase signals for the [Dy(III)7] analogue (·4MeOH), suggesting potential single molecule magnetism character. Furthermore, for complex , simulation of its dc magnetic susceptibility data yielded very weak antiferromagnetic interactions within the metallic centres. Solid-state emission studies for all clusters display ligand-based emission, while extended 1D and 2D NMR studies for ·4MeOH reveal that the species retain their structural integrity in solution. In addition, TGA measurements for , and revealed excellent thermal stability up to 340 °C for the clusters.

  16. Lower denticity leading to higher stability: structural and solution studies of Ln(III)-OBETA complexes.

    PubMed

    Negri, Roberto; Baranyai, Zsolt; Tei, Lorenzo; Giovenzana, Giovanni B; Platas-Iglesias, Carlos; Bényei, Attila C; Bodnár, Judit; Vágner, Adrienn; Botta, Mauro

    2014-12-01

    The heptadentate ligand OBETA (2,2'-oxybis(ethylamine)-N,N,N',N'-tetraacetic acid) was reported to form complexes with Ln(3+) ions more stable than those formed by the octadentate and more popular congener EGTA (ethylene glycol O,O'-bis(ethylamine)-N,N,N',N'-tetraacetic acid). The structural features leading to this puzzling coordination paradox were investigated by X-ray diffraction, solution state NMR, molecular modeling, and relaxometric studies. The stability constant of Gd(OBETA) (log KGdL = 19.37, 0.1 M KCl) is 2 orders of magnitude higher than that of the higher denticity analogue Gd(EGTA) (log KGdL = 17.66, 0.1 M KCl). The half-lives (t1/2) for the dissociation reactions of Gd(OBETA) and Gd(EGTA) ([Cu(2+)]tot = 0.2 mM, [Cit(3-)]tot = 0.5 mM, [PO4(3-)]tot = 1.0 mM, and [CO3(2-)]tot = 25 mM at pH = 7.4 and 25 °C in 0.1 M KCl solution) are 6.8 and 0.63 h, respectively, reflecting the much higher inertness of Gd(OBETA) near physiological conditions. NMR studies and DFT calculations using the B3LYP functional and a large-core ECP indicate that the [Gd(OBETA)(H2O)2](-) complex most likely exists in solution as the Δ(λλ)(δδδδ)A/Λ(δδ)(λλλλ)A enantiomeric pair, with an activation free energy for the enantiomerization process of ∼40 kJ·mol(-1). The metal ion is nine-coordinate by seven donor atoms of the ligand and two inner-sphere water molecules. The X-ray crystal structure of [C(NH2)3]3[Lu(OBETA)(CO3)]·2H2O is in agreement with the predictions of DFT calculations, the two coordinated water molecules being replaced by a bidentate carbonate anion. The (1)H NMRD and (17)O NMR study revealed that the two inner-sphere water molecules in Gd(OBETA) are endowed with a relatively fast water exchange rate (kex(298) = 13 × 10(6) s(-1)). The higher thermodynamic stability and inertness of Ln(OBETA) complexes, peaking in the center of the 4f series, combined with the presence of two coordinated water molecules suggests that Gd(OBETA) is a promising

  17. Series of isostructural planar lanthanide complexes [Ln(III)4(mu3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue.

    PubMed

    Abbas, Ghulam; Lan, Yanhua; Kostakis, George E; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K

    2010-09-06

    A series of five isostructural tetranuclear lanthanide complexes of formula [Ln(4)(mu(3)-OH)(2)(mdeaH)(2)(piv)(8)], (mdeaH(2) = N-methyldiethanolamine; piv = pivalate; Ln = Tb (1), Dy (2), Ho (3), Er (4), and Tm (5)) have been synthesized and characterized. These clusters have a planar "butterfly" Ln(4) core. Magnetically, the Ln(III) ions are weakly coupled in all cases; the Dy(4) compound 2 shows Single Molecule Magnet (SMM) behavior.

  18. Raman spectra of 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ compounds (Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, Yb, Tb)

    SciTech Connect

    Mel'nik, N.N.; Tsapenko, L.M.

    1988-03-01

    This work uses Raman and x-ray phase analysis methods to investigate compounds of the type 2Ln/sub 2/O/sub 3/ /times/ 9TiO/sub 2/ (where Ln = Ce, La, Nd, Pr, Sm, Eu, Gd, Tm, and Yb). The compounds were synthesized by melting in an optical beam on a water-cooled substrate (quench rate approx. 10/sup 2/ deg/sec) and by rapid quenching of a melt cupel by slamming with water-cooled blocks quench rate approx. 10/sup 5/ - 10/sup 6/ deg/sec. The x-ray diffraction study was done on a DRON-2 diffractometer. The Raman light spectra were recorded with a DFS-24 double monochromator employing argon laser excitation.

  19. Ag-LnBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (Ln = Y, Nd, Sm, Eu, and Yb) superconductor coatings on stainless steel

    SciTech Connect

    Yokogawa, Y.; Ansart, F.; Bressolles, J.C.; Roux, P.; Traverse, J.P.

    1997-07-01

    Ag-doped LnBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (Ln = Y, Nd, Sm, Eu, and Yb) films on two kinds of stainless steel substrate were prepared by the method of direct deposition and heat treatment. The critical temperatures of the samples were evaluated at 91--92 K, independent of silver content and thickness of the coating layer. The resistance of the samples decreased with silver addition. The SEM observation showed a border between the coating layer and the substrate. The elemental analysis by EPMA revealed that aluminum aggregated in the border. The diffusion of iron ions in the coating layer was hindered by the existence of the border and affected by the quantity of aluminum. The width of the border increased with increasing heat-treatment time, governed by the diffusion of metals from the metallic substrate to the coating layer. This fairly agreed with the results of impedance measurements.

  20. Effects of Out-of-Plane Disorder on the Nodal Quasiparticle and Superconducting Gap in Single-Layer Bi_2Sr_1.6Ln_0.4CuO_6 delta (Ln = La, Nd, Gd)

    SciTech Connect

    Hashimoto, M.

    2011-01-04

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi{sub 2}Sr{sub 1.6}Ln{sub 0.4}CuO{sub 6+{delta}} (Ln = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region.

  1. An anti CuO2-type metal hydride square net structure in Ln2M2As2H(x) (Ln=La or Sm, M=Ti, V, Cr, or Mn).

    PubMed

    Mizoguchi, Hiroshi; Park, SangWon; Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya; Hosono, Hideo

    2015-03-02

    Using a high pressure technique and the strong donating nature of H(-), a new series of tetragonal La2Fe2Se2O3-type layered mixed-anion arsenides, Ln2M2As2H(x), was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x≈3). In these compounds, an unusual M2H square net, which has anti CuO2 square net structures accompanying two As(3-) ions, is sandwiched by (LaH)2 fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Å was confirmed in La2Ti2As2H2.3, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters.

  2. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  3. Corrosion Fatigue Behavior of 316LN SS in Acidified Sodium Chloride Solution at Applied Potential

    NASA Astrophysics Data System (ADS)

    Poonguzhali, A.; Pujar, M. G.; Mallika, C.; Mudali, U. Kamachi

    2015-05-01

    The influence of acidified 1 M NaCl solution by addition of 2 ml/L of HCl on the cyclic plastic deformation of AISI Type 316LN SS containing 0.07 wt.% and 0.22 wt.% N was investigated as a function of the applied potentials. The corrosion fatigue (CF) behavior of stainless steel (SS) was explained vis-a-vis the dislocation behavior, the propensity to form microcracks, and the evolution of the current transients based on the studies carried out at both room-temperature and boiling conditions. CF experiments were conducted using round tensile specimens at a stress ratio of 0.5 and a frequency of 0.1 Hz. Two different kinds of damage mechanisms were observed (I) the damage mechanism in the stable-passive state was correlated with the localization of the anodic dissolution due to a depassivation-repassivation process, whereas (II) the cyclic stress induced pitting corrosion in the metastable pitting state, which resulted in formation of microcracks. The study of the microcracking process and its evolution is a key to the physical mechanism by which the fatigue life of stainless steels would be affected in an aqueous corrosive solution under the applied potential.

  4. LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy.

    PubMed

    McLaughlin, Mark F; Robertson, David; Pevsner, Paul H; Wall, Jonathan S; Mirzadeh, Saed; Kennel, Stephen J

    2014-02-01

    For targeted alpha therapy (TAT) with 225Ac, daughter radioisotopes from the parent emissions should be controlled. Here, we report on a second-generation layered nanoparticle (NP) with improved daughter retention that can mediate TAT of lung tumor colonies. NPs of La3+, Gd3+, and 225Ac3+ ions were coated with additional layers of GdPO4 and then coated with gold via citrate reduction of NaAuCl4. MAb 201b, targeting thrombomodulin in lung endothelium, was added to a polyethylene glycol (dPEG)-COOH linker. The NPs:mAb ratio was quantified by labeling the mAb with 125I. NPs showed 30% injected dose/organ antibody-mediated uptake in the lung, which increased to 47% in mice pretreated with clodronate liposomes to reduce phagocytosis. Retention of daughter 213Bi in lung tissue was more than 70% at one hour and about 90% at 24 hours postinjection. Treatment of mice with lung-targeted 225Ac NP reduced EMT-6 lung colonies relative to cold antibody competition for targeting or phosphate-buffered saline injected controls. We conclude that LnPO4 NPs represent a viable solution to deliver the 225Ac as an in vivo α generator. The NPs successfully retain a large percentage of the daughter products without compromising the tumoricidal properties of the α-radiation.

  5. Syntheses, structures, and properties of high-nuclear 3d-4f clusters with amino acid as ligand: {Gd6Cu24}, {Tb6Cu26}, and {(Ln6Cu24)2Cu} (Ln = Sm, Gd).

    PubMed

    Zhang, Jian-Jun; Hu, Sheng-Min; Xiang, Sheng-Chang; Sheng, Tianlu; Wu, Xin-Tao; Li, Ya-Min

    2006-09-04

    Four novel high-nuclear 3d-4f heterometallic clusters were obtained through the self-assembly of Ln(III), Cu(II), and amino acid ligands (2-methylalanine (mAla), glycine (Gly), and L-proline (Pro), respectively). The metal skeleton of cluster 1, [Gd6Cu24(mu3-OH)30(mAla)16(ClO4)(H2O)22].(ClO4)17.(OH)2.(H2O)2(0), may be described as a huge {Gd6Cu12} octahedron connected with 12 additional Cu(II) ions. The structure of cluster 2, Na4[Tb6Cu26(mu3-OH)30(Gly)18(ClO4)(H2O)22].(ClO4)25.(H2O)42, may be described as a {Tb6Cu24} main structure connected with two [Cu(Gly)(H2O)2]+ groups. Compounds {[Ln6Cu24(mu3-OH)30(Pro)12(Ac)6(ClO4)(H2O)13]2Cu(Pro)2}.(ClO4)18.(OH)16.(H2O)55 (Ln= Sm (3), Gd (4)) are 61-nuclear clusters, which represent the largest known 3d-4f clusters so far, the structure can be described as two {Ln6Cu24} octahedral units connected by a trans-Cu(proline)2 bridge. The electrical conductivity measurements reveal that they are temperature-sensitive semiconductors. The magnetic susceptibility measurements display that compound 4 is ferromagnetic.

  6. Synthesis, structure, and luminescence property of a series of Ag-Ln coordination polymers with the N-heterocyclic carboxylato ligand

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Chen, Chong; Gao, Yan; Zhao, Ran; Wang, Xiuyan; Lü, Chunxin; Chi, Yuxian; Niu, Shuyun

    2016-03-01

    Six Ln-Ag coordination polymers {[LnAg2(IN)4(H2O)5]·NO3·2H2O}n (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg2(IN)4(H2O)2]·NO3·H2O}n (3), [LnAg(pdc)2]n (Ln=Eu(4) and Pr (5), H2pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc)2(H2O)4]n (6) (H2bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV-vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)-(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or in the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln-Ag coordination polymers. This can be attributed to the tune of inner levels in Ln-Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV-vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework.

  7. Simple correction for the sample shape and radial offset effects on SQUID magnetometers: Magnetic measurements on Ln{sub 2}O{sub 3} (Ln=Gd, Dy, Er) standards

    SciTech Connect

    Morrison, Gregory; Loye, Hans-Conrad zur

    2015-01-15

    An increased focus on magnetic measurements of oriented single crystals, thin films, and magnetically dilute systems has led to a demand for the measurement of weak magnetic moments. This level of sensitivity and precision can be achieved on SQUID magnetometers by decreasing the size of the detection coils. However, the smaller detection coils can amplify two errors in the magnitude of the measured moment, the sample shape and radial offset effects, which were small and typically unaccounted for on previous magnetometers. We report a simple method to determine the radial offset of a sample by taking advantage of the two basic scan modes, DC and lock-in, typically used on magnetometers. This technique allows for the correction of the sample shape and radial offset effects in order to obtain the true moment of a sample. To show the efficacy of this technique, we report the magnetic properties of Ln{sub 2}O{sub 3} (Ln=Gd, Dy, Er). - Graphical abstract: Correction for the sample shape and radial offset effects on SQUID magnetometers using a combination of DC and VSM scan data. - Highlights: • Sample shape and radial offset effects alter the moment measured by magnetometers. • We present a simple method to correct for these sample effects on magnetometers. • We measure magnetic susceptibilities of Ln{sub 2}O{sub 3} to show the efficacy of this method.

  8. Crystal structure of Ln {sub 1/3}NbO{sub 3} (Ln=Nd, Pr) and phase transition in Nd{sub 1/3}NbO{sub 3}

    SciTech Connect

    Zhang Zhaoming Howard, Christopher J.; Kennedy, Brendan J.; Knight, Kevin S.; Zhou Qingdi

    2007-06-15

    The crystal structure of the A-site deficient perovskite Ln {sub 1/3}NbO{sub 3} (Ln=Nd, Pr) at room temperature has been determined, for the first time, as orthorhombic in space group Cmmm using high-resolution neutron powder diffraction. Pertinent features are the alternation of unoccupied layers of A-sites and layers partly occupied by Ln cations, as well as out-of-phase tilting of the NbO{sub 6} octahedra around an axis perpendicular to the direction of the cation/vacancy ordering. The phase transition behaviour of Nd{sub 1/3}NbO{sub 3} has also been studied in situ. This compound undergoes a continuous phase transition at around 650 deg. C to a tetragonal structure in space group P4/mmm due to the disappearance of the octahedral tilting. The analysis of spontaneous strains shows that this phase transition is tricritical in nature. - Graphical abstract: Temperature dependence of the measured lattice parameters through the orthorhombic to tetragonal phase transition in the A-site deficient perovskite Nd{sub 1/3}NbO{sub 3}.

  9. Structural phase transitions and crystal chemistry of the series Ba{sub 2} LnB'O{sub 6} (Ln=lanthanide and B'=Nb{sup 5+} or Sb{sup 5+})

    SciTech Connect

    Saines, Paul J.; Kennedy, Brendan J. Elcombe, Margaret M.

    2007-02-15

    The structures of 28 compounds in the two series Ba{sub 2} LnSbO{sub 6} and Ba{sub 2} LnNbO{sub 6} have been examined using synchrotron X-ray and in selected cases neutron powder diffraction at, below and above ambient temperature. The antimonate series is found to undergo a sequence of phase transitions from monoclinic to rhombohedral to cubic symmetry with both decreasing ionic radii of the lanthanides and increasing temperature. Compounds in the series Ba{sub 2} LnNbO{sub 6}, on the other hand, feature an intermediate tetragonal structure instead of the rhombohedral structure exhibited by the antimonates. This difference in symmetry is thought to be caused by {pi}-bonding in the niobates that is absent in the antimonates. The bonding environments of the cations in these compounds have also been examined with overbonding of the lanthanide and niobium cations being caused by the unusually large B-site cations. - Graphical abstract: Lattice parameters versus temperature for Ba{sub 2}NdNbO{sub 6}. The formation of the I4/m tetragonal phase contrasts with the antimonate series where a rhombohedral structure occurs instead. This difference is believed to be caused by the presence of {pi}-bonding present in the niobates but absent in the antimonates.

  10. The ionothermal synthesis of metal organic frameworks, Ln(C 9O 6H 3)((CH 3NH) 2CO) 2, using deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Himeur, Farida; Stein, Irene; Wragg, David S.; Slawin, Alexandra M. Z.; Lightfoot, Philip; Morris, Russell E.

    2010-04-01

    Three new isostructural materials Ln(TMA)(DMU) 2 (Ln(C 9O 6H 3)((CH 3NH) 2CO) 2; Ln: La 1, Nd 2, Eu 3; TMA: trimesate, DMU: dimethylurea) have been synthesised ionothermally using a choline chloride/dimethylurea deep eutectic mixture as the solvent. Normally in ionothermal synthesis the urea portion of the deep eutectic solvent is unstable, breaking down to release ammonium cations that act as templates. In the case of 1- 3, however, the dimethylurea remains intact and is incorporated into the final structure.

  11. High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating.

    PubMed

    Peng, Yuefeng; Wei, Xingbin; Nie, Zan; Luo, Xingwang; Peng, Jue; Wang, Yong; Shen, Deyuan

    2015-11-30

    We report on a high-power, narrow spectral bandwidth 2.907 µm PPMgLN optical parametric oscillator (OPO) pumped by a 1.064 µm pulsed Nd:YAG MOPA laser source. Free-running operation of the OPO exhibits maximum average output power of 71.6 W at 2.907 µm with a slope efficiency of 26.7%. Broad 2.907 μm spectral bandwidth of the free-running OPO was suppressed from ~9 nm to less than 0.7 nm by using a VBG as one cavity mirror. The maximum average power was 51.7 W at 2907.55 nm for the spectrum-narrowed OPO, corresponding to a slope efficiency of 22.5%. Continuously tunable ranges of ~8 nm around 2.907 µm had been achieved via adjusting the temperatures of the VBG and PPMgLN accordingly.

  12. Luminescent materials derived from the surface-modification of Ln3+-doped zeolite L with a silylated terpyridine

    NASA Astrophysics Data System (ADS)

    Qin, Zhiqiao; Li, Hongshi; Wang, Yige

    2014-11-01

    Herein we report luminescent materials of Ln3+ (Ln = Eu or Tb) doped disc shaped zeolite L crystals (Eu3+/ZLD, Tb3+/ZLD) modified with a silylated terpyridine (Terpy-Si). The modified crystals show bright red emission and green emission under UV-light irradiation due to the energy transfer from the Terpy-Si to the Eu3+ and Tb3+ ions. The obtained materials were characterized with FT-IR, SEM, XRD and elemental analysis. Luminescence spectroscopy was used to study the luminescence properties of the modified Eu3+(Tb3+)/ZLD crystals. The formation of europium(III) and terbium(III) Terpy-Si silicon complexes and energy transfer from Terpy-Si to Eu3+ ions and Tb3+ have been confirmed by luminescence spectroscopy.

  13. Extreme compressibility in LnFe(CN)6 coordination framework materials via molecular gears and torsion springs.

    PubMed

    Duyker, Samuel G; Peterson, Vanessa K; Kearley, Gordon J; Studer, Andrew J; Kepert, Cameron J

    2016-03-01

    The mechanical flexibility of coordination frameworks can lead to a range of highly anomalous structural behaviours. Here, we demonstrate the extreme compressibility of the LnFe(CN)6 frameworks (Ln = Ho, Lu or Y), which reversibly compress by 20% in volume under the relatively low pressure of 1 GPa, one of the largest known pressure responses for any crystalline material. We delineate in detail the mechanism for this high compressibility, where the LnN6 units act like torsion springs synchronized by rigid Fe(CN)6 units performing the role of gears. The materials also show significant negative linear compressibility via a cam-like effect. The torsional mechanism is fundamentally distinct from the deformation mechanisms prevalent in other flexible solids and relies on competition between locally unstable metal coordination geometries and the constraints of the framework connectivity, a discovery that has implications for the strategic design of new materials with exceptional mechanical properties.

  14. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  15. Energy transfer to Ln 3+ in GaS 1-xSe x(0 ⩽ x ⩽ 1) crystals

    NASA Astrophysics Data System (ADS)

    Tagiev, B. G.; Aidaev, F. Sh.; Abbasova, T. M.

    1988-04-01

    The paper deals with the matrix mechanism of excitation energy transfer to rare-earth centres in GaS xSe 1- x crystals. Energy transfer to Ln 3+ is shown to be radiationless in GaS 1- xSe x (0 ⩽ x ⩽ 1) single crystals and to come about predominantly by resonance, involving local states of the matrix forbidden band.

  16. Systematic and in situ energy dispersive X-ray diffraction investigations on the formation of lanthanide phosphonatobutanesulfonates: Ln(O(3)P-C(4)H(8)-SO(3))(H(2)O) (Ln = La-Gd).

    PubMed

    Feyand, Mark; Näther, Christian; Rothkirch, André; Stock, Norbert

    2010-12-06

    Using the flexible linker H(2)O(3)P-C(4)H(8)-SO(3)H (H(3)L) and rare earth ions Ln(3+) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) we were able to synthesize the new isostructural inorganic organic hybrid compounds Ln(O(3)P-C(4)H(8)-SO(3))(H(2)O). High-throughput experiments were employed to study the influence of the molar ratios Ln:H(3)L and pH on the product formation. The crystal structure of the compounds Sm(O(3)P-C(4)H(8)-SO(3))(H(2)O) (1) and Pr(O(3)P-C(4)H(8)-SO(3))(H(2)O) (2) were determined by single crystal diffraction. The structures are built up from chains of edge-sharing LnO(8)-polyhedra that are connected by the phosphonate and sulfonate groups into layers. These layers are linked by the -(CH(2))(4)- group to form a three-dimensional framework. The synthesis of compound 1 was scaled up in a conventional oven as well as in a microwave reactor system. A modification of a microwave reactor system allowed its integration into the beamline F3 at HASYLAB, DESY, Hamburg. The crystallization was investigated in situ by means of energy dispersive X-ray diffraction using conventional as well as microwave heating methods applying temperatures varying from 110 to 150 °C. The formation of Sm(O(3)P-C(4)H(8)-SO(3))(H(2)O) takes place in two steps. In the first step a crystalline intermediate was observed, which transforms completely into compound 1. The method by Sharp and Hancock was used to determine the rate constants, reaction exponents, and the Arrhenius activation energy for both reaction steps. Comparing both heating methods, microwave heating leads to fully crystallized reaction product after shorter reaction times, but neither the temperature nor the heating method has significant influence on the induction time.

  17. A comparative evaluation of welding consumables for dissimilar weids between 316LN austenitic stainless steel and Alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Shankar, V.; Sundaresan, S.

    2000-03-01

    Transition joints in power plants between ferritic steels and austenitic stainless steels suffer from a mismatch in coefficients of thermal expansion (CTE) and the migration of carbon during service from the ferritic to the austenitic steel. To overcome these, nickel-based consumables are commonly used. The use of a trimetallic combination with an insert piece of intermediate CTE provides for a more effective lowering of thermal stresses. The current work envisages a trimetallic joint involving modified 9Cr-1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece. Of the two joints involved, this paper describes the choice of welding consumables for the joint between Alloy 800 and 316LN. Four consumables were examined: 316, 16-8-2, Inconel 82 and Inconel 182. The comparative evaluation was based on hot cracking tests and estimation of mechanical properties and coefficient of thermal expansion. While 16-8-2 exhibited highest resistance to solidification cracking, the Inconel filler materials also showed adequate resistance; additionally, the latter were superior from the mechanical property and coefficient of thermal expansion view-points. It is therefore concluded that for the joint between Alloy 800 and 316LN the Inconel filler materials offer the best compromise.

  18. Spin-communication channels between Ln(III) bis-phthalocyanines molecular nanomagnets and a magnetic substrate

    PubMed Central

    Candini, A.; Klar, D.; Marocchi, S.; Corradini, V.; Biagi, R.; De Renzi, V.; del Pennino, U.; Troiani, F.; Bellini, V.; Klyatskaya, S.; Ruben, M.; Kummer, K.; Brookes, N. B.; Huang, H.; Soncini, A.; Wende, H.; Affronte, M.

    2016-01-01

    Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world. PMID:26907811

  19. Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2016-09-01

    Creep deformation behavior of 316LN stainless steel (SS) under small punch creep (SPC) and uniaxial creep test has been assessed and compared at 923 K (650 °C). The transient and tertiary creep deformation behaviors have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δ_{{T}} \\cdot (1 - {{e}}^{ - κ \\cdot t} ) + dot{δ }_{{s}} t + δ3 {{e}}^{{[ {φ ( {t - t_{{r}} } )} ]}} on the basis of Dobes and Cadek equation for uniaxial creep strain. Trends in the variations of (i) rate of exhaustion of transient creep ( κ) with steady-state deflection rate ( dot{δ }_{{s}} ) (ii) ` κ' with time to attain steady-state deflection rate, and (iii) initial creep deflection rate with steady-state deflection rate implied that transient SPC deformation obeyed first-order reaction rate theory. The rate of exhaustion of transient creep ( r') values that were determined from uniaxial creep tests were correlated with those obtained from SPC tests. Master curves representing transient creep deformation in both SPC and uniaxial creep tests have been derived and their near coincidence brings unique equivalence between both the test techniques. The relationships between (i) rate of acceleration of tertiary creep ( φ) and steady-state deflection rate, (ii) ` φ' and time spent in tertiary stage, and (iii) final creep deflection rate and steady-state deflection rate revealed that first-order reaction rate theory governed SPC deformation throughout the tertiary region also. Interrelationship between the transient, secondary, and tertiary creep parameters indicated that the same mechanism prevailed throughout the SPC deformation.

  20. Synthesis of water-soluble luminescent LaVO4:Ln3+ porous nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Labis, Joselito P.; Alrokayan, Salman A. H.

    2012-08-01

    Water-soluble luminescent Eu3+ and Tb3+-doped LaVO4 porous nanoparticles were synthesized by co-precipitation method. X-ray diffraction (XRD), Field emission-transmission electron microscopy (FE-TEM), energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, UV/Vis absorption, and photoluminescence spectroscopic techniques were employed to characterize the structure and morphology of as-prepared products. The results of the XRD confirm the formation of well-crystallized LaVO4 phase with a tetragonal zircon structure. The TEM images illustrate that the as-formed Eu3+ and Tb3+-doped LaVO4 nanoparticles have irregular spherical shape, hairy nanoporous structures with an average particle size 50-130 nm. These nanoparticles were well-dispersed in polar and non-polar organic solvents to form clear colloidal solutions. The colloidal solutions of Eu3+ and Tb3+-doped zircon-type LaVO4 nanoparticles show the most dominant characteristic emissions (hypersensitive transitions) of Eu3+ at 615 nm (5 D 0 → 7 F 2) and Tb3+ at 543 nm (5 D 4 → 7 F 5), respectively, as the result of an energy transfer from the VO4 3- to luminescent metal ions activators. Compared with other-shape nanocrystals, the luminescence intensity of the irregular hairy spherical porous-like nanoparticles are obviously enhanced. It therefore, suggests that we could obtain function-improved materials by tailoring the size and shape of the LaVO4:Ln3+ nanostructures that are very suitable for use in biological applications, such as protein-labeling, drug delivery, and fluorescent bioprobes.

  1. Evaluation of the long-lasting insecticidal net Interceptor LN: laboratory and experimental hut studies against anopheline and culicine mosquitoes in northeastern Tanzania

    PubMed Central

    2013-01-01

    Background Long lasting insecticidal nets (LN) are a primary method of malaria prevention. Before new types of LN are approved they need to meet quality and efficacy standards set by the WHO Pesticide Evaluation Scheme. The process of evaluation has three phases. In Phase I the candidate LN must meet threshold bioassay criteria after 20 standardized washes. In Phase II washed and unwashed LNs are evaluated in experimental huts against wild, free flying anopheline mosquitoes. In Phase III the LN are distributed to households in malaria endemic areas, sampled over three years of use and tested for continuing insecticidal efficacy. Interceptor® LN (BASF Corporation, Germany) is made of polyester netting coated with a wash resistant formulation of alpha-cypermethrin. Methods Interceptor LN was subjected to bioassay evaluation and then to experimental hut trial against pyrethroid-susceptible Anopheles gambiae and An. funestus and resistant Culex quinquefasciatus. Mosquito mortality, blood feeding inhibition and personal protection were compared between untreated nets, conventional alpha-cypermethrin treated nets (CTN) washed 20 times and LNs washed 0, 20 and 30 times. Results In Phase I Interceptor LN demonstrated superior wash resistance and efficacy to the CTN. In the Phase II hut trial the LN killed 92% of female An. gambiae when unwashed and 76% when washed 20 times; the CTN washed 20 times killed 44%. The LN out-performed the CTN in personal protection and blood-feeding inhibition. The trend for An. funestus was similar to An. gambiae for all outcomes. Few pyrethroid-resistant Cx. quinquefasciatus were killed and yet the level of personal protection (75-90%) against Culex was similar to that of susceptible An. gambiae (76-80%) even after 20 washes. This protection is relevant because Cx. quinquefasciatus is a vector of lymphatic filariasis in East Africa. After 20 washes and 60 nights’ use the LN retained 27% of its initial insecticide dose. Conclusions

  2. Caspase-activated DNase is necessary and sufficient for oligonucleosomal DNA breakdown, but not for chromatin disassembly during caspase-dependent apoptosis of LN-18 glioblastoma cells.

    PubMed

    Sánchez-Osuna, María; Garcia-Belinchón, Mercè; Iglesias-Guimarais, Victoria; Gil-Guiñón, Estel; Casanelles, Elisenda; Yuste, Victor J

    2014-07-04

    Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.

  3. Analysis and simulation of optical and magnetic properties of lanthanide aluminates LnMgAl11O19 (Ln=La/Nd,La/Eu,Pr) with magnetoplumbite-like structure

    NASA Astrophysics Data System (ADS)

    Saber, D.; Dexpert-Ghys, J.; Caro, P.; Lejus, A. M.; Vivien, D.

    1985-06-01

    Single crystals of LnMgAl11O19 aluminates with a magnetoplumbite-like structure, (Ln=La1-xNdx, La1-x Eux, Pr), are grown by the flame fusion (Verneuil) or floating zone methods. Optical absorption or fluorescence spectra of these crystals reveal that Ln3+ ions occupy at least two or three different sites, instead of only one as in the ideal magnetoplumbite structure. Eu3+ fluorescence under dye-laser excitation leads to the identification of two low symmetry (probably c2v) sites labeled A and B. Ab initio crystal field parameters for Eu3+ are calculated from the atomic coordinates deduced from the crystal stucture of LaMgAl11O19. These parameters and the experimental energy levels are used to derive an acceptable set of Bkq parameters for the A site. These Bkq corrected for the Nd3+/Eu3+ radial integrals ratio are used in turn to derive the Nd3+ Racah and spin-orbit coupling parameters which fit the Nd3+ absorption spectrum at 4 K. At least two sets of parameters ``high 2P1/2'' and ``low 2P1/2'' are required, confirming the multisite character of La1-xNdxMgAl11O19. For this compound, the ab initio crystal field parameters are used to calculate the magnetic susceptibility and Nd3+ ESR g values. The fairly good agreement between calculated and experimental magnetic parameters confirms that the real sites of the Lanthanide ion arise from minor perturbations of the normal magnetoplumbite one. These perturbations could arise from Al-Mg site disorder, and/or the presence of oxygen vacancies in the lattice.

  4. Uniform AMoO{sub 4}:Ln (A=Sr{sup 2+}, Ba{sup 2+}; Ln=Eu{sup 3+}, Tb{sup 3+}) submicron particles: Solvothermal synthesis and luminescent properties

    SciTech Connect

    Yang Piaoping; Li Chunxia; Wang Wenxin; Quan Zewei; Gai Shili; Lin Jun

    2009-09-15

    Rare-earth ions (Eu{sup 3+}, Tb{sup 3+}) doped AMoO{sub 4} (A=Sr, Ba) particles with uniform morphologies were successfully prepared through a facile solvothermal process using ethylene glycol (EG) as protecting agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are of high purity and crystallinity and assigned to the tetragonal scheelite-type structure of the AMoO{sub 4} phase. It has been shown that the as-synthesized SrMoO{sub 4}:Ln and BaMoO{sub 4}:Ln samples show respective uniform peanut-like and oval morphologies with narrow size distribution. The possible growth process of the AMoO{sub 4}:Ln has been investigated in detail. The EG/H{sub 2}O volume ratio, reaction temperature and time have obvious effect on the morphologies and sizes of the as-synthesized products. Upon excitation by ultraviolet radiation, the AMoO{sub 4}:Eu{sup 3+} phosphors show the characteristic {sup 5}D{sub 0}-{sup 7}F{sub 1-4} emission lines of Eu{sup 3+}, while the AMoO{sub 4}:Tb{sup 3+} phosphors exhibit the characteristic {sup 5}D{sub 4}-{sup 7}F{sub 3-6} emission lines of Tb{sup 3+}. These phosphors exhibit potential applications in the fields of fluorescent lamps and light emitting diodes (LEDs). - Graphical abstract: Uniform rare-earth ions (Eu{sup 3+}, Tb{sup 3+}) doped AMoO{sub 4} (A=Sr, Ba) submicron phosphors with tetragonal scheelite-type structure have been prepared through a facile solvothermal process using EG as reaction media. Display Omitted

  5. Synthesis and Crystal Chemistry of HIGH-Tc Oxide Superconductors

    NASA Astrophysics Data System (ADS)

    Cava, R. J.

    The following sections are included: * INTRODUCTION * THE "123" FAMILY * PHASE EQUILIBRIA IN THE Y-Ba-Cu-O SYSTEM * TRANSITION METAL SUBSTITUTIONS IN CUPRATE SUPERCONDUCTORS * THE T, T', AND T* PHASES * La2-xSrxCaCu2O6+δ * THE INFINITE LAYER PHASE * Pb2Sr2LnCu3O8 * BiO AND TlO BASED COPPER OXIDES * OTHER INTERMEDIARY LAYERS * CONCLUSIONS * REFERENCES

  6. Crystal growth and structures of three new platinates: Ln 3NaPtO 7 (Ln = La, Nd) and La 4PtO 7

    NASA Astrophysics Data System (ADS)

    Hansen, Tara J.; Macquart, René B.; Smith, Mark D.; zur Loye, Hans-Conrad

    2007-09-01

    Single crystals of three lanthanide containing platinates, La 3NaPtO 7, Nd 3NaPtO 7 and La 4PtO 7, were grown from carbonate fluxes. La 3NaPtO 7 and Nd 3NaPtO 7 crystallize in the trigonal space group R3¯c with lattice parameters of a = 5.7458(2) Å and c = 35.650(1) Å, and a = 5.6862(5) Å and c = 34.896(3) Å, respectively. La 4PtO 7 crystallizes in the monoclinic space group I2/ m with lattice parameters of a = 9.799(1) Å, b = 4.0014(5) Å, c = 9.491(1) Å and β = 91.759(5)°. La 3NaPtO 7 and Nd 3NaPtO 7 are the first all-platinum members of the [A nB n-1O 3 n][A 2O] family of oxides. The difference in structure types of the three compounds arises from the size of the alkali metal cations present in the fluxes. Synthetic conditions as well as the structure differences between these platinates are discussed.

  7. Complexations of Ln(III) with SnS4H and Sn2S6: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands

    NASA Astrophysics Data System (ADS)

    Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian

    2015-10-01

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ-SnS4H)]n [Ln=La (1a), Nd (1b)] and [{Ln(tepa)(μ-OH)}2(μ-Sn2S6)]nnH2O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln3+ ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]3+ units. The [SnS4H]3- anion chelates a [Ln(peha)]3+ unit via two S atoms and coordinates to another [Ln(peha)]3+ unit via the third S atom. As a result, the [Ln(peha)]3+ units are connected into coordination polymers [Ln(peha)(μ-SnS4H)]n by an unprecedented tridentate μ-η1,η2-SnS4H bridging ligands. In 2a-2d, the Ln3+ ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]3+ units are joined by two μ-OH bridges to form a binuclear [{Ln(tepa)(μ-OH)}2]4+ unit. Behaving as a bidentate μ-η1, η1-Sn2S6 bridging ligand, the Sn2S6 unit connects [{Ln(tepa)(μ-OH)}2]4+ units into a neutral coordination polymer [{Ln(tepa)(μ-OH)}2(μ-Sn2S6)]n via the trans S atoms. The Ln3+ ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [{Ln(peha)(μ-SnS4H)]n and [{Ln(tepa)(μ-OH)}2(μ-Sn2S6)]n, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a-2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV.

  8. Dimensional optimization of nanowire--complementary metal oxide--semiconductor inverter.

    PubMed

    Hashim, Yasir; Sidek, Othman

    2013-01-01

    This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.

  9. Co(II)4, Co(II)7, and a Series of Co(II)2Ln(III) (Ln(III) = Nd(III), Sm(III), Gd(III), Tb(III), Dy(III)) Coordination Clusters: Search for Single Molecule Magnets.

    PubMed

    Modak, Ritwik; Sikdar, Yeasin; Thuijs, Annaliese E; Christou, George; Goswami, Sanchita

    2016-10-03

    We report herein the syntheses and investigation of the magnetic properties of a Co(II)4 compound, a series of trinuclear Co(II)2Ln(III) (Ln(III) = Nd(III), Sm(III), Gd(III), Tb(III), Dy(III)) complexes, and a Co(II)7 complex. The homometallic Co(II)4 core was obtained from the reaction of Ln(NO3)3·xH2O/Co(NO3)2·6H2O/H2vab/Et3N in a 0.5:0.5:1:2 ratio in methanol. Variation in synthetic conditions was necessary to get the desired Co(II)-Ln(III) complexes. The Co(II)-Ln(III) assembly was synthesized from Ln(NO3)3·xH2O/Co(OAc)2·4H2O/H2vab/NaOMe in a 0.4:0.5:1:1 ratio in methanol. The isostructural Co(II)2Ln(III) complexes have a core structure with the general formula [Co2Ln(Hvab)4(NO3)](NO3)2·MeOH·H2O, (where H2vab = 2-[(2-hydroxymethyl-phenylimino)-methyl]-6-methoxy-phenol) with simultaneous crystallization of Co(II)7 complex in each reaction. The magnetic investigation of these complexes reveals that both homometallic complexes and four Co(II)-Ln(III) complexes (except Co(II)-Nd(III)) display behavior characteristic of single molecule magnets.

  10. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  11. Sensitization and Intergranular Corrosion Behavior of High Nitrogen Type 304LN Stainless Steels for Reprocessing and Waste Management Applications

    NASA Astrophysics Data System (ADS)

    Parvathavarthini, N.; Kamachi Mudali, U.; Nenova, Lilyana; Andreev, Chavdar; Raj, Baldev

    2012-06-01

    High nitrogen 304LN stainless steels (SS) intended for chloride and nitric acid environments in spent nuclear fuel reprocessing and waste management applications were evaluated for their sensitization and intergranular corrosion (IGC) resistance. For this purpose, high nitrogen (0.132 pct, 0.193 pct and 0.406 pct) containing, impurity-controlled, vanadium-added 304LN SS alloys were developed. For comparison, 304L SS, which is currently used in reprocessing plants, was also studied. These stainless steels were subjected to heat treatment at 948 K (675 °C) for various durations ranging from 1 to 1000 hours and tested for susceptibility to IGC as per ASTM A262 Practice A and E tests. The degree of sensitization was estimated with the double loop electrochemical potentiokinetic reactivation technique. The increase in nitrogen content resulted in higher hardness and finer grain size. Based on the detailed microstructural and corrosion studies, it was determined that an addition of 0.132 pct and 0.193 pct nitrogen showed better IGC resistance and an additional increase in nitrogen resulted in deterioration resulting from chromium nitride precipitation, which was confirmed by electrochemical phase separation and X-ray diffraction studies. The onset of desensitization was faster for the alloy with 0.132 pct nitrogen as well as 0.406 pct nitrogen because of the lower nitrogen content in the former case and the finer grain size in the latter case. The higher hardness and superior IGC resistance of 0.132 pct and 0.193 pct nitrogen containing Type 304LN SS suggests the suitability of this alloy for nitric acid- and chloride-containing environments of reprocessing and waste management plants.

  12. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  13. Alpha Radiolysis of Nuclear Solvent Extraction Ligands Used for An(III) and Ln(III) Separations

    SciTech Connect

    Mezyk, Stephen P.; Mincher, Bruce J.; Nilsson, Mikael

    2016-08-01

    This document is the final report for the Nuclear Energy Universities Program (NEUP) grant 10-910 (DE-AC07-05ID14517) “Alpha Radiolysis of Nuclear Solvent Extraction Ligands used for An(III) and Ln(III) Separations”. The goal of this work was to obtain a quantitative understanding of the impacts of both low Linear Energy Transfer (LET, gamma-rays) and high LET (alpha particles) radiation chemistry occurring in future large-scale separations processes. This quantitative understanding of the major radiation effects on diluents and ligands is essential for optimal process implementation, and could result in significant cost savings in the future.

  14. Syntheses and crystal structures of the quaternary uranium lanthanide oxyselenides UYb{sub 2}O{sub 2}Se{sub 3} and U{sub 2}Ln{sub 2}O{sub 4}Se{sub 3} (Ln=Pr, Sm, Gd)

    SciTech Connect

    Raw, Adam D.; Ibers, James A.

    2012-02-15

    Single crystals of the new uranium lanthanide oxyselenide compounds UYb{sub 2}O{sub 2}Se{sub 3} and U{sub 2}Ln{sub 2}O{sub 4}Se{sub 3} (Ln=Pr, Sm, Gd) have been synthesized from an Sb{sub 2}Se{sub 3} flux. The structures have been determined from single-crystal X-ray diffraction data. UYb{sub 2}O{sub 2}Se{sub 3} is isostructural to UYb{sub 2}O{sub 2}S{sub 3}. The structure comprises layers of edge-sharing YbSe{sub 6} octahedra and double layers of disordered (U/Ln)O{sub 4}Se{sub 4} square antiprisms. The U{sub 2}Ln{sub 2}O{sub 4}Se{sub 3} (Ln=Pr, Sm, Gd) compounds are isostructural to U{sub 2}Ln{sub 2}O{sub 4}S{sub 3} (Ln=La-Gd) whose structure had been deduced previously from X-ray powder diffraction data. In the structure a dodecahedron of four O atoms and four Se atoms surrounds a site primarily occupied by U and a distorted bicapped octahedron of five Se atoms and three O atoms surrounds a site primarily occupied by the lanthanide. These compounds represent the first examples of quaternary uranium oxyselenides. - Graphical abstract: The U{sub 2}Ln{sub 2}O{sub 4}Se{sub 3} (Ln=Pr, Sm, Gd) structure: primarily U sites are in black, primarily Ln sites are in blue, O red, Se orange. Highlights: Black-Right-Pointing-Pointer Single crystals of the new compounds UYb{sub 2}O{sub 2}Se{sub 3} and U{sub 2}Ln{sub 2}O{sub 4}Se{sub 3} (Ln=Pr, Sm, Gd) have been synthesized. Black-Right-Pointing-Pointer These compounds represent the first examples of quaternary uranium oxyselenides. Black-Right-Pointing-Pointer U is surrounded by a dodecahedron or square prism of four O atoms and four Se atoms

  15. Effect of lanthanide on the microstructure and structure of LnMn0.5Fe0.5O3 nanoparticles with Ln=La, Pr, Nd, Sm and Gd prepared by the polymer precursor method

    NASA Astrophysics Data System (ADS)

    Romero, Mariano; Faccio, Ricardo; Martínez, Javier; Pardo, Helena; Montenegro, Benjamín; Plá Cid, Cristiani Campos; Pasa, André A.; Mombrú, Álvaro W.

    2015-01-01

    The synthesis of LnMn0.5Fe0.5O3 perovskite nanoparticles by the polymer precursor method showed a strong intrinsic dependence with different lanthanides (Ln=La, Pr, Nd, Sm and Gd). The polymerization level reached in the polymer precursor was proportional to the atomic number of lanthanide with exception of samarium, which showed the formation of a different precursor based in a citrate chelate with ethyleneglycol bonded as adduct. The increasing level of polymerization of the polymer precursors showed the formation of large-size perovskite nanoparticles after its calcination. SAXS and TEM analyses suggested that nanoparticles obtained, using this method, have a squared-like microstructure in connection with the polymer precursor microstructure. Structural analysis showed an orthorhombic structure with a slight decline in the Jahn-Teller distortion when the atomic number of lanthanide increases. Mössbauer spectroscopy showed the presence of a majority site in agreement with the Pbnm orthorhombic structure best fitted with Rietveld refinements and in some cases, a more distorted site attributed to local inhomogeneities and oxygen vacancies.

  16. Ab initio structure determination of new rare earth fluoride borates Ln{sub 3}(BO{sub 3}){sub 2}F{sub 3} (Ln = Sm, Eu, and Gd)

    SciTech Connect

    Corbel, G.; Retoux, R.; Leblanc, M.

    1998-08-01

    The crystal structures of Ln{sub 3}(BO{sub 3}){sub 2}F{sub 3} (Ln = Sm, Eu, and Gd) are determined ab initio from X-ray powder data. The unit cell is monoclinic, space group C2/c, Z = 4, with a = 12.534(1) {angstrom}, b = 6.237(1) {angstrom}, c = 8.360(1) {angstrom}, {beta} = 97.404(6){degree}, V = 648.1(2) {angstrom}{sup 3} for Gd{sub 3}(BO{sub 3}){sub 2}F{sub 3}. The Rietveld refinement reliability converged to R{sub p} = 0.121, R{sub wp} = 0.147, R{sub exp} = 0.050, {chi}{sup 2} = 8.75. The structure presents a 3D network of Archimedian monocapped antiprisms Gd(1)O{sub 4}F{sub 5} and Gd(2)O{sub 7}F{sub 2}. These polyhedra form trimeric entities Gd{sub 3}O{sub 12}F{sub 9}, which build infinite layers parallel to the (010) plane.

  17. Chemical and structural changes in Ln{sub 2}NiO{sub 4+δ} (Ln=La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature

    SciTech Connect

    Flura, Aurélien; Dru, Sophie; Nicollet, Clément; Vibhu, Vaibhav; Fourcade, Sébastien; Lebraud, Eric; Rougier, Aline; Bassat, Jean-Marc; Grenier, Jean-Claude

    2015-08-15

    The chemical stability of lanthanide nickelates Ln{sub 2}NiO{sub 4+δ} (Ln=La, Pr or Nd) has been studied in the temperature range 25–1300 °C, either in air or at low pO{sub 2} (down to 10{sup −4} atm). Thermal gravimetry analysis (TGA) measurements coupled with X-ray diffraction (XRD) characterization have shown that all compounds retain their K{sub 2}NiF{sub 4}-type structure in these conditions, while remaining over-stoichiometric in oxygen up to 1000 °C. Only Nd{sub 2}NiO{sub 4+δ} starts to decompose into Nd{sub 2}O{sub 3} and NiO above 1000 °C, at pO{sub 2}=10{sup −4} atm. In addition, a careful analysis of the lanthanide nickelates structural features has been performed by in situ XRD, as a function of temperature and pO{sub 2}. For all compounds, a structural transition has been always observed in the temperature range 200–400 °C, in air or at pO{sub 2}=10{sup −4} atm. In addition, their cell volume did not vary upon the variation of the oxygen partial pressure. Therefore, these materials do not exhibit a chemical expansion in these conditions, which is beneficial for a fuel cell application as cathode layers. Additional dilatometry measurements have revealed that a temperature as high as 950 °C for Pr{sub 2}NiO{sub 4+δ} or 1100 °C for La{sub 2}NiO{sub 4+δ} and Nd{sub 2}NiO{sub 4+δ} has to be reached in order to begin the sintering of the material particles, which is of primary importance to obtain an efficient electronic/ionic conduction in the corresponding designed cathode layers. Besides, excellent matching was found between the thermal expansion coefficients of lanthanide nickelates and SOFC electrolytes such as 8wt% yttria stabilized zirconia (8YSZ) or Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ} (GDC), at least from 400 °C up to 1400 °C in air or up to 1200 °C at pO{sub 2}=10{sup −4} atm. - Graphical abstract: This study reports the good chemical stability of oxygen overstoichiometric Ln2NiO4+δ(Ln = La, Pr or Nd) at high temperatures

  18. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives.

    PubMed

    Park, J Y; Chang, Y; Lee, G H

    2015-01-01

    Biomedical imaging is an essential tool for diagnosis and therapy of diseases such as cancers. It is likely true that medicine has developed with biomedical imaging methods. Sensitivity and resolution of biomedical imaging methods can be improved with imaging agents. Furthermore, it will be ideal if imaging agents could be also used as therapeutic agents. Therefore, one dose can be used for both diagnosis and therapy of diseases (i.e., theragnosis). This will simplify medical treatment of diseases, and will be also a benefit to patients. Mixed (Ln(1x)Ln(2y)O3, x + y = 2) or unmixed (Ln2O3) lanthanide (Ln) oxide nanoparticles (Ln = Eu, Gd, Dy, Tb, Ho, Er) are potential multi-modal imaging and cancer therapeutic agents. The lanthanides have a variety of magnetic and optical properties, useful for magnetic resonance imaging (MRI) and fluorescent imaging (FI), respectively. They also highly attenuate X-ray beam, useful for X-ray computed tomography (CT). In addition gadolinium-157 ((157)Gd) has the highest thermal neutron capture cross section among stable radionuclides, useful for gadolinium neutron capture therapy (GdNCT). Therefore, mixed or unmixed lanthanide oxide nanoparticles can be used for multi-modal imaging methods (i.e., MRI-FI, MRI-CT, CT-FI, and MRICT- FI) and cancer therapy (i.e., GdNCT). Since mixed or unmixed lanthanide oxide nanoparticles are single-phase and solid-state, they can be easily synthesized, and are compact and robust, which will be beneficial to biomedical applications. In this review physical properties of the lanthanides, synthesis, characterizations, multi-modal imagings, and cancer therapy of mixed and unmixed lanthanide oxide nanoparticles are discussed.

  19. Synthesis, structure, and luminescence property of a series of Ag–Ln coordination polymers with the N-heterocyclic carboxylato ligand

    SciTech Connect

    Jin, Jing Chen, Chong; Gao, Yan; Zhao, Ran; Wang, Xiuyan; Lü, Chunxin; Chi, Yuxian; Niu, Shuyun

    2016-03-15

    Six Ln–Ag coordination polymers {[LnAg_2(IN)_4(H_2O)_5]·NO_3·2H_2O}{sub n} (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg_2(IN)_4(H_2O)_2]·NO_3·H_2O}{sub n} (3), [LnAg(pdc){sub 2}]{sub n} (Ln=Eu(4) and Pr (5), H{sub 2}pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc){sub 2}(H{sub 2}O){sub 4}]{sub n} (6) (H{sub 2}bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or in the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR

  20. Synthesis of Multicolor Core/Shell NaLuF₄:Yb(3+)/Ln(3+)@CaF₂ Upconversion Nanocrystals.

    PubMed

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-02-07

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF₄:Yb(3+)/Ln(3+)@CaF₂ (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF₄). We exploited the liquid-solid-solution method to synthesize the NaLuF₄ core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF₂) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  1. Magnetism and transport properties of layered rare-earth cobaltates Ln0.3CoO2

    NASA Astrophysics Data System (ADS)

    Knížek, K.; Novák, P.; Jirák, Z.; Hejtmánek, J.; Maryško, M.; Buršík, J.

    2015-05-01

    The ab-initio (GGA+U) electronic structure calculations of layered cobaltates Ln0.3CoO2 (Ln = La, Pr, Nd) prepared by ionic exchange from Na0.90CoO2 precursors have been performed. The data are used for numerical modeling of Seebeck coefficient within Boltzmann transport theory using BoltzTraP program [G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006)], as well as for determination of the crystal field split levels of rare-earth ions using a method based on a transformation of Bloch states into the basis of Wannier functions [P. Novák et al., Phys. Rev. B 87, 205139 (2013)]. An overall agreement with observed magnetism and transport properties is obtained. In particular, the high p-type thermopower is well reproduced in a broad temperature range, but instead of theoretical linear decrease down to the lowest temperatures, the real systems exhibit an anomalous change of Seebeck sign, which might be related to the change of bare metallic carriers into the polaronic ones.

  2. Ab initio calculation of excess properties of La1-x(Ln,An)xPO4 solid solutions

    NASA Astrophysics Data System (ADS)

    Li, Yan; Kowalski, Piotr M.; Blanca-Romero, Ariadna; Vinograd, Victor; Bosbach, Dirk

    2014-12-01

    We used ab initio computational approach to predict the excess enthalpy of mixing and the corresponding regular/subregular model parameters for La1-xLnxPO4 (Ln=Ce,…, Tb) and La1-xAnxPO4 (An=Pu, Am and Cm) monazite-type solid solutions. We found that the regular model interaction parameter W computed for La1-xLnxPO4 solid solutions matches the few existing experimental data. Within the lanthanide series W increases quadratically with the volume mismatch between LaPO4 and LnPO4 endmembers (ΔV=VLaPO4-VLnPO4), so that W(kJ/mol)=0.618(. We demonstrate that this relationship also fits the interaction parameters computed for La1-xAnxPO4 solid solutions. This shows that lanthanides can be used as surrogates for investigation of the thermodynamic mixing properties of actinide-bearing solid solutions.

  3. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  4. New Composites LnBDC@AC and CB[6]@AC: From Design toward Selective Adsorption of Methylene Blue or Methyl Orange

    PubMed Central

    Santos, Guilherme de C.; Barros, Amanda L.; de Oliveira, Carlos A. F.; da Luz, Leonis L.; da Silva, Fausthon F.; Demets, Grégoire J.-F.; Alves Júnior, Severino

    2017-01-01

    New porous composites LnBDC@AC (AC = Activated carbon, Ln = Eu and Gd and BDC = 1,4-benzenedicaboxylate) and CB[6]@AC (CB[6] = Cucurbit[6]uril) were obtained using hydrothermal route. The LnBDC and CB[B] are located inside the pore of the carbon materials as was observed in SEM-EDS, XRPD and FT-IR analysis. Porosimetry analysis showed values typically between AC and LnBDC material, with pore size and surface area, respectively, 29,56 Å and 353.98 m2g-1 for LnBDC@AC and 35,53 Å and 353.98 m2g-1 for CB[6]@AC. Both materials showed good absorptive capacity of metil orange (MO) and methylene blue (MB) with selectivity as a function of pH. For acid pH, both materials present selectivity by MB and alkaline pH for MO, with notable performance for CB[6]@AC. Additionally, europium luminescence was used as structural probe to investigate the coordination environment of Eu3+ ions in the EuBDC@AC composite after adsorption experiment. PMID:28107440

  5. Une nouvelle famille de pyrochlores: les oxynitrures Ln2Ta 2O 5N 2. Préparation et étude cristallochimique

    NASA Astrophysics Data System (ADS)

    Pors, F.; Marchand, R.; Laurent, Y.

    1993-11-01

    Par action de l'ammoniac à 900-950°C sur les tantalates de terres rares LnTaO 4, on a mis en évidence une nouvelle famille d'oxynitrures dont la structure est de type pyrochlore. Ces composés Ln2Ta 2O 5N 2 ont été obtenus pour les lanthanides de rayon inférieur ou égal à celui du néodyme, ainsi que pour l'yttrium. La maille cristalline est de symétrie cubique (10,2 Å < a < 10,6 Å). La stoechiométrie anionique impose un désordre oxygène-azote au moins partiel entre les deux sites cristallographiques correspondants. New oxynitrides Ln2 Ta 2O 5N 2 ( Ln = Nd → Yb, Y), belonging to the pyrochlore type structure, have been prepared by heating at 900-950°C the LnTaO 4 corresponding tantalates. The a parameter of the cubic unit cell is comprised between 10.2 and 10.6 Å. Because of the anionic stoichiometry, oxygen and nitrogen atoms are disordered, at least partially.

  6. New Composites LnBDC@AC and CB[6]@AC: From Design toward Selective Adsorption of Methylene Blue or Methyl Orange.

    PubMed

    Santos, Guilherme de C; Barros, Amanda L; de Oliveira, Carlos A F; da Luz, Leonis L; da Silva, Fausthon F; Demets, Grégoire J-F; Alves Júnior, Severino

    2017-01-01

    New porous composites LnBDC@AC (AC = Activated carbon, Ln = Eu and Gd and BDC = 1,4-benzenedicaboxylate) and CB[6]@AC (CB[6] = Cucurbit[6]uril) were obtained using hydrothermal route. The LnBDC and CB[B] are located inside the pore of the carbon materials as was observed in SEM-EDS, XRPD and FT-IR analysis. Porosimetry analysis showed values typically between AC and LnBDC material, with pore size and surface area, respectively, 29,56 Å and 353.98 m2g-1 for LnBDC@AC and 35,53 Å and 353.98 m2g-1 for CB[6]@AC. Both materials showed good absorptive capacity of metil orange (MO) and methylene blue (MB) with selectivity as a function of pH. For acid pH, both materials present selectivity by MB and alkaline pH for MO, with notable performance for CB[6]@AC. Additionally, europium luminescence was used as structural probe to investigate the coordination environment of Eu3+ ions in the EuBDC@AC composite after adsorption experiment.

  7. Hetero-metallic {3d-4f-5d} complexes: preparation and magnetic behavior of trinuclear [(L(Me2)Ni-Ln){W(CN)(8)}] compounds (Ln = Gd, Tb, Dy, Ho, Er, Y; L(Me2) = Schiff base) and variable SMM characteristics for the Tb derivative.

    PubMed

    Sutter, Jean-Pascal; Dhers, Sébastien; Rajamani, Raghunathan; Ramasesha, S; Costes, Jean-Pierre; Duhayon, Carine; Vendier, Laure

    2009-07-06

    Assembling bimetallic {Ni-Ln}(3+) units and {W(CN)(8)}(3-) is shown to be an efficient route toward heteronuclear {3d-4f-5d} compounds. The reaction of either the binuclear [{L(Me2)Ni(H(2)O)(2)}{Ln(NO(3))(3)}] complexes or their mononuclear components [L(Me2)Ni] and Ln(NO(3))(3) with (HNBu(3))(3){W(CN)(8)} in dmf followed by diffusion of tetrahydrofuran yielded the trinuclear [{L(Me2)NiLn}{W(CN)(8)}] compounds 1 (Ln = Y), 2a,b (Gd), 3a,b (Tb), 4 (Dy), 5 (Ho), and 6 (Er) as crystalline materials. All of the derivatives possess the trinuclear core resulting from the linkage of the {W(CN)(8)} to the Ni center of the {Ni-Ln} unit. Differences are found in the solvent molecules acting as ligands and/or in the lattice depending on the crystallization conditions. For all the compounds ferromagnetic {Ni-W} and {Ni-Ln} (Ln = Gd, Tb, Dy, and Er} interactions are operative resulting in high spin ground states. Parameterization of the magnetic behaviors for the Y and Gd derivatives confirmed the strong cyano-mediated {Ni-W} interaction (J(NiW) = 27.1 and 28.5 cm(-1)) compared to the {Ni-Gd} interaction (J(NiGd) = 2.17 cm(-1)). The characteristic features for slow relaxation of the magnetization are observed for two Tb derivatives, but these are modulated by the crystal phase. Analysis of the frequency dependence of the alternating current susceptibility data yielded U(eff)/k(B) = 15.3 K and tau(0) = 4.5 x 10(-7) s for one derivative whereas no maxima of chi(M)'' appear above 2 K for the second one.

  8. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region

    SciTech Connect

    Zhang, Zhi-Jun; Lin, Xiao; Zhao, Jing-Tai; Zhang, Guo-Bin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We report the VUV spectroscopic properties of rare-earth ions in K{sub 2}LnZr(PO{sub 4}){sub 3}. ► The O{sup 2−}-Eu{sup 3+} charge transfer bands at about 220 nm have been observed. ► The 4f–5d spin-allowed and spin-forbidden transitions of Tb{sup 3+} have been observed. ► There is energy transfer between the host and rare-earth activators. -- Abstract: Rare earth (RE = Sm, Eu, Tb, Dy and Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) have been synthesized by solid-state reaction method, and their vacuum ultraviolet (VUV) excitation luminescent characteristics have been investigated. The band in the wavelength range of 130–157 nm and the other one range from 155 to 216 nm with the maximum at about 187 nm in the VUV excitation spectra of these compounds are attributed to the host lattice absorption and O–Zr charge transfer transition, respectively. The charge transfer bands (CTB) of O{sup 2−}-Sm{sup 3+}, O{sup 2−}-Dy{sup 3+} and O{sup 2−}-Tm{sup 3+}, in Sm{sup 3+}, Dy{sup 3+} and Tm{sup 3+}-activated samples, have not been obviously observed probably because the 2p electrons of oxygen are tightly bound to the zirconium ion in the host lattice. For Eu{sup 3+}-activated samples, the relatively weak O{sup 2−}-Eu{sup 3+} CTB at about 220 nm is observed. And for Tb{sup 3+}-activated samples, the bands at 223 and 258 nm are related to the 4f-5d spin-allowed and spin-forbidden transitions of Tb{sup 3+}, respectively. It is observed that there is energy transfer between the host lattice and the luminescent activators (e.g. Eu{sup 3+}, Tb{sup 3+}). From the standpoint of luminescent efficiency, color purity and chemical stability, K{sub 2}GdZr(PO{sub 4}){sub 3}:Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} are attractive candidates for novel yellow, red, green-emitting PDP phosphors.

  9. Structures and crystal chemistry of the double perovskites Ba{sub 2}LnB'O{sub 6} (Ln=lanthanide B'=Nb{sup 5+} and Ta{sup 5+}): Part I. Investigation of Ba{sub 2}LnTaO{sub 6} using synchrotron X-ray and neutron powder diffraction

    SciTech Connect

    Saines, Paul J.; Spencer, Jarrah R.; Kennedy, Brendan J. Avdeev, Maxim

    2007-11-15

    The structure of 14 compounds in the series Ba{sub 2}LnTaO{sub 6} have been examined using synchrotron X-ray diffraction and found to undergo a sequence of phase transitions from I2/m monoclinic to I4/m tetragonal to Fm3-bar m cubic symmetry with decreasing ionic radii of the lanthanides. Ba{sub 2}LaTaO{sub 6} is an exception to this with variable temperature neutron diffraction being used to establish that the full series of phases adopted over the range of 15-500 K is P2{sub 1}/n monoclinic to I2/m monoclinic to R3-bar rhombohedral. The chemical environments of these compounds have also been investigated and the overbonding to the lanthanide cations is due to the unusually large size for the B-site in these perovskites. - Graphical abstract: The evolution of the structure across the series of double perovskites Ba{sub 2}LnTaO{sub 6} is established using a combination of synchrotron X-ray and neutron diffraction. The symmetry increases from monoclinic to tetragonal and then cubic as the size of the lanthanide decreases.

  10. Préparation et caractérisation d'une série de cyclohexaphosphates de terres rares: Ln2P 6O 18 · 10H 2O

    NASA Astrophysics Data System (ADS)

    Elmokhtar, Ould Sidi Mohamed; Rzaigui, Mohamed

    1995-10-01

    Six new cyclohexaphosphates with the general formula Ln2 P 6O 18 · 10H 2O with Ln = La, Ce, Pr, Sm, Er, and Yb are reported. They belong to two different structure types. The first type, common to three compounds, corresponds to Ln = La, Ce, and Pr, with an orthorhombic unit cell, Z = 2, and space group P2 12 12. The second type, common to three compounds also, corresponds to Ln = Sm, Er, and Yb, with a monoclinic unit cell, Z = 4, and space group P2 1/ a. Synthesis and characterization by X-ray diffraction, IR absorption, and TA are given.

  11. Synthesis and Lanthanide Coordination Chemistry of Phosphine Oxide Decorated Dibenzothiophene and Dibenzothiophene Sulfone Platforms

    SciTech Connect

    Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, D. A.; Paine, Robert T.; Cramer, Roger E.; Hay, Benjamin; Podair, Julien; Delmau, Laetitia Helene

    2014-01-01

    Syntheses for new ligands based upon dibenzothiophene and dibenzothiophene sulfone platforms, decorated with phosphine oxide and methylphosphine oxide donor groups, are described. Coordination chem. of 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene (8) , 4, 6- bis(diphenylphosphinoylmethyl) dibenzothiophene- 5, 5- dioxide (9) and 4, 6- bis(diphenylphosphinoyl) dibenzothiophene- 5, 5- dioxide (10) with lanthanide nitrates, Ln(NO3) 3 (H2O) n is outlined, and crystal structure detns. reveal a range of chelation interactions on Ln(III) ions. The HNO3 dependence of the solvent extn. performance of 9 and 10 in 1, 2- dichloroethane for Eu(III) and Am(III) is described and compared against the extn. behavior of related dibenzofuran ligands (2, 3; R = Ph) and n- octyl(phenyl) - N, N- diisobutylcarbamoylmethyl phosphine oxide (4) measured under identical conditions.

  12. Complexation of Ln(3+) Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties.

    PubMed

    Rodríguez-Rodríguez, Aurora; Regueiro-Figueroa, Martín; Esteban-Gómez, David; Tripier, Raphaël; Tircsó, Gyula; Kálmán, Ferenc Krisztián; Bényei, Attila Csaba; Tóth, Imre; de Blas, Andrés; Rodríguez-Blas, Teresa; Platas-Iglesias, Carlos

    2016-03-07

    The coordination properties toward the lanthanide ions of two macrocyclic ligands based on a cyclam platform containing picolinate pendant arms have been investigated. The synthesis of the ligands was achieved by using the well-known bis-aminal chemistry. One of the cyclam derivatives (cb-tedpa(2-)) is reinforced with a cross-bridge unit, which results in exceptionally inert [Ln(cb-tedpa)](+) complexes. The X-ray structures of the [La(cb-tedpa)Cl], [Gd(cb-tedpa)](+), and [Lu(Me2tedpa)](+) complexes indicate octadentate binding of the ligands to the metal ions. The analysis of the Yb(3+)-induced shifts in [Yb(Me2tedpa)](+) indicates that this complex presents a solution structure very similar to that observed in the solid state for the Lu(3+) analogue. The X-ray structures of [La(H2Me2tedpa)2](3+) and [Yb(H2Me2tedpa)2](3+) complexes confirm the exocyclic coordination of the metal ions, which gives rise to coordination polymers with the metal coordination environment being fulfilled by oxygen atoms of the picolinate groups and water molecules. The X-ray structure of [Gd(Hcb-tedpa)2](+) also indicates exocyclic coordination that in this case results in a discrete structure with an eight-coordinated metal ion. The nonreinforced complexes [Ln(Me2tedpa)](+) were prepared and isolated as chloride salts in nonaqueous media. However, these complexes were found to undergo dissociation in aqueous solution, except in the case of the complexes with the smallest Ln(3+) ions (Ln(3+) = Yb(3+) and Lu(3+)). A DFT investigation shows that the increased stability of the [Ln(Me2tedpa)](+) complexes in solution across the lanthanide series is the result of an increased binding energy of the ligand due to the increased charge density of the Ln(3+) ion.

  13. Synthesis of Sr(1-x-y)Al4O7:Eu{x/2+},Ln{y/3+} (Ln = Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristics

    NASA Astrophysics Data System (ADS)

    Singh, Devender; Tanwar, Vijeta; Samantilleke, Anura Priyajith; Mari, Bernabe; Bhagwan, Shri; Singh, Krishan Chander; Kadyan, Pratap Singh; Singh, Ishwar

    2017-03-01

    Eu2+ and Eu2++Ln3+ doped SrAl4O7 nanophosphors were synthesized by rapid gel combustion process. The morphology of prepared phosphors was examined with scanning and transmission electron microscopy. The phase identification and the crystal structures of nanophosphors were studied using X-ray powder diffraction techniques. Luminescence characteristics of the prepared nanophosphors were analyzed on account of excitation, emission and phosphorescence decay analysis. The emission spectra demonstrated the broad green emission attributed to 4f65d1→ 4f7 transition of the Eu2+ ions. The effect of codoping of some trivalent lanthanide (Dy3+, Pr3+ and Y3+) ions were investigated for improving the emission intensity and phosphorescence decay time of the basic lattice of SrAl4O7:Eu2+ phosphors. The synthesized materials had enhanced bright luminescent properties that could suitably be applied for display as well as photovoltaic applications. [Figure not available: see fulltext.

  14. Preparation of overdoped superconducting RBa 2Cu 3O y+ Δy (R=Ln and Y) in a single phase

    NASA Astrophysics Data System (ADS)

    Okai, B.; Ono, A.; Mitsuhashi, T.

    2002-01-01

    Overdoped RBa 2Cu 3O y+ Δy specimens (R=Ln and Y) were prepared in a single phase by heat treatment at 600°C under high oxygen pressure. The relationship between Tc, Δy, and R for these specimens is almost the same as that previously obtained for specimens overdoped at temperatures above 1000°C. For R=light Ln, Tc decreases systematically with increasing Δy. For other R's, Tc remains almost unchanged over the range of Δy⩽0.5. The maximum value of Δy is 0.85 for R=Nd.

  15. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  16. Crystal structures of [Ln(NO3)3(μ2-bpydo)2], where Ln = Ce, Pr or Nd, and bpydo = 4,4′-bi­pyridine N,N′-dioxide: layered coordination networks containing 44 grids

    PubMed Central

    Stromyer, Michael L.; Lilly, Cassandra P.; Dillner, Adam J.; Knaust, Jacqueline M.

    2016-01-01

    Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4′-bi­pyridine N,N′-dioxide (bpydo) are reported, namely poly[[tris­(nitrato-κ2 O,O′)cerium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2 N:N′)], [Ce(NO3)3(C10H8N2O2)2], poly[[tris­(nitrato-κ2 O,O′)praeseodymium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2 N:N′)], [Pr(NO3)3(C10H8N2O2)2], and poly[[tris(nitrato-κ2 O,O′)neodymium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2 N:N′], [Nd(NO3)3(C10H8N2O2)2]. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of [Ln(NO3)3(μ2-bpydo)2] contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ2-bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the ten-coordinate Ln III cations, forming inter­digitating 44 grid-like layers extending parallel to (-101), where inter­digitation of layers is promoted by C—H⋯O inter­actions between nitrate anions and bpydo ligands. The inter­digitated layers are linked to sets of neighboring layers via further C—H⋯O and π–π inter­actions. PMID:26870578

  17. Crystal structures of [Ln(NO3)3(μ2-bpydo)2], where Ln = Ce, Pr or Nd, and bpydo = 4,4'-bi-pyridine N,N'-dioxide: layered coordination networks containing 4(4) grids.

    PubMed

    Stromyer, Michael L; Lilly, Cassandra P; Dillner, Adam J; Knaust, Jacqueline M

    2016-01-01

    Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4'-bi-pyridine N,N'-dioxide (bpydo) are reported, namely poly[[tris-(nitrato-κ(2) O,O')cerium(III)]-bis-(μ2-4,4'-bi-pyridine N,N'-dioxide-κ(2) N:N')], [Ce(NO3)3(C10H8N2O2)2], poly[[tris-(nitrato-κ(2) O,O')praeseodymium(III)]-bis-(μ2-4,4'-bi-pyridine N,N'-dioxide-κ(2) N:N')], [Pr(NO3)3(C10H8N2O2)2], and poly[[tris(nitrato-κ(2) O,O')neodymium(III)]-bis-(μ2-4,4'-bi-pyridine N,N'-dioxide-κ(2) N:N'], [Nd(NO3)3(C10H8N2O2)2]. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of [Ln(NO3)3(μ2-bpydo)2] contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ2-bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the ten-coordinate Ln (III) cations, forming inter-digitating 4(4) grid-like layers extending parallel to (-101), where inter-digitation of layers is promoted by C-H⋯O inter-actions between nitrate anions and bpydo ligands. The inter-digitated layers are linked to sets of neighboring layers via further C-H⋯O and π-π inter-actions.

  18. Highly uniform and monodisperse beta-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties.

    PubMed

    Li, Chunxia; Quan, Zewei; Yang, Jun; Yang, Piaoping; Lin, Jun

    2007-08-06

    beta-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu3+ (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to 5D0-3 --> 7FJ (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively. When doped with 5% Tb3+ ions, the strong DC fluorescence corresponding to 5D4 --> 7FJ (J = 6, 5, 4, 3) transitions with 5D4 --> 7F5 (green emission at 544 nm) being the most prominent group that has been observed. In addition, under 980 nm laser excitation, the Yb3+/Er3+- and Yb3+/Tm3+-codoped beta-NaYF4 samples exhibit bright green and whitish blue up-conversion (UC) luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.

  19. Structural requirements for human inducible nitric oxide synthase substrates and substrate analogue inhibitors.

    PubMed

    Grant, S K; Green, B G; Stiffey-Wilusz, J; Durette, P L; Shah, S K; Kozarich, J W

    1998-03-24

    Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) catalyzes the NADPH-dependent oxidation of one of the free guanidino nitrogens of L-Arg to form nitric oxide and L-citrulline. Analogues of L-Arg and the inhibitor, L-N6-(1-iminoethyl)lysine, were used to define structural elements required for the binding and catalysis of compounds. L-Arg analogues with sequentially shorter methylene spacing between the guanidino group and the amino acid portion of the molecule were not iNOS substrates but were reversible inhibitors. L-Arg analogues such as agmatine with a hydroxyl substitution at the 2-amino position were substrates. Desaminoarginine was not a substrate but a reversible inhibitor. Desaminoarginine, agmatine, and argininic acid bound to the enzyme to give type I difference spectra similar to that of L-Arg. The amidino compounds L-N6-(1-iminoethyl)lysine, L-N5-(1-iminoethyl)ornithine, and N5-(1-iminoethyl)cadaverdine, but not N6-(1-iminoethyl)-6-aminocaproic acid, were NADPH-dependent, irreversible inactivators of iNOS. For both the L-Arg and L-N6-(1-iminoethyl)lysine analogues, the 2-amino group appeared to play an important role in catalytic events leading to either substrate turnover or mechanism-based inactivation. Inactivation of iNOS by L-N6-(1-iminoethyl)lysine was NADPH- and dioxygen-dependent, but low incorporation of radiolabel with DL--4, 5-3H]-N6-(1-iminoethyl)lysine indicates that the mechanism of enzyme inactivation is not covalent modification of the protein.

  20. Effect of irradiation on the steels 316L/LN type to 12 dpa at 400 °C

    NASA Astrophysics Data System (ADS)

    Bulanova, T.; Fedoseev, A.; Kalinin, G.; Rodchenkov, B.; Shamardin, V.

    2004-08-01

    The 316L type stainless steel is widely used as a structural material for the fission reactors internal structures (core, core supports, etc.) and for experimental irradiation facilities. The 316L(N)-IG type steel is proposed as a main structural material for the ITER reactor (first wall, blanket, vacuum vessel, cooling pipe lines). It is obvious that different steel grades should exhibit different reaction to neutron irradiation. The main objective of this work was to study of irradiation behaviour of three different commercial steels: AISI 316LN, AISI 316L (US grades) and 02X17H14M2 (Russian steel grade that is similar to 316L). Irradiation effect on the three commercial steels of 316L family to ˜12 dpa at the temperature ˜370-400 °C on the tensile properties, microstructure, swelling and susceptibility to SCC are described in the paper.

  1. Integral equation for spin dependent unintegrated parton distributions incorporating double ln2(1/x) effects at low x

    NASA Astrophysics Data System (ADS)

    Kwieciński, Jan; Maul, Martin

    2003-02-01

    In this paper we derive an integral equation for the evolution of unintegrated (longitudinally) polarized quark and gluon parton distributions. The conventional Catani-Ciafaloni-Fiorani-Marchesini (CCFM) framework is modified at small x in order to incorporate the QCD expectations concerning the double ln2(1/x) resummation at low x for the integrated distributions. Complete Altarelli-Parisi splitting functions are included that makes the formalism compatible with the leading order Altarelli-Parisi evolution at large and moderately small values of x. The obtained modified polarized CCFM equation is shown to be partially diagonalized by the Fourier-Bessel transformation. Results of the numerical solution for this modifed polarized CCFM equation for the nonsinglet quark distributions are presented.

  2. Assessment of Cavitation-Erosion Resistance of 316LN Stainless Steel Following a Nitro-Carburizing Surface Treatment

    SciTech Connect

    Pawel, Steven J

    2009-11-01

    A nitro-carburizing surface treatment known domestically as the Melonite process was applied to type 316LN stainless steel test pieces and exposed to sonication conditions in mercury using a vibratory horn technique. Cavitation-erosion damage was evaluated for extended exposures and compared to other surface treatments on the same substrate alloy. The results indicate that the Melonite process substantially retards weight loss and crater development for extended periods, but gradually is eroded/destroyed leading to exposure of the substrate and cavitation-erosion behavior similar to untreated specimens. Compared with other surface treatments, cavitation-erosion results indicate that specimens treated with Melonite perform similarly to specimens treated with a simple nitriding process. Neither the simple nitriding nor the Melonite treatment is quite as effective as a previously evaluated low temperature carburizing treatment, the latter being about a factor of three better than Melonite in terms of weight loss during sonication in mercury.

  3. Comparison of Cavitation-Erosion Resistance of Carburized and Carburized-Plus-Nitrided 316LN Stainless Steel in Mercury

    SciTech Connect

    Pawel, Steven J

    2007-05-01

    Annealed type 316LN stainless steel in the (1) carburized and the (2) carburized plus nitrided conditions was evaluated for cavitation-erosion resistance in ambient temperature mercury using a vibratory horn method. The results indicated that, relative to the specimens receiving only the carburizing treatment, the specimens that received both surface treatments exhibited substantially greater weight loss, general thinning, and profile development as a function of sonication time - with all observed degradation limited to the nitrided layer. Further, the nitride layer was observed to be susceptible to extensive cracking (occasionally leading to spallation), but the cracking was never observed to penetrate into the carburized layer. These screening test results suggest there is no improvement in cavitation-erosion resistance associated with augmentation of the carburizing treatment with plasma nitriding.

  4. Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3.

    PubMed

    Mori, Daisuke; Tanaka, Kie; Saitoh, Hiroyuki; Kikegawa, Takumi; Inaguma, Yoshiyuki

    2015-12-07

    A novel LiNbO3-type (LN-type) lead zinc oxide, PbZnO3, was successfully synthesized under high pressure and temperature. Rietveld structure refinement using synchrotron powder X-ray diffraction (XRD) data demonstrated that LN-type PbZnO3 crystallized into a trigonal structure with a polar space group (R3c). The bond valence sum estimated from the interatomic distances indicated that the sample possesses a Pb(4+)Zn(2+)O3 valence state. Polarization could evolve as a result of the repulsion between constituent cations because PbZnO3 does not contain a stereochemical 6s(2) cation or a Jahn-Teller active d(0) cation. Distortion of ZnO6 octahedra resulting from cation shift is comparable with that of d(0) TiO6 in ZnTiO3 and MnTiO3 with LN-type oxides, which leads to stabilization of the polar structure. PbZnO3 exhibited metallic behavior and temperature-independent diamagnetic character. In situ XRD measurement revealed that the formation of LN-type PbZnO3 occurred directly without the formation of a perovskite phase, which is unusual among LN-type materials obtained by high-pressure synthesis.

  5. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.

    PubMed

    Sun, Huwei; Bi, Yang; Tao, Jinyuan; Huang, Shuangjie; Hou, Mengmeng; Xue, Ren; Liang, Zhihao; Gu, Pengyuan; Yoneyama, Koichi; Xie, Xiaonan; Shen, Qirong; Xu, Guohua; Zhang, Yali

    2016-07-01

    The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs.

  6. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  7. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    PubMed

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  8. Electrochemical and Thermodynamic Properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) in 1-Butyl-3-Methylimidazolium Bromide Ionic Liquid

    PubMed Central

    Yang, Xiao; He, Ling; Qin, Song; Tao, Guo-Hong; Huang, Ming; Lv, Yi

    2014-01-01

    The electrochemical behavior and thermodynamic properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) were studied in 1-butyl-3-methylimidazolium bromide ionic liquid (BmimBr) at a glassy carbon (GC) electrode in the range of 293–338 K. The electrode reaction of Eu(III) was found to be quasi-reversible by the cyclic voltammetry, the reactions of the other three lanthanide ions were regarded as irreversible systems. An increase of the current intensity was obtained with the temperature increase. At 293 K, the cathodic peak potentials of −0.893 V (Eu(III)), −0.596 V (Sm(III)), −0.637 V (Dy(III)) and −0.641 V (Nd(III)) were found, respectively, to be assigned to the reduction of Ln(III) to Ln(II). The diffusion coefficients (Do), the transfer coefficients (α) of Ln(III) (Ln = Eu, Sm, Dy, Nd) and the charge transfer rate constants (ks) of Eu(III) were estimated. The apparent standard potential (E0*) and the thermodynamic properties of the reduction of Eu(III) to Eu(II) were also investigated. PMID:24752584

  9. Hybrid luminescence materials assembled by [Ln(DPA)3]3− and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes

    PubMed Central

    Li, Qing-Feng; Yue, Dan; Lu, Wei; Zhang, Xinlei; Li, Chunyang; Wang, Zhenling

    2015-01-01

    A kind of mesoporous hybrid luminescence material was assembled through the ion exchange method between [Ln(DPA)3]3− and ionic liquid functionalized SBA-15. [Ln(DPA)3]3− was successfully anchored onto positive-charge modified SBA-15 by the strong electrostatic interaction. In [Ln(DPA)3]3−, Ln3+ ions are in 9-fold coordination through six oxygen atoms of carboxyl groups and three nitrogen atoms of pyridine units, leaving no coordination site for water molecules. Therefore the hybrids possess prominent luminescent properties, SBA-15-IMI-Tb(DPA)3 and SBA-15-IMI-Eu(DPA)3 exhibit high quantum yield values of 63% and 79%, and long lifetimes values of 2.38 ms and 2.34 ms, respectively. Especially, SBA-15-IMI-Eu(DPA)3 presents a high color purity, and the red/orange intensity ratio is as high as 7.6. The excellent luminescence properties and ordered mesoporous structures give rise to many potential applications in optical and electronic areas. PMID:25669156

  10. A family of 'windmill'-like {Cu6Ln12} complexes exhibiting single-molecule magnetism behavior and large magnetic entropy changes.

    PubMed

    Alexandropoulos, Dimitris I; Poole, Katye M; Cunha-Silva, Luis; Ahmad Sheikh, Javeed; Wernsdorfer, Wolfgang; Christou, George; Stamatatos, Theocharis C

    2017-04-11

    A family of nanosized {Cu6Ln12} clusters with a 'windmill'-like topology was prepared from the employment of 2,6-diacetylpyridine dioxime, in conjunction with bridging N3(-), in 3d/4f-metal chemistry; the octadecanuclear compounds exhibit single-molecule magnetism behavior and large magnetic entropy changes, depending on the 4f-metal ion present.

  11. A hexaaza macrocyclic ligand containing acetohydrazide pendants for Ln(III) complexation in aqueous solution. Solid-state and solution structures and DFT calculations.

    PubMed

    Núñez, Cristina; Bastida, Rufina; Macías, Alejandro; Mato-Iglesias, Marta; Platas-Iglesias, Carlos; Valencia, Laura

    2008-08-07

    Lanthanide complexes of a hexaaza macrocyclic ligand containing acetohydrazide pendants (L) have been synthesised (Ln = La-Er, except Pm), and structural studies have been carried out both in the solid state and in aqueous solution. Attempts to isolate the complexes of the heaviest Ln(iii) ions (Ln = Tm-Lu) were unsuccessful. The crystal structures of the ligand and its lanthanum complex have been determined by single-crystal X-ray crystallography. The X-ray crystal structure of [La(L)](3+) shows the metal ion being ten-coordinate, with the acetohydrazide pendants situated alternatively above and below the plane of the macrocycle. The two five membered chelate rings formed by the ethylenediamine moieties adopt (deltadelta) [or (lambdalambda)] conformations. The [Ln(L)](3+) complexes have been characterised by means of density-functional theory (DFT) calculations (B3LYP model). The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as obtained from paramagnetic NMR measurements on the Ce(iii), Pr(III), Nd(III) and Eu(III) complexes. The complexes adopt in aqueous solution a D(2) structure with the ligand adopting a (deltadelta) [or (lambdalambda)] conformation.

  12. Ab initio calculation of excess properties of La{sub 1−x}(Ln,An){sub x}PO{sub 4} solid solutions

    SciTech Connect

    Li, Yan; Kowalski, Piotr M.; Blanca-Romero, Ariadna; Vinograd, Victor; Bosbach, Dirk

    2014-12-15

    We used ab initio computational approach to predict the excess enthalpy of mixing and the corresponding regular/subregular model parameters for La{sub 1−x}Ln{sub x}PO{sub 4} (Ln=Ce,…, Tb) and La{sub 1−x}An{sub x}PO{sub 4} (An=Pu, Am and Cm) monazite-type solid solutions. We found that the regular model interaction parameter W computed for La{sub 1−x}Ln{sub x}PO{sub 4} solid solutions matches the few existing experimental data. Within the lanthanide series W increases quadratically with the volume mismatch between LaPO{sub 4} and LnPO{sub 4} endmembers (ΔV=V{sub LaPO{sub 4}}−V{sub LnPO{sub 4}}), so that W(kJ/mol)=0.618(ΔV(cm{sup 3}/mol)){sup 2}. We demonstrate that this relationship also fits the interaction parameters computed for La{sub 1−x}An{sub x}PO{sub 4} solid solutions. This shows that lanthanides can be used as surrogates for investigation of the thermodynamic mixing properties of actinide-bearing solid solutions. - Highlights: • The excess enthalpies of mixing for monazite-type solid solutions are computed. • The excess enthalpies increase with the endmembers volume mismatch. • The relationship derived for lanthanides is transferable to La{sub 1−x}An{sub x}PO{sub 4} systems.

  13. Syntheses, crystal structures and vibrational spectra of KLn(SO{sub 4}){sub 2}.H{sub 2}O (Ln=La, Nd, Sm, Eu, Gd, Dy)

    SciTech Connect

    Kazmierczak, Karolina; Hoeppe, Henning A.

    2010-09-15

    The potassium lanthanide double sulphates KLn(SO{sub 4}){sub 2}.H{sub 2}O (Ln=La, Nd, Sm, Eu, Gd, Dy) were obtained by evaporation of aqueous reaction mixtures of rare earth (III) sulphates and potassium thiocyanate at 298 K. X-ray single-crystal investigations show that KLn(SO{sub 4}){sub 2}.H{sub 2}O (Ln=Nd, Sm, Eu, Gd, Dy) crystallise monoclinically (Ln=Sm: P2{sub 1}/c, Z=4, a=10.047(1), b=8.4555(1), c=10.349(1) A, wR2=0.060, R1=0.024, 945 reflections, 125 parameters) while KLa(SO{sub 4}){sub 2}.H{sub 2}O adopts space group P3{sub 2}21 (Z=3, a=7.1490(5), c=13.2439(12) A, wR2=0.038, R1=0.017, 695 reflections, 65 parameters). The coordination environment of the lanthanide ions in KLn(SO{sub 4}){sub 2}.H{sub 2}O is different in the case of the Nd/Sm/Gd and the Eu/Dy compounds, respectively. In the first case the Ln atoms are nine-fold coordinated in contrast to the latter where the Ln ions are eight-fold coordinated by oxygen atoms. The vibrational spectra of KLn(SO{sub 4}){sub 2}.H{sub 2}O and the UV-vis reflection spectra of KEu(SO{sub 4}){sub 2}.H{sub 2}O and KNd(SO{sub 4}){sub 2}.H{sub 2}O are also reported. - Graphical abstract: The lanthanide potassium double sulphates exhibit an unexpected change in the coordination mode by a simple rotation of sulphate tetrahedron 2.

  14. Octanuclear {Ln(III)8}(Ln = Gd, Tb, Dy, Ho) macrocyclic complexes in a cyclooctadiene-like conformation: manifestation of slow relaxation of magnetization in the Dy(III) derivative.

    PubMed

    Chandrasekhar, Vadapalli; Bag, Prasenjit; Colacio, Enrique

    2013-04-15

    The synthesis of a series of macrocyclic, isostructural octanuclear lanthanide complexes [Gd8 (LH2)4 (μ-Piv)4 (η(2)-Piv)4 (μ-OMe)4]·6CH3OH·2H2O (1), [Tb8 (LH2)4 (μ-Piv)4 (η(2)-Piv)4 (μ-OMe)4]4CH3OH·4H2O (2), [Dy8(LH2)4 (μ-Piv)4 (η(2)-Piv)4 (μ-OMe)4]·8CH3OH (3), and [Ho8(LH2)4(μ-Piv)4 (η(2)-Piv)4 (μ-OMe)4]·CH3OH·4H2O (4) have been achieved, using Ln(III) nitrate salts, pivalic acid, and a new multidentate chelating ligand (2E,N'E)-N'-(3-((bis(2- hydroxyethyl)amino)methyl)-2-hydroxy-5-methylbenzylidene)-2-(hydroxyimino) propane hydrazide (LH5), containing two unsymmetrically disposed arms; one side of the phenol unit is decorated with a diethanolamine group while the other side is a hydrazone that has been built by the condensation reaction involving 2-hydroxyiminopropanehydrazide. All the compounds, 1-4, are neutral and are held by the four [LH2](3-) triply deprotonated chelating ligands. In these complexes all the lanthanide ions are doubly or triply bridged via phenolate, alkoxy, and pivalate oxygens. The metal centers are distributed over the 8 vertices of an octagon, resembling a cyclooctadiene ring core. The details of magnetochemical analysis for complexes 1-4 shows that they exhibit antiferromagnetic interactions between the Ln(3+) ions through the phenoxo, alkoxo, and pivalato bridging groups. None of the compounds exhibits slow relaxation of the magnetization at zero applied direct current (dc) magnetic field, which could be due to the existence of a fast quantum tunneling relaxation of the magnetization (QTM). In the case of 3, the application of a small dc field is enough as to fully or partly suppress the fast and efficient zero-field QTM allowing the observation of slow relaxation above 2 K.

  15. LaF3:Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy

    NASA Astrophysics Data System (ADS)

    Lv, Ruichan; Yang, Guixin; He, Fei; Dai, Yunlu; Gai, Shili; Yang, Piaoping

    2014-11-01

    In this report, uniform LaF3:Ln mesoporous spheres have been synthesized by a facile and mild in situ ion-exchange method using yolk-like La(OH)3:Ln mesoporous spheres as templates, which were prepared through a self-produced bubble-template route. It was found that the structures of the final LaF3:Ln can simply be tuned by adding a polyetherimide (PEI) reagent. LaF3:Ln hollow mesoporous spheres (HMSs) and LaF3:Ln flower-like mesoporous spheres (FMSs) were obtained when assisted by PEI and in the absence of PEI. The up-conversion (UC) luminescence results reveal that the doping of Nd3+ ions in LaF3:Ln can markedly influence the UC emissions of the products. It is interesting that an obvious thermal effect is achieved due to the energy back-transfer from Tm3+ to Nd3+ ions under 980 nm near-infrared (NIR) irradiation. The LaF3:Yb/Er/Tm/Nd HMSs show good biocompatibility and sustained doxorubicin (DOX) release properties. In particular, upon 980 nm NIR irradiation, the photothermal effect arising from the Nd3+ doping induces a faster DOX release from the drug release system. Moreover, UC luminescence images of LaF3:Yb/Er/Tm/Nd HMSs uptaken by MCF-7 cells exhibit apparent green emission under 980 nm NIR irradiation. Such a multifunctional carrier combining UC luminescence and hyperthermia with the chemotherapeutic drugs should be of high potential for the simultaneous anti-cancer therapy and cell imaging.In this report, uniform LaF3:Ln mesoporous spheres have been synthesized by a facile and mild in situ ion-exchange method using yolk-like La(OH)3:Ln mesoporous spheres as templates, which were prepared through a self-produced bubble-template route. It was found that the structures of the final LaF3:Ln can simply be tuned by adding a polyetherimide (PEI) reagent. LaF3:Ln hollow mesoporous spheres (HMSs) and LaF3:Ln flower-like mesoporous spheres (FMSs) were obtained when assisted by PEI and in the absence of PEI. The up-conversion (UC) luminescence results reveal that

  16. Effects of chronic nitric oxide synthase inhibition on responses to acute exercise in swine.

    PubMed

    McAllister, Richard M; Newcomer, Sean C; Pope, Eric R; Turk, James R; Laughlin, M Harold

    2008-01-01

    Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O(2) delivery to muscle, but does not affect O(2) utilization by muscle, therefore lowering maximal O(2) consumption. To test these hypotheses, swine (approximately 30 kg) drank either tap water (Con, n = 25) or water with N(G)-nitro-l-arginine methyl ester (8.0 +/- 0.4 mg x kg(-1) x day(-1) for >or=4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O(2) consumption was determined at rest through maximal exercise intensity. O(2) consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 +/- 1.8 ml x min(-1) x kg(-1); LN, 40.4 +/- 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 +/- 16 ml x min(-1) x 100 g; LN, 55 +/- 15; P < 0.05) and pancreas (Con, 25 +/- 7; LN, 6 +/- 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O(2) consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings.

  17. Effects of chronic nitric oxide synthase inhibition on responses to acute exercise in swine

    PubMed Central

    McAllister, Richard M.; Newcomer, Sean C.; Pope, Eric R.; Turk, James R.; Laughlin, M. Harold

    2012-01-01

    Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O2 delivery to muscle, but does not affect O2 utilization by muscle, therefore lowering maximal O2 consumption. To test these hypotheses, swine (~30 kg) drank either tap water (Con, n = 25) or water with NG-nitro-L-arginine methyl ester (8.0 ± 0.4 mg · kg−1 · day−1 for ≥4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O2 consumption was determined at rest through maximal exercise intensity. O2 consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 ± 1.8 ml · min−1 · kg−1; LN, 40.4 ± 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 ± 16 ml · min−1 · 100 g; LN, 55 ± 15; P < 0.05) and pancreas (Con, 25 ± 7; LN, 6 ± 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O2 consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings. PMID:17975123

  18. Brush Seals for Cryogenic Applications: Performance, Stage Effects, and Preliminary Wear Results in LN2 and LH2

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Walker, James F.; Perkins, H. Douglas; Hoopes, Joan F.; Williamson, G. Scott

    1996-01-01

    Brush seals are compliant contacting seals and have significantly lower leakage than labyrinth seals in gas turbine applications. Their long life and low leakage make them candidates for use in rocket engine turbopumps. Brush seals, 50.8 mm (2 in.) in diameter with a nominal 127-micron (0.005-in.) radial interference, were tested in liquid nitrogen (LN2) and liquid hydrogen (LH2) at shaft speeds up to 35,000 and 65,000 rpm, respectively, and at pressure drops up to 1.21 MPa (175 psid) per brush. A labyrinth seal was also tested in liquid nitrogen to provide a baseline. The LN2 leakage rate of a single brush seal with an initial radial shaft interference of 127 micron (0.005 in.) measured one-half to one-third the leakage rate of a 12-tooth labyrinth seal with a radial clearance of 127 micron (0.005 in.). Two brushes spaced 7.21 micron (0.248 in.) apart leaked about one-half as much as a single brush, and two brushes tightly packed together leaked about three-fourths as much as a single brush. The maximum measured groove depth on the Inconel 718 rotor with a surface finish of 0.81 micron (32 microinch) was 25 micron (0.0010 in.) after 4.3 hr of shaft rotation in liquid nitrogen. The Haynes-25 bristles wore approximately 25 to 76 micron (0.001 to 0.003 in.) under the same conditions. Wear results in liquid hydrogen were significantly different. In liquid hydrogen the rotor did not wear, but the bristle material transferred onto the rotor and the initial 127 micron (0.005 in.) radial interference was consumed. Relatively high leakage rates were measured in liquid hydrogen. More testing is required to verify the leakage performance, to validate and calibrate analysis techniques, and to determine the wear mechanisms. Performance, staging effects, and preliminary wear results are presented.

  19. Experimental sorption of Ni 2+, Cs + and Ln 3+ onto a montmorillonite up to 150°C

    NASA Astrophysics Data System (ADS)

    Tertre, Emmanuel; Berger, Gilles; Castet, Sylvie; Loubet, Michel; Giffaut, Eric

    2005-11-01

    The effect of temperature on the sorption of cations onto a dioctahedral smectite was investigated by running batch experiments at 25, 40, 80 and 150°C. We measured the distribution coefficient (Kd) of Cs +, Ni 2+ and 14 lanthanides (Ln 3+) between solutions and the montmorillonite fraction of the MX80 bentonite at various pH and ionic strengths. Up to 80°C we used a conventional experimental protocol derived from Coppin et al. (2002). At 150°C, the experiments were conducted in a PTFE reactor equipped with an internal filter allowing the sampling of clear aliquots of solution. The results show a weak but measurable influence of the temperature on the elements sorption. Kd's for Ni 2+ and Ln 3+ increase by a factor 2 to 5 whereas temperature raises from 25 to 150°C. This effect seems higher at high ionic strength. The estimated apparent endothermic sorption enthalpies are 33 ± 10 kJ.mol -1 and 39 ± 15 kJ.mol -1 for Ni 2+ and Eu 3+, respectively. On the other hand, the temperature effect on Cs + sorption is only evidenced at low ionic strength and under neutral conditions where the Kd decreases by a factor 3 between 25 and 150°C. Apparent exothermic sorption enthalpy for Cs + on the montmorillonite is -19 ± 5 kJ.mol -1. Experiments conducted at the four temperatures with the coexistence of all of the cations in the reacting solution (100 ppb of each element in the starting solution) or only one of them, produced similar values of Kd. This suggests the absence of competition between the sorbed cations, and consequently a low degree of saturation of the available sites. A fractionation of the lanthanides spectrum is also observed at high pH and high ionic strength whatever the temperature. The conclusion of this study is that the temperature dependence on sorption reflects, as the fractionation of REE or the pH and ionic strength effects, the chemical process which controls the overall reaction. In the case of an exchange dominated reaction (low pH and low

  20. Single-Molecule Magnetism, Enhanced Magnetocaloric Effect, and Toroidal Magnetic Moments in a Family of Ln4 Squares.

    PubMed

    Das, Chinmoy; Vaidya, Shefali; Gupta, Tulika; Frost, Jamie M; Righi, Mattia; Brechin, Euan K; Affronte, Marco; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2015-10-26

    Three cationic [Ln4 ] squares (Ln=lanthanide) were isolated as single crystals and their structures solved as [Dy4 (μ4 -OH)(HL)(H2 L)3 (H2 O)4 ]Cl2 ⋅(CH3 OH)4 ⋅(H2 O)8 (1), [Tb4 (μ4 -OH)(HL)(H2 L)3 (MeOH)4 ]Cl2 ⋅(CH3 OH)4 ⋅(H2 O)4 (2) and [Gd4 (μ4 -OH)(HL)(H2 L)3 (H2 O)2 (MeOH)2 ]Br2 ⋅(CH3 OH)4 ⋅(H2 O)3 (3). The structures are described as hydroxo-centered squares of lanthanide ions, with each edge of the square bridged by a doubly deprotonated H2 L(2-) ligand. Alternating current magnetic susceptibility measurements show frequency-dependent out-of-phase signals with two different thermally assisted relaxation processes for 1, whereas no maxima in χM " appears above 2.0 K for complex 2. For 1, the estimated effective energy barrier for these two relaxation processes is 29 and 100 K. Detailed ab initio studies reveal that complex 1 possesses a toroidal magnetic moment. The ab initio calculated anisotropies of the metal ions in complex 1 were employed to simulate the magnetic susceptibility by using the Lines model (POLY_ANISO) and this procedure yields J1 =+0.01 and J2 =-0.01 cm(-1) for 1 as the two distinct exchange interactions between the Dy(III) ions. Similar parameters are also obtained for complex 1 (and 2) from specific heat measurements. A very weak antiferromagnetic super-exchange interaction (J1 =-0.043 cm(-1) and g=1.99) is observed between the metal centers in 3. The magnetocaloric effect (MCE) was estimated by using field-dependent magnetization and temperature-dependent heat-capacity measurements. An excellent agreement is found for the -ΔSm values extracted from these two measurements for all three complexes. As expected, 3 shows the largest -ΔSm variation (23 J Kg(-1)  K(-1) ) among the three complexes. The negligible magnetic anisotropy of Gd indeed ensures near degeneracy in the (2S+1) ground state microstates, and the weak super-exchange interaction facilitates dense population of low-lying excited states, all of

  1. Encapsulation of Ln(III) Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ion Probe and Two-Color Luminescent Sensors.

    PubMed

    Zhao, Shu-Na; Song, Xue-Zhi; Zhu, Min; Meng, Xing; Wu, Lan-Lan; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2015-06-26

    A new anionic framework {[Me2NH2]0.125[In0.125(H2L)0.25]⋅xDMF}n (1) with one-dimensional (1D) channels along the c axis of about 13.06×13.06 Å(2), was solvothermally synthesized and well characterized. Post-synthetic cation exchange of 1 with Eu(3+), Tb(3+), Dy(3+), Sm(3+) afforded lanthanide(III)-loaded materials, Ln(3+)@1, with different luminescent behavior, indicating that compound 1 could be used as a potential luminescent probe toward different lanthanide(III) ions. Additionally, compound 1 exhibits selective adsorption ability toward cationic dyes. Moreover, the RhB@1 realized the probing of different organic solvent molecules by tuning the energy transfer efficiency between two different emissions, especially for sensing DMF. This work highlights the practical application of luminescent guest@MOFs as sensors, and it paves the way toward other one/multi-color luminescent host-guest systems by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels.

  2. Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands.

    PubMed

    Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique

    2014-02-03

    There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials

  3. Amending the anisotropy barrier and luminescence behavior of heterometallic trinuclear linear [M(II) -Ln(III) -M(II) ] (Ln(III) =Gd, Tb, Dy; M(II) =Mg/Zn) complexes by change from divalent paramagnetic to diamagnetic metal ions.

    PubMed

    Das, Sourav; Bejoymohandas, K S; Dey, Atanu; Biswas, Sourav; Reddy, M L P; Morales, Roser; Ruiz, Eliseo; Titos-Padilla, Silvia; Colacio, Enrique; Chandrasekhar, Vadapalli

    2015-04-20

    The sequential reaction of a multisite coordinating compartmental ligand [2-(2-hydroxy-3-(hydroxymethyl)-5-methylbenzylideneamino)-2-methylpropane-1,3-diol] (LH4 ) with appropriate lanthanide salts followed by the addition of [Mg(NO3 )2 ]⋅6 H2 O or [Zn(NO3 )2 ]⋅6 H2 O in a 4:1:2 stoichiometric ratio in the presence of triethylamine affords a series of isostructural heterometallic trinuclear complexes containing [Mg2 Ln](3+) (Ln=Dy, Gd, and Tb) and [Zn2 Ln](3+) (Ln=Dy, Gd, and Tb) cores. The formation of these complexes is demonstrated by X-ray crystallography as well as ESI-MS spectra. All complexes are isostructural possessing a linear trimetallic core with a central lanthanide ion. The comprehensive studies discussed involve the synthesis, structure, magnetism, and photophysical properties on this family of trinuclear [Mg2 Ln](3+) and [Zn2 Ln](3+) heterometallic complexes. [Mg2 Dy](3+) and [Zn2 Dy](3+) show slow relaxation of the magnetization below 12 K under zero applied direct current (dc) field, but without reaching a neat maximum, which is due to the overlapping with a faster quantum tunneling relaxation mediated through dipole-dipole and hyperfine interactions. Under a small applied dc field of 1000 Oe, the quantum tunneling is almost suppressed and temperature and frequency dependent peaks are observed, thus confirming the single-molecule magnet behavior of complexes [Mg2 Dy](3+) and [Zn2 Dy](3+) .

  4. Evolution of Oxidative Continental Weathering

    NASA Astrophysics Data System (ADS)

    Konhauser, Kurt; Lalonde, Stefan

    2014-05-01

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen levels increased above 10-5 times the present atmospheric level. This value is based on the loss of sulphur isotope mass independent fractionation (S-MIF) from the rock record, beginning at 2.45 Ga and disappearing by 2.32 Ga. However, a number of recent papers have pushed back the timing for oxidative continental weathering, and by extension, the onset of atmospheric oxygenation several hundreds of million years earlier despite the presence of S-MIF (e.g., Crowe et al., 2013). This apparent discrepancy can, in part, be resolved by the suggestion that recycling of older sedimentary sulphur bearing S-MIF might have led to this signal's persistence in the rock record for some time after atmospheric oxygenation (Reinhard et al., 2013). Here we suggest another possibility, that the earliest oxidative weathering reactions occurred in environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts, riverbed and estuarine sediments, and lacustrine microbial mats. We calculate that the rate of O2 production via oxygenic photosynthesis in these terrestrial microbial ecosystems provides largely sufficient oxidizing potential to mobilise sulphate and a number of redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. These findings reconcile geochemical signatures in the rock record for the earliest oxidative continental weathering with the history of atmospheric sulphur chemistry, and demonstrate the plausible antiquity of a terrestrial biosphere populated by cyanobacteria. Crowe, S.A., Dossing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R. & Canfield, D.E. Atmospheric oxygenation three billion years ago. Nature 501, 535-539 (2013). Reinhard, C.T., Planavsky, N.J. & Lyons, T.W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497

  5. High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier.

    PubMed

    Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2013-09-01

    We have experimentally demonstrated a periodically poled magnesium-oxide-doped lithium niobate (PPMgLN)-based, fiber-laser-pumped optical parametric oscillator (OPO) generating idler wavelength of 3.82 μm. The pump fiber laser was constructed with a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber oscillator and a polarization-maintaining fiber amplifier with pulse duration of 190 ns at the highest output power. The OPO was specifically configured in single-pass, singly resonant linear cavity structure to avoid the damage risk of the pump fiber laser, which is always a serious issue in the fiber-laser-pumped, double-pass, singly oscillating structured OPOs. Under the highest pump power of 25 W, an idler average output power of 3.27 W with one-hour peak-to-peak instability of 5.2% was obtained. The measured M2 factors were 1.98 and 1.44 for horizontal and vertical axis, respectively. The high power stability and good beam quality demonstrated the suitability of such technology for practical application.

  6. The Mechanical and material properties of 316LN austenitic stainless steel for the fusion application in cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Sas, J.; Weiss, K.-P.; Jung, A.

    2015-12-01

    Due to the constant increase of claims for all materials used in superconducting magnets in "magnetic fusion reactors", the article deals with the possibilities of increasing the mechanical properties of austenitic stainless steel tested at cryogenic conditions that ensure the transport of Helium to magnets. The aim of the experimental plan was to increase the mechanical properties of the steel grade 316LN tested at 4.2K from the original value Steel A: YS = 1045 MPa, UTS = 1528 MPa, A = 33% to the value of YS = 1204 MPa,UTS = 1642 MPa, A = 34% and Steel B: YS = 1173 MPa, UTS = 1541 MPa, A = 28% to the value of YS = 1351 MPa, UTS = 1645 MPa, A = 17%. The increase in mechanical properties of the steel grade under examination has been made by means of heat processing in the conditions of annealing: Th1 = 625 ° C / th1 = 696 h. The mechanical properties of steel were evaluated using static tension tests at 4,2 K. The samples were placed in a cryostat filled with liquid helium. Except for the mechanical properties, there were also evaluated structural changes depending on the conditions of heat processing by light optical microscopy and EBSD (Electron Backscatter Diffraction). The increase of steel properties used in low temperatures was achieved by heat processing.

  7. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2017-02-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  8. Nitrogen effect on precipitation and sensitization in cold-worked Type 316L(N) stainless steels

    NASA Astrophysics Data System (ADS)

    Oh, Yong Jun; Hong, Jun Hwa

    2000-02-01

    The precipitation behavior and sensitization resistance of Type 316L(N) stainless steels containing different concentrations of nitrogen have been investigated at the aging condition of 700°C for cold work (CW) levels ranging from 0% (as solution annealed) to 40% reduction in thickness. The precipitation of M 23C 6 carbide and intermetallic compounds ( χ, Laves and σ phase) was accelerated by increasing the CW level. Nitrogen in the deformed alloys retarded the inter- and intra-granular precipitation of the carbides at low and high CW levels respectively, whereas it increased the relative amount of the χ phase. Quantitative assessment of the degree of sensitization (DOS) using the double loop-electrochemical potentiokinetic reactivation (DL-EPR) tests indicated that CW levels up to 20% enhanced sensitization while 40% CW suppressed sensitization for all aging times. The increase in nitrogen content accelerated the sensitization at CW levels below 20%. This might be associated with the homogeneous distribution of dislocations and the lower tendency toward recrystallization exhibited in the alloys having higher nitrogen content.

  9. Design and analysis on thermal adaptive clamping device for PPMgLN crystal used in solid state laser

    NASA Astrophysics Data System (ADS)

    Yan, Conglin; Chen, Yongliang; Zhang, Wei

    2015-02-01

    The quality of clamping device for PPMgLN crystal has a vital influence on the optical property of solid-state laser. It has highly requirements of work stability and environmental adaptation ability, especially the thermal adaptation under high temperature differences. To achieve thermal adaptation, structural stiffness will be unavoidably weakened. How to keep both enough stiffness and thermal adaptation as far as possible is the key design point and also difficult point. In this paper, a kind of flexible thermal release unit which can work permanent under 130+/-10°C is studied. Thermal compensation principle and flexible thermal release theory are applied. Analysis results indicate that this device can effectively decreased the thermal stress of the crystal from 85MPa to 0.66MPa. The results of the vibration resistance test on the optical axis direction of the crystal indicate that the device can provide at least 5.62N to resistant 57.2g impact vibration and 18.5g impact vibration in the side direction, well satisfied the requirements of ability to resistant 6g impact vibration.

  10. Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI Type 316LN Stainless Steels

    NASA Astrophysics Data System (ADS)

    Poonguzhali, A.; Pujar, M. G.; Kamachi Mudali, U.

    2013-04-01

    High-nitrogen stainless steels (SS) are receiving increased attention because of the advantages of their strength over the SS with nominal composition. However, they are susceptible to dichromium nitride (Cr2N) precipitation during thermal exposure between 873 and 1323 K resulting in sensitization and subsequent intergranular corrosion. Round tensile specimens of AISI type 316LN SS, with three different nitrogen content 0.07, 0.14, and 0.22 wt.% in mill-annealed and sensitized (973 K for 24 h) condition were studied for their pitting corrosion behavior. The results of the potentiodynamic anodic polarization studies were correlated with the results obtained using electrochemical impedance spectroscopy (EIS) technique. Critical pitting potential ( E pp) increased with increasing nitrogen content but the same was found to decrease on aging. The parameters indicating passive film stability measured by EIS revealed faster passive film dissolution as indicated by low polarization resistance, in sensitized condition and vice-versa in mill-annealed condition. The EIS results correlated well with the variation in the respective E pp obtained from the potentiodynamic polarization diagrams.

  11. Corrosion behavior and tensile properties of AISI 316LN stainless steel exposed to flowing sodium at 823 K

    SciTech Connect

    Pillai, S.R.; Barasi, N.S.; Khatak, H.S.; Terrance, A.L.E.; Kale, R.D.; Rajan, M.; Rajan, K.K.

    2000-02-01

    Austenitic stainless steel of the grade AISI 316 LN was exposed to flowing sodium in a loop at 823 K for 6,000 h to examine the corrosion and mass-transfer behavior. The specimens were incorporated in specially designed sample holders in the loop. These were retrieved and examined by various metallurgical techniques. Specimens were also subjected to thermal aging in the same sample holder to aid in separating the consequences of exposure to sodium from those cause by mere thermal effects. Microstructural investigations have revealed that thermal aging caused the precipitation of carbides at the grain boundaries. Exposure to sodium caused the leaching of elements such as chromium and nickel from the specimen. Loss of nickel from the austenite phase promoted the generation of ferrite phase. Microhardness investigation revealed the hardening of the sodium-exposed surface. Analysis using an electron Probe Microanalyzer revealed that the surface of the steel was both carburized and nitrided. Tensile tests indicated that there is no appreciable difference in the yield strength (YS) and ultimate tensile strength (UTS) of the thermally aged and sodium-exposed specimens when compared with the material in the as-received condition. However, the thermally aged and sodium-exposed specimens showed a decrease in the uniform elongation and total elongation at rupture, perhaps due to carburization and nitridation.

  12. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2016-12-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  13. Summary of recommended correlations for ITER-grade type 316L(N) for the ITER materials properties handbook

    SciTech Connect

    Billone, M.C.; Pawel, J.E.

    1996-04-01

    The focus of this effort is the effects of irradiation on the ultimate tensile strengths (UTS), the yield strength (YS), the uniform elongation (UE), the total elongation (TE) and the reduction in area (RA) in the ITER-relevant temperature range of 100-400{degrees}C. For the purpose of this summary, data for European heats of 316 with 0.020.08 wt.% are referred to as E316L(N) data and grouped together. Other heats of 316 and Ti-modified 316 are also included in the data base. For irradiation and postirradiation-test temperatures in the range of 200-400{degrees}C, the common behavior of these heats of stainless steel is a yield strength approaching the ultimate tensile strength approaching 800 MPa, a uniform elongation approaching 0.3%, a total elongation approaching 3-9%, and a high (about 60%) reduction in area as the neutron damage approaches 10 dpa.

  14. A Local Damage Approach to Predict Crack Initiation in Type AISI 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Krishnan, S. A.; Sasikala, G.; Moitra, A.; Albert, S. K.; Bhaduri, A. K.

    2014-05-01

    A local damage approach based on plastic strain equivalent to uniform strain and grain diameter of the material is proposed for prediction of crack initiation. Plane strain, plane stress, and 3D FEM simulations are carried out for compact tension (CT) geometry with blunt notch of different a/ W ratios under mode-I loading. Elastic-plastic fracture parameters have been estimated based on certain assumptions on blunting at notch tip and micromechanisms of events leading to onset of crack. The various crack initiation parameters evaluated based on proposed local damage approach and initial assumptions have been verified by conducting experiments on CT specimens and subsequent scanning electron microscopy study on fracture surface. The laboratory scale experimental results of AISI 316L(N) stainless steel material are in good agreement with FEM-predicted fracture parameters for notch type of stress raisers. The local damage approach and FEM procedure established in the present study would be easily extendable to the analysis of stress raisers in components for the prediction of crack initiation under elastic-plastic condition.

  15. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Elliott, T. F.; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LNI) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered Trademark) Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark) software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  16. Synthesis and Evaluation of Conformationally Restricted N4-Tetradentate Ligands for Implementation in An(III)/Ln(III) Separations

    SciTech Connect

    Mark D. Ogden; G. Patrick Meier; Kenneth L. Nash

    2012-01-01

    The previous literature demonstrates that donor atoms softer than oxygen are effective for separating trivalent lanthanides (Ln(III)) from trivalent actinides (An(III)) (Nash, K.L., in: Gschneider, K.A. Jr., et al. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 18-Lanthanides/Actinides Chemistry, pp. 197-238. Elsevier Science, Amsterdam, 1994). It has also been shown that ligands that 'restrict' their donor groups in a favorable geometry, appropriate to the steric demands of the cation, have an increased binding affinity. A series of tetradentate nitrogen containing ligands have been synthesized with increased steric 'limits'. The pK a values for these ligands have been determined using potentiometric titration methods and the formation of the colored copper(II) complex has been used as a method to determine ligand partitioning between the organic and aqueous phases. The results for the 2-methylpyridyl-substituted amine ligands are encouraging, but the results for the 2-methylpyridyl-substituted diimines indicate that these ligands are unsuitable for implementation in a solvent extraction system due to hydrolysis.

  17. Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates

    PubMed Central

    2015-01-01

    A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn′] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing. PMID:25203521

  18. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  19. Magnetic interactions in CuII-LnIII cyclic tetranuclear complexes: is it possible to explain the occurrence of SMM behavior in CuII-TbIII and CuII-DyIII complexes?

    PubMed

    Hamamatsu, Takefumi; Yabe, Kazuya; Towatari, Masaaki; Osa, Shutaro; Matsumoto, Naohide; Re, Nazzareno; Pochaba, Andrzej; Mrozinski, Jerzy; Gallani, Jean-Louis; Barla, Alessandro; Imperia, Paolo; Paulsen, Carley; Kappler, Jean-Paul

    2007-05-28

    An extensive series of tetranuclear CuII2LnIII2 complexes [CuIILLnIII(hfac)2]2 (with LnIII being all lanthanide(III) ions except for the radioactive PmIII) has been prepared in order to investigate the nature of the CuII-LnIII magnetic interactions and to try to answer the following question: What makes the CuII2TbIII2 and CuII2DyIII2 complexes single molecule magnets while the other complexes are not? All the complexes within this series possess a similar cyclic tetranuclear structure, in which the CuII and LnIII ions are arrayed alternately via bridges of ligand complex (CuIIL). Regular SQUID magnetometry measurements have been performed on the series. The temperature-dependent magnetic susceptibilities from 2 to 300 K and the field-dependent magnetizations from 0 to 5 T at 2 K have been measured for the CuII2LnIII2 and NiII2LnIII2 complexes, with the NiII2LnIII2 complex containing diamagnetic NiII ions being used as a reference for the evaluation of the CuII-LnIII magnetic interactions. These measurements have revealed that the interactions between CuII and LnIII ions are very weakly antiferromagnetic if Ln=Ce, Nd, Sm, Yb, ferromagnetic if Ln=Gd, Tb, Dy, Ho, Er, Tm, and negligible if Ln=La, Eu, Pr, Lu. With the same goal of better understanding the evolution of the intramolecular magnetic interactions, X-ray magnetic circular dichroism (XMCD) has also been measured on CuII2TbIII2, CuII2DyIII2, and NiII2TbIII2 complexes, either at the L- and M-edges of the metal ions or at the K-edge of the N and O atoms. Last, the CuII2TbIII2 complex exhibiting SMM behavior has received a closer examination of its low temperature magnetic properties down to 0.1 K. These particular measurements have revealed the unusual very slow setting-up of a 3D order below 0.6 K.

  20. Nodal gap behavior of Bi2Sr2-xLnxCuO6+δ (Ln = La, Eu) investigated by specific heat measurements

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Moriya, Y.; Baar, S.; Momono, N.; Amakai, Y.; Takano, H.; Murayama, S.; Kurosawa, T.; Oda, M.; Ido, M.

    2015-08-01

    We performed low-temperature specific heat measurements on slightly underdoped samples of monolayer cuprate superconductors Bi2Sr2-xLnxCuO6+δ (Ln = La, Eu, Ln-Bi2201) under magnetic fields H. In La-Bi2201, the coefficient γ of T-linear term in the electronic specific heat Cel at T ≪ Tc shows H dependence, as expected in dx2-y2 -wave superconductors. In Eu-Bi2201, γ shows almost the same H dependence as that of La-Bi2201 below H ˜ 2 T, while γ is suppressed above H ˜ 2 T and deviates downward from the H curve of La-Bi2201. This result suggests the the gap and the electronic excitation spectrum near nodes are modified in Eu-Bi2201 except the region of the Fermi surface in the immediate vicinity of nodes.

  1. Magnetism and Raman spectroscopy of the dimeric lanthanide iodates Ln(IO{sub 3}){sub 3} (Ln=Gd, Er) and magnetism of Yb(IO{sub 3}){sub 3}

    SciTech Connect

    Sykora, Richard E. Khalifah, Peter; Assefa, Zerihun; Albrecht-Schmitt, Thomas E.; Haire, Richard G.

    2008-08-15

    Colorless single crystals of Gd(IO{sub 3}){sub 3} or pale pink single crystals of Er(IO{sub 3}){sub 3} have been formed from the reaction of Gd metal with H{sub 5}IO{sub 6} or Er metal with H{sub 5}IO{sub 6} under hydrothermal reaction conditions at 180 deg. C. The structures of both materials adopt the Bi(IO{sub 3}){sub 3} structure type. Crystallographic data are (MoK{alpha}, {lambda}=0.71073 A): Gd(IO{sub 3}){sub 3}, monoclinic, space group P2{sub 1}/n, a=8.7615(3) A, b=5.9081(2) A, c=15.1232(6) A, {beta}=96.980(1){sup o}, V=777.03(5) Z=4, R(F)=1.68% for 119 parameters with 1930 reflections with I>2{sigma}(I); Er(IO{sub 3}){sub 3}, monoclinic, space group P2{sub 1}/n, a=8.6885(7) A, b=5.9538(5) A, c=14.9664(12) A, {beta}=97.054(1){sup o}, V=768.4(1) Z=4, R(F)=2.26% for 119 parameters with 1894 reflections with I>2{sigma}(I). In addition to structural studies, Gd(IO{sub 3}){sub 3}, Er(IO{sub 3}){sub 3}, and the isostructural Yb(IO{sub 3}){sub 3} were also characterized by Raman spectroscopy and magnetic property measurements. The results of the Raman studies indicated that the vibrational profiles are adequately sensitive to distinguish between the structures of the iodates reported here and other lanthanide iodate systems. The magnetic measurements indicate that only in Gd(IO{sub 3}){sub 3} did the 3+ lanthanide ion exhibit its full 7.9 {mu}{sub B} Hund's rule moment; Er{sup 3+} and Yb{sup 3+} exhibited ground state moments and gap energy scales of 8.3 {mu}{sub B}/70 K and 3.8 {mu}{sub B}/160 K, respectively. Er(IO{sub 3}){sub 3} exhibited extremely weak ferromagnetic correlations (+0.4 K), while the magnetic ions in Gd(IO{sub 3}){sub 3} and Yb(IO{sub 3}){sub 3} were fully non-interacting within the resolution of our measurements ({approx}0.2 K). - Graphical abstract: Three f-element iodates Ln(IO{sub 3}){sub 3} (Ln=Gd, Er, Yb), all containing the Bi(IO{sub 3}){sub 3} structure type, were characterized by Raman spectroscopy and magnetic property measurements

  2. Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered

    NASA Astrophysics Data System (ADS)

    van Veggel, Frank C. J. M.; Dong, Cunhai; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham

    2012-11-01

    In this feature article we will critically discuss the synthesis and characterisation aspects of Ln3+-doped nanoparticles (NPs) that show upconversion, upon 980 nm excitation. Upconversion is a non-linear process that converts two or more low-energy photons, often near-infrared photons, into one of higher energy, e.g. blue and 800 nm from Tm3+ and green and red from Er3+ or Ho3+. Nearly all researchers use the absorption of 980 nm light by Yb3+ as the sensitiser for the co-doped emissive Ln3+ ions. The focus will be on LnF3 and MLnF4 (M = alkali metal) as the host matrix, because most progress has been made with these. In particular we will argue that a detailed understanding of how the dopant ions and the host Ln3+ ions are distributed (in the core) and how (doped) shell growth occurs is not well understood. Moreover, their use as optical and magnetic resonance imaging contrast agents will be discussed. We will argue that deep-tissue imaging beyond 600 μm with retention of optical resolution, i.e. to see fine structure such as blood capillaries in brain tissues, has not yet been achieved. Three key parameters have been identified as impediments: (i) the low absorption efficiency of the Yb3+ sensitiser, (ii) the low quantum yield of upconversion, and (iii) the long-lived excited states. On the other hand, there are very encouraging results that suggest that these nanoparticles could be developed into very potent magnetic resonance imaging (MRI) contrast agents.

  3. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    PubMed

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  4. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil

    PubMed Central

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-01-01

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710

  5. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  6. Three novel lanthanide metal-organic frameworks (Ln-MOFs) constructed by unsymmetrical aromatic dicarboxylatic tectonics: synthesis, crystal structures and luminescent properties.

    PubMed

    Wu, Ya-Pan; Li, Dong-Sheng; Xia, Wei; Guo, Sha-Sha; Dong, Wen-Wen

    2014-09-11

    Three novel Ln(III)-based coordination polymers, {[Ln2 (2,4-bpda)3 (H2O)x]·yH2O}n (Ln = La (III) (1), x = 2, y = 0, Ce (III) (2), Pr (III) (3), x = 4, y = 1) (2,4-H2bpda = benzophenone-2,4-dicarboxylic acid) have been prepared via a solvothermal method and characterized by elemental analysis, IR, and single-crystal X-ray diffraction techniques. Complex 1 exhibits a 3D complicated framework with a new 2-nodal (3,7)-connected (42·5) (44·51·66·8) topology. Complexes 2 and 3 are isomorphous, and feature a 3D 4-connected (65·8)-CdSO4 network. Moreover, solid-state properties such as thermal stabilities and luminescent properties of 1 and 2 were also investigated. Complex 1 crystallized in a monoclinic space group P21/c with a = 14.800 (3), b = 14.500 (3), c = 18.800 (4) Å, β = 91.00 (3), V = 4033.9 (14) Å3 and Z = 4. Complex 2 crystallized in a monoclinic space group Cc with a = 13.5432 (4), b = 12.9981 (4), c = 25.7567 (11) Å, β = 104.028 (4), V = 1374.16 (7) Å3 and Z = 4.

  7. Structures and standard molar enthalpies of formation of a series of Ln(III)-Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Xie, Gang; Wei, Qing; Chen, Sanping; Gao, Shengli

    2014-07-01

    Fifteen lanthanide-copper heteronuclear compounds, formulated as [CuLn2(pzdc)4(H2O)6]·xH2O (1-6(x=2), 8(x=3), 9-10(x=4); [CuLn2(pzdc)4(H2O)4]·xH2O (7, 12-13, 15(x=4), 14(x=5), 11(x=8) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H2pzdc (C6H4N2O4)=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with {4.62}2{42.62.82}{63}2{65.8}2 topology. Using 1 mol cm-3 HCl(aq) as calorimetric solvent, with an isoperibol solution-reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state.

  8. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    PubMed Central

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-01-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N′-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs. PMID:27431731

  9. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-07-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N‧-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs.

  10. Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light

    NASA Astrophysics Data System (ADS)

    Devi, L. Gomathi; Kumar, S. Girish

    2012-11-01

    The degradation of structurally different anionic dyes like Alizarin Red S (ARS) Amaranth (AR), Brilliant Yellow (BY), Congo Red (CR), Fast Red (FR), Methyl Orange (MO), and Methyl Red (MR) were carried out using Ln3+ (Ln3+ = La3+, Ce3+ and Gd3+) doped TiO2 at different pH conditions under UV/solar light. All the anionic dyes underwent rapid degradation at acidic pH, while resisted at alkaline conditions due to the adsorptive tendency of these dyes on the catalyst surface at different pH conditions. Gd3+ (0.15 mol%)-TiO2 exhibited better activity compared to other photocatalyst ascribed to half filled electronic configuration of Gd3+ ions. It is proposed that Ln3+ serves only as charge carrier traps under UV light, while it also act as visible light sensitizers under solar light. Irrespective of the catalyst and excitation source, the dye degradation followed the order: AR > FR > MO > MR > ARS > BY > CR. The results suggest that pre-adsorption of the pollutant is vital for efficient photocatalysis which is dependent on the nature of the substituent's group attached to the dye molecule.

  11. The solution structure of Ln (DOTP) 5- complexxes. A comparison of lanthanide-induced paramagnetic shifts with the MMX energy-minimized structure

    NASA Astrophysics Data System (ADS)

    Geraldes, Carlos F. G. C.; Sherry, A. Dean; Kiefer, Garry E.

    Complexes between the trivalent lanthanide ions and the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- N,N',N″,N‴-tetra(methylene phosphonate) (DOTP) have been examined by high-resolution NMR spectroscopy. The proton spectra of the diamagnetic La(DOTP) 5- and Lu(DOTP) 5- complexes provide evidence for very rigid chelate structures with the ethylenediamine-containing chelate rings essentially locked into a single conformation at room temperature. The activation energy for ethylenediamine chelate ring interconversions in these complexes is approximately 100 kJ mol -1, considerably higher than that reported previously for the corresponding Ln(DOTA) - complexes (DOTA is the tetraacetate analog of DOTP). Lanthanide-induced shifts are reported for all 1H, 13C, and 31P nuclei in 11 Ln(DOTP) 5- complexes. The proton spectra of these complexes display unusually large lanthanide-induced shifts, one showing a spectrum in which the 1H resonances span 900 ppm. The contact and pseudocontact contributions to these shifts were separated using Reilley's temperature-independent method and the resulting pseudocontact lanthanide-induced NMR shifts were in excellent agreement with those calculated for a structure derived using MMX molecular modeling methods. The pseudocontact shifts provide evidence for Ln (DOTP) 5- chelates which have virtually identical structures along the lanthanide series, with the possible exception of Tm(DOTP) 5-.

  12. Low temperature preparation and characterization of In 1- xLn xBO 3 ( x = 0.0 and 0.05; Ln = Gd, Eu, Dy and Sm): ESR of In 0.95Gd 0.05BO 3 and emission of In 0.95Eu 0.05BO 3

    NASA Astrophysics Data System (ADS)

    Velchuri, Radha; Vijaya Kumar, B.; Rama Devi, V.; Ravi Kumar, K.; Prasad, G.; Vithal, M.

    2009-10-01

    Indium borate and rare earth substituted indium borates (In 1- xLn xBO 3 ( x = 0.0 and 0.05; Ln = Gd, Eu, Dy and Sm)) are prepared at low temperature by metathesis reaction using InCl 3, LnCl 3 and NaBO 2. They are characterized by powder XRD and infrared spectroscopy. All the compositions (In 1- xLn xBO 3) crystallize in hexagonal lattice with calcite structure. These borates gave characteristic IR vibrations of planar BO 3 group. Spin-Hamiltonian parameters for Gd 3+ are deduced from room temperature electron spin resonance spectrum of In 0.95Gd 0.05BO 3. The electron spin resonance spectrum of In 0.95Gd 0.05BO 3 gave several anisotropic lines with g > 2.0. The ESR spectrum of the sample belongs to the "intermediate" category with 1/4 < HCF/ hν < 1. The local symmetry of Eu 3+ in In 0.95Eu 0.05BO 3 is obtained from its emission spectrum. The R/O ratio of In 0.95Eu 0.05BO 3 suggests the occupation of In 3+ site by Eu 3+ with near symmetric octahedral geometry.

  13. Facile synthesis and luminescence properties of Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), Yb(3+)/Ho(3+)) microspheres.

    PubMed

    Xu, Zhenhe; Zhao, Qian; Ren, Baoyi; You, Lixin; Sun, Yaguang

    2014-08-01

    Multicolor and monodisperse Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+), Yb(3+)/Er(3+), Yb(3+)/Ho(3+)) microspheres were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric analysis (TGA), photoluminescence (PL) and cathodoluminescence (CL) spectra were employed to characterize the samples. The XRD results reveal that the as-prepared spheres can be well indexed to cubic Y2O3 phase with high purity. The SEM and TEM images show the obtained Y2O3:Ln(3+) samples consist of regular nanospheres with the mean diameter of 350 nm. And the possible formation mechanism is also proposed. Upon ultraviolet and low-voltage electron beams excitation, Y2O3:Ln(3+) (Ln(3+) = Eu(3+), Tb(3+), Dy(3+), Sm(3+), Er(3+), Ho(3+), Tm(3+)) samples exhibit respective bright red (Eu(3+), (5)D0 --> (7)F2), green (Tb(3+), (5)D4 --> (7)F5), blue (Dy(3+), (4)F9/2 --> (6)H13/2), yellow (Sm(3+), (4)G5/2 --> (6)H7/2), green (Er(3+), (4)S3/2 --> (4)I15/2), green (Ho(3+), (5)S2 --> (5)I8), blue (Tm(3+), (1)D2 --> (3)F4) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Y2O3:Ln(3+) (Ln(3+) = Yb(3+)/Er(3+), Yb(3+)/Tm(3+) and Yb(3+)/Ho(3+)) exhibit characteristic up-conversion (UC) emissions of green (Er(3+), (2)H11/2, (4)S3/2, (2)H11/2 --> (4)I5/2), blue (Tm(3+), (1)G4 --> (3)H6) and green (Ho(3+), (5)F4, (5)S2 --> (5)I8), respectively. These merits of multicolor emissions in the visible region endow this kind of material with potential applications in the field of light display systems, lasers, and optoelectronic devices.

  14. Syntheses, Structure, Magnetism, and Optical Properties of the Ordered Interlanthanide Copper Chalcogenides Ln{sub 2}YbCuQ{sub 5} (Ln = La, Ce, Pr, Nd, Sm; Q = S, Se): Evidence for Unusual Magnetic Ordering in Sm{sub 2}YbCuS{sub 5}

    SciTech Connect

    Jin, Geng Bang; Choi, Eun Sang; Guertin, Robert P.; Booth, Corwin H.; Albrecht-Schmitt, Thomas E.

    2010-11-19

    Ln{sub 2}YbCuQ{sub 5} (Ln = La, Ce, Pr, Nd, Sm; Q = S, Se) have been prepared by direct reaction of the elements in Sb{sub 2}Q{sub 3} (Q = S, Se) fluxes at 900 °C. All compounds have been characterized by single-crystal X-ray diffraction methods and they are isotypic. The structure of Ln{sub 2}YbCuQ{sub 5} consists of one-dimensional {sup 1}{sub {infinity}} [YbCuQ{sub 5}]{sup 6-} ribbons extending along the b axis that are connected by larger Ln{sup 3+} ions. Each ribbon is constructed from two single chains of [YbQ{sub 6}] octahedra with one double chain of [CuQ{sub 5}] trigonal bipyramids in the middle. All three chains connect with each other via edge-sharing. There are two crystallographically unique Ln atoms, one octahedral Yb site, and two disordered Cu positions inside of distorted Q{sub 5} trigonal bipyramids. Both Ln atoms are surrounded by eight Q atoms in bicapped trigonal prisms. The magnetic properties of Ln{sub 2}YbCuQ{sub 5} have been characterized using magnetic susceptibility and heat capacity measurements, while their optical properties have been explored using UV-vis-NIR diffuse reflectance spectroscopy. Cesub 2}YbCuSe{sub 5}, La{sub 2}YbCuS{sub 5}, Ce{sub 2}YbCuS{sub 5}, and Pr{sub 2}YbCuS{sub 5} are Curie-Weiss paramagnets. La{sub 2}YbCuSe{sub 5} and Nd{sub 2}YbCuS{sub 5} show evidence for short-range antiferromagnetic ordering at low temperatures. Sm{sub 2}YbCuS{sub 5} shows magnetic ordering at 5.9 K, followed by negative magnetization at low external fields. The band gaps of La{sub 2}YbCuSe{sub 5}, Ce{sub 2}YbCuSe{sub 5}, La{sub 2}YbCuS{sub 5}, Ce{sub 2}YbCuS{sub 5}, Pr{sub 2}YbCuS{sub 5}, Nd{sub 2}YbCuS{sub 5},and Sm{sub 2}YbCuS{sub 5} are 1.15 eV, 1.05 eV, 1.45 eV, 1.37 eV, 1.25 eV, 1.35 eV, and 1.28 eV respectively.

  15. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  16. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    SciTech Connect

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials.

  17. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  18. Lanthanide N,N'-piperazine-bis(methylenephosphonates) (Ln=La, Ce, Nd) that display flexible frameworks, reversible hydration and cation exchange

    SciTech Connect

    Mowat, John P.S.; Groves, John A.; Wharmby, Michael T.; Miller, Stuart R.; Li Yang; Lightfoot, Philip; Wright, Paul A.

    2009-10-15

    Hydrothermal syntheses of lanthanide bisphosphonate metal organic frameworks comprising the light lanthanides lanthanum, cerium and neodymium and N,N'-piperazine bis(methylenephosphonic acid) (H{sub 2}L(1) and its 2-methyl and 2,5-dimethyl derivatives (H{sub 2}L(2) and H{sub 2}L(3)) gives three new structure types. At elevated starting pH (ca. 5 and above) syntheses give 'type I' materials with all metals and acids of the study (MLnLxH{sub 2}O, M=Na, K, Cs; Ln=La, Ce, Nd; x{approx}4: KCeL(1).4H{sub 2}O, C2/c, a=23.5864(2) A, b=12.1186(2) A, c=5.6613(2) A, beta=93.040(2){sup o}). The framework of structure type I shows considerable flexibility as the ligand is changed, due mainly to rotation around the -N-CH{sub 2}- bond of the linker in response to steric considerations. Type I materials demonstrate cation exchange and dehydration and rehydration behaviour. Upon dehydration of KCeL.4H{sub 2}O, the space group changes to P2{sub 1}/n, a=21.8361(12) A, b=9.3519(4) A, c=5.5629(3) A, beta=96.560(4){sup o}, as a result of a change of the piperazine ring from chair to boat configuration. When syntheses are performed at lower pH, two other structure types crystallise. With the 'non-methyl' ligand 1, type II materials result (LnL(1)H{sub 2}L(1).4.5H{sub 2}O: Ln=La, P-1, a=5.7630(13) A, b=10.213(2) A, c=11.649(2) A, alpha=84.242(2){sup o}, beta=89.051(2){sup o}, gamma=82.876(2){sup o}) in which one half of the ligands coordinate via the piperazine nitrogen atoms. With the 2-methyl ligand, structure type III crystallises (LnHL(2).4H{sub 2}O: Ln=Nd, Ce, P2{sub 1}/c, a=5.7540(9) A, b=14.1259(18) A, c=21.156(5) A, beta=90.14(2){sup o}) due to unfavourable steric interactions of the methyl group in structure type II. - Graphical abstract: The lanthanides La, Ce and Nd give a family of metal organic frameworks based on N,N'-piperazinebismethylenephosphonate ligands: these display reversible dehydration, structural flexibility and cation exchange.

  19. Comprehensive evaluation of the physicochemical properties of Ln(III) complexes of aminoethyl-DO3A as pH-responsive T(1) -MRI contrast agents.

    PubMed

    Baranyai, Zsolt; Rolla, Gabriele A; Negri, Roberto; Forgács, Attila; Giovenzana, Giovanni B; Tei, Lorenzo

    2014-03-03

    N-Substituted aminoethyl groups were attached to 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) with the aim to design pH-responsive Ln(III) complexes based on the pH-dependent on/off ligation of the amine nitrogen to the metal ion. The following ligands were synthesized: AE-DO3A (aminoethyl-DO3A), MAE-DO3A (N-methylaminoethyl-DO3A), DMAE-DO3A (N,N-dimethylaminoethyl-DO3A) and MEM-AE-DO3A (N-methoxyethyl-N-methylaminoethyl-DO3A). The physicochemical properties of the Ln(III) complexes were investigated for the evaluation of their potential applicability as magnetic resonance imaging (MRI) contrast agents. In particular, a (1) H and (17) O NMR relaxometric study was carried out for these Gd(III) complexes at two different pH values: at basic pH (pendant amino group coordinated to the metal centre) and at acidic pH (protonated amine, not interacting with the metal ion). Eu(III) complexes allow one to estimate the number of inner-sphere water molecules through luminescence lifetime measurements and obtain some structural information through variable-temperature (VT) high-resolution (1) H NMR studies. Equilibria between differently hydrated species were found for most of the complexes at both acidic and basic pH. The thermodynamic stability of Ca(II) , Zn(II) , Cu(II) and Ln(III) complexes and kinetics of formation and dissociation reactions of Ln(III) complexes of AE-DO3A and DMAE-DO3A were investigated showing stabilities comparable to currently approved Gd(III) -based CAs. In detail, higher total basicity (Σlog Ki (H) ) and higher stability constants of Ln(III) complexes were found for AE-DO3A with respect to DMAE-DO3A (i.e., log KGd-AE-DO3A =22.40 and log KGd-DMAE-DO3A =20.56). The transmetallation reactions of Gd(III) complexes are very slow (Gd-AE-DO3A: t1/2 =2.7×10(4)  h; Gd-DMAE-DO3A: 1.1×10(5)  h at pH 7.4 and 298 K) and occur through proton-assisted dissociation.

  20. Ga(3+)/Ln(3+) Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains.

    PubMed

    Chow, Chun Y; Eliseeva, Svetlana V; Trivedi, Evan R; Nguyen, Tu N; Kampf, Jeff W; Petoud, Stéphane; Pecoraro, Vincent L

    2016-04-20

    Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features: (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln(3+) cation by minimizing nonradiative deactivation pathways due to the presence of -OH, -NH and -CH vibrations. Herein, a new family of luminescent Ga(3+)/Ln(3+) metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm(3+)-Yb(3+)) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga(3+) and Ln(3+) nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy(3+) ion to the Ga(3+) ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f-f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the

  1. Series of edge-sharing bi-triangle Ln4 clusters with a μ4-NO3- bridge: syntheses, structures, luminescence, and the SMM behavior of the Dy4 analogue.

    PubMed

    Zou, Hua-Hong; Wang, Rong; Chen, Zi-Lu; Liu, Dong-Cheng; Liang, Fu-Pei

    2014-02-14

    A series of Ln4 clusters, [Ln4L2(μ3-OH)2(μ4-NO3)(NO3)4(OCH3)(H2O)]·xMeCN·yMeOH (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), L = 2-{[2-(2-hydroxy-ethoxy)-ethylimino]-methyl}-6-methoxyphenol), have been synthesized by the reaction of Ln(NO)3 and a Schiff-base ligand formed in situ. The six complexes display similar structures, with an overall metal core comprising two edge-sharing triangular Ln3 units linked by a μ4-NO3(-) bridge. The luminescence spectrum of complex 2 shows the characteristic emission of the Tb(III) ions. The magnetic susceptibility studies reveal that the Ln(III) ions are very weakly interacting in all six compounds. Frequency dependence of the ac-susceptibility was found for 3, suggesting a typical single-molecule magnet (SMM) behavior with an anisotropic barrier of 28 K.

  2. Energetics of Rare Earth Doped Uranium Oxide Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    The physical and chemical properties of UO2 nuclear fuels are affected as fission products accumulate during irradiation. The lanthanides, a main group of fission products, form extensive solid solutions with uranium oxide in the fluorite structure. Thermodynamic studies of such solid solutions had been performed to obtain partial molar free energies of oxygen as a function of dopant concentration and temperature; however, direct measurement of formation enthalpies was hampered by the refractory nature of these oxides. In this work, high temperature oxide melt solution calorimetry was utilized to study the thermochemistry of various rare earth doped uranium oxide LnxU 1-xO2-0.5x+y (Ln = La, Y, Nd) over a wide range of dopant concentrations and oxygen contents. The sintered solid solutions were carefully characterized to determine their phase purity, chemical composition, and uranium oxidation state, with most of the materials in the oxygen excess regime. The enthalpies of formation of LnxU1-xO2-0.5x+y were calculated from the calorimetric data. The oxidation enthalpies of these solid solutions are similar to that of UO2. The formation enthalpies from constituent oxides (LnO1.5, UO2, and UO3) become increasingly negative with addition of dopant cations and appear relatively independent of the uranium oxidation state (oxygen content) when the type and concentration of the dopants are the same. This is valid in the oxygen excess regime; thus an estimation of formation enthalpies of LnxU1-xO2 materials can be made. The formation enthalpies from elements of hyperstoichiometric LnxU1-xO 2-0.5x+y materials obtained from calorimetric measurements are in good agreement with those calculated from free energy data. A direct comparison between the formation enthalpies from calorimetric study and computational research using density functional theory was also performed. The experimental and computational energies of LnxU 1-xO2 (Ln = La, Y, Nd) generally agree within 10 k

  3. Large-scale synthesis of Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}, Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) microspheres and their photoluminescence properties

    SciTech Connect

    Gao, Yu; Gong, Jian; Fan, Miaomiao; Fang, Qinghong; Wang, Na; Han, Wenchi; Xu, Zhenhe

    2012-12-15

    Graphical abstract: In this work, multicolor and monodisperse Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}, Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) microspheres were prepared by a homogeneous precipitation method followed by a subsequent calcination process. Display Omitted Highlights: ► Lu{sub 2}O{sub 3}:Ln{sup 3+} microspheres were prepared by a precipitation followed by a calcination process. ► Lu{sub 2}O{sub 3}:Eu{sup 3+}/Tb{sup 3+} samples exhibit respective red or green emissions. ► Lu{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} exhibit emissions of green, blue, yellow-green, respectively. ► These finding may find potential applications in bioanalysis and field emission displays. -- Abstract: In this work, multicolor and monodisperse Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}, Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) microspheres were prepared by a homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and cathodoluminescence (CL) spectra were employed to characterize the samples. Upon ultraviolet and low-voltage electron beams excitation, Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Eu{sup 3+} and Tb{sup 3+}) samples exhibit respective bright red (Eu{sup 3+}, {sup 5}D{sub 0} → {sup 7}F{sub 2}) and green (Tb{sup 3+}, {sup 5}D{sub 4} → {sup 7}F{sub 5}) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu{sub 2}O{sub 3}:Ln{sup 3+} (Ln{sup 3+} = Yb{sup 3+}/Er{sup 3+}, Yb{sup 3+}/Tm{sup 3+}, and Yb{sup 3+}/Ho{sup 3+}) exhibit characteristic up-conversion (UC) emissions of green (Er{sup 3+}, {sup 4}S{sub 3/2}, {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}), blue (Tm{sup 3+}, {sup 1}G{sub 4} → {sup

  4. The interactions between the sterically demanding trimesitylphosphine oxide and trimesityphosphine with scandium and selected lanthanide ions

    NASA Astrophysics Data System (ADS)

    Platt, Andrew W. G.; Singh, Kuldip

    2016-05-01

    The reactions between lanthanide nitrates, Ln(NO3)3 and scandium and lanthanide trifluoromethane sulfonates, Ln(Tf)3 with trimesitylphosphine oxide, Mes3PO show that coordination to the metal ions does not lead to crystalline complexes. Investigation of the reactions by 31-P NMR spectroscopy shows that weak complexes are formed in solution. The crystal structures of Mes3PO·0.5CH3CN (1) and [Mes3PO]3H3O·2CH3CN·Tf (2), formed in the reaction between ScTf3 and Mes3PO, are reported. Trimesitylphosphine, Mes3P, is protonated by scandium and lanthanide trifluoromethane sulfonates and lanthanide nitrates in CD3CN and the structure of [Mes3PH]Cl·HCl·2H2O (3) is reported.

  5. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    PubMed

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  6. Microwave-assisted large scale synthesis of lanthanide metal-organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties.

    PubMed

    Bag, Partha Pratim; Wang, Xu-Sheng; Cao, Rong

    2015-07-14

    Preparation of MOF on a large scale is a great challenge due to difficulties in reproducibility. A microwave synthesis procedure plays a major role in solving this problem. Moreover, achievement of the preferred conformation in the case of the flexible ligand is also an important factor as it affects the stability of the MOF. In this regard, lanthanides are suitable candidates due to their large size and coordination capabilities. A series of isostructural microporous lanthanide metal-organic frameworks (Ln-MOFs), formulated as [Ln (TTTPC)(NO2)2(Cl)]·(H2O)10 {Ln = La (1), Ce (2), Pr (3), Nd (4), Eu (5), Tb (6), Dy (7), Ho (8), Yb (9); H3TTTPC = 1,1',1''-tris(2,4,6-trimethylbenzene-1,3,5-triyl)-tris(methylene)-tris(pyridine-4-carboxylic acid)}, has been synthesized on a large scale via a microwave-assisted solvothermal reaction over 5 min. Otherwise, if a conventional solvothermal reaction is carried out at the same temperature, a much longer reaction time (2 days) and slow evaporation (5 days) are needed to produce the same compound in similar yield. Moreover, in these circumstances, conventional methods are useful only for small scale (10 mg) syntheses, but on using microwave-assisted synthesis, up to 2 g was obtained. Structural analysis reveals that the framework of the as-synthesized MOFs is a 6-connected network with point symbol (4(11)·6(4)), which is a subnet of a uninodal net having a new topology, sqc885. Thermal gravimetric analyses performed on as-synthesized MOFs reveal that the frameworks have moderate thermal stability. Gas sorption properties of 1 and 8 were studied by experimentally measuring nitrogen and hydrogen sorption isotherms. The luminescent properties of 5 and 6 were investigated and show characteristic emissions for Eu(3+) and Tb(3+) at room temperature.

  7. Intercrystalline distal-effect on the afterglow phenomenon in photoluminescent SrAl2O4:Ce(III), Ln nanotube growth

    NASA Astrophysics Data System (ADS)

    Khaled Zurba, Nadia; Bdikin, Igor; Kholkin, Andrei; Golberg, Dmitri; Ferreira, José M. F.

    2010-08-01

    We report a new method for the synthesis of photoluminescent SrAl2O4:Ce3 + , Dy3 + , Eu2 + nanotubes, PL-SNT:Ce(III), Ln, using solid-state reaction and post-annealing approach. This new optical nanotubular structure was characterized by HRTEM, SEM, AFM, EDX, steady-state and time-resolved PL spectroscopy. A series of f-f and f-d-transitions with light emission in structured bands peaking at 488 nm arising from the polymorphism of the host lattice was correlated with an intercrystalline distal-effect on the afterglow phenomenon.

  8. Refined separation of combined Fe–Hf from rock matrices for isotope analyses using AG-MP-1M and Ln-Spec chromatographic extraction resins

    PubMed Central

    Cheng, Ting; Nebel, Oliver; Sossi, Paolo A.; Chen, Fukun

    2014-01-01

    A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied method using Eichrom LN-Spec resin. Our combined method includes:•Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.•Direct loading of the matrix onto the resin that is used for Hf purification.•Collection of a Fe-free Hf fraction. PMID:26150946

  9. CONTROL OF LASER RADIATION PARAMETERS: Interferometric modulation in an optical amplifier based on an InGaAsP/lnP heterostructure

    NASA Astrophysics Data System (ADS)

    Luc, Vu V.; Duraev, V. P.; Eliseev, P. G.; Nedelin, E. T.; Tsotsoriya, M. V.

    1992-07-01

    Optical amplifiers made of laser diodes can be used as fast switches and modulators of the transmitted light. An "interferometric" modulation variant is interesting in this application: a part of the input radiation propagates along a passive emitter layer and interferes at the output with a part transmitted by an amplifying region. An optical amplifier operating in the 1.3-μm range made of an InGaAsP/lnP heterostructure is used as an example to show that such an interferometric variant can be used to achieve separately amplitude and phase modulation, and to increase the slope of the amplitude characteristic.

  10. Description of ligand field splitting in terms of density functional theory: Split levels of the lowest-lying subterms of the 4f{sup n{minus}1}6s{sup 2} (n=3{endash}14) configurations in lanthanide monofluorides LnF (Ln=Pr{endash}Yb)

    SciTech Connect

    Ren, J.; Whangbo, M.; Dai, D.; Li, L.

    1998-05-01

    The split levels associated with the lowest-lying subterms of the 4f{sup n{minus}1}6s{sup 2} (n=3{endash}14) configurations of lanthanide monofluorides LnF (Ln=Pr{endash}Yb) were calculated by employing the combined ligand field and density functional theory (CLDT) method recently proposed. The 288 calculated split levels are in excellent agreement with experiment and hence shows that the CLDT method can accurately reproduce the low-lying electronic excited states of lanthanide compounds. To quantitatively describe the low-lying electronic states of a lanthanide compound, therefore, the effective ligand potential must include the Coulomb and exchange-correlation potentials of the compound as well as the pseudopotentials of the ligands. {copyright} {ital 1998 American Institute of Physics.}

  11. Crystal structure of sodium rare earth oxyborates Na{sub 2}Ln{sub 2}(BO{sub 3}){sub 2}O (Ln = Sm, Eu, and Gd) and optical analysis of Na{sub 2}Gd{sub 2}(BO{sub 3}){sub 2}O:Eu{sup 3+}

    SciTech Connect

    Corbel, G.; Leblanc, M.; Antic-Fidancev, E.; Lemaitre-Blaise, M.

    1999-04-01

    A new structural family of rare earth oxyborates Na{sub 2}Ln{sub 2}(BO{sub 3}){sub 2}O (Ln = Sm, Eu and Gd) is evidenced. The structure, determined by single crystal X-ray diffraction, is monoclinic, space group P2{sub 1}/c, Z = 4, with a = 10.695(6) {angstrom}, b = 6.320(4) {angstrom}, c = 10.3228(6) {angstrom}, {beta} = 117.80(4){degree}, V = 617.5(9) {angstrom}{sup 3}, R{sub 1} = 0.039, wR{sub 2} = 0.101 for Na{sub 2}Gd{sub 2}(BO{sub 3}){sub 2}O. The three-dimensional network is built up from infinite sheets of LnO{sub 8} polyhedra in the (b,c) plane, which are separated by sodium ions. The luminescence of trivalent europium in polycrystalline Na{sub 2}Gd{sub 2}(BO{sub 3}){sub 2}O:Eu{sup 3+} is analyzed at 77K. The low symmetry of the rare earth sites, deduced from the X-ray diffraction study, is confirmed. The crystal field strength is high for both europium sites.

  12. The oxidation state of sulfur in magmatic fluids

    NASA Astrophysics Data System (ADS)

    Binder, Bernd; Keppler, Hans

    2011-01-01

    Sulfur compounds in volcanic gases are responsible for the global cooling after explosive eruptions and they probably controlled the early evolution of the Earth's atmosphere. We have therefore studied the oxidation state of sulfur in aqueous fluids under the pressure and temperature conditions and oxygen fugacities typical for magma chambers (0.5-3 kbar, 650-950 °C, Ni-NiO to Re-ReO2 buffer conditions). Sulfur speciation was determined by Raman spectroscopy of quenched fluids trapped as inclusions in quartz. Our results show that sulfur in hydrothermal fluids and volcanic gases is much more oxidized than previously thought and in particular, some explosive eruptions may release a significant fraction of sulfur as SO3 or its hydrated forms. In the pressure range from 500 to 2000 bar, the equilibrium constant K1 of the reaction 2H2S + 3O2 = 2SO2 + 2H2O in aqueous fluids can be described by lnK1 = -(57.1 ± 7.1) + (173,480 ± 7592)T- 1, where T is temperature in Kelvin. The equilibrium constant K2 for the reaction SO2 + ½O2 = SO3 in aqueous fluids, where SO3 may include hydrated forms, such as H2SO4, was found to be strongly pressure dependent, with lnK2 = -(5.2 ± 5.7) + (19,243 ± 5993)T- 1 at 1500 bar; lnK2 = -(11.1 ± 1.3) + (25,383 ± 1371)T- 1 at 2000 bar and lnK2 = -(22.1 ± 2.2) + (37,082 ± 2248)T- 1 at 2500 bar. Our data imply that volcanoes may directly inject hexavalent sulfur in the form of H2SO4 into the atmosphere, not only on Earth, but possibly also on Venus and on Mars, when it was still tectonically active. Remote measurements from satellites may have underestimated the sulfur yield of some recent eruptions. Moreover, the mechanisms of the interaction of volcanic gases with the stratosphere need to be reconsidered.

  13. Decomposition and cycloaddition reactions of hfacac and syntheses and structures of Ln{sub 2}{sup III}(hfacac){sub 4}(bdmap){sub 2}(H{sub 2}O){sub 2}(THF){sub 2}, Ln{sup III}Cu{sup II}(bdmapH){sub 2}(hfacac){sub 2}(O{sub 2}CCF{sub 3})L, and Ln{sup III}Cu{sub 2}{sup II}(hfacac)(bdmap){sub 3}(O{sub 2}CCH{sub 3}){sub 2}(O{sub 2}CCF{sub 3})(hfacacH) (Ln = Y, Pr, Nd; hfacac = Hexafluoroacetylacetonato; bdmap = 1,3-bis(dimethylamino)-2-propanolato; L = 2-methyl-2,4,6-tris(trifluoromethyl)-1,3-dioxane-4,6-diolato)

    SciTech Connect

    Wang, S.; Pang, Z.; Smith, K.D.L.; Hua, Y.; Deslippe, C.; Wagner, M.J.

    1995-02-15

    The reactions of Ln(hfacac){sub 3} with the bdmapH ligand and Cu(OCH{sub 3}){sub 2} or Cu{sub 2}(O{sub 2}CCH{sub 3}){sub 4}(H{sub 2}O){sub 2} have been investigated where hfacac = hexafluoroacetylacetonato, bdmapH = 1,3-bis(dimethylamino)-2-propanol. The hfacac ligand in these reactions has been found to undergo decomposition or cycloaddition with 1,1,1-trifluoro-2,2-propanediol. Two dinuclear compounds, Ln{sub 2}(hfacac){sub 4}(bdmap){sub 2}(H{sub 2}O){sub 2}(THF){sub 2}, (1, Ln = Pr) and LnCu(bdmapH){sub 2}-(hfacac){sub 2}(O{sub 2}CCF{sub 3})L (Ln = Pr, 2a; Y, 2b; L = 2-methyl-2,4,6-tris(trifluoromethyl)-1,3-dioxane-4,6-diolato), have been isolated from the reaction of Ln(hfacac){sub 3} with Cu(OCH{sub 3}){sub 2} and bdmapH in a 1:1:2 ratio in THF. These two compounds also were obtained by independent syntheses. A trinuclear compound, LnCu{sub 2}(hfacac)(bdmap){sub 3}(O{sub 2}-CCH{sub 3}){sub 2}(O{sub 2}CCF{sub 3})(hfacacH) (Ln = Nd, 3a; Pr, 3b), was obtained from the reaction of Ln(hfacac){sub 3} with Cu{sub 2}(O{sub 2}-CCH{sub 3}){sub 4}(H{sub 2}O){sub 2} and bdmapH in a 1:1:3 ratio in THF. The crystal structures of these compounds have been determined by X-ray diffraction analyses. Their thermal behavior has been examined by thermogravimetric analysis. The magnetic properties of compounds 1, 2b, and 3b were examined by EPR and magnetic susceptibility measurements.

  14. Alkaline earth metal fluxes for the growth of single crystal oxides

    NASA Astrophysics Data System (ADS)

    Ramirez, Daniel

    Oxide ceramics are materials with a wide range of properties. Insulators are most common, however semiconductors, strongly correlated electron materials, and even superconductors are all relevant oxide materials. Here we seek to synthesize novel oxide single crystal phases and study their properties using an alkaline earth metal flux technique. The specific flux techniques are new, and we will seek to understand the capabilities of these fluxes as a novel synthesis tool. The use of a barium metal flux to grow single crystal oxides is rather counterintuitive, but is exemplified further with the growth of europium monoxide (Fm3¯m #225, Z = 4). Eu1-xBaxO single crystals (x = 0.01 - 0.25) are grown and studied for their ferromagnetic properties. A new oxide phase Ba2Eu2P2O (P4/mbm #127, Z = 2) has also been synthesized from the same method, and may potentially be studied as a ferromagnetic semiconductor based on preliminary observations. Other examples of single crystal oxide phases grown from barium metal flux includes Ba2TeO (P4/nmm #129, Z = 2), BaLn2O4 (Ln = La - Lu) (Pnma #62, Z = 4), and Ba3Yb2O 5Te (P4/mmm #123 Z = 1). The new crystal phases Ba3Ln2O5Cl 2 (Ln = Sm - Lu, Y) are synthesized using a reactive barium metal flux. Single crystal x-ray diffraction is used to determine their structures with space group (I4/mmm #139, Z = 2) related to the Ruddlesden-Popper structure type. The unit cell dimensions range from a = 4.46(6) A and c = 24.87(6) A for Ba3Gd2O5Cl2 to a = 4.35(6) A and c = 24.57(6) A for Ba3Lu2O 5Cl2 with the dimensions following the expected lanthanide contraction trends. The magnetic properties of these materials are studied and related to their structures. The use of alkaline earth fluxes such as magnesium or calcium based fluxes are also briefly considered for their capabilities to produce novel mixed anion phases. A calcium flux is shown to produce the novel semimetals Ca 4TeOH4 and Ca3Ca1-xEuxTeOH 4 (I4/mmm #139, Z = 2), and highly reducing

  15. The Tyr-265-to-Cys mutator mutant of DNA polymerase β induces a mutator phenotype in mouse LN12 cells

    PubMed Central

    Clairmont, Caroline A.; Narayanan, Latha; Sun, Ka-Wai; Glazer, Peter M.; Sweasy, Joann B.

    1999-01-01

    DNA polymerase β functions in both base excision repair and meiosis. Errors committed by polymerase β during these processes could result in mutations. Using a complementation system, in which rat DNA polymerase β substitutes for DNA polymerase I of Escherichia coli, we previously isolated a DNA polymerase β mutant in which Tyr-265 was altered to Cys (Y265C). The Y265C mutant is dominant to wild-type DNA polymerase β and possesses an intrinsic mutator activity. We now have expressed the wild-type DNA polymerase and the Y265C mutator mutant in mouse LN12 cells, which have endogenous DNA polymerase β activity. We demonstrate that expression of the Y265C mutator mutant in the LN12 cells results in an 8-fold increase in the spontaneous mutation frequency of λcII mutants compared with expression of the wild-type protein. Expression of Y265C results in at least a 40-fold increase in the frequency of deletions of three bases or more and a 7-fold increase in point mutations. Our results suggest that the mutations we observe in vivo result directly from the action of the mutator polymerase. To our knowledge, this is the first demonstration of a mutator phenotype resulting from expression of a DNA polymerase mutator mutant in mammalian cells. This work raises the possibility that variant polymerases may act in a dominant fashion in human cells, leading to genetic instability and carcinogenesis. PMID:10449735

  16. Synthesis, some properties, and structure of (Ln(NO/sub 3/)/sub 2/(HMPA)/sub 4/)C(CN)/sub 3/

    SciTech Connect

    Skopenko, V.V.; Kapshuk, A.A.

    1986-07-01

    A number of coordination compounds with the formula (Ln(NO/sub 3/)/sub 2/(HMPA)/sub 4/)C(CN)/sub 3/, where Ln = Ce through Sm, Gd, Yb, and HMPA stands for OP(NMe/sub 2/)/sub 3/, have been isolated from nonaqueous media. The individuality of the complexes obtained has been confirmed by x-ray diffraction analysis. The type of coordination of the ligands has been established, and conclusions regarding the structure of the complexes have been drawn on the basis of IR-spectroscopic data. An x-ray structural investigation (diffractometer, Mo k..cap alpha.. radiation) of the samarium complex (Sm(NO/sub 3/)/sub 2/(HMPA)/sub 4/)C(CN)/sub 3/ has been carried out. The structure has been refined by the least-square method in the isotropic-anisotropic approximation to R = 0.058. The structural elements of (Sm(NO/sub 3/)/sub 2/(HMPA)/sub 4/)C(CN)/sub 3/ are the complex (Sm(NO/sub 3/)/sub 2/(HMPA)/sub 4/)/sup +/ cation and the C(CN)/sub 3//sup -/ anion, which are located on second-order axes. The coordination number of samarium is equal to 8. The coordination polyhedron is a distorted Hoard dodecahedron.

  17. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    PubMed Central

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-01-01

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF4). We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals. PMID:28336867

  18. Study on Trap Levels in SrSi2AlO2N3:Eu(2+),Ln(3+) Persistent Phosphors Based on Host-Referred Binding Energy Scheme and Thermoluminescence Analysis.

    PubMed

    Zhuang, Yixi; Lv, Ying; Li, Ye; Zhou, Tianliang; Xu, Jian; Ueda, Jumpei; Tanabe, Setsuhisa; Xie, Rong-Jun

    2016-11-21

    We investigated the effect of trivalent lanthanide substitution on a novel oxynitride persistent phosphor SrSi2AlO2N3:Eu(2+),Ln(3+), which shows green persistent luminescence for more than 2 h. First, an energy level diagram by using the host-referred binding energy (HRBE) scheme was constructed. The location of the energy levels of all divalent and trivalent lanthanides referred to the energy band of the host SrSi2AlO2N3 was estimated. Then, thermoluminescence (TL) measurements in the target persistent phosphors were performed to obtain direct experimental results on the trap depth. We found that the trap levels based on the TL measurements coincided well with the 4f ground states of divalent lanthanide codopants in SrSi2AlO2N3:Eu(2+),Ln(3+). The result strongly suggests the effective traps for persistent luminescence in SrSi2AlO2N3:Eu(2+),Ln(3+) could be due to the aliovalent substitution of Ln(3+) for Sr(2+), which can be controlled by selecting suitable codopant Ln(3+). The work shows the HRBE scheme may offer a way to understand the nature of defects in the persistent phosphor as well as a possible guideline to design new persistent phosphors with required trap depths.

  19. [Nitric oxide].

    PubMed

    Rovira, I

    1995-01-01

    Nitric oxide was identified as the relaxing factor derived from the endothelium in 1987. Nitric oxide synthesis allows the vascular system to maintain a state of vasodilation, thereby regulating arterial pressure. Nitric oxide is also found in platelets, where it inhibits adhesion and aggregation; in the immune system, where it is responsible for the cytotoxic action of macrophages; and in the nervous system, where it acts as neurotransmitter. A deficit in endogenous synthesis of nitric oxide contributes to such conditions as essential arterial hypertension, pulmonary hypertension and heart disease. An excess of nitrous oxide induced by endotoxins and cytokinins, meanwhile, is believed to be responsible for hypotension in septic shock and for hyperdynamic circulatory state in cirrhosis of the liver. Nitric oxide has also been implicated in the rejection of transplanted organs and in cell damage after reperfusion. Inhaled nitrous oxide gas reduces pulmonary hypertension without triggering systemic hypotension in both experimental and clinical conditions. It also produces selective vasodilation when used to ventilate specific pulmonary areas, thereby improving the ventilation/perfusion ratio and, hence, oxygenation. Nitric oxide inhalation is effective in pulmonary hypertension-coincident with chronic obstructive lung disease, in persistent neonatal pulmonary hypertension and in pulmonary hypertension with congenital or acquired heart disease. Likewise, it reduces intrapulmonary shunt in acute respiratory failure and improves gas exchange. Under experimental conditions nitric oxide acts as a bronchodilator, although it seems to be less effective for this purpose in clinical use.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides.

    PubMed

    Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun

    2016-06-06

    The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment.

  1. Bis-diglycol-amides (Bis-DGA) as new extractants for An(III) and Ln(III) from aqueous high-level wastes issued from the Purex process

    SciTech Connect

    Espartero, A.G.; Murillo, M.T.; Almaraz, M.; Sanchez-Quesada, J.; Iglesias-Sanchez, J.C.; Prados, P.; Segura, M.; Mendoza, J. de

    2008-07-01

    A new family of compounds with two diglycolamide moieties in their molecule have been synthesized and studied as suitable extractants for trivalent actinides (An(III)) and trivalent lanthanides (Ln(III)) present in high-level wastes (HLW) issued from the PUREX process. Although the obtained distribution ratios are comparable with those from TODGA under similar experimental conditions, the bis-DGA compounds showed higher selectivity towards Ln(III). The number of bis-DGA molecules involved in the formation of the dominant complex is two, and it is possible to recover more than 99% of the extracted An and Ln with 0.01 M nitric acid in order to recycle the solvent in subsequent extraction cycles. (authors)

  2. A new series of lanthanide coordination polymers with 2,2‧-bipyridine and glutaric acid: Synthesis, crystal structures and properties of [Ln(bipy)(glut)(NO3)

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Xing, Yongheng; Li, Zhangpeng; Li, Jing; Zeng, Xiaoqing; Ge, Maofa; Niu, Shuyun

    2009-08-01

    A series of new lanthanide coordination polymers, with the formula [Ln(bipy)(glut)(NO 3)] (Ln = Eu ( 1), Tb ( 2), Sm ( 3), Pr ( 4); bipy = 2,2'-bipyridine; H 2glut = glutaric acid), have been synthesized under the hydrothermal condition and characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Structural analyses reveal that all four complexes are isostructural and crystallized in monoclinic system, P2 1/ c space group. For these complexes, the Ln 3+ are all linked through glutaric acid ligands to form 1D chain-like polymeric structures, and bipy and NO3- are coordinated on two sides of the chains. The thermogravimetric analysis of 1 and photoluminescent properties of 1 and 2 are discussed in detail.

  3. Low pH hydrothermal synthesis and properties of lanthanide-organic frameworks with (4(10),6(5))(4(9),6(6)) topology constructed from Ln-Hbptc building blocks.

    PubMed

    Weng, Danfeng; Zheng, Xiangjun; Li, Licun; Yang, Wenwen; Jin, Linpei

    2007-11-14

    Two novel lanthanide-organic frameworks (LnOFs) with (4(10),6(5))(4(9),6(6)) topology, [Ln(Hbptc)(H(2)O)](n) (Ln = Eu(1), Gd(2); H(4)bptc = 3,3',4,4'-biphenyltetracarboxylic acid) were synthesized via the hydrothermal in situ reaction between lanthanide salts and 3,3',4,4'-biphenyltetracarboxylic dianhydride (bpta) under low pH conditions. In complexes 1 and 2, homohelix bundles with opposite chirality are assembled alternately and result in pillar-like 3D extended networks incorporated with coordinated water molecules, which show high thermal stability. The luminescence properties are illustrated by the Eu(III) complex (1) and its Gd-doped compound, which are intensive red emitters. The magnetic properties of complexes 1 and 2 are also investigated.

  4. A flowsheet concept for an Am/Ln separation based on Am{sup VI} solvent extraction

    SciTech Connect

    Mincher, B.J.; Law, J.D.

    2013-07-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term radiotoxicity of material interred in a future high-level waste repository. However, a separation amenable to process scale-up remains elusive. Higher oxidation states of americium have recently been used to demonstrate solvent extraction-based separations using conventional fuel cycle ligands. Here, the successful partitioning of Am{sup VI} from the bulk of lanthanides and curium using diamyl-amyl-phosphonate (DAAP) extraction is reported. Due to the instability of Am{sup VI} in the organic phase it was readily selectively stripped to a new acidic aqueous phase to provide separation from co-extracted Ce{sup IV}. The use of NaBiO{sub 3} as an oxidant to separate Am from the lanthanides and Cm by solvent extraction has been successfully demonstrated on the bench scale. Based on these results, flowsheet concepts can be designed that result in 96 % Am recovery in the presence of a few percent of the remaining Cm and the lanthanides in two extraction contacts. Preliminary results also indicate that the DAAP extractant is robust toward γ- irradiation under realistic conditions of acidity and dissolved oxygen concentration.

  5. A CO2-tolerant La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Qian; Qiu, Peng; Jia, Lichao; Chi, Bo; Pu, Jian; Li, Jian

    2017-02-01

    La2NiO4+δ (LN)-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) composite cathode, designated as PBSCF-LN, for the intermediate temperature solid oxide fuel cells (IT-SOFCs) is prepared by solution infiltration, and investigated comparatively with single phase PBSCF cathode in the half and full cells using Ag and/or Pt paste as the current collector. Compared with Pt, Ag current collector results in a decrease of cathode polarization resistance (RP) by an order of magnitude, which suggests that Ag is electrocatalytically active and not suitable for the use of studying the cathode performance of IT-SOFCs. The RP value of PBSCF-LN cathode is significantly lower than that of PBSCF cathode, no matter whether Pt or Ag current collector is used for the measurement. High power densities ranging from 0.24 to 0.94 W cm-2 at temperatures between 600 and 750 °C are achieved using a full cell with PBSCF-LN cathode. Upon exposure to a CO2-rich atmosphere, carbonate particles are formed on the surface of PBSCF cathode, causing irreversible degradation of electrochemical performance. In contrast, the surface of PBSCF-LN cathode remains clean, and its performance degradation due to CO2 adsorption is recoverable.

  6. Luminescent properties of Tb-activated rare-earth oxyapatite silicate MLn4Si3O13 (M = Ca, Sr, Ln = La, Gd)

    NASA Astrophysics Data System (ADS)

    Yamane, A.; Kunimoto, T.; Ohmi, K.; Honma, T.; Kobayashi, H.

    2006-09-01

    Rare-earth oxyapatites MLn4Si3O13 (M = Ca, Sr, Ba Ln = La, Gd) have been proposed as a new plasma display panel (PDP) host material to overcome the problems of Zn2SiO4:Mn commercial green phosphor, such as luminance degradation and poor surface charge. Tb-doped MLn4Si3O13 phosphor powders show a green luminescence with the CIE color coordinate (x, y) = (0.337, 0.562). The PL excitation band lies continuously in the wavelength region from 130 to 260 nm. The photoluminescence (PL) peak intensity of SrGd4Si3O13:Tb is comparable with that of Zn2SiO4:Mn. The phosphor is a candidate for a green PDP phosphor for Xe2 excitation.

  7. Effect of post weld heat treatment on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Xin, Jijun; Fang, Chao; Song, Yuntao; Wei, Jing; Xu, Shen; Wu, Jiefeng

    2017-04-01

    The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.

  8. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  9. An unusual 2p-3d-4f heterometallic coordination polymer featuring Ln8Na and Cu8I clusters as nodes

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjuan; Chen, Shimin; Huang, Yutian; Dan, Youmeng

    2017-01-01

    A new cluster-based three-dimensional 2p-3d-4f heterometallic framework {[Ho8Na(OH)6Cu16I2(CPT)24](NO3)9(H2O)6(CH3CN)18}n (1, HCPT = 4-(4-carboxyphenyl)-1,2,4 triazole) has been prepared under solvothermal condition by using a custom-designed bifunctional organic ligand. The single-crystal structure analysis reveals that this framework features novel Ln8Na and Cu8I clusters as nodes, these nodes are further connected by the CPT ligands to give rise to a (6,14)-connected network. The magnetic property of this framework has also been investigated.

  10. Luminescence and magnetic properties of novel nanoparticle-sheathed 3D Micro-Architectures of Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) for bifunctional application

    NASA Astrophysics Data System (ADS)

    Krishnan, Rajagopalan; Thirumalai, Jagannathan; Kathiravan, Arunkumar

    2015-01-01

    For the first time, we report the successful synthesis of novel nanoparticle-sheathed bipyramid-like and almond-like Fe0.5R0.5(MoO4)1.5:Ln3+ (R = Gd3+, La3+), (Ln = Eu, Tb, Dy) 3D hierarchical microstructures through a simple disodium ethylenediaminetetraacetic acid (Na2EDTA) facilitated hydrothermal method. Interestingly, time-dependent experiments confirm that the assembly-disassembly process is responsible for the formation of self-aggregated 3D architectures via Ostwald ripening phenomena. The resultant products are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and magnetic measurements. The growth and formation mechanisms of the self-assembled 3D micro structures are discussed in detail. To confirm the presence of all the elements in the microstructure, the energy loss induced by the K, L shell electron ionization is observed in order to map the Fe, Gd, Mo, O, and Eu components. The photo luminescence properties of Fe0.5R0.5(MoO4)1.5 doped with Eu3+, Tb3+, Dy3+ are investigated. The room temperature and low temperature magnetic properties suggest that the interaction between the local-fields introduced by the magnetic Fe3+ ions and the R3+ (La, Gd) ions in the dodecahedral sites determine the magnetism in Fe0.5R0.5(MoO4)1.5:Eu3+. This work provides a new approach to synthesizing the novel Fe0.5R0.5(MoO4)1.5:Ln3+ for bi-functional magnetic and luminescence applications.

  11. Iron Oxides

    SciTech Connect

    Qafoku, Nikolla; Amonette, James E.

    2016-09-19

    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  12. Structural investigation of the new Ca{sub 3}Ln{sub 2}Ge{sub 3}O{sub 12} (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca{sub 3}Gd{sub 2}Ge{sub 3}O{sub 12} doped with the Eu{sup 3+} ion

    SciTech Connect

    Piccinelli, F.; Lausi, A.; Bettinelli, M.

    2013-09-15

    The crystal structures of new rare earth-based germanate compounds (Ca{sub 3}Pr{sub 2}Ge{sub 3}O{sub 12}, Ca{sub 3}Nd{sub 2}Ge{sub 3}O{sub 12}, Ca{sub 3}Sm{sub 2}Ge{sub 3}O{sub 12}, Ca{sub 3}Gd{sub 2}Ge{sub 3}O{sub 12} and Ca{sub 3}Dy{sub 2}Ge{sub 3}O{sub 12}) have been determined by Rietveld refinement calculations on the collected synchrotron X-ray diffraction powder patterns. A different distribution of the rare earth ions in the three available crystal sites was observed, as the main structural feature. The reasons of the instability of the silico-carnotite structure for lanthanide ions out of the range Pr–Dy have been proposed. Finally, the luminescence spectroscopy of the Eu{sup 3+} dopant ion in Ca{sub 3}Gd{sub 2}Ge{sub 3}O{sub 12} was presented and analyzed taking into account the observed structural characteristics. The Eu{sup 3+} luminescence spectroscopy was also compared with the one of Eu{sup 3+} doped Ca{sub 3}Gd{sub 2}Si{sub 3}O{sub 12} and Ca{sub 3}Lu{sub 2}Si{sub 3}O{sub 12} isostructural materials. - Graphical abstract: The structural study on Ca{sub 3}Ln{sub 2}Ge{sub 3}O{sub 12} exploiting synchrotron X-ray diffraction, allows us to determine the detailed geometry of the coordination polyhedra of the metals and their distribution in the crystal sites. These features are, in the case of Ca{sub 3}Gd{sub 2}Ge{sub 3}O{sub 12} host, closely related to the luminescence spectroscopy of the Eu{sup 3+} dopant ion. Display Omitted - Highlights: • The structure of the Ca{sub 3}Ln{sub 2}Ge{sub 3}O{sub 12} (Ln=Pr, Nd, Sm, Gd and Dy) was determined. • Different distribution of Ln{sup 3+} ions on the three available crystal sites was observed. • A detailed structural study focused on the metal coordination polyhedra was performed. • The instability of the silico-carnotite structure out of the range Pr–Dy was discussed. • The luminescence of the dopant Eu{sup 3+} ion in Ca{sub 3}Gd{sub 2}Ge{sub 3}O{sub 12} was presented and analyzed.

  13. Phase Relations and Elemental Distribution Among Co-Existing Phases in the Ceramics of the Pseudobinary System CaZrTi{sub 2}O{sub 7}-LnAlO{sub 3} (Ln= Nd, Sm)

    SciTech Connect

    Mikhailenko, Natalia; Stefanovsky, Sergey

    2007-07-01

    In the ceramics in series (1-x) CaZrTi{sub 2}O{sub 7} - x NdAlO{sub 3} and (1-x) CaZrTi{sub 2}O{sub 7} - x SmAlO{sub 3} (x = 0.25, 0.5 and 0.75) produced by cold pressing and sintering at 1400, 1450 and 1500 deg. C zirconolite was found to be a major phase, perovskite was an extra phase and traces of residual baddeleyite occurred. At x = 0.75 the perovskite was major phase and zirconolite and cubic oxide of fianite or tazheranite type were extra phases. Major Nd and Sm host phase at x = 0.25 was found to be zirconolite (about 65% of total Nd{sub 2}O{sub 3} and 74% of total Sm{sub 2}O{sub 3}). With the x value increasing perovskite becomes major host phase for Nd and Sm accumulating of up to about 92% of total Nd and about 72% of total Sm. As follows from SEM/EDS data Nd and Sm contents in the zirconolite may reach {approx}1 formula unit (fu). (authors)

  14. Phase Relations and Elemental Distributions in the Ceramics of the Pseudo-Binary Systems CaZrTi{sub 2}O{sub 7} - LnAlO{sub 3} (Ln = Eu, Gd)

    SciTech Connect

    Mikhailenko, N.S.; Stefanovsky, S.V.; Ochkin, A.V.; Lapina, M.I.

    2007-07-01

    Zirconolite and perovskite were found to be major and minor phases respectively in the ceramics of the series (1-x) CaZrTi2O{sub 7} - x EuAlO{sub 3} and (1-x) CaZrTi{sub 2}O{sub 7} - x GdAlO{sub 3} (x = 0.25; 0.5; 0.75) produced by cold pressing and sintering at 1400, 1450 and 1500 deg. C. Zirconolite and cubic fianite-type oxide (in the Eu-bearing ceramics) were extra phases. At x = 0.25 major host phase for Eu and Gd is zirconolite accumulating of up to 90% of total Eu and Gd. With increase x value to 0.5 zirconolite remains major host phase for both Eu and Gd and accommodates almost 70% of total Eu{sub 2}O{sub 3} and about 60% of total Gd{sub 2}O{sub 3}. Perovskite becomes major phase for both Eu{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} at x = 0.75 accumulating of about 66% of total Gd{sub 2}O{sub 3}. As follows from SEM/EDS data Eu and Gd contents in the zirconolite may exceed {approx}1 formula units, therefore, zirconolite ceramics may be effective matrices for actinide fraction of HLW where Am and Cm are dominant because their crystal chemical behavior is similar to behavior of Gd. (authors)

  15. Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetato; hfac = hexafluoroacetylacetonato; x = 0 or 1).

    PubMed

    Towatari, Masaaki; Nishi, Koshiro; Fujinami, Takeshi; Matsumoto, Naohide; Sunatsuki, Yukinari; Kojima, Masaaki; Mochida, Naotaka; Ishida, Takayuki; Re, Nazzareno; Mrozinski, Jerzy

    2013-05-20

    A series of 3d-4f binuclear complexes, [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (x = 0 for M = Cu(II), Zn(II); x = 1 for M = Co(II), Ni(II); Ln = Gd(III), Tb(III), Dy(III), La(III)), have been synthesized and characterized, where 3-MeOsaltn, ac, and hfac denote N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, acetato, and hexafluoroacetylacetonato, respectively. The X-ray analyses demonstrated that all the complexes have an acetato- and diphenolato-bridged M(II)-Ln(III) binuclear structure. The Cu(II)-Ln(III) and Zn(II)-Ln(III) complexes are crystallized in an isomorphous triclinic space group P1, where the Cu(II) or Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of 3-MeOsaltn at the equatorial coordination sites and one oxygen atom of the bridging acetato ion at the axial site. The Co(II)-Ln(III) and Ni(II)-Ln(III) complexes are crystallized in an isomorphous monoclinic space group P2(1)/c, where the Co(II) or Ni(II) ion at the high-spin state has an octahedral coordination environment with N2O2 donor atoms of 3-MeOsaltn at the equatorial sites, and one oxygen atom of the bridged acetato and a methanol oxygen atom at the two axial sites. Each Ln(III) ion for all the complexes is coordinated by four oxygen atoms of two phenolato and two methoxy oxygen atoms of "ligand-complex" M(3-MeOsaltn), four oxygen atoms of two hfac(-), and one oxygen atom of the bridging acetato ion; thus, the coordination number is nine. The temperature dependent magnetic susceptibilities from 1.9 to 300 K and the field-dependent magnetization up to 5 T at 1.9 K were measured. Due to the important orbital contributions of the Ln(III) (Tb(III), Dy(III)) and to a lesser extent the M(II) (Ni(II), Co(II)) components, the magnetic interaction between M(II) and Ln(III) ions were investigated by an empirical approach based on a comparison of the magnetic properties of the M(II)-Ln(III), Zn(II)-Ln(III), and M(II)-La(III) complexes. The differences of χ(M)T and M

  16. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    SciTech Connect

    Chuang, Hsiao-Chi; Hsueh, Tzu-Wei; Chang, Chuen-Chau; Hwang, Jing-Shiang; Chuang, Kai-Jen; Yan, Yuan-Horng; Cheng, Tsun-Jen

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  17. A chemical test of the principle of critical point universality: The solubility of nickel (II) oxide in isobutyric acid + water near the consolute point

    NASA Astrophysics Data System (ADS)

    Hu, Baichuan; Baird, James K.; Richey, Randi D.; Reddy, Ramana G.

    2011-04-01

    A mixture of isobutyric acid + water has an upper consolute point at 38.8 mass % isobutyric acid and temperature near 26 °C. Nickel (II) oxide dissolves in this mixture by reacting with the acid to produce water and nickel isobutyrate. The solubility of nickel (II) oxide in isobutyric acid + water has been measured as a function of temperature at compositions, 25, 38.8, and 60 mass % isobutyric acid. For values of the temperature, T, which were at least 2 K in excess of the liquid-liquid phase transition temperature, the measured values of the solubility, s, lie on a straight line when plotted in van't Hoff form with ln s versus 1/T. The slope, (∂ln s/∂(1/T)), of the line is negative indicating that the dissolution reaction is endothermic. When the temperature was within 2 K of the phase transition temperature, however, (∂ln s/∂(1/T)) diverged toward negative infinity. The principle of critical point universality predicts that when excess solid nickel (II) oxide is in dissolution equilibrium with liquid isobutyric acid + water, (∂ln s/∂(1/T)) should diverge upon approaching the consolute point along the critical isopleth at 38.8 mass % isobutyric acid. As determined by the sign of the enthalpy of solution, the sign of this divergence is expected to be negative. Not only do our experiments confirm these predictions, but they also show that identical behavior can be observed at both 25 and 60 mass % isobustyric acid, compositions which lie substantially to either side of the critical composition.

  18. Effect of lanthanide on the microstructure and structure of LnMn{sub 0.5}Fe{sub 0.5}O{sub 3} nanoparticles with Ln=La, Pr, Nd, Sm and Gd prepared by the polymer precursor method

    SciTech Connect

    Romero, Mariano; Faccio, Ricardo; Martínez, Javier; Pardo, Helena; Montenegro, Benjamín; Plá Cid, Cristiani Campos; Pasa, André A.; and others

    2015-01-15

    The synthesis of LnMn{sub 0.5}Fe{sub 0.5}O{sub 3} perovskite nanoparticles by the polymer precursor method showed a strong intrinsic dependence with different lanthanides (Ln=La, Pr, Nd, Sm and Gd). The polymerization level reached in the polymer precursor was proportional to the atomic number of lanthanide with exception of samarium, which showed the formation of a different precursor based in a citrate chelate with ethyleneglycol bonded as adduct. The increasing level of polymerization of the polymer precursors showed the formation of large-size perovskite nanoparticles after its calcination. SAXS and TEM analyses suggested that nanoparticles obtained, using this method, have a squared-like microstructure in connection with the polymer precursor microstructure. Structural analysis showed an orthorhombic structure with a slight decline in the Jahn–Teller distortion when the atomic number of lanthanide increases. Mössbauer spectroscopy showed the presence of a majority site in agreement with the Pbnm orthorhombic structure best fitted with Rietveld refinements and in some cases, a more distorted site attributed to local inhomogeneities and oxygen vacancies. - Highlights: • Precursor polymerization level is lower in the presence of lighter lanthanides. • Lighter lanthanide perovskite nanoparticles after calcination are lower-sized. • Nanoparticles obtained by this method have lamellae microstructure. • Jahn–Teller distortion declines for heavier lanthanide perovskites. • Oxygen vacancy phase was observed in lighter lanthanide perovskites.

  19. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  20. Metal–organic frameworks assembled from lanthanide and 2,5-pyridinedicaboxylate with cubane-like [Ln{sub 4}(OH){sub 4}] building units

    SciTech Connect

    Abdelbaky, Mohammed S.M.; Amghouz, Zakariae; Fernández-Zapico, Eva; García-Granda, Santiago; García, José R.

    2015-09-15

    tremendous attention due to the unique characteristic of lanthanide cations, such as variable coordination numbers and geometries which often lead to novel complex structures, and also to their magnetic and photoluminescence properties. Herein, three LOFs formulated as [Ln{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (Ln=Y, Yb) and [Y{sub 6}(OH){sub 8}(25p){sub 5}(H{sub 2}O){sub 2}] have been obtained by hydrothermal method and characterized, and the photoluminescence properties of the Eu and Tb doped compounds are discussed. - Highlights: • Three novel LnOFs has been synthesized and characterized. • Crystal structures are based on tetranuclear cuban-like [Ln{sub 4}(OH){sub 4}]{sup 8+} clusters. • 25pYb and 25pY-1 are based on isolated [Ln{sub 4}(OH){sub 4}]{sup 8+} clusters. • 25pY-2 is based on infinite inorganic chains built up from [Y{sub 4}(OH){sub 4}]{sup 8+} clusters. • Photoluminescence studies show strong red and green light emissions.

  1. Oxide Thermoelectrics

    SciTech Connect

    Singh, David J

    2008-01-01

    Thermoelectricity in oxides, especially NaxCoO2 and related materials, is discussed from the point of view of first principles calculations and Boltzmann transport theory. The electronic structure of this material is exceptional in that it has a combination of very narrow bands and strong hybridization between metal d states and ligand p states. As shown within the framework of conventional Boltzmann transport theory, this leads to high Seebeck coefficients even at metallic carrier densities. This suggests a strategy of searching for other narrow band oxides that can be doped metallic with mobile carriers. Some possible avenues for finding such materials are suggested.

  2. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  3. Nitric oxide

    Integrated Risk Information System (IRIS)

    Nitric oxide ; CASRN 10102 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. Merphos oxide

    Integrated Risk Information System (IRIS)

    Merphos oxide ; CASRN 78 - 48 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  5. Thallium oxide

    Integrated Risk Information System (IRIS)

    Thallium oxide ; CASRN 1314 - 32 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  6. Propylene oxide

    Integrated Risk Information System (IRIS)

    Propylene oxide ; CASRN 75 - 56 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  7. ALTERNATIVE OXIDANTS

    EPA Science Inventory

    This chapter reports on the efforts of the USEPA to study chloramines, chlorine dioxide and ozone as alternative oxidants/disinfectants to chlorine for the control of disinfection by-rpdocuts (DBPs) in drinking water. It examines the control of DBPs like trihalomethanes and haloa...

  8. Enhanced optical constants of nanocrystalline yttrium oxide thin films

    SciTech Connect

    Ramana, C. V.; Mudavakkat, V. H.; Bharathi, K. Kamala; Atuchin, V. V.; Pokrovsky, L. D.; Kruchinin, V. N.

    2011-01-17

    Yttrium oxide (Y{sub 2}O{sub 3}) films with an average crystallite-size (L) ranging from 5 to 40 nm were grown by sputter-deposition onto Si(100) substrates. The optical properties of grown Y{sub 2}O{sub 3} films were evaluated using spectroscopic ellipsometry measurements. The size-effects were significant on the optical constants and their dispersion profiles of Y{sub 2}O{sub 3} films. A significant enhancement in the index of refraction (n) is observed in well-defined Y{sub 2}O{sub 3} nanocrystalline films compared to that of amorphous Y{sub 2}O{sub 3}. A direct, linear L-n relationship found for Y{sub 2}O{sub 3} films suggests that tuning optical properties for desired applications can be achieved by controlling the size at the nanoscale dimensions.

  9. Impact of Lanthanoid Substitution on the Structural and Physical Properties of an Infinite-Layer Iron Oxide.

    PubMed

    Yamamoto, Takafumi; Ohkubo, Hiroshi; Tassel, Cédric; Hayashi, Naoaki; Kawasaki, Shota; Okada, Taku; Yagi, Takehiko; Hester, James; Avdeev, Maxim; Kobayashi, Yoji; Kageyama, Hiroshi

    2016-11-21

    The effect of lanthanoid (Ln = Nd, Sm, Ho) substitution on the structural and physical properties of the infinite-layer iron oxide SrFeO2 was investigated by X-ray diffraction (XRD) at ambient and high pressure, neutron diffraction, and (57)Fe Mössbauer spectroscopy. Ln for Sr substituted samples up to ∼30% were synthesized by topochemical reduction using CaH2. While the introduction of the smaller Ln(3+) ion reduces the a axis as expected, we found an unusual expansion of the c axis as well as the volume. Rietveld refinements along with pair distribution function analysis revealed the incorporation of oxygen atoms between FeO2 layers with a charge-compensated composition of (Sr1-xLnx)FeO2+x/2, which accounts for the failed electron doping to the FeO2 layer. The incorporated partial apical oxygen or the pyramidal coordination induces incoherent buckling of the FeO2 sheet, leading to a significant reduction of the Néel temperature. High-pressure XRD experiments for (Sr0.75Ho0.25)FeO2.125 suggest a possible stabilization of an intermediate spin state in comparison with SrFeO2, revealing a certain contribution of the in-plane Fe-O distance to the pressure-induced transition.

  10. Structural trends in a series of isostructural lanthanide-copper metallacrown sulfates (Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho): hexaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) heptaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) sulfate hexahydrate.

    PubMed

    Pavlishchuk, Anna V; Kolotilov, Sergey V; Fritsky, Igor O; Zeller, Matthias; Addison, Anthony W; Hunter, Allen D

    2011-07-01

    The seven isostructural complexes, [Cu(5)Ln(C(2)H(4)N(2)O(2))(5)(SO(4))(H(2)O)(6.5)](2)(SO(4))·6H(2)O, where Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho, are representatives of the 15-metallacrown-5 family. Each dianion of glycinehydroxamic acid (GlyHA) links two Cu(II) cations forming a cyclic [CuGlyHA](5) frame. The Ln(III) cations are located at the centre of the [CuGlyHA](5) rings and are bound by the five hydroxamate O atoms in the equatorial plane. Five water molecules are coordinated to Cu(II) cations, and one further water molecule, located close to an inversion centre between two adjacent [Cu(5)Ln(GlyHA)(5)](2+) cations, is disordered around this inversion centre and coordinated to a Cu(II) cation of either the first or second metallacrown ether. Another water molecule and one of the two crystallographically independent sulfate anions are coordinated, the latter in a bidentate fashion, to the Ln(III) cation in the axial positions. The second sulfate anion is not coordinated to the cation, but is located in an interstitial position on a crystallographic inversion centre, thus leading to disorder of the O atoms around the centre of inversion. The Ln-O bond distances follow the trend of the lanthanide contraction. The apical Ln-O bond distances are very close to the sums of the ionic radii. However, the Ln-O distances within the metallacrown units are slightly compressed and the Ln(III) cations protrude significantly from the plane of the otherwise flat metallacrown ligand, thus indicating that the cavity is somewhat too small to accommodate the Ln(III) ions comfortably. This effect decreases with the size of the lanthanide cation from complex (I) (Ln(III) = Pr; 0.459) to complex (VII) (Ln(III) = Ho; 0.422), which indicates that the smaller lanthanide cations fit the cavity of the pentacopper metallacrown ring better than the larger ones. The diminished contraction of Ln-O distances within the metallacrown planes leads to an aniostropic contraction of the unit

  11. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  12. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  13. U(SMes*)n, (n = 3, 4) and Ln(SMes*)3 (Ln = La, Ce, Pr, Nd): lanthanide(III)/actinide(III) differentiation in agostic interactions and an unprecedented eta3 ligation mode of the arylthiolate ligand, from X-ray diffraction and DFT analysis.

    PubMed

    Roger, Mathieu; Barros, Noémi; Arliguie, Thérèse; Thuéry, Pierre; Maron, Laurent; Ephritikhine, Michel

    2006-07-12

    Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.

  14. Molecular analysis of the human orosomucoid gene ORM1*Q0köln responsible for incompatibility in a German paternity case.

    PubMed

    Nakamura, H; Yuasa, I; Umetsu, K; Henke, J; Henke, L; Nanba, E; Kimura, K

    2000-01-01

    In a German paternity test, an alleged father was excluded only by reverse homozygosity of ORM1 phenotypes (mother ORM1 S, child ORM1 S and alleged father ORM1 F1) out of the 28 classical and DNA markers investigated. Without the ORM1 system the biostatistical probability of paternity was calculated to exceed 99.999%. The intensity of the immunoprinted bands of the ORM1 protein for the child and alleged father after isoelectric focusing appeared to be reduced to about half. To identify a possible null allele, gene-specific amplification followed by single-strand conformation polymorphism and sequencing analyses were carried out. Deletion of one of the two copies of a 4 bp direct repeat sequence (GTCT) in exon 4 of the consensus sequence of ORM1*F1 was observed in the child and alleged father. Thus, the sharing of a rare mutant gene, ORM1*Q0köln, increased the probability of paternity.

  15. Magnetism and transport properties of layered rare-earth cobaltates Ln{sub 0.3}CoO{sub 2}

    SciTech Connect

    Knížek, K. Novák, P.; Jirák, Z.; Hejtmánek, J.; Maryško, M.; Buršík, J.

    2015-05-07

    The ab-initio (GGA+U) electronic structure calculations of layered cobaltates Ln{sub 0.3}CoO{sub 2} (Ln = La, Pr, Nd) prepared by ionic exchange from Na{sub 0.90}CoO{sub 2} precursors have been performed. The data are used for numerical modeling of Seebeck coefficient within Boltzmann transport theory using BoltzTraP program [G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006)], as well as for determination of the crystal field split levels of rare-earth ions using a method based on a transformation of Bloch states into the basis of Wannier functions [P. Novák et al., Phys. Rev. B 87, 205139 (2013)]. An overall agreement with observed magnetism and transport properties is obtained. In particular, the high p-type thermopower is well reproduced in a broad temperature range, but instead of theoretical linear decrease down to the lowest temperatures, the real systems exhibit an anomalous change of Seebeck sign, which might be related to the change of bare metallic carriers into the polaronic ones.

  16. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  17. Solid state and solution dynamics of pyridine based tetraaza-macrocyclic lanthanide chelates possessing phosphonate ligating functionality (Ln-PCTMB): effect on relaxometry and optical properties.

    PubMed

    Kiefer, Garry E; Woods, Mark

    2009-12-21

    The macrocyclic ligand 3,6,9-tris(methylenebutyl phosphonic acid)-3,6,9-15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene (PCTMB) was synthesized and complexes of Eu(3+), Tb(3+), and Gd(3+) studied by X-ray crystallography, luminescence, and relaxometry. In the crystal these complexes are dimeric and possess 8-coordinate Ln(3+) centers that are linked by bridging phosphonates. The rigidity introduced by the pyridyl nucleus forces the EuPCTMB and TbPCTMB to adopt a twisted snub disphenoid (TSD) coordination geometry. Examination of the (5)D(0) --> (7)F(0) luminescent transition of EuPCTMB in the solid state confirmed the existence of a single distinct Eu(3+) coordination environment, whereas two Eu(3+) coordination environments were observed in aqueous solution. Lifetime analysis of aqueous TbPCTMB solutions determined that q = 0.1 and q = 1.0 for the two coordination environments and Stern-Volmer quenching constants (K(SV)(tau) = 1101 M(-1), K(SV)(Phi) = 40780 M(-1)) support the presence of a complicated monomer/dimer equilibrium. Relaxivity studies of GdPCTMB in H(2)O/CH(3)OH exhibited a concentration dependency (0.02 mM-10.00 mM) ranging from r(1) = 7.0 mM(-1) s(-1) to 4.0 mM(-1) s(-1) consistent with the trend observed by luminescence.

  18. Cyclic Hardening Behaviors and Reduction in Fatigue Life of Type 316LN Austenitic Stainless Steel in 310 deg. C Low Oxygen-Containing Water

    SciTech Connect

    Hyunchul Cho; Byoung Koo Kim; Changheuil Jang; In Sup Kim; Seung Mo Hong

    2006-07-01

    Low cycle fatigue tests were conducted to investigate the cyclic behavior and the fatigue life of type 316LN stainless steel (SS) at various strain rates in 310 deg. C low oxygen-containing water. The strain rates were 0.008, 0.04, and 0.4%/s, and the applied strain amplitude was varied from 0.4 to 1.0%. The dissolved oxygen concentration of the test water was maintained below 1 ppb. The test material in 310 deg. C low oxygen-containing water experienced a primary hardening, followed by a softening. From our data, we confirm the occurrence of the dynamic strain aging (DSA), and finally it can be considered that the primary hardening was brought about by the DSA. The secondary hardening was observed distinctly for 0.4%/s and 0.4%. The improvement of fatigue resistance and the secondary hardening occurred under the same loading condition. Therefore, the improvement of fatigue resistance may be related to the occurrence of the secondary hardening. When the secondary hardening occurs, intense slip bands are replaced by the corduroy structure. The corduroy structure can induce retardation of crack initiation, and ultimately the fatigue resistance is improved. Comparative study between the fatigue life generated in the current study and some prediction models was performed to evaluate the reliability of our data. (authors)

  19. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Dey, Sunita

    2016-10-01

    Generation of H2 and CO by splitting H2O and CO2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H2O or CO2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H2O or CO2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln1-xAxMn1-yMyO3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y0.5Sr0.5MnO3 which releases 483 μmol/g of O2 at 1673 K and produces 757 μmol/g of CO from CO2 at 1173 K. The production of H2 from H2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H2 based on the Mn3O4/NaMnO2 cycle briefly.

  20. An investigation of oxidative stress and antioxidant biomarkers during Greenshell mussel (Perna canaliculus) oocyte cryopreservation.

    PubMed

    Gale, Samantha L; Burritt, David J; Tervit, H Robin; Adams, Serean L; McGowan, Lindsay T

    2014-10-01

    Oxidative damage to proteins and lipids, the enzymatic and nonenzymatic antioxidants' response, and the fertilization and development capability of Perna canaliculus oocytes were investigated at critical treatment steps in a previously published controlled-rate cryopreservation protocol. The cryoprotectant (CPA) from this protocol comprises 10% ethylene glycol (v:v) and 0.2 M trehalose (wt/vol) final concentration. Critical treatment steps included (1) seawater control, (2) CPA addition, (3) CPA addition followed by cooling to -6 °C, (4) CPA addition and cooling to -10 °C, and (5) CPA addition and cooling to -35 °C and immersion in liquid nitrogen (LN). The percentage of fertilized oocytes was 53.8 ± 13.3% in the seawater control but was reduced to 26.0 ± 15.6% after -35 °C + LN treatment, whereas development to D-larvae was 21.0 ± 6.4% in the seawater control reduced to 4.8 ± 2.9% after cooling to -6 °C, and was zero at all the subsequent cooling steps. All oxidative damage biomarkers, protein carbonyls (PCs) and lipid hydroperoxides (LPs), and antioxidants, superoxide dismutase (SOD), catalase, glutathione peroxidase, percent reduced glutathione (%GSH), and total glutathione (defined as glutathione; reduced [GSH] plus glutathione disulphide; derived from two molecules of GSH [GSSG]) were measured over all treatments on unfertilized oocytes over a post-treatment recovery period of 0 to 240 minutes in seawater. An ANOVA showed that both treatment and post-treatment periods had significant effects on the concentrations of all biomarkers (P < 0.05). Protein carbonyls and LPs increased very little after CPA addition and cooling treatments, when compared with the seawater control, but large increases up to sixfold occurred between 0 and 240 minutes for the -35 °C + LN treatment. Concentrations of SOD, catalase, total glutathione, and %GSH at 0 minutes decreased by -31.2%, -26.9%, -21.9%, and -25.0%, respectively, between the seawater control and the -35

  1. HCOOH hydrogenation over lanthanide-oxide-promoted Rh/Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Benitez, J. J.; Carrizosa, I.; Odriozola, J. A.

    1993-08-01

    In this report, data corresponding to the hydrogenation of HCOOH adsorbed over a series of lanthanide-oxide-promoted Rh/Al 2O 3 catalysts are presented (Ln xO y, Ln=La, Ce, Sm, Yb, Lu). By comparison to thermal decomposition, it can be observed that the supports are unable to carry out the hydrogenation. Under these conditions, adsorbed formate decomposes through a dehydration mechanism as observed for an inert atmosphere. When rhodium is added to the samples and in the presence of hydrogen, adsorbed formate is eliminated from the surface at a lower temperature and a higher rate than the thermal decomposition. Adsorbed formate hydrogenation produces methane and water in the range 470-510 K, depending on the support employed. The presence of a small amount of gaseous HCOOH during methane production points to a mechanism in which adsorbed formate is converted into formic acid on the support. Its transformation into formic acid allows the adsorbate to reach the metal more easily where it immediately decomposes. The products of this decomposition are further hydrogenated into water and methane. Lewis acidity of the catalyst surface and metal dispersion are essential factors for formic-acid development and both are strongly modified by the presence of lanthanide oxides.

  2. A new TPE-based tetrapodal ligand and its Ln(iii) complexes: multi-stimuli responsive AIE (aggregation-induced emission)/ILCT(intraligand charge transfer)-bifunctional photoluminescence and NIR emission sensitization.

    PubMed

    Zhu, Yi-Xuan; Wei, Zhang-Wen; Pan, Mei; Wang, Hai-Ping; Zhang, Jian-Yong; Su, Cheng-Yong

    2016-01-21

    A tetrapodal zwitterionic-type ligand featuring both AIE (aggregation-induced emission) and ILCT (intraligand charge transfer) properties, namely 1,1',1'',1'''-(4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrakis(benzene-4,1-diyl))tetrakis(methylene)tetrapyridin-4(1H)-one (TPE-4PO) has been designed and applied to the assembly of lanthanide complexes LIFM-21(Ln) (Ln = Sm, Eu, Gd, Tb and Dy). Apart from sensitization of NIR emission of Sm(3+) and Dy(3+), the resulting ligand and lanthanide complexes show both AIE and ILCT-related photoluminescence behaviors. The photo-response of this system to different aggregation states, solvents' polarity and mechanical grinding was demonstrated by distinguishable emission intensities and colours.

  3. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of Ni(II)-Ln(III)-W(V) Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    PubMed

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    The polynuclear compounds containing anisotropic metal ions often exhibit efficient barriers for blocking of magnetization at fairly arbitrary geometries. However, at variance with mononuclear complexes, which usually become single-molecule magnets (SMM) under the sole requirement of a highly axial crystal field at the metal ion, the factors influencing the SMM behavior in polynuclear complexes, especially, with weakly axial magnetic ions, still remain largely unrevealed. As an attempt to clarify these conditions, we present here the synthesis, crystal structures, magnetic behavior, and ab initio calculations for a new series of Ni(II)-Ln(III)-W(V) trimetallics, [(CN)7W(CN)Ni(H2O)(valpn)Ln(H2O)4]·H2O (Ln = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Lu 6). The surprising finding is the absence of the magnetic blockage even for compounds involving strongly anisotropic Dy(III) and Tb(III) metal ions. This is well explained by ab initio calculations showing relatively large transversal components of the g-tensor in the ground exchange Kramers doublets of 1 and 4 and large intrinsic tunneling gaps in the ground exchange doublets of 3 and 5. In order to get more insight into this behavior, another series of earlier reported compounds with the same trinuclear [W(V)Ni(II)Ln(III)] core structure, [(CN)7W(CN)Ni(dmf)(valdmpn)Ln(dmf)4]·H2O (Ln = Gd(III) 7, Tb(III) 8a, Dy(III) 9, Ho(III) 10), [(CN)7W(CN)Ni(H2O)(valdmpn)Tb(dmf)2.5(H2O)1.5]·H2O·0.5dmf 8b, and [(CN)7W(CN)Ni(H2O)(valdmpn)Er(dmf)3(H2O)1]·H2O·0.5dmf 11, has been also investigated theoretically. In this series, only 8b exhibits SMM behavior which is confirmed by the present ab initio calculations. An important feature for the entire series is the strong ferromagnetic coupling between Ni(II) and W(V), which is due to an almost perfect trigonal dodecahedron geometry of the octacyano wolframate fragment. The reason why only 8b is an SMM is explained by positive zero-field splitting on the nickel site, precluding magnetization

  4. Synthesis and magnetic properties of a new family of macrocyclic M(II)3Ln(III) complexes: insights into the effect of subtle chemical modification on single-molecule magnet behavior.

    PubMed

    Feltham, Humphrey L C; Clérac, Rodolphe; Ungur, Liviu; Vieru, Veacheslav; Chibotaru, Liviu F; Powell, Annie K; Brooker, Sally

    2012-10-15

    Thirteen tetranuclear mixed-metal complexes of the hexaimine macrocycle (L(Pr))(6-) have been prepared in a one-pot 3:1:3:3 reaction of copper(II) acetate hydrate, the appropriate lanthanide(III) nitrate hydrate, 1,4-diformyl-2,3-dihydroxybenzene (1), and 1,3-diaminopropane. The resulting family of copper(II)-lanthanide(III) macrocyclic complexes has the general formula Cu(II)(3)Ln(III)(L(Pr))(NO(3))(3)·solvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, or Yb). X-ray crystal structure determinations carried out on [Cu(3)Ce(L(Pr))(NO(3))(3)(MeOH)(3)] and [Cu(3)Dy(L(Pr))(NO(3))(3)(MeOH)(3)] confirmed that the large Ln(III) ion is bound in the central O(6) site and the three square pyramidal Cu(II) ions in the outer N(2)O(2) sites (apical donor either nitrate anion or methanol molecule) of the Schiff base macrocycle. Only the structurally characterized Cu(3)Tb complex, reported earlier, is a single-molecule magnet (SMM): the other 12 complexes do not exhibit an out-of-phase ac susceptibility signal or hysteresis of magnetization in a dc field. Ab initio calculations allowed us to rationalize the observed magnetic properties, including the significant impact of subtle chemical modification on SMM behavior. Broken-symmetry density functional theory (BS-DFT) calculations show there is a subtle structural balance as to whether the Cu···Cu exchange coupling is ferro- or antiferromagnetic. Of the family of 13 magnetically characterized tetranuclear Cu(II)(3)Ln(III) macrocyclic complexes prepared, only the Tb(III) complex is an SMM: the theoretical reasons for this are discussed.

  5. Different percentages of false-positive results obtained using five methods for the calculation of reference change values based on simulated normal and ln-normal distributions of data.

    PubMed

    Lund, Flemming; Petersen, Per Hyltoft; Fraser, Callum G; Sölétormos, György

    2016-11-01

    Background Reference change values provide objective tools to assess the significance of a change in two consecutive results for a biomarker from an individual. The reference change value calculation is based on the assumption that within-subject biological variation has random fluctuation around a homeostatic set point that follows a normal (Gaussian) distribution. This set point (or baseline in steady-state) should be estimated from a set of previous samples, but, in practice, decisions based on reference change value are often based on only two consecutive results. The original reference change value was based on standard deviations according to the assumption of normality, but was soon changed to coefficients of variation (CV) in the formula (reference change value = ± Z ċ 2(½) ċ CV). Z is being dependent on the desired probability of significance, which also defines the percentages of false-positive results. The aim of this study was to investigate false-positive results using five different published methods for calculation of reference change value. Methods The five reference change value methods were examined using normally and ln-normally distributed simulated data. Results One method performed best in approaching the theoretical false-positive percentages on normally distributed data and another method performed best on ln-normally distributed data. The commonly used reference change value method based on two results (without use of estimated set point) performed worst both on normally distributed and ln-normally distributed data. Conclusions The optimal choice of method to calculate reference change value limits requires knowledge of the distribution of data (normal or ln-normal) and, if possible, knowledge of the homeostatic set point.

  6. The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss

    PubMed Central

    Hong, Yeon-Mi; Hong, Yohan; Choi, Yeong-Gon; Jin, Soo Hee; Sung, Backil; Lee, Sook-Hyun; Jung, Hyejin

    2017-01-01

    In a previous study, we found that the short isoform of DNAJB6 (DNAJB6(S)) had been decreased in the striatum of a mouse model of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). DNAJB6, one of the heat shock proteins, has been implicated in the pathogenesis of PD. In this study, we explored the cytoprotective effect of DNAJB6(S) against 1-methyl-4-phenylpyridinium ion- (MPP+-) induced apoptosis and the underlying molecular mechanisms in cultured LN18 cells from astrocytic tumors. We observed that MPP+ significantly reduced the cell viability and induced apoptosis in LN18 glioblastoma cells. DNAJB6(S) protected LN18 cells against MPP+-induced apoptosis not only by suppressing Bax cleavage but also by inhibiting a series of apoptotic events including loss of mitochondrial membrane potential, increase in intracellular reactive oxygen species, and activation of caspase-9. These observations suggest that the cytoprotective effects of DNAJB6(S) may be mediated, at least in part, by the mitochondrial pathway of apoptosis. PMID:28280525

  7. Synthesis and organic surface modification of luminescent, lanthanide-doped core/shell nanomaterials (LnF3@SiO2@NH2@organic acid) for potential bioapplications: spectroscopic, structural, and in vitro cytotoxicity evaluation.

    PubMed

    Runowski, Marcin; Ekner-Grzyb, Anna; Mrówczyńska, Lucyna; Balabhadra, Sangeetha; Grzyb, Tomasz; Paczesny, Jan; Zep, Anna; Lis, Stefan

    2014-08-12

    A facile coprecipitation reaction between Ce(3+), Gd(3+), Tb(3+), and F(-) ions, in the presence of glycerine as a capping agent, led to the formation of ultrafine, nanocrystalline CeF3:Tb(3+) 5%, Gd(3+) 5% (LnF3). The as-prepared fluoride nanoparticles were successfully coated with an amine modified silica shell. Subsequently, the obtained LnF3@SiO2@NH2 nanostructures were conjugated with 4-ethoxybenzoic acid in order to prove the possibility of organic modification and obtain a new functional nanomaterial. All of the nanophosphors synthesized exhibited intense green luminescence under UV light irradiation. Based on TEM (transmission electron microscopy) measurements, the diameters of the cores (≈12 nm) and core/shell particles (≈50 nm) were determined. To evaluate the cytotoxic activity of the nanomaterials obtained, their effect on human erythrocytes was investigated. LnF3 nanoparticles were bound to the erythrocyte membrane, without inducing any cytotoxic effects. After coating with silica, the nanoparticles revealed significant cytotoxicity. However, further functionalization of the nanomaterial with -NH2 groups as well as conjugation with 4-ethoxybenzoic acid entailed a decrease in cytotoxicity of the core/shell nanoparticles.

  8. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  9. Defective nitric oxide production by alveolar macrophages during Pneumocystis pneumonia.

    PubMed

    Lasbury, Mark E; Liao, Chung-Ping; Hage, Chadi A; Durant, Pamela J; Tschang, Dennis; Wang, Shao-Hung; Zhang, Chen; Lee, Chao-Hung

    2011-04-01

    The effect of nitric oxide (NO) on Pneumocystis (Pc) organisms, the role of NO in the defense against infection with Pc, and the production of NO by alveolar macrophages (AMs) during Pneumocystis pneumonia (PCP) were investigated. The results indicate that NO was toxic to Pc organisms and inhibited their proliferation in culture. When the production of NO was inhibited by intraperitoneal injection of rats with the nitric oxide synthase inhibitor L-N(5)-(1-iminoethyl) ornithine, progression of Pc infection in immunocompetent rats was enhanced. Concentrations of NO in bronchoalveolar lavage fluids from immunosuppressed, Pc-infected rats and mice were greatly reduced, compared with those from uninfected animals, and AMs from these animals were defective in NO production. However, inducible nitric oxide synthase (iNOS) mRNA and protein concentrations were high in AMs from Pc-infected rats and mice. Immunoblot analysis showed that iNOS in AMs from Pc-infected rats existed primarily as a monomer, but the homo-dimerization of iNOS monomers was required for the production of NO. When iNOS dimerization cofactors, including calmodulin, were added to macrophage lysates, iNOS dimerization increased, whereas incubation of the same lysates with all cofactors except calmodulin did not rescue iNOS dimer formation. These data suggest that NO is important in the defense against Pc infection, but that the production of NO in AMs during PCP is defective because of the reduced dimerization of iNOS.

  10. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  11. Structure and photoluminescence tuning features of Mn(2+)- and Ln(3+)-activated Zn-based heterometal-organic frameworks (MOFs) with a single 5-methylisophthalic acid ligand.

    PubMed

    Bo, Qi-Bing; Wang, Hong-Yan; Wang, Da-Qi; Zhang, Zhen-Wei; Miao, Jin-Ling; Sun, Guo-Xin

    2011-10-17

    In attempts to investigate whether the photoluminescence properties of the Zn-based heterometal-organic frameworks (MOFs) could be tuned by doping different Ln(3+) (Ln = Sm, Eu, Tb) and Mn(2+) ions, seven novel 3D homo- and hetero-MOFs with a rich variety of network topologies, namely, [Zn(mip)](n) (Zn-Zn), [Zn(2)Mn(OH)(2)(mip)(2)](n) (Zn-Mn), [Mn(2)Mn(OH)(2)(mip)(2)](n) (Mn-Mn), [ZnSm(OH)(mip)(2)](n) (Zn-Sm), [ZnEu(OH)(mip)(2)](n) (Zn-Eu1), [Zn(5)Eu(OH)(H(2)O)(3)(mip)(6)·(H(2)O)](n) (Zn-Eu2), and [Zn(5)Tb(OH)(H(2)O)(3)(mip)(6)](n) (Zn-Tb), (mip = 5-methylisophthalate dianion), have been synthesized hydrothermally based on a single 5-methylisophthalic acid ligand. All compounds are fully structurally characterized by elemental analysis, FT-IR spectroscopy, TG-DTA analysis, single-crystal X-ray diffraction, and X-ray powder diffraction (XRPD) techniques. The various connectivity modes of the mip linkers generate four types of different structures. Type I (Zn-Zn) is a 3D homo-MOF with helical channels composed of Zn(2)(COO)(4) SBUs (second building units). Type II (Zn-Mn and Mn-Mn) displays a nest-like 3D homo- or hetero-MOF featuring window-shaped helical channels composed of Zn(4)Mn(2)(OH)(4)(COO)(8) or Mn(4)Mn(2)(OH)(4)(COO)(8) SBUs. Type III (Zn-Sm and Zn-Eu1) presents a complicated corbeil-like 3D hetero-MOF with irregular helical channels composed of (SmZnO)(2)(COO)(8) or (EuZnO)(2)(COO)(8) heterometallic SBUs. Type IV (Zn-Eu2 and Zn-Tb) contains a heterometallic SBU Zn(5)Eu(OH)(COO)(12) or Zn(5)Tb(OH)(COO)(12), which results in a 3D hetero-MOF featuring irregular channels impregnated by parts of the free and coordinated water molecules. Photoluminescence properties indicate that all of the compounds exhibit photoluminescence in the solid state at room temperature. Compared with a broad emission band at ca. 475 nm (λ(ex) = 380 nm) for Zn-Zn, compound Zn-Mn exhibits a remarkably intense emission band centered at 737 nm (λ(ex) = 320 nm) due to the

  12. Détermination structurale de la forme de haute température du composé La 4[Ge 3O 10][GeO 4]: Analyse comparative des structures tricliniques des germanates de terres rares de formule globale Ln2Ge 2O 7

    NASA Astrophysics Data System (ADS)

    Vetter, Geneviève; Queyroux, Francine

    1988-04-01

    The rare-earth germanates Ln2Ge 2O 7 have been structurally determined as three triclinic structural forms ( Ln = LaGd) and one tetragonal ( Ln = GdLu). The structural determination of the high temperature form La 2Ge 2O 7, which is presented here, gives rise to a fourth triclinic structural type. The complete description of the Ln2Ge 2O 7 phases, stable a ordinary pressure, is thus achieved. Refinement was carried out by the heavy atom method on a model which could be elaborated after the comparative study of the three triclinic forms. Space group: P1, a = 7.080(2), b = 7.101(3), c = 6.928(2) Å, α = 87.74(2), β = 91.25(2), γ = 115.81(2)°, Z = 2, R = 0.065, Rw = 0.083 for 4018 reflections. A global structural analysis of all the four triclinic phases is proposed.

  13. Solid-liquid separation of oxidized americium from fission product lanthanides

    NASA Astrophysics Data System (ADS)

    Shehee, T. C.; Martin, L. R.; Nash, K. L.

    2010-03-01

    The separation of americium from the lanthanides and curium is a requirement if transmutation of americium is to be performed in advanced nuclear fuel cycles. Oxidation of Am3+ to AmO2+ or AmO22+ may allow separation of Am from Ln and Cm in one step, since the lanthanides and curium do not have higher oxidation states as accessible. Two possible solid-liquid separation methods have been developed to address this difficult separation. Under acidic conditions using oxone or persulfate, the oxidation and retention of tracer Am in the aqueous phase has been observed with a separation factor of 11 ± 1. Most of these studies have been conducted using 237NpO2(NO3), 233UO2(NO3)2, 238Pu(NO3)4 and 241Am(NO3)3 at radiotracer concentrations. Lanthanides precipitate as the sodium or potassium europium double sulfate salt. Under basic conditions, ozone oxidation of Am(CO3)OH(s) solubilizes Am from a lanthanide carbonate hydroxide solid phase to the aqueous phase as the AmO2(CO3)34-or AmO2(CO3)35- species. For the ozone oxidation of the americium tracer a separation factor of 1.6 ± 0.8 and 47 ± 2 for the oxidation/separation in Na2CO3 and NaHCO3 respectively.

  14. In vivo nitric oxide suppression of lipolysis in subcutaneous abdominal adipose tissue is greater in obese than lean women.

    PubMed

    Hickner, Robert C; Kemeny, Gabor; Clark, Paige D; Galvin, Vaughna B; McIver, Kerry L; Evans, Chris A; Carper, Michael J; Garry, Joseph P

    2012-06-01

    Mounting evidence suggests there is a reduced mobilization of stored fat in obese compared to lean women. It has been suggested that this decreased lipid mobilization may lead to, or perpetuate, the obese state; however, there may be a beneficial effect of reduced lipolysis, either by allowing for a sink of excess fatty acids, or by limiting a potentially harmful rise in interstitial and circulating fatty acid concentration. Nitric oxide (NO) may be responsible for a portion of the reduced in vivo rates of lipolysis in obese women because NO reduces adipose tissue lipolysis and adipose tissue nitric oxide synthase (NOS) mRNA is higher in obese than lean individuals. The purpose of this study was to determine if the inhibition of NOS by L-N(g)-monomethyl-L-arginine (L-NMMA) in the absence and presence of lipolytic stimulation would result in a larger increase in lipolytic rate in obese (OB) than lean (LN) women. Microdialysis probes were inserted into the subcutaneous abdominal adipose tissue of seven obese and six lean women to monitor lipolysis. Dialysate glycerol concentration increased in response to L-NMMA in OB (basal 125 ± 26 µmol/l; L-NMMA 225 ± 35 µmol/l) to a greater extent than in LN (basal 70 ± 18 µmol/l; L-NMMA 84 ± 20 µmol/l) women (P < 0.05). Dialysate glycerol increased to a similar extent in OB and LN in response to adrenergic stimulation by isoprenaline or norepinephrine in the presence of L-NMMA. The differential glycerol responses to L-NMMA between obese and lean could not be explained by differential blood flow responses. It can be concluded that NO suppresses basal lipolysis in obese women to a greater extent than in lean women.

  15. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  16. Rational synthesis of multifunctional mixed metal oxides by hydrothermal techniques

    NASA Astrophysics Data System (ADS)

    Stampler, Evan Scott

    Low temperature (<350°C) and pressure (<20 atm) hydrothermal methods have been developed for the synthesis of bismuth copper oxide chalcogenides, hexagonal rare-earth manganites, and silver delafossites with mixed cations on the B-site. These materials are of particular interest because they combine multiple functional properties, such as transparency and conductivity, or magnetism and ferroelectricity, in a single-phase material, thus enabling innovative technological applications. Phase-pure products were achieved by the appropriate combination of starting reagents, pH, and reaction temperature to control the solubility of the reactants. Phase-pure BiCuOS and BiCuOSe have been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250°C) and pressure (< 20 atm). A reaction temperature of 250°C was sufficiently high to solubilize both Bi2O3 ([Bi3+] ≈ 10 -3 M) and Cu2O ([Cu+] ≈ 10-4 M) and stabilize monovalent copper species in solution, yet remains low enough to prevent the oxidation of sulfide and selenide. BiCuOS (Eg = 1.09 eV) and BiCuOSe (Eg = 0.75 eV) have smaller band gaps compared to the p-type transparent conductor LaCuOS (Eg = 3.1 eV) but have significantly higher room temperature conductivities (sigma ≈ 0.08 S cm-1 and 3.3 S cm-1, respectively). The high molar solubility of Mn2O3 ([Mn 3+] ≈ 10-3 M) and the slightly amphoteric character of the late rare-earth sesquioxides were exploited in the hydrothermal synthesis of rare-earth manganites, LnMnO3 (Ln=Ho-Lu and Y). While alkaline conditions were necessary for the solubilization of manganese, a reaction temperature approximately 50°C above the transition temperature of the respective rare-earth trihydroxide (100-300°C) accelerated the transition to the more reactive and soluble rare-earth oxide hydroxide and the subsequent reaction to yield the LnMnO3 phase. The high solubility of Ag2O, [Ag+] ≈ 10 -2.5 M, enabled the synthesis of two new silver delafossite

  17. Construction of Identical [2 + 2] Schiff-Base Macrocyclic Ligands by Ln(III) and Zn(II) Template Ions Including Efficient Yb(III) Near-Infrared Sensitizers.

    PubMed

    Zhang, Kun; Zhang, Lei; Zhang, Song; Hu, Yong; Zheng, Youxuan; Huang, Wei

    2015-06-01

    Identical 34-membered [2 + 2] pendent-armed Schiff-base macrocyclic ligands (H4La and H4Lb) can be constructed via the condensation reactions between rigid o-phenylenediamine and extended dialdehydes (H2hpdd/H2pdd) in the presence of either Ln(III) or Zn(II) template with remarkable distinction on the ion radii and charge. X-ray single-crystal diffraction analyses reveal the formation of mononuclear Ln(III) complexes (1-4 and 7) and dinuclear Zn(II) complexes (5 and 6). It is noted that Ln(III) macrocyclic complexes have eight-coordinate sandwich-like mononuclear structures fully surrounded by flexible and large-sized macrocyclic ligands. Photophysical studies have demonstrated that both H4La and H4Lb can serve as effective sensitizers for the Yb(III) ion (2 and 7) exhibiting near-infrared emission at 974 nm with high quantum yields in solution (C2H5OH and CH3OH, ∼1%). Moreover, the quantum yields of two Yb(III) complexes 2 and 7 could be increased ∼15% in CH3OH under weak alkaline condition (pH = 8-9), while no significant changes are observed in C2H5OH by contrast. We think the unique sandwich-like macrocyclic structures of Yb(III) complexes 2 and 7 play important roles in simultaneously guaranteeing the effective match of the energy levels of Yb(III) centers as well as shielding from the solvent molecules and counterions.

  18. Superconductivity in the non-oxide perovskite MgCNi3.

    PubMed

    He, T; Huang, Q; Ramirez, A P; Wang, Y; Regan, K A; Rogado, N; Hayward, M A; Haas, M K; Slusky, J S; Inumara, K; Zandbergen, H W; Ong, N P; Cava, R J

    2001-05-03

    The interplay of magnetic interactions, the dimensionality of the crystal structure and electronic correlations in producing superconductivity is one of the dominant themes in the study of the electronic properties of complex materials. Although magnetic interactions and two-dimensional structures were long thought to be detrimental to the formation of a superconducting state, they are actually common features of both the high transition-temperature (Tc) copper oxides and low-Tc material Sr2RuO4, where they appear to be essential contributors to the exotic electronic states of these materials. Here we report that the perovskite-structured compound MgCNi3 is superconducting with a critical temperature of 8 K. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have critical temperatures up to 16 K (ref. 2). The itinerant electrons in both families of materials arise from the partial filling of the nickel d-states, which generally leads to ferromagnetism as is the case in metallic Ni. The high relative proportion of Ni in MgCNi3 suggests that magnetic interactions are important, and the lower Tc of this three-dimensional compound-when compared to the LnNi2B2C family-contrasts with conventional ideas regarding the origins of superconductivity.

  19. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  20. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  1. Involvement of nitric oxide in parasympathetic and antidromic vasodilatations in cat lower lip.

    PubMed

    Suzuki, H; Iwatsuki, N; Karita, K; Izumi, H

    2000-06-01

    The involvement of nitric oxide (NO) in the lower lip vasodilatations mediated via parasympathetic and antidromic mechanisms was examined in alpha-chloralose/urethane-anesthetized cats, with the two types of blood flow responses being recorded separately (by laser Doppler flowmeter) from the two sides of the lower lip. The central cut end of the lingual nerve (LN) or the peripheral cut end of the inferior alveolar nerve (IAN) was electrically stimulated to elicit parasympathetic or antidromic vasodilatation, respectively, in the lower lip. N(G)-nitro-L-arginine methyl ester (L-NAME), but not N(G)-nitro-D-arginine methyl ester (D-NAME) (each at 30 mg/kg), markedly reduced the increases in lip blood flow evoked by stimulation, the reduction being to a similar degree irrespective of whether LN or IAN was stimulated. Pretreatment with L-arginine did not prevent the L-NAME-induced attenuation of either type of vasodilatation. In conclusion, these results suggest that synthesized NO may have a common site of action in antidromic and parasympathetic vasodilator pathways to the cat lower lip.

  2. Oxidation at Surfaces of Uranium Oxide Particles

    NASA Astrophysics Data System (ADS)

    Schueneman, Richard; Burgraff, Larry

    2001-04-01

    Uranium dioxide (UO2 (S)) is unstable in an oxidizing environment and oxidizes until covered with a layer of uranium trioxide (UO3 (C)). During the oxidation process, uranium cations change from U+4 to U+6 and the oxide crystal structure changes from face centered cubic to orthorhombic. Seven UO2(S) samples were prepared by pressing UO2 (S) powder into a tungsten screen and then subjected to five different temperatures and three partial pressures of oxygen. UO2 (S) oxidation was monitored with in situ photoluminescence (PL) spectroscopy. Quantitative oxidation data was obtained with secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS). The in situ PL spectra did not identify UO3 (C) forming on the sample surfaces however, a new PL signature not associated with uranyl was observed. SIMS and XPS data from oxidized UO2 (S) samples indicated that at low temperatures, surface oxidation is kinetically limited and at high temperatures, surface oxidation is limited by diffusion. A model for the oxidation rate to UO3 (C) was not developed due to the temperature dependant oxidation process and high vacuum reduction of amorphous UO3 (A) present on the UO2 (S) sample surfaces prior to oxidation. A PL emission spectra intensity reduction was noticed on a UO3 (C) sample at room temperature under high vacuum. A reduction and re-oxidation of three additional UO3 (C) samples identified a kinetically irreversible reduction process for UO3(C) under high vacuum. A SIMS surface scan was performed on a fourth UO3(C) sample before and after exposure to ultra-high vacuum (10-8 torr) and the results suggest the reduction of UO3(C) to lower oxides (U3O8, U3O7 and UO2) at room temperature.

  3. Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults

    PubMed Central

    Lin, Chien-Yu; Chen, Pau-Chung; Hsieh, Chia-Jung; Chen, Chao-Yu; Hu, Anren; Sung, Fung-Chang; Lee, Hui-Ling; Su, Ta-Chen

    2017-01-01

    Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g; creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress. PMID:28290483

  4. Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Yu; Chen, Pau-Chung; Hsieh, Chia-Jung; Chen, Chao-Yu; Hu, Anren; Sung, Fung-Chang; Lee, Hui-Ling; Su, Ta-Chen

    2017-03-01

    Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.

  5. Oxidation resistance of silicon ceramics

    NASA Technical Reports Server (NTRS)

    Yasutoshi, H.; Hirota, K.

    1984-01-01

    Oxidation resistance, and examples of oxidation of SiC, Si3N4 and sialon are reviewed. A description is given of the oxidation mechanism, including the oxidation product, oxidation reaction and the bubble size. The oxidation reactions are represented graphically. An assessment is made of the oxidation process, and an oxidation example of silicon ceramics is given.

  6. Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas.

    PubMed

    Lu, Xin-Sui; Sun, Wei; Ge, Chun-Yan; Zhang, Wen-Zhong; Fan, Yue-Zu

    2013-06-01

    Vasculogenic mimicry (VM) is a new tumor blood supply in some highly aggressive malignant tumors. We previously reported VM in human gallbladder carcinomas, 3-D matrices in vitro and nude mouse xenografts in vivo of highly aggressive GBC-SD cells and its clinical significance. In this study, we further studied the underlying mechanisms of VM in gallbladder carcinomas via the 3-D matrix in vitro, the nude mouse xenografts in vivo of GBC-SD or SGC-996 cells, immunohistochemistry (H&E staining and CD31-PAS double staining), electron microscopy, expression of MMP-2, MT1-MMP, PI3K, Ln-5γ2, EphA2, FAK and Paxillin-P proteins/mRNAs determined by SABC, ELISA, immunofluorescence, western blotting and qRT-PCR, respectively. It was shown that all of untreated highly aggressive GBC-SD cells and xenografts formed vasculogenic-like structures within 2 weeks of seeding and injecting, and facilitated the growth of tumor cells or xenografts; whereas poorly aggressive SGC-996 cells or GBC-SD cells treated by TIMP-2 were unable to form the vasculogenic-like structures with the same conditions; and tumor xenograft growth was inhibited. Expression of MMP-2, MT1-MMP proteins/mRNAs from sections and supernates of 3-D matrix in vitro, expression of PI3K, MMP-2, MT1-MMP, Ln-5γ2, EphA2, FAK and Paxillin-P proteins/mRNAs from sections of xenografts in vivo in untreated GBC-SD group was upregulated significantly (all P<0.001); however, expression of these VM signal-related proteins/mRNAs in the SGC-996 group and GBC-SD treated by the TIMP-2 group was significantly downregulated (all P<0.001). Thus, we identified for the first time that highly aggressive GBC-SD cells formed VM in vitro and in vivo through the upregulation of PI3K/MMPs/Ln-5γ2 and/or EphA2/FAK/Paxillin signaling. PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin as key signaling pathways in a coordinated manner contributed to tumor growth and VM of gallbladder carcinomas and provided novel targets that could be potentially exploited

  7. Short Communication on "Self-welding susceptibility of NiCr-B hardfaced coating with and without NiCr-B coating on 316LN stainless steel in flowing sodium at elevated temperature"

    NASA Astrophysics Data System (ADS)

    Kumar, Hemant; Ramakrishnan, V.; Albert, S. K.; Bhaduri, A. K.; Ray, K. K.

    2017-02-01

    The self-welding susceptibility between NiCr-B coated 316LN stainless steel and the base metal, and that between NiCr-B hardfaced coatings has been evaluated in flowing sodium at 823 K for 90 and 135 days under contact stress of 8.0 and 11.0 MPa using a fabricated set-up. Neither any self-welding could be observed nor could any damage be detected on the specimen surfaces of the selected materials under the imposed experimental conditions, which indicate their satisfactory potential for applications in Fast Breeder Reactors.

  8. Nitric Oxide Is Protective in Listeric Meningoencephalitis of Rats

    PubMed Central

    Remer, K. A.; Jungi, T. W.; Fatzer, R.; Täuber, M. G.; Leib, S. L.

    2001-01-01

    The bacterium Listeria monocytogenes causes meningoencephalitis in humans. In rodents, listeriosis is associated with granulomatous lesions in the liver and the spleen, but not with meningoencephalitis. Here, infant rats were infected intracisternally to generate experimental listeric meningoencephalitis. Dose-dependent effects of intracisternal inoculation with L. monocytogenes on survival and activity were noted; 104 L. monocytogenes organisms induced a self-limiting brain infection. Bacteria invaded the basal meninges, chorioid plexus and ependyme, spread to subependymal tissue and hippocampus, and disappeared by day 7. This was paralleled by recruitment and subsequent disappearance of macrophages expressing inducible nitric oxide synthase (iNOS) and nitrotyrosine accumulation, an indication of nitric oxide (NO⋅) production. Treatment with the spin-trapping agent α-phenyl-tert-butyl nitrone (PBN) dramatically increased mortality and led to bacterial numbers in the brain 2 orders of magnitude higher than in control animals. Treatment with the selective iNOS inhibitor l-N6-(1-iminoethyl)-lysine (L-NIL) increased mortality to a similar extent and led to 1 order of magnitude higher bacterial counts in the brain, compared with controls. The numbers of bacteria that spread to the spleen and liver did not significantly differ among L-NIL-treated, PBN-treated, and control animals. Thus, the infant rat brain is able to mobilize powerful antilisterial mechanisms, and both reactive oxygen and NO⋅ contribute to Listeria growth control. PMID:11349080

  9. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  10. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  11. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    NASA Astrophysics Data System (ADS)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  12. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  13. The enzymatic oxidation of graphene oxide.

    PubMed

    Kotchey, Gregg P; Allen, Brett L; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A; Tyurina, Yulia Y; Klein-Seetharaman, Judith; Kagan, Valerian E; Star, Alexander

    2011-03-22

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (∼40 μM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.

  14. γδ T cells support gut Ag-reactive colitogenic effector T-cell generation by enhancing Ag presentation by CD11b(+) DCs in the mesenteric LN.

    PubMed

    Do, Jeongsu; Visperas, Anabelle; Freeman, Michael L; Jang, Eunjung; Kim, Sohee; Malissen, Bernard; Min, Booki

    2016-02-01

    T cells expressing the γδ TCR are dominant T-cell subsets in the intestinal immune system. We previously demonstrated that γδ T cells play important roles in augmenting Th17-type colitogenic immune responses in a T-cell-induced colitic inflammation model. However, its underlying mechanism remains poorly understood. In this study, an in vitro coculture system using effector T cells enriched in gut Ag-reactive cells was employed as a readout tool to search for gut Ag presenting APCs. We found that the presence of γδ T cells dramatically enhances gut Ag presentation within the mLN in mice. Gut Ag presentation by CD11b(+) DC subsets was particularly controlled by γδ T cells. Interestingly, γδ T-cell entry to the lymph nodes was essential to improve the Ag presentation. Therefore, our results highlight that γδ T cells play a previously unrecognized role to support colitogenic immunity by regulating gut Ag presentation in the draining LN.

  15. The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of C=N and C=O double bonds into Ln-sigma-C bonds.

    PubMed

    Yang, Yi; Cui, Dongmei; Chen, Xuesi

    2010-04-28

    This paper presents some unusual reactions of lanthanide tris(alkyl)s or lanthanide mono-Cp' (Cp' = (C(5)Me(4))SiMe(3)) bis(alkyl)s with pyrrolyl ligands, and the eta(5)- or eta(1)-coordination mode of the pyrrolyl ring, as well as C=N and C=O double bonds insertion into Ln-sigma-C moities. N,N,O-tridentate ligand HL(1), 2-(2-CH(3)OC(6)H(3)N=CH)-C(4)H(3)NH, was prepared. Treatment of HL(1) with rare-earth metal tris(alkyl)s, Ln(CH(2)SiMe(3))(3)(THF)(2), generated centrosymmetric bimetallic (pyrrolylaldiminato)lanthanide mono(alkyl) complexes [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LnR](2) (1a: Ln = Y; 1b: Ln = Lu) (R = CH(2)SiMe(3)). In this process, HL(1) was deprotonated by the metal alkyl and its imino C=N group was deactivated by the intramolecular alkylation, generating dianionic species that bridged the two metal alkyl units in eta(5)/eta(1):kappa(1) modes. When the reaction was carried out in dimethoxyethane (DME), asymmetric complex [2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N](2)Y(2)R(2)(DME) (2) was given. Furthermore, the reaction of alkyl complex 1b and benzophenone (Ph(2)C=O) afforded alkyl-insertion product [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LuOC(R)Ph(2)](2) (3). Both the intermolecular alkylation and the pyrrole's behavior as the hetero-cyclopentadienyl ligand were also observed in complexes 2 and 3. HL(1) reacted with (eta(5)-Cp')Y(CH(2)SiMe(3))(2)(THF) (E) to form a mixed ligands supported alkyl complex [(eta(5)-Cp')(L(1))]Y(CH(2)SiMe(3))(THF) (4), whilst complex E was treated with 2-(2,6-iPr(2)C(6)H(3)N=CH)-C(4)H(3)NH (HL(2)) to yield [(eta(5)-Cp')(L(2))]Y(CH(2)SiMe(3))(THF) (5). However, reaction of E and 2-(Me(2)NCH(2))-C(4)H(3)NH (HL(3)) afforded Y[(eta(5)-Cp')(L(3))(2)] (6), and ligand redistribution was found in this process. The molecular structures of complexes 5 and 6 were confirmed by X-ray diffraction, which indicated that the C=N double bond survived and the pyrrolyl ring coordinated to the metal center in eta(1)-mode.

  16. Oxidative stress and myocarditis.

    PubMed

    Tada, Yuko; Suzuki, Jun-Ichi

    2016-01-01

    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  17. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  18. Oxidative stress, nitric oxide, and diabetes.

    PubMed

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the "final common pathway", through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients.

  19. [Henry's law constant measurement for hydrogen peroxide using oxidative decoloration of BPR].

    PubMed

    Cheng, Zhong-ming; Qu, Xiao-cao

    2005-07-01

    The temperature-dependent Henry's Law Constant for hydrogen peroxide was measured. The gas phase of hydrogen peroxide from the vapor saturator collected in a cryogenic trap was analyzed by a spectrophotometric determination, based on the oxidative decoloration of BPR (bromopryogallol red) reaction with hydrogen peroxide under the catalysis of hemin. At 10 degrees C - 35 degrees C, the relationship between Henry's Law constant K(H) (mol x L(-1) x atm(-1)) of hydrogen peroxide and temperature T (K) can be expressed as ln K(H) = a/T - b, where a = 7 269+/-22, and b = 13.26+/-0.08. The standard heat of hydrogen peroxide aqueous solution is 60.43+/-0.18 kJ x K(-1) x mol(-1).

  20. Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.

  1. Zinc oxide overdose

    MedlinePlus

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  2. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  3. Oxidative stress and anxiety

    PubMed Central

    Rammal, Hassan; Soulimani, Rachid

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. This review examines the recent discoveries made on the link between oxidative status and normal anxiety levels and the putative role of oxidative stress in genesis of anxiety. We discuss the different opinions and questions that exist in the field and review the methodological approaches that are being used to determine a causal relationship between oxidative and emotional stress. PMID:20357926

  4. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  5. Increased levels of oxidative DNA damage attributable to cooking-oil fumes exposure among cooks.

    PubMed

    Ke, Yuebin; Cheng, Jinquan; Zhang, Zhicheng; Zhang, Renli; Zhang, Zhunzhen; Shuai, Zhihong; Wu, Tangchun

    2009-07-01

    Previous investigations have indicated that cooks are exposed to polycyclic aromatic hydrocarbons (PAHs) from cooking-oil fumes. However, Emission of PAH and their carcinogenic potencies from cooking oil fumes sources have not been investigated among cooks. To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG), in different groups of cooks and different exposure groups, and to study the association between 8-OHdG and 1-hydroxypyrene(1-OHP), a biological marker for PAH exposure. Urine samples were collected from different groups of cooks (n = 86) and from unexposed controls (n = 36); all were male with similar age and smoking habits. The health status, occupational history, smoking, and alcohol consumption 24 h prior to sampling was estimated from questionnaires. The urine samples were frozen for later analyses of 8-OHdG and 1-OHP levels by high-performance liquid chromatography. Excretion in urine of 8-OHdG was similar for controls (mean 1.2micromol/mol creatinine, n = 36), and for those who had been in the kitchen with an exhaust-hood operating (mean 1.5micromol/mol creatinine, n = 45). Cooks exposed to cooking-oil fumes without exhaust-hood operation had significantly increased excretion of 8-OHdG (mean 2.3micromol/mol creatinine, n = 18), compared with controls. The urinary levels of ln 1-OHP and ln 8-OHdG were still significantly correlated in a multiple regression analysis. The results indicate that exposure to PAH or possibly other compounds in cooking-oil fumes may cause oxidative DNA damage.

  6. Studies in zirconium oxidation

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Drunen, C. J.; Levitan, J.

    1968-01-01

    Study provides insight into the oxidation mechanism of zirconium by combining electrical measurements with oxidation data. The measurement of electrical potential across growing scale on zirconium and the determination of conventional weight-change oxidation data were carried out at 550, 700, and 800 degrees C.

  7. Rhodium oxides in unusual oxidation states

    NASA Astrophysics Data System (ADS)

    Reisner, Barbara Alice

    Mixed valence RhIII/RhIV oxides have been proposed as a promising class of candidate compounds for superconductivity. Unfortunately, it is difficult to stabilize rhodates with a formal oxidation state approaching RhIV, as other techniques used for the synthesis of rhodium. oxides favor the most commonly observed formal oxidation state, RhIII. One technique which has been used to stabilize metal oxides in high formal oxidation states is crystallization from molten hydroxides. This thesis explores the use of molten hydroxides to enhance the reactivity of rhodium oxides in order to synthesize rhodates with high formal oxidation states. K0.5RhO2, Rb0.2RhO2, and CsxRhO2 were synthesized from pure alkali metal hydroxides. All crystallized with a previously unobserved polytype in the alkali metal rhodate system. Due to the low activity of dissolved oxygen species in LiOH and NaOH, LiRhO2 and NaRhO2 cannot be crystallized. The formal oxidation state of rhodium in AxRhO2 (A = K, Rb, Cs) is a function of the alkali metal hydroxide used to synthesize these oxides. These materials exhibit remarkable stability for layered metal oxides containing the heavier alkali metals, but all phases are susceptible to intercalation by water. The synthesis, structural characterization, magnetic susceptibility, and reactivity of these oxides are reported. Sr2RhO4 and a new rhodate were crystallized from a KOH-Sr(OH)2 flux. The synthesis and characterization of these materials is reported. Efforts to substitute platinum for rhodium in Sr 2RhO4 are also discussed. Mixed alkali metal-alkaline earth metal hydroxide fluxes were used to crystallize LiSr3RhO6, and NaSr3RhO 6. The synthesis of LiSr3RhO6 and NaSr3RhO 6 represents the first example of the stabilization of a rhodium oxide with a formal oxidation state approaching RhV. X-ray diffraction, electron beam microprobe analysis, thermogravimetric analysis, potentiometric titrations, X-ray photoelectron spectroscopy, and magnetic susceptibility