Sample records for oxidized form dehydroascorbic

  1. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo.

    PubMed

    Tu, Hongbin; Wang, Yu; Li, Hongyan; Brinster, Lauren R; Levine, Mark

    2017-09-01

    Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo -/- ) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Published by Elsevier B.V.

  2. "As Simple as Possible, but Not Simpler"--The Case of Dehydroascorbic Acid

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2008-01-01

    Ascorbic acid (vitamin C) is an essential nutrient, whose metabolic roles depend on its function as a reducing agent. Textbooks routinely assign its oxidized form, dehydroascorbic acid, a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. The actual structures of the various forms of…

  3. [Cellular and intracellular transport of vitamin C. The physiologic aspects].

    PubMed

    Szarka, András; Lőrincz, Tamás

    2013-10-20

    Vitamin C requirement is satisfied by natural sources and vitamin C supplements in the ordinary human diet. The two major forms of vitamin C in the diet are L-ascorbic acid and L-dehydroascorbic acid. Both ascorbate and dehydroascorbate are absorbed along the entire length of the human intestine. The reduced form, L-ascorbic acid is imported by an active mechanism, requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The transport of the oxidized form, dehydroascorbate is mediated by glucose transporters GLUT1, GLUT3 and possibly GLUT4. Initial rate of uptake of both ascorbate and dehydroascorbate is saturable with increasing external substrate concentration. Vitamin C plasma concentrations are tightly controlled when the vitamin is taken orally. It has two simple reasons, on the one hand, the capacity of the transporters is limited, on the other hand the two Na+-dependent transporters can be down-regulated by an elevated level of ascorbate.

  4. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    NASA Astrophysics Data System (ADS)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  5. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism.

    PubMed

    Cisternas, Pedro; Silva-Alvarez, Carmen; Martínez, Fernando; Fernandez, Emilio; Ferrada, Luciano; Oyarce, Karina; Salazar, Katterine; Bolaños, Juan P; Nualart, Francisco

    2014-05-01

    Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time- and dose-dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes. © 2014 International Society for Neurochemistry.

  6. Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress.

    PubMed

    Noshi, Masahiro; Yamada, Hiroki; Hatanaka, Risa; Tanabe, Noriaki; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-03-01

    Ascorbate and glutathione are indispensable cellular redox buffers and allow plants to acclimate stressful conditions. Arabidopsis contains three functional dehydroascorbate reductases (DHAR1-3), which catalyzes the conversion of dehydroascorbate into its reduced form using glutathione as a reductant. We herein attempted to elucidate the physiological role in DHAR1 and DHAR2 in stress responses. The total DHAR activities in DHAR knockout Arabidopsis plants, dhar1 and dhar2, were 22 and 92%, respectively, that in wild-type leaves. Under high light (HL), the levels of total ascorbate and dehydroascorbate were only reduced and increased, respectively, in dhar1. The oxidation of glutathione under HL was significantly inhibited in both dhar1 and dhar2, while glutathione contents were only enhanced in dhar1. The dhar1 showed stronger visible symptoms than the dhar2 under photooxidative stress conditions. Our results demonstrated a pivotal role of DHAR1 in the modulation of cellular redox states under photooxidative stress.

  7. Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles.

    PubMed Central

    Csala, M; Mile, V; Benedetti, A; Mandl, J; Bánhegyi, G

    2000-01-01

    Oxidation and uptake of ascorbate show similar time courses in rat liver microsomal vesicles: a rapid burst phase is followed by a slower process. Inhibitors of ascorbate oxidation (proadifen, econazole or quercetin) also effectively decreased the uptake of ascorbate. The results show that dehydroascorbate is the transport form of ascorbate at the membrane of the endoplasmic reticulum. PMID:10880339

  8. Effect of ascorbate and dehydroascorbate on tissue uptake of glucose.

    PubMed

    Mooradian, A D

    1987-09-01

    In vitro studies have suggested that ascorbate or dehydroascorbate share with glucose the same tissue-transport carrier. To determine if ascorbic acid or its oxidized form can inhibit tissue uptake of glucose, the brain uptake index (BUI) and muscle uptake index of glucose were determined by single arterial injection tissue-sampling technique. The injectate was either buffered Ringer's solution with varying concentrations of ascorbate, dehydroascorbate (pH 7.4), or 70% serum from individuals on vitamin C supplements. Ascorbic acid over a wide range of concentrations (0-10,000 mg/L) did not reduce the BUI. Ascorbic acid reduced BUI from the control value of 33 +/- 3.2 to 20.1 +/- 2.2% (P less than .01) only at 100,000 mg/L; this effect was probably secondary to osmotic disruption of blood-brain barrier. In contrast, dehydroascorbate inhibited the BUI of glucose from baseline value of 32.8 +/- 1.1 to 10.7 +/- 0.67%, with an estimated Ki of 13.0 mM. Masseter muscle glucose uptake was not significantly altered over a wide range of ascorbate or dehydroascorbate concentrations in the injectate. Dehydroascorbate (7500 mg/L) did not significantly reduce the BUI of [14C]phenylalanine (55.2 +/- 4.4 vs. 62.1 +/- 4.2% in controls). When serum from six individuals on calcium ascorbate (3-5 g/day) was compared with that of nine controls, the BUI was not different (19.3 +/- 1.7 vs. 19.3 +/- 1.1%). Similarly, supplementing the diet of eight healthy volunteers with 1 g calcium ascorbate for 8 days did not alter the BUI of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat.

    PubMed

    Sun, Chengliang; Liu, Lijuan; Yu, Yan; Liu, Wenjing; Lu, Lingli; Jin, Chongwei; Lin, Xianyong

    2015-06-01

    The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle. © 2014 Institute of Botany, Chinese Academy of Sciences.

  10. Vitamin C. Biosynthesis, recycling and degradation in mammals.

    PubMed

    Linster, Carole L; Van Schaftingen, Emile

    2007-01-01

    Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.

  11. Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes.

    PubMed

    García-Krauss, Andrea; Ferrada, Luciano; Astuya, Allisson; Salazar, Katterine; Cisternas, Pedro; Martínez, Fernando; Ramírez, Eder; Nualart, Francisco

    2016-11-01

    Ascorbic acid (AA), the reduced form of vitamin C, is incorporated into neurons via the sodium ascorbate co-transporter SVCT2. However, this transporter is not expressed in astrocytes, which take up the oxidized form of vitamin C, dehydroascorbic acid (DHA), via the facilitative hexose transporter GLUT1. Therefore, neuron and astrocyte interactions are thought to mediate vitamin C recycling in the nervous system. Although astrocytes are essential for the antioxidant defense of neurons under oxidative stress, a condition in which a large amount of ROS is generated that may favor the extracellular oxidation of AA and the subsequent neuronal uptake of DHA via GLUT3, potentially increasing oxidative stress in neurons. This study analyzed the effects of oxidative stress and DHA uptake on neuronal cell death in vitro. Different analyses revealed the presence of the DHA transporters GLUT1 and GLUT3 in Neuro2a and HN33.11 cells and in cortical neurons. Kinetic analyses confirmed that all cells analyzed in this study possess functional GLUTs that take up 2-deoxyglucose and DHA. Thus, DHA promotes the death of stressed neuronal cells, which is reversed by incubating the cells with cytochalasin B, an inhibitor of DHA uptake by GLUT1 and GLUT3. Additionally, the presence of glial cells (U87 and astrocytes), which promote DHA recycling, reverses the observed cell death of stressed neurons. Taken together, these results indicate that DHA promotes the death of stressed neurons and that astrocytes are essential for the antioxidative defense of neurons. Thus, the astrocyte-neuron interaction may function as an essential mechanism for vitamin C recycling, participating in the antioxidative defense of the brain.

  12. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    NASA Astrophysics Data System (ADS)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  13. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    PubMed Central

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris

    2017-01-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  14. S-glutathionyl-(chloro)hydroquinone reductases: a new class of glutathione transferases functioning as oxidoreductases

    PubMed Central

    Belchik, Sara M.; Xun, Luying

    2011-01-01

    Glutathione transferases (GSTs) are best known for transferring glutathione (GSH) to hydrophobic organic compounds, making the conjugates more soluble. However, the omega-class GSTs of animals and the lambda-class GSTs and dehydroascorbate reductases (DHARs) of plants have little or no activity for GSH transfer. Instead, they catalyze GSH-dependent oxidoreductions. The lambda-class GSTs reduce disulfide bonds, the DHARs reduce the disulfide bonds and dehydroascorbate, and the omega-class GSTs can reduce more substrates, including disulfide bonds, dehydroascorbate, and dimethylarsinate. Glutathionyl-(chloro)hydroquinone reductases (GS-HQRs) are the newest class of GSTs that mainly catalyze oxidoreductions. Besides the activities of the other three classes, GS-HQRs also reduce GS-hydroquinones, including GS-trichloro-p-hydroquinone, GS-dichloro-p-hydroquinone, GS-2-hydroxy-p-hydroquinone, and GS-p-hydroquinone. They are conserved and widely distributed in bacteria, fungi, protozoa, and plants, but not in animals. The four classes are phylogenetically more related to each other than to other GSTs, and they share a Cys-Pro motif at the GSH-binding site. Hydroquinones are metabolic intermediates of certain aromatic compounds. They can be auto-oxidized by O2 to benzoquinones, which spontaneously react with GSH to form GS-hydroquinones via Michael’s addition. GS-HQRs are expected to channel GS-hydroquinones, formed spontaneously or enzymatically, back to hydroquinones. When the released hydroquinones are intermediates of metabolic pathways, GS-HQRs play a maintenance role for the pathways. Further, the common presence of GS-HQRs in plants, green algae, cyanobacteria, and halobacteria suggest a beneficial role in the light-using organisms. PMID:21425927

  15. Ebselen is a dehydroascorbate reductase mimic, facilitating the recycling of ascorbate via mammalian thioredoxin systems.

    PubMed

    Zhao, Rong; Holmgren, Arne

    2004-02-01

    Ebselen is a selanazal drug recently revealed as a highly efficient peroxiredoxin mimic catalyzing the hydroperoxide reduction by the mammalian thioredoxin system [thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH]. The mammalian Trx system is a dehydroascorbic acid reductase recycling ascorbic acid essential for cell functions. Here we report that ebselen strongly facilitated the recycling of ascorbic acid by the TrxR both with and without Trx present. Reduction of dehydroascorbic acid by TrxR has a pH optimum of 6.4, and only approximately 55% of this activity at a physiological pH of 7.4. Ebselen at 6 microM enhances this reaction three-fold and with the same pH optimum of 6.4. The mechanism of the ebselen effect is suggested to involve reduction of dehydroascorbic acid by the ebselen selenol, a highly efficient two-electron reductant. Thus, ebselen acts as an antioxidant to lower the peroxide tone inside cells and to facilitate the recycling of dehydroascorbic acid to ascorbic acid, so as to increase the radical scavenging capacity of ascorbic acid directly or indirectly via vitamin E. The high ascorbic acid recycling efficiency of ebselen at pH 6.4 may play a major role in oxidatively stressed cells, where cytosol acidosis may trigger various responses, including apoptosis.

  16. Dehydroascorbic acid-induced endoplasmic reticulum stress and leptin resistance in neuronal cells.

    PubMed

    Thon, Mina; Hosoi, Toru; Ozawa, Koichiro

    2016-09-16

    Due to its anti-obesity effects, an adipocyte-derived hormone, leptin, has become important for the treatment of obesity. However, most obese subjects are in a state of leptin resistance, and endoplasmic reticulum (ER) stress is suggested to be involved in the pathophysiology of leptin resistance. Dehydroascorbic acid (DHAA), an oxidized form of vitamin C, was found to be increased in diabetes. In the present study, we investigated the possible effects of DHAA on the activation of ER stress and leptin resistance. A human neuroblastoma cell line, stably transfected with the Ob-Rb leptin receptor (SH-SY5Y-ObRb), was treated with DHAA. We found that DHAA upregulated ER stress-related genes such as GRP78, CHOP, and spliced XBP1. Moreover, leptin-induced STAT3 phosphorylation was hindered by DHAA. These results suggested that increases in the levels of DHAA might be harmful to neurons, contributing to defective leptin-responsive signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. In silico aided thoughts on mitochondrial vitamin C transport.

    PubMed

    Szarka, András; Balogh, Tibor

    2015-01-21

    The huge demand of mitochondria as the quantitatively most important sources of ROS in the majority of heterotrophic cells for vitamin C is indisputable. The reduced form of the vitamin, l-ascorbic acid, is imported by an active mechanism requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The oxidized form, dehydroascorbate is taken up by different members of the GLUT family. Because of the controversial experimental results the picture on mitochondrial vitamin C transport became quite obscure by the spring of 2014. Thus in silico prediction tools were applied in aid of the support of in vitro and in vivo results. The role of GLUT1 as a mitochondrial dehydroascorbate transporter could be reinforced by in silico predictions however the mitochondrial presence of GLUT10 is not likely since this transport protein got far the lowest mitochondrial localization scores. Furthermore the possible roles of GLUT9 and 11 in mitochondrial vitamin C transport can be proposed leastwise on the base of their computational localization analysis. In good concordance with the newest experimental observations on SVCT2 the mitochondrial presence of this transporter could also be supported by the computational prediction tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of multilayered bags vs ethylvinyl-acetate bags on oxidation of parenteral nutrition.

    PubMed

    Balet, Antònia; Cardona, Daniel; Jané, Salvador; Molins-Pujol, Antoni M; Sánchez Quesada, José Luís; Gich, Ignasi; Mangues, Ma Antònia

    2004-01-01

    We evaluate the effects of multilayered bags vs ethylvinyl-acetate bags on peroxidate formation of various emulsions for all-in-one total parenteral nutrition solutions (TPN) during storage. Twenty-four parenteral nutritions were prepared with 4 commercial i.v. lipid emulsions (Soyacal 20%, Grifols; Intralipid 20%, Fresenius-Kabi; Lipofundina 20%, Braun; and Clinoleic 20%, Clintex) and 2 different bags (multilayered [ML] bag, Miramed; and 1 ethylvinyl-acetate [EVA] bag, Miramed). Each kind of TPN was prepared in triplicate. Samples were taken at 3 different times: immediately after preparation (time 0), after 6 days at 4 degrees C and 48 hours at 37 degrees C (time 1), and finally after a total of 14 days at 37 degrees C (time 2). Oxidation of TPN was evaluated by analysis of hydroperoxides by ferrous oxidation-xylenol orange (FOX) reactive, lipoperoxides by thiobarbituric acid reactive species (TBARS), alpha-tocopherol by high-performance liquid chromatography (HPLC), and ascorbic acid and dehydroascorbic acid by HPLC. TPN admixtures in ML bag showed less oxidation evaluated by peroxide determination using FOX than EVA bag. Lipoperoxides by TBARS did not show significant differences between 2 bags. Ascorbic acid and dehydroascorbic acid disappeared in EVA bags at time 1. No important differences were found in alpha-tocopherol content. Multilayered bags minimize oxidation.

  19. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.

    PubMed

    Nagaraj, R H; Sell, D R; Prabhakaram, M; Ortwerth, B J; Monnier, V M

    1991-11-15

    Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts.

  20. Vitamin C degradation products and pathways in the human lens.

    PubMed

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ∼20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  1. Vitamin C modulates glutamate transport and NMDA receptor function in the retina.

    PubMed

    Domith, Ivan; Socodato, Renato; Portugal, Camila C; Munis, Andressa F; Duarte-Silva, Aline T; Paes-de-Carvalho, Roberto

    2018-02-01

    Vitamin C (in the reduced form ascorbate or in the oxidized form dehydroascorbate) is implicated in signaling events throughout the central nervous system (CNS). In the retina, a high-affinity transport system for ascorbate has been described and glutamatergic signaling has been reported to control ascorbate release. Here, we investigated the modulatory role played by vitamin C upon glutamate uptake and N-methyl-d-aspartate (NMDA) receptor activation in cultured retinal cells or in intact retinal tissue using biochemical and imaging techniques. We show that both forms of vitamin C, ascorbate or dehydroascorbate, promote an accumulation of extracellular glutamate by a mechanism involving the inhibition of glutamate uptake. This inhibition correlates with the finding that ascorbate promotes a decrease in cell surface levels of the neuronal glutamate transporter excitatory amino acid transporter 3 in retinal neuronal cultures. Interestingly, vitamin C is prone to increase the activity of NMDA receptors but also promotes a decrease in glutamate-stimulated [ 3 H] MK801 binding and decreases cell membrane content of NMDA receptor glutamate ionotropic receptor subunit 1 (GluN1) subunits. Both compounds were also able to increase cAMP response element-binding protein phosphorylation in neuronal nuclei in a glutamate receptor and calcium/calmodulin kinase-dependent manner. Moreover, the effect of ascorbate is not blocked by sulfinpyrazone and then does not depend on its uptake by retinal cells. Overall, these data indicate a novel molecular and functional target for vitamin C impacting on glutamate signaling in retinal neurons. © 2017 International Society for Neurochemistry.

  2. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  3. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases.

    PubMed

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham

    2017-08-03

    Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.

  4. A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response

    PubMed Central

    Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe

    2018-01-01

    Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875

  5. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    PubMed

    Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling

    2015-01-01

    Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  6. Absence of a Causal Relationship between Auxin-Induced Growth and Changes in the Content of Ascorbic and Dehydroascorbic Acids in Excised Plant Tissues 12

    PubMed Central

    Lin, C. Y.; Key, Joe L.

    1967-01-01

    The data reported indicate that the oxidation-reduction balance of the ascorbic acid system is not causally related to the auxin-regulation of cell elongation. There was no shift in the ascorbic acid (AA) to dehydroascorbic acid (DHA) ratio with growth-promoting concentration of auxin in several plant tissues. The AA to DHA ratio was experimentally increased without altering the growth rate. Inhibition of growth by supra-optimal auxin was associated with a decrease in the AA to DHA ratio. Since the AA to DHA ratio was lowered by EDTA treatment without altering growth, it seems unlikely that the decrease in the AA to DHA ratio related to the inhibition of growth by high levels of auxin. PMID:16656564

  7. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.

    PubMed

    Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim

    2009-01-01

    The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.

  8. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.

    PubMed Central

    Nagaraj, R H; Sell, D R; Prabhakaram, M; Ortwerth, B J; Monnier, V M

    1991-01-01

    Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts. Images PMID:1946446

  9. L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.

    PubMed

    Frikke-Schmidt, Henriette; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-04-01

    Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)-commonly found in vitamin C containing food products prone to oxidation-was studied. Our aim was to compare tissue accumulation of vitamin C in guinea pigs receiving different oral doses of either ascorbate or DHA. In all tissues tested (plasma, liver, spleen, lung, adrenal glands, kidney, muscle, heart, and brain), only sporadic differences in vitamin C accumulation from ascorbate or DHA were observed except for the lowest dose of DHA (0.25mg/ml in the drinking water), where approximately half of the tissues had slightly yet significantly less vitamin C accumulation than from the ascorbate source. As these results contradicted data from rats, we continued to explore the ability to recycle DHA in blood, liver and intestine in guinea pigs, rats and mice. These investigations revealed that guinea pigs have similar recycling capacity in red blood cells as observed in humans, while rats and mice do not have near the same ability to reduce DHA in erythrocytes. In liver and intestinal homogenates, guinea pigs also showed a significantly higher ability to recycle DHA compared to rats and mice. These data demonstrate that DHA in guinea pigs-as in humans-is almost as effective as ascorbate as vitamin C source when it comes to taking up and storing vitamin C and further suggest that the guinea pig is superior to other rodents in modeling human vitamin C homeostasis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    PubMed

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  11. Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves1

    PubMed Central

    Jiménez, Ana; Hernández, José A.; Pastori, Gabriela; del Río, Luis A.; Sevilla, Francisca

    1998-01-01

    We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria. PMID:9847106

  12. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism.

    PubMed

    Parsons, Harriet T; Yasmin, Tayyaba; Fry, Stephen C

    2011-12-15

    L-Ascorbate catabolism involves reversible oxidation to DHA (dehydroascorbic acid), then irreversible oxidation or hydrolysis. The precursor-product relationships and the identity of several major DHA breakdown products remained unclear. In the presence of added H2O2, DHA underwent little hydrolysis to DKG (2,3-dioxo-L-gulonate). Instead, it yielded OxT (oxalyl L-threonate), cOxT (cyclic oxalyl L-threonate) and free oxalate (~6:1:1), essentially simultaneously, suggesting that all three product classes independently arose from one reactive intermediate, proposed to be cyclic-2,3-O-oxalyl-L-threonolactone. Only with plant apoplastic esterases present were the esters significant precursors of free oxalate. Without added H2O2, DHA was slowly hydrolysed to DKG. Downstream of DKG was a singly ionized dicarboxy compound (suggested to be 2-carboxy-L-xylonolactone plus 2-carboxy-L-lyxonolactone), which reversibly de-lactonized to a dianionic carboxypentonate. Formation of these lactones and acid was minimized by the presence of residual unreacted ascorbate. In vivo, the putative 2-carboxy-L-pentonolactones were relatively stable. We propose that DHA is a branch-point in ascorbate catabolism, being either oxidized to oxalate and its esters or hydrolysed to DKG and downstream carboxypentonates. The oxidation/hydrolysis ratio is governed by reactive oxygen species status. In vivo, oxalyl esters are enzymatically hydrolysed, but the carboxypentonates are stable. The biological roles of these ascorbate metabolites invite future exploration.

  13. Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves.

    PubMed Central

    Jimenez, A.; Hernandez, J. A.; Del Rio, L. A.; Sevilla, F.

    1997-01-01

    The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles. PMID:12223704

  14. Antioxidant Systems from Pepper (Capsicum annuum L.): Involvement in the Response to Temperature Changes in Ripe Fruits

    PubMed Central

    Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.

    2013-01-01

    Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886

  15. Appropriate Handling, Processing and Analysis of Blood Samples Is Essential to Avoid Oxidation of Vitamin C to Dehydroascorbic Acid

    PubMed Central

    Pullar, Juliet M.; Carr, Anitra C.

    2018-01-01

    Vitamin C (ascorbate) is the major water-soluble antioxidant in plasma and its oxidation to dehydroascorbic acid (DHA) has been proposed as a marker of oxidative stress in vivo. However, controversy exists in the literature around the amount of DHA detected in blood samples collected from various patient cohorts. In this study, we report on DHA concentrations in a selection of different clinical cohorts (diabetes, pneumonia, cancer, and critically ill). All clinical samples were collected into EDTA anticoagulant tubes and processed at 4 °C prior to storage at −80 °C for subsequent analysis by HPLC with electrochemical detection. We also investigated the effects of different handling and processing conditions on short-term and long-term ascorbate and DHA stability in vitro and in whole blood and plasma samples. These conditions included metal chelation, anticoagulants (EDTA and heparin), and processing temperatures (ice, 4 °C and room temperature). Analysis of our clinical cohorts indicated very low to negligible DHA concentrations. Samples exhibiting haemolysis contained significantly higher concentrations of DHA. Metal chelation inhibited oxidation of vitamin C in vitro, confirming the involvement of contaminating metal ions. Although EDTA is an effective metal chelator, complexes with transition metal ions are still redox active, thus its use as an anticoagulant can facilitate metal ion-dependent oxidation of vitamin C in whole blood and plasma. Handling and processing blood samples on ice (or at 4 °C) delayed oxidation of vitamin C by a number of hours. A review of the literature regarding DHA concentrations in clinical cohorts highlighted the fact that studies using colourimetric or fluorometric assays reported significantly higher concentrations of DHA compared to those using HPLC with electrochemical detection. In conclusion, careful handling and processing of samples, combined with appropriate analysis, is crucial for accurate determination of ascorbate and DHA in clinical samples. PMID:29439480

  16. Mechanism study on mitochondrial fragmentation under oxidative stress caused by high-fluence low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Mitochondria are dynamic organelles that undergo continual fusion and fission to maintain their morphology and functions, but the mechanism involved is still not clear. Here, we investigated the effect of mitochondrial oxidative stress triggered by high-fluence low-power laser irradiation (HF-LPLI) on mitochondrial dynamics in human lung adenocarcinoma cells (ASTC-a-1). Upon HF-LPLI-triggered oxidative stress, mitochondria displayed a fragmented structure, which was abolished by exposure to dehydroascorbic acid (DHA), a reactive oxygen species scavenger, indicating that oxidative stress can induce mitochondrial fragmentation. Mitochondrial translocation of the profission protein dynamin-related protein 1 (Drp1) was observed following HF-LPLI, demonstrating apoptosis-related activation of Drp1. Notably, DHA pre-treatment prevented HF-LPLI-induced Drp1 activation. We conclude that mitochondrial oxidative stress through activation of Drp1 causes mitochondrial fragmentation.

  17. l-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs

    PubMed Central

    Frikke-Schmidt, Henriette; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2015-01-01

    Vitamin C deficiency globally affects several hundred million people and has been associated with increased morbidity and mortality in numerous studies. In this study, bioavailability of the oxidized form of vitamin C (l-dehydroascorbic acid or DHA)—commonly found in vitamin C containing food products prone to oxidation—was studied. Our aim was to compare tissue accumulation of vitamin C in guinea pigs receiving different oral doses of either ascorbate or DHA. In all tissues tested (plasma, liver, spleen, lung, adrenal glands, kidney, muscle, heart, and brain), only sporadic differences in vitamin C accumulation from ascorbate or DHA were observed except for the lowest dose of DHA (0.25 mg/ml in the drinking water), where approximately half of the tissues had slightly yet significantly less vitamin C accumulation than from the ascorbate source. As these results contradicted data from rats, we continued to explore the ability to recycle DHA in blood, liver and intestine in guinea pigs, rats and mice. These investigations revealed that guinea pigs have similar recycling capacity in red blood cells as observed in humans, while rats and mice do not have near the same ability to reduce DHA in erythrocytes. In liver and intestinal homogenates, guinea pigs also showed a significantly higher ability to recycle DHA compared to rats and mice. These data demonstrate that DHA in guinea pigs—as in humans—is almost as effective as ascorbate as vitamin C source when it comes to taking up and storing vitamin C and further suggest that the guinea pig is superior to other rodents in modeling human vitamin C homeostasis. PMID:26609560

  18. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    PubMed Central

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  19. Vitamin C Function in the Brain: Vital Role of the Ascorbate Transporter (SVCT2)

    PubMed Central

    Harrison, Fiona E.; May, James M.

    2009-01-01

    Ascorbate (vitamin C) is a vital antioxidant molecule in the brain. However, it also has a number of other important functions, participating as a co-factor in several enzyme reactions including catecholamine synthesis, collagen production and regulation of HIF-1α. Ascorbate is transported into the brain and neurons via the Sodium-dependent Vitamin C Transporter-2 (SVCT2), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters of the GLUT family. Once in cells, it is rapidly reduced to ascorbate. The highest concentrations of ascorbate in the body are found in the brain and neuroendocrine tissues such as adrenal, although the brain is the most difficult organ to deplete of ascorbate. Combined with regional asymmetry in ascorbate distribution within different brain areas, these facts suggest an important role for ascorbate in the brain. Ascorbate is proposed as a neuromodulator of glutamatergic, dopaminergic, cholinergic and GABAergic transmission and related behaviors. Neurodegenerative diseases typically involve high levels of oxidative stress and thus ascorbate has been posited to have potential therapeutic roles against ischemic stroke, Alzheimer's disease, Parkinson's disease and Huntingdon's disease. PMID:19162177

  20. Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications.

    PubMed

    Miyata, T; van Ypersele de Strihou, C; Kurokawa, K; Baynes, J W

    1999-02-01

    Advanced glycation end products (AGEs), formed during Maillard or browning reactions by nonenzymatic glycation and oxidation (glycoxidation) of proteins, have been implicated in the pathogenesis of several diseases, including diabetes and uremia. AGEs, such as pentosidine and carboxymethyllysine, are markedly elevated in both plasma proteins and skin collagen of uremic patients, irrespective of the presence of diabetes. The increased chemical modification of proteins is not limited to AGEs, because increased levels of advanced lipoxidation end products (ALEs), such as malondialdehydelysine, are also detected in plasma proteins in uremia. The accumulation of AGEs and ALEs in uremic plasma proteins is not correlated with increased blood glucose or triglycerides, nor is it determined by a decreased removal of chemically modified proteins by glomerular filtration. It more likely results from increased plasma concentrations of small, reactive carbonyl precursors of AGEs and ALEs, such as glyoxal, methylglyoxal, 3-deoxyglucosone, dehydroascorbate, and malondialdehyde. Thus, uremia may be described as a state of carbonyl overload or "carbonyl stress" resulting from either increased oxidation of carbohydrates and lipids (oxidative stress) or inadequate detoxification or inactivation of reactive carbonyl compounds derived from both carbohydrates and lipids by oxidative and nonoxidative chemistry. Carbonyl stress in uremia may contribute to the long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and accelerated atherosclerosis. The increased levels of AGEs and ALEs in uremic blood and tissue proteins suggest a broad derangement in the nonenzymatic biochemistry of both carbohydrates and lipids.

  1. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    PubMed Central

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  2. [Dual action of vitamin C versus degradation and supplementation].

    PubMed

    Kaliś, Katarzyna

    2015-11-17

    The article discusses vitamin C from the point of view of its supplementation with food and in the form of oral supplements. The dual action of vitamin C is connected with the presence of oxygen, which may reduce the amount of the vitamin in food products, influence thermal resistance, cause degradation and show an antioxidation effect. Vitamin C stimulates the immune cells and collagen synthesis. It may protect the LDL fraction against oxidation, and therefore it is interesting for cosmetology, rheumatology, immunology and dietetics. The latest research with respect to vitamin C proved that it has the ability to dissolve neurotoxic senile plaques. Equally effective in the treatment of Alzheimer's disease is the oxidised form of vitamin C, i.e. dehydroascorbic acid. Vitamin C may be used in a combined vitamin E supplementation to avoid the pro-oxidative effect and reduce the risk of diabetes mellitus type 2 complications. In the review there is a description of the types of vitamin C degradation depending on a specific factor such as pH, temperature, oxygen, enzyme and the impact of diet on the quantity of the supplied vitamin. The literature data confirmed the positive influence of vitamin C as an addition to food. The last part of the article presents the methods of vitamin C protection used in food processing technology and of determining its content in food products. Additionally, the article describes the problems related to vitamin C oxidation processes during food processing and storage. The presented research results indicate that an adequate diet contains a sufficient amount of vitamin C for healthy people. In the case of chronic patients it is better to use supplementation.

  3. Precision of dehydroascorbic acid quantitation with the use of the subtraction method--validation of HPLC-DAD method for determination of total vitamin C in food.

    PubMed

    Mazurek, Artur; Jamroz, Jerzy

    2015-04-15

    In food analysis, a method for determination of vitamin C should enable measuring of total content of ascorbic acid (AA) and dehydroascorbic acid (DHAA) because both chemical forms exhibit biological activity. The aim of the work was to confirm applicability of HPLC-DAD method for analysis of total content of vitamin C (TC) and ascorbic acid in various types of food by determination of validation parameters such as: selectivity, precision, accuracy, linearity and limits of detection and quantitation. The results showed that the method applied for determination of TC and AA was selective, linear and precise. Precision of DHAA determination by the subtraction method was also evaluated. It was revealed that the results of DHAA determination obtained by the subtraction method were not precise which resulted directly from the assumption of this method and the principles of uncertainty propagation. The proposed chromatographic method should be recommended for routine determinations of total vitamin C in various food. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection -- a pilot study.

    PubMed

    Skov, Marianne; Pressler, Tacjana; Lykkesfeldt, Jens; Poulsen, Henrik Enghusen; Jensen, Peter Østrup; Johansen, Helle Krogh; Qvist, Tavs; Kræmer, Dorthe; Høiby, Niels; Ciofu, Oana

    2015-03-01

    Patients with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa lung infection have increased oxidative stress as a result of an imbalance between the production of reactive oxygen species caused by inflammation and their inactivation by the impaired antioxidant systems. Supplementation with anti-oxidants is potentially beneficial for CF patients. The effect of 4 weeks of oral N-acetylcysteine (NAC) treatment (2400 mg/day divided into two doses) on biochemical parameters of oxidative stress was investigated in an open-label, controlled, randomized trial on 21 patients; 11 patients in the NAC group and 10 in the control group. Biochemical parameters of oxidative burden and plasma levels of antioxidants were assessed at the end of the study and compared to the baseline values in the two groups. A significant increase in the plasma levels of the antioxidant ascorbic acid (p=0.037) and a significant decrease in the levels of the oxidized form of ascorbic acid (dehydroascorbate) (p=0.004) compared to baseline were achieved after NAC treatment. No significant differences were observed in the control group. The parameters of oxidative burden did not change significantly compared to baseline in either of the groups. A better lung function was observed in the NAC treated group with a mean (SD) change compared to baseline of FEV1% predicted of 2.11 (4.6), while a decrease was observed in the control group (change -1.4 (4.6)), though not statistically significant. Treatment with N-acetylcysteine 1200 mg×2/day for 30 days significantly decreased the level of oxidized vitamin C and increased the level of vitamin C (primary end-points) and a not statistically significant improvement of lung function was observed in this group of patients. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. Pathogen-Induced Changes in the Antioxidant Status of the Apoplast in Barley Leaves

    PubMed Central

    Vanacker, Hélène; Carver, Tim L.W.; Foyer, Christine H.

    1998-01-01

    Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity. PMID:9662553

  6. Cerium Improves Growth of Maize Seedlings via Alleviating Morphological Structure and Oxidative Damages of Leaf under Different Stresses.

    PubMed

    Hong, Fashui; Qu, Chunxiang; Wang, Ling

    2017-10-18

    It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K + deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K + deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H 2 O 2 and malondialdehyde levels, and reductions in Ca 2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce 3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.

  7. Vitamin C-lipid metabolites: uptake and retention and effect on plasma C-reactive protein and oxidized LDL levels in healthy volunteers.

    PubMed

    Pancorbo, Dario; Vazquez, Carlos; Fletcher, Mary Ann

    2008-11-01

    Previously, a novel formulation of vitamin C-lipid metabolites (PureWay-C) was shown to be more rapidly taken-up by human T-lymphocytes and more rapidly stimulate neurite outgrowth, fibroblast adhesion and inhibition of xenobiotic-induced T-cell hyperactivation. Here, PureWay-C serum levels were measured in healthy volunteers after oral supplementation. Plasma C-reactive protein and oxidized low density lipoprotein levels (LDL) were also measured. Healthy volunteers maintained a low vitamin C diet for 14 days and, following an overnight fast, received a single oral dose of (vitamin C) 1000 mg of either ascorbic acid (AA), calcium ascorbate (CaA), vitamin C-lipid metabolites (PureWay-C), or calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C). Blood samples were collected immediately prior to the oral dose administration and at various times post ingestion. Twenty-four-hour urine collections were saved for oxalate and uric acid assays. PureWay-C supplementation leads to the highest absolute serum vitamin C levels when compared to AA, CaA and Ester-C. PureWay-C provides a statistically significant greater serum level than calcium ascorbate at 1, 2, 4, and 6 hours post oral supplementation whereas Ester-C shows a less but slightly statistically significant increase at only 1 and 4 hours. Oral supplementation with PureWay-C also led to a greater reduction in plasma C-reactive protein and oxidized LDL levels compared to the other vitamin C formulations. PureWay-C is more rapidly absorbed and leads to higher serum vitamin C levels and greater reduction of plasma levels of inflammatory and oxidative stress markers than other forms of vitamin C, including Ester-C.

  8. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots.

    PubMed

    Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann

    2011-06-01

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 μM for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 μM. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H(2)O(2), an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation

    PubMed Central

    Li, Rong; Xin, Shan; Tao, Chengcheng; Jin, Xiang; Li, Hongbin

    2017-01-01

    Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway. PMID:28644407

  10. Human erythrocytes transport dehydroascorbic acid and sugars using the same transporter complex

    PubMed Central

    Sage, Jay M.

    2014-01-01

    GLUT1, the primary glucose transport protein in human erythrocytes [red blood cells (RBCs)], also transports oxidized vitamin C [dehydroascorbic acid (DHA)]. A recent study suggests that RBC GLUT1 transports DHA as its primary substrate and that only a subpopulation of GLUT1 transports sugars. This conclusion is based on measurements of cellular glucose and DHA equilibrium spaces, rather than steady-state transport rates. We have characterized RBC transport of DHA and 3-O-methylglucose (3-OMG), a transported, nonmetabolizable sugar. Steady-state 3-OMG and DHA uptake in the absence of intracellular substrate are characterized by similar Vmax (0.16 ± 0.01 and 0.13 ± 0.02 mmol·l−1·min−1, respectively) and apparent Km (1.4 ± 0.2 and 1.6 ± 0.7 mM, respectively). 3-OMG and DHA compete for uptake, with Ki(app) of 0.7 ± 0.4 and 1.1 ± 0.1 mM, respectively. Uptake measurements using RBC inside-out-membrane vesicles demonstrate that 3-OMG and DHA compete at the cytoplasmic surface of the membrane, with Ki(app) of 0.7 ± 0.1 and 0.6 ± 0.1 mM, respectively. Intracellular 3-OMG stimulates unidirectional uptake of 3-OMG and DHA. These findings indicate that DHA and 3-OMG bind at mutually exclusive sites at exo- and endofacial surfaces of GLUT1 and are transported via the same GLUT1 complex. PMID:24598365

  11. Human erythrocytes transport dehydroascorbic acid and sugars using the same transporter complex.

    PubMed

    Sage, Jay M; Carruthers, Anthony

    2014-05-15

    GLUT1, the primary glucose transport protein in human erythrocytes [red blood cells (RBCs)], also transports oxidized vitamin C [dehydroascorbic acid (DHA)]. A recent study suggests that RBC GLUT1 transports DHA as its primary substrate and that only a subpopulation of GLUT1 transports sugars. This conclusion is based on measurements of cellular glucose and DHA equilibrium spaces, rather than steady-state transport rates. We have characterized RBC transport of DHA and 3-O-methylglucose (3-OMG), a transported, nonmetabolizable sugar. Steady-state 3-OMG and DHA uptake in the absence of intracellular substrate are characterized by similar Vmax (0.16 ± 0.01 and 0.13 ± 0.02 mmol·l(-1)·min(-1), respectively) and apparent Km (1.4 ± 0.2 and 1.6 ± 0.7 mM, respectively). 3-OMG and DHA compete for uptake, with Ki(app) of 0.7 ± 0.4 and 1.1 ± 0.1 mM, respectively. Uptake measurements using RBC inside-out-membrane vesicles demonstrate that 3-OMG and DHA compete at the cytoplasmic surface of the membrane, with Ki(app) of 0.7 ± 0.1 and 0.6 ± 0.1 mM, respectively. Intracellular 3-OMG stimulates unidirectional uptake of 3-OMG and DHA. These findings indicate that DHA and 3-OMG bind at mutually exclusive sites at exo- and endofacial surfaces of GLUT1 and are transported via the same GLUT1 complex. Copyright © 2014 the American Physiological Society.

  12. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate.

    PubMed

    Truffault, Vincent; Fry, Stephen C; Stevens, Rebecca G; Gautier, Hélène

    2017-03-01

    Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non-reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [ 14 C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall-rich) leaf material. No [ 14 C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under-expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica).

    PubMed

    Munyaka, Ann Wambui; Makule, Edna Edward; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-05-01

    The thermal stability of vitamin C (including l-ascorbic acid [l-AA] and dehydroascorbic acid [DHAA]) in crushed broccoli was evaluated in the temperature range of 30 to 90 degrees C whereas that of ascorbic acid oxidase (AAO) was evaluated in the temperature range of 20 to 95 degrees C. Thermal treatments (for 15 min) of crushed broccoli at 30 to 60 degrees C resulted in conversion of l-AA to DHAA whereas treatments at 70 to 90 degrees C retained vitamin C as l-AA. These observations indicated that enzymes (for example, AAO) could play a major role in the initial phase (that is, oxidation of l-AA to DHAA) of vitamin C degradation in broccoli. Consequently, a study to evaluate the temperature-time conditions that could result in AAO inactivation in broccoli was carried out. In this study, higher AAO activity was observed in broccoli florets than stalks. During thermal treatments for 10 min, AAO in broccoli florets and stalks was stable until around 50 degrees C. A 10-min thermal treatment at 80 degrees C almost completely inactivated AAO in broccoli. AAO inactivation followed 1st order kinetics in the temperature range of 55 to 65 degrees C. Based on this study, a thermal treatment above 70 degrees C is recommended for crushed vegetable products to prevent oxidation of l-AA to DHAA, the onset of vitamin C degradation. The results reported in this study are applicable for both domestic and industrial processing of vegetables into products such as juices, soups, and purees. In this report, we have demonstrated that processing crushed broccoli in a temperature range of 30 to 60 degrees C could result in the conversion of l-ascorbic acid to dehydroascorbic (DHAA), a very important reaction in regard to vitamin C degradation because DHAA could be easily converted to other compounds that do not have the biological activity of vitamin C.

  14. A Smart Molecule for Selective Sensing of Nitric Oxide: Conversion of NO to HSNO; Relevance of Biological HSNO Formation.

    PubMed

    Islam, Abu Saleh Musha; Bhowmick, Rahul; Pal, Kaberi; Katarkar, Atul; Chaudhuri, Keya; Ali, Mahammad

    2017-04-17

    A smart molecule, QT 490 , containing thiosemicarbazide moiety acts as a highly selective turn-on in vitro NO sensor through the unprecedented NO-induced transformation of thiosemicarbazide moiety to 1,3,4-oxadiazole heterocycle with the concomitant release of HSNO, thereby eliminating any interference from various endogenous biomolecules including dehydroascorbic acid, ascorbic acid, etc. The kinetic studies of the reactions between QT 490 and NO provide a mechanistic insight into formation of HSNO/RSNO from the reaction between H 2 S/RSH and NO in the biological system. This novel probe is non-cytotoxic, cell permeable, water-soluble, and appropriate for intracellular cytoplasmic NO sensing with the possibilities of in vivo applications.

  15. Antioxidant Defenses against Activated Oxygen in Pea Nodules Subjected to Water Stress.

    PubMed Central

    Gogorcena, Y.; Iturbe-Ormaetxe, I.; Escuredo, P. R.; Becana, M.

    1995-01-01

    The involvement of activated oxygen in the drought-induced damage of pea (Pisum sativum L. cv Frilene) nodules was examined. To this purpose, various pro-oxidant factors, antioxidant enzymes and related metabolites, and markers of oxidative damage were determined in nodules of well-watered (nodule water potential approximately -0.29 MPa) and water-stressed (nodule water potential approximately -2.03 MPa) plants. Water-stressed nodules entered senescence as evidenced by the 30% decrease in leghemoglobin and total soluble protein. Drought also caused a decrease in the activities of catalase (25%), ascorbate peroxidase (18%), dehydroascorbate reductase (15%), glutathione reductase (31%), and superoxide dismutase (30%), and in the contents of ascorbate (59%), reduced (57%) and oxidized (38%) glutathione, NAD+ and NADH (43%), NADP+ (31%), and NADPH (17%). The decline in the antioxidant capacity of nodules may result from a restricted supply of NAD(P)H in vivo for the ascorbate-glutathione pathway and from the Fe-catalyzed Fenton reactions of ascorbate and glutathione with activated oxygen. The 2-fold increase in the content of "catalytic Fe" would also explain the augmented levels of lipid peroxides (2.4-fold) and oxidatively modified proteins (1.4-fold) found in water-stressed nodules because of the known requirement of lipid and protein oxidation for a transition catalytic metal. PMID:12228507

  16. [Light-dependent changes in the enzyme activity of the ascorbate-glutathione cycle and ascorbate oxidase in the leaves of pea].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    Light-determined activation of ferments of ascorbate-glutation cycle, ascorbate-oxidase in chloroplasts and cytosol is demonstrated as well as ascorbate-peroxidase, monodehydroascorbate-reductase, glutation-reductase and ascorbate-oxydase in mitochondria. On the other hands activity of mitochondrial dehydroascorbate-reductase increased on reduction of light most likely due to function of electron transport from glutation to dehydroascorbate in mitochondria. Glutation metabolism is proved to be endogenic catalytic process where the amount reconstructed glutation changes slowly with a delay and gradually follow light changes. Light dependable changes of glutation content in chloroplasts ensure resistance of ferment system again hydrogen peroxide and superoxide radicals that generate intensively at light.

  17. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    PubMed Central

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  18. Effect of sodium ascorbate dose on the shelf life stability of reduced nitrite liver pâtés.

    PubMed

    Vossen, Els; Doolaege, Evelyne H A; Moges, Haile Demewez; De Meulenaer, Bruno; Szczepaniak, Slawomir; Raes, Katleen; De Smet, Stefaan

    2012-05-01

    The effect of sodium ascorbate (SA; 500, 750, 1000 mg/kg) and sodium nitrite (SN; 40, 80, 120 mg/kg) doses on the shelf-life stability of liver pâtés was investigated in a full factorial design. Clear dose-dependent responses of the added SN or SA were found for the concentrations of nitrite, ascorbic acid and dehydroascorbic acid in the raw batters and in the cooked pâtés before and after 48 h of chilled display. Decreasing the SN dose to 80 mg/kg had no negative impact on the colour stability (a* value) and lipid oxidation (TBARS), and no additional antioxidant effect of SA was noticed. Lowering SN to 40 mg/kg resulted in proper colour formation, but the colour stability was inferior and lipid oxidation increased. Yet, increasing the amount of SA, at this low SN dose, resulted in lower TBARS values. Decreasing the SN dose to 80 or 40 mg/kg had no distinct effect on protein oxidation, which was however only measured by carbonyl content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Vitamin C Transporters in Cancer: Current Understanding and Gaps in Knowledge

    PubMed Central

    Wohlrab, Christina; Phillips, Elisabeth; Dachs, Gabi U.

    2017-01-01

    Sufficient uptake and whole body distribution of vitamin C (ascorbate) is essential for many biochemical processes, including some that are vital for tumor growth and spread. Uptake of ascorbate into cancer cells is modulated by availability, tumor blood flow, tissue diffusion parameters, and ascorbate transport proteins. Uptake into cells is mediated by two families of transport proteins, namely, the solute carrier gene family 23, consisting of sodium-dependent vitamin C transporters (SVCTs) 1 and 2, and the SLC2 family of glucose transporters (GLUTs). GLUTs transport the oxidized form of the vitamin, dehydroascorbate (DHA), which is present at negligible to low physiological levels. SVCT1 and 2 are capable of accumulating ascorbate against a concentration gradient from micromolar concentrations outside to millimolar levels inside of cells. Investigating the expression and regulation of SVCTs in cancer has only recently started to be included in studies focused on the role of ascorbate in tumor formation, progression, and response to therapy. This review gives an overview of the current, limited knowledge of ascorbate transport across membranes, as well as tissue distribution, gene expression, and the relevance of SVCTs in cancer. As tumor ascorbate accumulation may play a role in the anticancer activity of high dose ascorbate treatment, further research into ascorbate transport in cancer tissue is vital. PMID:28484682

  20. The water-water cycle as alternative photon and electron sinks.

    PubMed

    Asada, K

    2000-10-29

    The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of ascorbate by reduced ferredoxin or catalysed by either dehydroascorbate reductase or monodehydroascorbate reductase. The water-water cycle therefore effectively shortens the lifetimes of photoproduced superoxide and hydrogen peroxide to suppress the production of hydroxyl radicals, their interactions with the target molecules in chloroplasts, and resulting photoinhibition. When leaves are exposed to photon intensities of sunlight in excess of that required to support the fixation of CO2, the intersystem electron carriers are over-reduced, resulting in photoinhibition. Under such conditions, the water-water cycle not only scavenges active oxygens, but also safely dissipates excess photon energy and electrons, in addition to downregulation of PS II and photorespiration. The dual functions of the water-water cycle for protection from photoinhibition under photon excess stress are discussed, along with its functional evolution.

  1. Degradation of vitamin C by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Abdoul-Carime, Hassan; Illenberger, Eugen

    2004-06-01

    We report on the degradation of gas phase vitamin C (ascorbic acid, AA) induced by low-energy electrons. In the energy range of (0-12) eV, different negatively charged fragments, attributed to the dehydro-ascorbic acid anion ((AA-H) -), OH -, O - and H -, are observed. The yield functions indicate that these ions are formed via dissociative electron attachment, DEA. While the formation of (AA-H) - is exclusively observed at sub-excitation energies (<1.5 eV), the other fragments arise from resonance features at higher energies. Possible implications of these observations for radiation damage and food treatment by high energy radiation are considered.

  2. Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence.

    PubMed

    Loscos, Jorge; Matamoros, Manuel A; Becana, Manuel

    2008-03-01

    Ascorbate and glutathione are major antioxidants and redox buffers in plant cells but also play key functions in growth, development, and stress responses. We have studied the regulation of ascorbate and homoglutathione biosynthesis in common bean (Phaseolus vulgaris) nodules under stress conditions and during aging. The expression of five genes of the major ascorbate biosynthetic pathway was analyzed in nodules, and evidence was found that L-galactono-1,4-lactone dehydrogenase, the last committed step of the pathway, is posttranscriptionally regulated. Also, in nodules under stress conditions, gamma-glutamylcysteine synthetase was translationally regulated, but homoglutathione synthetase (mRNA and activity) and homoglutathione (content and redox state) were not affected. Most interestingly, in nodules exposed to jasmonic acid, dehydroascorbate reductase activity was posttranslationally suppressed, ascorbate oxidase showed strong transcriptional up-regulation, and dehydroascorbate content increased moderately. These changes were not due to a direct effect of jasmonic acid on the enzyme activities but might be part of the signaling pathway in the response of nodules to stress. We determined ascorbate, homoglutathione, and ascorbate-glutathione pathway enzyme activities in two senescing stages of nodules undergoing oxidative stress. When all parameters were expressed on a nodule fresh weight basis, we found that in the first stage ascorbate decreased by 60% and homoglutathione and antioxidant activities remained fairly constant, whereas in the second stage ascorbate and homoglutathione, their redox states, and their associated enzyme activities significantly decreased. The coexistence in the same plants of nodules at different senescence stages, with different ascorbate concentrations and redox states, indicates that the life span of nodules is in part controlled by endogenous factors and points to ascorbate as one of the key players.

  3. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica).

    PubMed

    Kim, Young-Saeng; Kim, Il-Sup; Bae, Mi-Jung; Choe, Yong-Hoe; Kim, Yul-Ho; Park, Hyang-Mi; Kang, Hong-Gyu; Yoon, Ho-Sung

    2013-06-01

    Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.

  4. Ebselen: A thioredoxin reductase-dependent catalyst for {alpha}-tocopherol quinone reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Jianguo; Zhong Liangwei; Zhao Rong

    2005-09-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if {alpha}-tocopherol quinone (TQ), a product of {alpha}-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity,more » while the product of reduction of TQ, {alpha}-tocopherolhydroquinone (TQH{sub 2}), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo.« less

  5. Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves.

    PubMed

    Dewhirst, Rebecca A; Clarkson, Graham J J; Rothwell, Steve D; Fry, Stephen C

    2017-10-15

    Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by 14 C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [ 14 C]oxalate was the major product of [ 14 C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Reexamination of the ORAC assay: effect of metal ions.

    PubMed

    Nkhili, E; Brat, P

    2011-05-01

    The oxygen radical absorbance capacity (ORAC) assay method has been employed extensively in the field of antioxidant and oxidative stress. It uses fluorescein as probe for oxidation by peroxyl radical. Hundreds of reports have been published on the use of this method to determine antioxidant capacity in food and biological samples. The question is whether the results of all these reports are influenced by antioxidant autoxidation, which occurs during the ORAC test. Indeed, the presence of metal ions in the studied matrix will influence antioxidant stability, thereby leading to the underestimation of their antioxidant properties. Ethylenediaminetetraacetic acid hydrate (EDTA) can be used as a metal complexation agent. This paper examines the effect of the addition of EDTA on the ORAC values of pure compounds (quercetin, ascorbic, and dehydroascorbic acid) and five food juices (kiwi, orange, tomato, red grape, and apple). Metal complexation by EDTA (80 μM) clearly increased the ORAC values, given that the antioxidant was protected against rapid autoxidation incited by trace metal ions within samples and then by free radicals. Our finding also undoubtedly demonstrated that the number of literature values is potentially underestimated.

  7. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    PubMed Central

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  8. [Malondialdehyde and reduced glutathione increase in patients with chronic stable ischaemic cardiopathy].

    PubMed

    Cabrera de Bravo, Mayela Carolina; Bermúdez Pirela, Valmore José; Bermúdez Arias, Fernando; Cano Ponce, Clímaco; Mengual Moreno, Edgardo José; Leal González, Elliuz Marina

    2005-03-19

    Cardiovascular diseases are associated with the ischemia/reperfusion phenomena and therefore to the oxidation/antioxidation balance. The aim of this study was to determine malondialdehyde, nitric oxide, glutathione, ascorbic and dehydroascorbic acid in patients with chronic ischemic heart disease. 32 male patients, with chronic ischemic heart disease, between 40 and 60 years of age were studied. These individuals were divided in two groups: 16 with hypertension and 16 without hypertension. Both groups were compared with 31 healthy male subjects (control group). Significant differences (p < 0.001) was observed in malondialdehyde between no-hypertension ischemic group: 5.3 (1.5) microM and the hypertension ischemic group: 4.8 (1.3) microM in contrast with the healthy group: 2.2 (0.5) microM. Hypertension ischemic group showed significant greater reduced glutation levels: 286.1 (31.4) microg/ml than control group 262.0 (38.8) microg/ml; p < 0.03 and no-hypertension ischemic group: 256.4 (41.5) microg/ml; p < 0.02. No significant difference in the rest of the parameters for all study groups. Oxidation/antioxidation balance during chronic ischemic heart disease can be considered as a good metabolic ischemia indicator, that used in the monitoring and therapeutic evaluation could detect molecular changes that anticipate installation of tissue damage.

  9. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings

    PubMed Central

    Sytykiewicz, Hubert

    2016-01-01

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270

  10. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    PubMed

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  11. Photogenerated Hole-Induced Chemical Redox Cycling on Bi2S3/Bi2Sn2O7 Heterojunction: Toward General Amplified Split-Type Photoelectrochemical Immunoassay.

    PubMed

    Cao, Jun-Tao; Wang, Bing; Dong, Yu-Xiang; Wang, Qian; Ren, Shu-Wei; Liu, Yan-Ming; Zhao, Wei-Wei

    2018-06-04

    This work reports the elegant bridging of enzymatic generation of electron donor with photogenerated hole-induced chemical redox cycling amplification (RCA) for innovative photoelectrochemical (PEC) immunoassay, by the aid of a heterojunction photoelectrode with split-type strategy. Specifically, the system was exemplified by the alkaline phosphatase (ALP) catalytic generation of ascorbic acid (AA), the redox cycling of AA by tris (2-carboxyethyl) phosphine (TCEP) as reductant, and the use of a novel Bi 2 S 3 /Bi 2 Sn 2 O 7 heterojunction and myoglobin (Myo) as the photoelectrode and the target, respectively. After the immunoreaction and ALP-induced production of AA, the subsequent oxidation of AA by the photogenerated holes of the Bi 2 S 3 /Bi 2 Sn 2 O 7 heterojunction could be cycled via the regeneration of AA by TCEP from the oxidized product of dehydroascorbic acid, leading to easy signal amplification for the sensitive immunoassay of Myo in real samples. It is believed that this work provided a basis for further design and development of general RCA-based PEC immunoassays.

  12. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  13. Vitamin C Status of Submariners

    DTIC Science & Technology

    1980-06-19

    one week of collection using a modification of the 2,4- dinitrophenylhydrazine method of Roe and Kuether (14). Before each sampling period, the...KUETHER. The determination of ascorbic acid in whole blood through the 2,4- dinitrophenylhydrazine derivative of dehydroascorbic acid. J. Biol

  14. Absorption rates and free radical scavenging values of vitamin C-lipid metabolites in human lymphoblastic cells.

    PubMed

    Weeks, Benjamin S; Perez, Pedro P

    2007-10-01

    In this study we investigated the cellular absorption rates, antioxidant and free radical scavenging activity of vitamin C-lipid metabolites. The absorption was measured in a human lymphoblastic cell line using a spectrophotometric technique. Cellular vitamin C levels in the human lymphoblastic H9 cell line were measured using the 2,4-dinitrophenylhydrazine spectrophotometric technique. Free radical scavenging activity of vitamin C-lipid metabolites was measured by the reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH) to 1,1-diphenyl-2-picryl hydrazine. Vitamin C-lipid metabolite scavenging of peroxyl radical oxygen reactive species (ORAC) was determined by fluorescence spectrophotometry. Compared to ascorbic acid (AA), calcium ascorbate (CaA), and calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C), vitamin C-lipid metabolites (PureWay-C) were more rapidly absorbed by the H9 human T-lymphocytes. The vitamin C-lipid metabolites (PureWay-C) also reduced pesticide-induced T-lymphocyte aggregation by 84%, while calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C) reduced aggregation by only 34%. The vitamin C-lipid metabolites (PureWay-C) demonstrated free radical scavenging activity of nearly 100% reduction of DPPH at 20 microg/ml and oxygen radical scavenging of over 1200 micro Trolox equivalents per gram. These data demonstrate that the vitamin C-lipid metabolites (PureWay-C) are more rapidly taken-up and absorbed by cells than other forms of vitamin C, including Ester-C. This increased rate of absorption correlates with an increased protection of the T-lymphocytes from pesticide toxicities. Further, vitamin C-lipid metabolites (PureWay-C) are a potent antioxidant and have significant free radical scavenging capabilities.

  15. Multispecificity of Immunoglobulin M Antibodies Raised against Advanced Glycation End Products

    PubMed Central

    Chikazawa, Miho; Otaki, Natsuki; Shibata, Takahiro; Miyashita, Hiroaki; Kawai, Yoshichika; Maruyama, Shoichi; Toyokuni, Shinya; Kitaura, Yasuyuki; Matsuda, Tsukasa; Uchida, Koji

    2013-01-01

    Advanced glycation end products (AGEs) are a heterogeneous and complex group of compounds that are formed when reducing sugars, such as dehydroascorbic acid, react in a nonenzymatic way with amino acids in proteins and other macromolecules. AGEs are prevalent in the diabetic vasculature and contribute to the development of atherosclerosis. The presence and accumulation of AGEs in many different cell types affect the extracellular and intracellular structure and function. In the present study, we studied the immune response to the dehydroascorbic acid-derived AGEs and provide multiple lines of evidence suggesting that the AGEs could be an endogenous source of innate epitopes recognized by natural IgM antibodies. Prominent IgM titers to the AGEs were detected in the sera of normal mice and were significantly accelerated by the immunization with the AGEs. Patients with systemic lupus erythematosus (SLE), a potentially fatal systemic autoimmune disease characterized by the increased production of autoantibodies, showed significantly higher serum levels of the IgM titer against the AGEs than healthy individuals. A progressive increase in the IgM response against the AGEs was also observed in the SLE-prone mice. Strikingly, a subset of monoclonal antibodies, showing a specificity toward the AGEs, prepared from normal mice immunized with the AGEs and from the SLE mice cross-reacted with the double-stranded DNA. Moreover, they also cross-reacted with several other modified proteins, including the acetylated proteins, suggesting that the multiple specificity of the antibodies might be ascribed, at least in part, to the increased electronegative potential of the proteins. These findings suggest that the protein modification by the endogenous carbonyl compounds, generating electronegative proteins, could be a source of multispecific natural antibodies. PMID:23543734

  16. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng.

    PubMed

    Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng

    2017-07-01

    Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.

  17. Guinea pig ascorbate status predicts tetrahydrobiopterin plasma concentration and oxidation ratio in vivo.

    PubMed

    Mortensen, Alan; Hasselholt, Stine; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2013-10-01

    Tetrahydrobiopterin (BH₄) is an essential co-factor of nitric oxide synthases and is easily oxidized to dihydrobiopterin (BH₂) which promotes endothelial nitric oxide synthase uncoupling and deleterious superoxide production. Vitamin C has been shown to improve endothelial function by different mechanisms, some involving BH₄. The hypothesis of the present study was that vitamin C status, in particular low levels, influences biopterin redox status in vivo. Like humans, the guinea pig lacks the ability to synthesize vitamin C and was therefore used as model. Seven day old animals (n = 10/group) were given a diet containing 100, 250, 500, 750, 1000, or 1500 ppm vitamin C until euthanasia at age 60-64 days. Blood samples were drawn from the heart and analyzed for ascorbate, dehydroascorbic acid (DHA), BH₄ and BH₂ by high-performance liquid chromatography. Plasma BH₄ levels were found to be significantly lower in animals fed 100 ppm vitamin C compared to all other groups (P < .05 or less). BH₂ levels were not significantly different between groups but the BH₂-to-BH₄ ratio was higher in the group fed 100 ppm vitamin C (P < .001 all cases). Significant positive correlations between BH4 and ascorbate and between BH₂-to-BH₄ ratio and DHA were observed (P < .0001 both cases). Likewise, BH₂-to-BH₄ ratio was negatively correlated with ascorbate (P < .0001) as was BH₄ and DHA (P < .005). In conclusion, the redox status of plasma biopterins, essentially involved in vasodilation, depends on the vitamin C status in vivo. Thus, ingestion of insufficient quantities of vitamin C not only leads to vitamin C deficiency but also to increased BH₄ oxidation which may promote endothelial dysfunction. © 2013 Elsevier Inc. All rights reserved.

  18. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k).

    PubMed

    Salbitani, Giovanna; Vona, Vincenza; Bottone, Claudia; Petriccione, Milena; Carfagna, Simona

    2015-05-01

    Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents.

    PubMed

    Gómez Ruiz, Braulio; Roux, Stéphanie; Courtois, Francis; Bonazzi, Catherine

    2018-04-01

    The degradation kinetics of vitamin C (ascorbic and dehydroascorbic acids, AA and DHA) were determined under controlled conditions of temperature (50-90 °C) and oxygen concentrations in the gas phase (10-30% mol/mol) using a specific reactor. The degradation of vitamin C in malate buffer (20 mM, pH 3.8), mimetic of an apple puree, was assessed by sampling at regular intervals and spectrophotometric quantification of AA and DHA levels at 243 nm. The results showed that AA degradation increased with temperature and oxygen concentration, while DHA exhibited the behaviour of an intermediate species, appearing then disappearing. A kinetic model was successfully developed to simulate the experimental data by two first order consecutive reactions. The first one represented AA degradation as a function of temperature and concentration in dissolved oxygen, and the second reflected DHA degradation as a function of temperature only, both adequately following Arrhenius' law. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Vitamin C physiology: the known and the unknown and Goldilocks

    PubMed Central

    Padayatty, Sebastian J; Levine, Mark

    2016-01-01

    Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful. PMID:26808119

  1. Three-dimensional organization of three-domain copper oxidases: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukhlistova, N. E., E-mail: amm@ns.crys.ras.ru; Zhukova, Yu. N.; Lyashenko, A. V.

    2008-01-15

    'Blue' copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrenamore » maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.« less

  2. Three-dimensional organization of three-domain copper oxidases: A review

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Zhukova, Yu. N.; Lyashenko, A. V.; Zaĭtsev, V. N.; Mikhaĭlov, A. M.

    2008-01-01

    “Blue” copper-containing proteins are multidomain proteins that utilize a unique redox property of copper ions. Among other blue multicopper oxidases, three-domain oxidases belong to the group of proteins that exhibit a wide variety of compositions in amino acid sequences, functions, and occurrences in organisms. This paper presents a review of the data obtained from X-ray diffraction investigations of the three-dimensional structures of three-domain multicopper oxidases, such as the ascorbate oxidase catalyzing oxidation of ascorbate to dehydroascorbate and its three derivatives; the multicopper oxidase CueO (the laccase homologue); the laccases isolated from the basidiomycetes Coprinus cinereus, Trametes versicolor, Coriolus zonatus, Cerrena maxima, and Rigidoporus lignosus and the ascomycete Melanocarpus albomyces; and the bacterial laccases CotA from the endospore coats of Bacillus subtilis. A comparison of the molecular structures of the laccases of different origins demonstrates that, structurally, these objects are highly conservative. This obviously indicates that the catalytic activity of the enzymes under consideration is characterized by similar mechanisms.

  3. Degradation of histamine in the presence of ascorbic acid and Cu2+ ion; involvement of hydrogen peroxide.

    PubMed

    Yamamoto, I; Ohmori, H

    1981-01-01

    In the presence, but not in the absence of Cu2+, ascorbate decomposes histamine in citrate phosphate buffer (pH 6.5) at 37 degrees, but not at 0 degrees. The breakdown is completely inhibited by catalase, but only slightly by superoxide dismutase, and scavengers of OH. like benzoic acid, ethanol or potassium iodide. A1 O2 scavenger, alpha-tocopherol also did not show significant effects on the reaction. On the other hand, addition of H2O2 to the reaction mixture markedly enhances the rate of histamine breakdown induced by ascorbate or ascorbate-Cu2+ systems. However, H2O2 alone cannot breakdown histamine even in the presence of Cu2+. Histamine breakdown induced by ascorbate appears to be dependent upon the autooxidation of this vitamin. From these results and the findings reported by Chatterjee et al. that the products of its aerobic oxidation, dehydroascorbic acid and H2O2 were ineffective in reacting with histamine in the presence of Cu2+, it is concluded that the combination of H2O2 and the intermediate of ascorbate oxidation (monodehydroascorbic acid or other unstable species), both of which are produced during the autooxidation of ascorbate, plays a major role in the histamine transformation by ascorbate-Cu2+ system.

  4. Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.).

    PubMed

    Baldermann, Susanne; Homann, Thomas; Neugart, Susanne; Chmielewski, Frank-M; Götz, Klaus-Peter; Gödeke, Kristin; Huschek, Gerd; Morlock, Getrud E; Rawel, Harshadrai M

    2018-05-17

    Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.

  5. Exogenous Proline and Glycine Betaine Mediated Upregulation of Antioxidant Defense and Glyoxalase Systems Provides Better Protection against Salt-Induced Oxidative Stress in Two Rice (Oryza sativa L.) Varieties

    PubMed Central

    Hasanuzzaman, Mirza; Alam, Md. Mahabub; Rahman, Anisur; Hasanuzzaman, Md.; Nahar, Kamrun; Fujita, Masayuki

    2014-01-01

    The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB. PMID:24991566

  6. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions.

    PubMed

    Gruszka, Damian; Janeczko, Anna; Dziurka, Michal; Pociecha, Ewa; Fodor, Jozsef

    2017-12-07

    Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis. © 2017 Scandinavian Plant Physiology Society.

  7. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves.

    PubMed

    Martí, María C; Florez-Sarasa, Igor; Camejo, Daymi; Pallol, Beatriz; Ortiz, Ana; Ribas-Carbó, Miquel; Jiménez, Ana; Sevilla, Francisca

    2013-02-01

    Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA-NONOate, a pure NO slow generator, and of SIN-1 (3-morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non-enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA-NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn-SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN-1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn-SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO-resistant AP and mitochondrial APX may be important components of the H(2) O(2) -signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn-SOD, against NO and ONOO(-) stress in plant mitochondria. Copyright © Physiologia Plantarum 2012.

  8. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz)

    PubMed Central

    2014-01-01

    Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H2O2, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H2O2 synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. Conclusions These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress. PMID:25091029

  9. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    PubMed

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  10. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  11. Effects of Acifluorfen on Endogenous Antioxidants and Protective Enzymes in Cucumber (Cucumis sativus L.) Cotyledons

    PubMed Central

    Kenyon, William H.; Duke, Stephen O.

    1985-01-01

    The herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate) causes strong photooxidative destruction of pigments and lipids in sensitive plant species. Antioxidants and oxygen radical scavengers slow the bleaching action of the herbicide. The effect of acifluorfen on glutathione and ascorbate levels in cucumber (Cucumis sativus L.) cotyledon discs was investigated to assess the relationship between herbicide activity and endogenous antioxidants. Acifluorfen decreased the levels of glutathione and ascorbate over 50% in discs exposed to less than 1.5 hours of white light (450 microeinsteins per square meter per second). Coincident increases in dehydroascorbate and glutathione disulfide were not observed. Acifluorfen also caused the rapid depletion of ascorbate in far-red light grown plants which were photosynthetically incompetent. Glutathione reductase, dehydroascorbate reductase, superoxide dismutase, ascorbate oxidase, ascorbate free radical reductase, peroxidase, and catalase activities rapidly decreased in acifluorfen-treated tissue exposed to white light. None of the enzymes were inhibited in vitro by the herbicide. Acifluorfen causes irreversible photooxidative destruction of plant tissue, in part, by depleting endogenous antioxidants and inhibiting the activities of protective enzymes. PMID:16664506

  12. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers.

    PubMed

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.

  13. Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2A.

    PubMed

    Han, Min; Pendem, Suresh; Teh, Suet Ling; Sukumaran, Dinesh K; Wu, Feng; Wilson, John X

    2010-01-01

    Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-gamma). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Cigarette smokers develop altered erythrocyte membrane composition: an investigation unmasking the role of membrane bound integral protein GLUT 1.

    PubMed

    Sikdar, Jyotirmoy; Seal, Paromita; Roy, Amartya; Haldar, Rajen

    2017-04-01

    Erythrocytes in cigarette smokers are prone to oxidative damage. Here, we sought to elucidate the facts behind modifications and possible defense system developed in erythrocyte of cigarette smokers. We observed significant increase in stomatocytes and spherocytes, and osmotic fragility of erythrocyte, along with reduced level of protein thiol and increased fluorescence anisotropy in isolated membrane. Denaturing gel electrophoresis indicated alterations in band 3, band 4.2 and band 4.5. Among those, Glut 1 (i.e. band 4.5), which transports glucose (insulin independent) and dehydroascorbate (DHA), was selectively chosen for its long history in reducing reactive oxygen species (ROS). The increased Glut 1 level in smokers was confirmed by immunoblotting and immunocytochemistry. Furthermore, smokers showed significantly higher glucose uptake in whole blood. The intracellular (Ic) ROS (as indicated by 2',7'-dichlorofluorescin) was significantly higher in smokers as evidenced by flow cytometric assay. Glucose and DHA alone or together significantly reduced IcROS at higher rate in smokers. However, in presence of Glut 1 specific blocker, phloretin, neither glucose nor DHA could reduce IcROS in both non-smokers and smokers. This confirms that Glut 1 by transporting glucose or DHA attenuates IcROS. Therefore, we conclude that erythrocytes, although altered morphologically, also develop a defense system by upregulating Glut 1 to combat with enhanced Ic oxidative insult in cigarette smokers.

  15. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers

    PubMed Central

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md. Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition. PMID:26798635

  16. Chronic Vitamin C Deficiency Promotes Redox Imbalance in the Brain but Does Not Alter Sodium-Dependent Vitamin C Transporter 2 Expression

    PubMed Central

    Paidi, Maya D.; Schjoldager, Janne G.; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes were detected in either gene or protein expression of SVCT2 between groups or brain regions. In conclusion, chronic pre-and postnatal VitC deficiency increased brain redox imbalance but did not increase SVCT2 expression. Our findings show potential implications for VitC deficiency induced negative effects of redox imbalance in the brain and provide novel insight to the regulation of VitC in the brain during deficiency. PMID:24787032

  17. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L.

    PubMed

    Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste

    2004-12-01

    To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.

  18. Ascorbic Acid as a Standard for Iodometric Titrations. An Analytical Experiment for General Chemistry

    NASA Astrophysics Data System (ADS)

    Silva, Cesar R.; Simoni, Jose A.; Collins, Carol H.; Volpe, Pedro L. O.

    1999-10-01

    Ascorbic acid is suggested as the weighable compound for the standardization of iodine solutions in an analytical experiment in general chemistry. The experiment involves an iodometric titration in which iodine reacts with ascorbic acid, oxidizing it to dehydroascorbic acid. The redox titration endpoint is determined by the first iodine excess that is complexed with starch, giving a deep blue-violet color. The results of the titration of iodine solution using ascorbic acid as a calibration standard were compared with the results acquired by the classic method using a standardized solution of sodium thiosulfate. The standardization of the iodine solution using ascorbic acid was accurate and precise, with the advantages of saving time and avoiding mistakes due to solution preparation. The colorless ascorbic acid solution gives a very clear and sharp titration end point with starch. It was shown by thermogravimetric analysis that ascorbic acid can be dried at 393 K for 2 h without decomposition. This experiment allows general chemistry students to perform an iodometric titration during a single laboratory period, determining with precision the content of vitamin C in pharmaceutical formulations.

  19. Kinetic and Thermodynamic Characterization of the Cobalt and Manganese Oxyhydroxide Cores Formed in Horse Spleen Ferritin

    NASA Technical Reports Server (NTRS)

    Zhang, Bo; Harb, John N.; Davis, Robert C.; Kim, Jae-Woo; Chu, Sang-Hyon; Choi, Sang; Miller, Tim; Watt, Gerald D.

    2004-01-01

    Horse spleen ferritin (HoSF) containing 800-1500 cobalt or 250-1200 manganese atoms as Co(O)OH and Mn(O)OH mineral cores within the HoSF interior (Co-HoSF and Mn-HoSF) was synthesized, and the chemical reactivity, kinetics of reduction, and the reduction potentials were measured. Microcoulometric and chemical reduction of HoSF containing the M(O)OH mineral core (M = Co or Mn) was rapid and quantitative with a reduction stoichiometry of 1.05+/-0.10 e/M forming a stable M(OH)2 mineral core. At pH 9.0, ascorbic acid (AH2), a two-electron reductant, effectively reduced the mineral cores; however, the reaction was incomplete and rapidly reached equilibrium. The addition of excess AH2 shifted the reaction to completion with a M(3+)/AH2 stoichiometry of 1.9-2.1, consistent with a single electron per metal atom reduction. The rate of reaction between M(0)OH and excess AH2 was measured by monitoring the decrease in mineral core absorbance with time. The reaction was first order in each reactant with second-order rate constants of 0.53 and 4.74/M/min, respectively, for Co- and Mn-HoSF at pH 9.0. From the variation of absorbance with increasing AH2 concentration, equilibrium constants at pH 9.0 of 5.0+/-1.9 for Co-HoSF and 2.9+/-0.9 for Mn-HoSF were calculated for 2M(O)OH + AH2 = 2M(OH)2 f D, where AH2 and D are ascorbic acid and dehydroascorbic acid, respectively. Consistent with these equilibrium constants, the standard potential for the reduction of Co(III)-HoSF is 42 mV more positive than that of the ascorbic acid reaction, while the standard potential of Mn(III)-HoSF is 27 mV positive relative to AH2. Fe(2+) in solution with Co- and Mn-HoSF under anaerobic conditions was oxidized to form Fe(O)OH within the HoSF interior, resulting in partial displacement of the Co or Mn by iron.

  20. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    PubMed

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity in tomato plants at low temperatures.

  1. Simultaneous determination of reactive oxygen and nitrogen species in mitochondrial compartments of apoptotic HepG2 cells and PC12 cells based on microchip electrophoresis-laser-induced fluorescence.

    PubMed

    Chen, Zhenzhen; Li, Qingling; Sun, Qianqian; Chen, Hao; Wang, Xu; Li, Na; Yin, Miao; Xie, Yanxia; Li, Hongmin; Tang, Bo

    2012-06-05

    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the first application of a microchip electrophoresis-laser-induced fluorescence (MCE-LIF) method for concurrent determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS), i.e., superoxide (O(2)(-•)) and nitric oxide (NO) in mitochondria, was developed using fluorescent probes 2-chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and 3-amino,4-aminomethyl-2',7'-difluorescein (DAF-FM), respectively. Potential interference of intracellular dehydroascorbic acid (DHA) and ascorbic acid (AA) for NO detection with DAF-FM was eliminated through oxidation of AA with the addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescent products of O(2)(-•) and NO, DBZTC oxide (DBO), and DAF-FM triazole (DAF-FMT) showed excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric field of 500 V/cm. The levels of DBO and DAF-FMT in mitochondria isolated from normal HepG2 cells and PC12 cells were evaluated using this method. Furthermore, the changes of DBO and DAF-FMT levels in mitochondria isolated from apoptotic HepG2 cells and PC12 cells could also be detected. The current approach was proved to be simple, fast, reproducible, and efficient. Measurement of the two species with the method will be beneficial to understand ROS/RNS distinctive functions. In addition, it will provide new insights into the role that both species play in biological systems.

  2. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).

    PubMed

    Zhang, Tingting; Lu, Qianqian; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2017-09-01

    Mercury uptake and its effects on physiology, biochemistry and genomic stability were investigated in Lemna minor after 2 and 6d of exposure to 0-30μM Hg. The accumulation of Hg increased in a concentration- and duration-dependent manner, and was positively correlated with the leaf damage. Oxidative stress after Hg exposure was evidenced in L. minor by a significant decrease in photosynthetic pigments, an increase in malondialdehyde and lipoxygenase activities (total enzyme activity and isoenzymes activity). Fronds of L. minor exposed to Hg showed an induction of peroxidase, catalase, and ascorbate peroxidase activities (total enzyme activity and some isoenzymes activities). Exposure of L. minor to Hg reduced the activity (total enzyme activity and some isoenzymes activities) of glutathione reductase, and superoxide dismutase. Exposure to Hg produced a transient increase in the content of glutathione and ascorbic acid. The content of dehydroascorbate and oxidized glutathione in L. minor were high during the entire exposure period. Exposure of L. minor to Hg also caused the accumulation of proline and soluble sugars. The amplification of new bands and the absence of normal DNA amplicons in treated plants in the random amplified polymorphic DNA (RAPD) profile indicated that genomic template stability (GTS) was affected by Hg treatment. The accumulation of Hsp70 indicated the occurrence of a heat shock response at all Hg concentrations. These results suggest that L. minor plants were able to cope with Hg toxicity through the activation of various mechanisms involving enzymatic and non-enzymatic antioxidants, up-regulation of proline, and induction of Hsp70. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity.

    PubMed

    Singh, Vijay Pratap; Srivastava, Prabhat Kumar; Prasad, Sheo Mohan

    2012-12-01

    Effects of low (UV-B(L); 0.1 μmol m(-2) s(-1)) and high (UV-B(H); 1.0 μmol m(-2) s(-1)) fluence rates of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle (AsA-GSH cycle) were investigated in two cyanobacteria viz. Phormidium foveolarum and Nostoc muscorum under copper (2 and 5 μM) toxicity after 24 and 72 h of experiments. Cu at 2 and 5 μM and UV-B(H) irradiation decreased growth in both the organisms and the effect was more pronounced in N. muscorum. Superoxide radical (SOR) and hydrogen peroxide (H(2)O(2)) productions were significantly enhanced by Cu and UV-B(H) which was accompanied by accelerated lipid peroxidation (malondialdehyde; MDA) and protein oxidation (reactive carbonyl groups; RCG). The components of AsA-GSH cycle, i.e. ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascobate reductase (MDHAR) and dehydroascorbate reductase (DHAR) activities as well as total ascorbate and glutathione contents and their reduced/oxidized ratios were decreased considerably by Cu and UV-B(H). Further, combined treatments of Cu and UV-B(H) exacerbated damaging effects in both the cyanobacteria. Unlike UV-B(H), UV-B(L) irradiation rather than damaging cyanobacteria caused alleviation in Cu-induced toxicity by down-regulating the levels of SOR, H(2)O(2), MDA and RCG due to enhanced activity of APX, GR, MDHAR and DHAR, and contents of ascorbate and glutathione. Results revealed that UV-B radiation at low fluence rate (UV-B(L)) stimulated protective responses in both the organisms under Cu toxicity while UV-B(H) irradiation caused damage alone as well as together with Cu, and the components of AsA-GSH cycle play significant role in these responses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.

    PubMed

    Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde

    2011-06-01

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings.

    PubMed

    Mostofa, Mohammad Golam; Seraj, Zeba Islam; Fujita, Masayuki

    2014-11-01

    Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP + GSH was more efficient than SNP alone.

  6. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants.

    PubMed

    Mostofa, Mohammad Golam; Hossain, Mohammad Anwar; Siddiqui, Md Nurealam; Fujita, Masayuki; Tran, Lam-Son

    2017-07-01

    The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Photosynthetic response to low sink demand after fruit removal in relation to photoinhibition and photoprotection in peach trees.

    PubMed

    Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H

    2008-01-01

    Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.

  8. Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).

    PubMed

    Lin, L S; Varner, J E

    1991-05-01

    The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall "loosening."

  9. ASCORBIC ACID RETENTION AND COLOR OF STRAWBERRIES AS RELATED TO LOW-LEVEL IRRADIATION AND STORAGE TIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, C.E.; Tichenor, D.A.; Martin, D.C.

    1963-01-01

    Freshly picked strawberries were irradiated in a gamma source and ascorbic acid (ASA) and its oxidative breakdown products were measured at intervals during 3 to 6 months' storage. Reduced ASA, dehydroascorbic acid (DHA), diketogulonic acid (DKA), and total ASA were determined in unirradiated strawberries and in strawberries receiving 0.3 and 0.8 Mrad. Irradiation caused a significant loss of total ASA. Storage at 35 un. Concent 85% F for 180 days resulted in further losses, most of which occurred during the first 95 days. Addition of a glucose oxidase packet to atmospheric packs did not affect retention of total ASA. Amore » significant amount of reduced ASA was destroyed by irradiation, the loss being greater at the higher level used. Relatively large amounts er irradiation in the presence of almost complete retention of total ASA indicated that the degradation followed the usual pattern: reduced ASA to DHA to DKA. After 180 days storage, practically all of the reduced ASA was destroyed in air-packed irradiated samples, but comparable glucose-oxidase-packed samples retained 33 to 47% of their original reduced ASA. Measurement of the Gardner a color value revealed a significant able color variability among samples. Color losses were higher at higher doses. (H.R.D.)« less

  10. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    PubMed Central

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  11. Metalaxyl Effects on Antioxidant Defenses in Leaves and Roots of Solanum nigrum L.

    PubMed Central

    de Sousa, Alexandra; AbdElgawad, Hamada; Asard, Han; Pinto, Ana; Soares, Cristiano; Branco-Neves, Simão; Braga, Teresa; Azenha, Manuel; Selim, Samy; Al Jaouni, Soad; Fidalgo, Fernanda; Teixeira, Jorge

    2017-01-01

    Overuse of pesticides has resulted in environmental problems, threating public health through accumulation in food chains. Phytoremediation is a powerful technique to clean up contaminated environments. However, it is necessary to unravel the metabolic mechanisms underlying phytoremediation in order to increase the efficiency of this process. Therefore, growth, physiological and biochemical responses in leaves and roots of Solanum nigrum L. exposed to the commonly used fungicide metalaxyl were investigated. This species shows characteristics that make it valuable as a potential tool for the remediation of organic pollutants. We found that once inside the plant, metalaxyl altered carbon metabolism, which resulted in a reduction of growth and lower biomass accumulation due to impairment of carbohydrate production (total soluble sugar, starch, rubisco) and increased photorespiration (glycolate oxidase, Gly/Ser ratio). A significant increase of antioxidant defenses (polyphenols, flavonoids, tocopherols, ascorbate, glutathione, superoxide dismutase, catalase, peroxidases, monodehydroascorbate- and dehydroascorbate reductase, gluthatione reductase) kept reactive oxygen species (ROS) levels under control (superoxide anion) leaving cell membranes undamaged. The results suggest that enhancing carbon assimilation and antioxidant capacity may be target parameters to improve this species’ phytoremediation capacities. Highlights • Metalaxyl inhibits growth by reducing photosynthesis and inducing photorespiration • Elevated antioxidant defenses protect metalaxyl-treated plants from oxidative damage • Ascorbate and glutathione are key antioxidants in metalaxyl tolerance. PMID:29250085

  12. Barley yellow dwarf virus infection and elevated CO2 alter the antioxidants ascorbate and glutathione in wheat.

    PubMed

    Vandegeer, Rebecca K; Powell, Kevin S; Tausz, Michael

    2016-07-20

    Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO 2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO 2 , the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO 2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO 2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO 2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Post-storage cell wall metabolism in two sweet cherry (Prunus avium L.) cultivars displaying different postharvest performance.

    PubMed

    Belge, Burcu; Comabella, Eva; Graell, Jordi; Lara, Isabel

    2015-09-01

    The biochemical processes underlying firmness loss of sweet cherry (Prunus avium L.) fruit are poorly understood. Studies on cell wall metabolism of sweet cherry have been generally undertaken during on-tree development or at harvest maturity, while published reports on postharvest changes are scarce and fragmentary. In this work, cell wall modifications after storage at 0 ℃ were studied in two cherry cultivars ('Celeste' and 'Somerset') displaying different postharvest potential. Firmness was largely determined by the yields of the Na2CO3- and KOH-soluble fractions, enriched in covalently-bound pectins and in matrix glycans, respectively, and correlated well with ascorbic acid contents. The yields of these two cell wall fractions were correlated inversely with pectinmethylesterase and endo-1,4-β-d-glucanase activities, indicating a relevant role of these two enzymes in postharvest firmness changes in sweet cherry. The amount of solubilised cell wall materials was closely associated to the contents of dehydroascorbic acid, suggesting the possible involvement of oxidative mechanisms in cell wall disassembly. These data may help understanding the evolution of fruit quality during the marketing period, and give hints for the design of suitable management strategies to preserve key attributes. © The Author(s) 2014.

  14. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination.

    PubMed

    Bagheri, Rita; Ahmad, Javed; Bashir, Humayra; Iqbal, Muhammad; Qureshi, M Irfan

    2017-03-01

    Sulphur (S) deficiency, cadmium (Cd) toxicity and their combinations are of wide occurrence throughout agricultural lands. We assessed the impact of short-term (2 days) and long-term (4 days) applications of cadmium (40 μg/g soil) on spinach plants grown on sulphur-sufficient (300 μM SO 4 2- ) and sulphur-deficient (30 μM SO 4 2- ) soils. Compared with the control (+S and -Cd), oxidative stress was increased by S deficiency (-S and -Cd), cadmium (+S and +Cd) and their combination stress (-S and +Cd) in the order of (S deficiency) < (Cd stress) < (S deficiency and +Cd stress). SDS-PAGE profile of leaf proteins showed a high vulnerability of rubisco large subunit (RbcL) to S deficiency. Rubisco small subunit (RbcS) was particularly sensitive to Cd as well as dual stress (+Cd and -S) but increased with Cd in the presence of S. Cysteine content in low molecular weight proteins/peptide was also affected, showing a significant increase under cadmium treatment. Components of ascorbate-glutathione antioxidant system altered their levels, showing the maximum decline in ascorbate (ASA), dehydroascorbate (DHA), total ascorbate (ASA + DHA, hereafter TA), glutathione (GSH) and total glutathione (GSH + GSSG, hereafter TG) under S deficiency. However, total ascorbate and total glutathione increased, besides a marginal increase in their reduced and oxidized forms, when Cd was applied in the presence of sufficient S. Sulphur supply also helped in increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) under Cd stress. However, their activity suffered by S deficiency and by Cd stress during S deficiency. Each stress declined the contents of soluble protein and photosynthetic pigments; the highest decline in contents of protein and pigments occurred under S deficiency and dual stress respectively. The fresh and dry weights, although affected adversely by every stress, declined most under dual stress. It may be concluded that an optimal level of S is required during Cd stress for better response of SOD, APX, GR and CAT activity, as well as synthesis of cysteine. RbcS is as highly sensitive to S deficiency as RbcL is to Cd stress.

  15. S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases

    PubMed Central

    XUN, Luying; BELCHIK, Sara M.; XUN, Randy; HUANG, Yan; ZHOU, Huina; SANCHEZ, Emiliano; KANG, ChulHee; BOARD, Philip G.

    2010-01-01

    Sphingobium chlorophenolicum completely mineralizes PCP (pentachlorophenol). Two GSTs (glutathione transferases), PcpC and PcpF, are involved in the degradation. PcpC uses GSH to reduce TeCH (tetrachloro-p-hydroquinone) to TriCH (trichloro-p-hydroquinone) and then to DiCH (dichloro-p-hydroquinone) during PCP degradation. However, oxidatively damaged PcpC produces GS-TriCH (S-glutathionyl-TriCH) and GS-DiCH (S-glutathionyl-TriCH) conjugates. PcpF converts the conjugates into TriCH and DiCH, re-entering the degradation pathway. PcpF was further characterized in the present study. It catalysed GSH-dependent reduction of GS-TriCH via a Ping Pong mechanism. First, PcpF reacted with GS-TriCH to release TriCH and formed disulfide bond between its Cys53 residue and the GS moiety. Then, a GSH came in to regenerate PcpF and release GS–SG. A TBLASTN search revealed that PcpF homologues were widely distributed in bacteria, halobacteria (archaea), fungi and plants, and they belonged to ECM4 (extracellular mutant 4) group COG0435 in the conserved domain database. Phylogenetic analysis grouped PcpF and homologues into a distinct group, separated from Omega class GSTs. The two groups shared conserved amino acid residues, for GSH binding, but had different residues for the binding of the second substrate. Several recombinant PcpF homologues and two human Omega class GSTs were produced in Escherichia coli and purified. They had zero or low activities for transferring GSH to standard substrates, but all had reasonable activities for GSH-dependent reduction of disulfide bond (thiol transfer), dehydroascorbate and dimethylarsinate. All the tested PcpF homologues reduced GS-TriCH, but the two Omega class GSTs did not. Thus PcpF homologues were tentatively named S-glutathionyl-(chloro)hydroquinone reductases for catalysing the GSH-dependent reduction of GS-TriCH. PMID:20388120

  16. Biochemical analysis of reactive oxygen species production and antioxidative responses in unripe avocado (Persea americana Mill var Hass) fruits in response to wounding.

    PubMed

    Castro-Mercado, E; Martinez-Diaz, Y; Roman-Tehandon, N; Garcia-Pineda, E

    2009-03-01

    We analyzed the production of reactive oxygen species (ROS) and of detoxifying enzymes and enzymes of the ascorbate (ASC) acid cycle in avocado fruit (Pesea Americana Mill cv Hass) in response to wounding. The levels of superoxide anion (O(2-), hydroxyl radicals (OH.) and hydrogen peroxide (H(2)O(2)) increased at 15 min and 2 and 15 h post-wounding. Peroxidase (POD) activity had increased to high levels 24 h after wounding; in contrast, catalase and superoxide dismutase (SOD) levels hat decreased significantly at 24 h post-treatment. Basic POD was the major POD form induced, and the levels of at least three apoplastic POD isozymes -increased following wounding. Using specific inhibitors, we characterized one MnSOD and two CuZnSOD isozymes. CuZnSOD activities decreased notably 12 h after treatment. The activities of dehydroascorbate reductase and glutathione reductase increased dramatically following the wounding treatment, possibly as a means to compensate for the redox changes due to ROS production.

  17. Degradation kinetics of the antioxidant additive ascorbic acid in packed table olives during storage at different temperatures.

    PubMed

    Montaño, A; Casado, F J; Rejano, L; Sanchez, A H; de Castro, A

    2006-03-22

    The kinetics of ascorbic acid (AA) loss during storage of packed table olives with two different levels of added AA was investigated. Three selected storage temperatures were assayed: 10 degrees C, ambient (20-24 degrees C), and 40 degrees C. The study was carried out in both pasteurized and unpasteurized product. The effect of pasteurization treatment alone on added AA was not significant. In the pasteurized product, in general AA degraded following a first-order kinetics. The activation energy calculated by using the Arrhenius model averaged 9 kcal/mol. For each storage temperature, the increase in initial AA concentration significantly decreased the AA degradation rate. In the unpasteurized product, AA was not detected after 20 days in samples stored at room temperature and AA degradation followed zero-order kinetics at 10 degrees C, whereas at 40 degrees C a second-order reaction showed the best fit. In both pasteurized and unpasteurized product, the low level of initial dehydroascorbic acid disappeared during storage. Furfural appeared to be formed during storage, mainly at 40 degrees C, following zero-order kinetics.

  18. Clonorchis sinensis omega-class glutathione transferases play major roles in the protection of the reproductive system during maturation and the response to oxidative stress.

    PubMed

    Kim, Jeong-Geun; Ahn, Chun-Seob; Kim, Seon-Hee; Bae, Young-An; Kwon, Na-Young; Kang, Insug; Yang, Hyun-Jong; Sohn, Woon-Mok; Kong, Yoon

    2016-06-13

    Clonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme. We isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm's reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated. The full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8-44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins increased beginning in 2-week-old juveniles and reached their highest levels in 4-week-old adults. The proteins were mainly expressed in the elements of the reproductive system, such as vitelline follicles, testes, seminal receptacle, sperm and eggs. Oxidative stressors induced upregulated expression of CsGSTos in these organs. Regardless of oxidative stresses, CsGSTos continued to be highly expressed in eggs. CsGSTo1 or 2 overexpressing bacteria demonstrated high resistance under oxidative killing. CsGSTos might be critically involved in protection of the reproductive system during maturation of C. sinensis worms and in response to oxidative conditions, thereby contributing to maintenance of parasite fecundity.

  19. The role of Monosaccharide Transport Proteins in carbohydrate assimilation, distribution, metabolism and homeostasis

    PubMed Central

    Cura, Anthony J.; Carruthers, Anthony

    2012-01-01

    The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol and dehydroascorbic acid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into 3 classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been co-opted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 (HMIT1) is a proton/myoinositol co-transporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption, distribution, cellular transport and metabolism and recovery/retention. Glucose transport and metabolism have co-evolved in mammals to support cerebral glucose utilization. PMID:22943001

  20. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    PubMed Central

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  1. Effect of calcium and salicylic acid on quality retention in relation to antioxidative enzymes in radish stored under refrigerated conditions.

    PubMed

    Devi, Jomika; Bhatia, Surekha; Alam, M S; Dhillon, Tarsem Singh

    2018-03-01

    Effect of post harvest treatments with calcium chloride (CaCl 2 ) and salicylic acid (SA) on physiological and biochemical parameters in relation to activities of antioxidative enzymes were investigated in radish. Radish of variety Punjab Safed Mooli 2 was harvested, washed and treated with CaCl 2 (1, 1.5 and 2%) or SA (1, 1.5 and 2 mM). Treated as well as untreated radish were placed in open trays and stored under refrigerated (5 ± 1 °C, 90% RH) conditions for 42 days. Treatment of radish with CaCl 2 and SA slowed down changes in physiological weight, colour, total soluble solids, ascorbic acid, titrable acidity, total phenolics and antioxidant activity. Treated samples exhibited higher enhancement in activities of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), peroxidase (POD), dehydroascorbate reductase (DHAR) and monodehydro-ascorbate reductase (MDHAR) than untreated samples. However SA was found to be more effective in slowing down the metabolic activities of radish as compared to CaCl 2 treatment. Among all the treatments, 1.5 mM SA maintained the quality parameters to greater extent probably by reducing the oxidative stress to larger extent due to highest activities of antioxidative enzymes and can be used to enhance the shelf life of radish during refrigerated storage.

  2. 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea.

    PubMed

    Kaur, Harpreet; Sirhindi, Geetika; Bhardwaj, Renu; Alyemeni, M N; Siddique, Kadambot H M; Ahmad, Parvaiz

    2018-06-07

    Brassinosteroids (BRs) are a group of naturally occurring plant steroid hormones that can induce plant tolerance to various plant stresses by regulating ROS production in cells, but the underlying mechanisms of this scavenging activity by BRs are not well understood. This study investigated the effects of 28-homobrassinolide (28-HBL) seed priming on Brassica juncea seedlings subjected to the combined stress of extreme temperatures (low, 4 °C or high, 44 °C) and salinity (180 mM), either alone or supplemented with 28-HBL treatments (0, 10 -6 , 10 -9 , 10 -12  M). The combined temperature and salt stress treatments significantly reduced shoot and root lengths, but these improved when supplemented with 28-HBL although the response was dose-dependent. The combined stress alone significantly increased H 2 O 2 content, but was inhibited when supplemented with 28-HBL. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) increased in response to 28-HBL. Overall, the 28-HBL seed priming treatment improved the plant's potential to combat the toxic effects imposed by the combined temperature and salt stress by tightly regulating the accumulation of ROS, which was reflected in the improved redox state of antioxidants.

  3. Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid.

    PubMed

    Lu, Qianqian; Zhang, Tingting; Zhang, Wei; Su, Chunlei; Yang, Yaru; Hu, Dan; Xu, Qinsong

    2018-01-01

    Cadmium (Cd) is a significant environmental pollutant in the aquatic environment. Salicylic acid (SA) is a ubiquitous phenolic compound. The goal of this study was to assess the morphological, physiological and biochemical changes in duckweed (L. minor) upon exposure to 10μM CdCl 2 , 10μM CdCl 2 plus 50μM SA, or 50μM SA for 7 days. Reversing the effects of Cd, SA decreased Cd accumulation in plants, improved accumulation of minerals (Ca, Mg, Fe, B, Mo) absorption, increased endogenous SA concentration, and phenylalanine ammonialyase (PAL) activity. Chlorosis-associated symptoms, the reduction in chlorophyll content, and the overproduction of reactive oxygen species induced by Cd exposure were largely reversed by SA. SA significantly decreased the toxic effects of Cd on the activities of the superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase in the fronds of L. minor. Furthermore, SA reversed the detrimental effects of Cd on total ascorbate, glutathione, the ascorbic acid/oxidized dehydroascorbate and glutathione/glutathione disulphide ratios, lipid peroxidation, malondialdehyde concentration, lipoxygenase activity, and the accumulation of proline. SA induced the up-regulation of heat shock proteins (Hsp70) and attenuated the adverse effects of Cd on cell viability. These results suggest that SA confers tolerance to Cd stress in L. minor through different mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Genetic Control of Fruit Vitamin C Contents1

    PubMed Central

    Davey, Mark W.; Kenis, Katrien; Keulemans, Johan

    2006-01-01

    An F1 progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. PMID:16844833

  5. Role of Zucchini and Its Distinctive Components in the Modulation of Degenerative Processes: Genotoxicity, Anti-Genotoxicity, Cytotoxicity and Apoptotic Effects

    PubMed Central

    Martínez-Valdivieso, Damián; Font, Rafael; Fernández-Bedmar, Zahira; Merinas-Amo, Tania; Gómez, Pedro; Alonso-Moraga, Ángeles

    2017-01-01

    Zucchini (Cucurbita pepo subsp. pepo) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits (“Yellow” and “Light Green” varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) “Yellow” zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) “Light Green” zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H2O2-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes. PMID:28708122

  6. Role of Zucchini and Its Distinctive Components in the Modulation of Degenerative Processes: Genotoxicity, Anti-Genotoxicity, Cytotoxicity and Apoptotic Effects.

    PubMed

    Martínez-Valdivieso, Damián; Font, Rafael; Fernández-Bedmar, Zahira; Merinas-Amo, Tania; Gómez, Pedro; Alonso-Moraga, Ángeles; Del Río-Celestino, Mercedes

    2017-07-14

    Zucchini ( Cucurbita pepo subsp. pepo ) is a seasonal vegetable with high nutritional and medical values. Many useful properties of this fruit are attributed to bioactive compounds. Zucchini fruits ("Yellow" and "Light Green" varieties) and four distinctive components (lutein, β-carotene, zeaxanthin and dehydroascorbic acid) were selected. Firstly, the lutein, β-carotene, zeaxanthin and dehydroascorbic acid contents were determined in these fruits. Then, in order to evaluate the safety and suitability of their use, different assays were carried out: (i) genotoxicity and anti-genotoxicity tests to determine the safety and DNA-protection against hydrogen peroxide; (ii) cytotoxicity; and (iii) DNA fragmentation and Annexin V/PI (Propidium Iodide) assays to evaluate the pro-apoptotic effect. Results showed that: (i) all the substances were non-genotoxic; (ii) all the substances were anti-genotoxic except the highest concentration of lutein; (iii) "Yellow" zucchini epicarp and mesocarp exhibited the highest cytotoxic activity (IC 50 > 0.1 mg/mL and 0.2 mg/mL, respectively); and (iv) "Light Green" zucchini skin induced internucleosomal DNA fragmentation, β-carotene being the possible molecule responsible for its pro-apoptotic activity. To sum up, zucchini fruit could play a positive role in human health and nutrition due to this fruit and its components were safe, able to inhibit significantly the H₂O₂-induced damage and exhibit anti-proliferative and pro-apoptotic activities toward HL60 (human promyelocytic leukemia cells) tumor cells. The information generated from this research should be considered when selecting potential accessions for breeding program purposes.

  7. Determination of furan precursors and some thermal damage markers in baby foods: ascorbic acid, dehydroascorbic acid, hydroxymethylfurfural and furfural.

    PubMed

    Mesías-García, Marta; Guerra-Hernández, Eduardo; García-Villanova, Belén

    2010-05-26

    The presence of ascorbic acid (AA), vitamin C (AA + dehydroascorbic acid (DHAA)) and furfural as potential precursors of furan in commercial fruit and vegetable jarred baby food was studied. Hydroxymethylfurfural (HMF) was also determined and used, together with furfural levels, as markers of thermal damage. AA, calculated DHAA and vitamin C values ranged between 22.4 and 103, 2.9 and 13.8, and 32.1 and 113.2 mg/100 g, respectively, in fruit-based baby food. However, no trace of AA was found in the vegetable-based baby food samples tested, probably because these samples are not enriched in vitamin C and the content of this vitamin in fresh vegetables is destroyed during processing. Furfural values ranged from not detected to 236 microg/100 g, being higher in vegetable samples than in fruit samples possibly because of greater AA degradation favored by a higher pH in the vegetable samples. HMF values (range: not detected-959 microg/100 g), however, were higher in the fruit samples, probably due to greater carbohydrate content degradation and as a consequence of the Maillard reaction, favored by a lower pH in these samples. According to these results, HMF would be the optimum indicator of thermal treatment for fruits, and furfural for vegetables. The higher furfural content of vegetable baby food could be considered an index of greater AA degradation and, therefore, the furan content might be higher in this kind of sample than in fruit-based baby food.

  8. Role of Ascorbate in Detoxifying Ozone in the Apoplast of Spinach (Spinacia oleracea L.) Leaves.

    PubMed Central

    Luwe, MWF.; Takahama, U.; Heber, U.

    1993-01-01

    Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h. PMID:12231749

  9. Changes in the Ascorbate System during Seed Development of Vicia faba L. 1

    PubMed Central

    Arrigoni, Oreste; De Gara, Laura; Tommasi, Franca; Liso, Rosalia

    1992-01-01

    Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H2O2 produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts. PMID:16668855

  10. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  11. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, Jack L.

    1998-01-01

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.

  12. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.

    PubMed

    Owiti, Judith; Grossmann, Jonas; Gehrig, Peter; Dessimoz, Christophe; Laloi, Christophe; Hansen, Maria Benn; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-07-01

    The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  13. Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus.

    PubMed

    Rubio, Maria C; Bustos-Sanmamed, Pilar; Clemente, Maria R; Becana, Manuel

    2009-03-01

    Salt stress negatively affects many physiological processes in plants. Some of these effects may involve the oxidative damage of cellular components, which can be promoted by reactive oxygen species and prevented by antioxidants. The protective role of antioxidants was investigated in Lotus japonicus exposed to two salinization protocols: S1 (150 mM NaCl for 7 d) and S2 (50, 100 and 150 mM NaCl, each concentration for 6 d). Several markers of salt stress were measured and the expression of antioxidant genes was analyzed using quantitative reverse transcription–polymerase chain reaction and, in some cases, immunoblots and enzyme activity assays. Leaves of S1 plants suffered from mild osmotic stress, accumulated proline but noNa+, and showed induction of many superoxide dismutase and glutathione peroxidase genes. Leaves of S2 plants showed increases in Na+ and Ca2+, decreases in K+, and accumulation of proline and malondialdehyde. In leaves and roots of S1 and S2 plants, the mRNA, protein and activity levels of the ascorbate-glutathione enzymes remained constant, with a few exceptions. Notably, there was consistent up-regulation of the gene encoding cytosolic dehydroascorbate reductase, and this was possibly related to its role in ascorbate recycling in the apoplast. The overall results indicate that L. japonicus is more tolerant to salt stress than other legumes, which can be attributed to the capacity of the plant to prevent Na+reaching the shoot and to activate antioxidant defenses.

  14. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought tolerance. PMID:26134121

  15. Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis.

    PubMed

    Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana

    2002-02-01

    Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.

  16. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.).

    PubMed

    Marín, Alicia; Ferreres, Federico; Tomás-Barberán, Francisco A; Gil, María I

    2004-06-16

    Sweet peppers (Capsicum annuum L.) cv. Vergasa have been studied at four maturity stages (immature green, green, immature red, and red). The individual phenolics (hydroxycinnamic acids and flavonoids), vitamin C (ascorbic acid and dehydroascorbic acid), and individual carotenoids were characterized and quantified. Five hydroxycinnamic derivatives and 23 flavonoids were characterized and quantified from the pericarp of sweet pepper by high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. Identification was carried out by their UV spectra, chromatographic comparisons with authentic markers, identification of hydrolysis products, and tandem mass spectrometry analysis. Hydroxycinnamic derivatives, O-glycosides of quercetin, luteolin, and chrysoeriol, and a large number of C-glycosyl flavones have been characterized. Some of these compounds were found for the first time in nature. Clear differences in the individual and total phenolic content were detected between the different maturity stages. Immature green pepper had a very high phenolic content while green, immature red, and red ripe peppers showed a 4-5-fold reduction. Ascorbic acid was the main form of vitamin C, and its content increased as the pepper reached maturity. The red ripe stage had a relevant impact on the carotenoids content. Thus, immature green peppers showed the highest content of polyphenols, while red ripe fruits had the highest content of vitamin C and provitamin A.

  17. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  18. Method for preparing hydrous iron oxide gels and spherules

    DOEpatents

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  19. Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-12-02

    A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.

  20. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.

    PubMed

    Guo, W L; Chen, R G; Gong, Z H; Yin, Y X; Ahmed, S S; He, Y M

    2012-11-28

    To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of monodehydroascorbate reductase (DHAR), dehydroascorbate reductase, glutathione reductase, guaiacol peroxidase, ascorbate peroxidase, ascorbate, and glutathione increased due to chilling stress during the 72 h, while superoxide dismutase and catalase activities decreased during 24 h, suggesting that chilling stress activates the AsA-GSH cycle under catalase deactivation in pepper leaves. ABA pretreatment induced significant increases in the above-mentioned enzyme activities and progressive decreases in ascorbate and glutathione levels. On the other hand, ABA-pretreated seedlings under chilling stress increased superoxide dismutase and guaiacol peroxidase activities and lowered concentrations of other antioxidants compared with untreated chilling-stressed plants. These seedlings showed concomitant decreases in foliage damage symptoms, and levels of malondialdehyde and H(2)O(2). Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. The expression of DHAR1 and DHAR2 was altered by chilling stress, but it was higher in the presence than in the absence of ABA at 24 h. Overall, the results indicate that exogenous application of ABA increases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing superoxide dismutase and guaiacol peroxidase activities and related gene expression.

  1. Anastatica hierochuntica, an Arabidopsis Desert Relative, Is Tolerant to Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance Strategies with Its Halophytic Relative, Eutrema (Thellungiella) salsugineum

    PubMed Central

    Eshel, Gil; Shaked, Ruth; Kazachkova, Yana; Khan, Asif; Eppel, Amir; Cisneros, Aroldo; Acuna, Tania; Gutterman, Yitzhak; Tel-Zur, Noemi; Rachmilevitch, Shimon; Fait, Aaron; Barak, Simon

    2017-01-01

    The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments – so called “extremophytes.” One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions. PMID:28144244

  2. Evaluation of Vitamin C for Adjuvant Sepsis Therapy

    PubMed Central

    2013-01-01

    Abstract Significance: Evidence is emerging that parenteral administration of high-dose vitamin C may warrant development as an adjuvant therapy for patients with sepsis. Recent Advances: Sepsis increases risk of death and disability, but its treatment consists only of supportive therapies because no specific therapy is available. The characteristics of severe sepsis include ascorbate (reduced vitamin C) depletion, excessive protein nitration in microvascular endothelial cells, and microvascular dysfunction composed of refractive vasodilation, endothelial barrier dysfunction, and disseminated intravascular coagulation. Parenteral administration of ascorbate prevents or even reverses these pathological changes and thereby decreases hypotension, edema, multiorgan failure, and death in animal models of sepsis. Critical Issues: Dehydroascorbic acid appears to be as effective as ascorbate for protection against microvascular dysfunction, organ failure, and death when injected in sepsis models, but information about pharmacodynamics and safety in human subjects is only available for ascorbate. Although the plasma ascorbate concentration in critically ill and septic patients is normalized by repletion protocols that use high doses of parenteral ascorbate, and such doses are tolerated well by most healthy subjects, whether such large amounts of the vitamin trigger adverse effects in patients is uncertain. Future Directions: Further study of sepsis models may determine if high concentrations of ascorbate in interstitial fluid have pro-oxidant and bacteriostatic actions that also modify disease progression. However, the ascorbate depletion observed in septic patients receiving standard care and the therapeutic mechanisms established in models are sufficient evidence to support clinical trials of parenteral ascorbate as an adjuvant therapy for sepsis. Antioxid. Redox Signal. 19, 2129–2140. PMID:23682970

  3. Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells.

    PubMed

    Portugal, Camila Cabral; Miya, Vivian Sayuri; Calaza, Karin da Costa; Santos, Rochelle Alberto Martins; Paes-de-Carvalho, Roberto

    2009-01-01

    Vitamin C is transported in the brain by sodium vitamin C co-transporter 2 (SVCT-2) for ascorbate and glucose transporters for dehydroascorbate. Here we have studied the expression of SVCT-2 and the uptake and release of [(14)C] ascorbate in chick retinal cells. SVCT-2 immunoreactivity was detected in rat and chick retina, specially in amacrine cells and in cells in the ganglion cell layer. Accordingly, SVCT-2 was expressed in cultured retinal neurons, but not in glial cells. [(14)C] ascorbate uptake was saturable and inhibited by sulfinpyrazone or sodium-free medium, but not by treatments that inhibit dehydroascorbate transport. Glutamate-stimulated vitamin C release was not inhibited by the glutamate transport inhibitor l-beta-threo-benzylaspartate, indicating that vitamin C release was not mediated by glutamate uptake. Also, ascorbate had no effect on [(3)H] D-aspartate release, ruling out a glutamate/ascorbate exchange mechanism. 2-Carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (Kainate) or NMDA stimulated the release, effects blocked by their respective antagonists 6,7-initroquinoxaline-2,3-dione (DNQX) or (5R,2S)-(1)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). However, DNQX, but not MK-801 or 2-amino-5-phosphonopentanoic acid (APV), blocked the stimulation by glutamate. Interestingly, DNQX prevented the stimulation by NMDA, suggesting that the effect of NMDA was mediated by glutamate release and stimulation of non-NMDA receptors. The effect of glutamate was neither dependent on external calcium nor inhibited by 1,2-bis (2-aminophenoxy) ethane-N',N',N',N',-tetraacetic acid tetrakis (acetoxy-methyl ester) (BAPTA-AM), an internal calcium chelator, but was inhibited by sulfinpyrazone or by the absence of sodium. In conclusion, retinal cells take up and release vitamin C, probably through SVCT-2, and the release can be stimulated by NMDA or non-NMDA glutamate receptors.

  4. Oxide film on metal substrate reduced to form metal-oxide-metal layer structure

    NASA Technical Reports Server (NTRS)

    Youngdahl, C. A.

    1967-01-01

    Electrically conductive layer of zirconium on a zirconium-oxide film residing on a zirconium substrate is formed by reducing the oxide in a sodium-calcium solution. The reduced metal remains on the oxide surface as an adherent layer and seems to form a barrier that inhibits further reaction.

  5. Effects of ascorbic acid enrichment by immersion of rainbow trout (Oncorhynchus mykiss, Walbaum 1792) eggs and embryos

    USGS Publications Warehouse

    Falahatkar, B.; Dabrowski, K.; Arslan, M.; Rinchard, J.

    2006-01-01

    This study was conducted to examine the effects of different forms and concentrations of ascorbic acid (vitamin C), and different enrichment times (24 and 48 h post ovulation) on egg, embryo and alevin ascorbate concentrations and survival of rainbow trout (enrichment was at the ova stage). In experiments 1 and 2, fertilized eggs were immersed in water containing ascorbate at 0 (control), 100, 1000 mg L-1 l-ascorbic acid (AA) and 2000 mg L -1 l-ascorbyl monophosphate (AP). In experiment 3, 0 (control), 500 and 1000 mg L-1 AA neutralized (N) with NaOH, 1000 mg L-1 AA non-neutralized (NN), 1000 and 2000 mg L-1 AP immersions were used. The mean total ascorbic acid (TAA) and dehydroascorbic acid (DHA) concentrations were measured before fertilization, at 3 and 24 h after fertilization, at the eyed stage, and in hatched alevins. We observed significant differences in TAA concentration at different immersion levels at 3 and 24 h after fertilization. Survival decreased significantly depending on the level of vitamin C, pH of the solutions and immersion time. We suggest that when broodstock rainbow trout do not have enough vitamin C in their ovaries, immersion of eggs in 1000 mg L-1 of neutralized AA may be useful. ?? 2006 Blackwell Publishing Ltd.

  6. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  7. Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern California.

    PubMed

    Tausz, M; Bytnerowicz, A; Arbaugh, M J; Wonisch, A; Grill, D

    2001-03-01

    Most environmental stress conditions promote the production of potentially toxic active oxygen species in plant cells. Plants respond with changes in their antioxidant and photoprotective systems. Antioxidants and pigments have been widely used to measure these responses. Because trees are exposed to multiple man-made and natural stresses, their responses are not reflected by changes in single stress markers, but by complex biochemical changes. To evaluate such response patterns, explorative multivariate statistics have been used. In the present study, 12 biochemical variables (chloroplast pigments, state of the xanthophyll cycle, alpha-tocopherol, ascorbate and dehydroascorbate, glutathione and oxidized glutathione) were measured in previous-year needles of field-grown Pinus ponderosa Dougl. ex Laws. The trees were sampled in two consecutive years in the San Bernardino Mountains in southern California, where a pollution gradient is overlaid by gradients in natural stresses (drought, altitude). To explore irradiance effects, needle samples were taken directly in the field (sun exposed) and from detached, dark-adapted branches. A principal component analysis on this data set (n = 80) resulted in four components (Components 1-4) that explained 67% of the variance in the original data. Component 1 was positively loaded by concentrations of alpha-tocopherol, total ascorbate and xanthophyll cycle pools, as well as by the proportion of de-epoxides in the xanthophyll cycle. It was negatively loaded by the proportion of dehydroascorbate in the ascorbate pool. Component 2 was negatively loaded by chlorophyll concentrations, and positively loaded by the ratios of lutein and beta-carotene to chlorophyll and by the de-epoxidation state of the xanthophyll cycle. Component 3 was negatively loaded by GSH concentrations and positively loaded by the proportions of GSSG and tocopherol concentrations. Component 4 was positively loaded by neoxanthin and negatively loaded by beta-carotene. The four components could be assigned to the concerted action of the biochemical protection system: high scores on Component 1 represent highly activated antioxidative defense, changes in pigment composition are represented in Components 2 and 4, and the glutathione system, which is important for antioxidant regeneration, is represented in Component 2. Although Component 1 scores were generally higher (indicating activation of antioxidant defense) in light-adapted needles relative to dark-adapted needles, they were also site dependent with increased scores at sites with less pollution, but higher natural stress impacts. High scores of Components 2 and 3 at the highest elevation site, which was only moderately polluted, indicated an increase in photoprotection by pigments and activation of the glutathione system. Significant differences between light- and dark-adapted needles in Components 2 and 3 were only found at the site with the highest pollution. Use of accumulated variables (components) instead of single biochemical variables enabled recognition of response patterns at particular sites and a better comparison with results of other studies is expected. Typical response patterns could be assigned to particular environmental stress combinations, providing a means of assessing potential biological risks within individual forest stands.

  8. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  9. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  10. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  11. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, E.R.

    1999-06-22

    An oxide superconductor composite having improved texture and durability is disclosed. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor. 1 fig.

  12. Precursor composites for oxygen dispersion hardened silver sheathed superconductor composites

    DOEpatents

    Podtburg, Eric R.

    1999-01-01

    An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.

  13. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  14. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  15. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  16. Low-temperature reduction of Ge oxide by Si and SiH4 in low-pressure H2 and Ar environment

    NASA Astrophysics Data System (ADS)

    Minami, Kaichiro; Moriya, Atsushi; Yuasa, Kazuhiro; Maeda, Kiyohiko; Yamada, Masayuki; Kunii, Yasuo; Niwano, Michio; Murota, Junichi

    2015-08-01

    Introduction of Ge into ULSIs has become increasingly attractive because of the higher carrier mobility of Ge. Since Ge native oxide is formed easily in cleanroom air, the control of formation and reduction of the Ge oxide is requested for the introduction of Ge layers into Si process. Here, the reactions between gas phase Ge oxide and Si substrate and between the Ge oxide on Ge epitaxial layer and SiH4 are investigated. The native-oxidized Ge amount is obtained by calculating from chemically shifted peak intensity of Ge 3d measured by X-ray photoelectron spectroscopy. By the adsorption of the Ge oxide on Si(1 0 0) surface, pure Ge and Si oxide are formed on the Si surface even at 350 °C and the formed Ge amount tends to correspond to the oxidized Si amount, independently of the heat-treatment environment of H2 and Ar under the condition that Si oxide is not reduced by H2. By SiH4 treatment, the amount of the oxidized Ge on the Ge layer decreases drastically even at 350 °C and Si oxide is formed on the Ge layer. From these results, it is suggested that the Ge oxide is reduced even at 350 °C by Si or SiH4, and the Si oxide and the pure Ge are formed.

  17. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    DOEpatents

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  18. Manufacture of ceramic tiles from fly ash

    DOEpatents

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  19. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    NASA Astrophysics Data System (ADS)

    Tuzi, Silvia; Lai, Haiping; Göransson, Kenneth; Thuvander, Mattias; Stiller, Krystyna

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe2O4 crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  20. Oxidation of the N-terminal domain of the wheat metallothionein Ec -1 leads to the formation of three distinct disulfide bridges.

    PubMed

    Tarasava, Katsiaryna; Chesnov, Serge; Freisinger, Eva

    2016-05-01

    Metallothioneins (MTs) are low molecular weight proteins, characterized by a high cysteine content and the ability to coordinate large amounts of d(10) metal ions, for example, Zn(II), Cd(II), and Cu(I), in form of metal-thiolate clusters. Depending on intracellular conditions such as redox potential or metal ion concentrations, MTs can occur in various states ranging from the fully metal-loaded holo- to the metal-free apo-form. The Cys thiolate groups in the apo-form can be either reduced or be involved in disulfide bridges. Although oxidation-mediated Zn(II) release might be a possible mechanism for the regulation of Zn(II) availability by MTs, no concise information regarding the associated pathways and the structure of oxidized apo-MT forms is available. Using the well-studied Zn2 γ-Ec -1 domain of the wheat Zn6 Ec -1 MT we attempt here to answer several question regarding the structure and biophysical properties of oxidized MT forms, such as: (1) does disulfide bond formation increase the stability against proteolysis, (2) is the overall peptide backbone fold similar for the holo- and the oxidized apo-MT form, and (3) are disulfide bridges specifically or randomly formed? Our investigations show that oxidation leads to three distinct disulfide bridges independently of the applied oxidation conditions and of the initial species used for oxidation, that is, the apo- or the holo-form. In addition, the oxidized apo-form is as stable against proteolysis as Zn2 γ-Ec -1, rendering the currently assumed degradation of oxidized MTs unlikely and suggesting a role of the oxidation process for the extension of protein lifetime in absence of sufficient amounts of metal ions. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 295-308, 2016. © 2016 Wiley Periodicals, Inc.

  1. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOEpatents

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  2. Effect of Si Content on Oxide Formation on Surface of Molten Fe-Cr-C Alloy Bath During Oxygen Top Blowing

    NASA Astrophysics Data System (ADS)

    Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya

    2018-02-01

    Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.

  3. Inhibition of crystallin ascorbylation by nucleophilic compounds in the hSVCT2 mouse model of lenticular aging.

    PubMed

    Fan, Xingjun; Monnier, Vincent M

    2008-11-01

    Senile cataracts are associated with oxidation, fragmentation, cross-linking, insolubilization, and yellow pigmentation of lens crystallins. This process is partially explained by advanced glycation end products (AGEs) from ascorbic acid (ASA), as the authors unequivocally demonstrated in an hSVCT2 transgenic mouse. The authors present the first pharmacologic intervention study against ascorbylation in these mice. Five groups of mice from 2 to 9 months of age (10 mice/group) were fed a diet containing 0.1% (wt/wt) aminoguanidine, pyridoxamine, penicillamine, and nucleophilic compounds NC-I and NC-II. AGEs were determined in crystallin digests using high-performance liquid chromatography, liquid chromatography-mass spectrometry, or gas chromatography-mass spectrometry. Lens protein extract was incubated in vitro with ASA or dehydroascorbic acid. The ASA level increased approximately 10-fold in all groups and was unaffected by treatment. AGEs were increased several-fold in transgenic compared with control lenses. Body weight, food intake, lenticular glutathione, and glycated lysine level were unaltered. In vitro, all compounds inhibited AGE formation. In vivo, NC-I and NC-II significantly decreased protein fluorescence at lambda(ex)335/(em)385 (P = 0.045, P = 0.017, respectively) and lambda(ex)370/(em)440 (P = 0.029, P = 0.007, respectively). Other inhibitors had no effect. After 7 months, only NC-I and NC-II induced a 50% reduction in pentosidine (P = NS for NC-I; P = 0.035 for NC-II). NC-I also decreased carboxymethyllysine (P = 0.032) and carboxyethyllysine (P = NS). Fluorescent cross-link K2P was decreased by NC-I, NC-II, aminoguanidine, and pyridoxamine (P = NS). Pharmacologically blocking protein ascorbylation with absorbable guanidino compounds is feasible and may represent a new strategy for the delay of age-related nuclear sclerosis of the lens.

  4. A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis.

    PubMed

    Lu, Ying; Wang, Hua-Rong; Li, Han; Cui, Hao-Ran; Feng, Yue-Guang; Wang, Xiao-Yun

    2013-09-01

    The role of LTO1/ At VKOR-DsbA in ROS homeostasis and in redox regulation of cysteine-containing proteins in chloroplast was studied in lto1 - 2 mutant, and a potential target of LTO1 was captured. A chloroplast membrane protein LTO1/AtVKOR-DsbA encoded by the gene At4g35760 was recently found to be an oxidoreductase and involved in assembly of PSII. Here, the growth of a mutant lto1-2 line of Arabidopsis was found to be severely stunted and transgenic complementation ultimately demonstrated the phenotype changes were due to this gene. A proteomic experiment identified 23 proteins presenting a differential abundance in lto1-2 compared with wild-type plants, including components in PSII and proteins scavenging active oxygen. Three scavengers of active oxygen, L-ascorbate peroxidase 1, peroxisomal catalase 2, dehydroascorbate reductase 1, are reduced in lto1-2 plants, corresponding to high levels of accumulation of reactive oxygen species (ROS). The photosynthetic activities of PSII and the quantity of core protein D1 decreased significantly in lto1-2. Further investigation showed the synthesis of D1 was not affected in mutants both at transcription and translation levels. The soluble DsbA-like domain of LTO1 was found to have reduction, oxidation and isomerization activities, and could promote the formation of disulfide bonds in a lumenal protein, FKBP13. A potential target of LTO1 was captured which was involving in chlorophyll degradation and photooxidative stress response. Experimental results imply that LTO1 plays important roles in redox regulation, ROS homeostasis and maintenance of PSII.

  5. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.

    PubMed

    Huang, Hui; Song, Songquan

    2013-07-01

    Desiccation tolerance is one of the most important traits determining seed survival during storage and under stress conditions. However, the mechanism of seed desiccation tolerance is still unclear in detail. In the present study, we used a combined model system, desiccation-tolerant and -sensitive maize embryos with identical genetic background, to investigate the changes in desiccation tolerance, malonyldialdehyde (MDA) level, hydrogen peroxide (H₂O₂) content and antioxidant enzyme activity during seed development and germination in 0, -0.6 and -1.2 MPa polyethylene glycol (PEG)-6000 solutions. Our results indicated that maize embryos gradually acquired and lost desiccation tolerance during development and germination, respectively. The acquirement and loss of desiccation tolerance of embryos during development and germination were related to the ability of antioxidant enzymes including superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) to scavenge reactive oxygen species (ROS) and to control MDA content. Compared with treatment in water, PEG-6000 treatment could markedly delay the loss of desiccation tolerance of germinating embryos by delaying water uptake and time course of germination, increasing GR activity and decreasing MDA content. Our data showed the combination of antioxidant enzyme activity and MDA content is a good parameter for assessing the desiccation tolerance of maize embryos. In addition, H₂O₂ accumulated in mature embryos and PEG-treated embryos after drying, which was at least partially related to a longer embryo/seedling length in rehydration and the physiological mechanisms of priming. Copyright © 2013. Published by Elsevier Masson SAS.

  6. Method of manufacturing tin-doped indium oxide nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form anmore » indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.« less

  7. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOEpatents

    Janikowski, Stuart K.

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  8. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  9. [The relationship between oxidized form glutathione, coenzyme II and carotid artery atherosclerosis].

    PubMed

    Huang, Yan-sheng; Wang, Shu-ren; Zhi, Yan-fang; Xu, Bo-shi; Sun, Lin; Wu, Yu; Lu, Jian-min; Dai, Fu-min

    2006-06-01

    To explore the relationship between plasma redox status and atherosclerosis. IVUS was performed in common carotid in the neck of 167 patients with heart diseases. Patients were divided into three groups: plaque-forming group (A, n = 79), intima-thickening group (B, n = 52) and control group (C, n = 36). Plasma glutathione (reduced form GSH and oxidized form GSSG), nicotinamide adenine dinucleotide phosphate (reduced form NADPH and oxidized form NADP(+)), oxidized low density lipoprotein (ox-LDL) and malondialdehyde (MDA) were measured in all patients. The GSH/GSSG and NADPH/NADP(+) redox potential were calculated according to Nernst equation, and correlation analysis performed. GSH and GSH/GSSG gradually reduced and GSH/GSSG redox potential gradually increased in proportion to the thickening of artery intima (from Group C to Group A, P < 0.05). Similar but milder results were shown for NADPH and NADPH/NADP(+) redox status. The products of oxidative stress ox-LDL and MDA also increased significantly (P < 0.05) in proportion to the thickening of artery intima. GSH/GSSG redox potential is positively correlated to ox-LDL (P < 0.05). The redox status shifted to oxidizing direction in proportion to the intima thickness. The imbalance of plasma redox status deviating to oxidation might be implicated in oxidized injury of lipid, intima thickening and atherosclerosis progress.

  10. Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU

    NASA Astrophysics Data System (ADS)

    Magdefrau, Neal J.; Chen, Lei; Sun, Ellen Y.; Aindow, Mark

    2013-11-01

    The effect of alloy heat treatment on the oxidation kinetics and oxide scale microstructure of Crofer 22 APU has been studied. Parabolic oxidation rate constants were measured for the as-received alloy and after pre-oxidation heat treatment in argon at 1050 °C for 1 and 4 h. The oxide scale microstructure was investigated using scanning electron microscopy, focused ion beam milling and transmission electron microscopy. It was found that the alloy forms a two-layer scale with a continuous chromia layer and a discontinuous MnCr2O4 overlayer. Two forms of internal oxides were also formed: subscale pockets of spinel and isolated TiOx precipitates in the underlying alloy. The pre-oxidation heat treatment had a profound effect on the grain size and morphology of the Cr2O3 and MnCr2O4 layers in the scale. The heat-treated samples exhibit a 3.5× lower parabolic oxidation rate constant than the as-received Crofer 22 APU. This improvement in oxidation resistance is attributed to the dramatic differences in the morphology of the oxide scale that forms during the earliest stages of oxidation (<5 h). The implications of these findings for oxidation mechanisms and long-term SOFC performance are discussed.

  11. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  12. Electro-deposition of superconductor oxide films

    DOEpatents

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  13. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    PubMed

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  14. Dietary nitrate supplementation improves reaction time in type 2 diabetes: development and application of a novel nitrate-depleted beetroot juice placebo.

    PubMed

    Gilchrist, Mark; Winyard, Paul G; Fulford, Jon; Anning, Christine; Shore, Angela C; Benjamin, Nigel

    2014-08-31

    In this substudy of the effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes, we report the development of a novel nitrate depleted beetroot juice for use clinical trials and determine if dietary nitrate supplementation improved cognitive function in patients with type 2 diabetes mellitus. Beetroot juice was treated with the anion exchange resin Purolite A520e. UV-vis-spectrophotometry, and a blind taste test were performed along with determination of sugar content, measurement of ascorbate and dehydroascorbate, the ionic composition of juice and Proton NMR. Subsequently, 27 patients, age 67.2±4.9 years, (18 male) were recruited for a double blind, randomised, placebo-controlled crossover trial. Participants were randomised to begin in either order beetroot juice (nitrate content 7.5 mmol per 250 ml) or placebo (nitrate depleted beetroot juice nitrate content 0.002 mmol per 250 ml). At the end of each 2 week supplementation period cognitive function was assessed using E-prime, E-Studio software with 5 separate tests being performed. The tests utilised in the present study have been adapted from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The differences in the UV-vis spectra were comparable to the natural variation found in differing cultivars. There were no discernable differences in taste, sugar content, or Proton NMR. Ascorbate and dehydroascorbate were undetectable in either juice. After 2 weeks of beetroot juice simple reaction time was significantly quicker in the active arm at 327±40 ms versus 341.8±52.7 ms in the placebo arm, mean difference 13.9±25.6 ms (95% CI 3.8-24.0 ms), p=0.009. No other measures of cognitive function differed between treatment arms. We have developed an effective placebo beetroot juice for use in trials of supplementation of dietary nitrate. Two weeks supplementation of the diet with 7.5 mmol of nitrate per day caused a significant improvement in simple reaction time in individuals with T2DM. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione

    PubMed Central

    Bobko, Andrey A.; Kirilyuk, Igor A.; Grigor'ev, Igor A.; Zweier, Jay L.; Khramtsov, Valery V.

    2007-01-01

    Biological applications of stable nitroxyl radicals, NR, include their use as contrast agents for magnetic resonance imaging, spin labels, superoxide dismutase mimics, and antioxidants. The rapid reduction of NR in biological samples into hydroxylamines, HA, significantly limits their application. In its turn, reoxidation of HA back to the NR has been used for detection of reactive oxygen species, ROS. In this work comparative studies of the reduction of pyrrolidine, imidazoline and imidazolidine NR by ascorbate were performed taking advantage of recently synthesized tetraethyl substituted NR with much higher stability towards reduction both in vitro and in vivo. Surprisingly, these NR kept 10-50% of initial intensity of electron paramagnetic resonance signal for about 1 h in the presence of hundred fold excess of ascorbate. To explain this data, reoxidation of the corresponding HA by ascorbate radical and dehydroascorbic acid back to the NR was proposed. This hypothesis was supported by direct measurement of the NR appearance from the HA upon ascorbate radical generation by ascorbate oxidase, or in the presence of the dehydroascorbic acid. The reversible reaction between NR and ascorbate was observed for the various types of the NR, and the rate constants for direct and reverse reactions were determined. The equilibrium constants for one-electron reduction of the tetraethyl substituted NR by ascorbate were found to be in the range from 2.65×10−6 to 10−5 which is significantly lower than corresponding values for the tetramethyl substituted NR (less or about 10−4). This explains an establishment of EPR-detectable quasi-equilibrium level of tetraethyl substituted NR in the presence of excess of ascorbate. The redox reactions of the NR-HA couple in ascorbate containing medium was found to be significantly affected by glutathione, GSH. This effect was attributed to the reduction of ascorbate radical by GSH, and the rate constant of this reaction was found to be equal to 10 M−1s−1. In summary, the data provide new insight into the redox chemistry of NR and HA, and significantly affect interpretation and strategy of their use as redox- and ROS-sensitive probes, or as antioxidants. PMID:17210453

  16. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  17. NASA interdisciplinary collaboration in tribology. A review of oxidational wear

    NASA Technical Reports Server (NTRS)

    Quinn, T. F. J.

    1983-01-01

    An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).

  18. Physical characterization of a new composition of oxidized zirconium-2.5 wt% niobium produced using a two step process for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pawar, V.; Weaver, C.; Jani, S.

    2011-05-01

    Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate. In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.

  19. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  20. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  1. Effect of thin oxide layers incorporated in spin valve structures

    NASA Astrophysics Data System (ADS)

    Gillies, M. F.; Kuiper, A. E. T.; Leibbrandt, G. W. R.

    2001-06-01

    The enhancement of the magnetoresistance effect, induced by incorporating nano-oxide layers (NOLs) in a bottom-type spin valve, was studied for various preparation conditions. The effect of a NOL in the Co90Fe10 pinned layer was found to depend critically on the oxygen pressure applied to form the thin oxide film. Pressures over 10-3 Torr O2 yield oxides thicker than about 0.7 nm, which apparently deteriorate the biasing field which exists over the oxide. The magnetoresistance values can further be raised by forming a specular reflecting oxide on top of the sense layer. Promising results were obtained with an Al2O3 capping layer formed in a solid-state oxidation reaction that occurs spontaneously when a thin Al layer is deposited on the oxidized surface of the Co90Fe10 sense layer.

  2. Cyclization Reactions through DDQ-Mediated Vinyl Oxazolidinone Oxidation

    PubMed Central

    Liu, Lei; Floreancig, Paul E.

    2009-01-01

    Vinyl oxazolidinones react with DDQ to form α,β-unsaturated acyliminium ions in a new method for forming electrophiles under oxidative conditions. Appended nucleophiles undergo 1,4-addition reactions with these intermediates to form cyclic vinyl oxazolidinones with good levels of diastereocontrol, highlighting a new approach to utilizing oxidative carbon–hydrogen bond functionalization to increase molecular complexity. PMID:19552390

  3. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE PAGES

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; ...

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H 2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H 2–3%H 2O the areas of continuousmore » alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H 2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H 2O, Ar–3%H 2O and Ar–4%H 2–3%H 2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  4. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H 2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H 2–3%H 2O the areas of continuousmore » alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H 2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H 2O, Ar–3%H 2O and Ar–4%H 2–3%H 2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  5. Oxide strengthened molybdenum-rhenium alloy

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  6. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  7. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  8. Thermodynamic Analysis of Oxygen-Enriched Direct Smelting of Jamesonite Concentrate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Tang; Dai, Xi; Zhang, Wen-Hai

    2017-12-01

    Thermodynamic analysis of oxygen-enriched direct smelting of jamesonite concentrate is reported in this article. First, the occurrence state of lead, antimony and other metallic elements in the smelting process was investigated theoretically. Then, the verification test was carried out. The results indicate that lead and antimony mainly exist in the alloy in the form of metallic lead and metallic antimony. Simultaneously, lead and antimony were also oxidized into the slag in the form of lead-antimony oxide. Iron and copper could be oxidized into the slag in the form of oxides in addition to combining with antimony in the alloy, while zinc was mainly oxidized into the slag in the form of zinc oxide. The verification test indicates that the main phases in the alloy contain metallic lead, metallic antimony and a small amount of Cu2Sb, FeSb2 intermetallic compounds, and the slag is mainly composed of kirschsteinite, fayalite and zinc oxide, in agreement with the thermodynamic analysis.

  9. The Cross-Sectional Investigation of Oxide Scale FeCr Alloys and Commercial Ferritic Steel Implanted with Lanthanum and Titanium Dopants after Oxidation Test at 900°C

    NASA Astrophysics Data System (ADS)

    Saryanto, Hendi; Sebayang, Darwin; Untoro, Pudji; Sujitno, Tjipto

    2018-03-01

    The cross-sectional examinations of oxide scales formed by oxidation on the surface of FeCr alloys and Ferritic Steel that implanted with lanthanum and titanium dopants were observed and investigated. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) has been used to study the cross-sectional oxides produced by specimens after oxidation process. X-ray diffraction (XRD) analysis was used to strengthen the analysis of the oxide scale morphology, oxide phases and oxidation products. Cross-sectional observations show the effectiveness of La implantation for improving thinner and stronger scale/substrate interface during oxidation process. The result shows that the thickness of oxide scales formed on the surface of La implanted FeCr alloy and ferritic steel was found less than 3 μm and 300 μm, respectively. The oxide scale formed on the surface of La implanted specimens consisted roughly of Cr2O3 with a small amount of FeO mixture, which indicates that lanthanum implantation can improve the adherence, reduce the growth of the oxide scale as well as reduce the Cr evaporation. On the other side, the oxide scale formed on the surface of FeCr alloys and ferritic steel that implanted with titanium dopant was thicker, indicating that significant increase in oxidation mass gain. It can be noticed that titanium implantation ineffectively promotes Cr rich oxide. At the same time, the amount of Fe increased and diffused outwards, which caused the formation and rapid growth of FeO.

  10. Method of forming supported doped palladium containing oxidation catalysts

    DOEpatents

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  11. Alloy composition effects on oxidation products of VIA, B-1900, 713C, and 738X: A high temperature diffractometer study

    NASA Technical Reports Server (NTRS)

    Garlick, R. G.; Lowell, C.

    1973-01-01

    High temperature X-ray diffraction studies were performed to investigate isothermal and cyclic oxidation at 1000 and 1100 C of the nickel-base superalloys VIA, B-1900, 713C, and 738X. Oxidation was complex. The major oxides, Al2O3, Cr2O3, and the spinels, formed in amounts consistent with alloy chemistry. The alloys VIA and B-1900 (high Al, low Cr alloys) tended to form Al2O3 and NiAl2O4; 738X (high Cr, low Al) formed Cr2O3 and NiCr2O4. A NiTa2O6 type of oxide formed in amounts approximately proportional to the refractory metal content of the alloy. One of the effects of cycling was to increase the amount of spinels formed.

  12. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  13. Role of Al in Zn bath on the formation of the inhibition layer during hot-dip galvanizing for a 1.2Si-1.5Mn transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Kuo; Hsu, Chiung-Wen; Chang, Liuwen; Gan, Dershin; Yang, Kuo-Cheng

    2013-11-01

    This study investigated the interaction between the Al in the Zn bath and the surface oxides formed by selective oxidation on a 1.2Si-1.5Mn TRIP steel during hot-dip galvanizing. XPS and TEM were employed for characterization. The results indicated that the amorphous xMnO·SiO2 oxide could react with Al to form a Si-Mn-Al-containing oxide. The crystalline MnSiO3 and Mn2SiO4 oxides could be largely reduced by Al to form holes in the oxide film. Consequently, the steel covered by a layer of mixed xMnO·SiO2 and MnSiO3 could form a continuous Fe2Al5 inhibition layer and showed the highest galvanizability among the three samples examined.

  14. About structural phase state of coating based on zirconium oxide formed by microplasma oxidation method

    NASA Astrophysics Data System (ADS)

    Gubaidulina, Tatiana A.; Sergeev, Viktor P.; Kuzmin, Oleg S.; Fedorischeva, Marina V.; Kalashnikov, Mark P.

    2017-12-01

    The oxide-ceramic coating based of zirconium oxide is formed by the method of microplasma oxidation. The producing modes of the oxide layers on E110 zirconium alloy are under testing. It was found that using microplasma treatment of E110 zirconium in aluminosilicate electrolyte makes possible the formation of porous oxide-ceramic coatings based on zirconium alloyed by aluminum and niobium. The study is focused on the modes how to form heat-shielding coatings with controlled porosity and minimal amount of microcracks. The structural-phase state of the coating is studied by X-ray diffraction analysis and scanning electron microscopy (SEM). It was found that the ratio of the monoclinic and tetragonal phases changes with the change occurring in the coating formation modes.

  15. Structural Evolution of a Ni Alloy Surface During High-Temperature Oxidation

    DOE PAGES

    Oleksak, Richard P.; Carney, Casey S.; Holcomb, Gordon R.; ...

    2017-11-20

    We show that considerable structural transformations occur at a Ni alloy surface during the transient stages of high-temperature oxidation. This was demonstrated by exposing the alloy to high-temperature CO 2 for short times at both atmospheric and supercritical pressures. A protective Cr-rich oxide layer formed after only 5 min at 700 °C and persisted for longer exposures up to 500 h. Voids formed and grew over time by the condensation of metal vacancies generated during oxidation, while the alloy surface recrystallized after sufficient oxidation had occurred. The oxygen potential established at the oxide/alloy interface led to oxidation along the newlymore » formed grain boundaries as well as adjacent to and inside of the voids. Al, the most stable oxide-former and present at low concentration in the alloy, was preferentially oxidized in these regions. Furthermore, the results provide an improved understanding of the internal oxidation of Al and its role in enhancing scale adhesion for this class of Ni alloys.« less

  16. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Xiao, Qian; Lu, Zhanpeng; Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan

    2017-06-01

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters.

  17. Formation of alcohol conversion catalysts

    DOEpatents

    Wachs, Israel E.; Cai, Yeping

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  18. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  19. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  20. Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, Maqsood

    1987-04-01

    The chemical composition of oxide films formed during thermal treatments of an Al-Li-Cu-Mg-Zr alloy has been studied by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The oxide layers formed after oxidation of 2.5 minutes to 30 minutes at 530 °C in lab air have been characterized. In the early stages of oxidation the surface is composed of both the lithium rich oxides and magnesium rich oxides. However, after longer oxidation times the oxidation of lithium becomes predominant and the air/oxide interface is completely covered by lithium compounds. Oxidation products formed on the alloy surface have been studied by X-ray diffraction analysis. The following three phases, namely, Li2CO3, α-Li5AlO4, and γ-LiAlO2, were identified. During heat treatment in lab air at 530 °C and at atmospheric pressure the dominating reaction product is Li2CO3. Due to the selective oxidation of lithium a soft surface layer is developed. The width of the soft layer formed during solution heat treatments carried out in lab air and in salt bath environments has been determined by microhardness measurements. The lithium concentration profiles were calculated from a diffusion equation. The depletion of alloying elements from the near surface region during heat treatments has been investigated using energy dispersive X-ray analysis. The oxide morphology was examined using scanning electron microscopy and optical microscopy.

  1. Thermal oxidation behavior of an Al-Li-Cu-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, Maqsood

    1987-05-01

    The chemical composition of oxide films formed during thermal treatments of an Al-Li-Cu-Mg-Zr alloy has been studied by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy. The oxide layers formed after oxidation of 2.5 minutes to 30 minutes at 530 °C in lab air have been characterized. In the early stages of oxidation the surface is composed of both the lithium rich oxides and magnesium rich oxides. However, after longer oxidation times the oxidation of lithium becomes predominant and the air/oxide interface is completely covered by lithium compounds. Oxidation products formed on the alloy surface have been studied by X-ray diffraction analysis. The following three phases, namely, Li2CO3, α-Li5AlO4, and γ-LiAlO2, were identified. During heat treatment in lab air at 530 °C and at atmospheric pressure the dominating reaction product is Li2CO3. Due to the selective oxidation of lithium a soft surface layer is developed. The width of the soft layer formed during solution heat treatments carried out in lab air and in salt bath environments has been determined by microhardness measurements. The lithium concentration profiles were calculated from a diffusion equation. The depletion of alloying elements from the near surface region during heat treatments has been investigated using energy dispersive X-ray analysis. The oxide morphology was examined using scanning electron microscopy and optical microscopy.

  2. Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K

    NASA Technical Reports Server (NTRS)

    Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.

    1991-01-01

    Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.

  3. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  4. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  5. Pyrocarbons prepared by carbonisation of polymers adsorbed or synthesised on a surface of silica and mixed oxides

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Skubiszewska-Zi ęba, J.; Leboda, R.; Voronin, E. F.; Zarko, V. I.; Levitskaya, S. I.; Brei, V. V.; Guzenko, N. V.; Kazakova, O. A.; Seledets, O.; Janusz, W.; Chibowski, S.

    2004-04-01

    Initial oxides fumed silica, alumina/silica and titania/silica and silica gel and hybrid adsorbents with pyrocarbon formed on these oxide substrates by carbonisation of immobilised (adsorbed or synthesised) polymers such as starch, methyl cellulose, polyvinylpyrrolidone, polystyrene, and polybutylvinyl ether were studied by adsorption, AFM, TEM, and FTIR methods. Polymer/oxide materials were investigated by nitrogen and Pb(II) adsorption, FTIR, and potentiometric titration methods. Analysis of nitrogen adsorption-desorption isotherms by different methods, FTIR spectra, AFM and TEM images of the initial and hybrid adsorbents reveals that the morphology of the substrates significantly changes on carbonisation of oxygen-containing polymers because of hydrothermal treatment of them by water eliminated as a product of pyrolysis. Contribution of own microporosity of pyrocarbon deposits formed on carbonisation of immobilised polymers is greater (dependent on reaction conditions) than that on pyrolysis of low-molecular compounds at the same oxide substrates. Pyrocarbon particles formed on silica gel are larger than those formed on fumed oxides and larger than those formed on silica gel on pyrolysis of low-molecular compounds.

  6. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Swaminathan, Srinivasan; Krishna, Nanda Gopala; Kim, Dong-Ik

    2015-10-01

    Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr2O4 and MnCr2O4 along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  7. STUDY OF THE OXIDATION OF NON-ALLOYED ZIRCONIUM AND OF OXYGEN DIFFUSION IN THE OXIDE FILM AND IN THE METAL (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debuigne, J.; Lehr, P.

    1963-12-01

    The oxidation processes of zirconium at 600-850 deg C were studied. A micrographic and radiocrystallographic analysis of the oxide layers formed at the surface of the metal was carried out. The kinetic results, weight gains as function nf time, were completed by the study of oxygen diffusion through the oxide layer formed and in the underlying metal. (auth)

  8. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  9. Fully integrated and encapsulated micro-fabricated vacuum diode and method of manufacturing same

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2015-12-01

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  10. Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

    DOEpatents

    Resnick, Paul J.; Langlois, Eric

    2014-08-26

    Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.

  11. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  12. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  13. Reaction products and oxide thickness formed by Ti out-diffusion and oxidization in poly-Pt/Ti/SiO 2/Si with oxide films deposited

    NASA Astrophysics Data System (ADS)

    Chen, Changhong; Huang, Dexiu; Zhu, Weiguang; Feng, Yi; Wu, Xigang

    2006-08-01

    In the paper, we present experimental results to enhance the understanding of Ti out-diffusion and oxidization in commercial poly-Pt/Ti/SiO 2/Si wafers with perovskite oxide films deposited when heat-treated in flowing oxygen ambient. It indicates that when heat-treated at 550 and 600 °C, PtTi 3+PtTi and PtTi are the reaction products from interfacial interaction, respectively; while heat-treated at 650 °C and above, the products become three layers of titanium oxides instead of the alloys. Confirmed to be rutile TiO 2, the first two layers spaced by 65 nm encapsulate the Pt surface by the first layer with 60 nm thick forming at its surface and by the next layer with 35 nm thick inserting its original layer. In addition, the next layer is formed as a barrier to block up continuous diffusion paths of Ti, and thus results in the last layer of TiO 2- x formed by the residual Ti oxidizing.

  14. Iron-phosphate ceramics for solidification of mixed low-level waste

    DOEpatents

    Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

    2000-01-01

    A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

  15. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  16. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    NASA Astrophysics Data System (ADS)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  17. Microstructure and Oxidation of (La,Sr)CrO3-Added Ti3SiC2 Composites.

    PubMed

    Lee, Dong Bok

    2015-11-01

    Composites of Ti3SiC2-(10, 20, 40)wt% La0.8Sr0.2CrO3 were synthesized by hot pressing powders of Ti3SiC2 and La0.8Sr0.2CrO3. These powders reacted to form stable TiC carbides and LaTiO3, Cr2Ti4O11, La2O3, and SrCrO4 oxides during hot pressing. The composites consisted primarily of a fine TiC-rich matrix phase and coarse Ti3SiC2 dispersoids. The addition of oxidation-immune La0.8Sr0.2CrO3 into Ti3SiC2 increased the oxidation rate because TiC formed during hot pressing. During oxidation of the composites at 800-1000 degrees C for 100 h in air, Ti diffused outward to form an outer rutile-TiO2 layer, and oxygen transported inward to form an inner oxide layer.

  18. Defect and Ordered Tungsten Oxides Encapsulated Inside 2H-W X2( X=S and Se) Fullerene-Related Structures

    NASA Astrophysics Data System (ADS)

    Sloan, Jeremy; Hutchison, John L.; Tenne, Reshef; Feldman, Yishay; Tsirlina, Tatyana; Homyonfer, Moshe

    1999-04-01

    Complex tungsten oxides, consisting of nonstoichiometric oxides of the form WO3-xand stoichiometric lamellar oxides of the form {001}RWnO3n-1(n=3 to 6) have been observed incorporated within 2H-WX2(X=S or Se) inorganic fullerene-like (IF) structures by HRTEM. These encapsulates were formed from a gas-solid reaction between H2Xand disordered WO3-xprecursors exhibiting a range of particle sizes and morphologies. The microstructures of most of the encapsulated oxides could be described in terms of {hkl}Rcrystallographic shear (CS) structures formed relative to an ReO3-type (R) substructure. Smaller spheroidal WO3-xencapsulates were frequently found to exhibit random {103}RCS defects of the Wadsley type, while larger, needle encapsulates were found to form exclusively {001}RWnO3n-1type lamellar structures that were predominantely ordered. Spheriodal encapsulates with randomly spaced {001}RCS planes were also observed encapsulated inside 2H-WSe2IF structures. The growth and morphologies of the encapsulating 2H-WX2shells were profoundly influenced by those of the precursor oxides used in their formation. Ordering mechanisms were proposed with respect to the formation of the ordered encapsulated oxides from the disordered precursors.

  19. Method of making a ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2003-01-01

    A method of forming an article. The method comprises forming a silicon-based substrate that is oxidizable by reaction with an oxidant to form at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  20. Ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2001-01-01

    An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  1. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Mayo, F. R.; Lan, B.; Cotts, D. B.; Buttrill, S. E., Jr.; St.john, G. A.

    1983-01-01

    The oxidation of two jet turbine fuels and some pure hydrocarbons was studied at 130 C with and without the presence of small amounts of N-methyl pyrrole (NMP) or indene. Tendency to form solid-deposit precursors was studied by measuring soluble gum formation as well as dimer and trimer formation using field ionization mass spectrometry. Pure n-dodecane oxidized fastest and gave the smallest amount of procursors. An unstable fuel oil oxidized much slower but formed large amounts of precursors. Stable Jet A fuel oxidized slowest and gave little precursors. Indene either retarded or accelerated the oxidation of n-dodecane, depending on its concentration, but always caused more gum formation. The NMP greatly retarded n-dodecane oxidation but accelerated Jet A oxidation and greatly increased the latter's gum formation. In general, the additive reacted faster and formed most of the gum. Results are interpreted in terms of classical cooxidation theory. The effect of oxygen pressure on gum formation is also reported.

  2. Control of interfacial properties of Pr-oxide/Ge gate stack structure by introduction of nitrogen

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Kondo, Hiroki; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-06-01

    We have demonstrated the control of interfacial properties of Pr-oxide/Ge gate stack structure by the introduction of nitrogen. From C- V characteristics of Al/Pr-oxide/Ge 3N 4/Ge MOS capacitors, the interface state density decreases without the change of the accumulation capacitance after annealing. The TEM and TED measurements reveal that the crystallization of Pr-oxide is enhanced with annealing and the columnar structure of cubic-Pr 2O 3 is formed after annealing. From the depth profiles measured using XPS with Ar sputtering for the Pr-oxide/Ge 3N 4/Ge stack structure, the increase in the Ge component is not observed in a Pr-oxide film and near the interface between a Pr-oxide film and a Ge substrate. In addition, the N component segregates near the interface region, amorphous Pr-oxynitride (PrON) is formed at the interface. As a result, Pr-oxide/PrON/Ge stacked structure without the Ge-oxynitride interlayer is formed.

  3. Syn-anti conformational switching in an ethane-bridged Co(II)bisporphyrin induced by external stimuli: effects of inter-macrocyclic interactions, axial ligation and chemical and electrochemical oxidations.

    PubMed

    Dey, Soumyajit; Rath, Sankar Prasad

    2014-02-07

    The syn-anti conformational switching has been demonstrated in the ethane-bridged dicobalt(II)bisporphyrin which is present in the syn-form only. The addition of either perylene or axial ligands to Co(II)(bisporphyrin) completely transforms the syn form into the anti because of strong π-π interaction and axial coordination, respectively. The complex undergoes four 1e-oxidations in CH2Cl2 which are indicative of strong through space interactions between the two cofacial Co-porphyrins at 295 K. The first oxidation is a metal centered one and occurs at a potential much lower than that of the monomeric analog. However, the second oxidation, which is again metal centered, was at a significantly higher potential. The large difference between the first two oxidations, as observed here, is due to much stronger inter-porphyrin interactions. The step-wise oxidations have been performed both chemically and electro-chemically while the progress of the reactions was monitored by UV-visible and (1)H NMR spectroscopy. After 1e-oxidation, a very broad (1)H NMR signal results with increased difference between two meso resonances, which indicates that the two macrocycles are in the syn-form with lesser interplanar separation as also observed by DFT. However, 2e-oxidation results in the stabilization of the anti form. The addition of axial ligands to Co(II)(bisporphyrin) also completely transforms the syn form into the anti form. While additions of THF and I2/I(-) both result in the formation of five-coordinate complexes, Co(II) is oxidized to Co(III) in the case of the latter. However, additions of 1-methylimidazole, pyridine and pyrazine as axial ligands result in the formation of a six-coordinate complex in which Co(II) is spontaneously oxidized to Co(III) in air.

  4. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  5. Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Abadie, John G.; Hixson, April D.; Nordine, Paul C.

    2006-01-01

    Glasses that comprise rare-earth oxides and aluminum oxide plus, optionally, lesser amounts of other oxides, have been invented. The other oxide(s) can include SiO2, B2O3, GeO2, and/or any of a variety of glass-forming oxides that have been used heretofore in making a variety of common and specialty glasses. The glasses of the invention can be manufactured in bulk single-phase forms to ensure near uniformity in optical and mechanical characteristics, as needed for such devices as optical amplifiers, lasers, and optical waveguides (including optical fibers). These glasses can also be formulated to have high indices of refraction, as needed in some of such devices.

  6. Inhibiting Corrosion Cracking: Crack Tip Chemistry and Physics.

    DTIC Science & Technology

    1986-03-14

    suggests that a surface film is formed by adsorption of nitrite on the C- metal surface, followed by a reaction to form oxide and ammonia. The same A... adsorption -reaction mechanism was proposed for other oxidizing inhibitors, e.g., chrmnate and molybdate. Although nonoxidizing inhibitors, require the...properties are attributed either to a capacity to "repair" the oxide film formed on the metal in an electrolyte, or to adsorption of the oxyanicn

  7. Organized energetic composites based on micro and nanostructures and methods thereof

    DOEpatents

    Gash, Alexander E.; Han, Thomas Yong-Jin; Sirbuly, Donald J.

    2012-09-04

    An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure according to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.

  8. Highly oxidized graphene oxide and methods for production thereof

    DOEpatents

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  9. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of Yttrium Ion-Implantation on the Growth Kinetics and Micro-Structure of NiO Oxide Film

    NASA Astrophysics Data System (ADS)

    Jin, Huiming; Adriana, Felix; Majorri, Aroyave

    2008-02-01

    Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000°C in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti-oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y-implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.

  11. Fuel cell anode configuration for CO tolerance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  12. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  13. High temperature oxidation of alumina forming cast austenitic stainless steels within an environment of pure steam

    NASA Astrophysics Data System (ADS)

    Prenzlow, Elmer A.

    Steam cracking of hydrocarbons in the petrochemical industry is a multibillion dollar industry. The processes performed in these plants create byproducts that negatively affect the integrity of stainless steel piping through high temperature corrosion. Alloys used presently in industry rely on the formation of chromium oxide (chromia) as a protective layer between the bulk metal pipe and chemical byproducts. However, chromia can become susceptible to attack from aggressive species such as carbon, water vapor, and sulfur compounds, thus creating a need for a better protection method. A new series of austenitic stainless steels have been developed in recent years that, rather than forming chromia, create a protective layer of aluminum oxide (alumina) under oxidative conditions. These alloys have high nickel content for the stabilization of the austenitic phase, and a more thermodynamically stable oxide layer relative to the traditional chromia formers. Consequently, alumina forming alloys have been proposed as replacements for chromia forming alloys in the petrochemical industry. General oxidation testing has been performed on alumina forming alloys under dry and 10% water vapor conditions. However, oxidation conditions in industry resemble a 100% steam environment. Therefore, test methods to mimic such conditions are needed so that alloys can be tested and developed further for these applications. Four alloys with aluminum contents ranging from 2.6 to 3.9 wt% were cut from centrifugally cast pipes and subjected to oxidation in an environment of pure steam for up to 30 hours, at temperatures of 800 °C and 950 °C. Samples were analyzed using Raman, SEM, and EDS and showed a continuous alumina layer free of cracks. The alumina layer thickness increased with time. Additionally, larger thicknesses were observed in samples oxidized at 950 °C from those of 800 °C. Thickness measurements were used to calculate parabolic and non-parabolic oxidation rate constants. Samples were compared using calculated parabolic and modified parabolic rates of oxidation. Plots for the prediction of oxide layer thickness were generated both for the Wagner model of parabolic oxidation, and an experimentally determined modification to said model. Oxide scale thickness as formed in pure steam was shown to be related to the aluminum content of the alloy and the temperature and time of exposure. Further testing of alumina forming stainless steels in other concentrations of steam would allow for the determination of steam's effect on alumina formation kinetics. In addition, tests at additional temperatures between 800 and 950 °C would allow for the calculation of activation energies and full understanding of the oxide layer. Finally, the analysis of alumina layer thickness effects on coking performance in a petrochemical application would allow for the potential transition of these alloys into the commercial market.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Eric Nicholas; Miller, James E.

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  15. Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings

    NASA Astrophysics Data System (ADS)

    Sugiarti, E.; Zaini, K. A.; Sundawa, R.; Wang, Y.; Ohnuki, S.; Hayashi, S.

    2017-04-01

    Intermetalic coatings of NiCoCrAl have been successfully developed on low carbon steel substrate to improve oxidation resistance in extreme environments. The influence of oxidation temperature on the oxide scale formation was studied in the temperature range of 600-1000 °C. The measurements were made in air under isothermal oxidation test for 100 h. The surface morphology showed that a cauliflower like structure developed entire the oxide scale of sample oxidized at 800 °C and 1000 °C, while partly distributed on the surface of sample oxidized at 600 °C. The XRD analysis identified Cr2O3 phase predominantly formed on the oxidized sample at 600 °C and meta-stable Al2O3 with several polymorphs crystalline structures: η, δ, θ, κ, and α-Al2O3 at relatively high temperatures, i.e. 800 °C and 1000 °C. A Cross-sectional microstructure showed that complex and porous structures formed on the top surface of 600 °C and 1000 °C samples. In contrast, a very thin oxide scale formed on 800 °C oxidized samples and it appeared to act as a diffusion barrier of oxygen to diffuse inward, hence could increase in the service life of carbon steel substrate.

  16. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  17. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation

    PubMed Central

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-01-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827

  18. Identification of C1q as a Binding Protein for Advanced Glycation End Products.

    PubMed

    Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji

    2016-01-26

    Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.

  19. Oxide compounds on Ni-Cr alloys.

    PubMed

    Baran, G R

    1984-11-01

    Five Ni-Cr alloys were studied in order to identify the compounds formed on the alloy surface during oxidation under conditions similar to those encountered during dental laboratory procedures prior to application of porcelain. After the alloys were oxidized, the films covering the surfaces were removed with the aid of a Br-methanol solution. X-ray diffraction was used to analyze the compounds formed. Oxides of nearly all elements contained by the alloys were found after low-temperature (650 degrees C) oxidation, while NiO and particularly Cr2O3 were predominant after oxidation at high temperatures (1000 degrees C).

  20. Size-Dependent Neurotoxicity of Aluminum Oxide Particles: a Comparison Between Nano- and Micrometer Size on the Basis of Mitochondrial Oxidative Damage.

    PubMed

    Mirshafa, Atefeh; Nazari, Mehdi; Jahani, Daniel; Shaki, Fatemeh

    2018-06-01

    Aluminum nanoparticles (AlNPs) are among the most abundantly produced nanosized particles in the market. There is limited information about the potential harmful effects of aluminum oxide due to its particle size on human health. Considering the toxic effects of Al on brain as its target tissue, in this study, the toxicity of nanoparticles, microparticles, and ionic forms of Al on rat brain and isolated mitochondria was evaluated. Sixty male Wistar rats were divided into ten groups (six rats each), in which group I was the control, and the other groups were administered different doses of Al nanoparticles, Al microparticles (AlMP), and Al ionic forms (2, 4, and 8 mg/kg, i.p.) for 28 days. After 24 h, the animals were killed, brain tissue was separated, the mitochondrial fraction was isolated, and oxidative stress markers were measured. Also, mitochondrial function was assayed by MTT test. The results showed that all forms of Al particles induced ROS formation, lipid peroxidation, protein oxidation, glutathione depletion, mitochondrial dysfunction, and gait abnormalities in a dose-dependent manner. In addition, Al particles decreased mitochondrial membrane potential. These data indicated that oxidative stress might contribute to the toxicity effects of Al. Comparison of oxidative stress markers between all forms of Al revealed that the toxic effect of AlNP on brain tissue was substantially more than that caused by AlMP and bulk form. This study showed more neurotoxicity of AlNPs compared to other forms on brain oxidative damage that probably is due to more penetration into the brain.

  1. Effects of composition and testing conditions on oxidation behavior of four cast commercial nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Probst, H. B.

    1974-01-01

    Four cast nickel-base superalloys were oxidized at 1000 and 1100 C for times up to 100 hr in static air and a Mach 1 gas stream. The oxidation resistance was judged by weight change, metal thickness loss, depletion-zone formation, and oxide formation and morphology. The alloys which formed mostly nickel aluminate (NiAl2O4) and aluminum oxide (Al2O3) (B-1900, VIA, and to a lesser extent 713C) were more oxidation resistant. Poorer oxidation resistance was associated with the appearance of chromium sesquioxide (Cr2O3) and chromite spinel (738X). Refractory metal content had little effect on oxidation resistance. Refractory metals appeared in the scale as tapiolite (NiM2O6, where M represents the refractory metal). Thermal cycling in static air appeared to supply sufficient data for the evaluation of oxidation resistance, especially for alloys which form oxides of low volatility. For alloys of higher chromium levels with high propensities toward forming a chromium-bearing scale of higher volatility, testing under conditions of high gas velocity is necessary to assess fully the behavior of the alloy.

  2. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  3. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  4. Formation and corrosion of a 410 SS/ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    This study evaluates the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel in a single waste form. A representative composite material AOC410 was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the Zr reacted with lanthanide oxides to form lanthanide zirconate, which combined with the remaining lanthanide oxides to form a porous ceramic network encapsulated by alloy as a composite puck. Excess alloy formed amore » metal bead on top of the composite. The alloys in the composite and bead were both mixture of martensite grains and ferrite grains with carbide precipitates. FeCrMo intermetallic phases also precipitated in the ferrite grains in the composite part. Ferrite surrounding carbides was sensitized and the least corrosion resistant in electrochemical corrosion tests conducted in an acidic brine electrolyte; ferrite neighboring martensite grains and intermetallics corroded galvanically. The lanthanide oxide domains dissolved chemically, but lanthanide zirconate domains did not dissolve. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. These results suggest the longterm corrosion of a composite waste form can be evaluated by using separate material degradation models for the alloy and ceramic phases.« less

  5. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    PubMed

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  6. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  7. Method for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A method for implementation of back-illuminated CMOS or CCD imagers. An oxide layer buried between silicon wafer and device silicon is provided. The oxide layer forms a passivation layer in the imaging structure. A device layer and interlayer dielectric are formed, and the silicon wafer is removed to expose the oxide layer.

  8. Biological Oxidation of As (III) in a Full-Scale Iron Removal Plant

    EPA Science Inventory

    The effectiveness of arsenic removal from water is largely dependent on the oxidation state of the arsenic. As (III) is much more difficult to remove relative to the oxidized As (V) form. Arsenic in ground waters across the Midwest is typically in the form of As (III), and ther...

  9. Hydrogen Peroxide Pretreatment Mitigates Cadmium-Induced Oxidative Stress in Brassica napus L.: An Intrinsic Study on Antioxidant Defense and Glyoxalase Systems

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Gill, Sarvajeet S.; Alharby, Hesham F.; Razafindrabe, Bam H. N.; Fujita, Masayuki

    2017-01-01

    Cadmium (Cd) is considered as one of the most toxic metals for plant growth and development. In the present study, we investigated the role of externally applied hydrogen peroxide (H2O2) in regulating the antioxidant defense and glyoxalase systems in conferring Cd-induced oxidative stress tolerance in rapeseed (Brassica napus L.). Seedlings were pretreated with 50 μM H2O2 for 24 h. These pretreated seedlings as well as non-pretreated seedlings were grown for another 48 h at two concentrations of CdCl2 (0.5 and 1.0 mM). Both the levels of Cd increased MDA and H2O2 levels and lipoxygenase activity while ascorbate (AsA) declined significantly. However, reduced glutathione (GSH) content showed an increase at 0.5 mM CdCl2, but glutathione disulfide (GSSG) increased at any level of Cd with a decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) upregulated due to Cd treatment in dose-dependent manners, while glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at 0.5 mM CdCl2 and decreased at higher dose. The activity of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) decreased under Cd stress. On the other hand, H2O2 pretreated seedlings, when exposed to Cd, AsA and GSH contents and GSH/GSSG ratio increased noticeably. H2O2 pretreatment increased the activities of APX, MDHAR, DHAR, GR, GST, GPX, and CAT of Cd affected seedlings. Thus enhancement of both the non-enzymatic and enzymatic antioxidants helped to decrease the oxidative damage as indicated by decreased levels of H2O2 and MDA. The seedlings which were pretreated with H2O2 also showed enhanced glyoxalase system. The activities of Gly I, and Gly II and the content of GSH increased significantly due to H2O2 pretreatment in Cd affected seedlings, compared to the Cd-stressed plants without H2O2 pretreatment which were vital for methylglyoxal detoxification. So, the major roles of H2O2 were improvement of antioxidant defense system and glyoxalase system which protected plants from the damage effects of ROS and MG. The mechanism of H2O2 to induce antioxidant defense and glyoxalase system and improving physiology under stress condition is not known clearly which should be elucidated. The signaling roles of H2O2 and its interaction with other signaling molecules, phytohormones or other biomolecules and their roles in stress protection should be explored. PMID:28239385

  10. Synthesis of soluble conducting polymers by acoustic mixing

    DOEpatents

    Kane, Marie C.

    2016-09-13

    A method including combining an aniline monomer, an oxidant, water and an organic solvent; subjecting the combination to acoustic mixing to form an emulsion; and recovering a polyaniliine from the combination. A method including combining a aniline monomer, an oxidant, water and an organic solvent; forming a polyaniline by acoustic mixing the combination; and recovering the polyaniliine from the combination. A method including forming a combination of an aniline monomer, an oxidant, water and an organic solvent in the absence of an emulsifier; acoustic mixing the combination for a time period to form a polyaniline; and recovering a polyaniliine from the combination.

  11. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    PubMed

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  12. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  13. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  14. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  15. Preparation of energy storage materials

    DOEpatents

    Li, Lin Song; Jia, Quanxi

    2003-01-01

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  16. Preparation Of Energy Storage Materials

    DOEpatents

    Li, Lin Song; Jia, Quanxi

    2003-12-02

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  17. Contact Sensor Attachment to Titanium Metal Composites

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos

    1997-01-01

    A Pd-13wt%Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical-resistance-versus-temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy has been used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13wt%Cr.

  18. Method of forming a joint

    DOEpatents

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  19. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    NASA Astrophysics Data System (ADS)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  20. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  1. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOEpatents

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  2. Electrode structures and surfaces for Li batteries

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho; Balasubramanian, Mahalingam; Croy, Jason

    2017-03-14

    This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.

  3. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  4. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  5. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  6. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  7. Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure

    NASA Astrophysics Data System (ADS)

    Sneed, D.; Pravica, M.; Kim, E.; Chen, N.; Park, C.; White, M.

    2017-10-01

    This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on the cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.

  8. Oxidation kinetics of Haynes 230 alloy in air at temperatures between 650 and 850 °C

    NASA Astrophysics Data System (ADS)

    Jian, Li; Jian, Pu; Bing, Hua; Xie, Guangyuan

    Haynes 230 alloy was oxidized in air at temperatures between 650 and 850 °C. Thermogravimetry was used to measure the kinetics of oxidation. The formed oxides were identified by the thin film (small angle) X-ray diffraction technique. Cr 2O 3 and MnCr 2O 4 were found in the oxide scale. Multi-stage oxidation kinetics was observed, and each stage follows Wagner's parabolic law. The first slow oxidation stage corresponded to the growth of an Cr 2O 3 layer, controlled by Cr ions diffusion through the dense Cr 2O 3 scale. The faster second stage was a result of rapid diffusion of Mn ions passing through the established Cr 2O 3 scale to form MnCr 2O 4 on top of the Cr 2O 3 layer. A duplex oxide scale is expected. The third stage, with a rate close to that of the first stage, only appeared for oxidation in the intermediate temperature range, i.e., 750-800 °C, which can be explained by the interruption of the Mn flux that forms MnCr 2O 4.

  9. Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores.

    PubMed

    Eberhart, Michael S; Wang, Degao; Sampaio, Renato N; Marquard, Seth L; Shan, Bing; Brennaman, M Kyle; Meyer, Gerald J; Dares, Christopher; Meyer, Thomas J

    2017-11-15

    Organic chromophores can be synthesized by established methods and offer an opportunity to expand overall solar spectrum utilization for dye-sensitized photoelectrosynthesis cells. However, there are complications in the use of organic chromophores arising from the instability of their oxidized forms, the inability of their oxidized forms to activate a water oxidation catalyst, or the absence of a sufficiently reducing excited state for electron injection into appropriate semiconductors. Three new triarylamine donor-acceptor organic dyes have been investigated here for visible-light-driven water oxidation. They offer highly oxidizing potentials (>1 V vs NHE in aqueous solution) that are sufficient to drive a water oxidation catalyst and excited-state potentials (∼-1.2 V vs NHE) sufficient to inject into TiO 2 . The oxidized form of one of the chromophores is sufficiently stable to exhibit reversible electrochemistry in aqueous solution. The chromophores also have favorable photophysics. Visible-light-driven oxygen production by an organic chromophore for up to 1 h of operation has been demonstrated with reasonable faradaic efficiencies for measured O 2 production. The properties of organic chromophores necessary for successfully driving water oxidation in a light-driven system are explored along with strategies for improving device performance.

  10. Method of forming low cost, formable High T(subc) superconducting wire

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor)

    1989-01-01

    A ceramic superconductivity part, such as a wire, is produced through the partial oxidation of a specially formulated copper alloy in a core. The alloys contains low level of quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperatures, and superconducting oxide phases are formed as a thin film.

  11. Unexpected Catalytic Reactions of Silyl-protected Enoldiazoacetates With Nitrile Oxides That Form 5- Arylaminofuran-2(3H)-one-4-carboxylates

    PubMed Central

    Xu, Xinfang; Shabashov, Dmitry; Zavalij, Peter Y.; Doyle, Michael P.

    2012-01-01

    Silyl-protected enoldiazoacetates undergo dirhodium(II) catalyzed reactions with nitrile oxides to form acid-labile ketenimines via dipolar cycloaddition of nitrile oxides to a donor/acceptor cyclopropene and Lossen rearrangement of the dipolar adduct; acid catalysis converts the ketenimine to the furan product. PMID:22272728

  12. THE EFFECT OF OXIDANTS ON THE PROPERTIES OF FE (III) PARTICLES AND SUSPENSIONS FORMED FROM THE OXIDATION OF FE (II)

    EPA Science Inventory

    Oxidation of Fe(II) to Fe(III) is an important reaction in drinking water treatment and distribution systems, and the ferric particles that form are a major source of consumer complaints of colored water. Ferrous iron is found naturally in many ground waters and can be released ...

  13. The effect of variations of cobalt content on the cyclic oxidation resistance of selected Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1987-01-01

    Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m (PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. the cobalt levels ranged from 0 wt pct to the nominal commercial content in each alloy. the alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200, and 100 hr, respectively. An oxidation attack parameter, Ka, derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr allys while a 5.0 wt pct Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides, perhaps due to the formation of the omnipresent trirutile Ni(Ta, Cb, Mo, W)2O6. Both scales break down as increasing amounts of NiO are formed.

  14. Superlubricating graphene and graphene oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  15. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik

    2018-02-01

    As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

  16. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer.

    PubMed

    Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  17. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  18. Surface spectroscopy studies of the oxidation behavior of uranium

    NASA Astrophysics Data System (ADS)

    Bloch, J.; Atzmony, U.; Dariel, M. P.; Mintz, M. H.; Shamir, N.

    1982-02-01

    Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) techniques were utilized to study the oxidation behavior of clean uranium surfaces, at very low pressures of various atmospheres (UHV, H 2, O 2, and CO 2), at room temperature. Both for O 2 and CO 2, a precursor chemisorbed oxygen species has been identified at the very initial stage of the oxidation reaction. This chemisorbed oxygen transforms to the oxide form at a rate which depends on the pressure of the oxidizing atmosphere. Residual gaseous carbon compounds which are present even under UHV conditions result in the simultaneous formation of surface carbide which accompanies the initial stage of oxidation. This carbide however decomposes later as oxidation proceeds. Adventitious hydrocarbon adsorption occurs on the formed oxide layer.

  19. The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat

    PubMed Central

    Si, Tong; Wang, Xiao; Zhao, Chunzhao; Huang, Mei; Cai, Jian; Zhou, Qin; Dai, Tingbo; Jiang, Dong

    2018-01-01

    Systemic wound response (SWR), a well-characterized systemic signaling response, plays crucial roles in plant defense responses. Progress in understanding of the SWR in abiotic stress has also been aided by the researchers. However, the function of SWR in freezing stress remains elusive. In this study, we showed that local mild mechanical wounding enhanced freezing tolerance in newly occurred systemic leaves of wheat plants (Triticum aestivum L.). Wounding significantly increased the maximal photochemical efficiency of photosystem II, net photosynthetic rate, and the activities of the antioxidant enzymes under freezing stress. Wounding also alleviated freezing-induced chlorophyll decomposition, electrolyte leakage, water lose, and membrane peroxidation. In addition, wounding-induced freezing stress mitigation was closely associated with the ratio between reduced glutathione (GSH) and oxidized glutathione (GSSG), and the ratio between ascorbate (AsA) and dehydroascorbate (DHA), as well as the contents of total soluble sugars and free amino acids. Importantly, pharmacological study showed that wounding-induced freezing tolerance was substantially arrested by pretreatment of wheat leaves with the scavenger of hydrogen peroxide (H2O2) or the inhibitor of NADPH oxidase (RBOH). These results support the hypothesis that local mechanical wounding-induced SWR in newly occurred leaves is largely attributed to RBOH-dependent H2O2 production, which may subsequently induce freezing tolerance in wheat plants. This mechanism may have a potential application to reduce the yield losses of wheat under late spring freezing conditions. Highlights: In our previous research, we found that local mechanical wounding could induce freezing tolerance in the upper systemic leaves of wheat plants. Surprisingly, in this paper, we further demonstrated that local mechanical wounding could also increase freezing resistance in newly occurred leaves of wheat plants. RBOH mediated H2O2 and ascorbate–glutathione cycle participate in this systemic wound response. PMID:29593774

  20. Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding

    PubMed Central

    Gaupels, Frank; Furch, Alexandra C. U.; Zimmermann, Matthias R.; Chen, Faxing; Kaever, Volkhard; Buhtz, Anja; Kehr, Julia; Sarioglu, Hakan; Kogel, Karl-Heinz; Durner, Jörg

    2016-01-01

    Cucurbits developed the unique extrafascicular phloem (EFP) as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima). Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint toward a wound-induced shift in the redox status of the EFP. Nitric oxide (NO) is another important player in stress-induced redox signaling in plants. Therefore, we analyzed NO-dependent protein modifications in the EFP. Six to forty eight hours after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1) and Cyclophilin 18 (CYP18) as well as the 26.5 kD isoform of Phloem Protein 2 (PP2) were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP) in the EFP and discuss the possible function of this second messenger in systemic NO and redox signaling within the EFP. PMID:26904092

  1. In Situ Formation Of Reactive Barriers For Pollution Control

    DOEpatents

    Gilmore, Tyler J.; Riley, Robert G.

    2004-04-27

    A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.

  2. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  3. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Shannon S.; Rafiee, Mohammad

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers ormore » oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.« less

  4. Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, D.; Pravica, M.; Kim, E.

    This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on themore » cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.« less

  5. High capacity electrode materials for batteries and process for their manufacture

    DOEpatents

    Johnson, Christopher S.; Xiong, Hui; Rajh, Tijana; Shevchenko, Elena; Tepavcevic, Sanja

    2018-04-03

    The present invention provides a nanostructured metal oxide material for use as a component of an electrode in a lithium-ion or sodium-ion battery. The material comprises a nanostructured titanium oxide or vanadium oxide film on a metal foil substrate, produced by depositing or forming a nanostructured titanium dioxide or vanadium oxide material on the substrate, and then charging and discharging the material in an electrochemical cell from a high voltage in the range of about 2.8 to 3.8 V, to a low voltage in the range of about 0.8 to 1.4 V over a period of about 1/30 of an hour or less. Lithium-ion and sodium-ion electrochemical cells comprising electrodes formed from the nanostructured metal oxide materials, as well as batteries formed from the cells, also are provided.

  6. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviorsmore » of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite materials made with added lanthanide and uranium oxides. These analyses show the corrosion behaviors of the alloy/ceramic composite materials are very similar to the corrosion behaviors of multi-phase alloy waste forms, and that the presence of oxide inclusions does not impact the corrosion behaviors of the alloy phases. Mixing with metallic waste streams is beneficial to lanthanide and uranium oxides in that they react with Zr in the fuel waste to form highly durable zirconates. The measured corrosion behaviors suggest properly formulated composite materials would be suitable waste forms for combined metallic and oxide waste streams generated during electrometallurgical reprocessing of spent nuclear fuel. Electrochemical methods are suitable for evaluating the durability and modeling long-term behavior of composite waste forms: the degradation model developed for metallic waste forms can be applied to the alloy phases formed in the composite and an affinity-based mineral dissolution model can be applied to the ceramic phases.« less

  7. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  8. Development of a 30 kW Inductively Coupled Plasma Torch Facility for Advanced Aerospace Material Investigations

    DTIC Science & Technology

    2012-02-21

    passive oxidation of zirconium diboride forms zirconia and boron oxide, and the passive oxidation of silicon carbide forms silica and carbon monoxide: ZrB2... silicon carbide composites in the ICP wind tunnels. However, this concept has never been explored as an in situ diagnostic for UHTC materials systems...Process- ing, properties, and arc jet oxidation of hafnium diboride/ silicon carbide ultra high temperature ceramics. J Mater Sci 2004;39:5925–37. 12

  9. Mössbauer study of oxide phase distributions in rust formed on steel constructions near the Black Sea in Sochi

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Lauer, Yu. A.; Goloborodko, P. G.; Polyakov, A. M.

    2016-12-01

    The phase composition of the intermediate oxide layers formed on elements of steel structures at different positions relative to the sea water of the Black Sea near Sochi are investigated. The differences of the phase composition of these oxide layers are shown, depending on the location of the design details in relation to the sea and the abundancies of certain types of oxides in the studied layers are discussed.

  10. Oxidation of DJ-1 Induced by 6-Hydroxydopamine Decreasing Intracellular Glutathione

    PubMed Central

    Miyama, Akiko; Saito, Yoshiro; Yamanaka, Kazunori; Hayashi, Kojiro; Hamakubo, Takao; Noguchi, Noriko

    2011-01-01

    DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H2O2)-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H2O2, was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH. PMID:22132160

  11. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  12. Highly oxidized superconductors

    DOEpatents

    Morris, D.E.

    1994-09-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  13. Highly oxidized superconductors

    DOEpatents

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  14. Unexpected catalytic reactions of silyl-protected enol diazoacetates with nitrile oxides that form 5-arylaminofuran-2(3H)-one-4-carboxylates.

    PubMed

    Xu, Xinfang; Shabashov, Dmitry; Zavalij, Peter Y; Doyle, Michael P

    2012-02-03

    Silyl-protected enol diazoacetates undergo dirhodium(II)-catalyzed reactions with nitrile oxides to form acid-labile ketenimines via dipolar cycloaddition of nitrile oxides to a donor/acceptor cyclopropene and Lossen rearrangement of the dipolar adduct; acid catalysis converts the ketenimine to the furan product. © 2012 American Chemical Society

  15. Formation and corrosion of a 410 SS/ceramic composite

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  16. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  17. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  18. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  19. Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones.

    PubMed

    Pesavento, James J; Garcia, Benjamin A; Streeky, James A; Kelleher, Neil L; Mizzen, Craig A

    2007-09-01

    Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.

  20. Titania-graphene anode electrode paper

    DOEpatents

    Liu, Jun; Choi, Daiwon; Bennett, Wendy D.; Graff, Gordon L.; Shin, Yongsoon

    2015-05-26

    A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.

  1. Titania-graphene anode electrode paper

    DOEpatents

    Liu, Jun; Choi, Daiwon; Bennett, Wendy D; Graff, Gordon L; Shin, Yongsoon

    2013-10-15

    A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the nanocomposite material. Metal oxide and graphene are placed in a solvent to form a suspension. The suspension is then applied to a current collector. The solvent is then evaporated to form a nanocomposite material. The nanocomposite material is then electrochemically cycled to form a nanocomposite material of at least one metal oxide in electrical communication with at least one graphene layer.

  2. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    PubMed

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  3. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy

    PubMed Central

    Fillmore, N; Mori, J; Lopaschuk, G D

    2014-01-01

    Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975

  4. Fabrication of thermal microphotonic sensors and sensor arrays

    DOEpatents

    Shaw, Michael J.; Watts, Michael R.; Nielson, Gregory N.

    2010-10-26

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  5. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  6. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria

    PubMed Central

    Cardona, Tanai; Murray, James W.; Rutherford, A. William

    2015-01-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. PMID:25657330

  7. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria.

    PubMed

    Cardona, Tanai; Murray, James W; Rutherford, A William

    2015-05-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Two-electron Reduction versus One-electron Oxidation of the Type 3 Pair in the Multicopper Oxidases

    PubMed Central

    Kjaergaard, Christian H.; Jones, Stephen M.; Gounel, Sébastien; Mano, Nicolas; Solomon, Edward I.

    2015-01-01

    Multicopper Oxidases (MCOs) utilize an electron shuttling Type 1 Cu (T1) site in conjunction with a mononuclear Type 2 (T2) and a binuclear Type 3 (T3) site, arranged in a trinuclear copper cluster (TNC), to reduce O2 to H2O. Reduction of O2 occurs with limited overpotential indicating that all the coppers in the active site can be reduced via high-potential electron donors. Two forms of the resting enzyme have been observed in MCOs: the Alternative Resting form (AR), where only one of the three TNC Cu’s is oxidized, and the Resting Oxidized form (RO), where all three TNC Cu’s are oxidized. In contrast to the AR form, we show that in the RO form of a high-potential MCO, the binuclear T3 Cu(II) site can be reduced via the 700 mV T1 Cu. Systematic spectroscopic evaluation reveals that this proceeds by a two-electron process, where delivery of the first electron, forming a high energy, meta-stable half reduced T3 state, is followed by the rapid delivery of a second energetically favorable electron to fully reduce the T3 site. Alternatively, when this fully reduced binuclear T3 site is oxidized via the T1 Cu, a different thermodynamically favored half oxidized T3 form, i.e. the AR site, is generated. This behavior is evaluated by DFT calculations, which reveal that the protein backbone plays a significant role in controlling the environment of the active site coppers. This allows for the formation of the meta-stable, half reduced state and thus the complete reductive activation of the enzyme for catalysis. PMID:26075678

  9. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.

    PubMed

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-10-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575(T) under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575(T) grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575(T) are dominant under anoxic conditions. Furthermore, strain DSM 6575(T) forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575(T) , and could contribute to biogeochemical cycles of Fe and N in the environment. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  10. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGES

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D 5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H 2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo castmore » iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  11. Cermets and method for making same

    DOEpatents

    Aaron, W. Scott; Kinser, Donald L.; Quinby, Thomas C.

    1983-01-01

    The present invention is directed to a method for making a wide variety of general-purpose cermets and for radioactive waste disposal from ceramic powders prepared from urea-dispersed solutions containing various metal values. The powders are formed into a compact and subjected to a rapid temperature increase in a reducing atmosphere. During this reduction, one or more of the more readily reducible oxides in the compact is reduced to a selected substoichiometric state at a temperature below the eutectic phase for that particular oxide or oxides and then raised to a temperature greater than the eutectic temperature to provide a liquid phase in the compact prior to the reduction of the liquid phase forming oxide to solid metal. This liquid phase forms at a temperature below the melting temperature of the metal and bonds together the remaining particulates in the cermet to form a solid polycrystalline cermet.

  12. Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva.

    PubMed

    Romonti, Daniela E; Gomez Sanchez, Andrea V; Milošev, Ingrid; Demetrescu, Ioana; Ceré, Silvia

    2016-05-01

    The paper is focused on elaboration of ZrO2 films on pure zirconium via anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO2. In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with native oxide. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  14. Elemental Metals or Oxides Distributed on a Carbon Substrate or Self-Supported and the Manufacturing Process Using Graphite Oxide as Template

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    1999-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  15. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; ...

    2017-07-04

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Here, our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy “Alloy 33” using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. In conclusion, our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr 2O 4) oxides, wherein the concentration of the FeCr 2O 4 phasemore » decreased from the surface to the bulk-oxide interface.« less

  16. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  17. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2012-07-01

    Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.

  18. Microsomal oxidation of tribromoethylene and reactions of tribromoethylene oxide.

    PubMed

    Yoshioka, Tadao; Krauser, Joel A; Guengerich, F Peter

    2002-11-01

    Halogenated olefins are of interest because of their widespread use in industry and their potential toxicity to humans. Epoxides are among the enzymatic oxidation products and have been studied in regard to their toxicity. Most of the attention has been given to chlorinated epoxides, and we have previously studied the reactions of the mono-, di-, tri-, and tetrachloroethylene oxides. To further test some hypotheses concerning the reactivity of these compounds, we prepared tribromoethylene (TBE) oxide and compared it to trichloroethylene (TCE) oxide and other chlorinated epoxides. TBE oxide reacted with H(2)O about 3 times faster than did TCE oxide. Several hydrolysis products of TBE oxide were the same as formed from TCE oxide, i.e., glyoxylic acid, CO, and HCO(2)H. Br(2)CHCO(2)H was formed from TBE oxide; the yield was higher than for Cl(2)CHCO(2)H formed in the hydrolysis of TCE oxide. The yield of tribromoacetaldehyde was < 0.4% in aqueous buffer (pH 7.4). In rat liver microsomal incubations containing TBE and NADPH, Br(2)CHCO(2)H was a major product, and tribromoacetaldehyde was a minor product. These results are consistent with schemes previously developed for halogenated epoxides, with migration of bromine being more favorable than for chlorine. Reaction of TBE oxide with lysine yielded relatively more N-dihaloacetyllysine and less N-formyllysine than in the case of TCE oxide. This same pattern was observed in the products of the reaction of TBE oxide with the lysine residues in bovine serum albumin. We conclude that the proposed scheme of hydrolysis of halogenated epoxides follows the expected halide order and that this can be used to rationalize patterns of hydrolysis and reactivity of other halogenated epoxides.

  19. Methods of selectively incorporating metals onto substrates

    DOEpatents

    Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  20. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  1. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  2. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  3. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  4. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    PubMed Central

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  5. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE PAGES

    Dou, Jian; Tang, Yu; Nguyen, Luan; ...

    2016-12-22

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  6. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jian; Tang, Yu; Nguyen, Luan

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  7. Degradation of nonmodified and rhodium modified aluminide coating deposited on CMSX 4 superalloy.

    PubMed

    Zagula-Yavorska, Maryana; Wierzbińska, Małgorzata; Gancarczyk, Kamil; Sieniawski, Jan

    2016-07-01

    The Ni-base superalloy CMSX 4 used in the turbine blades of aircraft engines was coated with rhodium layer (0.5-μm thick). Next coated CMSX 4 superalloy was aluminized by the CVD method. The rhodium modified aluminide coating and nonmodified aluminide coating were oxidized at 1100°C at the air atmosphere. The rhodium modified aluminide coating showed about twice better oxidation resistance than the nonmodified one. The spallation equal 62% of the total area was observed on the surface of the nonmodified coating whereas only 36% spallation area was observed on the surface of the rhodium modified aluminide coating after the oxidation test. The oxide layer formed on the surface of the nonmodified coating was composed of nonprotective (Ni,Cr)Al2 O4 and (Ni,Cr)O phases. Aluminium in the coating reacts with oxygen, forming a protective α-Al2 O3 oxide on the surface of the rhodium modified aluminide coating. When the oxide cracks and spalls due to oxidation, additional aluminium from the coating diffuses to the surface to form the oxide. The presence of protective Al2 O3 oxide on the surface of the rhodium modified aluminide coating slows coating degradation. Therefore, rhodium modified aluminide coating has better oxidation resistance than the nonmodified one. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  8. Investigation of transient forms of sulfur during biological treatment of spent caustic.

    PubMed

    Kalantari, Hamed; Nosrati, Mohsen; Shojaosadati, Seyed Abbas; Shavandi, Mahmoud

    2018-06-01

    In the present study, the production of various transient forms of sulfur during biological oxidation of sulfidic spent caustics under haloalkaline conditions in a stirred tank bioreactor is investigated. Also, the effects of abiotic aeration (chemical oxidation), dissolved oxygen (DO) concentration and sodium concentration on forms of sulfur during biological treatment are demonstrated. Thioalkalivibrio versutus strain was used for sulfide oxidation in spent caustic (SC). The aeration had an important effect on sulfide oxidation and its final products. At DO concentrations above 2 mg l -1 , majority of sulfide was oxidized to sulfate. Maximum sulfide removal efficiency (%R) and yield of sulfate production [Formula: see text] was obtained in Na + concentration ranging from 0.6 to 2 M. Abiotic aeration, which is the most important factor of production of thiosulfate, resulted in the formation of an undesired product-polysulfide. However, abiotic aeration can be used as a pretreatment to biological treatment. In the bioreactor the removal efficiency was obtained as 82.7% and various forms of sulfur such as polysulfide, biosulfur, thiosulfate and sulfate was observed during biological treatment of SC.

  9. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    PubMed

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  10. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    PubMed

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  11. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  12. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.

    PubMed

    Sul, Y T; Johansson, C B; Jeong, Y; Albrektsson, T

    2001-06-01

    Titanium implants have a thin oxide surface layer. The properties of this oxide layer may explain the good biocompatibility of titanium implants. Anodic oxidation results in a thickening of the oxide film, with possible improved biocompatability of anodized implants. The aim of the present study was twofold: (1) firstly, to characterize the growth behaviour of galvanostatically prepared anodic oxide films on commercially pure (c.p.) titanium and (2) secondly, to establish a better understanding of the electroche0mical growth behaviour of anodic oxide on commercially pure titanium (ASTM grade 1) after changes of the electrochemical parameters in acetic acid, phosphoric acid, calcium hydroxide, and sodium hydroxide under galvanostatic anodizing mode. The oxide thickness was measured by Ar sputter etching in Auger Electron spectroscopy (AES) and the colours were estimated by an L*a*b* system (lightness, hue and saturation) using a spectrophotometer. In the first part of our study, it was demonstrated that the interference colours were useful to identify the thickness of titanium oxide. It was also found that the anodic forming voltages with slope (dV/dt) in acid electrolytes were higher than in alkaline electrolytes. Each of the used electrolytes demonstrates an intrinsically specific growth constant (nm/V) in the range of 1.4--2.78 nm/V. In the second part of our study we found, as a general trend, that an increase of electrolyte concentration and electrolyte temperature respectively decreases the anodic forming voltage, the anodic forming rate (nm/s) and the current efficiency (nm.cm(2)/C), while an increase of the current density and the surface area ratio of the anode to cathode increase the anodic forming voltage, the anodic forming rate and the current efficiency. The effects of electrolyte concentration, electrolyte temperature, and agitation speed were explained on the basis of the model of the electrical double layer.

  13. Ceramic oxyanion emitter

    DOEpatents

    Delmore, J.E.; Appelhans, A.D.; Peterson, E.S.

    1996-04-09

    A rare earth oxide matrix (composition of matter) is formed which emits (upon heating) heavy metal oxide anions (oxyanions) into a gas phase, wherein the anions are emitted with high intensity, and wherein longevity of life of the composition of matter is retained. The matter is formed by blending a major component of a rare earth oxide, europium oxide (Eu{sub 2}O{sub 3}) or ytterbium oxide (Yb{sub 2}O{sub 3}), with a minor component of a barium (Ba), calcium (Ca) or strontium (Sr) salt of a heavy metal oxyanion. Heavy anions are emitted upon heating the composition of matter to a predetermined temperature of about 800 C.

  14. Ceramic oxyanion emitter

    DOEpatents

    Delmore, James E.; Appelhans, Anthony D.; Peterson, Eric S.

    1996-01-01

    A rare earth oxide matrix (composition of matter) is formed which emits (upon heating) heavy metal oxide anions (oxyanions) into a gas phase, wherein the anions are emitted with high intensity, and wherein longevity of life of the composition of matter is retained. The matter is formed by blending a major component of a rare earth oxide, Europium oxide (Eu.sub.2 O.sub.3) or Ytterbium oxide (Yb.sub.2 O.sub.3), with a minor component of a Barium (Ba), Calcium (Ca) or Strontium (Sr) salt of a heavy metal oxyanion. Heavy anions are emitted upon heating the composition of matter to a predetermined temperature of about 800.degree. C.

  15. Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid

    NASA Astrophysics Data System (ADS)

    Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin

    2018-01-01

    The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.

  16. Low-temperature preparation of GaN-SiO2 interfaces with low defect density. II. Remote plasma-assisted oxidation of GaN and nitrogen incorporation

    NASA Astrophysics Data System (ADS)

    Bae, Choelhwyi; Lucovsky, Gerald

    2004-11-01

    Low-temperature remote plasma-assisted oxidation and nitridation processes for interface formation and passivation have been extended from Si and SiC to GaN. The initial oxidation kinetics and chemical composition of thin interfacial oxide were determined from analysis of on-line Auger electron spectroscopy features associated with Ga, N, and O. The plasma-assisted oxidation process is self-limiting with power-law kinetics similar to those for the plasma-assisted oxidation of Si and SiC. Oxidation using O2/He plasma forms nearly pure GaOx, and oxidation using 1% N2O in N2 forms GaOxNy with small nitrogen content, ~4-7 at. %. The interface and dielectric layer quality was investigated using fabricated GaN metal-oxide-semiconductor capacitors. The lowest density of interface states was achieved with a two-step plasma-assisted oxidation and nitridation process before SiO2 deposition.

  17. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy

    NASA Astrophysics Data System (ADS)

    Velraj, S.; Zhu, J. H.; Painter, A. S.; Du, S. W.; Li, Y. T.

    2014-02-01

    Impedance spectroscopy was used to evaluate the oxide films formed on cobalt-coated Crofer 22 APU ferritic stainless steel after thermal oxidation at 800 °C in air for different times (i.e. 2, 50, 100 and 500 h). Impedance spectra of the oxide films exhibited two or three semicircles depending on the oxidation time, which correspond to the presence of two or three individual oxide layers. Coupled with scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD), the individual oxide layer corresponding to each semicircle was determined unambiguously. Impedance spectrum analysis of the oxide films formed on the sample after thermal exposure at 800 °C in air for 2 h led to the identification of the low-frequency and high-frequency semicircles as being from Cr2O3 and Co3O4, respectively. SEM/EDS and XRD analysis of the 500-h sample clearly revealed the presence of three oxide layers, analyzed to be Co3-xCrxO4, CoCr2O4, and Cr2O3. Although the SEM images of the 50-h and 100-h samples did not clearly show the CoCr2O4 layer, impedance plots implied their presence. The oxide scales were assigned to their respective semicircles and the electrical properties of Co3-xCrxO4, CoCr2O4 and Cr2O3 were determined from the impedance data.

  18. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  19. The cyclic oxidation resistance at 1200 C of beta-NiAl, FeAl, and CoAl alloys with selected third element additions

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Titran, R. H.

    1992-01-01

    The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

  20. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  1. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  2. Oxidation of High-temperature Alloy Wires in Dry Oxygen and Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Lorincz, Jonathan A.; DeMange, Jeffrey J.

    2004-01-01

    Small diameter wires (150 to 250 microns) of the high temperature alloys Haynes 188, Haynes 230, Haynes 230, Haynes 214, Kanthal Al and PM2000 were oxidized at 1204 C in dry oxygen or 50% H2O /50% O2 for 70 Hours. The oxidation kinetics were monitored using a thermogravimetric technique. Oxide phase composition and morphology of the oxidized wires were determined by X-ray diffraction,field emission scanning electron microscopy, and energy dispersive spectroscopy. The alumina-forming alloys, Kanthal Al and PM2000, out-performed the chromia-forming alloys under this conditions. PM2000 was recommended as the most promising candidate for advanced hybrid seal applications for space reentry control surface seals or hypersonic propulsion system seals. This study also demonstrated that thermogravimetric analysis of small diameter wires is a powerful technique for the study of oxide volatility, oxide adherence, and breakaway oxidation.

  3. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  4. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    USGS Publications Warehouse

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.

  5. Method of producing highly oxidized superconductors containing barium, copper, and a third metal

    DOEpatents

    Morris, Donald E.

    1996-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  6. Modulation of opioid actions by nitric oxide signaling.

    PubMed

    Toda, Noboru; Kishioka, Shiroh; Hatano, Yoshio; Toda, Hiroshi

    2009-01-01

    Nitric oxide (NO) plays pivotal roles in controlling physiological functions, participates in pathophysiological intervention, and is involved in mechanisms underlying beneficial or untoward actions of therapeutic agents. Endogenous nitric oxide is formed by three isoforms of nitric oxide synthase: endothelial, neurogenic and inducible. The former two are constitutively present mainly in the endothelium and nervous system, respectively, and the latter one is induced by lipopolysaccharides or cytokines mainly in mitochondria and glial cells. Constitutively formed nitric oxide modulates the actions of morphine and related analgesics by either enhancing or reducing antinociception. Tolerance to and dependence on morphine or its withdrawal syndrome are likely prevented by nitric oxide synthase inhibition. Information concerning modulation of morphine actions by nitric oxide is undoubtedly useful in establishing new strategies for efficient antinociceptive treatment and for minimizing noxious and unintended reactions.

  7. EFFECTS OF PHOTOCHEMICAL OXIDANTS ON PLANTS

    EPA Science Inventory

    Photochemical oxidants are found in 'photochemical smog' which is a complex mixture of primary and secondary air pollutants. The photochemical oxidants are secondary air pollutants formed by the action of sunlight on nitrogen oxides and reactive hydrocarbons, their precursors. Th...

  8. University of Hawai‘i Cancer Center Connection

    PubMed Central

    Halm, Brunhild M; Lai, Jennifer F; Li, Xingnan; Custer, Laurie J; Pagano, Ian; Cooney, Robert V; Turner, Helen C; Brenner, David J

    2015-01-01

    Computed tomography (CT) is an imaging modality that exposes patients to ionizing radiation (IR). We review and report findings from our pilot study evaluating whether blood markers are altered in 17 children undergoing medically indicated CT scans. Blood was drawn before (‘pre-CT’) and 1 hour after (‘post-CT’ CT scans. Plasma carotenoids, tocopherols, Q10, ascorbic acid (AA) and uric acid (UA) were analyzed by RP-HPLC with diode-array and electrochemical detection. Dehydroascorbic acid (DHAA) was calculated by subtraction from total AA. Total antioxidant capacity (TAC) was measured using the ORAC assay. Cytokines were quantified using a multiplex immunoassay. γ-H2AX foci were visualized using immunofluorescence. Mean pre- and post-CT changes were compared using t-tests; P-levels < .05 indicated significance. All major plasma lipid soluble antioxidant levels were lower post- vs pre-CT (P < .05) possibly from the scavenging of free radicals formed by CT-induced IR. Average AA levels increased (134%) while DHAA levels were decreased (29%) post-CT, probably due to intracellular recycling of AA from DHAA. TAC levels in lipophilic and hydrophilic extracts were unchanged, suggesting that other antioxidants may have assisted in free radical quenching, which would corroborate their lower concentrations post-CT. Cytokine levels were unchanged and dose-dependent increases in γ-H2AX foci, a measure of double strand DNA breaks, were observed (P = .046, n = 3 children). Our results suggest that CT-derived IR can influence the antioxidant system and may elicit detrimental responses on the cellular level of young children. When possible and if appropriate non-IR based techniques such as ultrasound or magnetic resonance imaging should be used. PMID:25821654

  9. Pilot study for the establishment of biomarkers for radiation damage after computed tomography in children.

    PubMed

    Halm, Brunhild M; Franke, Adrian A; Lai, Jennifer F; Li, Xingnan; Custer, Laurie J; Pagano, Ian; Cooney, Robert V; Turner, Helen C; Brenner, David J

    2015-03-01

    Computed tomography (CT) is an imaging modality that exposes patients to ionizing radiation (IR). We review and report findings from our pilot study evaluating whether blood markers are altered in 17 children undergoing medically indicated CT scans. Blood was drawn before ('pre-CT') and 1 hour after ('post-CT' CT scans. Plasma carotenoids, tocopherols, Q10, ascorbic acid (AA) and uric acid (UA) were analyzed by RP-HPLC with diode-array and electrochemical detection. Dehydroascorbic acid (DHAA) was calculated by subtraction from total AA. Total antioxidant capacity (TAC) was measured using the ORAC assay. Cytokines were quantified using a multiplex immunoassay. γ-H2AX foci were visualized using immunofluorescence. Mean pre- and post-CT changes were compared using t-tests; P-levels < .05 indicated significance. All major plasma lipid soluble antioxidant levels were lower post- vs pre-CT (P < .05) possibly from the scavenging of free radicals formed by CT-induced IR. Average AA levels increased (134%) while DHAA levels were decreased (29%) post-CT, probably due to intracellular recycling of AA from DHAA. TAC levels in lipophilic and hydrophilic extracts were unchanged, suggesting that other antioxidants may have assisted in free radical quenching, which would corroborate their lower concentrations post-CT. Cytokine levels were unchanged and dose-dependent increases in γ-H2AX foci, a measure of double strand DNA breaks, were observed (P = .046, n = 3 children). Our results suggest that CT-derived IR can influence the antioxidant system and may elicit detrimental responses on the cellular level of young children. When possible and if appropriate non-IR based techniques such as ultrasound or magnetic resonance imaging should be used.

  10. Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water.

    PubMed

    Kamel, Alaa; Byrne, Christian; Vigo, Craig; Ferrario, Joseph; Stafford, Charles; Verdin, Gregory; Siegelman, Frederic; Knizner, Steven; Hetrick, James

    2009-02-01

    Ten organophosphate (OP) pesticides: phorate, disulfoton, terbufos, methidathion, bensulide, chlorethoxyfos, phosmet, methyl parathion, phostebupirim, and temephos were evaluated for their potential to undergo oxidation to their respective oxons and/or other oxidation analogues in laboratory water. Samples were collected at time intervals up to 72h of chlorination and analyzed by both gas chromatography-mass selective detection (GC-MSD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that methidathion and methyl parathion were stable in unchlorinated water, while all other OP pesticides were not stable over the 72h exposure period. In chlorinated water, phorate and disulfoton formed stable sulfone oxons. Temephos formed stable dioxon sulfoxide and dioxon sulfone. Methidathion, bensulide, chlorethyoxyfos, methyl parathion, and phostebupirim formed stable oxons over the 72h exposure period. Terbufos, phorate, disulfoton and temephos oxon sulfoxides; temephos sulfoxide; and phosmet oxon were initially formed but were not detected after 24h. The data illustrate that organothiophosphate pesticides may form oxons and/or other oxidation analogues during chlorination in water treatment plants, which are persistent for at least 72h.

  11. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    PubMed

    Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel

    2017-01-01

    Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  12. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II

    PubMed Central

    Pathak, Vinay; Prasad, Ankush

    2017-01-01

    Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060

  13. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less

  14. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  15. A spontaneous change in the oxidation states of Pd/WO3 toward an active phase during catalytic cycles of CO oxidation

    NASA Astrophysics Data System (ADS)

    Jeon, Byungwook; Kim, Ansoon; Lee, Young-Ahn; Seo, Hyungtak; Kim, Yu Kwon

    2017-11-01

    CO oxidation over Pd/WO3 films prepared on a glass substrate has been examined at the substrate temperature of 150 - 250 °C and pressures less than 1 Torr with a stoichiometric mixture of CO and O2. Under the given reaction condition, the chemical states of the Pd/WO3 film gradually change into the most catalytically active form with the highest saturation reaction rate regardless of the initial oxidation states. The measured CO oxidation rate over the Pd/WO3 is strongly dependent on the chemical states of Pd and W. Either metallic Pd or fully oxidized PdO phase is not as catalytically active as the active form with mixed metallic Pd and thin PdO layers supported on WO3 with partially reduced W5+ state which is spontaneously obtained during the catalytic reaction cycles. Our results indicate that the facile oxygen transfer between Pd and WO3 layers not only facilitate the spontaneous changes into the active form, but also act as a promotional role in CO oxidation over the Pd layer.

  16. Graphene heat dissipating structure

    DOEpatents

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  17. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.

    PubMed

    Ma, Yingying; Sun, Qiao; Smith, Sean C

    2017-05-24

    Oxidation is viewed as the second and rate-limiting step in the chromophore maturation process of the wild-type green fluorescent protein (GFP) under aerobic conditions. Molecular oxygen is the necessary oxidant for GFP chromophore biosynthesis. In this study, density functional theory (DFT) calculations were employed to study the mechanism of oxidation. Our results indicate that the deprotonation of the Tyr66 α-carbon is probably the rate-limiting step in the oxidation step. Electron transfer from the enolate form of the five-membered heterocycle (EFMH) to molecular oxygen, generating the triplet radical complex [EFMH˙O 2 - ˙] T , is an important step. This complex undergoes intersystem crossing to form an open-shell singlet diradical complex before it forms the closed-shell singlet hydroperoxy adduct. The formation of the hydroperoxy adduct is a proton-coupled electron transfer process. The energy barrier of H 2 O 2 elimination is 16.5 kcal mol -1 . The oxidation product IFMHH 2 O 2 that we discovered is a hydroxylated cyclic imine structure, which is consistent with the crystal structure trapped in the colorless Y66L variant. The relative energy of the oxidation product is -48.7 kcal mol -1 , which is in accordance with the experimental observation that the thermodynamically unfavourable cyclized product is trapped by oxidation. The results herein support the cyclization-oxidation-dehydration mechanism for the chromophore maturation of GFP.

  18. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  19. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  20. Thermionic converter performance with oxide collectors

    NASA Technical Reports Server (NTRS)

    Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.

    1977-01-01

    Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.

  1. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  2. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  3. Thermal and Surface Evaluation on The Process of Forming a Cu2O/CuO Semiconductor Photocatalyst on a Thin Copper Plate

    NASA Astrophysics Data System (ADS)

    Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.

    2018-04-01

    This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.

  4. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    PubMed

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  5. Studying anti-oxidative properties of inclusion complexes of α-lipoic acid with γ-cyclodextrin in single living fission yeast by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Noothalapati, Hemanth; Ikarashi, Ryo; Iwasaki, Keita; Nishida, Tatsuro; Kaino, Tomohiro; Yoshikiyo, Keisuke; Terao, Keiji; Nakata, Daisuke; Ikuta, Naoko; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2018-05-01

    α-lipoic acid (ALA) is an essential cofactor for many enzyme complexes in aerobic metabolism, especially in mitochondria of eukaryotic cells where respiration takes place. It also has excellent anti-oxidative properties. The acid has two stereo-isomers, R- and S- lipoic acid (R-LA and S-LA), but only the R-LA has biological significance and is exclusively produced in our body. A mutant strain of fission yeast, Δdps1, cannot synthesize coenzyme Q10, which is essential during yeast respiration, leading to oxidative stress. Therefore, it shows growth delay in the minimal medium. We studied anti-oxidant properties of ALA in its free form and their inclusion complexes with γ-cyclodextrin using this mutant yeast model. Both free forms R- and S-LA as well as 1:1 inclusion complexes with γ-cyclodextrin recovered growth of Δdps1 depending on the concentration and form. However, it has no effect on the growth of wild type fission yeast strain at all. Raman microspectroscopy was employed to understand the anti-oxidant property at the molecular level. A sensitive Raman band at 1602 cm-1 was monitored with and without addition of ALAs. It was found that 0.5 mM and 1.0 mM concentrations of ALAs had similar effect in both free and inclusion forms. At 2.5 mM ALAs, free forms inhibited the growth while inclusion complexes helped in recovered. 5.0 mM ALA showed inhibitory effect irrespective of form. Our results suggest that the Raman band at 1602 cm-1 is a good measure of oxidative stress in fission yeast.

  6. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  7. Preparation of highly oxidized RBa.sub.2 Cu.sub.4 O.sub.8 superconductors

    DOEpatents

    Morris, Donald E.

    1991-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. The compounds and structures thus formed are substantially nonsusceptible to variations in their oxygen content when subjected to changing temperatures, thereby forming a temperature-stable substantially single phase crystal.

  8. Multiple Pathways for Benzyl Alcohol Oxidation by Ru V =O 3+ and Ru IV =O 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Amit; Hull, Jonathan F.; Norris, Michael R.

    2011-02-21

    Significant rate enhancements are found for benzyl alcohol oxidation by the RuV=O3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to RuIV=O2+ and for the RuIV=O2+ form with added bases due to a new pathway, concerted hydride proton transfer (HPT).

  9. Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Amit; Hull, Jonathan F.; Norris, Michael R.

    2011-01-20

    Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway, concerted hydride proton transfer (HPT).

  10. Template-Growth of Highly Ordered Carbon Nanotube Arrays on Silicon POSTPRINT

    DTIC Science & Technology

    2006-09-01

    packed uni- form CNTs that are spatially isolated from each other is to use a growth template. Highly ordered anodic aluminum oxide ( AAO ) template can...process for evaporating thick aluminum of high quality and good adhesion. 15. SUBJECT TERMS Anodic Aluminum Oxide Template, Carbon Nanotubes (CNTs...within the highly ordered nanopores of an alumina oxide template, which is in turn formed on silicon through anodization of aluminum of unprecedented

  11. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices [Citrus sinensis (L.) Osbeck].

    PubMed

    Aschoff, Julian K; Kaufmann, Sabrina; Kalkan, Onur; Neidhart, Sybille; Carle, Reinhold; Schweiggert, Ralf M

    2015-01-21

    Carotenoid, flavonoid, and vitamin C concentrations were determined in fresh orange segments and a puree-like homogenate derived thereof, as well as freshly squeezed, flash-pasteurized, and pasteurized juices. Lutein and β-cryptoxanthin were slightly degraded during dejuicing, whereas β-carotene levels were retained. Vitamin C levels remained unaffected, whereas flavonoid levels decreased 8-fold upon juice extraction, most likely due to the removal of flavonoid-rich albedo and juice vesicles. Likewise, the presence of such fibrous matrix compounds during in vitro digestion was assumed to significantly lower the total bioaccessibility (BA) of all carotenoids from fresh fruit segments (12%) as compared to juices (29-30%). Mechanical disruption of orange segments prior to digestion did not alter carotenoid BA, whereas pasteurization of the freshly squeezed juice slightly increased BA by 9-11%. In addition to carotenoid BA, the stabilities of hesperidin, narirutin, and vitamin C including dehydroascorbic acid during in vitro digestion were monitored, and applied analytical methods were briefly validated.

  12. Method of producing highly oxidized superconductors containing barium, copper, and a third metal

    DOEpatents

    Morris, D.E.

    1996-02-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  13. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling.

    PubMed

    Travasso, Rui D M; Sampaio Dos Aidos, Fernando; Bayani, Anahita; Abranches, Pedro; Salvador, Armindo

    2017-08-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling agent. Its best characterized signaling actions in mammalian cells involve the early oxidation of thiols in cytoplasmic phosphatases, kinases and transcription factors. However, these redox targets are orders of magnitude less H 2 O 2 -reactive and abundant than cytoplasmic peroxiredoxins. How can they be oxidized in a signaling time frame? Here we investigate this question using computational reaction-diffusion models of H 2 O 2 signaling. The results show that at H 2 O 2 supply rates commensurate with mitogenic signaling a H 2 O 2 concentration gradient with a length scale of a few tenths of μm is established. Even near the supply sites H 2 O 2 concentrations are far too low to oxidize typical targets in an early mitogenic signaling time frame. Furthermore, any inhibition of the peroxiredoxin or increase in H 2 O 2 supply able to drastically increase the local H 2 O 2 concentration would collapse the concentration gradient and/or cause an extensive oxidation of the peroxiredoxins I and II, inconsistent with experimental observations. In turn, the local concentrations of peroxiredoxin sulfenate and disulfide forms exceed those of H 2 O 2 by several orders of magnitude. Redox targets reacting with these forms at rate constants much lower than that for, say, thioredoxin could be oxidized within seconds. Moreover, the spatial distribution of the concentrations of these peroxiredoxin forms allows them to reach targets within 1 μm from the H 2 O 2 sites while maintaining signaling localized. The recruitment of peroxiredoxins to specific sites such as caveolae can dramatically increase the local concentrations of the sulfenic and disulfide forms, thus further helping these species to outcompete H 2 O 2 for the oxidation of redox targets. Altogether, these results suggest that H 2 O 2 signaling is mediated by localized redox relays whereby peroxiredoxins are oxidized to sulfenate and disulfide forms at H 2 O 2 supply sites and these forms in turn oxidize the redox targets near these sites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Method for forming solar cell materials from particulars

    DOEpatents

    Eberspacher, Chris; Pauls, Karen Lea

    2001-01-01

    Materials in bulk and film forms are prepared from fine particulate precursors such as single-phase, mixed-metal oxides; multi-phase, mixed-metal particles comprising a metal oxide; multinary metal particles; mixtures of such particles with other particles; and particulate materials intercalated with other materials.

  15. Interplay of water and reactive elements in oxidation of alumina-forming alloys.

    PubMed

    Mortazavi, N; Geers, C; Esmaily, M; Babic, V; Sattari, M; Lindgren, K; Malmberg, P; Jönsson, B; Halvarsson, M; Svensson, J E; Panas, I; Johansson, L G

    2018-06-11

    High-temperature alloys are crucial to many important technologies that underpin our civilization. All these materials rely on forming an external oxide layer (scale) for corrosion protection. Despite decades of research on oxide scale growth, many open questions remain, including the crucial role of the so-called reactive elements and water. Here, we reveal the hitherto unknown interplay between reactive elements and water during alumina scale growth, causing a metastable 'messy' nano-structured alumina layer to form. We propose that reactive-element-decorated, hydroxylated interfaces between alumina nanograins enable water to access an inner cathode in the bottom of the scale, at odds with the established scale growth scenario. As evidence, hydride-nanodomains and reactive element/hydrogen (deuterium) co-variation are observed in the alumina scale. The defect-rich alumina subsequently recrystallizes to form a protective scale. First-principles modelling is also performed to validate the RE effect. Our findings open up promising avenues in oxidation research and suggest ways to improve alloy properties.

  16. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    PubMed

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  17. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, N.; Deery, E.; Warren, M. J.

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step in the biosynthesis of tetrapyrroles in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. Two near-atomic resolution structures of PBGD from B. megaterium are reported that demonstrate the time-dependent accumulation of partially oxidized forms of the cofactor, including one that possesses a tetrahedral C atom in the terminal pyrrole ring. The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form amore » linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.« less

  18. Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L. J.; Ridley, B. A.; Shetter, J. D.; Donahue, N. M.

    1985-01-01

    The first study is presented in which the mixing ratios of peroxyactyl nitrate (PAN) and nitrogen oxides, as well as those of peroxypropionyl nitrate and O3 and relevant meteorological parameters, were measured concurrently at a location that receives clean, continental air. The results show that, in clean conditions, nitrogen oxides present in the form of PAN can be as much or more abundant than the inorganic form. In addition, PAN can be an important source of peroxyacetyl radicals which may be important to oxidation processes in the gas as well as liquid phases.

  19. Generation and oxidation of aerosol deposited PdAg nanoparticles

    NASA Astrophysics Data System (ADS)

    Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.

    2013-10-01

    PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.

  20. Copper-catalyzed oxidative dimerizations of 3-N-hydroxy-aminoprop-1-enes to form 1,4-dihydroxy-2,3-diaminocyclohexanes with C2  symmetry.

    PubMed

    Ghorpade, Satish; Liu, Rai-Shung

    2014-11-17

    This work describes the one-step construction of complex and important molecular frameworks through copper-catalyzed oxidations of cheap tertiary amines. Copper-catalyzed aerobic oxidations of N-hydroxyaminopropenes to form C2 -symmetric N- and O-functionalized cyclohexanes are described. Such catalytic oxidations proceed with remarkable stereocontrol and high efficiency. Reductive cleavage of the two NO bonds of these products delivers 1,4-dihydroxy-2,3-diaminocyclohexanes, which are important skeletons of several bioactive molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  2. Casting technology for ODS steels - the internal oxidation approach

    NASA Astrophysics Data System (ADS)

    Miran, S.; Franke, P.; Möslang, A.; Seifert, H. J.

    2017-07-01

    The formation of stainless ODS steel by internal oxidation of as-cast steel has been investigated. An alloy (Fe-16Cr-0.2Al-0.05Y, wt.%) was embedded in a (VO/V2O3) powder mixture serving as an oxygen activity buffer and heat treated at 1450 °C for 20 h. After this procedure no oxide scale was present on the surface of the sample but a zone of internal oxidation with a depth of about 2000 μm was formed in its interior. The precipitates within this zone consisted of two types of oxides. Discrete aluminium oxide particles with a size of a few micrometres were formed in outer regions of the specimen. Finer aluminium-yttrium oxides with a size of some hundred nanometres were mainly precipitated in inner regions of the sample. The results can be considered as a promising step towards an alternative production route for ODS steels.

  3. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.

    PubMed

    Cho, Deok-Yong; Luebben, Michael; Wiefels, Stefan; Lee, Kug-Seung; Valov, Ilia

    2017-06-07

    Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta 2 O 5 , HfO 2 , and SiO 2 . Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure.

  4. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  5. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive just-in-time generation of a MnO2 based nanocatalyst.

    PubMed

    Lai, Wenqiang; Zeng, Qiao; Tang, Juan; Zhang, Maosheng; Tang, Dianping

    2018-01-10

    The authors describe a colorimetric immunoassay for the model nalyte aflatoxin B 1 (AFB 1 ). It is based on the just-in-time generation of an MnO 2 nanocatalyst. Unlike previously developed immunoassay, the chromogenic reaction relies on the just-in-time formation of an oxidase mimic without the aid of the substrate. Potassium permanganate (KMnO 4 ) is converted into manganese dioxide (MnO 2 ) which acts as an oxidase mimic that catalyzes the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to give a blue colored product. In the presence of ascorbic acid (AA), KMnO 4 is reduced to Mn(II) ions. This results in a decrease in the amount of MnO 2 nanocatalyst. Hence, the oxidation of TMB does not take place. By adding ascorbate oxidase, AA is converted into dehydroascorbic acid which cannot reduce KMnO 4 . Based on these observations, a colorimetric competitive enzyme immunoassay was developed where ascorbate oxidase and gold nanoparticle-labeled antibody against AFB 1 and magnetic beads carrying bovine serum albumin conjugated to AFB 1 are used for the determination of AFB 1 . In presence of AFB 1 , it will compete with the BSA-conjugated AFB 1 (on the magnetic beads) for the labeled antibody against AFB 1 on the gold nanoparticles. This makes the amount of ascorbate oxidase/anti-AFB 1 antibody-labeled gold nanoparticles, which conjugated on magnetic beads, reduce, and resulted in an increase of ascorbic acid. Under optimal conditions, the absorbance (measured at 652 nm) decreases with increasing AFB 1 concentrations in the range from 0.1 to 100 ng mL -1 , with a 0.1 ng mL -1 detection limit (at the 3S blank level). The accuracy of the assay was validated by analyzing spiked peanut samples. The results matched well with those obtained with a commercial ELISA kit. Conceivably, the method is not limited to aflatoxins but has a wide scope in that it may be applied to many other analytes for which respective antibodies are available. Graphical abstract Schematic illustration of ascorbate oxidase (AOx)-mediated potassium permanganate (KMnO 4 )-responsive ascorbic acid (AA) for visual colorimetric immunoassay of aflatoxin B 1 (AFB 1 ) by coupling with hydrolytic reaction of AOx toward AA and the KMnO 4 -Mn(II)-TMB system [note: 3,3',5,5'-tetramethylbenzidine: TMB].

  6. FATE, TRANSFORMATION AND TOXICITY OF MANUFACTURED NANOMATERIALS IN DRINKING WATER

    EPA Science Inventory

    Studies were conducted using several types of commercial metal oxide nanoparticles (two types of titanium dioxide, iron(III) oxide, zinc oxide, nickel oxide, and silica in powder form or liquid suspensions), functionalized quantum dots, lab-synthesized hematite nanoparticles a...

  7. Sol-gel based oxidation catalyst and coating system using same

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  8. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  9. Effect of Adding SiO2-Al2O3 Sol into Anodizing Bath on Corrosion Resistance of Oxidation Film on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Huicong; Zhu, Liqun; Li, Weiping

    Due to the widely use in automobile and construction field, AZ91D magnesium alloy need to be protected more effectively for its high chemical activity. In this paper, three kinds of films were formed on magnesium alloy. The first kind of film, named as anodic oxidation film, was prepared by anodic oxidation in the alkaline solution. The processes for preparing the second kind of film, named as multiple film, involved coating sol-gel on the samples and heat-treating before anodic oxidation. The third kind of film was prepared by anodic oxidation in the alkaline oxidation solution containning 5% (vol) SiO2-Al2O3 sol, named as modified oxidation film. The corrosion resistance of the three different films was investigated. The results showed that the modified oxidation film had the highest corrosion resistance due to the largest thickness and most dense surface morphology. Sol was discussed to react during the film forming process, which leaded to the difference between modified oxidation film and anodic oxidation film.

  10. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  11. Cu-rGO subsurface layer creation on copper substrate and its resistance to oxidation

    NASA Astrophysics Data System (ADS)

    Pietrzak, Katarzyna; Strojny-Nędza, Agata; Olesińska, Wiesława; Bańkowska, Anna; Gładki, Andrzej

    2017-11-01

    On the basis of a specially designed experiment, this paper presents a model, which is an attempt to explain the mechanism of formatting and creating oxidation resistance of Cu-rGO subsurface layers. Practically zero chemical affinity of copper to carbon is a fundamental difficulty in creating composite structures of Cu-C, properties which are theoretically possible to estimate. In order to bind the thermally reduced graphene oxide with copper surface, the effect of structural rebuilding of the copper oxide, in the process of annealing in a nitrogen atmosphere, have been used. On intentionally oxidized and anoxic copper substrates the dispersed graphene oxide (GO) and thermally reduced graphene oxide (rGO) were loaded. Annealing processes after the binding effects of both graphene oxide forms to Cu substrates were tested. The methods for high-resolution electron microscopy were found subsurface rGO-Cu layer having a substantially greater resistance to oxidation than pure copper. The mechanism for the effective resistance to oxidation of the Cu-rGO has been presented in a hypothetical form.

  12. Characteristics of high-k gate dielectric formed by the oxidation of sputtered Hf/Zr/Hf thin films on the Si substrate

    NASA Astrophysics Data System (ADS)

    Kim, H. D.; Roh, Y.; Lee, J. E.; Kang, H.-B.; Yang, C.-W.; Lee, N.-E.

    2004-07-01

    We have investigated the effects of high temperature annealing on the physical and electrical properties of multilayered high-k gate oxide [HfSixOy/HfO2/intermixed-layer(IL)/ZrO2/intermixed-layer(IL)/HfO2] in metal-oxide-semiconductor device. The multilayered high-k films were formed after oxidizing the Hf/Zr/Hf films deposited directly on the Si substrate. The subsequent N2 annealing at high temperature (>= 700 °C) not only results in the polycrystallization of the multilayered high-k films, but also causes the diffusion of Zr. The latter transforms the HfSixOy/HfO2/IL/ZrO2/IL/HfO2 film into the Zr-doped HfO2 film, and improves electrical properties in general. However, the thin SiOx interfacial layer starts to form if annealing temperature increases over 700 °C, deteriorating the equivalent oxide thickness. .

  13. System and process for producing fuel with a methane thermochemical cycle

    DOEpatents

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  14. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    NASA Astrophysics Data System (ADS)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  15. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans.

    PubMed

    Yang, Mengbi; Ruan, Jianqing; Gao, Hong; Li, Na; Ma, Jiang; Xue, Junyi; Ye, Yang; Fu, Peter Pi-Cheng; Wang, Jiyao; Lin, Ge

    2017-12-01

    Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.

  16. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  17. Growth behavior of anodic porous alumina formed in malic acid solution

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  18. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  19. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi.

    PubMed

    Rojas, Diego A; Urbina, Fabiola; Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo; Maldonado, Edio

    2018-02-01

    Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control.

  20. Multiple Pathways for Benzyl Alcohol Oxidation by Ru V=O 3+ and Ru IV=O 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Amit; Hull, Jonathan F.; Norris, Michael R.

    2011-01-20

    Significant rate enhancements are found for benzyl alcohol oxidation by the Ru V=O 3+ form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH 2)] 2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru IV=O 2+ and for the Ru IV=O 2+ form with added bases due to a new pathway involving concerted hydride proton transfer (HPT).

  1. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona

    PubMed Central

    Fuller, Christopher C.; Bargar, John R.

    2014-01-01

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using micro-focused Extended X-ray Absorption Fine Structure (EXAFS) and X-ray fluorescence (μSXRF) mapping , bulk EXAFS, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and micro-focused EXAFS spectra of Zn in the biogenic Mn oxides coating are indicative of Zn forming triple corner sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to decreasing in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in solid to solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating desorption is not controlled by dissolution of secondary Zn phases. In sum, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process in Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present. PMID:24460038

  2. Development and Validation of New Spectrophotometric Methods to Determine Enrofloxacin in Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.

    2015-07-01

    Four spectrophotometric methods, based on oxidation with cerium(IV), are investigated and developed to determine EFX in pure form and in dosage forms. The frst and second methods (Method A and method B) are direct, in which after the oxidation of EFX with cerium(IV) in acid medium, the absorbance of reduced and unreacted oxidant is measured at 275 and 320 nm, respectively. In the third (C) and fourth (D) methods after the reaction between EFX and oxidant is ensured to be completed the surplus oxidant is treated with either N-phenylanthranilic acid (NPA) or Alizarin Red S (ARS) dye and the absorbance of the oxidized NPA or ARS is measured at 440 or 420 nm. The methods showed good linearity over the concentration ranges of 0.5-5.0, 1.25-12.5, 10.0-100.0, and 6.0-60.0 μg/ml, for method A, B, C and D, respectively, with apparent molar absorptivity values of 4.42 × 10 4 , 8.7 × 10 3 , 9.31 × 10 2 , and 2.28 × 10 3 l/(mol· cm). The limits of detection (LOD), quantification (LOQ), and Sandell's sensitivity values and other validation results have also been reported. The proposed methods are successfully applied to determine EFX in pure form and in dosage forms.

  3. OXIDANT FORMATION IN THE GENERATION OF OZONE

    EPA Science Inventory

    Ozone samples generated by UV photolysis and silent electric discharge upon air or oxygen were examined to determine if other oxidants were formed. Chemical and physical methods (IR and UV spectroscopy) failed to show the presence of such oxidants. Absence of such oxidants was al...

  4. Estimation of the nitric oxide formed from hydroxylamine by Nitrosomonas

    PubMed Central

    Anderson, J. H.

    1965-01-01

    1. Nitric oxide that was produced by reducing nitrite with an excess of acidified potassium iodide under nitrogen in Warburg respirometer flasks was rapidly absorbed by a solution of permanganate in sodium hydroxide held in the side arm. A small amount of nitrous oxide (or nitrogen) that was also produced was not absorbed. 2. By using a quantitative method for the recovery of nitrite from samples of the alkaline permanganate, it was found that the sum of the nitrite N formed and the residual nitrous oxide N was equivalent to the nitrite N used to generate the gases. These results showed that alkaline permanganate completely oxidized nitric oxide to nitrite. The method was suitable for determining 0·4–20 μmoles of nitric oxide. 3. The technique was used to determine the nitric oxide content of the nitrogenous gas that was produced anaerobically from hydroxylamine by an extract of the autotrophic nitrifying micro-organism Nitrosomonas in the presence of methylene blue as electron acceptor. PMID:14342235

  5. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    DOEpatents

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  6. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers.

    PubMed Central

    Bédard, C; Knowles, R

    1989-01-01

    Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and their inhibitor profiles are similar. Inhibitors thought to be specific to ammonia oxidizers have been used in environmental studies of nitrification. However, almost all of the numerous compounds found to inhibit ammonia oxidizers also inhibit methanotrophs, and most of the inhibitors act upon the monooxygenases. Many probably exert their effect by chelating copper, which is essential to the proper functioning of some monooxygenases. The lack of inhibitors specific for one or the other of the two groups of bacteria hampers the determination of their relative roles in nature. PMID:2496288

  7. The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario

    NASA Astrophysics Data System (ADS)

    Kendrick, J. L.; Jamieson, R. A.

    2016-09-01

    Orthopyroxene-oxide symplectites after olivine are among the most enigmatic features of corona assemblages in metagabbros. Two coronitic metagabbro bodies from the Algonquin suite in the Grenville Orogen, Ontario, contain exceptionally well preserved orthopyroxene + Fe-Ti oxide symplectite formed during prograde Ottawan (ca. 1060 Ma) granulite-facies metamorphism. Based on textural evidence, we propose a new hypothesis for the formation of these symplectites. Under oxidising conditions associated with fluid infiltration, magmatic olivine and ilmenite underwent a coupled reaction whereby magnetite produced by oxidation of olivine replaced adjacent igneous ilmenite. Ilmenite was re-precipitated as a fine-grained intergrowth with orthopyroxene and some magnetite in the former olivine sites. This hypothesis is supported by textural evidence showing partial replacement of magmatic ilmenite by magnetite and a close spatial association between magmatic oxides and orthopyroxene + Fe-Ti oxide symplectite, which locally radiates from ilmenite into olivine. Measured orthopyroxene/oxide ratios in the symplectite (20-35% oxides) agree with the ratio predicted from the proposed reaction (ca. 30%). Coronas and pseudomorphs formed during high-grade metamorphism, with increasing fO2 interpreted to result from fluid infiltration at near-peak conditions of ca. 13 kbar, 800 °C. The same samples contain red-brown fine-grained aggregates interpreted as iddingsite pseudomorphs after olivine. Raman spectroscopy suggests that the iddingsite consists largely of amorphous silica and Fe-hydroxide; textural evidence indicates that it formed by late-stage oxidation and hydration of olivine that survived earlier metamorphism. The unusual co-occurrence of granulite-facies pseudomorphs after olivine with an alteration product formed at near-surface conditions indicates that some olivine may survive protracted high-grade metamorphism in environments where fluid access is limited.

  8. Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation

    PubMed Central

    Speldewinde, Shaun H.; Tuite, Mick F.

    2017-01-01

    Mammalian and fungal prions arise de novo; however, the mechanism is poorly understood in molecular terms. One strong possibility is that oxidative damage to the non-prion form of a protein may be an important trigger influencing the formation of its heritable prion conformation. We have examined the oxidative stress-induced formation of the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We used tandem affinity purification (TAP) and mass spectrometry to identify the proteins which associate with Sup35 in a tsa1 tsa2 antioxidant mutant to address the mechanism by which Sup35 forms the [PSI+] prion during oxidative stress conditions. This analysis identified several components of the cortical actin cytoskeleton including the Abp1 actin nucleation promoting factor, and we show that deletion of the ABP1 gene abrogates oxidant-induced [PSI+] prion formation. The frequency of spontaneous [PSI+] prion formation can be increased by overexpression of Sup35 since the excess Sup35 increases the probability of forming prion seeds. In contrast to oxidant-induced [PSI+] prion formation, overexpression-induced [PSI+] prion formation was only modestly affected in an abp1 mutant. Furthermore, treating yeast cells with latrunculin A to disrupt the formation of actin cables and patches abrogated oxidant-induced, but not overexpression-induced [PSI+] prion formation, suggesting a mechanistic difference in prion formation. [PIN+], the prion form of Rnq1, localizes to the IPOD (insoluble protein deposit) and is thought to influence the aggregation of other proteins. We show Sup35 becomes oxidized and aggregates during oxidative stress conditions, but does not co-localize with Rnq1 in an abp1 mutant which may account for the reduced frequency of [PSI+] prion formation. PMID:28369054

  9. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    PubMed

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  10. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnefont, J.P.; Cepanec, C.; Leroux, J.P.

    Carnitine palmitoyltransferase (CPT) II deficiency, an inherited disorder of mitochondrial long-chain fatty-acid (LCFA) oxidation, results in two distinct clinical act phenotypes, namely, an adult (muscular) form and an infantile (hepatocardiomuscular) form. The rationale of this phenotypic heterogeneity is poorly understood. The adult form of the disease is commonly ascribed to the Ser-113-Leu substitution in CPT II. Only few data are available regarding the molecular basis of the infantile form of the disease. We report herein a homozygous A-2399-C transversion predicting a Tyr-628-Ser substitution in a CPT II-deficient infant. In vitro expression of mutant cDNA in COS-1 cells demonstrated the responsibilitymore » of this mutation for the disease. Metabolic consequences of the Ser-113-Leu and Tyr-628-Ser substitutions were studied in fibroblasts. The Tyr-628-Ser substitution (infantile form) resulted in a 10% CPT II residual activity, markedly impairing LCFA oxidation, whereas the Ser-113-Leu substitution (adult form) resulted in a 20% CPT II residual activity, without consequence on LCFA oxidation. These data show that CPT II activity has to be reduced below a critical threshold in order for LCFA oxidation in fibroblasts to be impaired. The hypothesis that this critical threshold differs among tissues could provide a basis to explain phenotypic heterogeneity of CPT II deficiency. 32 refs., 5 figs.« less

  12. Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes

    PubMed Central

    Yamamoto, Dai; Kawai, Ikki; Kuroda, Kensuke; Ichino, Ryoichi; Okido, Masazumi; Seki, Azusa

    2012-01-01

    Various techniques for forming TiO2 coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO2 coatings were prepared using the following three processes: anodizing in 0.1 M H3PO4 or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO2 coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the R B-I value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO2 crystal structure did not influence the osteoconductivity. Anodized TiO2 coatings were hydrophilic, but thermally oxidized TiO2 coatings were less hydrophilic than anodized TiO2 coatings because they lacked in surface OH groups. The TiO2 coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples. PMID:23316128

  13. Effect of niobium alloying level on the oxidation behavior of titanium aluminides at 850°C

    NASA Astrophysics Data System (ADS)

    Banu, Alexandra; Marcu, Maria; Petrescu, Simona; Ionescu, Nicolae; Paraschiv, Alexandru

    2016-12-01

    This work addresses the alloying of titanium aluminides used in aircraft engine applications and automobiles. The oxidation resistance behavior of two titanium aluminides of α2 + γ(Ti3Al + TiAl) and orthorhombic Ti2NbAl, recognized as candidates for high-temperature applications, was investigated by exposure of the alloys for 100 h in air. Thus, oxidation resistance was expressed as the mass gain rate, whereas surface aspects were analyzed using scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and the type of oxidation products was analyzed by X-ray diffraction and Raman spectroscopy. The orthorhombic Ti2NbAl alloy was embrittled, and pores and microcracks were formed as a result of oxygen diffusion through the external oxide layer formed during thermal oxidation for 100 h.

  14. Air Oxidation Behavior of Two Ti-Base Alloys Synthesized by HIP

    NASA Astrophysics Data System (ADS)

    Liu, S.; Guo, Q. Q.; Liu, L. L.; Xu, L.; Liu, Y. Y.

    2016-04-01

    The oxidation behavior of Ti-5Al-2.5Sn and Ti-6Al-4V produced by hot isostatic pressing (HIP) has been studied at 650-850°C in air for 24 h. The oxidation kinetics of both alloys followed the parabolic law with good approximation, except for Ti-5Al-2.5Sn oxidized at 850°C. Multi-layered scales formed on both alloys at 750°C and 850°C. Ternary additions of Sn and V accounted for the different morphology of the scales formed on these two alloys. In addition, the oxidation behavior of HIP alloys is compared with that of the corresponding cast alloys and the scaling mechanism is discussed.

  15. Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.; Misencik, J. A.

    1981-01-01

    The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.

  16. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    PubMed Central

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  17. Microparticles with hierarchical porosity

    DOEpatents

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  18. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, N.Q.; Horne, C.R.

    1994-03-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

  19. Method of fabricating a monolithic solid oxide fuel cell

    DOEpatents

    Minh, Nguyen Q.; Horne, Craig R.

    1994-01-01

    In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

  20. Coatings Based on Nanodispersed Oxide Materials Produced by the Method of Pneumatic Spraying

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Lysak, I. A.; Malinovskaya, T. D.; Lysak, G. V.

    2018-03-01

    New approaches are proposed, relying on which the coatings from nanodispersed oxide materials are formed on polypropylene fibers. It is shown that in the course of the viscous fluid - solid state transition of the polymer its nanoparticles are stabilized on the surface of the formed fibers.

  1. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  2. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  3. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    PubMed

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  4. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  5. PET fiber fabrics modified with bioactive titanium oxide for bone substitutes.

    PubMed

    Kokubo, Tadashi; Ueda, Takahiro; Kawashita, Masakazu; Ikuhara, Yuichi; Takaoka, Gikan H; Nakamura, Takashi

    2008-02-01

    A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 degrees C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of PET specimen, but did not form an apatite on its surface in a simulated body fluid (SBF) within 3 d. The PET plate formed with the amorphous titanium oxide was subsequently soaked in water or HCl solutions with different concentrations at 80 degrees C for different periods of time. The titanium oxide on PET was transformed into nano-sized anatase by the water treatment and into nano-sized brookite by 0.10 M HCl treatment at 80 degrees C for 8 d. The former did not form the apatite on its surface in SBF within 3 d, whereas the latter formed the apatite uniformly on its surface. Adhesive strength of the titanium oxide and apatite layers to PET plate was increased by pre-treatment of PET with 2 wt% NaOH solution at 40 degrees C for 2 h. A two-dimensional fabric of PET fibers 24 microm in diameter was subjected to the NaOH pre-treatment at 40 degrees C, titania solution treatment at 25 degrees C and subsequent 0.10 M HCl treatment at 80 degrees C. Thus treated PET fabric formed the apatite uniformly on surfaces of individual fibers constituting the fabric in SBF within 3 d. Two or three dimensional PET fabrics modified with the nano-sized brookite on surfaces of the individual fibers constituting the fabric by the present method are believed to be useful as flexible bone substitutes, since they could be integrated with living bone through the apatite formed on their constituent fibers.

  6. Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boll, Torben; Unocic, Kinga A.; Pint, Bruce A.

    Abstract This study applies atom probe tomography (APT) to analyze the oxide scales formed on model NiAlCr alloys doped with Hf, Y, Ti, and B. Due to its ability to measure small amounts of alloying elements in the oxide matrix and its ability to quantify segregation, t he technique offers a possibility for detailed studies of the dopant’s fate during high-temperature oxidation. Three model NiAlCr alloys with different additions of Hf, Y, Ti, and B were prepared and oxidized in O 2at 1,100°C for 100 h. All specimens showed an outer region consisting of different spinel oxides with relativelymore » small grains and the protective Al 2O 3-oxide layer below. APT analyses focused mainly on this protective oxide layer. In all the investigated samples segregation of both Hf and Y to the oxide grain boundaries was observed and quantified. Neither B nor Ti were observed in the alumina grains or at the analyzed interfaces. The processes of formation of oxide scales and segregation of the alloying elements are discussed. The experimental challenges of the oxide analyses by APT are also addressed.« less

  7. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    PubMed

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Interfaces in Oxides Formed on NiAlCr Doped with Y, Hf, Ti, and B

    DOE PAGES

    Boll, Torben; Unocic, Kinga A.; Pint, Bruce A.; ...

    2017-03-20

    Abstract This study applies atom probe tomography (APT) to analyze the oxide scales formed on model NiAlCr alloys doped with Hf, Y, Ti, and B. Due to its ability to measure small amounts of alloying elements in the oxide matrix and its ability to quantify segregation, t he technique offers a possibility for detailed studies of the dopant’s fate during high-temperature oxidation. Three model NiAlCr alloys with different additions of Hf, Y, Ti, and B were prepared and oxidized in O 2at 1,100°C for 100 h. All specimens showed an outer region consisting of different spinel oxides with relativelymore » small grains and the protective Al 2O 3-oxide layer below. APT analyses focused mainly on this protective oxide layer. In all the investigated samples segregation of both Hf and Y to the oxide grain boundaries was observed and quantified. Neither B nor Ti were observed in the alumina grains or at the analyzed interfaces. The processes of formation of oxide scales and segregation of the alloying elements are discussed. The experimental challenges of the oxide analyses by APT are also addressed.« less

  9. Population Structure of Manganese-Oxidizing Bacteria in Stratified Soils and Properties of Manganese Oxide Aggregates under Manganese–Complex Medium Enrichment

    PubMed Central

    Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin

    2013-01-01

    Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment conditions, along with the formation of rhodochrosite in such aggregates. Therefore, this study provides insights into the structure and diversity of soil-borne bacterial communities in Mn(II)-oxidizing habitats and supports the contribution of soil-borne Mn(II)-oxidizing bacteria to Mn oxide mineralization in soils. PMID:24069232

  10. Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma.

    PubMed

    Fischer, Adam P; Miles, Sarah L

    2017-02-01

    Accumulation of hypoxia inducible factor-1 alpha (HIF-1α) in malignant tissue is known to contribute to oncogenic progression and is inversely associated with patient survival. Ascorbic acid (AA) depletion in malignant tissue may contribute to aberrant normoxic activity of HIF-1α. While AA supplementation has been shown to attenuate HIF-1α function in malignant melanoma, the use of dehydroascorbic acid (DHA) as a therapeutic means to increase intracellular AA and modulate HIF-1α function is yet to be evaluated. Here we compared the ability of AA and DHA to increase intracellular vitamin C content and decrease the malignant potential of human melanoma by reducing the activity of HIF-1α. HIF-1α protein accumulation was evaluated by western blot and transcriptional activity was evaluated by reporter gene assay using a HIF-1 HRE-luciferase plasmid. Protein expressions and subcellular localizations of vitamin C transporters were evaluated by western blot and confocal imaging. Intracellular vitamin C content following AA, ascorbate 2-phosphate (A2P), or DHA supplementation was determined using a vitamin C assay. Malignant potential was accessed using a 3D spheroid Matrigel invasion assay. Data was analyzed by One or Two-way ANOVA with Tukey's multiple comparisons test as appropriate with p<0.05 considered significant. Melanoma cells expressed both sodium dependent vitamin C (SVCT) and glucose (GLUT) transporters for AA and DHA transport respectively, however advanced melanomas responded favorably to AA, but not DHA. Physiological glucose conditions significantly impaired intracellular vitamin C accumulation following DHA treatment. Consequently, A2P and AA, but not DHA treated cells demonstrated lower HIF-1α protein expression and activity, and reduced malignant potential. The ability of AA to regulate HIF-1α was dependent on SVCT2 function and SVCT2 was not significantly inhibited at pH representative of the tumor microenvironment. The use of ascorbic acid as an adjuvant cancer therapy remains under investigated. While AA and A2P were capable of modulating HIF-1α protein accumulation/activity, DHA supplementation resulted in minimal intracellular vitamin C activity with decreased ability to inhibit HIF-1α activity and malignant potential in advanced melanoma. Restoring AA dependent regulation of HIF-1α in malignant cells may prove beneficial in reducing chemotherapy resistance and improving treatment outcomes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Oxidation of palladium on Au(111) and ZnO(0001) supports

    DOE PAGES

    Lallo, J.; Tenney, S. A.; Kramer, A.; ...

    2014-10-21

    The oxidation of supported Pd-deposits on Au(111) and ZnO(0001) single crystals has been studied by x- ray photoemission spectroscopy (XPS). Oxidation has been carried out ex-situ in a high-pressure cell with subsequent vacuum-transfer and characterization by XPS in ultrahigh vacuum (UHV), as well as using in-situ characterization by synchrotron based near-ambient pressure XPS. On Au(111) alloying of Pd with the substrate competes with oxidation and only sufficiently thick Pd films have been found to oxidize. For Pd on ZnO the oxidation conditions depend on the amount of deposited Pd. Thicker Pd deposits behave similar to bulk Pd, while thinner filmsmore » oxidize already at lower temperatures. Interestingly, for very small amounts of Pd, in-situ XPS shows full oxidation at room temperature and at less than 0.6 mbar O₂ pressure. This indicates a lowering of the kinetic barriers for oxidation of very small supported Pd-clusters. The formed oxide is, however, not stable in UHV and a slow reduction is observed. The instability of this oxide indicates that the Pd-oxide formed at the interface to ZnO may have different chemical properties compared to bulk PdO or surface oxides on Pd.« less

  12. Arsenite Oxidation by a Poorly-Crystalline Manganese Oxide 2. Results from X-ray Absorption Spectroscopy and X-ray Diffraction

    PubMed Central

    Lafferty, Brandon J.; Ginder-Vogel, Matthew; Zhu, Mengqiang; Livi, Kenneth J. T.; Sparks, Donald L.

    2010-01-01

    Arsenite (AsIII) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (AsV). AsIII oxidation by MnIV-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During AsIII oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that MnII sorption on a poorly-crystalline hexagonal birnessite (δ-MnO2) is important in passivation early during reaction with AsIII. Also, it appears that MnIII in the δ-MnO2 structure is formed by conproportionation of sorbed MnII and MnIV in the mineral structure. The content of MnIII within the δ-MnO2 structure appears to increase as the reaction proceeds. Binding of AsV to δ-MnO2 also changes as MnIII becomes more prominent in the δ-MnO2 structure. The data presented indicate that AsIII oxidation and AsV sorption by poorly-crystalline δ-MnO2 is greatly affected by Mn oxidation state in the δ-MnO2 structure. PMID:20977204

  13. Monoterpene SOA - Contribution of first-generation oxidation products to formation and chemical composition

    NASA Astrophysics Data System (ADS)

    Mutzel, Anke; Rodigast, Maria; Iinuma, Yoshiteru; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    Investigation of the consecutive reactions of first-generation terpene oxidation products provides insight into the formation of secondary organic aerosol (SOA). To this end, OH radical reactions with α-pinene, β-pinene, and limonene were examined along with the OH-oxidation of nopinone as a β-pinene oxidation product and pinonaldehyde and myrtenal as α-pinene oxidation products. The SOA yield of β-pinene (0.50) was much higher than that of α-pinene (0.35) and the limonene/OH system (0.30). This is opposite to the ozonolysis SOA yields described in the literature. The growth curve of SOA from β-pinene shows the contribution of secondary reactions, such as further reaction of nopinone. This contribution (17%) and the high SOA yield of nopinone (0.24) might lead to the high SOA formation potential observed for β-pinene. The majority of the C9 oxidation products observed from β-pinene can be attributed to the consecutive reaction of nopinone, whereas in the case of pinonaldehyde, only a few α-pinene oxidation products were identified. Nopinone contributes significantly to the formation of pinic acid (51%), homoterpenylic acid (74%), and 3-methyl-1,2,3-butane-tricarboxylic acid (MBTCA, 88%) during β-pinene oxidation. The oxidation of pinonaldehyde was expected to produce important SOA markers, but only negligible amounts were identified. This indicates that their formation by oxidation of α-pinene must proceed via different pathways from the further oxidation of pinonaldehyde. Only pinonic acid and MBTCA were found in considerable amounts and were formed in α-pinene oxidation with 57% yield, while that for the pinonaldehyde/OH reaction was 33%. The lack of important SOA marker compounds might cause the low SOA yield (0.07) observed for pinonaldehyde. Based on the low SOA yield, pinonaldehyde contributes only 4.5% to α-pinene SOA. Myrtenal was identified among the gas-phase products of α-pinene oxidation. A majority of α-pinene SOA marker compounds was indeed formed by myrtenal oxidation, especially terebic acid (84%), pinic acid (76%), and diaterpenylic acid acetate (DTAA; 40%). In general, the contribution of myrtenal to α-pinene SOA is estimated to be as high as 23%. Among the detected compounds, homoterpenylic acid was positively identified as a new SOA marker compound, which was formed from β-pinene/OH and nopinone/OH but not from α-pinene/OH. A new reaction pathway yielding MBTCA was also identified in the β-pinene/OH system formed by the oxidation of nopinone, while in the case of α-pinene, the oxidation of pinonaldehyde yielded MBTCA.

  14. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    PubMed

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility.

    PubMed

    Michiardi, A; Aparicio, C; Planell, J A; Gil, F J

    2006-05-01

    Various oxidation treatments were applied to nearly equiatomic NiTi alloys so as to form a Ni-free protective oxide on the surface. Sample surfaces were analyzed by X-ray Photoelectron Spectroscopy, and NiTi transformation temperatures were determined by differential scanning calorimetry (DSC) before and after the surface treatment. An ion release experiment was carried out up to one month of immersion in SBF for both oxidized and untreated surfaces. The results show that oxidation treatment in a low-oxygen pressure atmosphere leads to a high surface Ti/Ni ratio, a very low Ni surface concentration and a thick oxide layer. This oxidation treatment does not significantly affect the shape memory properties of the alloy. Moreover, the oxide formed significantly decreases Ni release into exterior medium comparing with untreated surfaces. As a consequence, this new oxidation treatment could be of great interest for biomedical applications, as it could minimize sensitization and allergies and improve biocompatibility and corrosion resistance of NiTi shape memory alloys. (c) 2005 Wiley Periodicals, Inc.

  16. Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation.

    PubMed

    Carlsson, Daniel O; Lindh, Jonas; Strømme, Maria; Mihranyan, Albert

    2015-05-11

    The susceptibility of Iα- and Iβ-dominated cellulose to TEMPO-mediated oxidation was studied in this work since the cellulose Iα-allomorph is generally considered to be thermodynamically less stable and therefore more reactive than the cellulose Iβ-allomorph. Highly crystalline Cladophora nanocellulose, which is dominated by the Iα-allomorph, was oxidized to various degrees with TEMPO oxidant via bulk electrolysis in the absence of co-oxidants. Further, the Cladophora nanocellulose was thermally annealed in glycerol to produce its Iβ-dominated form and then oxidized. The produced materials were subsequently studied using FTIR, CP/MAS (13)C NMR, XRD, and SEM. The solid-state analyses confirmed that the annealed Cladophora cellulose was successfully transformed from an Iα- to an Iβ-dominated form. The results of the analyses of pristine and annealed TEMPO-oxidized samples suggest that Iα- and Iβ-dominated cellulose do not differ in susceptibility to TEMPO-oxidation. This work hence suggests that cellulose from different sources are not expected to differ in susceptibility to the oxidation due to differences in allomorph composition.

  17. Desulfurization apparatus and method

    DOEpatents

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Numakura, H.

    The structure and the formation mechanism of oxides during internal oxidation have attracted much attention, and extensive studies have been carried out on this subject. Recently, Jang et al. reported the results of atom-probe microanalysis of oxide particles, or solute-oxygen clusters, in an internally oxidized Cu-0.16 at.% Mg alloy. They found that the composition varies from particle to particle even in the same specimen, and reported that some clusters consist only of magnesium atoms. On the basis of the results, they suggested that the oxidation proceeds in this alloy as follows: (1) the solute atoms form clusters, (2) the clustersmore » absorb oxygen atoms to form both hypo- and hyperstoichiometric oxide particles, (3) the particles grow to form the stoichiometric oxide, MgO. They show the presence of Mg atom clusters with no oxygen association. By assuming that the analyzed area is in the unoxidized region, i.e., ahead of the oxidation front, they interpret this observation as evidence for clustering of the solute atoms prior to oxide formation. However, according to the phase diagram, such clustering is not expected in the absence of oxygen, since the solute concentration, 0.16 at.%, is far below the solubility limit at the oxidation temperature of 900[degree]C, about 3.5 at.%. In atom probe experiments, it sometimes happens that detection efficiencies for different ion species are considerably different because some experimental parameters are not chosen properly. It seems possible that the data resulted from an unusually low detection efficiency for O ions. Since their conclusion raises an important issue on the mechanism of internal oxidation, it is desirable to examine experimental conditions carefully, and to check the reproducibility of data.« less

  19. Carbon Monoxide Oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum

    PubMed Central

    Diekert, Gabriele B.; Thauer, Rudolf K.

    1978-01-01

    Cultures of Clostridium formicoaceticum and C. thermoaceticum growing on fructose and glucose, respectively, were shown to rapidly oxidize CO to CO2. Rates up to 0.4 μmol min−1 mg of wet cells−1 were observed. Carbon monoxide oxidation by cell suspensions was found (i) to be dependent on pyruvate, (ii) to be inhibited by alkyl halides and arsenate, and (iii) to stimulate CO2 reduction to acetate. Cell extracts catalyzed the oxidation of carbon monoxide with methyl viologen at specific rates up to 10 μmol min−1 mg of protein−1 (35°C, pH 7.2). Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate and ferredoxin from C. pasteurianum were ineffective as electron acceptors. The catalytic mechanism of carbon monoxide oxidation was “ping-pong,” indicating that the enzyme catalyzing carbon monoxide oxidation can be present in an oxidized and a reduced form. The oxidized form was shown to react reversibly with cyanide, and the reduced form was shown to react reversibly with alkyl halides: cyanide inactivated the enzyme only in the absence of carbon monoxide, and alkyl halides inactivated it only in the presence of carbon monoxide. Extracts inactivated by alkyl halides were reactivated by photolysis. The findings are interpreted to indicate that carbon monoxide oxidation in the two bacteria is catalyzed by a corrinoid enzyme and that in vivo the reaction is coupled with the reduction of CO2 to acetate. Cultures of C. acidi-urici and C. cylindrosporum growing on hypoxanthine were found not to oxidize CO, indicating that clostridia mediating a corrinoid-independent total synthesis of acetate from CO2 do not possess a CO-oxidizing system. PMID:711675

  20. The Otto Aufranc Award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation.

    PubMed

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Yong Sik

    2011-02-01

    Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants.

  1. Manganese oxide helices, rings, strands, and films, and methods for their preparation

    DOEpatents

    Suib, Steven L.; Giraldo, Oscar; Marquez, Manuel; Brock, Stephanie

    2003-01-07

    Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.

  2. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.

    1986-01-01

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  3. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  4. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  5. Anodic Oxidative Modification of Egg White for Heat Treatment.

    PubMed

    Takahashi, Masahito; Handa, Akihiro; Yamaguchi, Yusuke; Kodama, Risa; Chiba, Kazuhiro

    2016-08-31

    A new functionalization of egg white was achieved by an electrochemical reaction. The method involves electron transfer from thiol groups of egg white protein to form disulfide bonds. The oxidized egg white produced less hydrogen sulfide during heat treatment; with sufficient application of electricity, almost no hydrogen sulfide was produced. In addition, gels formed by heating electrochemically oxidized egg white exhibited unique properties, such as a lower gelation temperature and a softened texture, presumably due to protein aggregation and electrochemically mediated intramolecular disulfide bond formation.

  6. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  7. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.

  8. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  9. Epitaxial thinning process

    NASA Technical Reports Server (NTRS)

    Siegel, C. M. (Inventor)

    1984-01-01

    A method is described for thinning an epitaxial layer of a wafer that is to be used in producing diodes having a specified breakdown voltage and which also facilitates the thinning process. Current is passed through the epitaxial layer, by connecting a current source between the substrate of the wafer and an electrolyte in which the wafer is immersed. When the wafer is initially immersed, the voltage across the wafer initially drops and then rises at a steep rate. When light is applied to the wafer the voltage drops, and when the light is interrupted the voltage rises again. These changes in voltage, each indicate the breakdown voltage of a Schottky diode that could be prepared from the wafer at that time. The epitaxial layer is thinned by continuing to apply current through the wafer while it is immersed and light is applied, to form an oxide film and when the oxide film is thick the wafer can then be cleaned of oxide and the testing and thinning continued. Uninterrupted thinning can be achieved by first forming an oxide film, and then using an electrolyte that dissolves the oxide about as fast as it is being formed, to limit the thickness of the oxide layer.

  10. Energy band structure and electrical properties of Ga-oxide/GaN interface formed by remote oxygen plasma

    NASA Astrophysics Data System (ADS)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.

  11. Solvent polarity effect on quality of n-octadecanethiol self-assembled monolayers on copper and oxidized copper

    NASA Astrophysics Data System (ADS)

    Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han

    2014-11-01

    This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents

  12. Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis.

    PubMed

    Siciliano, G; Piazza, S; Carlesi, C; Del Corona, A; Franzini, M; Pompella, A; Malvaldi, G; Mancuso, M; Paolicchi, A; Murri, L

    2007-05-01

    The causes of Amyotrophic Lateral Sclerosis (ALS) are unknown. A bulk of evidence supports the hypothesis that oxidative stress and mitochondrial dysfunction can be implicated in ALS pathogenesis. METHODS =: We assessed, in cerebrospinal fluid (CSF) and in plasma of 49 ALS patients and 8 controls, the amount of oxidized proteins (AOPP, advanced oxidation protein products), the total antioxidant capacity (FRA, the ferric reducing ability), and, in CSF, two oxidation products, the 4-hydroxynonenal and the sum of nitrites plus nitrates. The FRA was decreased (p = 0.003) in CSF, and AOPP were increased in both CSF (p = 0.0039) and plasma (p = 0.001) of ALS patients. The content of AOPP was differently represented in CSF of ALS clinical subsets, resulting in increase in the common and pseudopolyneuropathic forms (p < 0.001) and nearly undetectable in the bulbar form, as in controls. The sum of nitrites plus nitrates and 4-hydroxynonenal were unchanged in ALS patients compared with controls. Our results, while confirming the occurrence of oxidative stress in ALS, indicate how its effects can be stratified and therefore implicated differently in the pathogenesis of different clinical forms of ALS.

  13. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    NASA Astrophysics Data System (ADS)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  14. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. II - Oxidation behavior

    NASA Technical Reports Server (NTRS)

    Haasch, R. T.; Tewari, S. K.; Sircar, S.; Loxton, C. M.; Mazumder, J.

    1992-01-01

    Isothermal oxidation behaviors of NbAl3 alloy synthesized by laser cladding were investigated at temperatures between 800 and 1400 C, and the effect of vanadium microalloying on the oxidation of the laser-clad alloy was examined. The oxidation kinetics of the two alloys were monitored using thermal gravimetric weight gain data, and the bulk and surface chemistries were analyzed using XRD and XPS, respectively. It was found that NbAl3 did not form an exclusive layer of protective Al2O3. The oxidation products at 800 C were found to be a mixture of Nb2O5 and Al2O3. At 1200 C, a mixture of NbAlO4, Nb2O5, and Al2O3 formed; and at 1400 C, a mixture of NbAlO4, Al2O3, NbO2, NbO(2.432), and Nb2O5 formed. The addition of V led to a dramatic increase of the oxidation rate, which may be related to the formation of (Nb, V)2O5 and VO2, which grows in preference to protective Al2O3.

  15. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower crust is being exhumed. Additionally, IODP U1473A and ODP 1105A had similar correlation values of 0.11 (on a scale of -1 to 1), whereas ODP Hole 735B had double the correlation value of 0.24. Since ODP Hole 735B has older rocks than the other two holes, it may have recorded more deformation comparatively speaking.

  16. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.

  17. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  18. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  19. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  20. Atomically Dispersed Pd–O Species on CeO 2(111) as Highly Active Sites for Low-Temperature CO Oxidation

    DOE PAGES

    Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.; ...

    2017-09-07

    Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less

  1. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  2. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOEpatents

    Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  3. Atomically Dispersed Pd–O Species on CeO 2(111) as Highly Active Sites for Low-Temperature CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.

    Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less

  4. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  5. Electrochemical corrosion of a noble metal-bearing alloy-oxide composite

    DOE PAGES

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2017-04-27

    The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods Furthermore, the lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. In a passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallicsmore » eventually failed.« less

  6. Role of metal oxides in the thermal degradation of poly(vinyl chloride)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, M.C.; Viswanath, S.G.

    Thermal degradation of poly(vinyl chloride) has been studied in the presence of metal oxides by a thermogravimetric method. It follows a two-step mechanism. In the first step chlorine free radical is formed as in the case of pure PVC, and in the second step chlorine free radical replaces oxygen from metal oxide to form metal chloride and oxygen free radical. Subsequently, the oxygen free radical abstracts hydrogen from PVC. Formation of metal chloride is the rate-controlling step. The metal chlorides formed during the thermal degradation either volatilize or decompose simultaneously to lower metallic chlorides depending on the boiling point ormore » the volatilization temperature.« less

  7. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  8. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

    2014-05-27

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  9. Transparent conducting oxides and production thereof

    DOEpatents

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

  10. Simultaneous reduction and carburization of ilmenite

    NASA Astrophysics Data System (ADS)

    Coley, K. S.; Terry, B. S.; Grieveson, P.

    1995-05-01

    Western Australian ilmenite was reduced using “Collie” coal at temperatures in the range 1587 to 1790 K to form carbon-saturated iron and titanium oxycarbide. The oxycarbide phase formed from Ti3O5 at temperatures below 1686 K and from Ti2O3 at temperatures above 1686 K. At 1686 K, both mechanisms occurred. The reaction rate was controlled by oxidation of carbon by carbon dioxide generated by reduction of the oxide phase. The final product at temperatures up to 1686 K was a fine dispersion of titanium oxycarbide in iron. At 1790 K, the reducing oxide tended to remain intact and formed a coarser distribution. In general, manganese impurities from the ilmenite were confined to the iron phase in the product, although some of the coarser oxycarbide particles formed at 1790 K contained trapped manganese at the internal pores.

  11. Characterization of the Alumina Scale formed on Coated and Uncoated Doped Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Kinga A; Parish, Chad M; Pint, Bruce A

    2011-01-01

    To investigate the mechanisms by which Y and La dopants affect the oxidation behavior of Ni base single crystal superalloys, the oxide scales formed on two variants of a commercial X4 alloy, each with and without a MCrAlYHfSi coating were characterized. The alloy systems were oxidized for 100h at 1100 C and then examined using analytical transmission electron microscopy. Without a coating, a duplex scale was formed on the superalloy surface comprised of an outer Ni rich spinel type layer and an inner columnar Al2O3 layer. In this case, Hf and Ti were found segregated to the alumina grain boundariesmore » in the outer part of the scale on both alloys but only Hf was detected near the metal alumina interface. There was no evidence of Ta, Y or La segregation to the scale grain boundaries after this exposure. The scale formed on the alloys with the thermally sprayed coating was primarily alumina, and Y and Hf segregated to the alumina grain boundaries for both alloys. There was evidence of Ti rich oxides in the outer part of the scale indicating that Ti had diffused through the coating into the thermally grown oxide but La was not found.« less

  12. Zirconia-molybdenum disilicide composites

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  13. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOEpatents

    Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  14. Gas storage cylinder formed from a composition containing thermally exfoliated graphite

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    A gas storage cylinder or gas storage cylinder liner, formed from a polymer composite, containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(exp 2)/g to 2600 m(exp 2)2/g.

  15. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  16. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  17. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  18. ENGINEERING BULLETIN: CHEMICAL OXIDATION TREATMENT

    EPA Science Inventory

    Oxidation destroys hazardous contaminants by chemically converting them to nonhazardous or less toxic compounds that are ideally more stable, less mobile, and/or inert. However, under some conditions, other hazardous compounds may be formed. The oxidizing agents most commonly use...

  19. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  20. Nitride Fuel Development Using Cryo-process Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brandi M; Windes, William E

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less

  1. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Taylor, Christopher D.; Kim, Eunja

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models.more » herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.« less

  2. Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi

    PubMed Central

    Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo

    2018-01-01

    Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control. PMID:29432450

  3. The influence of Si in Ni on the interface modification and the band alignment between Ni and alumina

    NASA Astrophysics Data System (ADS)

    Yoshitake, Michiko; Nemšák, Slavomír; Skála, Tomáš; Tsud, Nataliya; Matolín, Vladimír; Prince, Kevin C.

    2018-06-01

    The influence of a small amount of Si in a Ni single crystal on the interface formation between aluminum oxide and Ni has been investigated. The interface was formed by in-situ growth of the oxide by simultaneous supply of Al and oxygen onto Ni(1 1 1) in an ultrahigh vacuum chamber equipped with XPS apparatus. The oxide growth and the interface formation were compared between Si-containing Ni(1 1 1) and pure Ni(1 1 1). It was revealed that Si segregated on the surface of Ni and oxidized, forming an epitaxial thin alumino-silicate film. Valence band spectra demonstrated that the band offset between the oxide and Ni (energy level difference between the valence band top and the Fermi level) is different due to the oxidized Si segregation at the interface.

  4. Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.

    PubMed

    Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R

    2010-11-23

    Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.

  5. High-temperature oxidation/corrosion of iron-based superalloys

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Smeggil, J. G.; Bailey, R. S.; Schuster, J. C.; Nowotny, H.

    1987-01-01

    The oxidation and sulfidation of several novel iron-base superalloys were evaluated in high-temperature cyclic tests. The experimental austenitic alloys examined were modifications of NASAUT-4GA which were developed for Stirling-engine application. The weight gains and resulting surface scales were measured and analyzed. Mixed oxide scales were found to form on all specimens exposed above 871 C. The build-up of these scales led to a depletion of Mn and Cr in a zone adjacent to the oxides. In addition, the initial oxidation of the Fe-rich alloy was inhibited by a thin but tenacious Si layer which formed at the interface between oxides and the parent layer. Sulfidation tests using Na2SO4 coatings resulted in the formation of a protective spinel and alpha-Fe2O3 phases. Preferential attack of the carbide phase by hydrogen was not observed after 350 h at 871 C.

  6. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGES

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; ...

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al 2O 3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, wemore » find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  7. Oxidation and emittance of superalloys in heat shield applications

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Clark, R. K.; Unnam, J.

    1986-01-01

    Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.

  8. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    PubMed

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  9. Niobium oxide compositions and methods for using same

    DOEpatents

    Goodenough, John B; Han, Jian-Tao

    2014-02-11

    The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

  10. Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement

    NASA Astrophysics Data System (ADS)

    Sant, S.; Mao, M.; Kools, J.; Koi, K.; Iwasaki, H.; Sahashi, M.

    2001-06-01

    Three different techniques, natural oxidation, remote plasma oxidation and low energy ion beam oxidation, have been proved to be equally effective in forming nano-oxide layers (NOLs) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. GMR values over 12% have been routinely obtained in spin-valve films with NOL, corresponding to a 30% specular enhancement over those without NOL. The consistency and robustness of the oxidation processes has been demonstrated by a very large GMR value ˜19% in a dual spin-valve film with the NOLs formed in both pinned layers, the oscillatory dependence of the interlayer coupling field on Cu layer thickness in specular enhanced spin-valve films and the uniform and repeatable film performance over 5 in. substrates.

  11. Influence of Gas Atmosphere Dew Point on the Selective Oxidation and the Reactive Wetting During Hot Dip Galvanizing of CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Lee, Seok Jae; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-01-01

    The selective oxidation and reactive wetting of intercritically annealed Si-bearing CMnSi transformation-induced plasticity steels were investigated by high-resolution transmission electron microscopy. In a N2 + 10 pct H2 gas atmosphere with a dew point (DP) ranging from 213 K to 278 K (-60 °C to 5 °C), a continuous layer of selective oxides was formed on the surface. Annealing in a higher DP gas atmosphere resulted in a thinner layer of external oxidation and a greater depth of internal oxidation. The hot dipping was carried out in a Zn bath containing 0.22 mass pct Al, and the bath temperature was 733 K (460 °C). Coarse and discontinuous Fe2Al5- x Zn x grains and Fe-Zn intermetallics (ζ and δ) were observed at the steel/coating interface after the hot dip galvanizing (HDG) of panels were annealed in a low DP atmosphere 213 K (-60 °C). The Fe-Zn intermetallics were formed both in areas where the Fe2Al5- x Zn x inhibition layer had not been formed and on top of non-stoichiometric Fe-Al-Zn crystals. Poor wetting was observed on panels annealed in a low DP atmosphere because of the formation of thick film-type oxides on the surface. After annealing in higher DP gas atmospheres, i.e., 263 K and 278 K (-10 °C and 5 °C), a continuous and fine-grained Fe2Al5- x Zn x layer was formed. No Fe-Zn intermetallics were formed. The small grain size of the inhibition layer was attributed to the nucleation of the Fe2Al5- x Zn x grains on small ferrite sub-surface grains and the presence of granular surface oxides. A high DP atmosphere can therefore significantly contribute to the decrease of Zn-coating defects on CMnSi TRIP steels processed in HDG lines.

  12. Oxidative stress, redox stress or redox success?

    PubMed

    Gutteridge, John M C; Halliwell, Barry

    2018-05-09

    The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress". Copyright © 2018. Published by Elsevier Inc.

  13. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nico, Peter S.; Stewart, Brandy D.; Fendorf, Scott

    2009-07-01

    The form of solid phase U after Fe(II) induced anaerobic remineralization of ferrihydrite in the presence of aqueous and absorbed U(VI) was investigated under both abiotic batch and biotic flow conditions. Experiments were conducted with synthetic ground waters containing 0.168 mM U(VI), 3.8 mM carbonate, and 3.0 mM Ca{sup 2+}. In spite of the high solubility of U(VI) under these conditions, appreciable removal of U(VI) from solution was observed in both the abiotic and biotic systems. The majority of the removed U was determined to be substituted as oxidized U (U(VI) or U(V)) into the octahedral position of the goethitemore » and magnetite formed during ferrihydrite remineralization. It is estimated that between 3% and 6% of octahedral Fe(III) centers in the new Fe minerals were occupied by U(VI). This site specific substitution is distinct from the non-specific U co-precipitation processes in which uranyl compounds, e.g. uranyl hydroxide or carbonate, are entrapped with newly formed Fe oxides. The prevalence of site specific U incorporation under both abiotic and biotic conditions and the fact that the produced solids were shown to be resistant to both extraction (30 mM KHCO{sub 3}) and oxidation (air for 5 days) suggest the potential importance of sequestration in Fe oxides as a stable and immobile form of U in the environment.« less

  14. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon, E-mail: Brandon.White@sjsu.edu

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetinmore » has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.« less

  15. Tribological Properties of Ti-Based Alloys in a Simulated Bone-Implant Interface with Ringer's Solution at Fretting Contacts

    PubMed Central

    Ramos-Saenz, C.R.; Sundaram, P.A.; Diffoot-Carlo, N.

    2010-01-01

    The wear properties of oxidized and non-oxidized gamma-TiAl (a potential biomaterial) as well as Ti-6Al-4V and CP-Ti disks were studied and characterized by means of standard wear tests using a custom made bone pin arrangement. The Ti-base disks were oxidized in air at 500°C and 800°C for one hour. The tribological properties of the oxides formed over the disks were studied using a linear reciprocating wear testing machine under both dry and simulated biological conditions using Ringer's solution. Loss of metal oxide and coefficient of friction values were determined from the wear testing. From the results, abrasion and adhesion were the primary wear mechanisms in each of the three alloy-bone pairs. Specifically, the oxide formed on gamma-TiAl possessed the highest COF and wear resistance of the three materials which were studied. Also, as expected, bone wears down faster than the Ti-base metal oxide. PMID:20826360

  16. Surface effects of corrosive media on hardness, friction, and wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Rengstorff, G. W. P.; Ishigaki, H.

    1985-01-01

    Hardness, friction, and wear experiments were conducted with magnesium oxide exposed to various corrosive media and also with elemental iron and nickel exposed to water and NaOH. Chlorides such as MgCl2 and sodium containing films were formed on cleaved magnesium oxide surfaces. The MgCl2 films softened the magnesium oxide surfaces and caused high friction and great deformation. Hardness was strongly influenced by the pH value of the HCl-containing solution. The lower the pH, the lower the microhardness. Neither the pH value of nor the immersion time in NaOH containing, NaCl containing, and HNO3 containing solutions influenced the microhardness of magnesium oxide. NaOH formed a protective and low friction film on iron surfaces. The coefficient of friction and the wear for iron were low at concentrations of NaOH higher than 0.01 N. An increase in NaOH concentration resulted in a decrease in the concentration of ferric oxide on the iron surface. It took less NaOH to form a protective, low friction film on nickel than on iron.

  17. Study of Nanodispersed Iron Oxides Produced in Steel Drilling by Contracted Electric-Arc Air Plasma Torch

    NASA Astrophysics Data System (ADS)

    Stefanov, P.; Galanov, D.; Vissokov, G.; Paneva, D.; Kunev, B.; Mitov, I.

    2008-06-01

    The optimal conditions on the plasma-forming gas flowrate, discharge current and voltage, distance between the plasma-torch nozzle and the metal plate surface for the process of penetration in and vaporization of steel plates by the contracted electric-arc air plasma torch accompanied by water quenching, were determined. The X-ray structural and phase studies as well as Mössbauer and electron microscope studies on the samples treated were performed. It was demonstrated that the vaporized elemental iron was oxidized by the oxygen present in the air plasma jet to form iron oxides (wüstite, magnetite, hematite), which, depending on their mass ratios, determined the color of the iron oxide pigments, namely, beginning from light yellow, through deep yellow, light brown, deep brown, violet, red-violet, to black. A high degree of dispersity of the iron oxides is thus produced, with an averaged diameter of the particles below 500 nm, and their defective crystal structure form the basis of their potential application as components of iron-containing catalysts and pigments.

  18. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-07

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  19. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    PubMed

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  20. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

Top