Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin
2015-01-01
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817
Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin
2015-10-01
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.
Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.
Simandan, T; Sun, J; Dix, T A
1998-01-01
DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems. PMID:9761719
Antioxidants and the Integrity of Ocular Tissues
Cabrera, Marcela P.; Chihuailaf, Ricardo H.
2011-01-01
Oxygen-derived free radicals are normally generated in many pathways. These radicals can interact with various cellular components and induce cell injury. When free radicals exceed the antioxidant capacity, cell injury causes diverse pathologic changes in the organs. The imbalance between the generation of free radicals and antioxidant defence is known as oxidative stress. The eye can suffer the effect of oxidative damage due to the etiopathogenesis of some pathological changes related to oxidative stress. This paper reviews the role of oxidative stress in the onset and progression of damage in different eye structures, the involvement of the antioxidant network in protecting and maintaining the homeostasis of this organ, and the potential assessment methodologies used in research and in some cases in clinical practice. PMID:21789267
Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.
Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong
2017-12-14
Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman
2018-06-01
Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.
Oxidation of aqueous polyselenide solutions. A mechanistic pulse radiolysis study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldbach, A.; Saboungi, M.L.; Johnson, J.A.
2000-05-04
The oxidation of aqueous polyselenide solutions was studied by pulse radiolysis in the presence of N{sub 2}O at pH 12.3; the hydroxyl radical OH was the predominant oxidant, while hydrogen selenide anions HSe{sup {minus}} and triselenide dianions Se{sub 3}{sup 2{minus}} were the major selenide species in the starting solution. The progress of the oxidation was monitored by optical spectroscopy. Transient polyselenides appeared immediately after the electron pulse and rapidly proceeded to form adducts with HSe{sup {minus}}, i.e., HSe{sub 2}{sup 2{minus}} and H{sub 2}Se{sub 2}{sup {minus}}, and a fairly long-lived intermediate that was identified as the diselenide radical anion Se{sub 2}{supmore » {minus}}. These radicals recombine to give eventually the tetraselenide dianion, Se{sub 4}{sup 2{minus}}.« less
[Research progress on free radicals in human body].
Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D
2016-08-10
Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.
Oxidative stress in Alzheimer disease
Durany, Nuria
2009-01-01
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765
Oxidative stress in Alzheimer disease.
Gella, Alejandro; Durany, Nuria
2009-01-01
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.
The Role of Oxidative Stress in Cerebral Aneurysm Formation and Rupture
Starke, Robert M.; Chalouhi, Nohra; Ali, Muhammad S.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.
2013-01-01
Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis. PMID:23713738
Piechota-Polanczyk, Aleksandra; Fichna, Jakub
2014-07-01
In this review, we focus on the role of oxidative stress in the aetiology of inflammatory bowel diseases (IBD) and colitis-associated colorectal cancer and discuss free radicals and free radical-stimulated pathways as pharmacological targets for anti-IBD drugs. We also suggest novel anti-oxidative agents, which may become effective and less-toxic alternatives in IBD and colitis-associated colorectal cancer treatment. A Medline search was performed to identify relevant bibliography using search terms including: 'free radicals,' 'antioxidants,' 'oxidative stress,' 'colon cancer,' 'ulcerative colitis,' 'Crohn's disease,' 'inflammatory bowel disease.' Several therapeutics commonly used in IBD treatment, among which are immunosuppressants, corticosteroids and anti-TNF-α antibodies, could also affect the IBD progression by interfering with cellular oxidative stress and cytokine production. Experimental data shows that these drugs may effectively scavenge free radicals, increase anti-oxidative capacity of cells, influence multiple signalling pathways, e.g. MAPK and NF-kB, and inhibit pro-oxidative enzyme and cytokine concentration. However, their anti-oxidative and anti-inflammatory effectiveness still needs further investigation. A highly specific antioxidative activity may be important for the clinical treatment and relapse of IBD. In the future, a combination of currently used pharmaceutics, together with natural and synthetic anti-oxidative compounds, like lipoic acid or curcumine, could be taken into account in the design of novel anti-IBD therapies.
Elevation of Glutathione as a Therapeutic Strategy in Alzheimer Disease
Pocernich, Chava B.; Butterfield, D. Allan
2011-01-01
Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an approach to slow down AD progression. In this review, we focus on the elevation on glutathione through N-acytl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential therapeutic approach for Alzheimer disease. PMID:22015471
Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.
Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang
2017-04-01
In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.
Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M
2009-11-30
Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.
Kumar, Ashutosh; Leinisch, Fabian; Kadiiska, Maria B.; Corbett, Jean; Mason, Ronald P.
2015-01-01
Parkinson’s disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb and paraquat coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox−/− and iNOS−/−) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb and paraquat coexposed mice. PMID:25952542
Narendhirakannan, R T; Limmy, T P
2012-04-01
Free radical stress leads to tissue injury and progression of disease conditions such as arthritis, hemorrhagic shock, atherosclerosis, diabetes, hepatic injury, aging and ischemia, reperfusion injury of many tissues, gastritis, tumor promotion, neurodegenerative diseases and carcinogenesis. Safer anti-oxidants suitable for long term use are needed to prevent or stop the progression of free radical mediated disorders. Herbal medicine provides a foundation for various traditional medicine systems worldwide. The Sida species is one of the most important families of medicinal plants in India. Hence, the present study was aimed to investigate the possible anti-oxidant potential of Sida rhombifolia extracts for 30 days on adjuvant induced arthritis in experimental rats. The altered levels of hematological parameters were reverted to near normal levels, especially the elevated rate of erythrocyte sedimentation was significantly reduced by S. rhombifolia extracts in experimental rats. Oral administration of root and stem of S. rhombifolia extracts significantly increased the levels of thiobarbituric acid reactive substances and activities of catalase and glutathione peroxidase and decreased the levels of reduced glutathione and superoxide dismutase activity in arthritis induced rats. The free radical scavenging activity of the plant was further evidenced by histological and transmission electron microscopy observations made on the hind limb tissue.
The role of oxidative stress in the metabolic syndrome.
Whaley-Connell, Adam; McCullough, Peter A; Sowers, James R
2011-01-01
Loss of reduction-oxidation (redox) homeostasis and generation of excess free oxygen radicals play an important role in the pathogenesis of diabetes, hypertension, and consequent cardiovascular disease. Reactive oxygen species are integral in routine in physiologic mechanisms. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways that promote impairments in insulin metabolic signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular and renal structural and functional abnormalities. Redox control of metabolic function is a dynamic process with reversible pro- and anti-free radical processes. Labile iron is necessary for the catalysis of superoxide anion, hydrogen peroxide, and the generation of the damaging hydroxyl radical. Acute hypoxia and cellular damage in cardiovascular tissue liberate larger amounts of cytosolic and extracellular iron that is poorly liganded; thus, large increases in the generation of oxygen free radicals are possible, causing tissue damage. The understanding of iron and the imbalance of redox homeostasis within the vasculature is integral in hypertension and progression of metabolic dysregulation that contributes to insulin resistance, endothelial dysfunction, and cardiovascular and kidney disease.
Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles
NASA Astrophysics Data System (ADS)
Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng
2017-04-01
Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.
Forman, Henry Jay; Augusto, Ohara; Brigelius-Flohe, Regina; Dennery, Phyllis A; Kalyanaraman, Balaraman; Ischiropoulos, Harry; Mann, Giovanni E; Radi, Rafael; Roberts, L Jackson; Vina, Jose; Davies, Kelvin J A
2015-01-01
Free radicals and oxidants are now implicated in physiological responses and in several diseases. Given the wide range of expertise of free radical researchers, application of the greater understanding of chemistry has not been uniformly applied to biological studies. We suggest that some widely used methodologies and terminologies hamper progress and need to be addressed. We make the case for abandonment and judicious use of several methods and terms and suggest practical and viable alternatives. These changes are suggested in four areas: use of fluorescent dyes to identify and quantify reactive species, methods for measurement of lipid peroxidation in complex biological systems, claims of antioxidants as radical scavengers, and use of the terms for reactive species. Copyright © 2014 Elsevier Inc. All rights reserved.
Mechanisms for radiation damage in DNA. Progress report, January 1, 1980-December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla, M D
1980-09-01
In this project several mechanisms are proposed for radiation damage to DNA constituents and DNA, and a series of experiments detailed utilizing electron spin resonance spectrometry to test the proposed mechanisms. Under current investigation are irradiated systems of DNA constituents which may shed light on indirect effects. In addition, studies of radiation effects on lipids have been undertaken which will shed light on the only other proposed site for cell kill, the membrane. Studies completed during the past year are: (1) ..pi.. cations produced in DNA bases by attack of oxidizing radicals; (2) INDO studies of radicals produced in peptidesmore » and carboxylic acid model compounds; (3) electron reactions with carboxylic acids, ketones and aldehydes; and (4) ..gamma..-irradiation of esters and triglycerides. Progress has been made this year in a study of radicals generated in model compounds for the sugar-phosphate backbone.« less
Koppula, Sushruta; Kumar, Hemant; More, Sandeep Vasant; Kim, Byung Wook; Kim, In Su; Choi, Dong Kug
2012-01-01
Parkinson's disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD.
Koppula, Sushruta; Kumar, Hemant; More, Sandeep Vasant; Kim, Byung Wook; Kim, In Su; Choi, Dong Kug
2012-01-01
Parkinson’s disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD. PMID:22949883
Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia
2015-01-01
Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.
Studying mechanism of radical reactions: From radiation to nitroxides as research tools
NASA Astrophysics Data System (ADS)
Maimon, Eric; Samuni, Uri; Goldstein, Sara
2018-02-01
Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.
Stable Radical Materials for Energy Applications.
Wilcox, Daniel A; Agarkar, Varad; Mukherjee, Sanjoy; Boudouris, Bryan W
2018-06-07
Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.
NASA Astrophysics Data System (ADS)
Zeng, Tao; Zhang, Haiyan; He, Zhiqiao; Chen, Jianmeng; Song, Shuang
2016-09-01
Heterogeneous sulphate radical based advanced oxidation processes (SR-AOPs) have lately been raised as a promising candidate for water treatment. Despite the progress made, either the stability or the performance of the current catalysts is still far from satisfactory for practical applications. Herein, using polydopamine-cobalt ion complex that inspired by mussel proteins as medium, we facilely fabricate a robust SR-AOPs catalyst with cobalt nanoparticles (NPs) embedded in nitrogen-doped reduced graphene oxide matrix (NRGO@Co). The NRGO scaffold with high porosity and surface area not only stabilizes the NPs but also greatly facilitates the accessibility and adsorption of substrates to the active sites. With the synergistic effect arising from the NRGO and Co NPs, the NRGO@Co hybrid catalyst exhibits enhanced catalytic activity for activation of peroxymonosulfate (PMS) to degrade organic pollutants in water. Furthermore, taking advantage of the favorable magnetic properties, the catalyst can be easily recycled and reused for at least 4 runs with negligible loss of activity. Coupled with systematic investigation in terms of influential factors, mineralization, and radicals identification, make the catalyst hold significant potential for application in remediation of organic pollutants in water.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Synthesis of nanostructured materials in inverse miniemulsions and their applications.
Cao, Zhihai; Ziener, Ulrich
2013-11-07
Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.
Long-term adaptation of breast tumor cell lines to high concentrations of nitric oxide.
Vesper, Benjamin J; Elseth, Kim M; Tarjan, Gabor; Haines, G Kenneth; Radosevich, James A
2010-08-01
Nitric oxide (NO), a free radical, has been implicated in the biology of human cancers, including breast cancer, yet it is still unclear how NO affects tumor development and propagation. We herein gradually adapted four human breast adenocarcinoma cell lines (BT-20, Hs578T, T-47D, and MCF-7) to increasing concentrations of the NO donor DETA-NONOate up to 600 muM. The resulting model system consisted of a set of fully adapted high nitric oxide ("HNO") cell lines that are biologically different from the "parent" cell lines from which they originated. Although each of the four parent and HNO cell lines had identical morphologic appearance, the HNO cells grew faster than their corresponding parent cells and were resistant to both nitrogen- and oxygen-based free radicals. These cell lines serve as a novel tool to study the role of NO in breast cancer progression and potentially can be used to predict the therapeutic response leading to more efficient therapeutic regimens.
Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species.
Seenivasan, Rajesh; Kolodziej, Charles; Karunakaran, Chandran; Burda, Clemens
2017-09-01
Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O 2 •- ) and RNS (e. g. nitric oxide radical; NO • and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials-based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jónsdóttir, Rósa; Geirsdóttir, Margrét; Hamaguchi, Patricia Y; Jamnik, Polona; Kristinsson, Hordur G; Undeland, Ingrid
2016-04-01
The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present. © 2015 Society of Chemical Industry.
Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan
2016-01-01
The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry. PMID:27845366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar
Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation,more » protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein radical and 3-nitrotyrosine formation. ► BDCM exposure in obesity activates Kupffer cells and NADPH oxidase. ► BDCM/leptin synergy promotes necrotic cell-death and augments steatohepatitis.« less
Oxidant/Antioxidant Imbalance and the Risk of Alzheimer's Disease
Abdel Moneim, Ahmed E.
2015-01-01
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress–induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize. PMID:25817254
Changes in maternal lipid peroxidation before and immediately after delivery.
John, Jessy; Mathangi, D C; Dilara, K; Subhashini, A S; Vijayraghavan, Jaya
2012-08-01
Oxidative damage has been implicated in pathogenesis of many diseases. It is known that various kinds of stresses accelerate the production of free radicals. As pregnancy being a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement, increased level of oxidative stress would be expected. The present study was to elucidate the degree of oxidative stress during labour and immediately after delivery. Twenty healthy pregnant women and age matched and 20 healthy non-pregnant women were selected as subjects for this longitudinal study. Plasma malondialdehyde concentration was estimated as thiobarbituric acid reacting substances. A significant (p < 0.01) increase in plasma malondialdehyde concentration was noted in pregnant women during labour than in the non-pregnant women. Plasma malondialdehyde concentration was noted to increase with the progression and duration of labour to immediately following delivery. Labour being stressful state results in oxidative stress, which increased with increase in duration and progression of the labour till immediately following delivery.
The Role of Oxidative Stress and Antioxidants in Liver Diseases
Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin
2015-01-01
A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040
Free Radical Oxidation in Rat Myocardium after Maximum Permissible Hepatic Resection.
Ermolaev, P A; Khramykh, T P; Barskaya, L O
2016-03-01
Free radical oxidation in rat myocardial homogenate was studied by chemiluminescent assay during the early terms after maximum permissible liver resection. During this period, activation of free radical oxidation was biphasic. The critical terms characterized by dramatic intensification of free radical oxidation in the myocardium are the first hour and the first day after surgery. The period from 3 to 12 h after surgery, in which the indices of chemiluminescence decrease, can be tentatively termed as the period of "putative wellbeing". Normalization of the free radical oxidation processes in the myocardium occurred by day 7 after surgery.
Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F
2009-04-15
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.
The high-temperature oxidation of aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Brezinsky, K.
1986-01-01
Chemical mechanisms of the atmospheric pressure, high-temperature (875-1500 K) gas-phase oxidation of benzene, toluene, ethylbenzene, and propylbenzene are described and discussed. Oxidation trends evident from turbulent flow reactor experiments serve as the basis for the mechanisms of the oxidation of benzene and alkylated aromatics. The potential effects of very high temperatures and pressures on the chemistry of oxidation of aromatics are described. The oxidation of benzene and phenyl radical has been found to proceed in a stepwise C6-C5-C4 sequence. Species profiles obtained from flow-reactor experiments suggest that the oxidation of benzene and phenyl radical follows the generalized route via phenoxy, cyclopentadienyl and butadienyl radical. The oxidation of the C4 species branches into multiple pathways that yield copious amounts of ethylene and acetylene. Certain major trends are evident: the alkylated aromatics on initial attack either form styrene, benzyl radical or benzene. The styrene reacts further to produce a benzyl radical or benzene. The oxidation of an alkylated aromatic hydrocarbon appears eventually to reduce to the oxidation of either phenyl radical or benzene.
Finotti, P; Pagetta, A; Ashton, T
2001-04-01
Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.
Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.
2009-01-01
Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868
Xu, Libin; Korade, Zeljka; Porter, Ned A.
2010-01-01
Free radical chain oxidation of highly oxidizable 7-dehydrocholesterol (7-DHC) initiated by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) was carried out at 37°C in benzene for 24 hours. Fifteen oxysterols derived from 7-DHC were isolated and characterized with 1D- and 2D-NMR spectroscopy and mass spectrometry. A mechanism that involves abstraction of hydrogen atoms at C-9 and/or C-14 is proposed to account for the formation of all of the oxysterols and the reaction progress profile. In either the H-9 or H-14 mechanism, a pentadienyl radical intermediate is formed after abstraction of H-9 or H-14 by a peroxyl radical. This step is followed by the well-precedented transformations observed in peroxidation reactions of polyunsaturated fatty acids such as oxygen addition, peroxyl radical 5-exo cyclization, and SHi carbon radical attack on the peroxide bond. The mechanism for peroxidation of 7-DHC also accounts for the formation of numerous oxysterol natural products isolated from fungal species, marine sponges, and cactaceous species. In a cell viability test, the oxysterol mixture from 7-DHC peroxidation was found to be cytotoxic to Neuro2a neuroblastoma cells in the micromolar concentration range. We propose that the high reactivity of 7-DHC and the oxysterols generated from its peroxidation may play important roles in the pathogenesis of Smith-Lemli-Opitz syndrome (SLOS), X-linked dominant chondrodysplasia punctata (CDPX2), and cerebrotendinous xanthomatosis (CTX), all of these being metabolic disorders having an elevated level of 7-DHC. PMID:20121089
Additional chain-branching pathways in the low-temperature oxidation of branched alkanes
Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...
2015-12-31
Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8H 14O 4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C 8H 16O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8H 16O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8H 14O 4 species are proposed to result from subsequent reactions of C 8H 16O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less
Free-radical chemistry of sulfite.
Neta, P; Huie, R E
1985-01-01
The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699
Butterfield, D. Allan
2014-01-01
This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of: protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called “chemobrain” by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, Apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a pro-inflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with the clinical presentation, biochemistry, and pathology of this disorder. To the author's knowledge this is the only plausible and self-consistent mechanism to explain CICI. These two different disorders of the CNS affect millions of persons worldwide. Both AD and CICI share free radical-mediated oxidative stress in brain, but the source of oxidative stress is not the same. Continued research is necessary to better understand both AD and CICI. The discoveries about these disorders from the Butterfield laboratory that led to the 2013 Discovery Award from the Society of Free Radical and Medicine provides a significant foundation from which this future research can be launched. PMID:24996204
Immunology and Oxidative Stress in Multiple Sclerosis: Clinical and Basic Approach
Ortiz, Genaro G.; Pacheco-Moisés, Fermín P.; Bitzer-Quintero, Oscar K.; Ramírez-Anguiano, Ana C.; Flores-Alvarado, Luis J.; Ramírez-Ramírez, Viridiana; Macias-Islas, Miguel A.; Torres-Sánchez, Erandis D.
2013-01-01
Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle. PMID:24174971
Abd-Elmaksoud, Sohair Abd-El Mawgood; El-Bassyouni, Hala; Afifi, Hanan; Thomas, Manal Micheal; Ibrahim, Alshaymaa Ahmed; Shalaby, Aliaa; Hamid, Tamer Ahmed Abdel; Hamid, Nehal Abdel; El-Ghobary, Hany
2015-11-01
Free radicals have been thought to participate in pathogenesis of peroxisomal disorders. The aim of the work is to detect free oxide radicals in blood of patients with peroxisomal disorders and to study their relation with various oxidative stress parameters. Twenty patients with peroxisomal disorders and 14 age and sex matched healthy subjects were included in the study. Patients with peroxisomal disorders were subdivided according to diagnosis into peroxisomal biogenesis disorders and single enzyme deficiency. Oxidative stress was evaluated in both patients and control subjects by assessment of free radicals, malondialdehyde, nitric oxide metabolites and superoxide dismutase. There was increase in free radicals, malondialdehyde, nitric oxide metabolites in patients compared with control subjects. However, there was decrease in superoxide dismutase levels in patients compared with control subjects. We concluded that there is excess free radicals production accompanied with decrease in antioxidant defenses in patients with peroxisomal disorders. These results strongly support a role of free radicals in the pathophysiology of peroxisomal disorders and strengthen the importance of oxidative stress phenomenon in peroxisomal disorders pathogenesis.
Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A
2017-08-10
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...
2017-07-14
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
Free radicals and low-level photon emission in human pathogenesis: state of the art.
Van Wijk, Roeland; Van Wijk, Eduard P A; Wiegant, Fred A C; Ives, John
2008-05-01
Convincing evidence supports a role for oxidative stress in the pathogenesis of many chronic diseases. The model includes the formation of radical oxygen species (ROS) and the misassembly and aggregation of proteins when three tiers of cellular defence are insufficient: (a) direct antioxidative systems, (b) molecular damage repairing systems, and (c) compensatory chaperone synthesis. The aim of the present overview is to introduce (a) the basics of free radical and antioxidant metabolism, (b) the role of the protein quality control system in protecting cells from free radical damage and its relation to chronic diseases, (c) the basics of the ultraweak luminescence as marker of the oxidant status of biological systems, and (d) the research in human photon emission as a non-invasive marker of oxidant status in relation to chronic diseases. In considering the role of free radicals in disease, both their generation and their control by the antioxidant system are part of the story. Excessive free radical production leads to the production of heat shock proteins and chaperone proteins as a second line of protection against damage. Chaperones at the molecular level facilitate stress regulation vis-à-vis protein quali y control mechanisms. The manifestation of misfolded proteins and aggregates is a hallmark of a range of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amylotrophic lateral sclerosis, polyglutamine (polyQ) diseases, diabetes and many others. Each of these disorders exhibits aging-dependent onset and a progressive, usually fatal clinical course. The second part reviews the current status of human photon emission techniques and protocols for recording the human oxidative status. Sensitive photomultiplier tubes may provide a tool for non-invasive and continuous monitoring of oxidative metabolism. In that respect, recording ultraweak luminescence has been favored compared to other indirect assays. Several biological models have been used to illustrate the technique in cell cultures and organs in vivo. This initiated practical applications addressing specific human pathological issues. Systematic studies on human emission have presented information on: (a) procedures for reliable measurements, and spectral analysis, (b) anatomic intensity of emission and left-right symmetries, (c) biological rhythms in emission, (d) physical and psychological influences on emission, (e) novel physical characteristics of emission, and (f) the identification of ultraweak photon emission with the staging of ROS-related damage and disease. It is concluded that both patterns and physical properties of ultraweak photon emission hold considerable promise as measure for the oxidative status.
Almogbel, Ebtehal
2017-01-01
Introduction Free radicals have been implicated as Diabetes Mellitus (DM) contributors in type 2 DM and its associated Diabetes Mellitus Neuropathy (DMN). However, the potential for protein mediated oxidative stress to contribute disease pathogenesis remains largely unexplored. Aim To investigate the status and contribution of protein mediated oxidative stress in patients with DM or DMN and to explore whether oxidative protein modification has a role in DM progression to DM associated neuropathy. Materials and Methods Sera from 42 DM and 37 DMN patients with varying levels of disease activities biomarkers (HbA1C, patients’ age or disease duration) and 21 age- and sex-matched healthy controls were evaluated for serum levels of protein mediated oxidative stress. Results Serum analysis showed significantly higher levels of protein carbonyl contents in both DM and DMN patients compared with healthy controls. Importantly, not only was there an increased number of subjects positive for protein carbonylation, but also the levels of protein carbonyl contents were significantly higher among DM and DMN patients, whose HbA1C were ≥8.8 as compared with patients with lower HbA1C (HbA1C<8.8). Similar pattern of protein carbonyls formation was also observed with patients’ ages or with patient’s disease durations, suggesting a possible relationship between protein oxidation and disease progression. Furthermore, sera from DMN patients had higher levels of protein carbonylation compared with non-neuropathic DM patients’ sera, suggesting an involvement of protein oxidation in the progression of diabetes to diabetes neuropathy. Conclusion These findings support an association between protein oxidation and DM or DMN progression. The stronger response observed in patients with higher HbA1C or patients’ ages or disease durations suggests, that protein mediated oxidative stress may be useful in evaluating the progression of DM and its associated DMN and in elucidating the mechanisms of these disorders pathogenesis. PMID:28384853
Pro-Oxidant Biological Effects of Inorganic Component of Petroleum: Vanadium and Oxidative Stress
1996-08-01
independent existence. Pro-Oxidant Chemicals and Free Radicals Involved in Oxidative Stress Pro-Oxidant Chemicals Chemical and Metabolic Generation... metabolic reactions may generate primary free radicals (Fig. 1). Then, in an avalanche-type process, secondary free radicals and reactive oxygen species...vanadium absorption, distribution, metabolism , and disposition, and no pharmacokinetic model is available describing comparative kinetics and toxicity
Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals
NASA Astrophysics Data System (ADS)
Smarte, M. D.; Okumura, M.
2016-12-01
Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.
Role of oxidative stress in epileptic seizures
Shin, Eun-Joo; Jeong, Ji Hoon; Chung, Yoon Hee; Kim, Won-Ki; Ko, Kwang-Ho; Bach, Jae-Hyung; Hong, Jau-Shyong; Yoneda, Yukio; Kim, Hyoung-Chun
2013-01-01
Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetically epilepsy-prone rats, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment. PMID:21672578
Chemical properties which control selectivity and efficacy of aromatic N-oxide bioreductive drugs.
Wardman, P.; Priyadarsini, K. I.; Dennis, M. F.; Everett, S. A.; Naylor, M. A.; Patel, K. B.; Stratford, I. J.; Stratford, M. R.; Tracy, M.
1996-01-01
Pulse radiolysis was used to generate radicals from one electron reduction of 1,2,4-benzotriazine-1,4-dioxides (derivatives of tirapazamine), and of imidazo [1,2-a]quinoxaline-4-oxides (analogues of RB90740), which have selective toxicity towards hypoxic cells. Radicals from the mono N-oxides (from the latter compounds) react with oxygen approximately 10-40 times faster than does the tirapazamine radical. Radicals from the tirapazamine analogues studied react with oxygen up to approximately 10 times slower than tirapazamine radicals. The quinoxaline N-oxide radicals are involved in prototropic equilibria with pK(a) values (5.5 to 7.4) spanning that reported for tirapazamine (6.0). Generation of radicals radiolytically in the presence of H donors (formate, 2-propanol, deoxyribose) indicate a chain reaction ascribed to H abstraction by the drug radical. The protonated drug radical is much more reactive than the radical anion (H abstraction rate constant approximately equal to 10(2) - 10(3) dm3 mol-1 s-1). Chain termination is ascribed to drug radical-radical reactions, i.e. radical stability in anoxia, with rate constants 2k approximately equal to 1 x 10(7) to 2 x 10(8) dm3 mol-1 s-1 at pH approximately 7.4. Estimates of the reduction potentials of the drug-radical couples in water at pH 7 for two of the mono-N-oxides were in the range-0.7 to 0.8 V vs NHE at pH 7. PMID:8763850
NASA Astrophysics Data System (ADS)
Watts, Richard J.; Yu, Miao; Teel, Amy L.
2017-10-01
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.
Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms
Shyur, Lie-Fen
2013-01-01
Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991
Dalsgaard, Trine K; Triquigneaux, Mathilde; Deterding, Leesa; Summers, Fiona; Ranguelova, Kalina; Mortensen, Grith; Mason, Ronald P
2013-01-16
Free radicals and other oxidation products were characterized on α-lactalbumin with electron spin resonance (ESR), immuno-spin trapping, and mass spectrometry (MS) after riboflavin-mediated oxidation. Radicals were detected using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in immuno-spin trapping with both enzyme-linked immunosorbent assay (ELISA) and Western blotting and further characterized with mass spectrometry. A DMPO-trapped radical was identified at His68 and another at one of the tyrosine residues, Tyr50 or Tyr36, respectively, generated by a type II or I mechanism. Not all tyrosyl radicals were trapped, as the secondary oxidation product, 3,4-dihydroxyphenylalanine (DOPA), was detected by mass spectrometry at Tyr18 and Tyr50. A further oxidation of DOPA resulted in the DOPA o-semiquinone radical, which was characterized by ESR. Both surface exposure and the neighboring residues in the local environment of the tertiary structure of α-lactalbumin seem to play a role in the generation of DMPO trapped radicals and secondary oxidation products.
Samson, Andre L.; Knaupp, Anja S.; Kass, Itamar; Kleifeld, Oded; Marijanovic, Emilia M.; Hughes, Victoria A.; Lupton, Chris J.; Buckle, Ashley M.; Bottomley, Stephen P.; Medcalf, Robert L.
2014-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression. PMID:25086035
Protective effect of Pterostilbene against free radical mediated oxidative damage
2013-01-01
Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177
Biochemistry of free radicals: from electrons to tissues.
Boveris, A
1998-01-01
Free radicals are chemical species with an unpaired electron in the outer valence orbitals. The unpaired electron makes them paramagnetic (physics) and relatively reactive (chemistry). The free radicals that are normal metabolites in aerobic biological systems have varied reactivities, ranging from the high reactivity of hydroxyl radical (t1/2 = 10(-9) s) to the low reactivity of melanins (t1/2 = days). The univalent reduction of oxygen that takes place in mammalian organs produces superoxide radicals at a rate of about 2% of the total oxygen uptake. The primary production of superoxide radicals sustains a free radical chain reaction involving a series of reactive oxygen species (hydrogen peroxide, hydroxyl and peroxyl radical and singlet oxygen). Nitric oxide is almost unreactive as free radical except for its termination reaction with superoxide radical to yield the strong oxidant peroxynitrite. Nitric oxide also reacts with ubiquinol in a redox reaction, with cytochrome oxidase competitively with oxygen, and oxymyoglobin and oxyhemoglobin displacing oxygen. Septic shock and endotoxemia produce muscle dysfunction and oxidative stress due to increased steady state concentrations of reactive oxygen and nitrogen species.
NASA Astrophysics Data System (ADS)
Furuyama, Kohta; Yamanaka, Kazuyuki; Higurashi, Eiji; Suga, Tadatomo
2018-02-01
Indium is a commonly used metal for sealing, bonding, and soldering due to its good malleability and ductility even at cryogenic temperatures. The effects of hydrogen radical treatment on indium surface oxide removal were evaluated by the spreading ratio test of indium balls (diameter, 300 µm purity, 99.99%). It was found that hydrogen radical treatment longer than 20 s at temperatures higher than 170 °C results in successful surface oxide removal. X-ray photoelectron spectroscopy analysis was carried out to study the re-oxidation behavior after treatment, and it was found that hydrogen radical treatment slows down the re-oxidation of indium compared with surface oxide removal realized by physical bombardment with an argon fast atom beam.
Watts, Richard J; Yu, Miao; Teel, Amy L
2017-10-01
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.
This study investigates the degradation of recalcitrant polychlorinated biphenyl (PCBs) using sulfate radical-based advanced oxidation technologies. Sulfate radicals are generated through coupling of peroxymonosulfate (PMS) with iron (Fe(II), Fe(III)). Sulfate radicals have very ...
Krishnamoorthy, Ganesan; Ramamurthy, Govindaswamy; Sadulla, Sayeed; Sastry, Thotapalli Parvathaleswara; Mandal, Asit Baran
2014-09-01
Click chemistry approaches are tailored to generate molecular building blocks quickly and reliably by joining small units together selectively and covalently, stably and irreversibly. The vegetable tannins such as hydrolyzable and condensed tannins are capable to produce rather stable radicals or inhibit the progress of radicals and are prone to oxidations such as photo and auto-oxidation, and their anti-oxidant nature is well known. A lot remains to be done to understand the extent of the variation of leather stability, color variation (lightening and darkening reaction of leather), and poor resistance to water uptake for prolonged periods. In the present study, we have reported click chemistry approaches to accelerated vegetable tanning processes based on periodates catalyzed formation of oxidized hydrolysable and condensed tannins for high exhaustion with improved properties. The distribution of oxidized vegetable tannin, the thermal stability such as shrinkage temperature (T s) and denaturation temperature (T d), resistance to collagenolytic activities, and organoleptic properties of tanned leather as well as the evaluations of eco-friendly characteristics were investigated. Scanning electron microscopic analysis indicates the cross section of tightness of the leather. Differential scanning calorimetric analysis shows that the T d of leather is more than that of vegetable tanned or equal to aldehyde tanned one. The leathers exhibited fullness, softness, good color, and general appearance when compared to non-oxidized vegetable tannin. The developed process benefits from significant reduction in total solids and better biodegradability in the effluent, compared to non-oxidized vegetable tannins.
The impact of oxidative stress on hair.
Trüeb, R M
2015-12-01
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Mechanism of Air Oxidation of the Fragrance Terpene Geraniol.
Bäcktorp, Carina; Hagvall, Lina; Börje, Anna; Karlberg, Ann-Therese; Norrby, Per-Ola; Nyman, Gunnar
2008-01-01
The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have been studied with DFT (B3LYP) and the computational results compared to experimentally observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl radical prefers an intramolecular rearrangement, producing observable aldehydes and the hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation products like epoxides and formates were also considered, and plausible reaction pathways for formation are proposed.
[Free radical oxidation in workers engaged into petrochemistry].
Iapparov, R N; Kamilov, R F; Shakirov, D F; Sidorcheva, O V
2007-01-01
The article deals with results of studies covering free radical oxidation and peroxidation in RBC, serum, saliva and urine of petrochemistry workers. Individuals exposed to chemical pollutants in production of rubber, tyre and mechanical rubber goods appeared to have considerably increased free radical oxidation parameters in RBC, serum, saliva and urine.
Hassan, H A; Abdel-Aziz, A F
2010-01-01
Oxidative damage to cellular components such as lipids and cell membranes by free radicals and other reactive oxygen species is believed to be associated with the development of degenerative diseases. Fluoride intoxication is associated with oxidative stress and altered anti-oxidant defense mechanism. So the present study was extended to investigate black berry anti-oxidant capacity towards superoxide anion radicals, hydroxyl radicals and nitrite in different organs of fluoride-intoxicated rats. The data indicated that sodium fluoride (10.3mg/kg bw) administration induced oxidative stress as evidenced by elevated levels of lipid peroxidation and nitric oxide in red blood cells, kidney, testis and brain tissues. Moreover, significantly decreased glutathione level, total anti-oxidant capacity and superoxide dismutase activity were observed in the examined tissues. On the other hand, the induced oxidative stress and the alterations in anti-oxidant system were normalized by the oral administration of black berry juice (1.6g/kg bw). Therefore it can be concluded that black berry administration could minimize the toxic effects of fluoride indicating its free radical-scavenging and potent anti-oxidant activities. Published by Elsevier Ltd.
Recent trends in electrochemical biosensors of superoxide dismutases.
Balamurugan, Murugesan; Santharaman, Paulraj; Madasamy, Thangamuthu; Rajesh, Seenivasan; Sethy, Niroj Kumar; Bhargava, Kalpana; Kotamraju, Srigiridhar; Karunakaran, Chandran
2018-09-30
Superoxide dismutases (SODs), a family of ubiquitous enzymes, provide essential protection to biological systems against uncontrolled reactions with oxygen- and nitrogen- based radical species. We review first the role of SODs in oxidative stress and the other biological functions such as peroxidase, nitrite oxidase, thiol oxidase activities etc., implicating its role in neurodegenerative, cardiovascular diseases, and ageing. Also, this review focuses on the development of electrochemical label-free immunosensor for SOD1 and the recent advances in biosensing assay methods based on their catalytic and biological functions with various substrates including reactive oxygen species (superoxide anion radical, hydrogen peroxide), nitric oxide metabolites (nitrite, nitrate) and thiols using thiol oxidase activity. Furthermore, we emphasize the progress made in improving the detection performance through incorporation of the SOD into conducting polymers and nanocomposite matrices. In addition, we address the potential opportunities, challenges, advances in electrochemical-sensing platforms and development of portable analyzer for point-of-care applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Claflin, M. S.; Ziemann, P. J.
2017-12-01
Large amounts of organic nitrates have been reported in aerosol analyzed during field studies conducted around the world. Although organic nitrates can be formed in daytime from the oxidation of volatile organic compounds in the presence of NOx, it has recently been proposed that the nighttime reaction of monoterpenes with NO3 radicals may account for a substantial fraction of these compounds. While past studies have made progress quantifying the aerosol forming potential of these reactions, relatively little is known about the gas-phase oxidation mechanism, the identities of stable products, and their fate after they partition into aerosol. In an effort to better understand these reactions, we conducted environmental chamber experiments in which β-pinene was reacted with NO3 radicals and the secondary organic aerosol (SOA) that formed was analyzed online using a thermal desorption particle beam mass spectrometer and offline using a variety of methods. SOA was collected on filters, extracted, and analyzed using derivatization-spectrophotometric methods to quantify carbonyl, hydroxyl, carboxyl, nitrate, peroxide, and ester functional groups; and molecular products were identified and quantified by coupling high performance liquid chromatography with UV-Vis detection and mass spectrometry with electrospray ionization, electron ionization, and chemical ionization. We identified and quantified >98% of the products in the SOA and found that 95% were oligomers formed through hemiacetal and acetal reactions. This information was used to determine the yields of monomer building blocks, which in turn were combined with modeling to estimate branching ratios in the gas-phase oxidation reaction and timescales of oligomer formation within the aerosol. The results of this study highlight several key processes in the formation of SOA from reactions of monoterpenes with NO3 radicals: (1) alkoxy radical chemistry, including the role of ring opening through decomposition (2) particle-phase reactions and (3) formation of separate organic and aqueous phases within aerosol.
Myeloperoxidase-induced Genomic DNA-centered Radicals*
Gomez-Mejiba, Sandra E.; Zhai, Zili; Gimenez, Maria S.; Ashby, Michael T.; Chilakapati, Jaya; Kitchin, Kirk; Mason, Ronald P.; Ramirez, Dario C.
2010-01-01
Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis. PMID:20406811
Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.
Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong
2006-07-01
The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed.
Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide
2017-03-01
The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.
Thomas Rosenau; Thomas Elder; Antje Potthast; Sixta Herbert; Paul Kosma
2003-01-01
Homolytic (radical) reactions in the system cellulose / N-methylmorpholine-N-oxide (NMMO, 1) involve a primary, nitrogen-centered cation radical (2), and two secondary, carbon-centered radical species (3, 4). Radical formation &om NMMO is strongly promoted by transition metal ions.
Oxidative stress and the ageing endocrine system.
Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio
2013-04-01
Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.
Parameters of oxidative stress in saliva from patients with aggressive and chronic periodontitis.
Acquier, Andrea B; De Couto Pita, Alejandra K; Busch, Lucila; Sánchez, Gabriel A
2017-05-01
Free radicals play an important role in the onset and progression of many diseases. The aim of this study was to investigate the contribution of oxidative stress in the pathology of aggressive (AgP) and chronic (CP) periodontitis and its relation with the clinical periodontal status. Eighty subjects were divided into two groups: 20 patients with AgP and 20 patients with CP with their 20 corresponding matched controls, based on clinical attachment loss (CAL), probing pocket depth (PPD), and bleeding on probing (BOP). Saliva reactive oxygen species (ROS), lipid peroxidation, and non-enzymatic antioxidant defences were measured by luminol-dependent chemiluminescence assay, as thiobarbituric acid-reactive substances (TBARs) and total radical-trapping antioxidant potential (TRAP), respectively. Pearson's correlation and multivariate analysis were used to determine the relationship between ROS and TBARs and the clinical parameters. ROS and TBARs were increased in AgP while TRAP was decreased, comparing with CP. In AgP, a strong and positive correlation was observed between ROS and TBARs and they were closely associated with CAL and PPD. In AgP, but not in CP, oxidative stress is a high contributor to periodontal pathology and it is closely associated with the clinical periodontal status.
NASA Astrophysics Data System (ADS)
Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.
2012-01-01
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia
2008-02-08
Secondary organic aerosol (SOA) particles formed from the ozone-initiated oxidation of limonene are characterized by high-resolution electrospray ionization mass spectrometry in both the positive and negative ion modes. The mass spectra reveal a large number of both monomeric (m/z < 300) and oligomeric (m/z > 300) products of oxidation. A combination of high resolving power (m/Δm ~60,000) and Kendrick mass defect analysis makes it possible to unambiguously determine the composition for hundreds of individual compounds in SOA samples. Van Krevelen analysis shows that the SOA compounds are heavily oxidized, with average O:C ratios of 0.43 and 0.50 determined from themore » positive and negative ion mode spectra, respectively. An extended reaction mechanism for the formation of the first generation SOA molecular components is proposed. The mechanism includes known isomerization and addition reactions of the carbonyl oxide intermediates generated during the ozonation of limonene, and numerous isomerization pathways for alkoxy radicals resulting from the decomposition of unstable carbonyl oxides. The isomerization reactions yield numerous products with a progressively increasing number of alcohol and carbonyl groups, whereas C-C bond scission reactions in alkoxy radicals shorten the carbon chain. Together these reactions yield a large number of isomeric products with broadly distributed masses. A qualitative agreement is found between the number and degree of oxidation of the predicted and measured reaction products in the monomer range.« less
ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.
1963-06-01
Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)
Pan, Yuanjie; Tikekar, Rohan V; Nitin, N
2013-06-25
Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (p<0.05) for emulsions stabilized using Tween 20 and oxidized lecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (p<0.05) in lecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.
Autoignition of hydrogen in shear flows
NASA Astrophysics Data System (ADS)
Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar
2018-05-01
In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.
Zhao, Xue; Yang, Bo; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J.
2013-01-01
Hydroxyl radicals are widely implicated in the oxidation of carbohydrates in biological and industrial processes and are often responsible for their structural modification resulting in functional damage. In this study, the radical depolymerization of the polysaccharide hyaluronan was studied in a reaction with hydroxyl radicals generated by Fenton Chemistry. A simple method for isolation and identification of the resulting non-sulfated oligosaccharide products of oxidative depolymerization was established. Hyaluronan oligosaccharides were analyzed using ion-pairing reversed phase high performance liquid chromotography coupled with tandem electrospray mass spectrometry. The sequence of saturated hyaluronan oligosaccharides having even- and odd-numbers of saccharide units, afforded through oxidative depolymerization, were identified. This study represents a simple, effective ‘fingerprinting’ protocol for detecting the damage done to hyaluronan by oxidative radicals. This study should help reveal the potential biological outcome of reactive-oxygen radical-mediated depolymerization of hyaluronan. PMID:23768593
Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.
Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-10-01
Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.
Ganini, Douglas; Mason, Ronald P.
2014-01-01
LDL oxidation is the primary event in atherosclerosis, where LDL lipoperoxidation leads to modifications in the apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno spin-trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 minutes. In contrast, the yields of apo B-100-radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate and Trolox dose-dependently reduced apo B-100-free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans. PMID:25091900
NASA Astrophysics Data System (ADS)
Wink, David A.; Desrosiers, Marc F.
The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.
Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability
NASA Astrophysics Data System (ADS)
Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.
2014-12-01
Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.
Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry.
McAvey, Kevin M; Guan, Bing; Fortier, Chanel A; Tarr, Matthew A; Cole, Richard B
2011-04-01
Conditions for the detection of three odd-electron cholesterol oxidation peaks were determined and these peaks were shown to be artifacts of the matrix-assisted laser desorption time of flight (MALDI-TOF) process. Matrix choice, solvent, laser intensity and cholesterol concentration were systematically varied to characterize the conditions leading to the highest signals of the radical cation peaks, and it was found that initial cholesterol solution concentration and resultant density of solid cholesterol on the MALDI target were important parameters in determining signal intensities. It is proposed that hydroxyl radicals, generated as a result of laser irradiation of the employed 2,5-dihydroxybenzoic acid (DHB) matrix, initiate cholesterol oxidation on the MALDI target. An attempt to induce the odd-electron oxidation peaks by means of adding an oxidizing agent succeeded using an acetonitrile solution of DHB, cholesterol, and cumene hydroperoxide. Moreover, addition of free radical scavengers reduced the abundances of some oxidation products under certain conditions. These results are consistent with the mechanism of oxidation proposed herein involving laser-induced hydroxyl radical production followed by attack on neutral cholesterol. Hydroxyl radical production upon irradiation of dithranol matrix may also be responsible for generation of the same radical peaks observed from cholesterol in dithranol by an analogous mechanism. © American Society for Mass Spectrometry, 2011
13 reasons why the brain is susceptible to oxidative stress.
Cobley, James Nathan; Fiorello, Maria Luisa; Bailey, Damian Miles
2018-05-01
The human brain consumes 20% of the total basal oxygen (O 2 ) budget to support ATP intensive neuronal activity. Without sufficient O 2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O 2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O 2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin
2013-01-01
Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985
NASA Technical Reports Server (NTRS)
Globus, Ruth K.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Terada, Masahiro; Alwood, Joshua; Halloran, Bernard; Tahimic, Candice
2016-01-01
Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.
Oxidative Risk for Atherothrombotic Cardiovascular Disease
Leopold, Jane A.; Loscalzo, Joseph
2009-01-01
In the vasculature, reactive oxidant species including reactive oxygen, nitrogen, or halogenating species, and thiyl, tyrosyl, or protein radicals, may oxidatively modify lipids and proteins with deleterious consequences for vascular function. These biologically active free radical and non-radical species may be produced by increased activation of oxidant-generating sources and/or decreased cellular antioxidant capacity. Once formed, these species may engage in reactions to yield more potent oxidants that promote transition of the homeostatic vascular phenotype to a pathobiological state that is permissive for atherothrombogenesis. This dysfunctional vasculature is characterized by lipid peroxidation and aberrant lipid deposition, inflammation, immune cell activation, platelet activation, thrombus formation, and disturbed hemodynamic flow. Each of these pathobiological states is associated with an increase in the vascular burden of free radical species-derived oxidation products and, thereby, implicates increased oxidant stress in the pathogenesis of atherothrombotic vascular disease. PMID:19751821
Gould, Ian R; Wosinska, Zofia M; Farid, Samir
2006-01-01
Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.
The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications
Dal, Stéphanie; Sigrist, Séverine
2016-01-01
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications. PMID:28933404
The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications.
Dal, Stéphanie; Sigrist, Séverine
2016-07-11
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Pourvali, Katayoun; Abbasi, Mehrnaz; Mottaghi, Azadeh
2016-01-01
Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a key participant in the development and progression of it and its complications. Anti-oxidant status can affect vulnerability to oxidative damage, onset and progression of diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the major antioxidant defense systems against free radicals. SOD2 is encoded by the nuclear SOD2 gene located on the human chromosome 6q25 and the Ala16Val polymorphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine (Ala), which has been shown to cause a conformational change in the target sequence of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mitochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant enzyme have been associated with altered progression and risk of different diseases. Association of this SNP with diabetes and some of its complications have been studied in numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant status are associated with diabetes and its complications although some aspects of this line still remain unclear. PMID:27141263
π vs σ-Radical States of One-Electron Oxidized DNA/RNA Bases: A Density Functional Theory Study
Kumar, Anil; Sevilla, Michael D.
2013-01-01
As a result of their inherent planarity, DNA base radicals generated by one electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals there are a number of nucleobase analogs such as one-electron oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogs. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one electron oxidized bases of thymine, T(N3-H)•, and uracil, U(N3-H)• are very close in energy, i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one electron oxidized radicals of cytosine, C•+, C(N4-H)•, adenine, A•+, A(N6-H)•, and guanine, G•+, G(N2-H)•, G(N1-H)• the π-radicals are ca. 16 to 41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)• with three discrete water molecules in the gas phase, is found to form a three-electron σ bond between N3 atom of uracil and O atom of a water molecule but on inclusion of full solvation and discrete hydration the π-radical remains most stable.. PMID:24000793
π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study.
Kumar, Anil; Sevilla, Michael D
2013-10-03
As a result of their inherent planarity, DNA base radicals generated by one-electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals, there are a number of nucleobase analogues such as one-electron-oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogues. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one-electron-oxidized bases of thymine, T(N3-H)(•), and uracil, U(N3-H)(•), are very close in energy; i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one-electron-oxidized radicals of cytosine, C(•+), C(N4-H)(•), adenine, A(•+), A(N6-H)(•), and guanine, G(•+), G(N2-H)(•), G(N1-H)(•), the π-radicals are ca. 16-41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)(•) with three discrete water molecules in the gas phase is found to form a three-electron σ bond between the N3 atom of uracil and the O atom of a water molecule, but on inclusion of full solvation and discrete hydration, the π-radical remains most stable.
Total free radical species and oxidation equivalent in polluted air.
Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng
2017-12-31
Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Xiang-Ping; Shi, Fan; Li, Hai-Jie; Yin, Li-De; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng
2016-10-01
Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical (ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, polydatin loaded nanostructured lipid carriers (Pol-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Pol-NLC on free radical scavenging and anti-oxidative capacity is investigated. The particle size and zeta potential of Pol-NLC were 113.9 +/- 1.1 nm and -16.3 1 +/- 0.27 mV, respectively. By free radical scavenging assays, the IC50 value of Pol-NLC were 28.71, 9.83 μg/mL with DPPH, ABTS assay respectively, and 0.143 mg ferrous sulfate/1 mg Pol-NLC with FRAP assay. These results indicated that the antioxidant properties of Pol-NLC hold great potential used as an alternative to more toxic synthetic anti-oxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.
Rudolphi-Skórska, Elżbieta; Filek, Maria; Zembala, Maria
2016-04-01
The protective ability of α-tocopherol (TOH) and gallic acid (GA) acting simultaneously at the moment of oxidizer application was evaluated by determination of galactolipid layers' oxidation degree. Addition of GA resulted in a significant decrease of ozone-derived radicals shifting the threshold of lipid sensitivity by an amount approximately corresponding to the GA intake in bulk reaction with ozone. TOH presence in lipid layers results in a change of the role of GA which additionally may be involved in the reduction of tocopheroxyl radical formed during oxidation. This leads to a decrease in effectiveness of GA in diminishing the amount of ozone radicals. Such an effect was not observed for mixed layers containing galactolipid and pre-oxidized tocopherol where the ozone threshold level was associated with a stoichiometry of GA + O3 reaction. It was concluded that probably subsequent transformations of tocopheroxyl radical to less reactive forms prevent its reaction with GA the entire quantity of which is used for radicals scavenging. This result shows the role of time parameter in systems where substrates are engaged in various reactions taking place simultaneously. The inactivation of 1,1-diphenyl-2-picrylhydrazyl radical by studied antioxidants in homogeneous system confirmed observations made on the basis of lipid layer properties indicating their antagonistic action (at least at studied conditions). Formation of layers in post-oxidation situation did not depend whether tocopherol was oxidized during oxidation of lipid/tocopherol mixture or was introduced as pre-oxidized. This may be interpreted as indication that products of tocopherol oxidation may stabilize lipid layers.
Progressive DNA and RNA damage from oxidation after aneurysmal subarachnoid haemorrhage in humans.
Jorgensen, Anders; Staalsoe, Jonatan M; Simonsen, Anja H; Hasselbalch, Steen G; Høgh, Peter; Weimann, Allan; Poulsen, Henrik E; Olsen, Neils V
2018-01-01
Free radical toxicity is considered as a key mechanism in the neuronal damage occurring after aneurysmal subarachnoid haemorrhage (SAH). We measured markers of DNA and RNA damage from oxidation (8-oxodG and 8-oxoGuo, respectively) in cerebrospinal fluid from 45 patients with SAH on day 1-14 after ictus and 45 age-matched healthy control subjects. At baseline, both markers were significantly increased in patients compared to controls (p values < .001), and exhibited a progressive further increase (to >20-fold above control levels) from day 5-14. None of the markers predicted the occurrence of vasospasms or mortality, although there was a trend that the 8-oxoGuo marker was more strongly associated with mortality than the 8-oxodG marker. We conclude that SAH leads to a massive increase in damage to nucleic acids from oxidative stress, which is likely to play a role in neuronal dysfunction and death. As only patients in need of a ventriculostomy catheter were included in the study, the findings cannot necessarily be extrapolated to all patients with SAH.
Slezák, J; Kura, B; Frimmel, K; Zálešák, M; Ravingerová, T; Viczenczová, C; Okruhlicová, Ľ; Tribulová, N
2016-09-19
Excessive production of oxygen free radicals has been regarded as a causative common denominator of many pathological processes in the animal kingdom. Hydroxyl and nitrosyl radicals represent the major cause of the destruction of biomolecules either by a direct reaction or by triggering a chain reaction of free radicals. Scavenging of free radicals may act preventively or therapeutically. A number of substances that preferentially react with free radicals can serve as scavengers, thus increasing the internal capacity/activity of endogenous antioxidants and protecting cells and tissues against oxidative damage. Molecular hydrogen (H(2)) reacts with strong oxidants, such as hydroxyl and nitrosyl radicals, in the cells, that enables utilization of its potential for preventive and therapeutic applications. H(2) rapidly diffuses into tissues and cells without affecting metabolic redox reactions and signaling reactive species. H(2) reduces oxidative stress also by regulating gene expression, and functions as an anti-inflammatory and anti-apoptotic agent. There is a growing body of evidence based on the results of animal experiments and clinical observations that H(2) may represent an effective antioxidant for the prevention of oxidative stress-related diseases. Application of molecular hydrogen in situations with excessive production of free radicals, in particular, hydroxyl and nitrosyl radicals is relatively simple and effective, therefore, it deserves special attention.
Ćwieląg-Piasecka, Irmina; Witwicki, Maciej; Jerzykiewicz, Maria; Jezierska, Julia
2017-12-19
Radical oxidation of carbamate insecticides, namely carbaryl and carbofuran, was investigated with spectroscopic (electron paramagnetic resonance [EPR] and UV-vis) and theoretical (density functional theory [DFT] and ab initio orbital-optimized spin-component scaled MP2 [OO-SCS-MP2]) methods. The two carbamates were subjected to reaction with • OH, persistent DPPH • and galvinoxyl radical, as well as indigenous radicals of humic acids. The influence of fulvic acids on carbamate oxidation was also tested. The results obtained with EPR and UV-vis spectroscopy indicate that carbamates can undergo direct reactions with various radical species, oxidizing themselves into radicals in the process. Hence, they are prone to participate in the prolongation step of the radical chain reactions occurring in the soil environment. Theoretical calculations revealed that from the thermodynamic point of view hydrogen atom transfer is the preferred mechanism in the reactions of the two carbamates with the radicals. The activity of carbofuran was determined experimentally (using pseudo-first-order kinetics) and theoretically to be noticeably higher in comparison with carbaryl and comparable with gallic acid. The findings of this study suggest that the radicals present in soil can play an important role in natural remediation mechanisms of carbamates.
Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature.
Trapp, Denise; Knez, Wade; Sinclair, Wade
2010-10-01
Oxidative stress is a natural physiological process that describes an imbalance between free radical production and the ability of the antioxidant defence system of the body to neutralize free radicals. Free radicals can be beneficial as they may promote wound healing and contribute to a healthy immune response. However, free radicals can have a detrimental impact when they interfere with the regulation of apoptosis and thus play a role in the promotion of some cancers and conditions such as cardiovascular disease. Antioxidants are molecules that reduce the damage associated with oxidative stress by counteracting free radicals. Regular exercise is a vital component of a healthy lifestyle, although it can increase oxidative stress. As a typical vegetarian diet comprises a wide range of antioxidant-rich foods, it is plausible that the consumption of these foods will result in an enhanced antioxidant system capable of reducing exercise-induced oxidative stress. In addition, a relationship between a vegetarian diet and lower risks of cardiovascular disease and some cancers has been established. This review explores the current available evidence linking exercise, vegetarians, antioxidants, and oxidative stress.
Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf
2017-11-13
A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.
Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R
2010-11-23
Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.
Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals
Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-01-01
Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334
González, Paula Mariela; Aguiar, María Belén; Malanga, Gabriela; Puntarulo, Susana
2013-08-01
Electron paramagnetic resonance (EPR) spectroscopy detects the presence of radicals of biological interest, such as ascorbyl radical (A(•)) and lipid radicals. A(•) is easily detectable by EPR even in aqueous solution at room-temperature. Under oxidative conditions leading to changes in total ascorbate (AH(-)) content, the A(•)/AH(-) ratio could be used to estimate early oxidative stress in the hydrophilic milieu. This methodology was applied to a wide range of aquatic systems including algae, sea urchin, limpets, bivalves and fish, under physiological and oxidative stress conditions as well. The A(•)/AH(-) ratio reflected the state of one part of the oxidative defense system and provided an early and simple diagnosis of environmental stressing conditions. Oxidative damage to lipids was assessed by the EPR-sensitive adduct formation that correlates well with cell membrane damage with no interference from other biological compounds. Probe instability, tissue metabolism, and lack of spin specificity are drawback factors for employing EPR for in vivo determination of free radicals. However, the dependability of this technique, mostly by combining it with other biochemical strategies, enhances the value of these procedures as contributors to the knowledge of oxidative condition in aquatic organisms. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of free radicals in traumatic brain injury.
O'Connell, Karen M; Littleton-Kearney, Marguerite T
2013-07-01
Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.
NASA Astrophysics Data System (ADS)
Tilgner, A.; Herrmann, H.
2010-12-01
Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.
Umeno, Aya; Morita, Mayuko; Yoshida, Yasukazu; Naito, Yuji; Niki, Etsuo
2017-12-01
Free and ester forms of unsaturated fatty acids and cholesterol are oxidized in vivo by multiple oxidants to give diverse products. Some lipid oxidation is mediated by enzymes to selectively give specific products, while others proceed randomly to produce mixtures of many kinds of regioisomers and stereoisomers. The efficacy of antioxidants against lipid oxidation depends on the nature of the oxidants and therefore the identification of oxidant is important for understanding the roles and effects of lipid oxidation and antioxidants in vivo. In the present study, the isomer distribution of hydro(pero)xyoctadecadienoates (H(p)ODEs) and hydro(pero)xyeicosatetraenoates (H(p)ETEs), the most abundant lipid oxidation products found in human plasma, produced in the oxidation of plasma by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen were examined. It was shown that 9- and 13-(E,E)-HODEs, 13(S)-(Z,E)-HODE, and 10- and 12-(Z,E)-HODEs were specific lipid oxidation products by free radical, 15-lipoxygenase, and singlet oxygen, respectively. The isomer distribution of HODEs produced by peroxynitrite was similar to that by peroxyl radical, suggesting that the peroxynitrite mediated lipid oxidation proceeds by free radical mechanisms. The production of HODEs and HETEs by hypochlorite was very small. HODEs may be a better biomarker than HETEs since linoleates are oxidized by simpler mechanisms than arachidonates and all the HODEs isomers can be quantified more easily. These products may be used as specific biomarkers for the identification of responsible oxidants and for the assessment of oxidant-specific lipid oxidation levels and effects of antioxidants in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.
2008-01-01
Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982
Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming
2017-04-11
A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.
A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...
RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION
Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contam...
Reduction of protein radicals by GSH and ascorbate: potential biological significance.
Gebicki, Janusz M; Nauser, Thomas; Domazou, Anastasia; Steinmann, Daniel; Bounds, Patricia L; Koppenol, Willem H
2010-11-01
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×10(5) M(-1) s(-1), while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.
Romano, Gennaro; Paulis, Luca; Barletta, Davide
2017-01-01
Peyronie's disease (PD) is a chronic inflammation of tunica albuginea of the corpora cavernosa that causes an inelastic plaque resulting in penis deformation. Although its etiology is not completely known, there is general consensus that PD is genetically transmitted and secondary to penile trauma. In recent years, numerous studies demonstrated the role played by oxidative stress in PD pathogenesis, and other studies have described successful use of antioxidants in PD treatment. Oxidative stress is an integral part of this disease, influencing its progression. In the early stages of PD, the inflammatory infiltrate cells produce high quantities of free radicals and proinflammatory and profibrotic cytokines, with consequent activation of transcription factor NF-κB. While conservative therapies commonly used in the early stages of PD include oral substances (Potaba, tamoxifen, colchicine, and vitamin E), intralesional treatment (verapamil, interferon, steroids, and more recently collagenase clostridium histolyticum-Xiaflex), and local physical treatment (iontophoresis, extracorporeal shock wave therapy, and penile extender), the significant results obtained by emerging treatments with the antioxidants cited in this article suggest these therapeutic agents interfere at several levels with the disease's pathogenetic mechanisms. Antioxidants therapy outcomes are interesting for good clinical practice and also confirm the fundamental role played by oxidative stress in PD. PMID:28744308
Suseem, S R; Saral, Mary
2015-07-01
To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.
Ozawa, T; Miura, Y; Ueda, J
1996-01-01
The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap the ClO2 radical. This result indicates that an unpaired electron of the ClO2 radical is localized on oxygen atom, because nitroso spin-traps cannot form the stable spin adduct with oxygen-centered radical.
Are free radicals involved in thiol-based redox signaling?
Winterbourn, Christine C
2015-03-01
Cells respond to many stimuli by transmitting signals through redox-regulated pathways. It is generally accepted that in many instances signal transduction is via reversible oxidation of thiol proteins, although there is uncertainty about the specific redox transformations involved. The prevailing view is that thiol oxidation occurs by a two electron mechanism, most commonly involving hydrogen peroxide. Free radicals, on the other hand, are considered as damaging species and not generally regarded as important in cell signaling. This paper examines whether it is justified to dismiss radicals or whether they could have a signaling role. Although there is no direct evidence that radicals are involved in transmitting thiol-based redox signals, evidence is presented that they are generated in cells when these signaling pathways are activated. Radicals produce the same thiol oxidation products as two electron oxidants, although by a different mechanism, and at this point radical-mediated pathways should not be dismissed. There are unresolved issues about how radical mechanisms could achieve sufficient selectivity, but this could be possible through colocalization of radical-generating and signal-transducing proteins. Colocalization is also likely to be important for nonradical signaling mechanisms and identification of such associations should be a priority for advancing the field. Copyright © 2014 Elsevier Inc. All rights reserved.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2005-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High Temperature Decomposition of Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Vinogradov, D B; Mingazov, A Kh; Izarovskaya, I V; Babin, K A; Sinitsky, A I
2015-01-01
to study the relationship between dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and free-radical oxidation in old age alcoholism. Authors examined 46 men and women, aged 60-80 years, with alcoholism. Contents of cortisol, lipid peroxidation products and the level of an oxidatively modified protein were measured. A decrease in blood cortisol content and correlations between its level and activity of free-radical oxidation were identified. The severity of neuroendocrine dysfunction in old patients was sex-related. It has been suggested that the impairment of HPA system activity may be a cause of oxidative stress and development of alcoholism.
Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay.
Bisby, Roger H; Brooke, Rachel; Navaratnam, Suppiah
2008-06-01
The "oxygen radical absorption capacity" (ORAC) assay (Ou, B., Hampsch-Woodill, M., Prior, R.L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 49, 4619-4626) is widely employed to determine antioxidant content of foods and uses fluorescein as a probe for oxidation by peroxyl radicals. Kinetic modeling of the ORAC assay suggests that the lag phase for loss of fluorescence results from equilibrium between antioxidant and fluorescein radicals and the value of the equilibrium constant determines the shape of the lag phase. For an efficient antioxidant this constitutes a "repair" reaction for fluoresceinyl radicals and produces a well defined lag phase. The lag phase becomes less marked with increasing oxidation potential of the antioxidant. Pulse radiolysis confirms that fluoresceinyl radicals are rapidly (k∼10(9)dm(3)mol(-1)s(-1)) reduced by Trolox C, a water soluble vitamin E analogue. ORAC assays of phenols with varying oxidation potentials suggest that it might be employed to obtain an estimate of the redox potential of antioxidants within food materials. Copyright © 2007 Elsevier Ltd. All rights reserved.
RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION ABSTRACT
Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contami...
Kim, Mi-Ja; Jung, Kyung Hee; Uhm, Yoon Kyung; Leem, Kang-Hyun; Kim, Hye Kyung
2007-02-01
Oxidative stress is produced under diabetic conditions and involved in progression of pancreatic beta-cell dysfunction. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in genetically diabetic mouse strain C57BL/6J-db/db (db/db). ERW with ROS scavenging ability reduced the blood glucose concentration, increased blood insulin level, improved glucose tolerance and preserved beta-cell mass in db/db mice. The present data suggest that ERW may protects beta-cell damage and would be useful for antidiabetic agent.
Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.
Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M
2012-10-15
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.
SOMO–HOMO Level Inversion in Biologically Important Radicals
2017-01-01
Conventionally, the singly occupied molecular orbital (SOMO) of a radical species is considered to be the highest occupied molecular orbital (HOMO), but this is not the case always. In this study, we considered a number of radicals from smallest diatomic anion radicals such as superoxide anion radical to one-electron oxidized DNA related base radicals that show the SOMO is energetically lower than one or more doubly occupied molecular orbitals (MOs) (SOMO–HOMO level inversion). The electronic configurations are calculated employing the B3LYP/6-31++G** method, with the inclusion of aqueous phase via the integral equation formalism of the polarized continuum model solvation model. From the extensive study of the electronic configurations of radicals produced by one-electron oxidation or reduction of natural-DNA bases, bromine-, sulfur-, selenium-, and aza-substituted DNA bases, as well as 20 diatomic molecules, we highlight the following important findings: (i) SOMO–HOMO level inversion is a common phenomenon in radical species. (ii) The more localized spin density in σ-orbital on a single atom (carbon, nitrogen, oxygen, sulfur, or selenium), the greater the gap between HOMO and SOMO. (iii) In species with SOMO–HOMO level inversion, one-electron oxidation takes place from HOMO not from the SOMO, which produces a molecule in its triplet ground state. Oxidation of aqueous superoxide anion producing triplet molecular oxygen is one example of many. (iv) These results are for conventional radicals and in contrast with those reported for distonic radical anions in which SOMO–HOMO gaps are smaller for more localized radicals and the orbital inversions vanish in water. Our findings yield new insights into the properties of free radical systems. PMID:29240424
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2011-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Goeschen, Catrin
2013-01-01
Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400
Sulfur Dioxide Accelerates the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2016-03-08
There remains considerable uncertainty in how anthropogenic gas phase emissions alter the oxidative aging of organic aerosols in the troposphere. Here we observe a 10-20 fold acceleration in the effective heterogeneous OH oxidation rate of organic aerosol in the presence of SO 2. This acceleration originates from the radical chain reactions propagated by alkoxy radicals, which are formed efficiently inside the particle by the reaction of peroxy radicals with SO 2. As the OH approaches atmospheric concentrations, the radical chain length increases, transforming the aerosol at rates predicted to be up to 10 times the OH-aerosol collision frequency. Model predictions,more » constrained by experiments over orders of magnitude changes in [OH] and [SO 2], suggest that in polluted regions the heterogeneous processing of organic aerosols by OH ([SO 2] ≥ 40 ppb) occur on similar time scales as analogous gas-phase oxidation reactions. These results provide evidence for a previously unidentified mechanism by which organic aerosol oxidation is enhanced by anthropogenic gas phase emissions. (Chemical Equation Presented).« less
NASA Astrophysics Data System (ADS)
Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.
2011-06-01
Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.
Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M
1995-01-01
Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078
Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo
2016-11-15
With increasing evidence showing the involvement of oxidative stress in the pathogenesis of various diseases, the effects of clinical drugs possessing antioxidant functions have received much attention. The unregulated oxidative modification of biological molecules leading to diseases is mediated by multiple oxidants including free radicals, peroxynitrite, hypochlorite, lipoxygenase, and singlet oxygen. The capacity of antioxidants to scavenge or quench oxidants depends on the nature of oxidants. In the present study, the antioxidant effects of several clinical drugs against plasma lipid oxidation induced by the aforementioned five kinds of oxidants were investigated from the production of lipid hydroperoxides, which have been implicated in the pathogenesis of various diseases. Troglitazone acted as a potent peroxyl radical scavenger, whereas probucol and edaravone showed only moderate reactivity and carvedilol, pentoxifylline, and ebselen did not act as radical scavenger. Probucol and edaravone suppressed plasma oxidation mediated by peroxynitrite and hypochlorite. Troglitazone and edaravone inhibited 15-lipoxygenase mediated plasma lipid oxidation, the IC 50 being 20 and 34μM respectively. None of the drugs used in this study suppressed plasma lipid oxidation by singlet oxygen. This study shows that the antioxidant effects of drugs depend on the nature of oxidants and that antioxidants against multiple oxidants are required to cope with oxidative stress in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements
2010-01-01
Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present. PMID:21092298
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2015-10-27
In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution.
Monteagudo, J M; Carmona, M; Durán, A
2005-08-01
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.
Is Nitrate radical a major oxidant of elemental mercury in the atmosphere?
NASA Astrophysics Data System (ADS)
Luria, M.; Obrist, D.; Peleg, M.; Matveev, V.; Tas, E.
2012-12-01
Nitrate radicals (NO3) play a major role in the nighttime atmospheric oxidation of VOC. The radicals are produced throughout the reaction between O3 and NO2 and are removed via a sequence of homogeneous and heterogeneous reactions. Nitrate radicals reach significant levels only at night and mostly under conditions of low humidity (Asaf et al, 2009, 2010 and references therein). Because of its very high photolysis rate, daytime levels are extremely low, and thus are insignificant in atmospheric oxidation processes. The reaction of Hg with NO3 has not been sufficiently investigated; a value of 4x10-15 cm3 molec-1 s-1 (Sommar et al 1997) is most commonly used. Its importance for the atmospheric mercury chemistry was discussed by Mao el al., (2008) who examined the potential oxidation of mercury by the most common atmospheric oxidants applying the best available rate coefficients. According to their report, the uncertainty in the oxidation capacity of O3 is very large (a factor of 20). If the lower limit is applied, as suggested by Calvert and Lindberg (2005), oxidation by O3 is nearly negligible and, NO3 radicals, at typical nighttime levels, are responsible for the bulk of the Hg oxidation. Obviously this is true in the absence of reactive halogen compounds (RHC, Peleg et al., 2008). The most common method of measuring nitrate radicals is the differential optical absorption system (DOAS) technique. In a recent study performed at an urban semi arid site (Jerusalem, Israel; Asaf et al., 2009, 2010) it was found that nitrate levels could reach levels of up to 800 ppt, significantly higher than ever reported in the past. They further demonstrated that under the conditions prevailed; nitrate radicals are at least as important as the hydroxyl radicals in the overall oxidation capacity of VOC in the atmosphere. Side by side measurements of Nitrate radicals using the DOAS technique and speciated mercury compounds (Total, Particulate and Reactive gaseous) were performed during the summer months of 2012. Measurements took place at the same site and the same period were the highest levels of NO3 were earlier observed. Preliminary data indicated that RGM levels up to 100 pg/m3 were observed during the dark hours concurrent with NO3 concentrations higher than 200 ppt . First round model simulations using a 1-d model, the same model used for the simulations of Hg oxidation at the Dead Sea (Obrist et al., 2010) were also performed. The results indicated that for a 10 hour nighttime average of 50 ppt of nitrate radicals, the concentrations of RGM increase by a factor of more than three.
IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES
Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.
2013-01-01
Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752
Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata
2014-09-30
A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.
Omata, Yo; Saito, Yoshiro; Yoshida, Yasukazu; Jeong, Byeong-Seon; Serwa, Remigiusz; Nam, Tae-gyu; Porter, Ned A; Niki, Etsuo
2010-05-15
Free radical-mediated lipid peroxidation has been implicated in the pathogenesis of various diseases. Lipid peroxidation products are cytotoxic and they modify proteins and DNA bases, leading eventually to degenerative disorders. Various synthetic antioxidants have been developed and assessed for their capacity to inhibit lipid peroxidation and oxidative stress induced by free radicals. In this study, the capacity of novel 6-amino-2,4,5-trimethyl-3-pyridinols for scavenging peroxyl radicals, inhibiting plasma lipid peroxidation in vitro, and preventing cytotoxicity induced by glutamate, 6-hydroxydopamine, 1-methyl-4-phenylpyridium (MPP(+) ), and hydroperoxyoctadecadienoic acid was assessed. It was found that they exerted higher reactivity toward peroxyl radicals and more potent activity for inhibiting the above oxidative stress than alpha-tocopherol, the most potent natural antioxidant, except against the cytotoxicity induced by MPP(+). These results suggest that the novel 6-amino-3-pyridinols may be potent antioxidants against oxidative stress. Copyright 2010 Elsevier Inc. All rights reserved.
Sreelatha, S; Padma, P R
2009-12-01
Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to human against infections and degenerative diseases. Current research is now directed towards natural antioxidants originated from plants due to safe therapeutics. Moringa oleifera is used in Indian traditional medicine for a wide range of various ailments. To understand the mechanism of pharmacological actions, antioxidant properties of the Moringa oleifera leaf extracts were tested in two stages of maturity using standard in vitro models. The successive aqueous extract of Moringa oleifera exhibited strong scavenging effect on 2, 2-diphenyl-2-picryl hydrazyl (DPPH) free radical, superoxide, nitric oxide radical and inhibition of lipid per oxidation. The free radical scavenging effect of Moringa oleifera leaf extract was comparable with that of the reference antioxidants. The data obtained in the present study suggests that the extracts of Moringa oleifera both mature and tender leaves have potent antioxidant activity against free radicals, prevent oxidative damage to major biomolecules and afford significant protection against oxidative damage.
Krylov, Igor B; Kompanets, Mykhailo O; Novikova, Katerina V; Opeida, Iosip O; Kushch, Olga V; Shelimov, Boris N; Nikishin, Gennady I; Levitsky, Dmitri O; Terent'ev, Alexander O
2016-01-14
Nitroxyl radicals are widely used in chemistry, materials sciences, and biology. Imide-N-oxyl radicals are subclass of unique nitroxyl radicals that proved to be useful catalysts and mediators of selective oxidation and CH-functionalization. An efficient metal-free method was developed for the generation of imide-N-oxyl radicals from N-hydroxyimides at room temperature by the reaction with (diacetoxyiodo)benzene. The method allows for the production of high concentrations of free radicals and provides high resolution of their EPR spectra exhibiting the superhyperfine structure from benzene ring protons distant from the radical center. An analysis of the spectra shows that, regardless of the electronic effects of the substituents in the benzene ring, the superhyperfine coupling constant of an unpaired electron with the distant protons at positions 4 and 5 of the aromatic system is substantially greater than that with the protons at positions 3 and 6 that are closer to the N-oxyl radical center. This is indicative of an unusual character of the spin density distribution of the unpaired electron in substituted phthalimide-N-oxyl radicals. Understanding of the nature of the electron density distribution in imide-N-oxyl radicals may be useful for the development of commercial mediators of oxidation based on N-hydroxyimides.
Oxidation of As(III) to As(V) using ozone microbubbles.
Khuntia, Snigdha; Majumder, Subrata Kumar; Ghosh, Pallab
2014-02-01
The use of ozone in the treatment of water and wastewater is rapidly increasing due to its high oxidizing power. Arsenic is one the most toxic elements found in water. As(III) and As(V) are the major sources of arsenic poisoning. It is known that As(V) can be more easily removed from water by adsorptive methods than As(III). In this work, oxidation of more toxic As(III) to less toxic As(V) was studied in a pilot-plant by using ozone microbubbles. The microbubbles were effective in dissolving ozone in water. The oxidation was fast over a wide range of pH (e.g., 4-9). The role of hydroxyl radical in the oxidation of As(III) under acidic conditions was investigated by using 2-propanol as the hydroxyl radical scavenger. Under acidic conditions, the addition of 2-propanol slowed down the oxidation, which proves that hydroxyl radicals were involved in the oxidation process. The effect of carbonate ions on the rate of oxidation was investigated. It was found that the generation of carbonate ion radical from the carbonate ion accelerated the oxidation of As(III). The kinetics of oxidation of As(III) by ozone was studied. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nauser, Thomas; Gebicki, Janusz M
2017-09-18
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Sipilä, Mikko; Kulmala, Markku; Herrmann, Hartmut
2015-10-15
The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.
NASA Astrophysics Data System (ADS)
Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping
2016-03-01
Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.
Photoredox Catalysis for the Generation of Carbon Centered Radicals.
Goddard, Jean-Philippe; Ollivier, Cyril; Fensterbank, Louis
2016-09-20
Radical chemistry has witnessed over the last decades important advances that have positioned it as a methodology of choice in synthetic chemistry. A number of great attributes such as specific reactivities, the knowledge of the kinetics of most elementary processes, the functional group tolerance, and the possibility to operate cascade sequences are clearly responsible for this craze. Nevertheless, at the end of the last century, radical chemistry appeared plagued by several hurdles to overcome such as the use of environmentally problematic mediators or the impossibility of scale up. While the concept of photocatalysis was firmly established in the coordination chemistry community, its diffusion in organic synthetic chemistry remained sporadic for decades until the end of the 2000s with the breakthrough merging of organocatalysis and photocatalysis by the MacMillan group and contemporary reports by the groups of Yoon and Stephenson. Since then, photoredox catalysis has enjoyed particularly active and intense developments. It is now the topic of a still increasing number of publications featuring various applications from asymmetric synthesis, total synthesis of natural products, and polymerization to process (flow) chemistry. In this Account, we survey our own efforts in this domain, focusing on the elaboration of new photocatalytic pathways that could lead to the efficient generation of C-centered functionalized alkyl and aryl radicals. Both reductive and oxidative manifolds are accessible through photoredox catalysis, which has guided us along these lines in our projects. Thus, we studied the photocatalytic reduction of onium salts such as sulfoniums and iodoniums for the production of the elusive aryl radical intermediates. Progressing to more relevant chemistry for synthesis, we examined the cleavage of C-O and the C-Br bonds for the generation of alkyl C-centered radicals. Activated epoxides could serve as valuable substrates of a photocatalyzed variant of the Nugent-RajanBabu-Gansäuer homolytic cleavage of epoxides. Using imidazole based carbamates, we could also devise the first photocatalyzed Barton-McCombie deoxygenation reaction. Finally, bromophenylacetate can be reduced using the [Au2(μ-dppm)2]Cl2 photocatalyst under UVA or visible-light. This was used for the initiation of the controlled atom transfer radical polymerization of methacrylates and acrylates in solution or laminate. Our next endeavors concerned the photocatalyzed oxidation of stabilized carbanions such as enolates of 1,3-dicarbonyl substrates, trifluoroborates, and more extensively bis-catecholato silicates. Because of their low oxidation potentials, the later have proved to be exquisite sources of radical entities, which can be engaged in diverse intermolecular reactions such as vinylation, alkynylation, and conjugate additions. The bis-catecholato silicates were also shown to behave as excellent partners of dual photoredox-nickel catalysis leading in an expeditious manner to libraries of cross coupling products.
Arifin, Muhammad Zafrullah; Faried, Ahmad; Shahib, Muhammad Nurhalim; Wiriadisastra, Kahdar; Bisri, Tatang
2011-01-01
Background. Traumatic brain injury (TBI) remains a major cause of death and disability. Oxidative stress is an important element of the injury cascade following TBI. Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation are one of the major mechanisms of secondary TBI. NR2B is a glutamate receptor and its activation is caused by TBI increasing a brain cell death, along with caspase-3 as a hall mark of apoptosis. Glutathione is a potent free radical scavenger that might prevent secondary TBI damage and inhibited apoptosis. Materials and Methods. In the present study, it aims to demonstrate the effect of glutathione on inhibition of brain oxidative damage in a TBI rat model. Results. In this study, the expressions of mRNA NR2B in placebo group and groups with glutathione administration at 0, 3, and 6 hours after TBI were 328.14, 229.90, 178.50, and 136.14, respectively (P<0.001). The highest caspase-3 expression was shown in placebo group with 66.7% showing strong positive results (>80%); as expected, glutathione administered in 0, 3, and 6 hours groups had lower strong positive results of 50%, 16.7%, and 16.7%, respectively, (P=0.025). Conclusion. In conclusion, this study showed that glutathione administration in a TBI rat model decreased NR2B gene- and caspase-3 protein-expression that lead to the inhibition of brain cell death. Our results suggest that glutathione, as a potent free radical scavenger, has a brain cell protective effect against oxidative damage and cell death induced by TBI in rat model. PMID:22347327
Jennings, P E
1994-01-01
Patients with type II diabetes commonly die from thrombotic vascular disease. Large vessel occlusion due to thrombosis or atherosclerotic stenosis is a process accelerated by diabetes and results in premature death. Diabetic small vessel disease, with its unique microangiopathic process, underlies many of the large vessel changes as well as causing retinopathy and nephropathy. The microangiopathic changes produce a prothrombotic tendency that has been widely reported in type II diabetes. There is reduced endothelial cell production of prostacyclin and the activators of fibrinolysis, together with increased platelet reactivity. In addition, there is increased lipid peroxidation and oxidative stress due to excess free-radical activity and impaired antioxidant defenses particularly in the presence of microvascular disease. The development of many of these abnormalities is associated with poor long-term glycemic control. However, the changes are also seen in atherosclerosis in nondiabetic patients where the progression of the disease can be modified by antiplatelet agents and antioxidants. The process of vascular damage is accelerated by diabetes, often due to co-existing disease and aging, although it is not clear that improvement in long-term glycemic control by lowering blood glucose levels to near to the nondiabetic state reduces the development of small and large vessel disease. Although the biochemical mechanism underlying this observation remains uncertain, protein glycosylation and increased platelet reactivity are implicated and interrelated. Increased oxidative stress due to excess free-radical activity may be central to diabetic vascular disease as endothelial cell damage, lipoprotein oxidation, modification of both platelet reactivity and arachidonic acid cascade are all properties of free radicals and their reaction products lipid peroxides.(ABSTRACT TRUNCATED AT 250 WORDS)
Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.
Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J
2017-03-01
Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.
AAPH-mediated antioxidant reactions of secoisolariciresinol and SDG.
Hosseinian, Farah S; Muir, Alister D; Westcott, Neil D; Krol, Ed S
2007-02-21
Secoisolariciresinol (SECO ) is the major lignan found in flaxseed (Linum usitatissimum L.) and is present in a polymer that contains secoisolariciresinol diglucoside (SDG ). SECO, SDG and the polymer are known to have a number of health benefits, including reduction of serum cholesterol levels, delay in the onset of type II diabetes and decreased formation of breast, prostate and colon cancers. The health benefits of SECO and SDG may be partially attributed to their antioxidant properties. To better understand their antioxidant properties, SECO and SDG were oxidized using 2,2'-azobis(2-amidinopropane), an in vitro model of radical scavenging. The major lignan radical-scavenging oxidation products and their formation over time were determined. SDG was converted to four major products, which were the result of a phenoxyl radical intermediate. One of these products, a dimer of SDG, decomposed under the reaction conditions to form two of the other major products, and . SECO was converted to five major products, two of which were also the result of a phenoxyl radical intermediate. The remaining products were the result of an unexpected alkoxyl radical intermediate. The phenol oxidation products were stable under the reaction conditions, whereas two of the alcohol oxidation products decomposed. In general, only one phenol group on the lignans was oxidized, suggesting that the number of phenols per molecule may not predict radical scavenging antioxidant ability of lignans. Finally, SECO is a superior antioxidant to SDG, and it may be that the additional alcohol oxidation pathway contributes to its greater antioxidant ability.
Role of metal oxides in the thermal degradation of poly(vinyl chloride)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, M.C.; Viswanath, S.G.
Thermal degradation of poly(vinyl chloride) has been studied in the presence of metal oxides by a thermogravimetric method. It follows a two-step mechanism. In the first step chlorine free radical is formed as in the case of pure PVC, and in the second step chlorine free radical replaces oxygen from metal oxide to form metal chloride and oxygen free radical. Subsequently, the oxygen free radical abstracts hydrogen from PVC. Formation of metal chloride is the rate-controlling step. The metal chlorides formed during the thermal degradation either volatilize or decompose simultaneously to lower metallic chlorides depending on the boiling point ormore » the volatilization temperature.« less
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Wang, Wenxing
2015-06-01
Polychlorinated biphenyls (PCBs) primarily exist in the gas phase in air and may undergo atmospheric oxidation degradations, particularly the oxidation reaction initiated by OH radicals. In this work, the mechanism of the OH radical-initiated atmospheric oxidation of the most toxic PCB congener 3,3',4,4',5-pentachlorobiphenyl (PCB126) was investigated by using quantum chemistry methods. The rate constants of the crucial elementary reactions were estimated by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The oxidation products of the reaction of PCB126 with OH radicals include 3,3',4,4',5-pentachlorobiphenyl-ols, chlorophenols, 2,3,4,7,8-pentachlorodibenzofuran, 2,3,4,6,7-pentachlorodibenzofuran, dialdehydes, 3,3',4,4',5-pentachloro-5'-nitro-biphenyl, and 4,5-dichloro-2-nitrophenol. Particularly, the formation of polychlorinated dibenzofurans (PCDFs) from the atmospheric oxidation of PCBs is revealed for the first time. The overall rate constant of the OH addition reaction is 2.52×10(-13)cm(3)molecule(-1)s(-1) at 298K and 1atm. The atmospheric lifetime of PCB126 determined by OH radicals is about 47.08days which indicates that PCB126 can be transported long distances from local to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
In vivo imaging of free radicals produced by multivitamin-mineral supplements.
Rabovsky, Alexander B; Buettner, Garry R; Fink, Bruno
2015-12-01
Redox active minerals in dietary supplements can catalyze unwanted and potentially harmful oxidations. To determine if this occurs in vivo we employed electron paramagnetic (EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) as a reporter for one-electron oxidations, e.g . free radical-mediated oxidations; the one-electron oxidation product of CPH, 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP • ), is a nitroxide free radical that is relatively persistent in vivo and detectable by EPR. As model systems, we used research formulations of vitamin mineral supplements (RVM) that are typical of commercial products. In in vitro experiments, upon suspension of RVM in aqueous solution, we observed: (1) the uptake of oxygen in the solution, consistent with oxidation of the components in the RVM; (2) the ascorbate free radical, a real-time indicator of ongoing oxidations; and (3) when amino acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible oligofructose) served as the matrix in the RVM, the rate of oxidation was significantly slowed. In a murine model, EPR imaging showed that the ingestion of RVM along with CPH results in the one-electron oxidation of CPH by RVM in the digestive system. The resulting CP • distributes throughout the body. Inclusion of AAOS in the RVM formulation diminished the oxidation of CPH to CP • in vivo. These data demonstrate that typical formulations of multivitamin/multimineral dietary supplements can initiate the oxidation of bystander substances and that AAOS-complexes of essential redox active metals, e.g . copper and iron, have reduced ability to catalyze free radical formation and associated detrimental oxidations when a part of a multivitamin/multimineral formulation.
In vivo imaging of free radicals produced by multivitamin-mineral supplements
Buettner, Garry R.; Fink, Bruno
2015-01-01
Background Redox active minerals in dietary supplements can catalyze unwanted and potentially harmful oxidations. Methods To determine if this occurs in vivo we employed electron paramagnetic (EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) as a reporter for one-electron oxidations, e.g. free radical-mediated oxidations; the one-electron oxidation product of CPH, 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP•), is a nitroxide free radical that is relatively persistent in vivo and detectable by EPR. As model systems, we used research formulations of vitamin mineral supplements (RVM) that are typical of commercial products. Results In in vitro experiments, upon suspension of RVM in aqueous solution, we observed: (1) the uptake of oxygen in the solution, consistent with oxidation of the components in the RVM; (2) the ascorbate free radical, a real-time indicator of ongoing oxidations; and (3) when amino acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible oligofructose) served as the matrix in the RVM, the rate of oxidation was significantly slowed. In a murine model, EPR imaging showed that the ingestion of RVM along with CPH results in the one-electron oxidation of CPH by RVM in the digestive system. The resulting CP• distributes throughout the body. Inclusion of AAOS in the RVM formulation diminished the oxidation of CPH to CP• in vivo. Conclusions These data demonstrate that typical formulations of multivitamin/multimineral dietary supplements can initiate the oxidation of bystander substances and that AAOS-complexes of essential redox active metals, e.g. copper and iron, have reduced ability to catalyze free radical formation and associated detrimental oxidations when a part of a multivitamin/multimineral formulation. PMID:26705481
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
Mehdi, Mohammad Murtaza; Rizvi, Syed Ibrahim
2012-08-01
The role of free radicals has long been proposed as a cause for the aging process. Oxidative stress is considered a major factor for altering many physiological processes and enzymatic activities during aging and is also known to play a major role in the development of several age-dependent diseases. Paraoxonase 1 (PON1) is an anti-atherosclerotic enzyme that mainly prevents accumulation of lipoperoxides and inhibits the lipid oxidation in low-density lipoproteins (LDL). This study was undertaken to investigate the antioxidant behavior of PON1 by measuring its arylesterase activity. The susceptibility of LDL for oxidation and the radical scavenging activity of plasma were also measured during aging in humans. Arylesterase activity of PON1 was measured in plasma of human subjects between 20 and 81 years of age of both genders. The susceptibility of LDL for oxidation and radical scavenging activity were measured in plasma. Decrease in plasma arylesterase activity of PON1, increase in susceptibility of LDL for oxidation and decrease in plasma radical scavenging activity were observed as a function of human age. The study provides evidence of a relationship between PON1 activity, LDL oxidation and free radical scavenging activity of plasma. The present results emphasize the dependency of PON1 activity to prevailing oxidative stress during human aging. Our findings assume significance in view of the possible categorization of PON1 as a longevity gene. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.
Activation of Peroxymonosulfate by Subsurface Minerals.
Yu, Miao; Teel, Amy L; Watts, Richard J
2016-08-01
In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants+nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants+nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface. Copyright © 2016. Published by Elsevier B.V.
Rui, Bruno R; Shibuya, Fábio Y; Kawaoku, Allison J T; Losano, João D A; Angrimani, Daniel S R; Dalmazzo, Andressa; Nichi, Marcilio; Pereira, Ricardo J G
2017-03-01
Over the past decades, scientists endeavored to comprehend oxidative stress in poultry spermatozoa and its relationship with fertilizing ability, lipid peroxidation (LPO), free-radical scavenging systems, and antioxidant therapy. Although considerable progress has been made, further improvement is needed in understanding how specific reactive oxygen species (ROS) and malondialdehyde (MDA, a toxic byproduct of LPO) disrupt organelles in avian spermatozoon. Hence, this study examined functional changes in chicken spermatozoa after incubation with different ROS, and their implications for the fertility. First, semen samples from 14 roosters were individually diluted and aliquoted into five equal parts: control, superoxide anion, hydrogen peroxide (H 2 O 2 ), hydroxyl radicals, and MDA. After incubation with these molecules, aliquots were analyzed for motility, plasma membrane and acrosome integrity, mitochondrial activity, and LPO and DNA damage. Hydrogen peroxide was more detrimental for sperm motility than hydroxyl radicals, whereas the superoxide anion and MDA exhibited no differences compared with controls. In turn, plasma membrane and acrosome integrity, mitochondrial activity, LPO and DNA integrity rates were only affected by hydroxyl radicals. Thereafter, semen aliquots were incubated under the same conditions and used for artificial insemination. In accordance to our in vitro observations, H 2 O 2 and hydroxyl radicals sharply reduced egg fertility, whereas superoxide anion and MDA only induced slight declines. Thus, chicken sperm function was severely impaired by H 2 O 2 and hydroxyl radicals, but their mechanisms of action seemingly comprise different pathways. Further analysis regarding susceptibility of spermatozoon organelles to specific radicals in other poultry will help us to understand the development of interspecific differences in scavenging systems and to outline more oriented antioxidant approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Kiruri, Lucy W; Dellinger, Barry; Lomnicki, Slawo
2013-05-07
Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041-47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils.
Kiruri, Lucy W.; Dellinger, Barry; Lomnicki, Slawo
2014-01-01
Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041−47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils. PMID:23510127
Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
Wiltschko, Roswitha; Ahmad, Margaret; Nießner, Christine; Gehring, Dennis; Wiltschko, Wolfgang
2016-05-01
The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass. © 2016 The Authors.
Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut
2013-04-07
Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.
Sazonova, E N; Samarina, E Yu; Lebed'ko, O A; Maltseva, I M; Timoshin, S S
2016-05-01
We studied the effects of a synthetic analogue of dermorphin peptide sedatin on DNA synthesis, nucleolar apparatus, and parameters of free radical oxidation in the primary culture of pulmonary fibroblasts under conditions of oxidative stress. Oxidative stress significantly enhanced production of superoxide anion radical in the culture, sufficiently inhibited DNA synthesis in fibroblasts, and reduced the size of cell nuclei and parameters of the nucleolar apparatus. Sedatin prevented accumulation of free radical oxidation products and changes in karyometry parameters induced by oxidative stress. The peptide completely eliminated changes in the parameters of fibroblast nucleolar apparatus and abolished the inhibitory effect of oxidative stress on the number of DNA-synthesizing cells. Pretreatment with non-selective opioid receptor antagonist naloxone hydrochloride partially abolished the effects of sedatin in the primary culture of pulmonary fibroblasts.
[Oxidative stress. Should it be measured in the diabetic patient?].
Villa-Caballero, L; Nava-Ocampo, A A; Frati-Munari, A C; Ponce-Monter, H
2000-01-01
Oxidative stress has been defined as a loss of counterbalance between free radical or reactive oxygen species production and the antioxidant systems, with negative effects on carbohydrates, lipids, and proteins. It is also involved in the progression of different chronic diseases and apoptosis. Diabetes mellitus is associated to a high oxidative stress level through different biochemical pathways, i.e. protein glycosylation, glucose auto-oxidation, and the polyol pathway, mainly induced by hyperglycemia. Oxidative stress could also be involved in the pathogenesis of atherosclerotic lesions and other chronic diabetic complications. Measurement of oxidative stress could be useful to investigate its role in the initiation and development processes of chronic diabetic complications and also to evaluate preventive actions, including antioxidative therapy. Different attempts have been made to obtain a practical, accurate, specific, and sensitive method to evaluate oxidative stress in clinical practice. However, this ideal method is not currently available to date and the usefulness of the current methods needs to be confirmed in daily practice. We suggest quantifying oxidated and reduced glutation (GSSG/GSH) and the thiobarbituric reactive substances (TBARS) with currently alternatives. Currently available alternative methods while we await better options.
Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.; ...
2017-02-07
Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less
Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.
Kanakaraju, Devagi; Glass, Beverley D; Oelgemöller, Michael
2018-08-01
Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO 2 -mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.
Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek
2010-02-01
Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.
Matsugo, S; Yan, L J; Han, D; Packer, L
1995-01-05
We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.
Issa, Samah; Downard, Kevin M
2006-10-01
The interaction between alpha-crystallin and upsilon-crystallin, a class recently discovered in the eye of the Australian platypus, has been shown by native shift gel assay and examined by radical probe mass spectrometry in the context of the ability of alpha-crystallin to protect upsilon-crystallin from oxidation and oxidative damage through radical-based oxidative stress mechanisms. Residues 22-41, 132-148, 212-227 and 245-264 of upsilon-crystallin display the greatest protection when interacted with alpha-crystallin at a ratio of 2 : 1 observed for the complex, which is commensurate with their levels measured in the eye of the platypus. Across each domain, a delay in the onset of oxidative damage is observed as the time of exposure to radicals is increased. The results are discussed in the context of the structure of the porcine homologue of upsilon-crystallin. Copyright 2006 John Wiley & Sons, Ltd.
Vitetta, Luis; Linnane, Anthony W
2014-04-01
The formations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been considered as major contributors to the dysregulation of the inflammatory response. Reactive oxygen species and RNS productions often are reported to be associated with the development of chronic diseases and acceleration of the aging process. Mechanistically, this association has linked the phenomena of oxidative stress with the occurrence of random deleterious modifications of macromolecules with progressive development of pro-inflammatory conditions promoting age-associated systemic diseases. On the contrary the so-called random modification of macromolecules is incorrect rather ROS and RNS are molecular regulators (second messengers) and not universal toxins whose overproduction should be annulled by antioxidants. We have previously reviewed the physiological role of superoxide anion (and hydrogen peroxide) and nitric oxide (and peroxynitrite) and concluded that these reactive molecular species behave as pro-oxidant second messengers. Reactive oxygen species and RNS are produced at specific cellular locations and are essential for both the normal physiological function of the metabolome and the regulated inflammatory response. This brings into question the whole concept of the orally administering of antioxidant molecular species to down-regulate or abrogate an overproduction of free radical activity. There are no human clinical trials that demonstrate that small molecules, the so-called antioxidants (e.g., vitamins C, vitamin E and beta-carotene), confer a favorable clinical outcome of long-lasting control of inflammation.
Mars Oxidant and Radical Detector
NASA Technical Reports Server (NTRS)
Yen, A. S.; Kim, S. S.
2003-01-01
The Mars Oxidant and Radical Detector is an instrument designed to characterize the reactive nature of the martian surface environment. Using Electron Paramagnetic Resonance (EPR) techniques, this instrument can detect, identify, and quantify radical species in soil samples, including those inferred to be present by the Viking experiments. This instrument is currently funded by the Mars Instrument Development Program and is compatible with the Mars Science Laboratory mission.
Radiation-induced effects in the electron-beam irradiation of dietary flavonoids
NASA Astrophysics Data System (ADS)
Tamba, M.; Torreggiani, A.
2004-09-01
The harmful effects of oxidative processes in living organisms can be reduced by the dietary intake of flavonoids, a class of phenolic compounds ubiquitous in plants and widely found in a number of fruits, vegetables and beverages. Many fruits and vegetables are treated by irradiation to solve preservation problems and a radical-induced degradation of nutrients, including polyphenols, may occur. The free radical chemistry of two abundant flavonoids in food, catechin and quercetin, have been investigated by using pulse radiolysis technique. The central role of the phenoxyl-type radical and the strong influence of the state of protonation of the compounds on the pathway of formation and decay of the corresponding oxidized radicals has been evidenced from the spectral properties and chemical reactivity of the radicals derived from the attack of several oxidizing species ( ṡOH, N 3ṡ SO 4-ṡ).
Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack.
Kim, Su Jin; Joo, Jeong Chan; Kim, Han Sang; Kwon, Inchan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan
2014-11-10
Despite the potential use of peroxidases as industrial biocatalysts, their practical application is often impeded due to suicide inactivation by radicals generated in oxidative reactions. Using a peroxidase from Coprinus cinereus (CiP) as a model enzyme, we revealed a dominant factor for peroxidase inactivation during phenol oxidation, and we engineered radical-stable mutants by site-directed mutagenesis of an amino acid residue susceptible to modification by phenoxyl radical. Mass spectrometry analysis of inactivated CiP identified an adduct between F230 and a phenoxyl radical, and subsequently, the F230 residue was mutated to amino acids that resisted radical coupling. Of the F230 mutants, the F230A mutant showed the highest stability against radical inactivation, retaining 80% of its initial activity, while the wild-type protein was almost completely inactivated. The F230A mutant also exhibited a 16-fold higher turnover of the phenol substrate compared with the wild-type enzyme. Furthermore, the F230A mutant was stable during the oxidation of other phenolic compounds, including m-cresol and 3-methoxyphenol. No structural changes were observed by UV-vis and CD spectra of CiP after radical coupling, implying that the F230-phenol radical adduct inactivated CiP by blocking substrate access to the active site. Our novel strategy can be used to improve the stability of other peroxidases inactivated by radicals. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.
Jin, Ju; Li, Yan; Zhang, Xiuli; Chen, Tongsheng; Wang, Yifei; Wang, Zhiping
Cellular damage such as oxidation and lipid peroxidation, and DNA damage induced by free-radicals like reactive oxygen species, has been implicated in several diseases. Radicals generated by 2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) are similar to physiologically active ones. In this study we found that polydatin, a resveratrol natural precursor derived from many sources, has the capacity of free radical scavenging and antioxidative damage. Using free radical scavenging assays, the IC50 values of polydatin were 19.25 and 5.29 μg/ml with the DPPH and the ABTS assay, respectively, and 0.125 mg ferrous sulfate/1 mg polydatin with the FRAP assay. With the AAPH-induced oxidative injury cell model assay, polydatin showed a strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicate that the antioxidant properties of polydatin have great potential for use as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetics and pharmaceutical preparations for the treatment of oxidative diseases.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.
Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II
Pathak, Vinay; Prasad, Ankush
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060
Absorption and electroabsorption spectra of carotenoid cation radical and dication
NASA Astrophysics Data System (ADS)
Krawczyk, Stanisław
1998-05-01
Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl 3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D 0→D 2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D 0→D 2 transition exhibits a negative change of molecular polarizability, Δ α=-1.2·10 -38 C·m 2/V (-105 A 3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D 1 and D 2 excited states. Absorption spectrum of astaxanthin dication is located at 715-717 nm, between those of D 0→D 2 in cation radical and S 0→S 2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δ α=2.89·10 -38 C·m 2/V (260 A 3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.
Oxidative stress, free radicals and protein peroxides.
Gebicki, Janusz M
2016-04-01
Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vahidi, Siavash; Konermann, Lars
2016-07-01
Hydroxyl radical (ṡOH) labeling with mass spectrometry detection reports on protein conformations and interactions. Fast photochemical oxidation of proteins (FPOP) involves ṡOH production via H2O2 photolysis by UV laser pulses inside a flow tube. The experiments are conducted in the presence of a scavenger (usually glutamine) that shortens the ṡOH lifetime. The literature claims that FPOP takes place within 1 μs. This ultrafast time scale implies that FPOP should be immune to labeling-induced artifacts that may be encountered with other techniques. Surprisingly, the FPOP time scale has never been validated in direct kinetic measurements. Here we employ flash photolysis for probing oxidation processes under typical FPOP conditions. Bleaching of the reporter dye cyanine-5 (Cy5) served as readout of the time-dependent radical milieu. Surprisingly, Cy5 oxidation extends over tens of milliseconds. This time range is four orders of magnitude longer than expected from the FPOP literature. We demonstrate that the glutamine scavenger generates metastable secondary radicals in the FPOP solution, and that these radicals lengthen the time frame of Cy5 oxidation. Cy5 and similar dyes are widely used for monitoring the radical dose experienced by proteins in solution. The measured Cy5 kinetics thus strongly suggest that protein oxidation in FPOP extends over a much longer time window than previously thought (i.e., many milliseconds instead of one microsecond). The optical approach developed here should be suitable for assessing the performance of future FPOP-like techniques with improved temporal labeling characteristics.
Biological Relevance of Free Radicals and Nitroxides.
Prescott, Christopher; Bottle, Steven E
2017-06-01
Nitroxides are stable, kinetically-persistent free radicals which have been successfully used in the study and intervention of oxidative stress, a critical issue pertaining to cellular health which results from an imbalance in the levels of damaging free radicals and redox-active species in the cellular environment. This review gives an overview of some of the biological processes that produce radicals and other reactive oxygen species with relevance to oxidative stress, and then discusses interactions of nitroxides with these species in terms of the use of nitroxides as redox-sensitive probes and redox-active therapeutic agents.
SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING
This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...
Balaji, S N; Trivedi, V
2013-07-01
N-acetyl-L-cysteine (NAC) improves antioxidant potentials of RBCs to provide protection against oxidative stress induced hemolysis. The antioxidant mechanism of NAC to reduce oxidative stress in RBC, studied through inactivation of pro-oxidant MetHb. NAC causes irreversible inactivation of the MetHb in an H2O2 dependent manner, and the inactivation follows the pseudo- first- order kinetics. The kinetic constants are ki = 8.5μM, kinact = 0.706 min(-1) and t1/2 = 0.9 min. Spectroscopic studies indicate that MetHb accepts NAC as a substrate and oxidizes through a single electron transfer mechanism to the NACox. The single e- oxidation product of NAC has been identified as the 5, 5'- dimethyl-1- pyrroline N- oxide (DMPO) adduct of the sulfur centered radical (a(N) = 15.2 G and a(H)=16.78 G). Binding studies indicate that NACox interacts at the heme moiety and NAC oxidation through MetHb is essential for NAC binding. Heme-NAC adduct dissociated from MetHb and identified (m/z 1011.19) as 2:1 ratio of NAC/heme in the adduct. TEMPO and PBN treatment reduces NAC binding to MetHb and protects against inactivation confirms the role of thiyl radical in the inactivation process. Furthermore, scavenging thiyl radicals by TEMPO abolish the protective effect of NAC in hemolysis. Current work highlights antioxidant mechanism of NAC through NAC thiyl radical generation, and MetHb inactivation to exhibit protection in RBC against oxidative stress induced hemolysis.
Effective Delivery of Endogenous Antioxidants Ameliorates Diabetic Nephropathy
Park, Yongsoo; Kim, Hyunok; Park, Leejin; Min, Dongsoo; Park, Jinseu; Choi, Sooyoung; Park, Moon Hyang
2015-01-01
Background Diabetic nephropathy (DN) is thought to be partially due to the injury of renal cells and the renal micro-environment by free radicals. Free radial scavenging agents that inhibit free radical damage may well prevent the development of underlying conditions such as mesangial expansion (by inhibiting extracellular matrix expression) in these patients. Methods Using techniques for intra-cellular delivery of peptides, we made metallothionein (MT) and superoxide dismutase (SOD), potent endogenous antioxidants, readily transducible into cell membrane and tested their protective effect against the development of DN in OLETF rats. Herein, we study antioxidant peptides for their ability to prevent oxidative damage to primary rat mesangial cells (MCs), which are important constituents of renal glomeruli. Results Intraperitoneal administration of these antioxidants resulted in delivery to the kidney and decreased ROS and the expression of downstream signals in renal cells and postponed the usual progression to DN. In in vitro experiments, MT and SOD were efficiently transferred to MCs, and the increased removal of ROS by MT and SOD was proportional to the degree of scavenging enzymes delivered. MT and SOD decreased three major oxidative injuries (hyperglycemia, AGE and ROS exposure) and also injuries directly mediated by angiotensin II in MCs while changing downstream signal transduction. Conclusions The protective effects of MT and SOD for the progression of DN in experimental animals may be associated with the scavenging of ROS by MT and SOD and correlated changes in signal transduction downstream. Concomitant administration of these antioxidant peptides may prove to be a new approach for the prevention and therapy of DN. PMID:26114547
Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun
2015-11-01
Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.
1980-12-01
Triplet State in UV-Induced Cataractogenesis ................................................. 63 D. Possible Role of a Photo-Oxidation Product of the...12,13). Some of the pigments have been isolated and identified as glucosides of hydroxy kynurenine and other oxidation products of tryptophan (14...dependence of UV-induced free-radical production , sought to identify the excited states and free radicals in the lens, studied the kinet- ics of free
Davison, G W; Ashton, T; George, L; Young, I S; McEneny, J; Davies, B; Jackson, S K; Peters, J R; Bailey, D M
2008-11-01
Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped alpha-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA(1c) 7.9 +/- 1%, n = 12) and healthy controls (HbA(1c) 4.6 +/- 0.5%, n = 14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n = 12) exhibited an elevated concentration of PBN adducts (p < 0.05 vs healthy, n = 14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO.) radicals (a(nitrogen) = 1.37 mT and abeta(hydrogen) = 0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p < 0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p < 0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p < 0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood. ISRCTN96164937.
[The role of oxidative stress in placental-related diseases of pregnancy].
Jauniaux, E; Burton, G J
2016-10-01
In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
TREATMENT OF PAHS AND PCBS USING SULFATE RADICAL-BASED OXIDATION PROCESSES
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aquatic systems pose serious threat to public health due to their toxicity and potential carcinogenicity [1]. Sulfate radical-based oxidation processes can be effectively used for degradation of these...
Heterogeneous Activation Of Peroxymonosulfate With Iron-Cobalt Bimetallic Nanocatalysts
Sulfate radical-based advanced oxidation technologies (SR-AOTs) are attracting considerable attention due to the high oxidizing ability of sulfate radicals (SRs) to degrade various organic pollutants. It was found that SRs could be generated via homogeneous activation of peroxym...
Sharma, Monisha; Gupta, Y K
2003-08-01
In the present study, the effect of alpha lipoic acid, a potent free radical scavenger, was investigated against the intracerebroventricular streptozotocin model of cognitive impairment in rats, which is characterized by a progressive deterioration of memory, cerebral glucose and energy metabolism, and oxidative stress. Wistar rats were injected with intracerebroventricular streptozotocin bilaterally. The rats were treated chronically with alpha lipoic acid (50, 100 and 200 mg/kg) orally for 21 days starting from day 1 of streptozotocin injection in separate groups. The learning and memory behavior was evaluated and the rats were sacrificed for estimation of oxidative stress. The intracerebroventricular streptozotocin rats treated with alpha lipoic acid (200 mg/kg, p.o.) showed significantly less cognitive impairment as compared to the vehicle treated rats. There was also an insignificant increase in oxidative stress in the alpha lipoic acid treated groups. The study demonstrated the effectiveness of alpha lipoic acid in preventing cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin and its potential in dementia associated with age and age related neurodegenerative disorders where oxidative stress is involved such as Alzheimer's disease.
Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.
Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun
2016-12-01
Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.
Investigating free radical generation in HepG2 cells using immuno-spin trapping.
Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P
2014-10-01
Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.
Ye, Bei; Li, Yue; Chen, Zhuo; Wu, Qian-Yuan; Wang, Wen-Long; Wang, Ting; Hu, Hong-Ying
2017-11-01
Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min -1 to 0.3 min -1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl - ], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Abuja, P M; Albertini, R; Esterbauer, H
1997-06-01
Kinetic simulation can help obtain deeper insight into the molecular mechanisms of complex processes, such as lipid peroxidation (LPO) in low-density lipoprotein (LDL). We have previously set up a single-compartment model of this process, initiating with radicals generated externally at a constant rate to show the interplay of radical scavenging and chain propagation. Here we focus on the initiating events, substituting constant rate of initiation (Ri) by redox cycling of Cu2+ and Cu+. Our simulation reveals that early events in copper-mediated LDL oxidation include (1) the reduction of Cu2+ by tocopherol (TocOH) which generates tocopheroxyl radical (TocO.), (2) the fate of TocO. which either is recycled or recombines with lipid peroxyl radical (LOO.), and (3) the reoxidation of Cu+ by lipid hydroperoxide which results in alkoxyl radical (LO.) formation. So TocO., LOO., and LO. can be regarded as primordial radicals, and the sum of their formation rates is the total rate of initiation, Ri. As experimental information of these initiating events cannot be obtained experimentally, the whole model was validated experimentally by comparison of LDL oxidation in the presence and absence of bathocuproine as predicted by simulation. Simulation predicts that Ri decreases by 2 orders of magnitude during lag time. This has important consequences for the estimation of oxidation resistance in copper-mediated LDL oxidation: after consumption of tocopherol, even small amounts of antioxidants may prolong the lag phase for a considerable time.
Rajamani, Rathinam; Muthuvel, Arumugam; Manikandan, Sundaramahalingam; Srikumar, Ramasundaram; Sheeladevi, Rathinasamy
2007-05-01
DL-alpha-Lipoic acid (LPA) was reported to be effective in reducing free radicals generated by oxidative stress. The protective of effect of LPA on methanol (MeOH) induced free radical changes and oxidative damages in discrete regions of rat brain have been reported in this study. Folate deficient rat (FDD) model was used. The five animal groups (saline control, FDD control, FDD+MeOH, FDD+LPA+MeOH, LPA control) were used. The FDD+MeOH and FDD+LPA+MeOH animals were injected intraperitoneally with methanol (3gm/kg). After 24h, the level of free radical scavengers such as, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione was estimated in six discrete regions of brain, retina and optic nerve. Level of protein thiol, protein carbonyl and lipid peroxidation was also estimated. Expression of heat shock protein 70 mRNA (hsp70) was studied in the cerebellum and hippocampus by reverse transcriptase PCR. All the samples showed elevation in the level of free radical scavenging enzymes and reduced level of glutathione in the FDD+MeOH group in relation to the other groups. hsp70 expression was more in FDD+MeOH group when compared to FDD+LPA+MeOH group. In conclusion, MeOH exposure leads to increased free radical generation and protein oxidative damages in the rat nervous tissue. Treatment with LPA prevents oxidative damage induced by MeOH exposure.
Zheng, X L; Sun, H Y; Law, C K
2005-10-13
In recognition of the importance of the isobutene oxidation reaction in the preignition chemistry associated with engine knock, the thermochemistry, chemical reaction pathways, and reaction kinetics of the isobutenyl radical oxidation at low to intermediate temperature range were computationally studied, focusing on both the first and the second O2 addition to the isobutenyl radical. The geometries of reactants, important intermediates, transition states, and products in the isobutenyl radical oxidation system were optimized at the B3LYP/6-311G(d,p) and MP2(full)/6-31G(d) levels, and the thermochemical properties were determined on the basis of ab initio, density functional theory, and statistical mechanics. Enthalpies of formation for several important intermediates were calculated using isodesmic reactions at the DFT and the CBS-QB3 levels. The kinetic analysis of the first O2 addition to the isobutenyl radical was performed using enthalpies at the CBS-QB3 and G3(MP2) levels. The reaction forms a chemically activated isobutenyl peroxy adduct which can be stabilized, dissociate back to reactants, cyclize to cyclic peroxide-alkyl radicals, and isomerize to the 2-hydroperoxymethyl-2-propenyl radical that further undergoes another O2 addition. The reaction channels for isomerization and cyclization and further dissociation on this second O2 addition were analyzed using enthalpies at the DFT level with energy corrections based on similar reaction channels for the first O2 addition. The high-pressure limit rate constants for each reaction channel were determined as functions of temperature by the canonical transition state theory for further kinetic model development.
The effect of alpha-tocopherol on the oxidation and free radical decay in irradiated UHMWPE.
Oral, Ebru; Rowell, Shannon L; Muratoglu, Orhun K
2006-11-01
We developed a radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) stabilized with alpha-tocopherol (Vitamin E) as a bearing material in total joint replacements. The stabilizing effect of alpha-tocopherol on free radical reactions in UHMWPE is not well understood. We investigated the effect of alpha-tocopherol on the oxidation and transformation of residual free radicals during real-time aging of alpha-tocopherol-doped, irradiated UHMWPE (alphaTPE) and irradiated UHMWPE (control). Samples were aged at 22 degrees C (room temperature) in air, at 40 degrees C in air and at 40 degrees C in water for 7 months. During the first month, alphaTPE showed some oxidation at the surface, which stayed constant thereafter. Control exhibited substantial oxidation in the subsurface region, which increased with time. The alkyl/allyl free radicals transformed to oxygen centered ones in both materials; this transformation occurred faster in alpha-TPE. In summary, the real-time oxidation behavior of alpha-TPE was consistent with that observed using accelerated aging methods. This new UHMWPE is oxidation resistant and is expected to maintain its properties in the long term.
NASA Astrophysics Data System (ADS)
Gutbrod, Roland; Schindler, Ralph N.; Kraka, Elfi; Cremer, Dieter
1996-04-01
According to CCSD(T)/TZ + 2P calculations, the decomposition of carbonyl oxide, H 2COO to HCO and OH radicals is unlikely in view of an activation enthalpy ΔΔHf0(298) of 31 kcal/mol. However, for dimethylcarbonyl oxide there is a low energy rearrangement mode ( ΔΔHf0(298): 14.4 kca/mol) which involves a H atom of ghe methyl group and which leads to a hydroperoxy methyl ethene intermediate, which in turn can decompose to OH and CH 2COCH 3 radicals ( ΔΔHf0(298): 23 kcal/mol). In the gas phase ozonolysis of alkyl substituted alkenes the formation of OH radicals is the most likely process. This has important consequences for the chemistry of the atmosphere.
Potential Role of Endoplasmic Reticulum Stress in Pathogenesis of Diabetic Retinopathy.
Sánchez-Chávez, Gustavo; Hernández-Ramírez, Ernesto; Osorio-Paz, Ixchel; Hernández-Espinosa, Claudia; Salceda, Rocío
2016-05-01
Diabetes mellitus is a metabolic disease that leads to several complications which include retinopathy. Multiple biochemical abnormalities have been proposed to explain the development of retinopathy, including oxidative stress. Although the existence of oxidative stress has been established in the retina from long standing diabetic animals, pathogenesis and progression of retinopathy remain unclear. In order to gain insight into the pathogenesis of diabetic retinopathy, we analyzed the levels of different oxidative stress biomarkers in the retina at early stages during the progress of streptozotocin-induced diabetes. No significant changes in glutathione content, expression of NADPH-oxidase, levels of lipid peroxidation, nor production of free radicals were observed in the retina up to 45 days of diabetes induction. Likewise, a transient decrease in aconitase activity, parallel to an increase in the superoxide dismutase activity was observed at 20 days of hyperglycemia, suggesting a high capacity of retina to maintain its redox homeostasis, at least at early stages of diabetes. Nonetheless, we found an early and time-dependent increase in the levels of oxidized proteins, which was not affected by the administration of the antioxidant quercetin. Also, positive immunoreactivity to the reticulum stress protein CHOP was found in glial Müller cells of diabetic rat retinas. These findings suggest the occurrence of endoplasmic reticulum stress as a primary event in retina pathogenesis in diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu
Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films weremore » decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.« less
One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA
Cadet, Jean; Wagner, J. Richard; Shafirovich, Vladimir; Geacintov, Nicholas E.
2014-01-01
Purpose The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. Conclusion There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation. PMID:24369822
One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.
Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E
2014-06-01
The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.
A controlled clinical trial of vitamin E supplementation in patients with congestive heart failure.
Keith, M E; Jeejeebhoy, K N; Langer, A; Kurian, R; Barr, A; O'Kelly, B; Sole, M J
2001-02-01
Oxidative stress is increased in patients with congestive heart failure and can contribute to the progressive deterioration observed in these patients. Increased oxidative stress is the result of either an increased production of free radicals or a depletion of endogenous antioxidants, such as vitamin E. We aimed to determine whether vitamin E supplementation of patients with advanced heart failure would modify levels of oxidative stress, thereby preventing or delaying the deterioration associated with free radical injury. Fifty-six outpatients with advanced heart failure (New York Heart Association functional class III or IV) were enrolled in a double-blind randomized controlled trial for 12 wk. At a baseline visit and at 2 follow-up visits, blood and breath samples were collected for the measurement of indexes of heart function and disease state, including malondialdehyde, isoprostanes, and breath pentane and ethane. Quality of life was also assessed at baseline and after 12 wk of treatment. Vitamin E treatment significantly increased plasma concentrations of alpha-tocopherol in the treatment group but failed to significantly affect any other marker of oxidative stress or quality of life. In addition, concentrations of atrial natriuretic peptide (a humoral marker of ventricular dysfunction), neurohormonal-cytokine markers of prognosis, tumor necrosis factor, epinephrine, and norepinephrine were unchanged with treatment and were not significantly different from those in the control group. Supplementation with vitamin E did not result in any significant improvements in prognostic or functional indexes of heart failure or in the quality of life of patients with advanced heart failure.
Rom, Oren; Volkova, Nina; Nandi, Sukhendu; Jelinek, Raz; Aviram, Michael
2016-08-01
At high concentrations, polyphenols induce cell death, and the polyphenols-rich pomegranate juice (PJ), known for its antioxidative/antiatherogenic properties, can possibly affect cell death, including macrophage death involved in atherogenesis. In the present study, apoptotic/necrotic macrophage death was analyzed in J774A.1 macrophages and in peritoneal macrophages isolated from atherosclerotic apoE-/- mice treated with PJ. The effects of PJ were compared with those of the free radical generator 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH). Both PJ and AAPH significantly increased J774A.1 macrophage death; however, flow cytometric and microscopic analyses using annexin V/propidium iodide revealed that PJ increased the early apoptosis of the macrophage dose dependently (up to 2.5-fold, P < 0.01), whereas AAPH caused dose-dependent increases in late apoptosis/necrosis (up to 12-fold, P < 0.001). Unlike PJ, AAPH-induced macrophage death was associated with increased intracellular oxidative stress (up to 7-fold, P < 0.001) and with lipid stress demonstrated by triglyceride accumulation (up to 3-fold, P < 0.01) and greater chromatic vesicle response to culture medium (up to 5-fold, P < 0.001). Accordingly, recombinant paraoxonase 1, which hydrolyzes oxidized lipids, attenuated macrophage death induced by AAPH, but not by PJ. Similar apoptotic and oxidative effects were found in macrophages from apoE-/- mice treated with PJ or AAPH. As macrophage apoptotic/necrotic death has considerable impact on atherosclerosis progression, these findings may provide novel mechanisms for the antiatherogenicity of PJ.
NASA Astrophysics Data System (ADS)
Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory
2017-01-01
This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.
Redden, Alison; Perkins, Robert J; Moeller, Kevin D
2013-12-02
Construction of new ring systems: Oxidative cyclizations (see picture; RVC=reticulated vitreous carbon) have been conducted that use two separate intramolecular nucleophiles to trap an enol ether-derived radical cation intermediate. The reactions provide a means for rapidly trapping the radical cation intermediate in a manner that avoids competitive decomposition reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
78 FR 24750 - Scientific Information Request Therapies for Clinically Localized Prostate Cancer
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... and benefits of the following therapies for clinically localized prostate cancer? a. Radical... prostate cancer: radical prostatectomy (including retropubic, perineal, laparoscopic, robotic-assisted..., biochemical (PSA) progression, metastatic and/or clinical progression-free survival, health status, and...
Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J
2015-08-01
Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.
Welz, Oliver; Savee, John D.; Osborn, David L.; ...
2014-07-04
The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH 3) 2CCHCH 2OH) and isoprenol (3-methyl-3-buten-1-ol, CH 2C(CH 3)CH 2CH 2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant productsmore » arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O 2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O 2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O 2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO 2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less
NASA Astrophysics Data System (ADS)
Abdullah, N. H.; Selamat, M. K. A.; Nasuha, N.; Hassan, H.; Zubir, N. A.
2018-06-01
Iron–immobilized montmorillonite KSF (Fe-MKSF) has been recognized as promising catalyst in degrading persistence organic contaminants. However, detailed mechanistic insight during the catalysis which involving the formation and identification of radical species were remained indeterminate due to complex reaction. Inspiring by this gap, iron-immobilized clay (Fe-MKSF) was synthesized and used as heterogeneous catalyst in the oxidative degradation of methyl orange (MO) solution. Identification of radical species were determined through the inclusion of different types of radical scavenging agent during the Fenton-like reaction at optimum condition. Interestingly, dominant radical species were found to be hydroperoxyl radicals (•OOH) which subsequently followed by hydroxyl radicals (•OH) during the catalysis. Based on the percentage of MO removal, it was suggested that approximately 88% of the •OOH radicals existed at the interface of catalyst while 39% presence in bulk solution. Meanwhile, the interface •OH radicals promoted 38% of MO removal, whilst 4% by the bulk •OH radicals. Hence, these findings have conveyed novel insight on detailed radicals’ identification as well as its’ interaction during the catalysis.
Pulsed Corona Discharge Induced Hydroxyl Radical Transfer Through the Gas-Liquid Interface.
Ajo, Petri; Kornev, Iakov; Preis, Sergei
2017-11-23
The highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase. It is also demonstrated that the gas-liquid interfacial boundary poses a barrier for the OH radicals, one they need to cross for reactive affinity with dissolved components, and that this process requires a gaseous atomic H scavenger. For gaseous oxidation, a scavenger, oxygen in common cases, is an advantage but not a requirement. OH radical efficiency in liquid phase reactions is strongly temperature dependent as radical termination reaction rates increase with temperature.
Photoinduced reactions of dibenzoyl peroxide as studied by EPR and spin-trapping
NASA Astrophysics Data System (ADS)
Rosenthal, Ionel; Mossoba, Magdi M.; Riesz, Peter
The photochemical reactions of dibenzoyl peroxide with some organic compounds were found by EPR and spin-trapping to generate free radicals in dimethyl sulfoxide solutions at room temperature. Two reaction mechanisms occur which determine the structures of the radicals generated. The first involves a one-electron oxidation and the second a hydrogen atom transfer. The prevailing mechanism is primarily dependent on the structure of the substrate. With carboxylic acids the one-electron oxidation occurs exclusively, leading to the loss of the carboxyl group and to formation of the alkyl radical. For alcohols both alkoxy radicals and hydrogen-abstraction α-carbon radicals were spin trapped. The alkoxy radicals were generated by the electron transfer mechanism. Finally pyrimidine bases such as thymine and cytosine yielded C(5)-centered radicals which could also be explained by an electron transfer mechanism. These observations are of interest because of the recently observed skin tumor-promoting activity of dibenzoyl peroxide.
Ienaga, Kazuharu; Mikami, Hiroki; Yokozawa, Takako
2009-07-01
The concentration of NZ-419 (5-hydroxy-1-methylimidazolidine-2,4-dione), an intrinsic antioxidant, has been shown to increase in the sera of animals and patients with chronic renal failure (CRF). This is the first report that orally administered exogenous NZ-419 prevents the initiation and/or progression of CRF in rats using an adenine-loaded model. After 24 d of adenine loading, there was a ca. 90% decrease in creatinine clearance (C(Cr)) in the control rats. Treatment with NZ-419 from the beginning significantly inhibited the decrease in C(Cr) and also the increase in serum creatinine (sCr). Bio-markers for in vivo hydroxyl radicals, the serum methylguanidine (sMG) level, and sMG/sCr molar ratio, not only in serum but also in the urine, kidney, liver, and muscle indicated that NZ-419 inhibited the increase in oxidative stress induced by CRF in rats. An increase of guanidinosuccinic acid, an another bio-marker of oxidative stress, was also inhibited with NZ-419.
Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications
NASA Astrophysics Data System (ADS)
Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.
2017-06-01
Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. [Figure not available: see fulltext.
Redox-active tyrosine residue in the microcin J25 molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalon, Miriam C.; Wilke, Natalia; Pedersen, Jens
2011-03-18
Research highlights: {yields} Cyclic voltammetry measurements showed irreversible oxidation of MccJ25 and MccJ25 (Y9F). {yields} Infrared spectroscopy studies showed that only Tyr9 could be deprotonated upon chemical oxidation. {yields} Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H{sub 2}O{sub 2} was demonstrated. {yields} Tyr9 but not Tyr20 can be easily oxidized and form a tyrosyl radical. -- Abstract: Microcin J25 (MccJ25) is a 21 amino acid lasso-peptide antibiotic produced by Escherichia coli and composed of an 8-residues ring and a terminal 'tail' passing through the ring. We have previously reported two cellular targets for this antibiotic,more » bacterial RNA polymerase and the membrane respiratory chain, and shown that Tyr9 is essential for the effect on the membrane respiratory chain which leads to superoxide overproduction. In the present paper we investigated the redox behavior of MccJ25 and the mutant MccJ25 (Y9F). Cyclic voltammetry measurements showed irreversible oxidation of both Tyr9 and Tyr20 in MccJ25, but infrared spectroscopy studies demonstrated that only Tyr9 could be deprotonated upon chemical oxidation in solution. Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H{sub 2}O{sub 2} was demonstrated by Electron Paramagnetic Resonance Spectroscopy; this radical was not detected when the reaction was carried out with the MccJ25 (Y9F) mutant. These results show that the essential Tyr9, but not Tyr20, can be easily oxidized and form a tyrosyl radical.« less
Szabó, László; Mile, Viktória; Tóth, Tünde; Balogh, György T; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László
2017-02-01
A full account of the • OH-induced free radical chemistry of an arylalkylamine is given taking all the possible reaction pathways quantitatively into consideration. Such knowledge is indispensable when the alkylamine side chain plays a crucial role in biological activity. The fundamental reactions are investigated on the model compound N-methyl-3-phenypropylamine (MPPA), and extended to its biologically active analog, to the antidepressant fluoxetine (FLX). Pulse radiolysis techniques were applied including redox titration and transient spectral analysis supplemented with DFT calculations. The contribution of the amine moiety to the free radical-induced oxidation mechanism appeared to be appreciable. • O - was used to observe hydrogen atom abstraction events at pH 14 giving rise to the strongly reducing α-aminoalkyl radicals (∼38% of the radical yield) and to benzyl (∼4%), β-aminoalkyl (∼24%), and aminyl radicals (∼31%) of MPPA. One-electron transfer was also observed yielding aminium radicals with low efficiency (∼3%). In the • OH-induced oxidation protonated α-aminoalkyl (∼49%), β-aminoalkyl (∼27%), benzyl radicals (∼4%), and aminium radicals (∼5%) are initially generated on the side chain of MPPA at pH 6, whereas hydroxycyclohexadienyl radicals (∼15%) were also produced. These initial events are followed by complex protonation-deprotonation reactions establishing acid-base equilibria; however, these processes are limited by the transient nature of the radicals and the kinetics of the ongoing reactions. The contribution of the radicals from the side chain alkylamine substituent of FLX totals up to ∼54% of the initially available oxidant yield.
Towner, Rheal A; Smith, Nataliya
2018-05-20
In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 28, 1404-1415.
Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei
2015-11-28
Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.
Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...
Effects of Kombucha on oxidative stress induced nephrotoxicity in rats
2009-01-01
Background Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. Results TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment. PMID:19943946
Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.
Gharib, Ola Ali
2009-11-27
Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.
Repair of oxidative DNA damage by amino acids.
Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F
2003-11-01
Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.
Thiaflavan scavenges radicals and inhibits DNA oxidation: a story from the ferrocene modification.
Lai, Hai-Wang; Liu, Zai-Qun
2014-06-23
4-Thiaflavan is a sulfur-substituted flavonoid with a benzoxathiin scaffold. The aim of this work is to compare abilities of sulfur and oxygen atom, hydroxyl groups, and ferrocene moiety at different positions of 4-thiaflavan to trap radicals and to inhibit DNA oxidation. It is found that abilities of thiaflavans to trap radicals and to inhibit DNA oxidation are increased in the presence of ferrocene moiety and are further improved by the electron-donating group attaching to thiaflavan skeleton. It can be concluded that the ferrocene moiety plays the major role for thiaflavans to be antioxidants even in the absence of phenolic hydroxyl groups. On the other hand, the antioxidant effectiveness of phenolic hydroxyl groups in thiaflavans can be improved by the electron-donating group. The influences of sulfur and oxygen atoms in thiaflavans on the antioxidant property of para-hydroxyl group exhibit different manners when the thiaflavans are used to trap radicals and to inhibit DNA oxidation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder?
Bagis, Selda; Tamer, Lulufer; Sahin, Gunsah; Bilgin, Ramazan; Guler, Hayal; Ercan, Bahadir; Erdogan, Canan
2005-04-01
The role of free radicals in fibromyalgia is controversial. In this study, 85 female patients with primary fibromyalgia and 80 age-, height-, and weight-matched healthy women were evaluated for oxidant/antioxidant balance. Malondialdehyde is a toxic metabolite of lipid peroxidation used as a marker of free radical damage. Superoxide dismutase is an intracellular antioxidant enzyme and shows antioxidant capacity. Pain was assessed by visual analog scale. Tender points were assessed by palpation. Age, smoking, body mass index (BMI), and duration of disease were also recorded. Malondialdehyde levels were significantly higher and superoxide dismutase levels significantly lower in fibromyalgic patients than controls. Age, BMI, smoking, and duration of disease did not affect these parameters. We found no correlation between pain and number of tender points. In conclusion, oxidant/antioxidant balances were changed in fibromyalgia. Increased free radical levels may be responsible for the development of fibromyalgia. These findings may support the hypothesis of fibromyalgia as an oxidative disorder.
Bouya, H; Errami, M; Chakir, A; Roth, E
2015-09-01
This article is concerned with the study of the photochemical degradation of bupirimate adsorbed on a quartz surface by atmospheric oxidants, namely ozone and OH radicals. OH oxidation experiments were conducted relative to two reference compounds, terbuthylazine and (4-chlorophenyl)(3,4-dimethoxyphenyl) methanone. Meanwhile, ozone oxidation experiments were performed in the absolute mode and were interpreted by both, the Surface Layer Reaction and the Gas Surface Reaction models of heterogeneous reactions. The obtained results show that the rate constants for the reactions between bupirimate and OH radicals and ozone are (cm(3)molecule(-1)s(-1)): (1.06 ± 0.87) × 10(-12) and (5.4 ± 0.3) × 10(-20), respectively. As a consequence, for the experimental conditions used in this study, the lifetime of bupirimate at quartz like surface/atmosphere interfaces is several months against ozone and a tenth of days against OH-radical. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cellular redox dysfunction in the development of cardiovascular diseases.
Kanaan, Georges N; Harper, Mary-Ellen
2017-11-01
To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake.
Apea-Bah, Franklin B; Serem, June C; Bester, Megan J; Duodu, Kwaku G
2017-12-15
Koose, a West African delicacy, is a side dish prepared by deep frying thick cowpea paste. The current research determined the effect of deep-fat frying of cowpea paste on its total phenolic content (TPC), phenolic composition and antioxidant properties. Four cowpea cultivars comprising two reddish-brown, a brownish-cream and cream phenotypes were used. Liquid chromatography-mass spectrometry was used to determine phenolic composition of the samples. TPC was determined using Folin-Ciocalteu method while radical scavenging capacities were by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity and nitric oxide scavenging assays. The phenolic acids identified included benzoic and cinnamic acid derivatives. The predominant flavonoid classes were flavan-3-ols and flavonols. Deep-fat frying of the cowpea pastes decreased their TPC, radical scavenging capacities and total quantified flavonoids. The koose inhibited radical-induced oxidative cellular and DNA damage. It is concluded that koose is a potential functional food that can contribute to alleviating radical-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pulse radiolysis studies of mangiferin: A C- glycosyl xanthone isolated from Mangifera indica
NASA Astrophysics Data System (ADS)
Mishra, B.; Priyadarsini, K. Indira; Sudheerkumar, M.; Unnikrishhnan, M. K.; Mohan, H.
2006-01-01
Pulse radiolysis technique has been employed to study the reaction of different oxidizing and reducing radicals with mangiferin. The reaction of rad OH radical showed the formation of transient species absorbing in 380-390 and 470-480 nm region. The reaction with specific one-electron oxidants (N 3rad , CCl 3O 2rad ) also showed the formation of similar transient absorption bands and is assigned to phenoxyl radicals. The p Ka values of the transient species have been determined to be 6.3 and 11.9. One-electron oxidation potential of mangiferin at pH 9 has been found to be 0.62 V vs. NHE. The reaction of e aq- showed the formation of transient species with λmax at 340 nm, which is assigned to the ketyl anion radical formed on addition of e aq- at carbonyl site. Reactions of one-electron oxidised mangiferin radicals with ascorbic acid have also been studied.
Kwong, Kai Chung; Chim, Man Mei; Davies, James F.; ...
2018-02-27
Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this study investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH 3SO 4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time,more » DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO 4 -) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH 2O) and a sulfate radical anion (SO 4 .-) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10 -13cm 3molecule -1s -1 with an effective OH uptake coefficient, γ eff, of 0.17 ± 0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 10 12molecule cm -3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.« less
NASA Astrophysics Data System (ADS)
Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man
2018-02-01
Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Kai Chung; Chim, Man Mei; Davies, James F.
Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this study investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH 3SO 4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time,more » DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO 4 -) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH 2O) and a sulfate radical anion (SO 4 .-) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10 -13cm 3molecule -1s -1 with an effective OH uptake coefficient, γ eff, of 0.17 ± 0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 10 12molecule cm -3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.« less
Lin, Hsin-Hung; Charles, Albert Linton; Hsieh, Chang-Wei; Lee, Ya-Chi; Ciou, Jhih-Ying
2015-01-01
The relationship between the antioxidant activities and inhibitory effect of 14 Chinese medicinal herbs against oxidized low-density lipoprotein (LDL) formation was evaluated. Prolongation of the lag phase of LDL oxidation depended on the concentration of the herbs. The concentration of each herb that was able to prolong the lag time by about two-fold was calculated and expressed as doubling-time concentration. The lower the doubling-time concentration, the stronger the inhibitory effect exhibited toward LDL oxidation. Among them, Chrysanthemi Flos (Chrysanthemum morifolium ramat; gān jú huā), Crataegi Fructus (Crataegus pinnatifida Bge. var. major N.E.Br.; shān zhā), and Roselle (Hibiscus sabdariffa Linn.; luò shén) showed significant inhibitory effects. Correlation coefficients between doubling-time concentration and radical-scavenging activities were high; the total phenolic content was also high. In conclusion, phenolic compounds contributed not only to antioxidant activities, but also to the inhibitory effect against LDL oxidation. Chrysanthemi Flos, Crataegi Fructus, and H. sabdariffa, with lower doubling-time concentrations, could be potent phytochemical agents to reduce LDL oxidation and prevent the progression of atherosclerosis.
2010-03-01
cancer in men. Now, we have shown that much lower doses of sildenafil, combined or not with a nitric oxide donor, molsidomine, also correct the CVOD...ED) subsequent to radical prostatectomy for prostate cancer can be prevented and even reversed by long-term sustained treatment with PDE5...erectile dysfunction subsequent to radical prostatectomy for prostate cancer , based on the long term sustained administration of PDE5 inhibitors. Our
Straub, Steffen; Lindner, Jörg; Vöhringer, Peter
2017-07-06
Femtosecond UV-pump/mid-infrared-probe spectroscopy was used to explore in detail the primary photochemical events of the free radical initiator, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, in liquid dichloromethane solution at room temperature. Following electronic excitation of its lowest excited singlet state, S 1 , the radical initiator undergoes an intersystem crossing to the triplet ground state, T 1 , with a time constant of 135 ps. A subsequent α-cleavage occurs from the triplet state with a time constant of 15 ps and yields a trimethylbenzoyl radical together with a diphenylphosphinoyl radical. Transient absorptions from the S 1 and T 1 states are observed that can be assigned to the P═O stretching mode and the symmetric in-plane deformation mode of the trimethylphenyl moiety of the radical initiator.
Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy
2017-01-19
Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H 2 O 2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.
Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy
2017-01-01
Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H2O2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property. PMID:28808196
Drouza, Chryssoula; Dieronitou, Anthi; Hadjiadamou, Ioanna; Stylianou, Marios
2017-06-21
A novel dynamic method for the investigation of the phenols activity in early stage oxidation of edible oils based on the formation of α-tocopheryl radicals initiated by oil-soluble vanadium complexes is developed. Two new vanadium complexes in oxidation states V and IV were synthesized by reacting 2,2'-((2-hydroxyoctadecyl)azanediyl)bis(ethan-1-ol) (C18DEA) with [VO(acac) 2 ] and 1-(bis(pyridin-2-ylmethyl)amino)octadecan-2-ol (C18DPA) with VOCl 2 . Addition of a solution of either complex in edible oils resulted in the formation of α-tocopheryl radical, which was monitored by electron paramagnetic resonance (EPR) spectroscopy. The intensity of the α-tocopheryl signal in the EPR spectra was measured versus time. It was found that the profile of the intensity of the α-tocopheryl signal versus time depends on the type of oil, the phenolic content, and the storage time of the oil. The time interval until the occurrence of maximum peak intensity be reached (t m ), the height of the maximum intensity, and the rate of the quenching of the α-tocopheryl radical were used for the investigation of the mechanism of the edible oils oxidation. 19 F NMR of the 19 F labeled phenolic compounds (through trifluoroacetate esters) and radical trap experiments showed that the vanadium complexes in edible oil activate the one electron reduction of dioxygen to superperoxide radical. Superperoxide reacts with the lipids to form alkoperoxyl and alkoxyl lipid radicals, and all these radicals react with the phenols contained in oils.
Chatterjee, Saurabh; Lardinois, Olivier; Bhattacharjee, Suchandra; Tucker, Jeff; Corbett, Jean; Deterding, Leesa; Ehrenshaft, Marilyn; Bonini, Marcelo; Mason, Ronald P.
2011-01-01
Profound depletion of follicular dendritic cells (FDCs) is a hallmark of sepsis-like syndrome, but the exact causes for the ensuing cell death are unknown. The cell death-driven depletion contributes to immunoparalysis and is responsible for most of the morbidity and mortality in sepsis. Here we have utilized immuno-spin trapping, a method for detection of free radical formation, to detect oxidative stress-induced protein and DNA radical adducts in FDCs isolated from the spleen of septic mice and human tonsil-derived HK cells, a subtype of germinal center FDCs, to study their role in FDC depletion. At 24 h post-LPS administration, protein radical formation and oxidation was significantly elevated in vivo and in HK cells as shown by ELISA and confocal microscopy. The xanthine oxidase inhibitor allopurinol and the iron chelator desferrioxamine significantly decreased the formation of protein radicals, suggesting the role of xanthine oxidase and Fenton-like chemistry in radical formation. Protein and DNA radical formation correlated mostly with apoptotic features at 24 h and necrotic morphology of all the cell types studied at 48 h with concomitant inhibition of caspase-3. The cytotoxity of FDCs resulted in decreased CD45R/CD138+ve plasma cell numbers, indicating a possible defect in B cell differentiation. In one such mechanism, radical formation initiated by xanthine oxidase formed protein and DNA radicals which may lead to cell death of germinal center FDCs. PMID:21215311
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.
Utsumi, Hideo; Hyodo, Fuminori
2015-01-01
Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.
[Oxidative stress and infectious pathology].
Romero Alvira, D; Guerrero Navarro, L; Gotor Lázaro, M A; Roche Collado, E
1995-03-01
Pathogenic organism can be considered as pro-oxidant agents because they produce cell death and tissue damage. In addition organism can be eliminated by specific cell defense mechanism which utilize in part, reactive oxygen radicals formed by oxidative stress responses. The cause of the necessarily defense process results in cell damage thereby leading to development of inflammation, a characteristic oxidative stress situation. This fact shows the duality of oxidative stress in infections and inflammation: oxygen free radicals protect against microorganism attack and can produce tissue damage during this protection to trigger inflammation. Iron, a transition metal which participates generating oxygen free radicals, displays also this duality in infection. We suggest also that different infectious pathologies, such as sickle cell anemia/malaria and AIDS, may display in part this duality. In addition, it should be noted that oxidative damage observed in infectious diseases is mostly due the inflammatory response than to the oxidative potential of the pathogenic agent, this last point is exemplified in cases of respiratory distress and in glomerulonephritis. This review analyzes these controversial facts of infectious pathology in relation with oxidative stress.
Petruk, Ariel A.; Bartesaghi, Silvina; Trujillo, Madia; Estrin, Darío A.; Murgida, Daniel; Kalyanaraman, Balaraman; Marti, Marcelo A.; Radi, Rafael
2012-01-01
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O●) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O● to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues. PMID:22640642
Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.
Zhao, Xiaocan; Wang, Liming
2017-05-04
Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.
Cente, Martin; Filipcik, Peter; Mandakova, Stanislava; Zilka, Norbert; Krajciova, Gabriela; Novak, Michal
2009-01-01
Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). We investigated the effect of a truncated form of the human tau protein in the neurons of transgenic rats. Using electron paramagnetic resonance we observed significantly increased accumulation of ascorbyl free radicals in brains of transgenic animals (up to 1.5-fold increase; P < 0.01). Examination of an in vitro model of cultured rat corticohippocampal neurons revealed that even relatively low level expression of human truncated tau protein (equal to 50% of endogenous tau) induced oxidative stress that resulted in increased depolarization of mitochondria (approximately 1.2-fold above control, P < 0.01) and increases in reactive oxygen species (approximately 1.3-fold above control, P < 0.001). We show that mitochondrial damage-associated oxidative stress is an early event in neurodegeneration. Furthermore, using two common antioxidants (vitamin C and E), we were able significantly eliminate tau-induced elevation of reactive oxygen species. Interestingly, vitamin C was found to be selective in the scavenging activity, suggesting that expression of truncated tau protein preferentially leads to increases in aqueous phase oxidants and free radicals such as hydrogen peroxide and hydroxyl and superoxide radicals. Our results suggest that antioxidant strategies designed to treat AD should focus on elimination of aqueous phase oxidants and free radicals.
Ganini, Douglas; Canistro, Donatella; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P.; Kadiiska, Maria B.
2012-01-01
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe2+ oxidation in plasma of mammals. Besides its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA and Desferal, while heparin and bathocuproine have no effect. Catalase or SOD additions do not interfere with the CPH-oxidation yield, demonstrating that free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for ROS detection and quantification. PMID:22824865
Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL).
Li, Lei
2012-11-01
Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology. Copyright © 2011 Elsevier B.V. All rights reserved.
2011-01-01
Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526
Quantification of hydroxyl radical produced during phacoemulsification.
Gardner, Jonathan M; Aust, Steven D
2009-12-01
To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.
Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory
2017-01-01
This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions. PMID:28084448
In-situ generation of oxygen-releasing metal peroxides
Looney, Brian B.; Denham, Miles E.
2007-01-09
A method for remediation of contaminants in soil and groundwater is disclosed. The method generates oxygen releasing solids in groundwater or soil by injecting an aqueous energetic oxidant solution containing free radicals, oxidative conditions can be created within or ahead of a contaminant plume. Some contaminants may be remediated directly by reaction with the free radicals. Additionally and more importantly, the free radicals create an oxidative condition whereby native or injected materials, especially metals, are converted to peroxides. These peroxides provide a long-term oxygen reservoir, releasing oxygen relatively slowly over time. The oxygen can enhance microbial metabolism to remediate contaminants, can react with contaminant metals either to form immobile precipitants or to mobilize other metals to permit remediation through leaching techniques. Various injection strategies for injecting the energetic oxidant solution are also disclosed.
Pulsed Electron Beam Water Radiolysis for Sub-Microsecond Hydroxyl Radical Protein Footprinting
Watson, Caroline; Janik, Ireneusz; Zhuang, Tiandi; Charvátová, Olga; Woods, Robert J.; Sharp, Joshua S.
2009-01-01
Hydroxyl radical footprinting is a valuable technique for studying protein structure, but care must be taken to ensure that the protein does not unfold during the labeling process due to oxidative damage. Footprinting methods based on sub-microsecond laser photolysis of peroxide that complete the labeling process faster than the protein can unfold have been recently described; however, the mere presence of large amounts of hydrogen peroxide can also cause uncontrolled oxidation and minor conformational changes. We have developed a novel method for sub-microsecond hydroxyl radical protein footprinting using a pulsed electron beam from a 2 MeV Van de Graaff electron accelerator to generate a high concentration of hydroxyl radicals by radiolysis of water. The amount of oxidation can be controlled by buffer composition, pulsewidth, dose, and dissolved nitrous oxide gas in the sample. Our results with ubiquitin and β-lactoglobulin A demonstrate that one sub-microsecond electron beam pulse produces extensive protein surface modifications. Highly reactive residues that are buried within the protein structure are not oxidized, indicating that the protein retains its folded structure during the labeling process. Time-resolved spectroscopy indicates that the major part of protein oxidation is complete in a timescale shorter than that of large scale protein motions. PMID:19265387
Ohnishi, Shiho; Mizutani, Hideki; Kawanishi, Shosuke
2016-08-01
Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide), and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin, and phenformin enhanced generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2-mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.
Polychlorinated biphenyls (PCBs) in the environment pose long-term risk to public health because of their persistent and toxic nature. This study investigates the degradation of PCBs using sulfate radical-based advanced oxidation processes (SR-AOPs). These processes are based o...
Possible mechanisms for delayed neurological damage in lightning and electrical injury.
Reisner, Andrew D
2013-01-01
This article provides and reviews hypotheses to help explain the poorly understood phenomenon of delayed neurological injury following lightning or electrical injury. A review of extant literature provides a starting point to integrate what is already known in an attempt to provide new hypotheses for this phenomenon, as well as to discuss existing hypotheses. The author proposes two theories which stem from the literature on the damaging effects of oxidative stress, and also reviews an existing hypothesis, the electroporation hypothesis. The former two theories can account for delayed damage which is either of vascular or nonvascular origin. The electroporation hypothesis can explain changes both in cases where there is cellular loss as well as cases where there only appears to be change in function after lightning or electrical injury. Although all theories discussed are speculative, the formation of hypotheses is always a starting point in the scientific process. In cases where there is delayed neurological damage with a vascular origin, it is possible that free radicals resulting from oxidative stress may gradually damage spinal vascular endothelial cells, cutting off blood supply, and ending in death of spinal neurons. When the delayed condition is demyelination without vascular damage, it is possible that the free radicals from oxidative stress are formed directly from the lipids found in abundance in myelin cells. The electroporation hypothesis, the formation of additional pores in neurons, may best explain immediate or progressive changes in structure and function after lightning or electrical injury.
Urate as a Physiological Substrate for Myeloperoxidase
Meotti, Flavia C.; Jameson, Guy N. L.; Turner, Rufus; Harwood, D. Tim; Stockwell, Samantha; Rees, Martin D.; Thomas, Shane R.; Kettle, Anthony J.
2011-01-01
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 105 m−1 s−1 for compound I and 1.7 × 104 m−1 s−1 for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease. PMID:21266577
Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C
2013-05-02
Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.
Chemiluminescence Study of the Autoxidation of cis-1,4-Polyisoprene
NASA Technical Reports Server (NTRS)
Mendenhall, G. David; Nathan, Richard A.; Golub, Morton A.
1978-01-01
The free-radical mechanism for the autoxidation of cis-1,4-polyisoprene (natural rubber or its synthetic counterpart) has been investigated extensively. An important feature of this mechanism, and indeed also of the autoxidation of hydrocarbons generally, is that it is a chain process propagated by alkyl and peroxy radicals and terminated through bimolecular reactions involving these same radicals. In the usual oxidation situation, that is, at all oxygen pressures greater than a few torr, the alkyl radicals are rapidly converted to peroxy radicals, and the termination step proceeds almost exclusively through the latter radicals. The bimolecular decay of the peroxy radicals is accompanied by a weak emission of light or chemiluminescence. Kinetic evidence is consistent with an electronically excited ketone produced in the termination reaction as the source of the emission. The first observation of chemiluminescence from the oxidative degradation of polymers was reported by Ashby, who dealt mainly with polypropylene but made passing mention of several other polymers. Subsequently, a number of papers have appeared dealing with oxidative chemiluminescence from a variety of polymers. In this paper we report the first detailed study of the chemiluminescence emitted in the autoxidation of cis-1,4-polyisoprene. The chemiluminescence technique is extremely sensitive and can follow rates of oxidation that are too slow to be measured conveniently by other means. This work thus offered the potential of throwing new light on the autoxidation of cis-1,4-polyisoprene, especially in the very early stages or under ambient conditions where conventional spectroscopic procedures are rather insensitive.
Free radicals: properties, sources, targets, and their implication in various diseases.
Phaniendra, Alugoju; Jestadi, Dinesh Babu; Periyasamy, Latha
2015-01-01
Free radicals and other oxidants have gained importance in the field of biology due to their central role in various physiological conditions as well as their implication in a diverse range of diseases. The free radicals, both the reactive oxygen species (ROS) and reactive nitrogen species (RNS), are derived from both endogenous sources (mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells etc.) and exogenous sources (pollution, alcohol, tobacco smoke, heavy metals, transition metals, industrial solvents, pesticides, certain drugs like halothane, paracetamol, and radiation). Free radicals can adversely affect various important classes of biological molecules such as nucleic acids, lipids, and proteins, thereby altering the normal redox status leading to increased oxidative stress. The free radicals induced oxidative stress has been reported to be involved in several diseased conditions such as diabetes mellitus, neurodegenerative disorders (Parkinson's disease-PD, Alzheimer's disease-AD and Multiple sclerosis-MS), cardiovascular diseases (atherosclerosis and hypertension), respiratory diseases (asthma), cataract development, rheumatoid arthritis and in various cancers (colorectal, prostate, breast, lung, bladder cancers). This review deals with chemistry, formation and sources, and molecular targets of free radicals and it provides a brief overview on the pathogenesis of various diseased conditions caused by ROS/RNS.
Anitha, Thirugnanasambandhar Sivasubramanian; Muralidharan, Arumugam Ramachandran; Annadurai, Thangaraj; Jesudasan, Christdas Arul Nelson; Thomas, Philip Aloysius
2013-01-01
Purpose To investigate the possible free radical-scavenging activity of an extract of Cineraria maritima on selenite-induced cataractous lenses in Wistar rat pups. Methods In the present study, Wistar rat pups were divided into three experimental groups. On P10, Group I (control) rat pups received an intraperitoneal injection of 0.89% saline. Rats in groups II (selenite-challenged, untreated) and III (selenite-challenged, C. maritima treated) received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of the extract of C. maritima (350 mg/kg bodyweight) once daily P9–14. Both eyes of each pup were examined from P16 until P30. Cytochemical localization of nitroblue tetrazolium salts and generation of superoxide, hydroxyl, and nitric oxide levels were measured. The expression of the inducible nitric oxide synthase gene was evaluated with reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of the inducible nitric oxide synthase protein. Results Subcutaneous injection of sodium selenite led to severe oxidative damage in the lenticular tissues, shown by increased formation of formazan crystals, elevated generation of superoxide, hydroxyl, and nitric oxide radicals, and elevated inducible nitric oxide synthase gene and protein expression that possibly contributed to the opacification of the lens and thus cataract formation. When rat pups were treated with intraperitoneal administration of the extract of C. maritima, the generation of free radicals as well as the messenger ribonucleic acid and protein expression of inducible nitric oxide synthase were maintained at near normal levels. Conclusions The data generated by this study suggest that an ethanolic extract of C. maritima possibly prevents cataractogenesis in a rat model by minimizing free radical generation. PMID:24357923
Chen, Ke-Xin; Wang, Chun-Ming; Wang, Gui-Ying; Zhao, Zhi-Jun
2014-08-01
The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15°C), room (23°C) or warm temperature (30°C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally. Energy intake and the rate of metabolism and nonshivering thermogenesis were increased at 15°C, but decreased at 30°C compared with that at 23°C. Effects of temperatures on the markers of both oxidative stress and antioxidant activities were rarely significant. The percentages of positive correlation between the 11 tissues (brain, BAT, liver, heart, lung, kidneys, stomach, small and large intestine, caecum and skeletal muscle) were 14.5% (8/55) for catalase (CAT), 7.3% (4/55) for the capacity of inhibition of hydroxyl free radical (CIH), 5.5% (3/55) for activities of superoxide dismutase (SOD), 1.8% (1/55) for total antioxidant capacity (T-AOC), 4.3% (2/46) for H2O2 and 11.1% (4/36) for the capacity of inhibition of hydroxyl free radical (CIH). This indicated that the tissue-dependent changes of both oxidative stress and antioxidant activity were less consistent among the different tissues. Finally the data from this study were less consistent with the prediction of the mechanism of the rate of living-free radical theory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa
2017-11-01
Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rokhlenko, Yekaterina; Geacintov, Nicholas E; Shafirovich, Vladimir
2012-03-14
The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.
[The oxidative stress in platelets of patients with ovary cancer as observed at chemotherapy].
Zubrikhina, G N; Davydova, T V; Kormosh, N G; Gorozhanskaia, E G
2004-12-01
Disorders in the main chains of platelet antioxidant protection were examined in 32 patients with primarily-diagnosed ovary cancer who were postoperatively receiving chemotherapy according to PC. The activity of antioxidant-protection enzymes (superoxide dismutase, catalase, glutation-S-transferase) as well as the content of malonic dialdehyde (MDA) and glutathione were examined after each course of chemotherapy. The data obtained were compared with the aggregation ability of platelets, with the content of fibrinogen and with the count of platelets. The parameters of the antioxidant system in platelets were examined for control in 30 virtually healthy women. The results denote that the oxidant stress progression in the body due to the growing tumor and aggravating because of chemodrugs deregulates the free-radical processes in platelets, which can affect their functional properties or rheological blood properties.
Fractionation of mercury isotopes by photo-oxidation in aquatic systems
NASA Astrophysics Data System (ADS)
Ghosh, S.; Bergquist, B. A.; Blum, J. D.
2009-12-01
Mercury is a globally distributed pollutant that bioaccumulates in aquatic food webs, even in remote locations. The recent discovery of both large mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) has made the promise of tracing this neurotoxin through the environment by using its isotopes very exciting. So far, the only process demonstrated experimentally to produce large MIF for Hg (similar in magnitude to the MIF observed in natural samples such as fish) is photochemical reduction (Bergquist and Blum, 2007). During photo-reduction, MIF of the odd isotopes was observed with the odd isotopes (199Hg, 201Hg) being preferentially enriched in the aqueous phase. Bergquist and Blum, 2007, suggested that the cause of MIF was the magnetic isotope effect (MIE), which is purely a kinetic phenomenon involving radical pair intermediates. Radical pairs with odd isotopes, which have non-zero nuclear spin and magnetic moments, can undergo spin conversion faster than radical pairs with non-magnetic even isotopes. This allows the odd and even isotopes to be preferentially enriched in different reaction products. MIE is a complex phenomenon that is dependent on several factors including hyperfine coupling, life-time of the radical pair, coupling strength of the radical pair, spin-orbital coupling, diffusion factors, and the solvent cage (space) in which the reaction occurs. Only under rare circumstances will all the factors be suitable for the expression of MIE in natural reactions. The goal of this study was to conduct aqueous photo-oxidation reactions to investigate whether this redox pathway expresses MIF (in the form of MIE) similar to the photo-reduction pathway. In natural systems, net photo-reduction of Hg (II) species results in the release of Hg(0) vapor to the atmosphere. However this net photo-reduction is a combination of both photo-reduction and photo-oxidation. In their experiments, Bergquist and Blum 2007, only investigated the aqueous photo-reduction pathway and suppressed the photo-oxidation reaction. Photochemical oxidation experiments of Hg(0) were performed in quartz reaction chambers using natural sunlight. Solutions of aqueous Hg(0) were prepared by continuously bubbling vapor Hg(0) generated by a gas-liquid separator into the quartz reaction chamber filled with water. Experiments were conducted in the presence of Cl- and other potential oxidants such as semiquinone, hydroxyl radicals and H2O2 to assess if the presence of these different oxidants showed significant differences in the expression of Hg isotopic fractionation during the photo-oxidation process. For experiments run in the presence of Cl- only, ~2% of Hg was oxidized at the end of 7 hours whereas in the presence of both semiquinone radical and Cl- , approximately 20% of Hg was oxidized at the end of 6 hours. In the experiment with hydroxyl radicals present, ~ 7% of Hg was oxidized at the end of 6.5 hours. Another set of experiments were conducted where the net photo-reduction was mimicked, which allowed both photo-oxidation and photo-reduction to occur. Isotopic results and their implications on the redox cycle of mercury obtained from these experiments will be discussed in detail.
Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
Asatryan, Rubik; Bozzelli, Joseph W
2008-04-07
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.
Pan, Yuanjie; Nitin, N
2015-11-01
Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals
NASA Astrophysics Data System (ADS)
Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi
2014-01-01
To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.
Konovalova, G G; Lisina, M O; Tikhaze, A K; Lankin, V Z
2003-02-01
Antioxidant effect of a complex preparation including antioxidant vitamins C, E, provitamin A and selenium was studied on the model of Cu(2+)-initiated free-radical oxidation of LDL isolated from human blood plasma. The antioxidant effect of combined administration of alpha-tocopherol+ascorbic acid and alpha-tocopherol+beta-carotene is far more pronounced that the antioxidant effect of individual components of these cocktails. Moreover, in the model system the combined action of all antioxidant components completely inhibited free-radical oxidation of LDL. A 30-day course of peroral administration of antioxidant vitamin cocktail and selenium to rats pronouncedly enhanced the antioxidant potential of liver and completely suppressed free-radical processes in the myocardium. It is suggested that preparations containing antioxidant vitamins and selenium can be perspective for prevention and complex therapy of atherosclerosis.
Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview.
Aseervatham, G Smilin Bell; Sivasudha, T; Jeyadevi, R; Arul Ananth, D
2013-07-01
Oxygen is the most essential molecule for life; since it is a strong oxidizing agent, it can aggravate the damage within the cell by a series of oxidative events including the generation of free radicals. Antioxidative agents are the only defense mechanism to neutralize these free radicals. Free radicals are not only generated internally in our body system but also trough external sources like environmental pollution, toxic metals, cigarette smoke, pesticides, etc., which add damage to our body system. Inhaling these toxic chemicals in the environment has become unavoidable in modern civilization. Antioxidants of plant origin with free radical scavenging properties could have great importance as therapeutic agents in several diseases caused by environmental pollution. This review summarizes the generation of reactive oxygen species and damage to cells by exposure to external factors, unhealthy lifestyle, and role of herbal plants in scavenging these reactive oxygen species.
Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lu; Kollman, Matthew S.; Song, Chen
2014-01-28
The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less
Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases.
Zhang, Yu-Jie; Gan, Ren-You; Li, Sha; Zhou, Yue; Li, An-Na; Xu, Dong-Ping; Li, Hua-Bin
2015-11-27
Overproduction of oxidants (reactive oxygen species and reactive nitrogen species) in the human body is responsible for the pathogenesis of some diseases. The scavenging of these oxidants is thought to be an effective measure to depress the level of oxidative stress of organisms. It has been reported that intake of vegetables and fruits is inversely associated with the risk of many chronic diseases, and antioxidant phytochemicals in vegetables and fruits are considered to be responsible for these health benefits. Antioxidant phytochemicals can be found in many foods and medicinal plants, and play an important role in the prevention and treatment of chronic diseases caused by oxidative stress. They often possess strong antioxidant and free radical scavenging abilities, as well as anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative diseases. This review summarizes recent progress on the health benefits of antioxidant phytochemicals, and discusses their potential mechanisms in the prevention and treatment of chronic diseases.
NADPH oxidases: novel therapeutic targets for neurodegenerative diseases.
Gao, Hui-Ming; Zhou, Hui; Hong, Jau-Shyong
2012-06-01
Oxidative stress is a key pathologic factor in neurodegenerative diseases such as Alzheimer and Parkinson diseases (AD, PD). The failure of free-radical-scavenging antioxidants in clinical trials pinpoints an urgent need to identify and to block major sources of oxidative stress in neurodegenerative diseases. As a major superoxide-producing enzyme complex in activated phagocytes, phagocyte NADPH oxidase (PHOX) is essential for host defense. However, recent preclinical evidence has underscored a pivotal role of overactivated PHOX in chronic neuroinflammation and progressive neurodegeneration. Deficiency in PHOX subunits mitigates neuronal damage induced by diverse insults/stresses relevant to neurodegenerative diseases. More importantly, suppression of PHOX activity correlates with reduced neuronal impairment in models of neurodegenerative diseases. The discovery of PHOX and non-phagocyte NADPH oxidases in astroglia and neurons further reinforces the crucial role of NADPH oxidases in oxidative stress-mediated chronic neurodegeneration. Thus, proper modulation of NADPH oxidase activity might hold therapeutic potential for currently incurable neurodegenerative diseases. Published by Elsevier Ltd.
Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.
Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang
2015-04-21
Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.
Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin
2017-12-01
In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toluene nitration in irradiated nitric acid and nitrite solutions
NASA Astrophysics Data System (ADS)
Elias, Gracy; Mincher, Bruce J.; Mezyk, Stephen P.; Muller, Jim; Martin, Leigh R.
2011-04-01
The kinetics, mechanisms, and stable products produced for the nitration of aryl alkyl mild ortho-para director toluene in irradiated nitric acid and neutral nitrite solutions were investigated using γ and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection, GC-MS and LC-MS, were used to assess the stable reaction products. Free-radical based nitration reaction products were found in irradiated acidic and neutral media. In 6.0 M HNO3, ring substitution, side chain substitution, and oxidation, produced different nitrated toluene products. For ring substitution, nitrogen oxide radicals were added mainly to cyclohexadienyl radicals, whereas for side chain substitution, these radicals were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite solutions, radiolytically-induced ring nitration products approached a statistically random distribution, suggesting a direct free-radical reaction involving addition of the rad NO2 radical.
Lu, Senlin; Duffin, Rodger; Poland, Craig; Daly, Paul; Murphy, Fiona; Drost, Ellen; Macnee, William; Stone, Vicki; Donaldson, Ken
2009-02-01
There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed. We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency. For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses. Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic. Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs.
Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa
2013-01-01
•OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836
Kilic, F; Bhardwaj, R; Caulfeild, J; Trevithick, J R
1999-09-01
The protective effect of taurine in model in vitro diabetic cataract and the mechanism of this effect were investigated in isolated rat lenses. Isolated rat lenses were incubated in medium 199 in elevated glucose (55.6 m m) with taurine (5 m m). Taurine concentrations in the lenses were determined by amino acid analysis. Accumulative leakage of the intracellular enzyme lactate dehydrogenase (LDH) was used to estimate damage to the lens, as previously reported. In the clear lenses, prior to vacuole formation, after 1 or 2 days of incubation, the taurine and amino acids in lenses decreased progressively in concentration. In lenses incubated with 5 m m taurine, the level of taurine was increased towards that of control lenses. In taurine-treated lenses LDH leakage was significantly decreased, and lens clarity was maintained, similarly to that found previously for vitamin C and lipoic acid. To test whether taurine has similar antioxidant activity, we tested its ability to decrease luminol luminescence generated by (1) superoxide from hypoxanthine/xanthine oxidase and (2) peroxide from diluted glucose/glucose oxidase. For either superoxide or peroxide, the luminescence was decreased to zero, as a function of increasing taurine concentration, at 30 m m, approximately the physiological concentration of taurine in the lens. Spin trapping confirmed that taurine scavenged superoxide. This is consistent with a role for taurine as an important antioxidant protecting the lens against oxidative insults. Amino acids also had antioxidant activity in this assay, and as a group, when all activities were summed, their loss also contributed significantly to the antioxidant loss. Taken in conjunction with Wolff and Crabbe's observation of increased free radical generation by glucose auto-oxidation in diabetes, this suggests a push-pull mechanism for increased oxidative stress in diabetic cataract, involving both increased free radicals and decreased radical scavenging antioxidants. Copyright 1999 Academic Press.
Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy
Hogg, Neil
2010-01-01
Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044
Leong, Pou Kuan; Chen, Jihang; Chan, Wing Man; Leung, Hoi Yan; Chan, Lincoln; Ko, Kam Ming
2017-04-10
8th Day superoxide dismutase (SOD)-Like Supreme (SOD-Like Supreme, a free radical scavenging health product) is an antioxidant-enriched fermentation preparation with free radical scavenging properties. In the present study, the cellular/tissue protective actions of SOD-Like Supreme against menadione toxicity in cultured H9c2 cardiomyocytes and in AML12 hepatocytes as well as oxidant-induced injury in the mouse myocardium and liver were investigated. SOD-Like Supreme was found to possess potent free radical scavenging activity in vitro as assessed by an oxygen radical absorbance capacity assay. Incubation with SOD-Like Supreme (0.5-3% (v/v)) was shown to protect against menadione-induced toxicity in H9c2 and AML12 cells, as evidenced by increases in cell viability. The ability of SOD-Like Supreme to protect against menadione cytotoxicity was associated with an elevation in the cellular reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in menadione-challenged cells. Consistent with the cell-based studies, pre-/post-treatment with SOD-Like Supreme (0.69 and 2.06 mL/kg, three intermittent doses per day for two consecutive days) was found to protect against isoproterenol-induced myocardial injury and carbon tetrachloride hepatotoxicity in mice. The cardio/hepatoprotection afforded by SOD-Like Supreme was also paralleled by increases in myocardial/hepatic mitochondrial GSH/GSSG ratios in the SOD-Like Supreme-treated/oxidant-challenged mice. In conclusion, incubation/treatment with SOD-Like Supreme was found to protect against oxidant-induced injury in vitro and in vivo, presumably by virtue of its free radical scavenging activity.
Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.I.
Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less
High background levels of benzene oxide (BO) adducts with hemoglobin and albumin (BO-Hb and BO-Alb) have been measured in unexposed humans and animals. To test the influence of radical-mediated pathways on production of these BO-protein adducts, we employed Fenton chemistry to...
Phrueksanan, Wathuwan; Yibchok-anun, Sirinthorn; Adisakwattana, Sirichai
2014-10-01
The present study assessed the antioxidant activity and protective ability of Clitoria ternatea flower petal extract (CTE) against in vitro 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH)-induced hemolysis and oxidative damage of canine erythrocytes. From the phytochemical analysis, CTE contained phenolic compounds, flavonoids, and anthocyanins. In addition, CTE showed antioxidant activity as measured by oxygen radical absorbance capacity (ORAC) method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. CTE (400 µg/ml) remarkably protected erythrocytes against AAPH-induced hemolysis at 4 h of incubation. Moreover, CTE (400 µg/ml) reduced membrane lipid peroxidation and protein carbonyl group formation and prevented the reduction of glutathione concentration in AAPH-induced oxidation of erythrocytes. The AAPH-induced morphological alteration of erythrocytes from a smooth discoid to an echinocytic form was effectively protected by CTE. The present results contribute important insights that CTE may have the potential to act as a natural antioxidant to prevent free radical-induced hemolysis, protein oxidation and lipid peroxidation in erythrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Antioxidant Chemistry of Graphene-Based Materials and its Role in Oxidation Protection Technology
Qiu, Yang; Wang, Zhongying; Owens, Alisa C.E.; Kulaots, Indrek; Chen, Yantao; Kane, Agnes B.; Hurt, Robert H.
2015-01-01
Two-dimensional nanomaterials have potential as a new class of antioxidants that combine physical barrier function with ultrahigh surface area for free radical scavenging. This work presents the first measurements of the chemical reactivities of graphene-based materials toward a set of model free radicals and reactive oxygen species using electron paramagnetic resonance spectroscopy (EPR) and sacrificial dye protection assays. Graphene-based materials are shown to protect a variety of molecular targets from oxidation by these species, and to be highly effective as hydroxyl-radical scavengers. When hydroxyl radical is produced photolytically, the overall antioxidant effect is a combination of preventative antioxidant activity (UV absorption) and ·OH radical scavenging. Few-layer graphene is more active than monolayer graphene oxide, despite its lower surface area, which indicates that the primary scavenging sites are associated with the sp2-carbon network rather than oxygen-containing functional groups. To explain this trend, we propose that GO is a weak hydrogen donor, due to the non-phenolic nature of most OH groups on GO, which reside at basal sp3-carbon sites that do not allow for radical resonance stabilization following hydrogen donation. As an example application of graphene antioxidant behavior, we show that encapsulation of TiO2 nanoparticles in graphene nanosacks reduces undesired photo-oxidative damage to nearby organic target molecules, which suggests graphene encapsulation as a new approach to managing adverse environmental or health impacts of redox-active nanomaterials. PMID:25157875
Free radicals in adolescent varicocele testis.
Romeo, Carmelo; Santoro, Giuseppe
2014-01-01
We examine the relationship between the structure and function of the testis and the oxidative and nitrosative stress, determined by an excessive production of free radicals and/or decreased availability of antioxidant defenses, which occur in the testis of adolescents affected by varicocele. Moreover, the effects of surgical treatment on oxidative stress were provided. We conducted a PubMed and Medline search between 1980 and 2014 using "adolescent," "varicocele," "free radicals," "oxidative and nitrosative stress," "testis," and "seminiferous tubules" as keywords. Cross-references were checked in each of the studies, and relevant articles were retrieved. We conclude that increased concentration of free radicals, generated by conditions of hypoxia, hyperthermia, and hormonal dysfunction observed in adolescent affected by varicocele, can harm germ cells directly or indirectly by influencing nonspermatogenic cells and basal lamina. With regard to few available data in current literature, further clinical trials on the pre- and postoperative ROS and RNS levels together with morphological studies of the cellular component of the testis are fundamental for complete comprehension of the role played by free radicals in the pathogenesis of adolescent varicocele and could justify its pharmacological treatment with antioxidants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simic, M.G.; Jovanovic, S.V.
One-electron oxidation of uric acid generates the urate radical, which was studied in aqueous solution by pulse radiolysis and oxygen-uptake measurements. Acid-base properties of the uric acid radical were determined, i.e., pK{sub a1} = 3.1 {plus minus} 0.1 and pK{sub a2} = 9.5 {plus minus} 0.1. The reaction of the radical with oxygen was too slow to be measured, k < 10{sup {minus}2} dm{sup 3} mol{sup {minus}1} s{sup {minus}1}. The one-electron-redox potential vs NHE, E{sub 7} = 0.59 V, was derived from the pH dependence of the redox potential, which was fitted through the values measured at pH 7 andmore » 8.9 and those previously determined at pH 13. Rapid reactions of uric acid with oxidizing species and peroxy radicals were indicative of uric acid as a possible water-soluble physiological antioxidant. Rapid reaction of uric acid with the guanyl radical indicates that uric acid may also act as a repair agent of oxidative damage to DNA bases.« less
Saidi Merzouk, Amel; Hafida, Merzouk; Medjdoub, Amel; Loukidi, Bouchra; Cherrak, Sabri; Merzouk, Sid Ahmed; Elhabiri, Mourad
2017-03-01
Liver diseases are linked in the majority of cases to oxidative stress that antioxidants could neutralize with reducing liver injury. Chlorogenic acid, a coffee polyphenol, possesses antioxidant prosperities. The aim of this study was to evaluate in vitro preventive and corrective effects of cholorogenic acid in hepatocyte toxicity induced by free radicals. Hepatocytes were isolated from adult male Wistar rats. To determine corrective effects and reparation, cells were first exposed to two free radical generators (hydrogen peroxide/iron sulfate for hydroxyl radical formation, and phenazine methosulfate/nicotinamide adenine dinucleotide for superoxide anion formation) for 12H and thereafter treated by chlorogenic acid (1 and 10 μM final concentration) for another 12H. To show preventive effects, cells were pretreated by chlorogenic acid and thereafter exposed to free radical generators. Hepatocyte proliferation, glucose uptake, ATP contents, membrane fluidity and integrity, and intracellular redox status were investigated after 24H culture. The results showed that chlorogenic acid reversed the decrease in cell proliferation, glucose uptake and ATP levels, the increased LDH release and the reduced membrane fluidity and restored the oxidant/antioxidant status under oxidative stress. When pre-treated with chlorogenic acid, hepatocytes became very resistant to oxidative conditions and cellular homeostasis was maintained. In conclusion, chlorogenic acid displayed not only corrective but also preventive effects in hepatocytes exposed to oxidative stress and could be beneficial in patients with or at risk of liver diseases.
Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system.
Amir Aslani, Banafsheh; Ghobadi, Sirous
2016-02-01
Free radical generation occurs continuously within cells as a consequence of common metabolic processes. However, in high concentrations, whether from endogenous or exogenous sources, free radicals can lead to oxidative stress; a harmful process that cause serious damages to all biomolecules in our body hence impairs cell functions and even results in cell death and diseased states. Oxidative injuries accumulate over time and participate in cancer development, cardiovascular and neurodegenerative disorders as well as aging. Nature has bestowed the human body with a complex web of antioxidant defense system including enzymatic antioxidants like glutathione peroxidase and glutathione reductase, catalase and superoxide dismutase as well as non-enzymatic antioxidants such as thiol antioxidants, melatonin, coenzyme Q, and metal chelating proteins, which are efficient enough to fight against excessive free radicals. Also, nutrient antioxidants such as vitamin C, vitamin E, carotenoids, polyphenols, and trace elements are known to have high antioxidant potency to assist in minimizing harmful effects of reactive species. The immune system is also extremely vulnerable to oxidant and antioxidant balance as uncontrolled free radical production can impair its function and defense mechanism. The present paper reviews the ways by which free radicals form in the body and promote tissue damage, as well as the role of the antioxidants defense mechanisms. Finally, we will have a brief glance at oxidants and antioxidants relevance to the immune system. Copyright © 2016 Elsevier Inc. All rights reserved.
Ishizawa, Keisuke; Izawa-Ishizawa, Yuki; Yamano, Noriko; Urushihara, Maki; Sakurada, Takumi; Imanishi, Masaki; Fujii, Shoko; Nuno, Asami; Miyamoto, Licht; Kihira, Yoshitaka; Ikeda, Yasumasa; Kagami, Shoji; Kobori, Hiroyuki; Tsuchiya, Koichiro; Tamaki, Toshiaki
2014-01-01
Diabetic nephropathy (DN) is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF) is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice), NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM)-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS) knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT) excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects. PMID:24489716
Kurahashi, Takuya; Fujii, Hiroshi
2011-06-01
Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society
Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin
2018-03-02
The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.
Ganini, Douglas; Canistro, Donatella; Jiang, JinJie; Jang, JinJie; Stadler, Krisztian; Mason, Ronald P; Kadiiska, Maria B
2012-10-01
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification. Published by Elsevier Inc.
Electromagnetic Fields, Oxidative Stress, and Neurodegeneration
Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara
2012-01-01
Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514
Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH
Velayutham, Murugesan; Hemann, Craig; Zweier, Jay L.
2011-01-01
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD•, which in turn donates an electron to O2 resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release (RIRR)” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage. PMID:21545835
Polymeric Coatings for Combating Biocorrosion
NASA Astrophysics Data System (ADS)
Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.
2018-03-01
Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.
Shukla, Lata I.; Adhikary, Amitava; Pazdro, Robert; Becker, David; Sevilla, Michael D.
2004-01-01
Electron spin resonance (ESR) studies of radicals formed by radiation-induced multiple one-electron oxidations of guanine moieties in DNA are reported in this work. Annealing of gamma-irradiated DNA from 77 to 235 K results in the hydration of one electron oxidized guanine (G•+) to form the 8-hydroxy-7,8-dihydroguanin-7-yl-radical (•GOH) having one β-proton coupling of 17–28 G and an anisotropic nitrogen coupling, A‖, of ∼20 G, A⊥ = 0 with g‖ = 2.0026 and g⊥ = 2.0037. Further annealing to 258 K results in the formation of a sharp singlet at g = 2.0048 with line-width of 5.3 G that is identified as the 8-oxo-7,8-dihydroguanine one-electron-oxidized radical (8-oxo-G•+). This species is formed via two one-electron oxidations of •GOH. These two one-electron oxidation steps leading to the formation of 8-oxo-G•+ from •GOH in DNA, are in accordance with the expected ease of oxidation of •GOH and 8-oxo-G. The incorporation of oxygen from water in G•+ leading to •GOH and to 8-oxo-G•+ is verified by ESR studies employing 17O isotopically enriched water, which provide unambiguous evidence for the formation of both radicals. ESR analysis of irradiated-DNA in the presence of the electron scavenger, Tl3+, demonstrates that the cationic pathway leads to the formation of the 8-oxo-G•+. In irradiated DNA–Tl3+ samples, Tl3+ captures electrons. Tl2+ thus produced is a strong oxidant (2.2 V), which is metastable at 77 K and is observed to increase the formation of G•+ and subsequently of 8-oxo-G•+ upon annealing. We find that in the absence of the electron scavenger the yield of 8-oxo-G•+ is substantially reduced as a result of electron recombinations with G•+ and possible reaction with •GOH. PMID:15601999
Karanovic, Danijela; Grujic-Milanovic, Jelica; Miloradovic, Zoran; Ivanov, Milan; Jovovic, Djurdjica; Vajic, Una-Jovana; Zivotic, Maja; Markovic-Lipkovski, Jasmina; Mihailovic-Stanojevic, Nevena
2016-01-01
Oxidative stress has been widely implicated in both hypertension and chronic kidney disease (CKD). Hypertension is a major risk factor for CKD progression. In the present study we have investigated the effects of chronic single tempol (membrane-permeable radical scavenger) or losartan (angiotensin II type 1 receptor blocker) treatment, and their combination on systemic oxidative status (plasma thiobarbituric acid-reactive substances (pTBARS) production, plasma antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, pABTS), erythrocyte antioxidant enzymes activities) and kidney oxidative stress (kTBARS, kABTS, kidney antioxidant enzymes activities), kidney function and structure in spontaneously hypertensive rats (SHR) with the early course of adriamycin-induced nephropathy. Adult SHR were divided into five groups. The control group received vehicle, while the other groups received adriamycin (2 mg/kg, i.v.) twice in a 21-day interval, followed by vehicle, losartan (L,10 mg/kg/day), tempol (T,100 mg/kg/day) or combined T+L treatment (by gavage) during a six-week period. Adriamycin significantly increased proteinuria, plasma lipid peroxidation, kidney protein oxidation, nitrite excretion, matrix metalloproteinase-1 (MMP-1) protein expression and nestin immunostaining in the kidney. Also, it decreased kidney antioxidant defense, kidney NADPH oxidase 4 (kNox4) protein expression and abolished anti-inflammatory response due to significant reduction of kidney NADPH oxidase 2 (kNox2) protein expression in SHR. All treatments reduced protein-to-creatinine ratio (marker of proteinuria), pTBARS production, kidney protein carbonylation, nitrite excretion, increased antioxidant capacity and restored kidney nestin expression similar to control. Both single treatments significantly improved systemic and kidney antioxidant defense, bioavailability of renal nitric oxide, reduced kMMP-1 protein expression and renal injury, thus retarded CKD progression. Losartan improved blood pressure, as well as tubular injury and restored anti-inflammatory defense by reverting kNox2 expression to the control level. Interestingly, tempol was more successful in reducing systemic oxidative stress, proteinuria, kMMP-1 and glomerulosclerosis. However, combined treatment failed to overcome the beneficial effects of single treatments in slowing down the progression of ADR-induced nephropathy in SHR.
Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe
2014-05-20
Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.
Brand variation in oxidant production in mainstream cigarette smoke: Carbonyls and free radicals.
Reilly, Samantha M; Goel, Reema; Trushin, Neil; Elias, Ryan J; Foulds, Jonathan; Muscat, Joshua; Liao, Jason; Richie, John P
2017-08-01
Oxidative stress/damage resulting from exposure to cigarette smoke plays a critical role in the development of tobacco-caused diseases. Carbonyls and free radicals are two major classes of oxidants in tobacco smoke. There is little information on the combined delivery of these oxidants across different cigarette brands; thus, we set out to measure and compare their levels in mainstream smoke from popular US cigarettes. Mainstream smoke from 28 different cigarette brands produced by smoking (FTC protocol) was analyzed for five important, abundant carbonyls, and levels were compared to previously determined free radical for the same brands. Overall, there were large variations (3- to 6-fold) in carbonyl levels across brands with total carbonyl levels ranging from 275 to 804 μg/cigarette, which persisted even after adjusting for ventilation. Individual carbonyl levels were highly correlated with each other (r 2 : 0.40-0.95, P < 0.003) except for formaldehyde. Both gas-phase (r 2 : 0.37, P = 0.006) and particulate-phase (r 2 : 0.27, P = 0.005) free radicals were correlated to total carbonyl content; however, this correlation disappeared after adjusting for ventilation. These data show that overall oxidant production varies widely by cigarette brand and the resulting difference in oxidant burden could potentially lead to differences in disease risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.
Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo
2013-05-01
The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.
Glutathione Metabolism and Parkinson’s Disease
Smeyne, Michelle
2013-01-01
It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395
Effects of B group vitamins on reactions of various alpha-hydroxyl-containing organic radicals.
Lagutin, P Yu; Shadyro, O I
2005-08-15
Effects of vitamins B1, B2, B6, and pyridoxal phosphate (PPh) on final product formation in radiolysis of aqueous solutions of ethanol, ethylene glycol, alpha-methylglycoside, and maltose were studied. It has been found that vitamin B2 and PPh effectively oxidize R*CHOH species, while suppressing their recombination and fragmentation reactions, thereby increasing the yields of the respective oxidation products. Vitamins B1 and B2 are capable of reducing alcohol radicals to the respective initial molecules, decreasing the yields of the radical transformation products.
Kaizer, József; Ganszky, Ildikó; Speier, Gábor; Rockenbauer, Antal; Korecz, László; Giorgi, Michel; Réglier, Marius; Antonczak, Serge
2007-06-01
The cerium(IV)-mediated oxidation of 3-hydroxy-4'-methylflavone (1) proceeds by H-atom abstraction forming the flavonoxy radical (7), and the subsequent combination of its resonance forms leads to the 3-hydroxy-4'-methylflavone dehydro dimer (9). The above system serves as direct evidence for the intermediacy of the flavonoxy radical, its spin delocalization, and also indirect evidence for valence tautomerism as a key step on the substrate activation both in the quercetinase and its biomimic model system.
Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions
NASA Astrophysics Data System (ADS)
Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.
2015-12-01
In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).
Park, Eun Young; Imazu, Hiroko; Matsumura, Yasuki; Nakamura, Yasushi; Sato, Kenji
2012-08-01
Wheat gluten hydrolysate (WGH) was fractionated on the basis of the amphoteric nature of sample peptides by preparative isoelectric focusing (autofocusing). Cooked pork patties were stored at 4 and 20 °C in the dark. WGH and autofocusing fractions suppressed the oxidation of lipids in the patties. The acidic (pI < 3.0) and basic (pI > 9.0) autofocusing fractions suppressed lipid oxidation in the cooked patties to a greater extent than other fractions and WGH. Each autofocusing fraction was evaluated by 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical scavenging activities, β-carotene bleaching, oxygen radical absorbance capacity, and Fe(2+) chelating assays; however, none of the in vitro assays predicted the suppressive effect of WGH on lipid oxidation in the cooked patties. These findings suggest that the microdistribution of peptides in food systems and their interaction with food matrix compounds play a significant role in the suppression of lipid oxidation in meat patties rather than radical scavenging activity.
2010-01-01
The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832
Reassessing the atmospheric oxidation mechanism of toluene
NASA Astrophysics Data System (ADS)
Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi
2017-08-01
Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.
Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.
2017-09-01
The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.
Polyimides and Process for Preparing Polyimides Having Thermal-Oxidative Stability
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2001-01-01
Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having formula with an R1 group of either hydrogen or an alkyl radical of one to four carbons, an R2 group of either OH, NH2, F, or Cl radical, an R3 group of either H, OH, NH2, F, Cl or an alkylene radical, an R4 group of either an alkyl, aryl, aryloxy, nitro, F, or Cl radical, and/or an R5 group of either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepegs and PMR composites.
Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon
2005-09-01
Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.
Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry; Lomnicki, Slawo
2014-02-18
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼ 2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75-1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed--from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively.
Iamshanov, V A
2009-01-01
The cosmic rays are one of the constantly acting factors influencing on genetic apparatus and depending from sun activity, which have the circadian rhythm. The nature creates a number of mechanisms, which defend the organism from cosmic rays and free radicals as consequence. However, the malfunctions of these mechanisms damage the genetic apparatus, accelerate the aging and bring to a number of illnesses. It is supposed that to neutralise the free radicals as cosmic rays consequence the organism uses its own free radicals, which have the physiological functions, for example, the nitric oxide. To limit the nitric oxide production, the mechanism of melatonin formation is used, which has a circadian rhythm.
Petrucci, Rita; Zollo, Giuseppe; Curulli, Antonella; Marrosu, Giancarlo
2018-05-12
Antioxidant properties have been recently suggested for caffeine that seems showing protective effects against damages caused by oxidative stress. In particular, a HO scavenging activity has been ascribed to caffeine. Even if the oxidation of caffeine has been widely studied, the antioxidant mechanism is still far to be understood. The electrochemical behavior of caffeine, theobromine and theophylline was studied in aprotic medium by cyclic voltammetry and electrolysis in UV-vis cell; a computational analysis of the molecular structures based on the Density Functional Theory was performed; the reactivity of all substrates towards lead dioxide, superoxide and galvinoxyl radical was followed by UV-vis spectrophotometry. Results supported the mono-electronic oxidation of the C 4 C 5 bond for all substrates at high oxidation potentials, the electron-transfer process leading to a radical cation or a neutral radical according to the starting methylxanthine N 7 -substituted (caffeine and theobromine) or N 7 -unsubstituted (theophylline), respectively. A different following chemical fate might be predicted for the radical cation or the neutral radical. No interaction was evidenced towards the tested reactive oxygen species. No reactivity via H-atom transfer was evidenced for all studied compounds, suggesting that an antiradical activity should be excluded. Some reactivity only with strong oxidants could be predicted via electron-transfer. The acclaimed HO scavenging activity should be interpreted in these terms. The study suggested that CAF might be hardly considered an antioxidant. Beyond the experimental methods used, the discussion of the present results might provide food for thought to the wide audience working on antioxidants. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.
Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less
Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.
Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael
2017-05-15
Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.
Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals.
Komaszylo Née Siedlecka, Joanna; Kania, Magdalena; Masnyk, Marek; Cmoch, Piotr; Lozinska, Iwona; Czarnocki, Zbigniew; Skorupinska-Tudek, Karolina; Danikiewicz, Witold; Swiezewska, Ewa
2016-02-01
Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents--reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI-MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI-MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.
Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells
Yoshioka, Yasukiyo; Li, Xiu; Zhang, Tianshun; Mitani, Takakazu; Yasuda, Michiko; Nanba, Fumio; Toda, Toshiya; Yamashita, Yoko; Ashida, Hitoshi
2017-01-01
Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (−)epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages. PMID:28366989
V'iushina, A V; Pritvorova, A V; Flerov, M A
2012-08-01
We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.
Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sarandan, Mirela; Cradigati, Alina Carmen; Papurica, Marius; Dumbuleu, Maria Corina; Chira, Alexandru Mihai; Rosu, Oana Maria; Sandesc, Dorel
2015-01-01
Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflammation modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple organ dysfunction and death. In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.
Cloud condensation nuclei activity of aliphatic amine secondary aerosol
USDA-ARS?s Scientific Manuscript database
Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...
The oxidative hypothesis of senescence.
Gilca, M; Stoian, I; Atanasiu, V; Virgolici, B
2007-01-01
The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g, those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc). This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal beta -oxidation and respiratory burst of phagocytic cells), antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol), alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.
NASA Astrophysics Data System (ADS)
Young, C. J.; Washenfelder, R. A.; Edwards, P. M.; Parrish, D. D.; Gilman, J. B.; Kuster, W. C.; Mielke, L. H.; Osthoff, H. D.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Veres, P. R.; Roberts, J. M.; Griffith, S.; Dusanter, S.; Stevens, P. S.; Flynn, J.; Grossberg, N.; Lefer, B.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Brown, S. S.
2014-04-01
The role of chlorine atoms (Cl) in atmospheric oxidation has been traditionally thought to be limited to the marine boundary layer, where they are produced through heterogeneous reactions involving sea salt. However, recent observation of photolytic Cl precursors (ClNO2 and Cl2) formed from anthropogenic pollution has expanded the potential importance of Cl to include coastal and continental urban areas. Measurements of ClNO2 in Los Angeles during CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) showed it to be an important primary (first generation) radical source. Evolution of ratios of volatile organic compounds (VOCs) has been proposed as a method to quantify Cl oxidation, but we find no evidence from this approach for a significant role of Cl oxidation in Los Angeles. We use a box model with the Master Chemical Mechanism (MCM v3.2) chemistry scheme, constrained by observations in Los Angeles, to examine the Cl sensitivity of commonly used VOC ratios as a function of NOx and secondary radical production. Model results indicate VOC tracer ratios could not detect the influence of Cl unless the ratio of [OH] to [Cl] was less than 200 for at least a day. However, the model results also show that secondary (second generation) OH production resulting from Cl oxidation of VOCs is strongly influenced by NOx, and that this effect obscures the importance of Cl as a primary oxidant. Calculated concentrations of Cl showed a maximum in mid-morning due to a photolytic source from ClNO2 and loss primarily to reactions with VOCs. The [OH] to [Cl] ratio was below 200 for approximately 3 h in the morning, but Cl oxidation was not evident from the measured ratios of VOCs. Instead, model simulations show that secondary OH production causes VOC ratio evolution to follow that expected for OH oxidation, despite the significant input of primary Cl from ClNO2 photolysis in the morning. Even though OH is by far the dominant oxidant in Los Angeles, Cl atoms do play an important role in photochemistry there, constituting 9% of the primary radical source. Furthermore, Cl-VOC reactivity differs from that of OH, being more than an order of magnitude larger and dominated by VOCs, such as alkanes, that are less reactive toward OH. Primary Cl is also slightly more effective as a radical source than primary OH due to its greater propensity to initiate radical propagation chains via VOC reactions relative to chain termination via reaction with nitrogen oxides.
Karajibani, Mansour; Hashemi, Mohammad; Montazerifar, Farzaneh; Bolouri, Ahmad; Dikshit, Madhurima
2009-08-01
Growing evidence has demonstrated that oxidative stress and increased altered oxygen utilization contribute to atherogenesis and cardiovascular disease (CVD) progression. Antioxidants protect the body from damage caused by free radicals. The objective of this study was to determine antioxidants status in CVD patients. This cross-sectional study was performed on 71 patients clinically diagnosed with CVD and 63 healthy individuals. Plasma malondialdehyde (MDA) level was measured for lipid peroxidation product and erythrocyte SOD and GPx activities as enzymatic antioxidants. The serum levels of vitamins A and E were assayed using HPLC and vitamin C by the photometric method. Total antioxidant capacity (TAC) was measured using the ferric reducing ability of plasma (FRAP) method. The results showed a significant reduction in antioxidant status (enzymatic and non-enzymatic) with a concomitant increase in the concentrations of lipid peroxidation products in CVD patients. There was a significant inverse correlation among TAC, SOD, GPx and vitamin C with MDA. It can be concluded that the antioxidant defense system plays an important role in preventing the development and progression of CVD with the ability to control oxidative stress.
Fan, Jiang Ping; Fan, Chong; Dong, Wen Min; Gao, Bin; Yuan, Wei; Gong, Jia Shun
2013-09-01
An ethanol-soluble pigment extract was separated from fermented Zijuan Pu-erh tea. The compositions of the ethanol soluble pigment extract were analyzed by high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS). The extract was prepared into a series of ethanol solutions and analyzed for free radical-scavenging activities (against two free radicals: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) and in vitro anti-oxidative properties. Electron spin resonance spectroscopy showed that the peaks of DPPH and TEMPO decreased with increasing extract concentration, suggesting that the extract had excellent free radical-scavenging activities. In vitro cell culture suggested that, at 50-200 mg/L, the extract had no measurable effect on the viability of vascular endothelial cells (ECV340) but produced significant protective effects for cells that underwent oxidative injuries due to hydrogen peroxide (H₂O₂) treatment. Compared with the H₂O₂ treatment alone cells group, 200 mg/L of the extract increased the activity of superoxide dismutase (SOD) in cells by 397.3%, and decreased the concentration of malondialdehyde (MDA) and the activity of lactate acid dehydrogenase (LDH) by 47.8% and 69.6%, respectively. These results suggest that the extract has excellent free radical scavenging and anti-oxidative properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water
He, Feng; Zhao, Weirong; Liang, Liyuan; ...
2014-11-11
Photochemical oxidation of dissolved elemental mercury [Hg(0)] affects mercury chemical speciation and its transfer at the water-air interface in the aquatic environment. The mechanisms and factors that control Hg(0) photooxidation, however, are not completely understood, especially in natural freshwaters containing dissolved organic matter (DOM) and carbonate. Here, we evaluate Hg(0) photooxidation rates affected by various reactive ionic species [e.g., DOM, CO 3 2-, NO 3 -] and free radicals in a creek water and a phosphate buffer solution (pH=8) under simulated solar irradiation. We report a high Hg(0) photooxidation rate (k = 1.44 h -1) in the presence of bothmore » HCO 3 2- and NO 3 -, whereas HCO 3 2-, NO 3 -, or DOM alone increased the oxidation rate slightly (k = 0.1 0.17 h -1). Using scavengers and enhancers for singlet oxygen ( 1O 2) and hydroxyl (HO ∙ ) radicals, as well as electron paramagnetic resonance spectroscopy, we identify that carbonate radicals (CO 3 ∙-) primarily drive the Hg(0) photooxidation, whereas addition of DOM resulted in a 2-fold decrease in Hg(0) oxidation. This study identifies an unrecognized pathway of Hg(0) photooxidation by CO 3 ∙- radicals and the inhibitory effect of DOM, which could be important in assessing Hg transformation and fate in water containing carbonate such as hard water and seawater.« less
Wang, Zhaohui; Sun, Linyan; Lou, Xiaoyi; Yang, Fei; Feng, Min; Liu, Jianshe
2017-12-01
The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/H 2 O 2 and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO 4 - ), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/H 2 O 2 system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO 4 - radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO 4 - -based AOPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A
2014-06-01
A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.
Matros, Andrea; Peshev, Darin; Peukert, Manuela; Mock, Hans-Peter; Van den Ende, Wim
2015-06-01
Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki
2011-02-01
Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.
Tyrosyl Radicals in Dehaloperoxidase
Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A.; Ghiladi, Reza A.
2013-01-01
Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501–17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment. PMID:24100039
NASA Astrophysics Data System (ADS)
Sverdlov, R. L.; Brinkevich, S. D.; Shadyro, O. I.
2014-05-01
The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids - harmine, harmane and harmaline - were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with О-2 and НО2, or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids.
Lagunes, Irene; Trigos, Ángel
2015-04-01
Consumption of antioxidant supplements is associated to prevention of several diseases. However, recent studies suggest that antioxidants, besides scavenge free radicals could lead development of tumors. Due to conflicting reports on the antioxidant benefits, the capacity to photosensitize the generation of singlet oxygen of seven natural antioxidants was evaluated through photo-oxidation of ergosterol which proved to be an efficient method of indirect detection of singlet oxygen. Our results showed that curcumin, resveratrol and quercetin have pro-oxidant activity due they act as photosensitizers in generation of singlet oxygen. In addition, we observed that genistein, naringenin, β-carotene and gallic acid besides their antioxidant activity against ROS radicals, are capable of quenching ROS non-radicals as singlet oxygen. Finally, our results allow us to propose a new approach in classification of natural antioxidants scavengers of free radicals, based on their activity as quenchers of singlet oxygen or as photosensitizers in singlet oxygen generation. Copyright © 2015. Published by Elsevier B.V.
2014-01-01
Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374
Liu, Jia-Nan; Chen, Zhuo; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying; Yang, Cheng
2016-08-11
N, N-diethyl-m-toluamide (DEET) is one of the important emerging contaminants that are being increasingly detected in reclaimed water as well as in drinking water sources. However, DEET is refractory to conventional biological treatment and pure ozone which is absent of hydroxyl radical. Current researches on the efficient removal of DEET are still quite limited. This study utilizes a novel method, namely ozone/graphene oxide (O3/GO), to investigate the effects on DEET removal in aqueous systems, especially in reclaimed water. The results indicate that the DEET degradation rate was significantly accelerated through the combined effect of GO and ozonation which can yield abundant hydroxyl radical, compared to pure ozone condition. According to hydroxyl radical scavenging experiments, hydroxyl radical was found to play a dominant role in synergistic removal of DEET. These findings can offer sound suggestions for future research on the removal of emerging organic contaminants. The information could also be beneficial to reclaimed water safety and sustainable management.
Serwinski, Paul R; Esat, Burak; Lahti, Paul M; Liao, Yi; Walton, Richard; Lan, Jiang
2004-08-06
2-(4-Azidophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (14), 2-(4-azidophenyl)benzimidazole-1-oxide-3-oxyl (16), 2-(4-azidophenyl)-1,2,6-triphenylverdazyl (19), 2-(3-azidophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (21), and (3-azidophenyl)-N-tert-butyl-N-aminoxyl (25) were photolyzed in frozen solution to give S = 3/2 state ESR spectra of the corresponding nitrenophenyl radicals with the following zero-field splitting parameters: |D/hc| = 0.277 cm(-1), |E/hc| < or = 0.002 cm(-1) (7 from 14); |D/hc| = 0.256 cm(-1), |E/hc| < or = 0.002 cm(-1) (8 from 16); |D/hc| = 0.288 cm(-1), |E/hc| < or = 0.002 cm(-1) (9 from 19); |D/hc| = 0.352 cm(-1), |E/hc| = 0.006 cm(-1) (10 from 21); |D/hc| = 0.336 cm(-1), |E/hc| = 0.004 cm(-1) (11 from 25). UB3LYP/6-31G computations and ESR spectroscopic analyses suggest that these are nitreno radicals, even para-linked systems with possible quinonoidal resonance forms. Neat samples of azidophenyl radicals 14 and 21 showed bulk paramagnetic behavior, consistent with the lack of close contacts in their crystal structures. Efforts to make photolabile coordination complexes of 14 and 21 with paramagnetic transition metal ions were unsuccessful: Cu(ClO4)2 x 6H2O instead oxidized them to the corresponding diamagnetic nitrosonium perchlorate salts. Copyright 2004 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheer, Adam M.; Welz, Oliver; Sasaki, Darryl Y.
The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550–650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that inmore » a Dowd–Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol–1. The MTbuK oxidation experiments also show several minor channels, including β-scission of the initial radicals and cyclic ether formation.« less
Zang, L; Rodgers, M A
1999-10-01
The oxidation of tryptophan photosensitized by PtCl6(2-) has been investigated in aqueous solutions at different pH using nanosecond laser flash photolysis. Cationic and neutral radicals of tryptophan were detected at pH 2.8 and 8.5, respectively. The generation of the radical was attributed to oxidation by Cl2- that was formed from the homolytic bond cleavage in the excited state of PtCl6(2-). The bimolecular rate constant derived from the kinetics analysis, 2.8 +/- 0.2 x 10(9) M-1 s-1, is in good agreement with the value obtained in earlier pulse radiolysis studies. Both the cationic and neutral radicals decayed by second-order kinetics, consistent with the dimerization process.
Development of a PERCA Instrument for Ambient Peroxy Radical Measurements
NASA Astrophysics Data System (ADS)
Dusanter, S.; Duncianu, M.; Lahib, A.; Tomas, A.; Stevens, P. S.
2017-12-01
Peroxy radicals (HO2 and RO2) are key species in atmospheric chemistry, which together with the hydroxyl radical (OH), lead to the oxidation of volatile organic compounds and the formation of secondary pollutants such as ozone and secondary organic aerosols. Monitoring these short-lived species during intensive field campaigns and comparing the measured concentrations to model outputs allows assessing the reliability of chemical mechanisms implemented in atmospheric models. However, ambient measurements of peroxy radicals are still considered challenging and only a few techniques have been used for field measurements. The PEroxy Radical Chemical Amplifier (PERCA) approach, whose principle is based on amplification and a conversion of ambient peroxy radicals into nitrogen dioxide (NO2), has recently seen renewed interests due to the availability of sensitive NO2 monitors. We will present (i) the construction of a PERCA instrument, (ii) experiments conducted to quantify the radical chain length for HO2 and several RO2 radicals, including those produced during the OH-oxidation of isoprene, and (iii) a comparison of the conventional CO/NO and recently proposed ethane/NO amplification chemistries. In this context, box modelling of the PERCA chemistry will be discussed.
The spin trap compound a-(4-pyridyl-1-oxide)N-tert-butylnitrone (4-POBN) served as a probe to estimate the activity of Fenton-derived hydroxyl radicals (.OH) in a batch suspension comprised of silica sand and crushes goethite ore. The rate of probe disappearance was used to anal...
2006-08-01
Persulfate S2O82- + 2 e- 2 SO42- 2.1 V (persulfate) (9) ·SO4- + e- SO42- 2.6 V ( sulfate radical) (10) 1 Persistence...E = susceptible Notes: 1 Persulfate/ sulfate radical reactivity studies with 66 organic compounds and isomers under various conditions have been...may produce reac- tion byproducts that include dichloroacetaldehyde and dichloroacetic acid , compounds with lower toxicity. Similarly, oxidation of
Dietemann, P; Kälin, M; Zumbühl, S; Knochenmuss, R; Wülfert, S; Zenobi, R
2001-05-01
Photochemical and thermal aging of triterpenoid dammar and mastic resins used as varnishes on paintings were studied using graphite-assisted laser desorption/ionization mass spectrometry. This extends an earlier study on similar materials (Zumbühl et al., Anal. Chem. 1998, 70, 707-715) that focused on photoaging. Progressive aging results in development of groups of signals spaced by 14 and 16 Da, indicating incorporation of oxygen as well as simultaneous loss of hydrogen. Oligomers up to tetramers are formed, while cleavage reactions lead to increased signal intensities in the mass ranges between the oligomers and below the monomers. No major differences were found between the mass spectra of samples aged in light or darkness, except that deterioration was faster in light. Electron paramagnetic resonance spectroscopy revealed similar and significant amounts of radicals in films of dammar stored either in light or in darkness. It is concluded that oxidative radical reactions also take place in darkness and that differences in light and dark aging pathways are minor, although rates may differ. These findings lead to a unified explanation for yellowing of natural resin varnishes, one of the major degenerative changes in the appearance of paintings. It is also shown that the commercially available, nominally fresh resins are already in an advanced stage of oxidation and degradation. Energy-rich substances are formed upon irradiation with sunlight and are believed to restart the autoxidative chain reactions, regardless of storage conditions. As a result, varnishes are oxidized quite quickly (months) even when kept in darkness.
Role of nitrite, urate and pepsin in the gastroprotective effects of saliva
Rocha, Bárbara S.; Lundberg, Jon O; Radi, Rafael; Laranjinha, João
2016-01-01
Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (p<0.05) and nitrated pepsin was detected both in the gastric juice and the mucosa (p<0.05). Exogenous urate, a scavenger of nitrogen dioxide radical, blunted •NO detection and inhibited pepsin nitration, suggesting an underlining free radical-dependent mechanism for nitration. Functionally, pepsin nitration prevented the development of gastric ulcers, as the lesions were only apparent when pepsin nitration was inhibited by urate. In sum, this work unravels a novel dietary-dependent nitrating pathway in which pepsin is nitrated and inactivated in the stomach, preventing the progression of gastric ulcers. PMID:27156250
Chaturvedi, Adya Prasad; Tripathi, Yamini Bhusan
2011-10-01
The leaves of Jasminum grandiflorum (JG) are in clinical use in Ayurveda for wound management. Since, oxidative stress and inflammation are the primary causes in delayed wound healing, so here its antioxidant and anti-inflammatory activities have been investigated using in vitro as well as in vivo models. The solvent-free methanolic extract of dried leaves of JG were tested for its trapping capacity toward pre-generated ABTS•+ radicals, instantly generated superoxide and hydroxyl radicals, along with metal chelation property, reducing power and total phenolic content. Further, it was tested on LPS-induced nitric oxide and cell viability, on primary culture of rat peritoneal macrophages. Its anti-inflammatory property was also tested on carrageenan-induced paw edema in rats. This extract significantly inhibited iron-induced lipid peroxidation and trapped ABTS•+, superoxide and OH radicals. It significantly inhibited nitric oxide (NO) release, without affecting the cell viability at 800 μg/ml concentration and reduced the formation of paw edema in rats. Thus, it could be suggested that the aforesaid anti-inflammatory properties of JG leaves are associated to its high phenolic content (2.25±0.105 mg/l of gallic acid equivalent), reducing power and its free radical-scavenging property.
Mamalis, Andrew; Nguyen, Duc-Huy; Brody, Neil; Jagdeo, Jared
2013-07-01
The number of skin cancers continues to rise, accounting for approximately 40% of all cancers reported in the United States and approximately 9,500 deaths per year. Studies have shown reactive oxygen species (ROS) type free radicals are linked to skin cancer and aging. Therefore, it is important for us to identify agents that have anti-oxidant properties to protect skin against free radical damage. The purpose of this research is to investigate the anti-oxidant properties of bisabolol, silymarin, and ectoin that are components from chamomile, milk thistle, and halophilic bacteria, respectively. We measured the ability of bisabolol, silymarin, and ectoin to modulate the hydrogen peroxide (H2O2)-induced upregulation of ROS free radicals in normal human skin fibroblasts in vitro. Using a flow cytometry-based assay, we demonstrated that varying concentrations of these natural components were able to inhibit upregulation of H2O2-generated free radicals in human skin fibroblasts in vitro. Our results indicate components of chamomile, milk thistle, and halophilic bacteria exhibit anti-oxidant capabilities and warrant further study in clinical trials to characterize their anti-cancer and anti-aging capabilities.
Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S
2010-10-01
Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.
Globins Scavenge Sulfur Trioxide Anion Radical*
Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.
2015-01-01
Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408
Simon, Jillian N.; Ziberna, Klemen; Casadei, Barbara
2016-01-01
Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso–redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. PMID:26786158
Lipid-derived free radical production in superantigen-induced interstitial pneumonia
Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.
2009-01-01
We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221
DPPH and oxygen free radicals as pro-oxidant of biomolecules.
Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor
2008-03-01
Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.
Inflammaging and cardiovascular disease: Management by medicinal plants.
Shayganni, Erfaneh; Bahmani, Mahmoud; Asgary, Sedigheh; Rafieian-Kopaei, Mahmoud
2016-10-15
In aging, a host of molecular and cellular changes occur which accelerate alteration and progression of inflammatory diseases. These conditions in the elderly people cause appearance of a phenomenon which has been denoted as "inflammaging". Understanding the pathogenesis and finding new methods for management of inflammaging are essential. In this paper we tried not only to explain inflammaging and its treatments with concentrating on medical plants but to collect a sufficient collection of anti-inflammatory plants with focusing on their mechanism of action. In this review paper, by searching in indexing cites, desired articles were obtained since 1995 by using keywords of inflammation, inflammaging, inflammation pathophysiology, free radicals and inflammation, aging inflammation, inflammatory disease, and plants or herbal medicine in inflammation. In advanced age the generation of free radicals increases in cardiovascular system. Pathological inflammation is also associated with production of excess free radicals More importantly, chronic inflammation makes aged people susceptible to age-related diseases. Some medicinal plants have been shown promising results in inhibition of inflammaging. Some other sections such as inflammation and inflammaging in cardiovascular diseases, oxidative stress in cardiovascular complications, prevention and treatment strategies are presented. The results of published papers show that the symptoms of several inflammatory diseases can be inhibited or treated by active ingredients from medicinal plants. Copyright © 2015 Elsevier GmbH. All rights reserved.
Photochemical organonitrate formation in wet aerosols
NASA Astrophysics Data System (ADS)
Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.
2016-10-01
Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.
Atmospheric Photooxidation Products and Chemistry of Current-use Pesticides
NASA Astrophysics Data System (ADS)
Murschell, T.; Farmer, D.
2017-12-01
Pesticides are widely used in agricultural, commercial, and residential applications across the United States. Pesticides can volatilize off targets and travel long distances, with atmospheric lifetimes determined by both physical and chemical loss processes. In particular, oxidation by the hydroxyl radical (OH) can reduce the lifetime and thus atmospheric transport of pesticides, though the rates and oxidation products of atmospheric pesticide oxidation are poorly understood. Here, we investigate reactions of current-use pesticides with OH. MCPA, triclopyr, and fluroxypyr are herbicides that are often formulated together to target broadleaf weeds. We detect these species in the gas-phase using real-time high resolution chemical ionization mass spectrometry (CIMS) with both acetate and iodide reagent ions. We used an Oxidative Flow Reactor to explore OH radical oxidation and photolysis of these compounds, simulating up to 5 equivalent days of atmospheric aging by OH. Use of two ionization schemes allowed for the more complete representation of the OH radical oxidation of the three pesticides. The high resolution mass spectra allows us to deduce structures of the oxidation products and identify multi-generational chemistry. In addition, we observe nitrogen oxides, as well as isocyanic acid (HNCO), from some nitrogen-containing pesticides. We present yields of species of atmospheric importance, including NOx and halogen species and consider their impact on air quality following pesticide application.
Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L
2015-04-01
Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.
Lambe, Andrew; Massoli, Paola; Zhang, Xuan; ...
2017-06-22
Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O 3) is photolyzed at 254 nm to produce O( 1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O 3 hinders the ability of oxidation flow reactors to simulate NO x-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO x (NO+NO 2) to nitric acid (HNO 3), making it impossible to sustain NOmore » x at levels that are sufficient to compete with hydroperoxy (HO 2) radicals as a sink for organic peroxy (RO 2) radicals. We developed a new method that is well suited to the characterization of NO x-dependent SOA formation pathways in oxidation flow reactors. NO and NO 2 are produced via the reaction O( 1D) + N 2O → 2NO, followed by the reaction NO + O 3 → NO 2+O 2. Laboratory measurements coupled with photochemical model simulations suggest that O( 1D) + N 2O reactions can be used to systematically vary the relative branching ratio of RO 2 + NO reactions relative to RO 2 + HO 2 and/or RO 2 + RO 2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO 3 -) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NO x-influenced environments and in laboratory chamber experiments.« less
NASA Astrophysics Data System (ADS)
Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William
2017-06-01
Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambe, Andrew; Massoli, Paola; Zhang, Xuan
Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O 3) is photolyzed at 254 nm to produce O( 1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O 3 hinders the ability of oxidation flow reactors to simulate NO x-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NO x (NO+NO 2) to nitric acid (HNO 3), making it impossible to sustain NOmore » x at levels that are sufficient to compete with hydroperoxy (HO 2) radicals as a sink for organic peroxy (RO 2) radicals. We developed a new method that is well suited to the characterization of NO x-dependent SOA formation pathways in oxidation flow reactors. NO and NO 2 are produced via the reaction O( 1D) + N 2O → 2NO, followed by the reaction NO + O 3 → NO 2+O 2. Laboratory measurements coupled with photochemical model simulations suggest that O( 1D) + N 2O reactions can be used to systematically vary the relative branching ratio of RO 2 + NO reactions relative to RO 2 + HO 2 and/or RO 2 + RO 2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO 3 -) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NO x-influenced environments and in laboratory chamber experiments.« less
NASA Technical Reports Server (NTRS)
Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John;
2017-01-01
Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO+NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D)+N2O->2NO, followed by the reaction NO+O3->NO2+O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D)+N2O reactions can be used to systematically vary the relative branching ratio of RO2 +NO reactions relative to RO2 +HO2 and/or RO2+RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO-3 ) reagent ion to detect gas-phase oxidation products of isoprene and -pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.
Sharma, Himanshu; Sharma, Divya S
Children/adolescent's orodental structures are different in anatomy and physiology from that of adults, therefore require special attention for bleaching with oxidative materials. Hydroxyl radical (OH . ) generation from bleaching agents has been considered directly related to both its clinical efficacy and hazardous effect on orodental structures. Nonetheless bleaching agents, indirectly releasing hydrogen peroxide (H 2 O 2 ), are considered safer yet clinically efficient. Apart from OH . , perhydroxyl radicals (HO 2 . ) too, were detected in bleaching chemistry but not yet in dentistry. Therefore, the study aims to detect the OH . and HO 2 . from bleaching agents with their relative integral value (RIV) using 31 P nuclear magnetic resonance ( 31 PNMR) spectroscope. Radicals were generated with UV light in 30% H 2 O 2 , 35% carbamide peroxide (CP), sodium perborate tetrahydrate (SPT) and; neutral and alkaline 30% H 2 O 2 . Radicals were spin-trapped with DIPPMPO in NMR tubes for each test agents as a function of time (0, 1, 2, 3min) at their original pH. Peaks were detected for OH . and HO 2 . on NMR spectrograph. RIV were read and compared for individual radicals detected. Only OH . were detected from acidic and neutral bleaching agent (30% acidic and neutral H 2 O 2 , 35%CP); both HO 2 . and OH . from 30% alkaline H 2 O 2 ; while only HO 2 . from more alkaline SPT. RIV for OH . was maximum at 1min irradiation of acidic 30%H 2 O 2 and 35%CP and minimum at 1min irradiation of neutral 30%H 2 O 2 . RIV for HO 2 . was maximum at 0min irradiation of alkaline 30%H 2 O 2 and minimum at 2min irradiation of SPT. The bleaching agents having pH- neutral and acidic were always associated with OH . ; weak alkaline with both OH . and HO 2 . ; and strong alkaline with HO 2 . only. It is recommended to check the pH of the bleaching agents and if found acidic, should be made alkaline to minimize oxidative damage to enamel itself and then to pulp/periodontal tissues. H 2 O 2 : hydrogen peroxide CP: carbamide peroxide SP: sodium perborate SPT: sodium perborate tetrahydrate ROS: reactive oxygen species 31 PNMR: 31 P nuclear magnetic resonance spectroscope RIV: relative integral value OH 2 . : hydroxyl radical HO 2 . : perhydroxyl radical O 2 . : super oxide radical DIPPMPO: 5-(Diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide DEPMPO: 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide DMPO: 5,5-dimethyl-1-pyrroline-N-oxide D 2 O: heavy water EDTA: ethylene diamine tetra acetic acid.
Zhang, Yun; Huang, Hong; Liang, Zhiling; Liu, Houhe; Yi, Ling; Zhang, Jinhong; Zhang, Zhiqiang; Zhong, Cheng; Huang, Yugang; Ye, Guodong
2017-03-01
The free radical addition reaction is very important in UV curing. The benzoyl radical is the most commonly observed radical. In the addition process, the benzoyl radical adds to an acrylate monomer, forming a primary radical that has great value for subsequent research. In this article, a quantum chemical method was used to study the microscopic progression from the reactive complex to the saddle point. The reactions of three monomers (amylene, allyl methyl ether and methyl acrylate) with a benzoyl radical were evaluated in terms of geometry and energy. The results were also interpreted with an expanded version of the Polanyi rules and the interaction/deformation theory. The deformation energy of methyl acrylate was found to be the smallest, and the bond formation index showed that the transition state in the methyl acrylate system forms early, and can easily reach the saddle point. The activity of the monomer was ascertained by charge analysis and was further confirmed by the reaction rate. Mayer bond order curves depicted the constantly changing chemical bonds during formation and dissociation. Reduced density gradient analysis showed a weak interaction between the monomer and the benzoyl radical.
2015-01-01
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75–1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed—from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381
ERIC Educational Resources Information Center
Dunham, Nicola; Owen, Hazel; Heta-Lensen, Yo
2015-01-01
This paper draws on an initiative where we experienced being new, radical, and, from some viewpoints, dangerously progressive at Unitec--a Polytechnic/Institute of Technology in Aotearoa, New Zealand. The initiative was driven by a need to improve student experiences of interdisciplinary learning and teaching, and to develop a common semester for…
Nayak, D U; Karmen, C; Frishman, W H; Vakili, B A
2001-01-01
Oxygen-derived free radical formation can lead to cellular injury and death. Under normal situations, the human body has a free radical scavenger system (catalase, superoxide dismutase) that can detoxify free radicals. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers have been used clinically to prevent the formation of oxidized LDL and to prevent reperfusion injury, which is often caused by free radicals. In this article, the pathogenesis of free radical production and cell injury are discussed, and therapeutic approaches for disease prevention are presented.
Freyaldenhoven, M A; Lloyd, R V; Samokyszyn, V M
1996-06-01
Due to the importance of all-trans-retinoic acid (RA) in the treatment of various dermatological conditions and the wide distribution of prostaglandin H synthase (PGHS) in tissues, we have further examined the mechanisms involved in the hydroperoxide-dependent cooxidation of RA and its isomer, 13-cis-retinoic acid ((13Z)-RA), by PGHS. Hydroperoxide-dependent, PGHS-catalyzed oxidation of RA and (13Z)-RA was shown to form free radical adducts, using electron spin resonance (ESR) spin trapping techniques and 5-phenyl-4-penten-1-yl hydroperoxide (PPHP) or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2) as hydroperoxide substrates. Utilization of the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) resulted in the detection of (13Z)-RA-PBN and RA-PBN adducts whose spectra were characterized by hyperfine coupling constants of aH = 4.16/aN = 15.69 and aH = 3.01/aN =15.92, respectively. Identical experiments under anaerobic conditions were carried out using the spin trap 2-methyl-2-nitrosopropane (NtB) which yielded nitroxide adducts whose spectra were characterized by a triplet of doublets with values of aH = 3.49/aN = 15.84 for the (13Z)-RA adduct and aH = 3.49/aN = 15.88 for the RA adduct. These results are indicative of secondary carbon-centered radical formation. We also used (+)-benzo[a]pyrene 7(S),8(S)-dihydrodiol ((+)-BP-7,8-diol) as a peroxyl radical probe. The results demonstrated the formation of (+)-BP-7,8-diol-derived tetrols, with the trans-anti tetrol representing the major oxidation product in systems undergoing PPHP-dependent, PGHS-catalyzed oxidation of (13Z)-RA or RA. These results are consistent with the formation of peroxyl radicals in these systems. In all experiments, the (13Z)-RA isomer appeared to be a better substrate for the enzyme compared to the all-trans isomer. Collectively these results provide further evidence to support the previously proposed mechanism for retinoid oxidation by PGHS involving the intermediacy of C4 carbon-centered radicals which subsequently react with dioxygen, yielding retinoid-derived peroxyl radicals.
Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan
2015-04-01
Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack. © 2014 Wiley Periodicals, Inc.
Observation of OH radicals produced by pulsed discharges on the surface of a liquid
NASA Astrophysics Data System (ADS)
Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy
2011-06-01
The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.
NASA Astrophysics Data System (ADS)
Eachus, R. S.; Pawlik, Th D.; Baetzold, R. C.
2000-10-01
By using a combination of multifrequency EPR spectroscopy, ENDOR spectroscopy and calculations of structure and energy, the reactivities of photo-generated holes in microcrystalline AgBr and AgCl dispersions (photographic emulsions) have been followed in detail. Progress has been facilitated by the use of both gelatin and polyvinyl alcohol (PVA) as peptizers. The initial trapped hole centres produced by band-gap excitation have been identified. In AgBr, this species is [(Br4)3-.V], a neutral complex formed from hole trapping by the four nearest neighbours of a surface Ag+ vacancy (=V). [(Br4)3-.V] reacts with gelatin to produce a transient organic radical at the grain's surface. It does not, however, react with PVA. The formation of the oxidized gelatin radical might involve atomic bromine as an intermediate. In AgCl, the well-known self-trapped hole centre (AgCl6)4- is the initial hole species. The hole diffuses by an electron exchange process until it is trapped by a silver ion on the grain's surface or within its penultimate layer of lattice ions. It is subsequently released from this Ag2+ site to be retrapped at a centre containing four equivalent Cl- ions. The precise identity of this defect has yet to be determined, but its decay also results in the oxidation of gelatin.
RAPID MEASUREMENT OF AQUEOUS HYDROXYL RADICAL CONCENTRATIONS IN STEADY-STATE HO· FLUX SYSTEMS
The spin-trap compound a-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN) is utilized for the detection and quantitation of the hydroxyl radical (HO·) in aqueous solution. Capillary electrophoresis enables rapid analysis of the probe compound. The thermally unstable HO· radical ...
Assessment of lipid and protein peroxidation markers in non-pregnant and pregnant female dogs.
Szczubiał, M; Kankofer, M; Dąbrowski, R; Bochniarz, M; Urban-Chmiel, R
2015-01-01
The aim of the study was to investigate oxidative stress during normal pregnancy in female dogs based on an evaluation of plasma markers for lipid and protein peroxidation. Twenty clinically healthy female dogs (10 non-pregnant and 10 pregnant) were used in the study. Blood samples from the pregnant animals were collected at 19-21, 38-40, and 56-58 days of pregnancy. Blood samples from non-pregnant female dogs were obtained between 20 and 35 days after ineffective breeding. As indicators of oxidative stress, we measured the following using spectrophotometric and spectrof- luorimetric methods: thiobarbituric acid reactive substances (TBARS), radical cations of N,N, diethylparaphenylene diamine (RC-DEPPD), sulfhydryl groups (SH groups), bityrosine and formylkynurenine. The mean plasma TBARS concentration in the pregnant dogs (0.486 ± 0.071-0.581 ± 0.191 μmol/g protein) was significantly higher (p < 0.05) than that found in the non-pregnant animals (0.274 ± 0.111 μmol/g protein). A marked, although not significant, decrease in SH group content, as well as an increase in bityrosine and formylkynurenine concentration were concurrently observed in the pregnant dogs. No significant differences were found in terms of the studied markers in the pregnant animals when comparing the values obtained during the investigated periods of pregnancy, although there was a progressive decrease in TBARS concentration and a progressive increase in RC-DEPPD, bityrosine and formylkynurenine contents. Our findings suggest that normal pregnancy in female dogs is associated with oxidative stress. Further studies are necessary to establish the physiological ranges of antioxidative/oxidative profiles in pregnant dogs and to explain if and how the intensity of oxidative stress might contribute to the risk of the complications of pregnancy.
Moore, D E; Sik, R H; Bilski, P; Chignell, C F; Reszka, K J
1994-12-01
Sunlight has been implicated in the high incidence of skin cancer found in patients receiving 6-mercaptopurine (PSH) in the form of its pro-drug azathioprine. In this study we have used EPR spectroscopy in conjunction with the spin-trapping technique to determine whether PSH and its metabolic or photochemical oxidation products generate highly reactive free radicals upon UV irradiation. When an aqueous anaerobic solution (pH 5 or 9) of PSH (pKa = 7.7) and either 2-methyl-2-nitrosopropane (MNP) or nitromethane (NM) were irradiated (lambda > 300 nm) with a Xe arc lamp, the corresponding purine-6-thiyl (PS.) radical adduct and the reduced form of the spin trap (MNP/H. or CH3NO2.-) were observed. However, no radical adducts were detected when PSH and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were irradiated (lambda = 320 nm) in oxygen-free buffer. These findings suggest that PSH does not photoionize but that instead MNP and NM are reduced by direct electron transfer from excited state PSH, 1.3(PSH)*. In aerobic solution, oxygen can act as an electron acceptor and the O2.- and PS. radicals are formed and trapped by DMPO. 6-Mercaptopurine did photoionize when irradiated with a Nd:YAG laser at 355 nm as evidenced by the appearance of the DMPO/H.(eq- + H+) adduct, which decreased in intensity in the presence of N2O. 1.3(6-Mercaptopurine)* oxidized ascorbate, formate and reduced glutathione to the corresponding ascorbyl, CO2.- or glutathiyl radicals. The photochemical behavior of 6-thioxanthine and 6-thiouric acid was similar to PSH. However, the excited states of these metabolic oxidation products exhibited stronger reducing properties than 1.3(PSH)*.(ABSTRACT TRUNCATED AT 250 WORDS)
Molinari, Alessandra; Samiolo, Luca; Amadelli, Rossano
2015-05-01
Using the EPR spin trapping technique, we prove that simultaneous reactions take place in illuminated suspensions of TiO2 in aqueous carbonate solutions (pH ≈ 7). The adsorbed HCO3(-) is reduced to formate as directly made evident by the detection of formate radicals (˙CO2(-)). In addition, the amount of OH˙ radicals from the photo-oxidation of water shows a linear dependence on the concentration of bicarbonate, indicating that electron scavenging by HCO3(-) increases the lifetime of holes. In a weakly alkaline medium, photo-oxidation of HCO3(-)/CO3(2-) to ˙CO3(-) interferes with the oxidation of water. A comparative analysis of different TiO2 samples shows that formation of ˙CO2(-) is influenced by factors related to the nature of the surface, once expected surface area effects are accounted for. Modification of the TiO2 surface with noble metal nanoparticles does not have unequivocal benefits: the overall activity improves with Pd and Rh but not with Ru, which favours HCO3(-) photo-oxidation even at pH = 7. In general, identification of radical intermediates of oxidation and reduction reactions can provide useful mechanistic information that may be used in the development of photocatalytic systems for the reduction of CO2 also stored in the form of carbonates.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.
2015-10-01
In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.
A series of sesquiterpenes were individually oxidized under a range of conditions, including irradiation in the presence of NOx, reactions with O3 or reactions with NO3 radicals. Experiments were conducted in either static mode to observe temporal...
Qin, Guozheng; Meng, Xianghong; Wang, Qing; Tian, Shiping
2009-05-01
Oxidative damage to mitochondria caused by reactive oxygen species (ROS) has been implicated in the process of senescence as well as a number of senescence-related disorders in a variety of organisms. Whereas mitochondrial DNA was shown to be oxidatively modified during cellular senescence, mitochondrial protein oxidation is not well-understood. With the use of high-resolution, two-dimensional gel electrophoresis coupled with immunoblotting, we show here that protein carbonylation, a widely used marker of protein oxidation, increased in mitochondria during the senescence of peach fruit. Specific mitochondrial proteins including outer membrane transporter (voltage-dependent anion-selective channel, VDAC), tricarboxylic acid cycle enzymes (malate dehydrogenase and aconitase), and antioxidant proteins (manganese superoxide dismutase, MnSOD) were found as the targets. The oxidative modification was concomitant with a change of VDAC function and loss of catalytic activity of malate dehydrogenase and MnSOD, which in turn facilitated the release of superoxide radicals in mitochondria. Reduction of ROS content by lowering the environmental temperature prevented the accumulation of protein carbonylation in mitochondria and retarded fruit senescence, whereas treatment of fruit with H2O2 had the opposite effect. Our data suggest that oxidative damage of specific mitochondrial proteins may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. Proteomics analysis of mitochondrial redox proteins provides considerable information on the molecular mechanisms involved in the progression of fruit senescence.
Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.
2014-01-01
The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580
Iriyoda, T M V; Stadtlober, N; Lozovoy, M A B; Delongui, F; Costa, N T; Reiche, E M V; Dichi, I; Simão, A N C
2017-09-01
The aims of the present study were to evaluate biomarkers of oxidative and nitrosative stress in systemic lupus erythematosus (SLE) patients, in particular products of DNA/RNA oxidative damage and their correlation with disease activity. This study included 188 controls and 203 patients; 153 with inactive SLE (SLEDAI < 6) and 50 with active SLE (SLEDAI ≥ 6) without renal impairment. Oxidative stress was assessed by tert-butyl hydroperoxide-initiated by chemiluminescence, advanced oxidation protein products (AOPP), total radical-trapping antioxidant parameter (TRAP), nitric oxide metabolites (NOx), and DNA/RNA oxidation products. Patients with SLE showed increased oxidative stress, as demonstrated by the augmentation of lipid hydroperoxides ( p < 0.0001) and AOPP ( p < 0.001) and reduced total antioxidant capacity ( p < 0.0001), without differences between patients with active disease and in remission. NOx levels and DNA/RNA oxidation products were inversely and independently associated with disease activity ( p < 0.0001 and p = 0.021, respectively), regardless of BMI and prednisone use. The linear regression analysis showed that about 5% of the SLEDAI score can be explained by the levels of DNA/RNA oxidation products ( r 2 :0.051; p = 0.002) and about 9% of this score by the levels of NOx ( r 2 :0.091; p < 0.0001). This study provides evidence for an inverse association between serum NOx levels and DNA/RNA oxidation products and SLE disease activity, suggesting that oxidative/nitrosative stress markers may be useful in evaluating SLE disease activity and progression of the disease.
NASA Astrophysics Data System (ADS)
Leung, Kevin; Sai, Na; Zador, Judit; Henkelman, Graeme
2014-03-01
Photo-oxidation is one of the leading chemical degradation mechanisms in polymer solar cells. In this work, using hybrid density functional theory and periodic boundary condition, we investigate reaction pathways that may lead to the sulfur oxidation in poly(3-hexylthiophene)(P3HT) as a step toward breaking the macromolecule backbone. We calculate energy barriers for reactions of P3HT backbone with oxidizing radicals suggested by infrared spectroscopy (IR) and XPS studies. Our results strongly suggest that an attack of hydroxyl radical on sulfur as proposed in the literature is unlikely to be thermodynamically favored. On the other hand, a reaction between the alkylperoxyl radical and the polymer backbone may provide low barrier reaction pathways to photo-oxidation of conjugated polymers with side chains. Our work paves way for future studies using ab-initio calculations in a condensed phase setting to model complex chemical reactions relevant to photochemical stability of novel polymers. Supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award #DE-SC0001091.
Cottyn, Betty; Kollmann, Albert; Waffo-Teguo, Pierre; Ducrot, Paul-Henri
2011-06-20
Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Hongjian; Cao, Peirang; Li, Bo; Sun, Dewei; Wang, Yong; Li, Jinwei; Liu, Yuanfa
2017-04-15
Promotion of water to the thermal oxidation of oleic acid was detected by the combination of EPR, SPME-GC-MS/MS and GC. Spin-trapping technique was used to identify and quantify the radical species formed during thermal oxidation of oleic acid by using DMPO as electron spin trap. The most abundant radical species were identified as DMPO-alkyl radical adducts. EPR intensity plateau of the samples with 5% water content was 140% higher than the samples without water. It implies oleic acid samples with high water content had high level of oxidation rates. The proportion of aldehydes of the samples with 2% water content was the maximum about 59.97%. Among the formed products, (E,E)-2,4-decadienal has genotoxic and cytotoxic effects, whose percentage was nearly twice comparing with that of 5-0% water content. This study demonstrated that higher water content in frying systems would contribute to seriously oxidation and degradation of oleic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Products of BVOC oxidation: ozone and organic aerosols
NASA Astrophysics Data System (ADS)
Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas
2015-04-01
Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] < 7 ppbC / ppb) photochemical ozone formation was observed. For -pinene as individual BVOC as well as for the monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to play a major role in new particle formation and their existence may explain the observations of Wildt et al. (2014) who found power law dependence with an exponent approaching -2 between new particle formation and ozone formation. The monomer products of HOPR-HOPR reactions play a dominant role in SOA mass formation because their vapour pressures are low enough to allow condensation on pre-existing particulate matter (Ehn et al., 2014). Furthermore, the minor impacts of NOX on particle mass formation (Wildt et al., 2014) are explainable by similar yields of alkoxy radicals in HOPR-HOPR and HOPR-NO reactions, respectively.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
NASA Astrophysics Data System (ADS)
Renbaum, L. H.; Smith, G. D.
2011-03-01
In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.
Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water
Beitz; Bechmann; Mitzner
1999-01-01
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.
Okoh, Sunday O; Iweriebor, Benson C; Okoh, Omobola O; Okoh, Anthony I
2017-10-01
Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida , their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and. The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. The EOs exhibited strong antibacterial activities against six bacteria ( Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii , Staphylococcus aureus, Streptococcus uberis , and Vibrio paraheamolyticus ) strains. The SEO antibacterial activities were not significantly different ( P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC 50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP • : Lipid peroxide radical, NO • : Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid.
Okoh, Sunday O.; Iweriebor, Benson C.; Okoh, Omobola O.; Okoh, Anthony I.
2017-01-01
Background: Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. Objective: The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida, their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and Methods: The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. Results: The EOs exhibited strong antibacterial activities against six bacteria (Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii, Staphylococcus aureus, Streptococcus uberis, and Vibrio paraheamolyticus) strains. The SEO antibacterial activities were not significantly different (P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Conclusion: Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. SUMMARY Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP•: Lipid peroxide radical, NO•: Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid PMID:29142389
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos
2009-01-01
Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393
Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos
2009-02-01
Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2 (*-)) and hydroxyl (HO(*)) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2'-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO(*), through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM(10), PM(2.5) and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM(2.5) and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and "bio-filters" with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.
2015-01-01
We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772
Bag, Anwesa; Chattopadhyay, Rabi Ranjan
2018-01-01
The aim of this study was to evaluate and compare the antioxidant potential of essential oils of some commonly used Indian spices (black pepper, cinnamon, clove, coriander and cumin) in various in vitro models and in food supplements enriched with omega-6 and omega-3 fatty acids. In vitro antioxidant potential was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and Fe 2+ ion-chelating methods and lipid oxidation stabilisation potential was evaluated in bulk soybean oil-fish oil mixture and their oil-in-water emulsions using peroxide value (PV), p-anisidine value (p-AV) and total oxidation value as indicators of oxidation. Combination effects using DPPH radical scavenging and Briggs-Rauscher oscillating reaction methods were also evaluated. Test essential oils showed varying degrees of radical scavenging and Fe 2+ ion-chelating efficacy. Clove and coriander oils showed significantly higher (P < 0.05) radical scavenging and Fe 2+ ion-chelating potential over other tested essential oils as well as BHT and ∞-tocopherol. The anti-lipid peroxidative potential of test essential oils was found in the following decreasing order: clove > coriander > BHT > cinnamon > α-tocopherol > cumin > black pepper. Furthermore, clove and coriander oils showed synergistic antioxidant activity in combination both in DPPH radical scavenging and Briggs-Rauscher oscillating reaction methods whereas other possible combinations showed additive effects. Strong radical scavenging and Fe 2+ -chelating as well as anti-lipid peroxidative activities of clove and coriander oils provide evidence that clove and coriander oils may serve as a potential source of natural antioxidants for retarding lipid oxidation of food supplements enriched with omega-6 and omega-3 fatty acids.
Nakajima, A; Matsuda, E; Masuda, Y; Sameshima, H; Ikenoue, T
2012-06-01
The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of the AAPH-derived free radical were assigned as those of the alkoxyl radical, RO· (R=H(2)N(HN)C-C(CH(3))(2)). Among the spin traps tested, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5,5-dimethyl-4-phenyl-1-pyrroline N-oxide (4PDMPO), 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were applicable to the ORAC-ESR assay. Optimal formation of spin-trapped radical adduct was observed with 1 mM AAPH, 10 mM spin trap, and 5 s UV irradiation. The calibration curve (the Stern-Volmer's plot) for each spin trap showed good linearity, and their slopes, k (SB)/k (ST), were estimated to be 87.7±2.3, 267±15, 228±9, and 213±16 for DMPO, 4PDMPO, CYPMPO, and DEPMPO, respectively. Though the k (SB)/k (ST) values for selected biosubstances varied with various spin traps, their ratios to Trolox (the relative ORAC values) were almost the same for all spin traps tested. The ORAC-ESR assay also had a very good reproducibility. The ORAC-ESR assay was conducted under stoichiometric experimental conditions. The present results demonstrate the superiority of the ORAC-ESR assay.
Popov, S S; Pashkov, A N; Popova, T N; Zoloedov, V I; Semenikhina, A V; Rakhmanova, T I
2007-08-01
Biochemiluminescence increased, while aconitate hydratase activity and citrate accumulation in tissues of the liver and heart and blood decreased in rats with experimental hyperthyroidism. These changes reflect activation of free radical oxidation, damage to enzyme molecules with reactive oxygen species, and impaired utilization of citrate under pathological conditions. Melatonin treatment during hyperthyroidism normalized aconitate hydratase activity and citrate concentration. Biochemiluminescence study showed that the effect of melatonin is related to antioxidant activity of this hormone, inhibition of free radical oxidation, and suppression of reactive oxygen species generation.
Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J
2011-06-01
Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.
Abe, Kohji; Takai, Nozomi; Fukumoto, Kazumi; Imamoto, Natsumi; Tonomura, Misato; Ito, Miwa; Kanegawa, Naoki; Sakai, Katsunori; Morimoto, Kenji; Todoroki, Kenichiro; Inoue, Osamu
2014-01-01
To assess reactive oxygen species (ROS) production by detecting the fluorescent oxidation product, hydroethidine has been used extensively. The present study was undertaken to evaluate the potential of the hydroethidine derivative as a radiotracer to measure in vivo brain ROS production. [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]Hydromethidine) was synthesized, and evaluated using in vitro radical-induced oxidization and in vivo brain ROS production model. In vitro studies have indicated that [3H]Hydromethidine is converted to oxidized products by a superoxide radical (O2•−) and a hydroxyl radical (OH•−) but not hydrogen peroxide (H2O2). In vivo whole-body distribution study showed that [3H]Hydromethidine rapidly penetrated the brain and then was washed out in normal mice. Microinjection of sodium nitroprusside (SNP) into the brain was performed to produce ROS such as OH•− via Fenton reaction. A significant accumulation of radioactivity immediately after [3H]Hydromethidine injection was seen in the side of the brain treated with SNP (5 and 20 nmol) compared with that in the contralateral side. These results indicated that [3H]Hydromethidine freely penetrated into the brain where it was rapidly converted to oxidized forms, which were trapped there in response to the production of ROS. Thus, [3H]Hydromethidine should be useful as a radical trapping radiotracer in the brain. PMID:25227606
Regulation of exercise blood flow: Role of free radicals.
Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S
2016-09-01
During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. Published by Elsevier Inc.
Regulation of Exercise Blood Flow: Role of Free Radicals
Trinity, Joel D.; Broxterman, Ryan M.; Richardson, Russell S.
2016-01-01
During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an “optimal” redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648
The Evolution of Italian Radicalism, 1780-1914: A Historiographical Review.
ERIC Educational Resources Information Center
Lovett, Clara M.
1988-01-01
Discusses the norms within which Italian historical literature is produced, stating that they are important generally to the work of Italian historians and particularly in understanding the recent historical literature on Italian radicalism. Surveys the post-World War II progress of the historiography of Italian radicalism, recommending areas of…
Kirk, Benjamin B; Harman, David G; Kenttämaa, Hilkka I; Trevitt, Adam J; Blanksby, Stephen J
2012-12-28
The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium)phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me(3)N(+))C(6)H(4)˙ + O(2)] = 2.8 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 4.9%; k(2)[((-)O(2)C)C(6)H(4)˙ + O(2)] = 5.4 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.
Kanazawa, H; Fujimoto, S; Ohara, A
1994-04-01
Incubation of papain (EC 3.4.22.2) with ascorbic acid (AsA) and Cu2+ in acetate buffer (pH 5.6) results in an irreversible loss of enzyme activity by site-specific generation of free radicals [H. Kanazawa, S. Fujimoto, A. Ohara, Biol. Pharm.Bull., 16, 11 (1993)]. In this study, the effect of some compounds, known free radical scavengers, on the relationship between the inactivation of papain by the Cu(2+)-AsA system and the oxidation of AsA was investigated. Catalase completely protected the enzyme from inactivation by the Cu(2+)-AsA system, although hydrogen peroxide (H2O2) by itself, known to be generated during the autoxidation of AsA, did not inactivate the enzyme. The oxidation of AsA was unaffected by catalase. Both thiourea and sodium thiocyanate completely protected the enzyme from inactivation, while AsA was partially oxidized only in the initial stage. In the presence of potassium iodide, both the inactivation of the enzyme and the oxidation of AsA were characterized by a rapid initial phase followed by a stable phase where no reaction took place and, subsequently, a slower phase. Histidine partially prevented the inactivation of the enzyme and the oxidation of AsA. The present results suggest that H2O2 serves as a source of secondary, highly reactive species, probably hydroxyl radicals, which are responsible for the inactivation, and that the protection from inactivation by some radical scavengers, such as thiourea, sodium thiocyanate, potassium iodide, and histidine, is based on the removal of metal ions (Cu2+ or Cu+) at the specific site of inactivation.
Ganini, Douglas; Deterding, Leesa J.; Ehrenshaft, Marilyn; Chatterjee, Saurabh; Mason, Ronald P.
2013-01-01
Heme, in the presence of hydrogen peroxide, can act as a peroxidase. Intravascular hemolysis results in a massive release of heme into the plasma in several pathophysiological conditions such as hemolytic anemia, malaria, and sickle cell disease. Heme is known to induce heme oxygenase-1(HO-1) expression, and the extent of induction depends on the ratio of albumin to heme in plasma. HO-1 degrades heme and ultimately generates the antioxidant bilirubin. Heme also causes oxidative stress in cells, but whether it causes protein-radical formation has not yet been studied. In the literature, two purposes for the degradation of heme by HO-1 are discussed. One is the production of the antioxidant bilirubin and the other is the prevention of heme-dependent adverse effects. Here we have investigated heme-induced protein-radical formation, which might have pathophysiological consequences, and have used immunospin trapping to establish the formation of heme-induced protein radicals in two systems: human serum albumin (HSA)/H2O2 and human plasma/H2O2.We found that excess heme catalyzed the formation of HSA radicals in the presence of hydrogen peroxide. When heme and hydrogen peroxide were added to human plasma, heme was found to oxidize proteins, primarily and predominantly HSA; however, when HSA-depleted plasma was used, heme triggered the oxidation of several other proteins, including transferrin. Thus, HSA in plasma protected other proteins from heme/H2O2-induced oxidation. The antioxidants ascorbate and uric acid significantly attenuated protein-radical formation induced by heme/ H2O2; however, bilirubin did not confer significant protection. Based on these findings, we conclude that heme is degraded by HO-1 because it is a catalyst of protein-radical formation and not merely to produce the relatively inefficient antioxidant bilirubin. PMID:23624303
Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions.
Paradiso, Vito Michele; Di Mattia, Carla; Giarnetti, Mariagrazia; Chiarini, Marco; Andrich, Lucia; Caponio, Francesco
2016-07-27
The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.
Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning
2015-05-13
An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.
Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits
Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang
2015-01-01
Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999
Dietary antioxidants and human cancer.
Borek, Carmia
2004-12-01
Epidemiological studies show that a high intake of anti-oxidant-rich foods is inversely related to cancer risk. While animal and cell cultures confirm the anticancer effects of antioxidants, intervention trials to determine their ability to reduce cancer risk have been inconclusive, although selenium and vitamin E reduced the risk of some forms of cancer, including prostate and colon cancer, and carotenoids have been shown to help reduce breast cancer risk. Cancer treatment by radiation and anticancer drugs reduces inherent antioxidants and induces oxidative stress, which increases with disease progression. Vitamins E and C have been shown to ameliorate adverse side effects associated with free radical damage to normal cells in cancer therapy, such as mucositis and fibrosis, and to reduce the recurrence of breast cancer. While clinical studies on the effect of anti-oxidants in modulating cancer treatment are limited in number and size, experimental studies show that antioxidant vitamins and some phytochemicals selectively induce apoptosis in cancer cells but not in normal cells and prevent angiogenesis and metastatic spread, suggesting a potential role for antioxidants as adjuvants in cancer therapy.
The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus
2017-01-01
Despite improvements in awareness and treatment of type II diabetes mellitus (TIIDM), this disease remains a major source of morbidity and mortality worldwide, and prevalence continues to rise. Oxidative damage caused by free radicals has long been known to contribute to the pathogenesis and progression of TIIDM and its complications. Only recently, however, has the role of the Nrf2/Keap1/ARE master antioxidant pathway in diabetic dysfunction begun to be elucidated. There is accumulating evidence that this pathway is implicated in diabetic damage to the pancreas, heart, and skin, among other cell types and tissues. Animal studies and clinical trials have shown promising results suggesting that activation of this pathway can delay or reverse some of these impairments in TIIDM. In this review, we outline the role of oxidative damage and the Nrf2/Keap1/ARE pathway in TIIDM, focusing on current and future efforts to utilize this relationship as a therapeutic target for prevention, prognosis, and treatment of TIID. PMID:28913364
Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.
Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P
2018-05-20
Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of radiation, heat, and aging on in vitro wear resistance of polyethylene.
Muratoglu, Orhun K; Merrill, Edward W; Bragdon, Charles R; O'Connor, Daniel; Hoeffel, Daniel; Burroughs, Brian; Jasty, Murali; Harris, William H
2003-12-01
Radiation cross-linking increases the wear resistance of polyethylene used in total hip replacement. Radiation also generates residual free radicals, which are detrimental to long-term properties of polyethylene. Two approaches are used to stabilize the residual free radicals and terminally sterilize the components. One is postirradiation annealing with gas sterilization and the other is postirradiation melting with gamma sterilization in nitrogen. The hypothesis of the current study is that postirradiation annealing followed by gamma sterilization in nitrogen will result in more free radicals in polyethylene than gamma sterilization either in air or in nitrogen alone. To test this hypothesis, concentration of residual free radicals was quantified in polyethylene that was annealed and gamma sterilized in nitrogen and control polyethylenes gamma sterilized in air versus in nitrogen. Three crosslinked polyethylenes that were melted and gas sterilized also were included in the study. The effects of residual free radicals were studied by accelerated aging. Oxidation levels and weight loss in bidirectional pin-on-disk tests were determined before and after aging. Polyethylene that was subjected to postirradiation annealing and gamma sterilization resulted in 58% more residual free radicals than control polyethylenes. Weight loss of the annealed polyethylene increased by 16-fold on accelerated aging and had three times higher oxidation levels than that measured in control polyethylenes after aging. In contrast, polyethylenes that were stabilized with postirradiation melting and terminally gas sterilized showed no detectable residual free radicals. Accelerated aging did not affect the weight loss and oxidation levels of melted polyethylenes.
Jungen, Stefan; Chen, Peter
2018-05-16
Intramolecular, homolytic substitution reactions between iron (II) species and various trialkylsulfonium groups were directly observed in the gas phase upon collision induced dissociation. In spite of the notoriously low reduction potential of trialkylsulfonium species and the mismatched oxidation potential of iron (II), the reactions proceed at moderate collision energies, forming an alkyl radical as well as a thioether coordinated to the iron. In contrast to classical homolytic substitutions, the attacking radical is a "metalloradical", namely iron (II) that is oxidized to iron (III) during the reaction. With this process we demonstrate that the conceptually analogous, putative radical generation step in Radical S-Adenosyl Methionine Enzymes is possible and plausible. Further, we show that this kind of reaction only occurs in constrained systems with a defined geometry. Combining experimental measurements with DFT studies and NBO analyses allowed us to gain insights into the reactivity and transition states of these systems. Based on our findings, we challenge the notion of a collinear transition state in the radical generation step of Radical SAM Enzymes and propose it to be bent instead. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.
2016-01-01
The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944
Masood, Nusrat; Fatima, Kaneez; Luqman, Suaib
2014-01-01
We have described a modified method for evaluating inhibitor of peroxyl radicals, a well-recognized and -documented radical involved in cancer initiation and promotion as well as diseases related to oxidative stress and ageing. We are reporting hydrophilic and lipophilic as well as natural and synthetic forms of antioxidants revealing a diversified behaviour to peroxyl radical in a dose-dependent manner (1 nM-10 μM). A simple kinetic model for the competitive oxidation of an indicator molecule (ABTS) and a various antioxidant by a radical (ROO(•)) is described. The influences of both the concentration of antioxidant and duration of reaction (70 min) on the inhibition of the radical cation absorption are taken into account while determining the activity. The induction time of the reaction was also proposed as a parameter enabling determination of antioxidant content by optimizing and introducing other kinetic parameters in 96-well plate assays. The test evidently improves the original PRTC (peroxyl radical trapping capacity) assay in terms of the amount of chemical used, simultaneous tracking, that is, the generation of the radical taking place continually and the kinetic reduction technique (area under curve, peak value, slope, and Vmax).
Combined chemical and mechanical effects on free radicals in UHMWPE joints during implantation.
Jahan, M S; Wang, C; Schwartz, G; Davidson, J A
1991-08-01
An electron spin resonance (ESR) technique is employed to determine the free radical distribution in the articulating surfaces of retrieved acetabular cups and knee-joint plateaus (retrieved after more than 6 years of implantation). Similar measurements made on samples prepared from cyclically stressed and unstressed cups, and on samples following oxidations in nitric acid and intralipid solutions provided sufficient data to gain more knowledge about the combined chemical and mechanical effects on PE free radicals during implantation. In UHMWPE free radicals are primarily initiated by gamma-ray sterilization; however, during implantation, peroxy (scission type) free radicals are formed and reach a maximum concentration level (equilibrium state) due to oxidation by chemical (hemoglobin and/or synovial fluids) environment of the joints. Subsequently, due to frictional heating and stress in the loading zones, free radical reaction is accelerated and their number is reduced only in those areas. This is consistent with the observations of a temperature rise in acetabular cups during in vitro frictional wear stress tests and in vivo telemetry observations, as reported by others. Compared with the previously reported SEM micrographs the low-free-radical regions are correlated with high-wear areas and the high-free-radical regions with the low-wear areas.
NASA Astrophysics Data System (ADS)
Adhikari, S.; Joshi, R.; Gopinathan, C.
1997-01-01
The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The oxidation reactions of uric acid in presence and absence of BSA employing CCl 3OO and Br radicals have been carried out. In a composition of equal concentration of uric acid and BSA, the CCl 3OO and Br radicals produce a transient absorption spectrum which show two peaks at 330 and 360 nm. The peak at 360 nm is ascribed due to weak complex formation between semioxidised BSA and uric acid radicals. The rate constant of CCl 3OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. The Br radical attacks uric acid and BSA in a manner similar to CCl 3OO radical. The bimolecular rate constants for the reaction of Br radical with BSA and uric acid have been found as 2.9 × 10 10 dm 3 mol -1 s -1 and 6.33 × 10 9 dm 3 mol -1 s -, respectively.
[Periodonta disease in smokers, and the parameters of oxidative stress].
Golusińska-Kardach, Ewelina; Napierała, Marta; Sokalski, Jerzy; Kardachi, Hubert; Florek, Ewa
2015-01-01
Periodontal disease, periodontitis, and caries disease, are the two most common disease occurring in the mouth. They affect a large proportion of the world's population. The causes of periodontitis are varied, but the largest group are those caused by infections. The characteristic long asymptomatic period of development of periodontitis, make that patients are not aware of their condition. In-addition, it was observed that tobacco abuse affects the growth of disease and advancing disease state for periodontal diseases. Free radicals and other reactive particles are capable of destroying many cellular structures. They are produced mostly during the breathing process and the immune response or come from the environment. The evolution of living organisms ensure the proper tools to fight against reactive oxygen species after enzymatic and non-enzymatic by antioxidants. Sometimes this protection is not sufficient and the balance between antioxidants and oxidants is compromised. This condition is called oxidative stress. A number of studies looking for a link between oxidative stress, and diseases affecting human and determined that it is an important risk factor in many diseases. Evaluating the parameters of oxidative stress in the saliva allows for effective monitoring of disease progression, evaluation of the therapy and taking preventive measures in a timely manner.
Improvement of Pro-Oxidant Capacity of Protocatechuic Acid by Esterification
Zeraik, Maria Luiza; Petrônio, Maicon S.; Coelho, Dyovani; Regasini, Luis Octavio; Silva, Dulce H. S.; da Fonseca, Luiz Marcos; Machado, Sergio A. S.; Bolzani, Vanderlan S.; Ximenes, Valdecir F.
2014-01-01
Pro-oxidant effects of phenolic compounds are usually correlated to the one-electron redox potential of the phenoxyl radicals. Here we demonstrated that, besides their oxidizability, hydrophobicity can also be a decisive factor. We found that esterification of protocatechuic acid (P0) provoked a profound influence in its pro-oxidant capacity. The esters bearing alkyl chains containing two (P2), four (P4) and seven (P7) carbons, but not the acid precursor (P0), were able to exacerbate the oxidation of trolox, α-tocopherol and rifampicin. This effect was also dependent on the catechol moiety, since neither gallic acid nor butyl gallate showed any pro-oxidant effects. A comparison was also made with apocynin, which is well-characterized regarding its pro-oxidant properties. P7 was more efficient than apocynin regarding co-oxidation of trolox. However, P7 was not able to co-oxidize glutathione and NADH, which are targets of the apocynin radical. A correlation was found between pro-oxidant capacity and the stability of the radicals, as suggested by the intensity of the peak current in the differential pulse voltammetry experiments. In conclusion, taking into account that hydroquinone and related moieties are frequently found in biomolecules and quinone-based chemotherapeutics, our demonstration that esters of protocatechuic acid are specific and potent co-catalysts in their oxidations may be very relevant as a pathway to exacerbate redox cycling reactions, which are usually involved in their biological and pharmacological mechanisms of action. PMID:25340774
Effectiveness of green tea tannin on rats with chronic renal failure.
Yokozawa, T; Chung, H Y; He, L Q; Oura, H
1996-06-01
The effects of green tea tannin on nephrectomized rats were examined. There were increases in blood urea nitrogen, serum creatinine, and urinary protein, and a decrease in creatinine clearance in the nephrectomized control rats, whereas better results for these parameters were obtained in rats given green tea tannin after nephrectomy, demonstrating a suppressed progression of the renal failure. When the renal parenchyma was partially resected, the remnant kidney showed a decrease in the activity of radical scavenger enzymes. Green tea tannin, however, was found to lighten the kidney under such oxidative stress. Mesangial proliferation and glomerular sclerotic lesions, which were conspicuous in the rats that were not given green tea tannin after nephrectomy, were also relieved.
It has been postulated that the in vivo toxicity of asbestos results from its catalysis of free radical generation. We examined in vivo radical production using electron spin resonance (ESR) coupled with the spin trap alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN); 180 d...
NASA Astrophysics Data System (ADS)
Nardali, Ş.; Ucun, F.; Karakaya, M.
2017-11-01
The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L
2016-01-19
Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.
Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi
2015-01-01
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed.
Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi
2015-01-01
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed. PMID:26318000
Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei
2015-09-15
The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.
Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie
2018-01-24
The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.
Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta
2008-01-01
Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.
Generation of radicals and antimalarial activity of dispiro-1,2,4-trioxolanes
NASA Astrophysics Data System (ADS)
Denisov, E. T.; Denisova, T. G.
2013-01-01
The kinetic schemes of the intramolecular oxidation of radicals generated from substituted dispiro-1,2,4-trioxolanes (seven compounds) in the presence of Fe2+ and oxygen were built. Each radical reaction was defined in terms of enthalpy, activation energy, and rate constant. The kinetic characteristics were calculated by the intersecting parabolas method. The competition between the radical reactions was considered. The entry of radicals generated by each compound into the volume was calculated. High antimalarial activity was found for 1,2,4-trioxolanes, which generated hydroxyl radicals. The structural features of trioxolanes responsible for the generation of hydroxyl radicals were determined.
Pietrzyk, Sławomir; Fortuna, Teresa; Łabanowska, Maria; Juszczak, Lesław; Gałkowska, Dorota; Bączkowicz, Małgorzata; Kurdziel, Magdalena
2018-02-01
This study was aimed at determining the effect of starch oxidation on its acetylation, structure of starch granules, and generation of free radicals. Corn and waxy corn starches were oxidised by NaClO applied in doses of 10, 20, and 30g Cl/kg of starch, and then acetylated using acetic acid anhydride. The carboxyl, carbonyl, acetyl groups were determined in modified starches. Structural properties of starch granules were evaluated based on molecular weight distribution, gelatinisation, crystallinity, specific surface, intrinsic viscosity. EPR measurements were carried out to establish starch susceptibility to UV irradiation induced generation of free radicals. It was found that the number of carbon centered radicals was dependent on the kind of starch and its chemical modification. Study results allowed concluding that the applied modifications contributed to significant changes in starch granules that were determined not only by the amylose content of starch but also by the degree of its oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
[The significance of free radicals and antioxidants due to the load induced by sport activity].
Holecek, V; Liska, J; Racek, J; Rokyta, R
2004-01-01
Sport performance is followed by a high production of free radicals. The main reasons are reperfusion after the previous imbalance between the increased need of the organism and the ability of blood supply by oxygen, increased production of ATP, decomposition of the cells particularly white blood cells, oxidation of the purin basis from DNA, stress, output of epinephrine release of free iron, increased temperature in the muscle and its inflammation, and the reception of free radicals from external environment. Peroxidation of lipids, proteins, DNA and other compounds follows the previous biochemical steps. Antioxidants are consumed by free radicals, antioxidative enzymes are released into blood plasma, intracellular calcium is increased, the production of nitric oxide rises, the levels of hydrogen peroxide and hypochlorous acid increase. These penetrate through the membranes and oxidatively damage the tissues. Training improves the ability of the organism to balance the increased load of free radicals. The damage can be lowered by the application of a mixture of antioxidants, the most important are vitamin C, A, E, glutathione, selenium, carnosine, eventually bioflavonoids and ginkgo biloba. The lack of antioxidants can significantly diminish the sport performance and therefore the supplementation with antioxidants is for top sportsmen but also for aged people advisable.
Protein oxidation and peroxidation
Davies, Michael J.
2016-01-01
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395
How Is the Oxidative Capacity of the Cloud Aqueous Phase Modified By Bacteria?
NASA Astrophysics Data System (ADS)
Deguillaume, L.; Mouchel-Vallon, C.; Passananti, M.; Wirgot, N.; Joly, M.; Sancelme, M.; Bianco, A.; Cartier, N.; Brigante, M.; Mailhot, G.; Delort, A. M.; Chaumerliac, N. M.
2014-12-01
The aqueous phase photochemical reactions of constituents present in atmospheric water like H2O2, NO3-, NO2- and Fe(III) aqua-complexes or organic complexes can form radicals such as the hydroxyl radical HO within the water drop. However, the literature lacks of data precising the rate of HO formation and the relative contribution of the photochemical sources of HO. The production of radicals in cloud aqueous phase drives the oxidative capacity of the cloud medium and the efficiency of organic matter oxidation. The oxidation of organic compounds is suspected to lead to oxygenated species that could contribute to secondary organic aerosol (SOA) mass (Ervens et al., 2011). In current cloud chemistry models, HO concentrations strongly depend on the organic and iron amount. For high concentrations of organic compounds, this radical is efficiently consumed during the day due to the oxidation process. When iron concentrations are typical from continental cloud, the photolysis of Fe(III) complexes and the Fenton reaction drive the HO concentrations in the cloud models. The concept of biocatalysed reactions contributing to atmospheric chemistry as an alternative route to photochemistry is quite new (Vaïtilingom et al., 2013); it emerged from the recent discovery of metabolically active microorganisms in clouds. Microorganisms are well-known to degrade organic matter but they could also interact with oxidant species such as H2O2 (or their precursors) thanks to their oxidative and nitrosative stress metabolism that will act directly on these species and on their interactions with iron (metalloproteins and siderophores). For the moment, biological impact on radical chemistry within cloud has not been yet considered in cloud chemistry models. Bacterial activity will be introduced as catalysts in a multiphase cloud chemistry model using degradation rates measured in the laboratory. For example, biodegradation rates of the oxidants H2O2 by model bacteria will be tested in the model. Interactions of bacteria with iron through siderophore production will be also parameterized in the model. For this, we will perform idealistic scenarii to quantify the effect of bacteria on the aqueous budget of oxidants. Ervens et al., ACP, 11, 11069-11102, 2011. Vaïtilingom et al., PNAS, 110-2, 559-564, 2013.
Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.
Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J
2017-07-06
The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.
Bouwstra, R J; Nielen, M; Newbold, J R; Jansen, E H J M; Jelinek, H F; van Werven, T
2010-12-01
The aim of this study was to evaluate, retrospectively, which physiological states influenced the effect of vitamin E supplements during the dry period on the level of oxidative stress at 2 wk antepartum. Furthermore the effect of oxidative stress at 2 wk antepartum on the risk of clinical mastitis in early lactation was investigated. Cows experience oxidative stress around calving. Vitamin E is able to decrease oxidative stress by scavenging free radicals. Normally, vitamin E radicals formed when vitamin E reacts with free radicals are regenerated by a network of other antioxidants, termed the "vitamin E regeneration system" (VERS). In case of vitamin E supplementation, VERS should be sufficient to regenerate formed vitamin E radicals; if not, oxidative stress might increase instead of decrease. Additionally, the level of oxidative stress and vitamin E might be important physiological states to evaluate before supplementation. In a clinical trial, 296 cows on 5 farms were randomly divided into 2 groups, supplemented with a mineral mix between dry off and calving that supplied 3,000 or 135 IU/d, respectively. Blood samples collected at dry off and 2 wk antepartum were analyzed for vitamin E, reactive oxygen metabolites, ferric-reducing ability of plasma, glutathione peroxidase, and malondialdehyde. Cows were allocated retrospectively into 8 subgroups based on the level of oxidative stress, vitamin E, and VERS status at dry off. To evaluate whether differences in physiological states at dry off influenced the effect of vitamin E supplementation on the level of oxidative stress, group effects (supplemented vs. control) were studied with Student's t-test for all 8 subgroup at 2 wk antepartum. Differences in physiological states at dry off influenced the effect of vitamin E supplements. In 2 insufficient VERS subgroups, the supplemented group had higher levels of free radicals at 2 wk antepartum compared with the control group. Relative risk calculation was used to study the effect of oxidative stress at 2 wk antepartum on the incidence of mastitis in the first 100 d of lactation. Higher levels of oxidative stress at 2 wk antepartum were related to higher risk of clinical mastitis. In conclusion, not every dry cow responded well to high vitamin E supplementation. This subgroup analysis provides a possible explanation for the unexpected adverse effects observed in the clinical trial. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A strategy for the prevention of protein oxidation by drug product in polymer-based syringes.
Nakamura, Koji; Abe, Yoshihiko; Kiminami, Hideaki; Yamashita, Arisa; Iwasaki, Kazuhiro; Suzuki, Shigeru; Yoshino, Keisuke; Dierick, William; Constable, Kevin
2015-01-01
Recently, new and advanced ideas have been presented on the value of polymer-based syringes for improved safety, better strength, reduced aggregation, and the prevention of drug degradation. In this report, our findings on drug degradation from protein oxidation will be presented and discussed. Commonly, dissolved oxygen is one of the factors for causing protein degradation. Due to the nature of higher gas permeability in polymer-based syringes, it was thought to be difficult to control the oxygen level during storage. However, this report demonstrates the appropriateness of combining the use of an oxygen absorber within the secondary packaging as a deoxygenated packaging system. In addition, this report suggests that another factor to enhance protein oxidization is related to radicals on the syringe barrel from sterilization by irradiation. We demonstrate that steam sterilization can minimize protein oxidization, as the protein filled in steam sterilized syringe is much more stable. In conclusion, the main oxidation pathway of a protein has been identified as dissolved oxygen and radical generation within a polymer container. Possible solutions are herewith presented for controlling oxidation by means of applying a deoxygenated packaging system as well as utilizing steam sterilization as a method of sterilization for prefillable polymer syringes. There have been many presentations and discussions about the risks associated with glass prefilled syringes. Advanced ideas are being presented on the value of polymer-based syringes for improved safety, better strength, reduced protein aggregation, and the prevention of drug degradation. Drug degradation based on protein oxidation is discussed in this report. Identification of the main factors causing this degradation and possible solutions available by using polymer-based syringes will be presented. The causes of protein oxidation have been identified as dissolved oxygen and radicals generated by the applied method of sterilization. The oxidation reaction created by dissolved oxygen within the drug product can be effectively inhibited by controlling the removal of the oxygen through the use of a deoxygenated packaging system. This packaging system can control the level or complete removal of oxygen from the primary container and the secondary packaging system. Protein oxidation induced by the formation of radicals from sterilization by irradiation is another critical aspect where it was thought that various sterilization methods were acceptable without loosing drug product quality. However, this report is first to demonstrate that gamma sterilized polymer-based syringes accelerated protein oxidation by radical generation; this effect can be prevented by means of steam sterilization. © PDA, Inc. 2015.
Captopril and 6-mercaptopurine: whose SH possesses higher antioxidant ability?
Li, Guo-Xiang; Liu, Zai-Qun
2009-12-01
Antioxidant capacities of captopril (CAP), 6-mercaptopurine (6-MP) and 9-(beta-D-ribofuranosyl)-6-mercaptopurine (6-MPR) were investigated by interacting them with 2,2'-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical, and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cation radical (ABTS(+)(*)), and by protecting DNA and erythrocyte against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced oxidation. It was found that CAP possessed the highest ability to donate the hydrogen atom in -SH to DPPH and galvinoxyl, while 6-MPR had the strongest ability to reduce ABTS(+)(*). In the process of protecting DNA and erythrocytes against AAPH-induced oxidation, CAP can trap 0.5 and 1.3 radicals, 6-MP can trap 0.6 and 2.2, and 6-MPR can trap 1.0 and 3.0 radicals, respectively. CAP can also protect erythrocytes against hemin-induced hemolysis.
Niu, Ben; Zhang, Hao; Giblin, Daryl; Rempel, Don L; Gross, Michael L
2015-05-01
Fast photochemical oxidation of proteins (FPOP) employs laser photolysis of hydrogen peroxide to give OH radicals that label amino acid side-chains of proteins on the microsecond time scale. A method for quantitation of hydroxyl radicals after laser photolysis is of importance to FPOP because it establishes a means to adjust the yield of •OH, offers the opportunity of tunable modifications, and provides a basis for kinetic measurements. The initial concentration of OH radicals has yet to be measured experimentally. We report here an approach using isotope dilution gas chromatography/mass spectrometry (GC/MS) to determine quantitatively the initial •OH concentration (we found ~0.95 mM from 15 mM H2O2) from laser photolysis and to investigate the quenching efficiencies for various •OH scavengers.
Antioxidant Properties of the Methanol Extract of the Wood and Pericarp of Caesalpinia decapetala
Pawar, CR; Surana, SJ
2010-01-01
The antioxidant activities of the methanol extracts from the wood and pericarp of Caesalpinia decapetala (Roth) Alston (Caesalpiniaceae) were assessed in efforts to validate the herb. The antioxidant activity of the plant has been studied using its ability to scavenger DPPH, superoxide radicals, and nitric oxide radical along with its ability to inhibit lipid peroxidation. The antioxidant activity and phenolic content of the pericarp as determined by the DPPH, superoxide radical, nitric oxide radical, total phenols, the flavonoids, and total flavonols were higher than that of the wood. Analysis of plant extracts revealed a high amount of polyphenols and flavonoids suggesting a possible role of these phytoconstituents in the antioxidant property. Moreover, the results were observed in a concentration and dose dependent manner. Studies clearly indicate that the C. decapetala has significant antioxidant activity. PMID:21331190
Radical-Mediated Enzymatic Polymerizations
Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.
2016-01-01
Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652
Hydroxyl Radical Modification of Collagen Type II Increases Its Arthritogenicity and Immunogenicity
Shahab, Uzma; Ahmad, Saheem; Moinuddin; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2012-01-01
Background The oxidation of proteins by endogenously generated free radicals causes structural modifications in the molecules that lead to generation of neo-antigenic epitopes that have implications in various autoimmune disorders, including rheumatoid arthritis (RA). Collagen induced arthritis (CIA) in rodents (rats and mice) is an accepted experimental model for RA. Methodology/Principal Findings Hydroxyl radicals were generated by the Fenton reaction. Collagen type II (CII) was modified by •OH radical (CII-OH) and analysed by ultraviolet-visible (UV-VIS), fluorescence and circular dichroism (CD) spectroscopy. The immunogenicity of native and modified CII was checked in female Lewis rats and specificity of the induced antibodies was ascertained by enzyme linked immunosorbent assay (ELISA). The extent of CIA was evaluated by visual inspection. We also estimated the oxidative and inflammatory markers in the sera of immunized rats. A slight change in the triple helical structure of CII as well as fragmentation was observed after hydroxyl radical modification. The modified CII was found to be highly arthritogenic and immunogenic as compared to the native form. The CII-OH immunized rats exhibited increased oxidative stress and inflammation as compared to the CII immunized rats in the control group. Conclusions/Significance Neo-antigenic epitopes were generated on •OH modified CII which rendered it highly immunogenic and arthritogenic as compared to the unmodified form. Since the rodent CIA model shares many features with human RA, these results illuminate the role of free radicals in human RA. PMID:22319617
Lomnicki, Slawo; Truong, Hieu; Vejerano, Eric; Dellinger, Barry
2008-07-01
We have found that environmentally persistent free radicals (PFRs) are formed by adsorption of substituted aromatic molecular precursors on the surface of cupric oxide-containing particles at temperatures between 100 and 400 degrees C. This temperature range corresponds to the conditions in the postflame, cool zone of combustion, and thermal processes. Depending upon the nature of the precursor and the adsorption temperature, both substituted phenoxyl and semiquinone radicals are formed. The PFRs are formed through a mechanism of initial physisorption, followed by chemisorption via elimination of water or hydrogen chloride, and electron transfer resulting in the simultaneous reduction of Cu(II) to Cu(I) and formation of the PFR. The PFRs are still observable by electron paramagnetic resonance (EPR) after exposure to air for more than a day. Their lifetimes under vacuum appear to be infinite. Other redox-active transition metals such as iron are expected to also mediate or catalyze the formation of PFRs. The properties of the observed radicals are consistent with radicals previously observed on airborne and combustion-generated particulate matter. We propose a catalytic biochemical cycle for both the particle-associated semiquinone and phenoxyl PFRs that result in the formation of hydroxyl radical and other reactive oxygen species (ROS). This suggests that combustion-generated, particle-associated PFRs may be responsible for the oxidative stress resulting in cardiopulmonary disease and probably cancer that has been attributed to exposure to airborne fine particles.
Exercise-induced brachial artery vasodilation: role of free radicals.
Richardson, Russell S; Donato, Anthony J; Uberoi, Abhimanyu; Wray, D Walter; Lawrenson, Lesley; Nishiyama, Steven; Bailey, Damian M
2007-03-01
Originally thought of as simply damaging or toxic "accidents" of in vivo chemistry, free radicals are becoming increasingly recognized as redox signaling molecules implicit in cellular homeostasis. Indeed, at the vascular level, it is plausible that oxidative stress plays a regulatory role in normal vascular function. Using electron paramagnetic resonance (EPR) spectroscopy, we sought to document the ability of an oral antioxidant cocktail (vitamins C, E, and alpha-lipoic acid) to reduce circulating free radicals, and we employed Doppler ultrasound to examine the consequence of an antioxidant-mediated reduction in oxidative stress on exercise-induced vasodilation. A total of 25 young (18-31 yr) healthy male subjects partook in these studies. EPR spectroscopy revealed a reduction in circulating free radicals following antioxidant administration at rest ( approximately 98%) and as a consequence of exercise ( approximately 85%). Plasma total antioxidant capacity and vitamin C both increased following the ingestion of the antioxidant cocktail, whereas vitamin E levels were not influenced by the ingestion of the antioxidants. Brachial artery vasodilation during submaximal forearm handgrip exercise was greater with the placebo (7.4 +/- 1.8%) than with the antioxidant cocktail (2.3 +/- 0.7%). These data document the efficacy of an oral antioxidant cocktail in reducing free radicals and suggest that, in a healthy state, the aggressive disruption of the delicate balance between pro- and antioxidant forces can negatively impact vascular function. These findings implicate an exercise-induced reliance upon pro-oxidant-stimulated vasodilation, thereby revealing an important and positive vascular role for free radicals.
Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.
Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen
2015-01-01
A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reactive oxygen species: role in the development of cancer and various chronic conditions
Waris, Gulam; Ahsan, Haseeb
2006-01-01
Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS) during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention. PMID:16689993
Lü, Jian-Ming; Rogge, Corina E.; Wu, Gang; Kulmacz, Richard J.; van der Donk, Wilfred A.; Tsai, Ah-lim
2011-01-01
Incubation of prostaglandin H synthase-1 (PGHS-1) under anaerobic conditions with peroxide and arachidonic acid leads to two major radical species: a pentadienyl radical and a radical with a narrow EPR spectrum. The proportions of the two radicals are sensitive to temperature, favoring the narrow radical species at 22 °C. The EPR characteristics of this latter radical are somewhat similar to the previously reported narrow-singlet tyrosine radical NS1a and are insensitive to deuterium labeling of AA. To probe the origin and structure of this radical, we combined EPR analysis with nitric oxide (NO) trapping of tyrosine and substrate derived radicals for both PGHS-1 and -2. Formation of 3-nitrotyrosine in the proteins was analyzed by immunoblotting, whereas NO adducts to AA and AA metabolites were analyzed by mass spectrometry and by chromatography of 14C-labeled products. The results indicate that both nitrated tyrosine residues and NO-AA adducts formed upon NO trapping. The NO-AA adduct was predominantly an oxime at C11 of AA with three conjugated double bonds, as indicated by absorption at 275 nm and by mass spectral analysis. This adduct amounted to 10% and 20% of the heme concentration of PGHS-1 and -2, respectively. For PGHS-1, the yield of NO-AA adduct matched the yield of the narrow radical signal obtained in parallel EPR experiments. High frequency EPR characterization of this narrow radical, reported in an accompanying paper, supports assignment to a new tyrosyl radical, NS1c, rather than an AA-based radical. To reconcile the results from EPR and NO-trapping studies, we propose that the NS1c is in equilibrium with an AA pentadienyl radical, and that the latter reacts preferentially with NO. PMID:21403766
de Bellefeuille, David; Askari, Mohammad S; Lassalle-Kaiser, Benedikt; Journaux, Yves; Aukauloo, Ally; Orio, Maylis; Thomas, Fabrice; Ottenwaelder, Xavier
2012-12-03
Substitution on the aromatic bridge of a nickel(II) salophen complex with electron-donating dimethylamino substituents creates a ligand with three stable, easily and reversibly accessible oxidation states. The one-electron-oxidized product is characterized as a nickel(II) radical complex with the radical bore by the central substituted aromatic ring, in contrast to other nickel(II) salen or salophen complexes that oxidize on the phenolate moieties. The doubly oxidized product, a singlet species, is best described as having an iminobenzoquinone bridge with a vinylogous distribution of bond lengths between the dimethylamino substituents. Protonation of the dimethylamino substituents inhibits these redox processes on the time scale of cyclovoltammetry, but electrolysis and chemical oxidation are consistent with deprotonation occurring concomitantly with electron transfer to yield the mono- and dioxidized species described above.
Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing
2018-06-20
Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.
Que, Ri-sheng; Cao, Li-ping; Ding, Guo-ping; Hu, Jun-an; Mao, Ke-jie; Wang, Gui-feng
2010-05-01
To investigate the correlation of nitric oxide (NO) and other free radicals with the severity of acute pancreatitis (AP) and complicated systemic inflammatory response syndrome (SIRS). Fifty AP patients (24 simple AP patients and 26 patients with AP complicated by SIRS) were involved in the study. Fifty healthy volunteers were included as controls. Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were evaluated, and plasma NO, plasma lipid peroxides, plasma vitamin E, plasma beta-carotene, whole-blood glutathione (GSH), and the activity of plasma GSH peroxidase were measured. Compared with the control group, the APACHE II scores heightened in the AP group, and the SIRS group had the highest APACHE II scores (P < 0.005, P < 0.001, respectively). Plasma NO and plasma lipid peroxides increased with the heightening APACHE II scores, demonstrating a significant linear positive correlation (r = 0.618, r = 0.577, respectively; P < 0.001). Plasma vitamin E, plasma beta-carotene, whole-blood GSH, and the activity of plasma GSH peroxidase decreased with the heightening APACHE II scores, demonstrating a significant linear negative correlation (r = -0.600, r = -0.609, r = -0.559, r = -0.592, respectively; P < 0.001). Nitric oxide and other free radicals take part in the aggravation of oxidative stress and oxidative injury and may play important roles in the pathogenesis of AP and SIRS. It may be valuable to measure free radicals to predict the severity of AP.
Zhao, Jing; Xiong, Youling L; McNear, Dave H
2013-02-01
Antioxidant activity of soy protein (SP) and its hydrolyzed peptides has been widely reported. During scavenging of radicals, these antioxidative compounds would be oxidatively modified, but their fate is not understood. The objective of this study was to evaluate the structural characteristics of SP hydrolysates (SPHs), compared to intact SP, when used to neutralize hydroxyl radicals (•OH). SPHs with degree of hydrolysis (DH) 1 to 5 were prepared with Alcalase. Antioxidant activity of SPHs was confirmed by lipid oxidation inhibition measured with thiobarbituric acid-reactive substances, ability to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radicals, and ferrous ion chelation capability. Oxidation of SPHs was initiated by reaction with •OH generated from 0.1 mM FeCl(3) , 20 mM H(2) O(2) , and 1.0 mM ascorbate. After oxidative stress, carbonyl content of SPHs increased by 2- to 3-fold and sulfhydryl groups decreased by up to 42% compared to nonoxidized samples (P < 0.05). Methionine, histidine, and lysine residues were significantly reduced as a result of inactivating •OH (P < 0.05). Attenuated total reflectance-Fourier transform infrared and circular dichroism spectroscopy suggested the conversion of helical structure to strands and turns. Oxidatively modified SPHs had a lower intrinsic fluorescence intensity but similar solubility when compared to nonoxidized samples. These structural changes due to •OH stress may impact the ingredient interaction and functionality of SPHs in food products. © 2013 Institute of Food Technologists®
Ioannone, Francesca; Sacchetti, Giampiero; Serafini, Mauro
2017-01-01
Oxidative and inflammatory stress represents a major risk factor for cardiovascular disease (CVD) in overweight and obese subjects. Between the different plant foods, chocolate has been shown to decrease CVD risk due to its antioxidant and anti-inflammatory properties. However, as we recently showed in epidemiological studies, meta-analyses, and human trials, dietary antioxidants resulted more effective in subjects characterized by an ongoing oxidative stress, than in healthy people. Aim of this work was to investigate the effect of different concentrations of chocolate phenolic extract (CPE) on in vitro free radical production, stimulated by phorbol 12-myristate 13-acetate (PMA), in leukocytes extracted from blood of normo-weight and overweight/obese subjects. Neutrophils from overweight/obese group had a significantly higher free radical production compared to the normo-weight group. In neutrophils, the lowest CPE concentration significantly reduced free radical production in overweight/obese group only, and higher CPE concentrations were effective in both groups. In monocytes, the CPE concentration that was significantly effective in reducing free radical production was lower in overweight/obese subjects than in normo-weight subjects. Chocolate polyphenol extracts inhibit oxidative burst in human neutrophils and monocytes with a higher efficiency in subjects characterized by an unphysiological oxidative/inflammatory stress, such as overweight and obese. Results of this study provide further evidence about a differential role of dietary antioxidant strictly related to the “stress” condition of the subjects. PMID:28649567
Ioannone, Francesca; Sacchetti, Giampiero; Serafini, Mauro
2017-01-01
Oxidative and inflammatory stress represents a major risk factor for cardiovascular disease (CVD) in overweight and obese subjects. Between the different plant foods, chocolate has been shown to decrease CVD risk due to its antioxidant and anti-inflammatory properties. However, as we recently showed in epidemiological studies, meta-analyses, and human trials, dietary antioxidants resulted more effective in subjects characterized by an ongoing oxidative stress, than in healthy people. Aim of this work was to investigate the effect of different concentrations of chocolate phenolic extract (CPE) on in vitro free radical production, stimulated by phorbol 12-myristate 13-acetate (PMA), in leukocytes extracted from blood of normo-weight and overweight/obese subjects. Neutrophils from overweight/obese group had a significantly higher free radical production compared to the normo-weight group. In neutrophils, the lowest CPE concentration significantly reduced free radical production in overweight/obese group only, and higher CPE concentrations were effective in both groups. In monocytes, the CPE concentration that was significantly effective in reducing free radical production was lower in overweight/obese subjects than in normo-weight subjects. Chocolate polyphenol extracts inhibit oxidative burst in human neutrophils and monocytes with a higher efficiency in subjects characterized by an unphysiological oxidative/inflammatory stress, such as overweight and obese. Results of this study provide further evidence about a differential role of dietary antioxidant strictly related to the "stress" condition of the subjects.
Grujic-Milanovic, Jelica; Miloradovic, Zoran; Ivanov, Milan; Jovovic, Djurdjica; Vajic, Una-Jovana; Zivotic, Maja; Markovic-Lipkovski, Jasmina; Mihailovic-Stanojevic, Nevena
2016-01-01
Oxidative stress has been widely implicated in both hypertension and chronic kidney disease (CKD). Hypertension is a major risk factor for CKD progression. In the present study we have investigated the effects of chronic single tempol (membrane-permeable radical scavenger) or losartan (angiotensin II type 1 receptor blocker) treatment, and their combination on systemic oxidative status (plasma thiobarbituric acid-reactive substances (pTBARS) production, plasma antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, pABTS), erythrocyte antioxidant enzymes activities) and kidney oxidative stress (kTBARS, kABTS, kidney antioxidant enzymes activities), kidney function and structure in spontaneously hypertensive rats (SHR) with the early course of adriamycin-induced nephropathy. Adult SHR were divided into five groups. The control group received vehicle, while the other groups received adriamycin (2 mg/kg, i.v.) twice in a 21-day interval, followed by vehicle, losartan (L,10 mg/kg/day), tempol (T,100 mg/kg/day) or combined T+L treatment (by gavage) during a six-week period. Adriamycin significantly increased proteinuria, plasma lipid peroxidation, kidney protein oxidation, nitrite excretion, matrix metalloproteinase-1 (MMP-1) protein expression and nestin immunostaining in the kidney. Also, it decreased kidney antioxidant defense, kidney NADPH oxidase 4 (kNox4) protein expression and abolished anti-inflammatory response due to significant reduction of kidney NADPH oxidase 2 (kNox2) protein expression in SHR. All treatments reduced protein-to-creatinine ratio (marker of proteinuria), pTBARS production, kidney protein carbonylation, nitrite excretion, increased antioxidant capacity and restored kidney nestin expression similar to control. Both single treatments significantly improved systemic and kidney antioxidant defense, bioavailability of renal nitric oxide, reduced kMMP-1 protein expression and renal injury, thus retarded CKD progression. Losartan improved blood pressure, as well as tubular injury and restored anti-inflammatory defense by reverting kNox2 expression to the control level. Interestingly, tempol was more successful in reducing systemic oxidative stress, proteinuria, kMMP-1 and glomerulosclerosis. However, combined treatment failed to overcome the beneficial effects of single treatments in slowing down the progression of ADR-induced nephropathy in SHR. PMID:27560781
Sharma, Jyoti; Mishra, I M; Kumar, Vineet
2015-06-01
This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. Copyright © 2015 Elsevier Ltd. All rights reserved.
The widetilde{A}←widetilde{X} ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL
NASA Astrophysics Data System (ADS)
Eddingsaas, Nathan; Takematsu, Kana; Okumura, Mitchio
2009-06-01
The nitrate radical is an important atmospheric oxidant in the nighttime sky. Nitrate radicals react by addition to alkenes, and in the presence of oxygen form nitrooxyalkyl peroxy radicals. The peroxy radical formed from the reaction of 2-butene, nitrate radical, and oxygen was detected by cavity ringdown spectroscopy (CRDS) via its widetilde{A}←widetilde{X} electronic absorption spectrum. The widetilde{A}←widetilde{X} electronic transition is a bound-bound transition with enough structure to distinguish between different peroxy radicals as well as different conformers of the same peroxy radical. Two conformers of the nitrooxybutyl peroxy radical have been observed; the absorption features are red shifted from the same absorption features of sec-butyl peroxy radical. Calculations on the structure of nitrooxyalkyl peroxy radicals and general trends of the position of the widetilde{A}←widetilde{X} absorption transitions have also been performed and compared to those of unsubstituted peroxy radicals.
Tarjan, Gabor; Haines, G Kenneth; Vesper, Benjamin J; Xue, Jiaping; Altman, Michael B; Yarmolyuk, Yaroslav R; Khurram, Huma; Elseth, Kim M; Roeske, John C; Aydogan, Bulent; Radosevich, James A
2011-02-01
It is not understood why some head and neck squamous cell carcinomas, despite having identical morphology, demonstrate different tumor aggressiveness, including radioresistance. High levels of the free radical nitric oxide (NO) and increased expression of the NO-producing enzyme nitric oxide synthase (NOS) have been implicated in tumor progression. We previously adapted three human tongue cancer cell lines to high NO (HNO) levels by gradually exposing them to increasing concentrations of an NO donor; the HNO cells grew faster than their corresponding untreated ("parent") cells, despite being morphologically identical. Herein we initially characterize the HNO cells and compare the biological properties of the HNO and parent cells. HNO/parent cell line pairs were analyzed for cell cycle distribution, DNA damage, X-ray and ultraviolet radiation response, and expression of key cellular enzymes, including NOS, p53, glutathione S-transferase-pi (GST-pi), apurinic/apyrimidinic endonuclease-1 (APE1), and checkpoint kinases (Chk1, Chk2). While some of these properties were cell line-specific, the HNO cells typically exhibited properties associated with a more aggressive behavior profile than the parent cells (greater S-phase percentage, radioresistance, and elevated expression of GST-pi/APE1/Chk1/Chk2). To correlate these findings with conditions in primary tumors, we examined the NOS, GST-pi, and APE1 expression in human tongue squamous cell carcinomas. A majority of the clinical samples exhibited elevated expression levels of these enzymes. Together, the results herein suggest cancer cells exposed to HNO levels can develop resistance to free radicals by upregulating protective mechanisms, such as GST-pi and APE1. These upregulated defense mechanisms may contribute to their aggressive expression profile.
2009-03-01
then sacrificed, body weights obtained, and paraffin-embedded tissue sections from the skin - denuded penile shaft were subjected to Masson trichrome...responsible for vasculogenic erectile dysfunction (ED) associated with aging , smoking, diabetes, hypertension, and post-radical prostatectomy. These...Pending. PI: Gonzalez-Cadavid NF (2009). Erectile Dysfunction and Nitric Oxide Synthase in Aging . RO1 DK53069-07 (resubmission). 11/09-10/14. No
Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V
2003-08-01
We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.
Possibility of determination of the level of antioxidants in human body using spectroscopic methods
NASA Astrophysics Data System (ADS)
Timofeeva, E.; Gorbunova, E.
2016-08-01
In this work, the processes of antioxidant defence against aggressive free radicals in human body were investigated theoretically; and the existing methods of diagnosis of oxidative stress and disturbance of antioxidant activity were reviewed. Also, the kinetics of free radical reactions in the oxidation of luminol and interaction antioxidants (such as chlorophyll in the multicomponent system of plant's leaves and ubiquinone) with the UV radiation were investigated experimentally by spectroscopic method. The results showed that this method is effective for recording the luminescence of antioxidants, free radicals, chemiluminescent reactions and fluorescence. In addition these results reveal new opportunities for the study of the antioxidant activity and antioxidant balance in a multicomponent system by allocating features of the individual components in spectral composition. A creation of quality control method for drugs, that are required for oxidative stress diagnosis, is a promising direction in the development of given work.
Liu, Lin; Huo, Ju; Zhao, Ying; Tian, Yu
2012-03-25
The present study investigated the disease trajectory of vascular cognitive impairment using the entropy of information in a neural network mathematical simulation based on the free radical and excitatory amino acids theories. Glutamate, malondialdehyde, and inducible nitric oxide synthase content was significantly elevated, but acetylcholine, catalase, superoxide dismutase, glutathione peroxidase and constitutive nitric oxide synthase content was significantly decreased in our vascular cognitive impairment model. The fitting curves for each factor were obtained using Matlab software. Nineteen, 30 and 49 days post ischemia were the main output time frames of the influence of these seven factors. Our results demonstrated that vascular cognitive impairment involves multiple factors. These factors include excitatory amino acid toxicity and nitric oxide toxicity. These toxicities disrupt the dynamic equilibrium of the production and removal of oxygen free radicals after cerebral ischemia, reducing the ability to clear oxygen free radicals and worsening brain injury.
Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J.
1999-01-01
Oxidation reaction rate parameters for molecular ozone (O3) and hydroxyl (HO) radicals with a variety of hydrophobic organic acids (HOAs) isolated from different geographic locations were determined from batch ozonation studies. Rate parameter values, obtained under equivalent dissolved organic carbon concentrations in both the presence and absence of non-NOM HO radical scavengers, varied as a function of NOM structure. First-order rate constants for O3 consumption (k(O3)) averaged 8.8 x 10-3 s-1, ranging from 3.9 x 10-3 s-1 for a groundwater HOA to > 16 x 10-3 s-1 for river HOAs with large terrestrial carbon inputs. The average second-order rate constant (k(HO,DOC) between HO radicals and NOM was 3.6 x 108 l (mol C)-1 s-1; a mass of 12 g C per mole C was used in all calculations. Specific ultraviolet absorbance (SUVA) at 254 or 280 nm of the HOAs correlated well (r > 0.9) with O3 consumption rate parameters, implying that organic ??-electrons strongly and selectively influence oxidative reactivity. HO radical reactions with NOM were less selective, although correlation between k(HO,DOC) and SUVA existed. Other physical-chemical properties of NOM, such as aromatic and aliphatic carbon content from 13C-NMR spectroscopy, proved less sensitive for predicting oxidation reactivity than SUVA. The implication of this study is that the structural nature of NOM varies temporally and spatially in a water source, and both the nature and amount of NOM will influence oxidation rates.
Simon, Jillian N; Ziberna, Klemen; Casadei, Barbara
2016-04-01
Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso-redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Hara, Hideaki
2017-01-01
Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress. PMID:28194256
Masuda, Tomomi; Shimazawa, Masamitsu; Hara, Hideaki
2017-01-01
Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.
Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete.
Kerem, Z; Bao, W; Hammel, K E
1998-09-01
Fungi that cause brown rot of wood are essential biomass recyclers and also the principal agents of decay in wooden structures, but the extracellular mechanisms by which they degrade lignocellulose remain unknown. To test the hypothesis that brown-rot fungi use extracellular free radical oxidants as biodegradative tools, Gloeophyllum trabeum was examined for its ability to depolymerize an environmentally recalcitrant polyether, poly(ethylene oxide) (PEO), that cannot penetrate cell membranes. Analyses of degraded PEOs by gel permeation chromatography showed that the fungus cleaved PEO rapidly by an endo route. 13C NMR analyses of unlabeled and perdeuterated PEOs recovered from G. trabeum cultures showed that a major route for depolymerization was oxidative C---C bond cleavage, a reaction diagnostic for hydrogen abstraction from a PEO methylene group by a radical oxidant. Fenton reagent (Fe(II)/H2O2) oxidized PEO by the same route in vitro and therefore might account for PEO biodegradation if it is produced by the fungus, but the data do not rule out involvement of less reactive radicals. The reactivity and extrahyphal location of this PEO-degrading system suggest that its natural function is to participate in the brown rot of wood and that it may enable brown-rot fungi to degrade recalcitrant organopollutants.
Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions
NASA Astrophysics Data System (ADS)
Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.
2010-12-01
A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.
The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism
Kumar, Hemant; Lim, Hyung-Woo; More, Sandeep Vasant; Kim, Byung-Wook; Koppula, Sushruta; Kim, In Su; Choi, Dong-Kug
2012-01-01
Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson’s disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5–10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD. PMID:22949875
Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents.
Maiocchi, Sophie L; Morris, Jonathan C; Rees, Martin D; Thomas, Shane R
2017-07-01
The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H 2 O 2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Barbehenn, Raymond V; Jaros, Adam; Lee, Grace; Mozola, Cara; Weir, Quentin; Salminen, Juha-Pekka
2009-04-01
The high levels of tannins in many tree leaves are believed to cause decreased insect performance, but few controlled studies have been done. This study tested the hypothesis that higher foliar tannin levels produce higher concentrations of semiquinone radicals (from tannin oxidation) in caterpillar midguts, and that elevated levels of radicals are associated with increased oxidative stress in midgut tissues and decreased larval performance. The tannin-free leaves of hybrid poplar (Populus tremulaxP. alba) were treated with hydrolyzable tannins, producing concentrations of 0%, 7.5% or 15% dry weight, and fed to Lymantria dispar caterpillars. As expected, larvae that ingested control leaves contained no measurable semiquinone radicals in the midgut, those that ingested 7.5% hydrolyzable tannin contained low levels of semiquinone radicals, and those that ingested 15% tannin contained greatly increased levels of semiquinone radicals. Ingested hydrolyzable tannins were also partially hydrolyzed in the midgut. However, increased levels of semiquinone radicals in the midgut were not associated with oxidative stress in midgut tissues. Instead, it appears that tannin consumption was associated with increased metabolic costs, as measured by the decreased efficiency of conversion of digested matter to body mass (ECD). Decreased ECD, in turn, decreased the overall efficiency of conversion of ingested matter to body mass (ECI). Contrary to our hypothesis, L. dispar larvae were able to maintain similar growth rates across all tannin treatment levels, in part, because of compensatory feeding. We conclude that hydrolyzable tannins act as "quantitative defenses" in the sense that high levels appear to be necessary to increase levels of semiquinone radicals in the midguts of caterpillars. However, these putative resistance factors are not sufficient to decrease the performance of tannin-tolerant caterpillars such as L. dispar.
Rotavera, Brandon; Zádor, Judit; Welz, Oliver; ...
2014-09-19
The product formation from R + O 2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO 2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O 2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positivemore » dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O 2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.« less
Predictive tests to evaluate oxidative potential of engineered nanomaterials
NASA Astrophysics Data System (ADS)
Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana
2013-04-01
Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.
Pari, Sangavi; Wang, Inger A; Liu, Haizhou; Wong, Bryan M
2017-03-22
Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO 4 ˙ - ) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO 4 ˙ - in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO 4 ˙ - -driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO 4 ˙ - -driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH - additions than for SO 4 ˙ - reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO 4 ˙ - and other inorganic species.
Detailed mechanism of toluene oxidation and comparison with benzene
NASA Technical Reports Server (NTRS)
Bittker, David A.
1988-01-01
A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea
2011-10-19
The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.
2018-01-01
Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.
Horwell, Claire J; Fenoglio, Ivana; Vala Ragnarsdottir, K; Sparks, R Steve J; Fubini, Bice
2003-10-01
The fine-grained character of volcanic ash generated in the long-lived eruption of the Soufrière Hills volcano, Montserrat, West Indies, raises the issue of its possible health hazards. Surface- and free-radical production has been closely linked to bioreactivity of dusts within the lung. In this study, electron paramagnetic resonance (EPR) techniques have been used, for the first time, on volcanic ash to measure the production of radicals from the surface of particles. Results show that concentrations of hydroxyl radicals (HO*) in respirable ash are two to three times higher than a toxic quartz standard. The dome-collapse ash contains cristobalite, a crystalline silica polymorph that may cause adverse health effects. EPR experiments indicate, however, that cristobalite in the ash does not contribute to HO* generation. Our results show that the main cause of reactivity is removable divalent iron (Fe2+), which is present in abundance on the surfaces of the particles and is very reactive in the lung. Our analyses show that fresh ash generates more HO* than weathered ash (which has undergone progressive oxidation and leaching of iron from exposed surfaces), an effect replicated experimentally by incubating fresh ash in dilute acid. HO* production experiments also indicate that iron-rich silicate minerals are responsible for surface reactivity in the Soufrière Hills ash.
Sun, Shengfang; Sono, Masanori; Du, Jing; Dawson, John H
2014-08-05
The coelomic O2-binding hemoglobin dehaloperoxidase (DHP) from the sea worm Amphitrite ornata is a dual-function heme protein that also possesses a peroxidase activity. Two different starting oxidation states are required for reversible O2 binding (ferrous) and peroxidase (ferric) activity, bringing into question how DHP manages the two functions. In our previous study, the copresence of substrate 2,4,6-trichlorophenol (TCP) and H2O2 was found to be essential for the conversion of oxy-DHP to enzymatically active ferric DHP. On the basis of that study, a functional switching mechanism involving substrate radicals (TCP(•)) was proposed. To further support this mechanism, herein we report details of our investigations into the H2O2-mediated conversion of oxy-DHP to the ferric or ferryl ([TCP] < [H2O2]) state triggered by both biologically relevant [TCP and 4-bromophenol (4-BP)] and nonrelevant (ferrocyanide) compounds. At <50 μM H2O2, all of these conversion reactions are completely inhibited by ferric heme ligands (KCN and imidazole), indicating the involvement of ferric DHP. Furthermore, the spin-trapping reagent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) effectively inhibits the TCP/4-BP (but not ferrocyanide)-triggered conversion of oxy-DHP to ferric DHP. These results and O2 concentration-dependent conversion rates observed in this study demonstrate that substrate TCP triggers the conversion of oxy-DHP to a peroxidase by TCP(•) oxidation of the deoxyferrous state. TCP(•) is progressively generated, by increasingly produced amounts of ferric DHP, upon H2O2 oxidation of TCP catalyzed initially by trace amounts of ferric enzyme present in the oxy-DHP sample. The data presented herein further address the mechanism of how the halophenolic substrate triggers the conversion of hemoglobin DHP into a peroxidase.
Luther, I; Jakop, U; Lueders, I; Tordiffe, A; Franz, C; Schiller, J; Kotze, A; Müller, K
2017-02-01
Optimizing cryopreservation protocols for nondomestic felids contributes to the successful development of assisted reproduction techniques and genetic resource banking. In this study, we describe a simple cryopreservation procedure for African lion (Panthera leo) ejaculates, which was tested with different packaging options and different sperm numbers per dose. By applying urethral catheterization and electroejaculation, 17 ejaculates with greater than 20% motile and greater than 5% progressively motile sperm were collected. A lyophilized extender (a modified egg yolk-Tes-Tris-fructose-glycerol medium) was rehydrated and added in one step at ambient temperature (∼25 °C) to semen, which was prediluted in cell culture medium M199. After slow cooling of insulated samples to 15 °C in a refrigerator (4 °C), the samples were fast frozen over the surface of liquid nitrogen or in a dry shipper. Aliquots of 300 μL containing 20 × 10 6 sperm were frozen in cryovials and in 0.5-mL straws. Differences were observed in the total motility after thawing between vial (31.5 ± 14.1%) and straw freezing (20.1 ± 8.6%). However, the subpopulations of vital (22.7 ± 7.8% for vial and 19.8 ± 8.5% for straw) and progressively motile (10.0 ± 7.9% for vial and 10.0 ± 6.4% for straw) sperm after washing and 1 hour incubation at 38 °C were of similar magnitude, velocity, and linearity for both packaging options. After freezing of five ejaculates with 20, 60, and 100 × 10 6 sperm per dose, best results were achieved at the lowest concentration. In general, post-thaw results were highly variable (2.2% and 56.5% total motility) and not correlated to motility or morphology of the fresh semen. To further characterize semen quality, we assessed the protective potential of seminal fluid against oxidative stress, which might be challenged on freeze thawing. The capacity of seminal fluid to reduce radicals was measured in 10 semen samples by electron spin resonance spectroscopy and a spin-labeled fatty acid as a radical probe. Moreover, we determined the lysophosphatidylcholines (LPC) as potential lipid oxidation products in the sperm and erythrocytes of the males. Individuals with a high radical reduction capacity in the seminal fluid and a low LPC content in their erythrocytes showed a better cryosurvival of sperm. This is a first indication that seminal fluid may affect the freezing potential of African lion ejaculates. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.
2015-07-16
We investigated the low-temperature oxidation of propane at 4 Torr and temperatures of 530, 600, and 670 K. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. Reactants, intermediates and products are probed with isomeric selectivity by time-resolved multiplexed photoionization mass spectrometry (MPIMS) with tunable synchrotron vacuum UV radiation as the ionization source. At all three temperatures, the major stable product species is propene, formed in the C3H7 + O2 reactions by direct HO2-eliminationmore » from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, we detect the C3H6O isomers methyloxirane, oxetane, acetone and propanal as minor products. Our measured yields of oxetane and methyloxirane, which are co-products of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multi-scale informatics approach that is presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L., Multi-Scale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Rections, submitted, 2015). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.« less
Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.
Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D
2017-09-19
Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.
Das, Biva; Medhi, Okhil K
2013-03-01
The formation of phenolate free radical is the factor of high turnover for catalytic activity of galactose oxidase (GO) compared to that by inorganic complexes. A new active center analog of GO, [Cu(II)(Salphenylalanine)H(2)O] have been synthesized and its single crystal X-ray analysis was done. In aqueous surfactant micellar solution chemical oxidation as well as electrochemical oxidation of structural models of galactose oxidase - [Cu(II)Salgly·H(2)O] and [Cu(II)(Salphenylalanine)·H(2)O], have been found to generate free radical originating at the phenolate group. Formation of the free radical have been proved by electron paramagnetic resonance spectroscopy, electronic spectroscopy and electrochemistry. Copyright © 2012 Elsevier B.V. All rights reserved.
Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.
Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe
2017-08-29
A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
Zymographic Method for Distinguishing Different Classes of Superoxide Dismutases in Plants.
Jamdhade, Ashwini R; Sunkar, Ramanjulu; Hivrale, Vandana K
2017-01-01
In plants, especially in chloroplasts, superoxide radical is generated when an electron is transferred to dimolecular O 2 due to decreased activity of Photosystem I. The superoxide (O 2 - ) radical accumulation is more rampant in plants exposed to abiotic stresses due to oxidation of photosystem components. Excessive superoxide radical accumulation will lead to oxidative damage to the cellular macromolecules. The ubiquitous superoxide dismutases (SODs) represent critical enzymatic antioxidant system present in cells, which can catalyze the disproportion of superoxide (O 2 - ) radical rapidly into hydrogen peroxide (H 2 O 2 ) and molecular oxygen. Depending on the metal cofactor present, the plant SODs are classified into Cu/ZnSOD, MnSOD, and FeSOD. The activity of SODs can be quantified zymographically. Additionally, using this method, different classes of SODs can be distinguished by using H 2 O 2 , KCN, and NaN 3.
In vivo oxidation in remelted highly cross-linked retrievals.
Currier, B H; Van Citters, D W; Currier, J H; Collier, J P
2010-10-20
Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight polyethylene materials had no measurable free-radical concentration and no increase in oxidation during shelf storage, these materials were expected to be oxidation-resistant in vivo. However, some remelted highly cross-linked ultra-high molecular weight polyethylene retrievals showed measurable oxidation after an average of more than two years in vivo. This apparent departure from widely expected behavior requires continued study of the process of in vivo oxidation of ultra-high molecular weight polyethylene materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (1985). (13) Mill T., Hendry D.G., Richardson H. “Free radical oxidants in natural waters.” Science, 207...)(7) of this section); peroxy radicals (RO2−) (Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1983) under paragraph (f)(8) of this section); hydroxyl radicals (HO−) (Mill et al...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (1985). (13) Mill T., Hendry D.G., Richardson H. “Free radical oxidants in natural waters.” Science, 207...)(7) of this section); peroxy radicals (RO2−) (Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1983) under paragraph (f)(8) of this section); hydroxyl radicals (HO−) (Mill et al...
Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P
2015-01-01
Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.
Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong
2013-12-15
The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Zanan, Hazem S.
Models are the tools that integrate our understanding of the atmospheric processes. Box models are utilized frequently and used to simulate the fates and transformation of atmospheric pollutants. The results from models are usually used to produce one integrated system and further help the policy makers to develop control strategies. We have investigated the atmospheric chemistry of the SOx and HOx systems. The results of 15 laboratory experiments that involved the studies of the HO-SO2, reaction have been analyzed. Mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. Upon analyzing the data we have found that a very large amount of the observed SO2 oxidation (70.0 +/- 9.1%) can not be explained through the gas phase reaction of HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism, Version 2 (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. The results indicate that a mechanism(s) involving photochemical heterogeneous reactions could account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation alone. We have also investigated the distribution of the hydroxyl radical in different urban and rural areas. Photolysis of ozone and its reactions with nitrogen oxides and organic compounds, including both anthropogenic and biogenic volatile organic compounds (VOCs), control the mixing ratios of the hydroxyl radical (HO). Measurements of ozone, nitrogen oxides and volatile hydrocarbons from a deciduous forest in July 1999 and six sites located in the San Joaquin Valley obtained during the Central California Ozone Study (CCOS) measured in July 2000 and September 2000 were used to estimate the hydroxyl radical concentrations. Two methods were employed to determine the concentrations: (1) box model simulations and (2) steady state approximation of the species concentrations (Production-Loss Method). The results indicate that the concentrations observed here in this study are comparable with the HO concentrations measured and/or modeled from other studies. HO concentrations produced from ozone, formaldehyde and isoprene were by far the most important sources for HO production but the HO removal processes greatly differs between the urban and rural areas. Hydroxyl radical concentrations vary by location, time of the day, season and meteorological conditions. Comparing the HO concentrations from our study with other studies from different urban, rural and marine environments shows that hydroxyl radical concentrations in the urban areas can be lower than some pristine environments.
Radiochemical ageing of EPDM elastomers. 3. Mechanism of radiooxidation
NASA Astrophysics Data System (ADS)
Rivaton, A.; Cambon, S.; Gardette, J.-L.
2005-01-01
The preceding paper of this series was devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60Co gamma rays. The double bond of the diene was observed to be consumed with a high radiochemical yield. The oxidation and reticulation rates were observed to be higher in the case of EPDM than in EPR. Accumulation of the major oxidation products in both polymers was shown to occur in the order of decreasing concentrations: hydroperoxides, ketones, carboxylic acids and alcohols, peroxides. On the basis of the analysis of the oxidation products formed in EPDM and EPR, and taking into account their relative concentrations, the mechanisms accounting for the EPDM γ-degradation under oxygen atmosphere are proposed in the present paper. Two main processes are involved in the EPDM radiooxidation. The random γ-radiolysis of the polymer provides a constant source of macroalkyl radicals mainly formed on ethylene units. The secondary radicals so formed are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In particular, the hydroperoxides decomposition and the consumption of the ENB moieties, this latter being the most oxidisable site and the source of crosslinking, may result from hydrogen abstraction by radical species.
Srivastava, Anup; Jagan Mohan Rao, L; Shivanandappa, T
2012-03-01
Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.
Wannomae, Keith K; Christensen, Steven D; Freiberg, Andrew A; Bhattacharyya, Shayan; Harris, William H; Muratoglu, Orhun Kamil
2006-03-01
Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear. Acetabular liners were real-time aged by immersion in an aqueous environment that closely mimicked the temperature and oxygen concentration of synovial fluid. After 95 weeks of real-time aging, once-annealed components were oxidized; the melted components were not. The wear rate of the real-time aged irradiated and once-annealed components was higher than the literature reported values of other contemporary highly cross-linked UHMWPEs. Single annealing after irradiation used with terminal gamma sterilization may adversely affect the long-term oxidative stability of UHMWPE components.
Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.
D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J
2004-01-01
Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine macrophages. These results demonstrate that Aller-7 is a potent scavenger of free radicals and that it may serve.
Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara
2009-02-27
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
NASA Astrophysics Data System (ADS)
Renbaum, L. H.; Smith, G. D.
2011-07-01
In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.
Lebedev, A V; Ivanova, M V; Timoshin, A A; Ruuge, E K
2008-01-01
Ca2+-induced increase in the rate of pyrocatechol and dopamine oxidation by dioxygen and Ca2+-dependent acid-base properties of the catechols were studied by potentiometric titration, UV/Vis-spectrophotometry, EPR-spectroscopy, and by measurement of oxygen consumption. The effect of Ca2+ on the chain reactions of oxidation can be explained by additional deprotonation (decrease in pKai) of the catechols that accelerates one electron transport to dioxygen and formation of calcium semiquinonate, undergoing further oxidation. The described Ca2+-dependent redox-conversion of ortho-phenols proposes that an additional function of calcium in the cell can be its involvement in free radical oxidoreductive reactions at pH > pKai.
Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein
2015-05-01
In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. Copyright © 2015 Elsevier B.V. All rights reserved.
Husain, Nazim; Mahmood, Riaz
2017-08-01
The toxicity of hexavalent chromium [Cr(VI)] in biological systems is thought to be closely associated with the generation of free radicals and reactive oxygen species. These species are produced when Cr(VI) is reduced to its trivalent form in the cell. This process results in oxidative stress due to an imbalance between the detoxifying ability of the cell and the production of free radicals. We have studied the effect of potassium dichromate (K 2 Cr 2 O 7 ), a [Cr(VI)] compound, on the antioxidant power of human erythrocytes and lymphocytes under in vitro conditions. Incubation of erythrocytes and lymphocytes with different concentrations of K 2 Cr 2 O 7 resulted in a marked dose-dependent decrease in reduced glutathione and an increase in oxidized glutathione and reactive oxygen species levels. The antioxidant power of the cells was decreased, as determined by metal reducing and free radical quenching assays. These results show that [Cr(VI)] upregulates the generation of reactive oxygen species and, as a consequence, the cellular antioxidant defences are compromised. The resulting oxidative stress may contribute to Cr(VI)-induced cellular damage.