Science.gov

Sample records for oximetry wave variation

  1. Higher temporal resolution is necessary for continuous-wave near -infrared spectrophotometric monitors in both cerebral and muscular tissue oximetry

    NASA Astrophysics Data System (ADS)

    Chihara, Eiichi; Shiga, Toshikazu; Tanabe, Kazuhisa; Tanaka, Yoshifumi

    1997-12-01

    Conventional near infrared spectrophotometric monitors have temporal resolution of less than about 1 Hz. However, physiological Hb signals such as pulsation and muscle contraction have higher frequency than 1 Hz. Insufficient sampling rates inevitably lead aliasing of the recorded signals in tissue oximetry for both brain and muscle. Cerebral Hb signals (57 y.o. female artificially ventilated under general anesthesia) and thigh muscle (22 y.o. male with 20 W - 240 W exercise at 1 Hz cycling in semirecumbent ergometer) were measured with NIRS monitor with temporal resolution of 10 Hz (OMRON Co. Ltd., Japan). The detail of physiological fluctuations such as pulsation, ventilation, and muscle pumping was clearly recognized with a 10 Hz sampling. The comparison with recalculated waveforms at slower sampling rate (0.5 Hz, 1 Hz, 2 Hz) revealed that with slower sampling than 1 Hz cerebral respiratory waves were deformed by pulsation, and that magnitudes of muscle pumping could not be properly evaluated in dynamic exercise. In both pulsatile and muscle contractile cycle a phase delay between oxygenated component and deoxygenated one was also detected, which has been overlooked by conventional NIRS monitoring.

  2. Higher temporal resolution is necessary for continuous-wave near -infrared spectrophotometric monitors in both cerebral and muscular tissue oximetry

    NASA Astrophysics Data System (ADS)

    Chihara, Eiichi; Shiga, Toshikazu; Tanabe, Kazuhisa; Tanaka, Yoshifumi

    1998-01-01

    Conventional near infrared spectrophotometric monitors have temporal resolution of less than about 1 Hz. However, physiological Hb signals such as pulsation and muscle contraction have higher frequency than 1 Hz. Insufficient sampling rates inevitably lead aliasing of the recorded signals in tissue oximetry for both brain and muscle. Cerebral Hb signals (57 y.o. female artificially ventilated under general anesthesia) and thigh muscle (22 y.o. male with 20 W - 240 W exercise at 1 Hz cycling in semirecumbent ergometer) were measured with NIRS monitor with temporal resolution of 10 Hz (OMRON Co. Ltd., Japan). The detail of physiological fluctuations such as pulsation, ventilation, and muscle pumping was clearly recognized with a 10 Hz sampling. The comparison with recalculated waveforms at slower sampling rate (0.5 Hz, 1 Hz, 2 Hz) revealed that with slower sampling than 1 Hz cerebral respiratory waves were deformed by pulsation, and that magnitudes of muscle pumping could not be properly evaluated in dynamic exercise. In both pulsatile and muscle contractile cycle a phase delay between oxygenated component and deoxygenated one was also detected, which has been overlooked by conventional NIRS monitoring.

  3. Pulse oximetry in pediatric practice.

    PubMed

    Fouzas, Sotirios; Priftis, Kostas N; Anthracopoulos, Michael B

    2011-10-01

    The introduction of pulse oximetry in clinical practice has allowed for simple, noninvasive, and reasonably accurate estimation of arterial oxygen saturation. Pulse oximetry is routinely used in the emergency department, the pediatric ward, and in pediatric intensive and perioperative care. However, clinically relevant principles and inherent limitations of the method are not always well understood by health care professionals caring for children. The calculation of the percentage of arterial oxyhemoglobin is based on the distinct characteristics of light absorption in the red and infrared spectra by oxygenated versus deoxygenated hemoglobin and takes advantage of the variation in light absorption caused by the pulsatility of arterial blood. Computation of oxygen saturation is achieved with the use of calibration algorithms. Safe use of pulse oximetry requires knowledge of its limitations, which include motion artifacts, poor perfusion at the site of measurement, irregular rhythms, ambient light or electromagnetic interference, skin pigmentation, nail polish, calibration assumptions, probe positioning, time lag in detecting hypoxic events, venous pulsation, intravenous dyes, and presence of abnormal hemoglobin molecules. In this review we describe the physiologic principles and limitations of pulse oximetry, discuss normal values, and highlight its importance in common pediatric diseases, in which the principle mechanism of hypoxemia is ventilation/perfusion mismatch (eg, asthma exacerbation, acute bronchiolitis, pneumonia) versus hypoventilation (eg, laryngotracheitis, vocal cord dysfunction, foreign-body aspiration in the larynx or trachea). Additional technologic advancements in pulse oximetry and its incorporation into evidence-based clinical algorithms will improve the efficiency of the method in daily pediatric practice. PMID:21930554

  4. Cerebral oximetry: a replacement for pulse oximetry?

    PubMed

    Frost, Elizabeth A M

    2012-10-01

    Cerebral oximetry has been around for some 3 decades but has had a somewhat checkered history regarding application and reliability. More recently several monitors have been approved in the United States and elsewhere and the technique is emerging as a useful tool for assessing not only adequate cerebral oxygenation but also tissue oxygenation and perfusion in other organs.

  5. Pathway to Retinal Oximetry

    PubMed Central

    Beach, James

    2014-01-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry. PMID:25237591

  6. Variational modelling of nonlinear water waves

    NASA Astrophysics Data System (ADS)

    Kalogirou, Anna; Bokhove, Onno

    2015-11-01

    Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.

  7. Lanczos steps to improve variational wave functions

    NASA Astrophysics Data System (ADS)

    Becca, Federico; Hu, Wen-Jun; Iqbal, Yasir; Parola, Alberto; Poilblanc, Didier; Sorella, Sandro

    2015-09-01

    Gutzwiller-projected fermionic states can be efficiently implemented within quantum Monte Carlo calculations to define extremely accurate variational wave functions for Heisenberg models on frustrated two-dimensional lattices, not only for the ground state but also for low-energy excitations. The application of few Lanczos steps on top of these states further improves their accuracy, allowing calculations on large clusters. In addition, by computing both the energy and its variance, it is possible to obtain reliable estimations of exact results. Here, we report the cases of the frustrated Heisenberg models on square and Kagome lattices.

  8. Multisite EPR Oximetry from Multiple Quadrature Harmonics

    PubMed Central

    Ahmad, R.; Som, S.; Johnson, D.H.; Zweier, J.L.; Kuppusamy, P.; Potter, L.C.

    2011-01-01

    Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3 fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. PMID:22154283

  9. Optimal filter bandwidth for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  10. Optimal filter bandwidth for pulse oximetry.

    PubMed

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  11. Wave groupiness variations in the nearshore

    USGS Publications Warehouse

    List, J.H.

    1991-01-01

    This paper proposes a new definition of the groupiness factor, GF, based on the envelope of the incident-wave time series. It is shown that an envelope-based GF has several important advantages over the SIWEH-based groupiness factor, including objective criteria for determining the accuracy of the envelope function and well-defined numerical limits. Using this new GF, the variability of incident wave groupiness in the field is examined both temporally, in unbroken waves at a fixed location, and spatially, in a cross-shore array through the surf zone. Contrary to previous studies using the SIWEH-based GF, results suggest that incident wave groupiness may not be an independent parameter in unbroken waves; through a wide range of spectral shapes, from swell to storm waves, the groupiness did not vary significantly. As expected, the groupiness decreases rapidly as waves break through the surf zone, although significant wave height variability persists even through a saturated surf zone. The source of this inner surf zone groupiness is not identified; however, this observation implies that models of long wave generation must account for nonsteady radiation stress gradients landward of some narrow zone near the mean breakpoint. ?? 1991.

  12. Fetal monitoring with pulse oximetry.

    PubMed

    Johnson, N; Johnson, V A; Fisher, J; Jobbings, B; Bannister, J; Lilford, R J

    1991-01-01

    Continuous fetal monitoring was achieved with a fetal scalp pulse oximetry sensor in 86 labours. The average recorded fetal oxygen saturation in early labour (cervical dilatation less than 5 cm) was 68% (SD 13%). At the end of labour (cervical dilatation greater than or equal to 9 cm) the recorded mean oxygen saturation was 58% (SD 17%). The largest range of readings during a single labour was 81%-11% but this drop was associated with cord compression. The average SD during 1 h of normal labour was 10%. A second group of 40 fetuses was monitored during induction of labour before and after elective amniotomy. Oxygen saturation did not appear to change after amniotomy (mean change -0.4%, SD 1.2%) and there was no difference between mean antenatal or early intrapartum readings. We excluded the amniochorionic membranes as a possible source of data corruption by measuring their in vitro absorption spectra and confirming that they do not preferentially absorb light of either 660 or 940 nm wavelength. Non-invasive pulse oximetry can be used to monitor the fetus before and during labour.

  13. Pulse oximetry in bronchiolitis: is it needed?

    PubMed

    Hendaus, Mohamed A; Jomha, Fatima A; Alhammadi, Ahmed H

    2015-01-01

    Infants admitted to health-care centers with acute bronchiolitis are frequently monitored with a pulse oximeter, a noninvasive method commonly used for measuring oxygen saturation. The decision to hospitalize children with bronchiolitis has been largely influenced by pulse oximetry, despite its questionable diagnostic value in delineating the severity of the illness. Many health-care providers lack the appropriate clinical fundamentals and limitations of pulse oximetry. This deficiency in knowledge might have been linked to changes in the management of bronchiolitis. The aim of this paper is to provide the current evidence on the role of pulse oximetry in bronchiolitis. We discuss the history, fundamentals of operation, and limitations of the apparatus. A search of the Google Scholar, Embase, Medline, and PubMed databases was carried out for published articles covering the use of pulse oximetry in bronchiolitis. PMID:26491341

  14. Variational principle for nonlinear wave propagation in dissipative systems.

    PubMed

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time. PMID:26986334

  15. Variational principle for nonlinear wave propagation in dissipative systems.

    PubMed

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.

  16. Variational principle for nonlinear wave propagation in dissipative systems

    NASA Astrophysics Data System (ADS)

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.

  17. Spatial variations in Achilles tendon shear wave speed

    PubMed Central

    DeWall, Ryan J.; Slane, Laura C.; Lee, Kenneth S.; Thelen, Darryl G.

    2014-01-01

    Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction. The purpose of this study was to investigate spatial variations in shear wave speed along medial and lateral paths of the Achilles tendon for three different ankle postures: resting ankle angle (R, i.e. neutral), plantarflexed (P; R − 15 deg), and dorsiflexed (D; R + 15 deg). We observed significant spatial and posture variations in tendon shear wave speed in ten healthy young adults. Shear wave speeds in the Achilles free tendon averaged 12 ± 1.2 m/s in a resting position, but decreased to 7.2 ± 1.8 m/s with passive plantarflexion. Distal tendon shear wave speeds often reached the maximum tracking limit (16.3 m/s) of the system when the ankle was in the passively dorsiflexed posture (+15 deg from R). At a fixed posture, shear wave speeds decreased significantly from the free tendon to the gastrocnemius musculotendon junction, with slightly higher speeds measured on the medial side than on the lateral side. Shear wave speeds were only weakly correlated with the thickness and depth of the tendon, suggesting that the distal-to-proximal variations may reflect greater compliance in the aponeurosis relative to the free tendon. The results highlight the importance of considering both limb posture and transducer positioning when using SSI for biomechanical and clinical assessments of the Achilles tendon. PMID:24933528

  18. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.

    1999-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  19. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  20. The Effect of Area Variation on Wave Rotor Elements

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    1997-01-01

    The effect of varying the cross-sectional flow area of the passages of a wave rotor is examined by means of the method of characteristics. An idealized expansion wave, an idealized inlet port, and an idealized compression stage are considered. It is found that area variation does not have a very significant effect on the expansion wave, nor on the compression stage. For the expansion wave, increasing the passage area in the flow direction has the same effect as a diffuser, so that the flow emerges at a lower velocity than it would for the constant area case. This could be advantageous. The inlet is strongly affected by the area variation, as it changes the strength of the hammer shock wave, thereby changing the pressure behind it. In this case, reduction in the passage area in the flow direction leads to increased pressure. However, this result is dependent on the assumption that the inlet conditions remain constant with area variation. This may not be the case.

  1. Variations of ULF wave power throughout the Halloween 2003 superstorm

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Balasis, G.; Papadimitriou, C.; Zesta, E.; Georgiou, M.; Mann, I.

    2013-09-01

    Focused on the exceptional 2003 Halloween geospace magnetic storm, when Dst reached a minimum of -383 nT, we examine data from topside ionosphere and two magnetospheric missions (CHAMP, Cluster, and Geotail) for signatures of ULF waves. We present the overall ULF wave activity through the six-day interval from 27 October to 1 November 2003 as observed by the three spacecraft and by the Andenes ground magnetic station of the IMAGE magnetometerer array in terms of time variations of the ULF wave power. The ULF wave activity is divided upon Pc3 and Pc5 wave power. Thus, we provide different ULF wave activity indices according to the wave frequency (Pc3 and Pc5) and location of observation (Earth’s magnetosphere, topside ionosphere and surface). We also look at three specific intervals during different phases of the storm when at least two of the satellites are in good local time (LT) conjunction and examine separately Pc3 and Pc4-5 ULF wave activity and its concurrence in the different regions of the magnetosphere and down to the topside ionosphere and on the ground. This work has received support from the European Community’s Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  2. Variations of ULF wave power throughout the Halloween 2003 superstorm

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis; Balasis, Georgios; Papadimitriou, Constantinos; Zesta, Eftyhia; Georgiou, Marina; Mann, Ian

    2013-04-01

    Focused on the exceptional 2003 Halloween geospace magnetic storm, when Dst reached a minimum of -383 nT, we examine data from topside ionosphere and two magnetospheric missions (CHAMP, Cluster, and Geotail) for signatures of ULF waves. We present the overall ULF wave activity through the six-day interval from 27 October to 1 November 2003 as observed by the three spacecraft and by the Andenes ground magnetic station of the IMAGE magnetometerer array in terms of time variations of the ULF wave power. The ULF wave activity is divided upon Pc3 and Pc5 wave power. Thus, we provide different ULF wave activity indices according to the wave frequency (Pc3 and Pc5) and location of observation (Earth's magnetosphere, topside ionosphere and surface). We also look at three specific intervals during different phases of the storm when at least two of the satellites are in good local time (LT) conjunction and examine separately Pc3 and Pc4-5 ULF wave activity and its concurrence in the different regions of the magnetosphere and down to the topside ionosphere and on the ground. This work has received support from the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  3. Variations of ULF wave power throughout the Halloween 2003 superstorm

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Balasis, G.; Papadimitriou, C.; Zesta, E.; Georgiou, M.; Mann, I.

    2013-09-01

    Focused on the exceptional 2003 Halloween geospace magnetic storm, when Dst reached a minimum of -383 nT, we examine data from topside ionosphere and two magnetospheric missions (CHAMP, Cluster, and Geotail) for signatures of ULF waves. We present the overall ULF wave activity through the six-day interval from 27 October to 1 November 2003 as observed by the three spacecraft and by the Andenes ground magnetic station of the IMAGE magnetometer array in terms of time variations of the ULF wave power. The ULF wave activity is divided upon Pc3 and Pc5 wave power. Thus, we provide different ULF wave activity indices according to the wave frequency (Pc3 and Pc5) and location of observation (Earth's magnetosphere, topside ionosphere and surface). We also look at three specific intervals during different phases of the storm when at least two of the satellites are in good local time (LT) conjunction and examine separately Pc3 and Pc4-5 ULF wave activity and its concurrence in the different regions of the magnetosphere and down to the topside ionosphere and on the ground.

  4. Improved variational wave functions for few-body nuclei

    SciTech Connect

    Wiringa, R.B.; Arriaga, A.; Pandharipande, V.R.

    1995-08-01

    We continued to work on improvements to our variational wave functions for use in Monte Carlo calculations of few-body nuclei. These trial functions include central, spin, isospin, tensor, and spin-orbit two-body correlations and three-body correlations for the three-nucleon potential. In the last two years we studied a variety of extra three-body correlations. Our search for possible forms was guided by comparisons made with 34-channel Faddeev wave functions provided by the Los Alamos-Iowa group. The new trial functions reduce the discrepancy with exact Faddeev calculations in {sup 3}H and Green`s Function Monte Carlo (GFMC) calculations in {sup 4}He by about 40%. This work is now being written up for publication. We hope to use similar comparisons with GFMC calculations in the six-body nuclei to find further improvements for the light p-shell nuclei, where the variational wave functions are not as good.

  5. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves

    USGS Publications Warehouse

    Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M.

    2009-01-01

    In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the opportunity to study sand wave variation between locations, within one well-measured, large area. The nonlinear model used in this paper is presently the only tool that provides information on the nonlinear evolution of large-amplitude sand waves. The model is used to increase our understanding of the coupling between the variability in environmental conditions and the sand wave characteristics. Results show that the model is able to describe the variation in the Golden Gate sand waves well when both the local oscillating tidal current and the residual current are taken into account. Current and water depth seem to be the most important factors influencing sand wave characteristics. The simulation results give further confidence in the underlying model hypothesis and assumptions. Copyright 2009 by the American Geophysical Union.

  6. On Variational Methods in the Physics of Plasma Waves

    SciTech Connect

    I.Y. Dodin

    2013-03-08

    A fi rst-principle variational approach to adiabatic collisionless plasma waves is described. The focus is made on one-dimensional electrostatic oscillations, including phase-mixed electron plasma waves (EPW) with trapped particles, such as Bernstein-Greene-Kruskal modes. The well known Whitham's theory is extended by an explicit calculation of the EPW Lagrangian, which is related to the oscillation-center energies of individual particles in a periodic fi eld, and those are found by a quadrature. Some paradigmatic physics of EPW is discussed for illustration purposes. __________________________________________________

  7. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.

    1999-01-01

    The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.

  8. Rogue wave variational modelling through the interaction of two solitary waves

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno

    2016-04-01

    The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a

  9. Assessment of the calibration curve for transmittance pulse-oximetry

    NASA Astrophysics Data System (ADS)

    Doronin, A.; Fine, I.; Meglinski, I.

    2011-11-01

    Optical/laser modalities provide a broad variety of practical solutions for clinical diagnostics and therapy in a range from imaging of single cells and molecules to non-invasive biopsy of specific biological tissues and organs tomography. Near-infrared transmittance pulse oximetry with laser diodes is the accepted standard in current clinical practice and widely used for noninvasive monitoring of oxygen saturation in arterial blood hemoglobin. Conceptual design of practical pulse oximetry systems requires careful selection of various technical parameters, including intensity, wavelength, beam size and profile of incident laser radiation, size, numerical aperture of the detector, as well as a clear understanding of how the spatial and temporal structural alterations in biological tissues can be linked with and can be distinguished by variations of these parameters. In current letter utilizing state-of-the-art NVIDEA CUDA technology, a new object oriented programming paradigm and on-line solutions we introduce a computational tool applied for human finger transmittance spectra simulation and assessment of calibration curve for near-infrared transmitted pulseoximetry.

  10. New spectral imaging techniques for blood oximetry in the retina

    NASA Astrophysics Data System (ADS)

    Alabboud, Ied; Muyo, Gonzalo; Gorman, Alistair; Mordant, David; McNaught, Andrew; Petres, Clement; Petillot, Yvan R.; Harvey, Andrew R.

    2007-07-01

    Hyperspectral imaging of the retina presents a unique opportunity for direct and quantitative mapping of retinal biochemistry - particularly of the vasculature where blood oximetry is enabled by the strong variation of absorption spectra with oxygenation. This is particularly pertinent both to research and to clinical investigation and diagnosis of retinal diseases such as diabetes, glaucoma and age-related macular degeneration. The optimal exploitation of hyperspectral imaging however, presents a set of challenging problems, including; the poorly characterised and controlled optical environment of structures within the retina to be imaged; the erratic motion of the eye ball; and the compounding effects of the optical sensitivity of the retina and the low numerical aperture of the eye. We have developed two spectral imaging techniques to address these issues. We describe first a system in which a liquid crystal tuneable filter is integrated into the illumination system of a conventional fundus camera to enable time-sequential, random access recording of narrow-band spectral images. Image processing techniques are described to eradicate the artefacts that may be introduced by time-sequential imaging. In addition we describe a unique snapshot spectral imaging technique dubbed IRIS that employs polarising interferometry and Wollaston prism beam splitters to simultaneously replicate and spectrally filter images of the retina into multiple spectral bands onto a single detector array. Results of early clinical trials acquired with these two techniques together with a physical model which enables oximetry map are reported.

  11. Quarter wave field line resonances: variation with latitude

    NASA Astrophysics Data System (ADS)

    Menk, Frederick; Obana, Yuki; Waters, Colin; Sciffer, Murray; Yoshikawa, Akimasa; Yoshikawa, Ichiro; Moldwin, Mark; Mann, Ian; Boteler, David

    When for a particular field line there is a strong asymmetry in conductivity at conjugate ionospheres, quarter wavelength mode eigenoscillations may be sustained instead of the more usual half-wave oscillations. We have studied the latitudinal distribution of such quarter-wave mode standing Alfvén waves. The diurnal variation of the local field line eigenfrequency was examined for L=1.7-5.1 using cross-phase analysis of geomagnetic data from the MEASURE, CANMOS, and CARISMA arrays in North America. The detected eigenfrequencies for L=2-3.1 were remarkably low near the dawn and dusk terminator, when one end of a field line was sunlit and the other end was in darkness. However, the eigenfrequencies for L¡2 and L¿3.1 did not exhibit this extraordinary low frequency trend. These results suggest that quarter-wave modes were localized to the middle latitude region. We will discuss why this occurs and in particular why quarter wave modes were not generated at high latitudes even though the ionospheric conditions were strongly asymmetric there.

  12. Shear-wave velocity variation in jointed rock: an attempt to measure tide-induced variations

    SciTech Connect

    Beem, L.I.

    1987-08-01

    The use of the perturbation of seismic wave velocities by solid earth tides as a possible method of exploration for fractured media is discussed. Velocity of compressional seismic waves in fractured homogeneous rock has been observed to vary through solid earth tide cycles by a significant 0.5-0.9%. This variation of seismic velocities may be attributed to the opening and closing of joints by tidal stresses. In an attempt to see if shear-wave velocities show a similar velocity variation, a pneumatic shear-wave generator was used for the source. The 5 receivers, 3-component, 2.0 Hz, moving-coil geophones, were connected to a GEOS digital recorder. The two receivers located 120 m and 110 m from the source showed large shear-to-compression amplitude ratio and a high signal-to-noise ratio. A glaciated valley was chosen for the experiment site, since topography is flat and the granodiorite is jointed by a set of nearly orthogonal vertical joints, with superimposed horizontal sheeting joints. A slight velocity variation was noted in the first 200 consecutive firings; after which, the amplitude of the shear-wave begun to increase. This increase has been attributed to the compacting of the soil beneath the shear-wave generator (SWG). In the future, the soil will be compacted prior to placing the SWG or the SWG will be coupled directly to the rock to alleviate the amplitude fluctuation problem. This research may have application in exploration for fracture permeability in the rock mass between existing wells, by measuring seismic velocities from well to well through the tidal cycle.

  13. Seasonal variation of solitary wave properties in Lake Constance

    NASA Astrophysics Data System (ADS)

    Preusse, M.; Freistühler, H.; Peeters, F.

    2012-04-01

    The properties of internal solitary waves (ISWs) depend on the stratification of the water body. In most climatic regions the stratification in lakes and oceans varies during the year, and hence the properties of the ISWs can also be expected to change over the seasons. On the basis of a long-term temperature time series recorded over 6 years, this paper investigates seasonal changes in the characteristic properties of ISWs in Lake Überlingen, a subbasin of Lake Constance. A large number of ISWs with amplitudes ranging from 3 m to 30 m were identified. More than 15% of the leading ISWs of a wave train were associated with density inversions, often indicating shear instabilities or trapped cores. For all waves the propagation depth and the value of a nonlinearity index nlp providing the degree of nonlinearity were determined, propagation depth being the rest height of the isotherm undergoing maximum displacement and nlp the ratio between wave amplitude and propagation depth. The index nlp was found to be a good parameter for predicting the occurrence of inversions. The statistical analysis of the wave properties derived from the observations revealed that the degree of nonlinearity of the ISWs changes with season. Complementary to the statistical analysis, the seasonally averaged ISW properties were compared with wave prototypes obtained numerically from the Dubreil-Jacotin-Long (DJL) and the stratified Korteweg-deVries (KdV) models. The simulations indicate that the typical stratification and its seasonal variation are responsible for the degree and the seasonality of nonlinearity of the ISWs.

  14. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  15. Variational stereo imaging of oceanic waves with statistical constraints.

    PubMed

    Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise

    2013-11-01

    An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

  16. Tissue oximetry in anaesthesia and intensive care.

    PubMed

    Biedrzycka, Aleksandra; Lango, Romuald

    2016-01-01

    Conventional monitoring during surgery and intensive care is not sufficiently sensitive to detect acute changes in vital organs perfusion, while its good quality is critical for maintaining their function. Disturbed vital organ perfusion may lead to the development of postoperative complications, including neurological sequel and renal failure. Near-infra-red spectroscopy (NIRS) represents one of up-to-date techniques of patient monitoring which is commonly used for the assessment of brain oximetry in thoracic aorta surgery, and - increasingly more often -in open-heart surgery. Algorithms for maintaining adequate brain saturation may result in a decrease of neurological complications and cognitive dysfunction following cardiac surgery. The assessment of kidney and visceral perfusion with tissue oximetry is gaining increasing interest during pediatric cardiac surgery. Attempts at decreasing complications by the use of brain oximetry during carotid endarterectomy, as well as thoracic and abdominal surgery demonstrated conflicting results. In recent years NIRS technique was proposed as a tool for muscle perfusion assessment under short term ischemia and reperfusion, referred to as vascular occlusion test (VOT). This monitoring extension allows for the identification of early disturbances in tissue perfusion. Results of recent studies utilizing VOT suggest that the muscle saturation decrease rate is reduced in septic shock patients, while decreased speed of saturation recovery on reperfusion is related to disturbed microcirculation. Being non-invasive and feasible technique, NIRS offers an improvement of preoperative risk assessment in cardiac surgery and promises more comprehensive intraoperative and ICU patient monitoring allowing for better outcome. PMID:26966109

  17. Variational structure of inverse problems in wave propagation and vibration

    SciTech Connect

    Berryman, J.G.

    1995-03-01

    Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.

  18. Planetary Wave Influence on Wintertime OH Meinel Longitudinal Variation?

    NASA Astrophysics Data System (ADS)

    Winick, J. R.; Picard, R. H.; Wintersteiner, P. P.; Mlynczak, M. G.; Russell, J. M.; Gordley, L.

    2009-05-01

    We report on very unusual conditions in the upper mesosphere during the boreal winters of 2004 and 2006. Unusually bright OH volume emissions, as measured by TIMED/SABER, occurred in the region north of 60N. These emissions also occurred at unusually low altitudes, while at the same time very high temperatures characterized the upper mesosphere. These large perturbations allowed us to see more clearly longitudinal spatial and temporal variations that were present in the emissions. The affected areas varied in size and location on time scales of a few days and had a distinct planetary-wave wave-1 structure. We present data demonstrating the variability in the emissions and temperatures throughout the polar region and the correlations among them, and we contrast their behavior with that in normal years. The underlying cause of the correlations and longitudinal structure appears to be greatly enhanced downwelling in the upper mesosphere, which in turn was produced by unusual dynamical conditions in the lower atmosphere, consisting of stratospheric warmings and perturbations of wave structures within the polar vortex.

  19. Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2014-12-01

    The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.

  20. Pulse Oximetry as a Medical Physics Practical on School Trips

    ERIC Educational Resources Information Center

    Gibson, Adam P.; Chandra, Elizabeth; Chandra, Manik

    2009-01-01

    We have measured blood oxygenation levels in a group of 14 people (8 young people and 6 adults) on a physically demanding expedition to Mt Kenya. Blood oxygenation was measured at 11 different altitudes between 1910 and 4985 m using pulse oximetry. We found that pulse oximetry was suitable for use on a youth expedition and we were able to show…

  1. EPR oximetry of tumors in vivo in cancer therapy

    NASA Astrophysics Data System (ADS)

    Šentjurc, Marjeta; Čemažar, Maja; Serša, Gregor

    2004-05-01

    The partial oxygen pressure ( pO 2) in tumors is considered to be one of important factors that affect the response of tumors to different treatment. Therefore, we anticipate that the information about the variation of oxygen concentration in tumors can be used as a guide for individualizing radiotherapy, chemotherapy, and especially the combined therapies. There is thus a need to obtain quantitative data on the effects of different therapies on tumor oxygenation under in vivo conditions. One of the methods, which enable these measurements is EPR oximetry. In this work basic principles of the method will be described as well as some examples of tumor oxygenation changes after application of chemotherapeutic drugs (vinblastine, cisplatin, bleomycin) or electric pulses in combination with cisplatin or bleomycin to fibrosarcoma SA-1 tumors in mice. A paramagnetic probe, a char of Bubinga tree, was implanted into the tumor (center and periphery) and in the muscle or subcutis. EPR spectra line-width, which is proportional to oxygen concentration, was measured with time after the treatments. Tumor oxygenation was reduced for 58% of pretreatment value 1 h after intraperitoneal injection of 2.5 mg kg -1 VLB and returned to pretreatment level within 24 h. Reduction in oxygenation of muscle and subcutis was much smaller and returned to pretreatment value faster as in tumors. With cisplatin (4 mg kg -1) and bleomicyn (1 mg kg -1) the reduction was less than 15%, but increases in combined therapy to 70%. Similar reduction was observed also with electric pulses alone (eight pulses, 1300 V cm -1, 100 μs, 1 Hz) with fast recovery of 8 h. After electrochemotherapy the recovery was slower and occurs only after 48 h. This study demonstrates that EPR oximetry is a sensitive method for monitoring changes in tissue oxygenation after different treatments, which may have implications in controlling side effects of therapy and in the planning of combined treatments.

  2. Global Responses of Gravity Waves to Planetary Wave Variations during Stratospheric Sudden Warming Observed by SABER

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2015-12-01

    This study describes the global responses of observed gravity waves (GWs) to winter planetary wave (PW) variations during stratospheric sudden warmings (SSWs) using TIMED-SABER temperature measurements. GWs affect the ionosphere and thermosphere, and it is important to understand global variations of GWs from the lower atmosphere to the thermosphere during SSWs in order to advance our understanding of vertical coupling. The responses of GWs to SSWs are shown by calculating correlations between vertical components of Eliassen-Palm (EP) fluxes in the winter polar stratosphere and global GW temperature amplitudes derived from SABER observations. Consistent with previous ground-based and satellite observations, winter EP fluxes show positive correlations with GWs in the winter hemisphere. More interestingly, winter stratospheric EP fluxes are positively correlated with GWs in the tropics and in the summer mesosphere, indicating global variations of GWs in response to PW variations in the winter hemisphere. To study the mechanism of GW response to SSWs, global wind simulations from SD-WACCM are used. Zonal wind anomalies (differences in the wind before and during SSWs) extend from the winter stratosphere to the summer mesosphere. By comparing anomalies in background winds to the observed patterns in the correlations between GWs and winter EP fluxes, we find that regions of positive correlation follow change in background winds and zero-wind lines. The results indicate that responses of SABER GWs in the summer hemisphere to winter PW variations during SSWs are likely caused by changes in GW propagation due to the changes in atmospheric circulation. These observed changes in global GWs during SSWs can affect the ionosphere and thermosphere, and studying global GW variation during SSWs is important for understanding mechanisms of vertical coupling.

  3. Retinal Oximetry in a Healthy Japanese Population

    PubMed Central

    Nakano, Yuki; Shimazaki, Takeru; Kobayashi, Nobuko; Miyoshi, Yukiko; Ono, Aoi; Kobayashi, Mamoru; Shiragami, Chieko; Hirooka, Kazuyuki; Tsujikawa, Akitaka

    2016-01-01

    Purpose To establish the normative database of retinal oximetry using Oxymap T1 in a healthy Japanese population, and study the reproducibility of the measurements in Japanese. Methods We measured oxygen saturation in the major retinal vessels with Oxymap T1 in 252 eyes of 252 healthy Japanese subjects. Fundus images acquired using Oxymap T1 were processed using built-in Oxymap Analyzer software. Reproducibility of retinal oximetry was investigated using 20 eyes of 20 healthy subjects. Results The mean retinal oxygen saturation of 4 quadrants in healthy Japanese was 97.0 ± 6.9% in arteries and 52.8 ± 8.3% in veins. The mean arteriovenous difference in oxygen saturation was 44.2 ± 9.2%. Both arterial and venous oxygen saturation were significantly lower in the temporal side of the retina, especially in the temporal-inferior vessels. However, the arteriovenous difference in oxygen saturation was limited in the 4 quadrants. Interphotograph, intervisit, and interevaluator intraclass correlation coefficients were 0.936–0.979, 0.809–0.837, and 0.732–0.947, respectively. In the major retinal arteries, oxygen saturation increased with age (r = 0.18, p<0.01), at a rate of 0.67% per 10 years. However, venous oxygen saturation showed no correlation with age. Conclusions This study provides the normative database for the Japanese population. The arterial saturation value appears to be higher than other previous studies. Mean retinal oximetry in 4 quadrants with Oxymap T1 has high reproducibility. PMID:27434373

  4. Effect of gravity wave temperature variations on homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Podglajen, Aurélien; Hertzog, Albert; Legras, Bernard; Plougonven, Riwal

    2015-04-01

    Observations of cirrus clouds in the tropical tropopause layer (TTL) have shown various ice number concentrations (INC) (e.g., Jensen et al. 2013), which has lead to a puzzle regarding their formation. In particular, the frequently observed low numbers of ice crystals seemed hard to reconcile with homogeneous nucleation knowing the ubuquity of gravity waves with vertical velocity of the order of 0.1 m/s. Using artificial time series, Spichtinger and Krämer (2013) have illustrated that the variation of vertical velocity during a nucleation event could terminate it and limit the INC. However, their study was limited to constructed temperature time series. Here, we carry out numerical simulations of homogeneous ice nucleation forced by temperature time series data collected by isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency (30 s), so gravity wave signals are well resolved in the temperature time series. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentrations (INC) as previously observed in the tropical upper troposphere. The simulations confirm that the dynamical time scale of temperature variations (as seen from observations) can be shorter than the nucleation time scale. They show the existence of two regimes for homogeneous ice nucleation : one limited by the depletion of water vapor by the nucleated ice crystals (those we name vapor events) and one limited by the reincrease of temperature after its initial decrease (temperature events). Low INC may thus be obtained for temperature events when the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result for temperature events is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This

  5. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-09-15

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.

  6. Review of splanchnic oximetry in clinical medicine.

    PubMed

    Bailey, Sean M; Mally, Pradeep V

    2016-09-01

    Global tissue perfusion and oxygenation are important indicators of physiologic function in humans. The monitoring of splanchnic oximetry through the use of near-infrared spectroscopy (NIRS) is an emerging method used to assess tissue oxygenation status. Splanchnic tissue oxygenation (SrSO2) is thought to be potentially of high value in critically ill patients because gastrointestinal organs can often be the first to suffer ischemic injury. During conditions of hypovolemia, cardiac dysfunction, or decreased oxygen-carrying capacity, blood flow is diverted toward vital organs, such as the brain and the heart at the expense of the splanchnic circulation. While monitoring SrSO2 has great potential benefit, there are limitations to the technology and techniques. SrSO2 has been found to have a relatively high degree of variability that can potentially make it difficult to interpret. In addition, because splanchnic organs only lie near the skin surface in children and infants, and energy from currently available sensors only penetrates a few centimeters deep, it can be difficult to use clinically in a noninvasive manner in adults. Research thus far is showing that splanchnic oximetry holds great promise in the ability to monitor patient oxygenation status and detect disease states in humans, especially in pediatric populations.

  7. Review of splanchnic oximetry in clinical medicine.

    PubMed

    Bailey, Sean M; Mally, Pradeep V

    2016-09-01

    Global tissue perfusion and oxygenation are important indicators of physiologic function in humans. The monitoring of splanchnic oximetry through the use of near-infrared spectroscopy (NIRS) is an emerging method used to assess tissue oxygenation status. Splanchnic tissue oxygenation (SrSO2) is thought to be potentially of high value in critically ill patients because gastrointestinal organs can often be the first to suffer ischemic injury. During conditions of hypovolemia, cardiac dysfunction, or decreased oxygen-carrying capacity, blood flow is diverted toward vital organs, such as the brain and the heart at the expense of the splanchnic circulation. While monitoring SrSO2 has great potential benefit, there are limitations to the technology and techniques. SrSO2 has been found to have a relatively high degree of variability that can potentially make it difficult to interpret. In addition, because splanchnic organs only lie near the skin surface in children and infants, and energy from currently available sensors only penetrates a few centimeters deep, it can be difficult to use clinically in a noninvasive manner in adults. Research thus far is showing that splanchnic oximetry holds great promise in the ability to monitor patient oxygenation status and detect disease states in humans, especially in pediatric populations. PMID:27165703

  8. Pulse oximetry of body cavities and organs.

    PubMed

    Kyriacou, P A; Hickey, M; Phillips, J P

    2013-01-01

    The focus of this paper will be in the development and in vivo applications of new custom made photoplethysmographic (PPG) and pulse oximetry optical and fiber optic sensors and instrumentation in an effort to investigate their suitability in the estimation of blood oxygen saturation and their contribution in the assessment of organ/tissue perfusion and viability. The paper describes the development of optical and fiber optic PPG and blood oxygen saturation (SpO2) sensors and covers examples of application areas including real-time PPG monitoring from body cavities (esophagus) and solid or hollow organs (bowel, liver, stomach, brain, etc). The clinical studies presented successfully demonstrated the feasibility in acquiring PPGs and estimating blood oxygen saturation values from a variety of organs and tissues. The technological developments and the measurements presented in this work pave the way in a new era of pulse oximetry where direct and continuous monitoring of blood oxygen saturation of internal organs and tissues could be made possible. PMID:24110275

  9. Gravity wave variations during elevated stratopause events using SABER observations

    NASA Astrophysics Data System (ADS)

    Yamashita, Chihoko; England, Scott L.; Immel, Thomas J.; Chang, Loren C.

    2013-06-01

    stratopauses formed at ~80-90 km altitude during the recovery phase of stratospheric sudden warmings in February 2006 and 2009. These likely occurred in response to changes in the downward circulation due to gravity waves (GWs) and/or planetary waves in the mesosphere and the lower thermosphere (MLT). However, the physical mechanisms are not fully understood, due in part to the lack of global GW observations in the MLT. This study presents global-scale GW observations in the MLT during elevated stratopause events using Thermosphere, Ionosphere, Mesosphere Energetics Dynamics (TIMED)-Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observation, which provide a better insight into the formation of an elevated stratopause. During the downward movement of elevated stratopause events in 2006 and 2009, GWs were suppressed below ~60 km and enhanced above ~60 km at high latitudes compared to non-elevated stratopause years (2005 and 2007). Global SABER GW observations indicate that the regions of GW enhancement propagate from low-mid latitudes to high latitudes in association with the equatorward shift of the polar night jet during elevated stratopause events. Ray-tracing simulations show enhancements of the poleward propagation of GWs during elevated stratopause events as well as continuous propagation of non-orographic GWs within high latitudes. Therefore, our results suggest that meridional propagation of GWs from lower to higher latitudes, which is typically not included in global-scale models, plays an important role in determining GW variations and thus the downward movement of an elevated stratopause, in addition to non-orographic GWs originating at high latitudes.

  10. The sensitivity of stationary waves to variations in the basic state zonal flow

    NASA Technical Reports Server (NTRS)

    Nigam, Sumant; Lindzen, Richard S.

    1989-01-01

    A linear, primitive equation stationary wave model having high vertical and meridional resolution is used to examine the sensitivity of orographically forced (primarily by Himalayas) stationary waves at middle and high latitudes to variations in the basic state zonal wind distribution. We find relatively little sensitivity to the winds in high latitudes, but remarkable sensitivity to small variations in the subtropical jet. Fluctuations well within the range of observed variability in the jet can lead to large variations in the stationary waves of the high latitude stratosphere, and to large changes even in tropospheric stationary waves. Implications for both sudden warmings and large-scale weather are discussed.

  11. The aqueous reference for ESR oximetry

    NASA Astrophysics Data System (ADS)

    Diakova, Galina; Bryant, Robert G.

    2006-02-01

    The interaction of molecular oxygen with derivatives of nitroxide EPR spin labels has been investigated using nuclear spin-relaxation spectroscopy in aqueous and nonaqueous solvents. The proton spin-lattice relaxation rate induced by oxygen provides a measure of the local concentration of oxygen, which we find is dependent on solvent. In water, the hydrophobic effect increases the local concentration of oxygen in the nonpolar portions of solute molecules. For nitroxides reduced to the hydroxylamine in aqueous solutions, we find that the local concentration of oxygen is approximately twice that associated with a free diffusion hard sphere limit, while in octane, this effect is absent. These results show that nitroxide based ESR oximetry may suffer a reference concentration shift of order a factor of two if the aqueous nitroxide spectrum or relaxation is used as the reference.

  12. [Predictive value of nocturnal pulse oximetry in sleep apnea screening].

    PubMed

    Nuber, R; Vavrina, J; Karrer, W

    2000-01-01

    The monitoring of overnight oxygen saturation is widely used for sleep apnoea screening. The point of this screening has been questioned as a wide range of sensitivity has been reported in the literature. In a prospective study 70 subjects presenting with a possible sleep apnoea-hypopnoea syndrome had overnight oximetry followed by polysomnography 2 to 4 months later. Compared to polysomnography, the sensitivity of oximetry for sleep apnoea-hypopnoea was 85.2%, the specificity 77.8% and the predictive value positive 96.3%. When short, non-significant, repetitive desaturations have been declared pathologic, sensitivity increased to 91.8%. In the hands of an expert user, oximetry represents an excellent instrument for detecting patients with sleep apnoea-hypopnoea. Patients with pathological nocturnal oximetry are candidates for nCPAP treatment and therefore should undergo a sleep laboratory investigation.

  13. Near-infrared transmittance pulse oximetry with laser diodes.

    PubMed

    Lopez Silva, Sonnia Maria; Dotor Castilla, Maria Luisa; Silveira Martin, Juan Pedro

    2003-07-01

    Pulse oximeters are widely used for noninvasive monitoring of oxygen saturation in arterial blood hemoglobin. We present a transmittance pulse oximetry system based on near-infrared (NIR) laser diodes (750 and 850 nm) for monitoring oxygen saturation of arterial blood hemoglobin. The pulse oximetry system is made up of the optical sensor, sensor electronics, and processing block. Also, we show experimental results obtained during the development of the whole NIR transmittance pulse oximetry system along with modifications in the sensor configuration, signal processing algorithm, and calibration procedure. Issues concerning wavelength selection and its implications for the improvement of the transmittance pulse oximetry technique are discussed. The results obtained demonstrate the proposed system's usefulness in monitoring a wide range of oxygen saturation levels.

  14. Spatial variation of coda wave attenuation in northwestern Colombia

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos A.; Ugalde, Arantza; Pujades, Lluís G.; Canas, José A.

    2004-08-01

    One thousand seven hundred and eighty-six vertical-component, short-period observations of microearthquake codas from regional earthquakes recorded by 17 stations belonging to the National Seismological Network of Colombia were used to estimate seismic wave attenuation in Colombia. Local magnitudes range from 2.9 to 6.0 and only events occurring at hypocentral distances up to 255 km were considered for the analysis. The frequencies of interest lay between 1 and 19 Hz and the analysis was performed for each seismic station separately. Coda-wave attenuation (Q-1c) was estimated by means of a single-scattering method whereas the separation of intrinsic absorption (Q-1i) and scattering attenuation (Q-1s) from total attenuation (Q-1t) was performed using a multiple lapse time-window analysis based on the hypothesis of multiple isotropic scattering and uniform distribution of scatterers. A regionalization of the estimated Q0 (Qc at 1 Hz) values was performed and a contour map of seismic coda attenuation in Colombia is presented, where four zones with significant variations of attenuation related to different geological and tectonic characteristics can be observed. The highest attenuation is linked to the central and western regions (Q0 around 50 and 56) whereas a lower attenuation (Q0 around 69 and 67) is assigned to the northern and eastern regions. Results show that the Q-1 values are frequency dependent in the considered frequency range, and are approximated by a least-square fit to the power law Q-1(f) =Q-10(f/f0)-η. The exponents of the frequency dependence law ranged from η= 0.65 to 1.01 for Q-1c, η= 0.62 to 1.78 for Q-1i, η= 0.28 to 1.49 for Q-1s, and η= 0.53 to 1.67 for Q-1t. On the other hand, intrinsic absorption is found to dominate over scattering in the attenuation process for most of the stations and frequency bands analysed. Some discrepancies have been observed between the theoretical model and the observations for some frequency bands which indicate

  15. Regional variations in shear wave anisotropy beneath western North America

    NASA Astrophysics Data System (ADS)

    Currie, C.; Cassidy, J.; Hyndman, R.; Bostock, M.

    2003-04-01

    We have examined shear wave splitting of SKS phases at 25 broadband stations in western North America to constrain regional trends in anisotropy at the Cascadia subduction zone (CSZ) and adjacent regions. At most stations, well-constrained shear wave splitting parameters (delay time and fast direction) were obtained for data from a wide range of azimuths. Delay times of 1.0 to 1.5 s indicate a mantle source for the anisotropy, most likely strain-induced lattice preferred orientation of anisotropic mantle minerals. The fast directions at the CSZ are in good agreement with models for mantle deformation associated with subduction. Within the forearc, fast directions at stations above the Juan de Fuca Plate are parallel to the subduction direction (N70E), suggesting deformation in the mantle beneath the plate due to plate motion. Above the Explorer Plate at the northern end of the CSZ, fast directions are N30E. This may reflect either the more northerly subduction direction of that plate, or a transition from subduction-related deformation to along-margin flow parallel to the transcurrent Queen Charlotte Fault to the north. At four stations in the central backarc, fast directions are parallel to the Juan de Fuca-North America convergence direction, consistent with models of subduction-induced mantle wedge flow. No clear splitting was observed at the two most northern backarc stations, indicating little to no horizontal anisotropy beneath these stations, possibly due to vertical mantle flow around the northern edge of the subducted plate. At a station near the western edge of the North America craton, the splitting parameters show significant azimuthal variations with a 90° periodicity, characteristic of multiple layers of anisotropy. The observations were fit using a two-layer model with an upper anisotropic layer with a fast direction of N12E and delay time of 1.4 s, and a lower layer with a fast direction of N81E and delay time of 2.0 s. The North America craton is

  16. Interseasonal Variations in the Middle Atmosphere Forced by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.; Chan, K. L.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations in the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric (m = 0) meridional circulation. A distinct but variable meridional wind oscillation (MWO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MWO through momentum deposition of GWs propagating in the north/south direction. The resulting momentum source represents a third (generally odd) order non-linear function of the meridional winds, and this enables the oscillation, as in the case of the QBO for the zonal winds. Since the meridional winds are relatively small compared to the zonal winds, however, the vertical wavelength that maintains the MWO is much smaller, i.e., only about 10 km instead of 40 km for the QBO. Consistent with the associated increase of the viscous stress, the period of the MWO is then short compared with that of the QBO, i.e., only about two to four months. Depending on the strength of the GW forcing, the computed amplitudes of the MWO are typically 4 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D (two-dimensional) and 3D (three-dimensional) reveal that the MWO is modulated by and in turn influences the QBO.

  17. Interseasonal Variations in the Middle Atmosphere Forced by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations of the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric meridional circulation. A distinct meridional oscillation (MO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MO through momentum deposition of GW's propagating in the north/south direction. This process is inherently non-linear, of third (odd) order, which enables the oscillation. Since the meridional winds are relatively small compared to the zonal winds, the vertical wavelength required to maintain the MO is also smaller, i.e., only about 10 km instead of the 30 km for the QBO. The corresponding viscous stress is then larger, and the period of the MO is thus short compared with that of the QBO, i.e., only about 3 to 4 months. Depending on the strength of the GW forcing, the computed amplitudes of the meridional wind oscillation are typically 5 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D and 3D reveal that the MO at low latitudes is modulated by the QBO and in turn can influence it to produce a hemispherically asymmetric component. The annual circulation from the summer to the winter hemisphere is likely to play an important role.

  18. Theory of spin wave modes in tangentially magnetized thin cylindrical dots: A variational approach

    NASA Astrophysics Data System (ADS)

    Zivieri, R.; Stamps, R. L.

    2006-04-01

    We present a theoretical study of the quantized spin wave spectrum in tangentially magnetized cylindrical thin magnetic dots. Low-energy spin waves in magnetic dots may be subdivided into four families: Damon-Eshbach like, backward like, mixed, and end modes. Frequencies and mode profiles are found using a variational approach based on carefully chosen trial functions. The variational method has the advantage that it can be used for large dots that are not practical to treat using numerical finite-element methods. Results for small dots generated using the variational method compare well with micromagnetic results. The variational method is demonstrated with an analysis of data obtained from experimental Brillouin light scattering data from saturated thin cylindrical Permalloy dots. Our approach allows for the definition of parameters describing important contributions to the spin wave energies. As an example, we show that a variational parameter γ provides a measure of spin wave localization near the dot border for one class of modes.

  19. Coherent, data-driven Lamb wave localization under environmental variations

    NASA Astrophysics Data System (ADS)

    Harley, Joel B.; Liu, Chang; Oppenheim, Irving J.; Greve, David W.; Moura, José M. F.

    2015-03-01

    Lamb waves are powerful tools in nondestructive evaluation and structural health monitoring. Researchers use Lamb waves to detect and locate damage across large areas. To best utilize Lamb waves, they are analyzed through two processing steps: baseline subtraction and velocity calibration. Baseline subtraction removes background information from our data and velocity calibration tunes our algorithms. Yet, in many scenarios, these steps are challenging to implement. Baseline subtraction is challenging due to variable environmental conditions. Velocity calibration is challenging due to multi-modal and dispersive velocity behavior in Lamb waves. To address both challenges, we present two approaches that combine environmental compensation with self-calibrating localization. We discuss temperature compensation strategies based on the scale transform and singular value decomposition. We then integrate these with a localization framework known as data-driven matched field processing. We show these combined approaches to be effective in a variety of scenarios.

  20. Occurring Conditions of Atmospheric Electricity Variation during Seismic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Okubo, Kan; Yamamoto, Keisuke; Takayama, Masakazu; Takeuchi, Nobunao

    We have observed the co-seismic electromagnetic phenomena such as earth potential difference (EPD) variation and atmospheric electricity (AE) variation at three observation sites in Akita Prefecture. In the strong earthquake of December 2nd, 2001, we observed clear signals of the EPD and the AE variation at all three sites. However, the amplitude of both observed signals at three sites are very different though with almost equal quake intensity at each site. The AE signal amplitude is increasing with the EPD signal one at each site. The model how both variation signals appear is proposed to explain the observed data.

  1. Examiner's finger-mounted fetal tissue oximetry

    NASA Astrophysics Data System (ADS)

    Kanayama, Naohiro; Niwayama, Masatsugu

    2014-06-01

    The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO2) with the new tissue oximeter. Neonatal StO was measured at any position of the head regardless of amount of hair. Neonatal StO was found to be around 77%. Fetal StO was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO in any condition of the fetus.

  2. A phantom with pulsating artificial vessels for non-invasive fetal pulse oximetry.

    PubMed

    Laqua, Daniel; Pollnow, Stefan; Fischer, Jan; Ley, Sebastian; Husar, Peter

    2014-01-01

    Arterial oxygen saturation of the fetus is an important parameter for monitoring its physical condition. During labor and delivery the transabdominal non-invasive fetal pulse oximetry could minimize the risk for mother and fetus, compared to other existing invasive examination methods. In this contribution, we developed a physical-like phantom to investigate new sensor circuits and algorithms of a non-invasive diagnostic method for fetal pulse oximetry. Hence, the developed artificial vascular system consists of two independent tube systems representing the maternal and fetal vessel system. The arterial blood pressure is reproduced with a pre-pressure and an artificial vascular system. Each pulse wave can be reproduced, by digital control of a proportional valve, adjustable viscoelastic elements, and resistances. The measurements are performed by pressure transducers, optical sensor units, and a coplanar capacitive sensor. Transmission and reflection measurements have shown that the fetal and maternal pulse waves can be reproduced qualitatively. The measured light represents the transabdominal modulated signal on an abdomen of a pregnant woman. PMID:25571272

  3. Pulse oximetry: accuracy of methods of interpreting graphic summaries.

    PubMed

    Lafontaine, V M; Ducharme, F M; Brouillette, R T

    1996-02-01

    Although pulse oximetry has been used to determine the frequency and extent of hemoglobin desaturation during sleep, movement artifact can result in overestimation of desaturation unless valid desaturations can be identified accurately. Therefore, we determined the accuracy of pulmonologists' and technicians' interpretations of graphic displays of desaturation events, derived an objective method for interpreting such events, and validated the method on an independent data set. Eighty-seven randomly selected desaturation events were classified as valid (58) or artifactual (29) based on cardiorespiratory recordings (gold standard) that included pulse waveform and respiratory inductive plethysmography signals. Using oximetry recordings (test method), nine pediatric pulmonologists and three respiratory technicians ("readers") averaged 50 +/- 11% (SD) accuracy for event classification. A single variable, the pulse amplitude modulation range (PAMR) prior to desaturation, performed better in discriminating valid from artifactual events with 76% accuracy (P < 0.05). Following a seminar on oximetry and the use of the PAMR method, the readers' accuracy increased to 73 +/- 2%. In an independent set of 73 apparent desaturation events (74% valid, 26% artifactual), the PAMR method of assessing oximetry graphs yielded 82% accuracy; transcutaneous oxygen tension records confirmed a drop in oxygenation during 49 of 54 (89%) valid desaturation events. In conclusion, the most accurate method (91%) of assessing desaturation events requires recording of the pulse and respiratory waveforms. However, a practical, easy-to-use method of interpreting pulse oximetry recordings achieved 76-82% accuracy, which constitutes a significant improvement from previous subjective interpretations.

  4. Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry

    PubMed Central

    Chen, Siyu; Yi, Ji; Liu, Wenzhong; Backman, Vadim

    2016-01-01

    Optical coherence tomography (OCT) oximetry explores the possibility to measure retinal hemoglobin oxygen saturation level (sO2). We investigated the accuracy of OCT retinal oximetry using Monte Carlo simulation in a commonly-used four-layer retinal model. After we determined the appropriate number of simulated photon packets, we studied the effects of blood vessel diameter, signal sampling position, physiological sO2 level, and the blood packing factor on the accuracy of sO2 estimation in OCT retinal oximetry. The simulation results showed that a packing factor between 0.2 and 0.4 yields a reasonably accurate estimation of sO2 within a 5% error tolerance, which is independent of vessel diameter and sampling position, when visible-light illumination is used in OCT. We further explored the optimal optical spectral range for OCT retinal oximetry. The simulation results suggest that visible spectral range around 560 nm is better suited than near-infrared spectral range around 800 nm for OCT oximetry to warrant accurate measurements. PMID:25955984

  5. Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry.

    PubMed

    Chen, Siyu; Yi, Ji; Liu, Wenzhong; Backman, Vadim; Zhang, Hao F

    2015-09-01

    Optical coherence tomography (OCT) oximetry explores the possibility to measure retinal hemoglobin oxygen saturation level (sO2). We investigated the accuracy of OCT retinal oximetry using Monte Carlo simulation in a commonly used four-layer retinal model. After we determined the appropriate number of simulated photon packets, we studied the effects of blood vessel diameter, signal sampling position, physiological sO2 level, and the blood packing factor on the accuracy of sO2 estimation in OCT retinal oximetry. The simulation results showed that a packing factor between 0.2 and 0.4 yields a reasonably accurate estimation of sO2 within a 5% error tolerance, which is independent of vessel diameter and sampling position, when visible-light illumination is used in OCT. We further explored the optimal optical spectral range for OCT retinal oximetry. The simulation results suggest that visible spectral range around 560 nm is better suited than near-infrared spectral range around 800 nm for OCT oximetry to warrant accurate measurements. PMID:25955984

  6. Variational space-time (dis)continuous Galerkin method for nonlinear free surface water waves

    NASA Astrophysics Data System (ADS)

    Gagarina, E.; Ambati, V. R.; van der Vegt, J. J. W.; Bokhove, O.

    2014-10-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a finite element discretization that is continuous in space and discontinuous in time. One novel feature of this variational finite element approach is that the free surface evolution is variationally dependent on the mesh deformation vis-à-vis the mesh deformation being geometrically dependent on free surface evolution. Another key feature is the use of a variational (dis)continuous Galerkin finite element discretization in time. Moreover, in the absence of a wave maker, it is shown to be equivalent to the second order symplectic Störmer-Verlet time stepping scheme for the free-surface degrees of freedom. These key features add to the stability of the numerical method. Finally, the resulting numerical scheme is verified against nonlinear analytical solutions with long time simulations and validated against experimental measurements of driven wave solutions in a wave basin of the Maritime Research Institute Netherlands.

  7. Application of ESR spin label oximetry in food science.

    PubMed

    Zhou, Yu-Ting; Yin, Jun-Jie; Lo, Y Martin

    2011-12-01

    Lipid oxidation attributed to the presence of oxygen has long been a focal area for food science research due in early years mainly to its broad impact on the quality and shelf stability. The need to effectively strategize interventions to detect and eventually eliminate lipid oxidation in food remains as evidence on nutritional and health implications continue to accumulate. Electron spin resonance (ESR) spin label oximetry has been shown capable of detecting dissolved oxygen concentration in both liquid and gaseous phases based on the collision between oxygen and stable free radicals. This review aimed to summarize not just the principles and rationale of ESR spin label oximetry but also the wide spectrum of ESR spin label oximetry applications to date. The feasibility to identify in very early stage oxygen generation and consumption offers a promising tool for controlling lipid oxidation in food and biological systems.

  8. The correlation of VLF propagation variations with atmospheric planetary-scale waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.

    1973-01-01

    Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.

  9. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  10. Variation of statistical parameters of random wave groups along a large wave tank

    NASA Astrophysics Data System (ADS)

    Sergeeva, A.; Shemer, L.

    2009-04-01

    Evolution of unidirectional random wave groups generated by a wavemaker in a 300 m long wave tank is investigated within three series of experiments for different values of the nonlinear parameter ɛ. Spatial evolution of numerous statistical wave field parameters is studied. It is demonstrated that the statistical characteristics depend on the local width of frequency spectrum and deviate from the Gaussian statistics: the probability of extremely large (the so-called freak) waves is the highest when the local spectral width attains maximum. It is also found that the distribution model of the 3rd order random wave field of Tayfun and Fedele (2007) provides an appropriate description of the observed phenomena. Tayfun, M.A., and Fedele, F. 2007 Wave height distributions and nonlinear effects. Ocean Eng., 34, 1631-1649.

  11. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves.

    PubMed

    Gupta, M R; Sarkar, S; Ghosh, S; Debnath, M; Khan, M

    2001-04-01

    The effect of nonadiabaticity of dust charge variation arising due to small nonzero values of tau(ch)/tau(d) has been studied where tau(ch) and tau(d) are the dust charging and dust hydrodynamical time scales on the nonlinear propagation of dust acoustic waves. Analytical investigation shows that the propagation of a small amplitude wave is governed by a Korteweg-de Vries (KdV) Burger equation. Notwithstanding the soliton decay, the "soliton mass" is conserved, but the dissipative term leads to the development of a noise tail. Nonadiabaticity generated dissipative effect causes the generation of a dust acoustic shock wave having oscillatory behavior on the downstream side. Numerical investigations reveal that the propagation of a large amplitude dust acoustic shock wave with dust density enhancement may occur only for Mach numbers lying between a minimum and a maximum value whose dependence on the dusty plasma parameters is presented. PMID:11308955

  12. Dual variational principles for nonlinear traveling waves in multifluid plasmas

    SciTech Connect

    Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.

    2007-08-15

    A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.

  13. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  14. A Variational Principle For MHD Waves In Non-Uniform Flows

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Kagashvili, E. K.; Ratkiewicz, R. E.

    2003-12-01

    A variational approach for the propagation of linear MHD waves in a non-uniform background flow, such as the solar wind is developed. The analysis is based on the work of Dewar (1970) who used an averaged Lagrangian method to describe the interaction of WKB, MHD waves with a non-uniform background flow. Dewar's variational principle is used to describe non-WKB, MHD waves in a non-uniform background flow,including the effects of gravity and entropy wave disturbances.The equations consist of coupled wave equations for the Lagrangian fluid displacement, ξ , representing the Alfvén and magnetoacoustic waves, and the entropy advection equation for the Lagrangian entropy perturbation Δ S. In the case of steady background flows, with no entropy wave perturbations, the equations reduce to related equations used by Frieman and Rotenberg (1960) to study the stability of steady MHD flows.The characteristics of the equations are obtained by determining the characteristic manifolds on which the Cauchy problem for the waves does not have a unique solution. The characteristics are used to discuss the characteristics and Mach cone for steady MHD flows. A discussion is also given of stress energy tensors for the waves and background flow.

  15. Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry

    SciTech Connect

    Humphreys, Kenneth; Ward, Tomas; Markham, Charles

    2007-04-15

    We present a camera-based device capable of capturing two photoplethysmographic (PPG) signals at two different wavelengths simultaneously, in a remote noncontact manner. The system comprises a complementary metal-oxide semiconductor camera and dual wavelength array of light emitting diodes (760 and 880 nm). By alternately illuminating a region of tissue with each wavelength of light, and detecting the backscattered photons with the camera at a rate of 16 frames/wavelength s, two multiplexed PPG wave forms are simultaneously captured. This process is the basis of pulse oximetry, and we describe how, with the inclusion of a calibration procedure, this system could be used as a noncontact pulse oximeter to measure arterial oxygen saturation (S{sub p}O{sub 2}) remotely. Results from an experiment on ten subjects, exhibiting normal S{sub p}O{sub 2} readings, that demonstrate the instrument's ability to capture signals from a range of subjects under realistic lighting and environmental conditions are presented. We compare the signals captured by the noncontact system to a conventional PPG signal captured concurrently from a finger, and show by means of a J. Bland and D. Altman [Lancet 327, 307 (1986); Statistician 32, 307 (1983)] test, the noncontact device to be comparable to a contact device as a monitor of heart rate. We highlight some considerations that should be made when using camera-based ''integrative'' sampling methods and demonstrate through simulation, the suitability of the captured PPG signals for application of existing pulse oximetry calibration procedures.

  16. Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry

    NASA Astrophysics Data System (ADS)

    Humphreys, Kenneth; Ward, Tomas; Markham, Charles

    2007-04-01

    We present a camera-based device capable of capturing two photoplethysmographic (PPG) signals at two different wavelengths simultaneously, in a remote noncontact manner. The system comprises a complementary metal-oxide semiconductor camera and dual wavelength array of light emitting diodes (760 and 880nm). By alternately illuminating a region of tissue with each wavelength of light, and detecting the backscattered photons with the camera at a rate of 16frames/wavelengths, two multiplexed PPG wave forms are simultaneously captured. This process is the basis of pulse oximetry, and we describe how, with the inclusion of a calibration procedure, this system could be used as a noncontact pulse oximeter to measure arterial oxygen saturation (SpO2) remotely. Results from an experiment on ten subjects, exhibiting normal SpO2 readings, that demonstrate the instrument's ability to capture signals from a range of subjects under realistic lighting and environmental conditions are presented. We compare the signals captured by the noncontact system to a conventional PPG signal captured concurrently from a finger, and show by means of a J. Bland and D. Altman [Lancet 327, 307 (1986); Statistician 32, 307 (1983)] test, the noncontact device to be comparable to a contact device as a monitor of heart rate. We highlight some considerations that should be made when using camera-based "integrative" sampling methods and demonstrate through simulation, the suitability of the captured PPG signals for application of existing pulse oximetry calibration procedures.

  17. On Latitudinal Dependence of Secular Variations Induced by a Dissipating Gravity Wave Packet

    NASA Astrophysics Data System (ADS)

    Huang, T.; Hickey, M. P.

    2003-12-01

    A time evolution of the response of the minor species and the OH airglow to a dissipating gravity wave packet can be simulated with a 2-dimensional, time-dependent, fully nonlinear OH model developed recently by Huang and Hickey [2002]. The wave packet was simulated using a spectral full-wave model described by Hickey et al. [2000] and Hickey and Walterscheid [2001], and then input to a 2-D chemistry model to study the secular variation of the minor species and OH nightglow. Previous studies of OH nightglow at high latitudes show strong secular variations of minor species and also of the OH brightness induced by wave transience and dissipation [Huang and Hickey, 2002]. We plan to employ the same models to study the secular variations of minor species and the OH nightglow at mid- and low-latitudes. The latitudinal dependence of the secular variations can thus be deduced. Satellite observations reveal much larger OH brightness at mid-latitudes compared to those at high and low latitudes. Therefore, we expect greater secular variations induced by the same wave packet at mid-latitudes.

  18. Middle-aged adults exhibit altered spatial variations in Achilles tendon wave speed

    PubMed Central

    Slane, Laura Chernak; DeWall, Ryan; Martin, Jack; Lee, Kenneth; Thelen, Darryl G.

    2016-01-01

    The purpose of this study was to investigate spatial variations in measured wave speed in the relaxed and stretched Achilles tendons of young and middle-aged adults. Wave speed was measured from the distal Achilles tendon, soleus aponeurosis, medial gastrocnemius aponeurosis and medial gastrocnemius muscle in healthy young (n = 15, aged 25 ± 4 years) and middle-aged (n = 10, aged 49 ± 4 years) adults in resting, dorsiflexed and plantarflexed postures. In both age groups, Achilles tendon wave speed decreased proximally, with the lowest wave speed measured in the gastrocnemius aponeurosis. Measured wave speed increased with passive dorsiflexion, reflecting the strain-stiffening behavior of tendons. There were no significant aging effects on wave speed in the free tendon or soleus aponeurosis. However, a significant, inverse relationship between gastrocnemius aponeurosis wave speed and age was observed in the dorsiflexed posture. We also observed significantly lower wave speeds in the gastrocnemius muscles of middle-aged adults when compared with young adults. These results suggest that Achilles tendon compliance increases in a distal-to-proximal pattern, with middle-aged adults exhibiting greater compliance in the distal gastrocnemius muscle and tendinous structures. An age-related change in the spatial variation in Achilles tendon compliance could affect localised tissue deformation patterns and injury potential within the triceps surae muscle-tendon units. PMID:26020294

  19. Quantitative evaluation of photoplethysmographic artifact reduction for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew J.; Smith, Peter R.

    1999-01-01

    Motion artefact corruption of pulse oximeter output, causing both measurement inaccuracies and false alarm conditions, is a primary restriction in the current clinical practice and future applications of this useful technique. Artefact reduction in photoplethysmography (PPG), and therefore by application in pulse oximetry, is demonstrated using a novel non-linear methodology recently proposed by the authors. The significance of these processed PPG signals for pulse oximetry measurement is discussed, with particular attention to the normalization inherent in the artefact reduction process. Quantitative experimental investigation of the performance of PPG artefact reduction is then utilized to evaluate this technology for application to pulse oximetry. While the successfully demonstrated reduction of severe artefacts may widen the applicability of all PPG technologies and decrease the occurrence of pulse oximeter false alarms, the observed reduction of slight artefacts suggests that many such effects may go unnoticed in clinical practice. The signal processing and output averaging used in most commercial oximeters can incorporate these artefact errors into the output, while masking the true PPG signal corruption. It is therefore suggested that PPG artefact reduction should be incorporated into conventional pulse oximetry measurement, even in the absence of end-user artefact problems.

  20. Oximetry considerations in the small source detector separation limit.

    PubMed

    Winey, Brian; Yu, Yan

    2006-01-01

    Oximetry is a common blood monitoring technique, useful for the assessment of blood flow and blood oxygen saturation information. Commercial oximeters generally utilize an optical transmission measurement scenario which necessitates the use of wavelengths residing in the optical absorption window (650-1100 nm) which are capable of traveling long distances before absorption. When the source and detector fibers are brought close together (oximetry techniques and the need to use visible wavelengths when conducting oximetry at small source-detector separations. It will begin with a theoretical derivation of the problems with NIR wavelengths in the small source detector separation limit. The theory will be compared to Monte Carlo derived data and in vivo data collected with a surface probe with oximetry measurements.

  1. Variational principle in optics II: Dissipative wave equations.

    PubMed

    Rubinstein, Jacob; Wolansky, Gershon

    2016-08-01

    The problem of phase retrieval from intensity measurements is examined for the case of dissipative wave equations. Unlike the conservative case, it is not clear if and when the problem is solvable at all. We provide two solutions. First, it is shown that, for a certain class of dissipating potentials, the problem can be fully solved by converting it through a simple transformation to the framework of the weighted least action principle. Second, for all other dissipating potentials, a deep result from the theory of elliptic partial differential equations is used to show that the problem is always solvable up to a scaling of one of the measured intensities. Moreover, the solution in this general case can be obtained by solving a Monge-Ampere type differential equation. Two numerical examples are given to illustrate some of the theoretical considerations. PMID:27505643

  2. Variation of wave velocity and porosity of sandstone after high temperature heating

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhang, ·Weiqiang; Su, Tianming; Zhu, Shuyun

    2016-05-01

    This paper reports the variations of mass, porosity, and wave velocity of sandstone after high temperature heating. The range of temperature to which the sandstone specimens have been exposed is 25-850°C, in a heating furnace. It has been shown that below 300°C, porosity and wave velocity change very little. Above 300°C, there is a rapid increase in porosity, but the wave velocity decreases significantly. The results of thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC) and mercury intrusion porosimetry (MIP) suggest that a series of changes occurred between 400 and 600°C in sandstone could be responsible for the different patterns of variation in porosity and wave velocity.

  3. sup 4 He- sup 4 He elastic scattering and variational wave functions

    SciTech Connect

    Usmani, A.A.; Ahmad, I. ); Usmani, Q.N. )

    1992-01-01

    We calculate differential cross sections for {sup 4}He-{sup 4}He elastic scattering at 4.32 GeV/{ital c} in the framework of Glauber multiple scattering theory using correlated variational wave functions as given by the two-nucleon Urbana {ital v}{sub 14} potential and the spin-isospin averaged Melfleit-Tjon force {ital V}. These wave functions are found to give fairly satisfactory results.

  4. Spectral and variational principles of electromagnetic field excitation in wave guides [rapid communication

    NASA Astrophysics Data System (ADS)

    Yahalom, Asher; Pinhasi, Yosef; Lurie, Yuri

    2005-08-01

    Possible variational principles for excitation of an electromagnetic field in a wave guide are discussed. Our emphasis is not on the calculation of the modal shapes, which is common in previous art, but rather on the calculation of modal amplitude evolution, which are important in electron devices such as free electron lasers and gyrotrons. Variational principles have considerable importance in theoretical physics and are used among other things to derive numerical solution schemes, conservation laws via the Noether theorem and correct boundary conditions for the derived equations including the important effects of the backward waves amplitudes.

  5. Optical beam shaping and diffraction free waves: A variational approach

    NASA Astrophysics Data System (ADS)

    Gemmer, John A.; Venkataramani, Shankar C.; Durfee, Charles G.; Moloney, Jerome V.

    2014-08-01

    We investigate the problem of shaping radially symmetric annular beams into desired intensity patterns along the optical axis. Within the Fresnel approximation, we show that this problem can be expressed in a variational form equivalent to the one arising in phase retrieval. Using the uncertainty principle we prove various rigorous lower bounds on the functional; these lower bounds estimate the L2 error for the beam shaping problem in terms of the design parameters. We also use the method of stationary phase to construct a natural ansatz for a minimizer in the short wavelength limit. We illustrate the implications of our results by applying the method of stationary phase coupled with the Gerchberg-Saxton algorithm to beam shaping problems arising in the remote delivery of beams and pulses.

  6. A normalized wave number variation parameter for acoustic black hole design.

    PubMed

    Feurtado, Philip A; Conlon, Stephen C; Semperlotti, Fabio

    2014-08-01

    In recent years, the concept of the Acoustic Black Hole has been developed as an efficient passive, lightweight absorber of bending waves in plates and beams. Theory predicts greater absorption for a higher thickness taper power. However, a higher taper power also increases the violation of an underlying theory smoothness assumption. This paper explores the effects of high taper power on the reflection coefficient and spatial change in wave number and discusses the normalized wave number variation as a spatial design parameter for performance, assessment, and optimization. PMID:25096139

  7. Analysis of Wave Propagation in Mechanical Continua Using a New Variational Approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, Goutam

    2016-06-01

    In this paper a new variational principle is presented for studying various wave propagation phenomena without explicitly deriving the equations of motion. The method looks for steady state solutions of linear or non-linear partial differential equations that admit wave-like solutions. Dispersion relations of plane waves propagating in unbounded continuous media, transmission and reflection coefficients of wave incident on the boundary of two semi-infinite media and wave impedance and mobility in an excited medium are studied with the help of the same principle. Numerous examples are given to clarify the method adopted showing distinct advantages over the traditional methods. The scientific insights that this principle provides are also highlighted.

  8. Ion cyclotron waves at Io: Implications for torus composition and variations of Io atmosphere

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, X.; Russell, C. T.; Strangeway, R. J.

    2003-04-01

    When the flowing torus plasma encounters the upper atmosphere of Io, newly created ions are accelerated by the motional electric field. Many of these ions are reneutralized and form a spray of fast neutrals that travel far away from Io before being reionized and picked up into the torus. These ions have ring distributions able to provide free energy for wave growth via cyclotron resonance. Galileo data showed the existence of ion cyclotron waves in the Io torus, with frequencies near the gyrofrequencies of SO2+, SO+, and S+ ions. Wave characteristics change along each flyby, and from one orbit to another. The observed wave variability indicates that the Io torus is not uniform, and that ion pickup composition changes with time and space. As pickup ions originate from Io atmosphere, the wave variation suggests that the moon´s atmosphere is changing spatially as well as temporarily. We use kinetic dispersion analysis to estimate the densities in the torus for the three ring distributions that are needed to have either SO2+ (orbits I0 and I32) or SO+ (orbits I24, I25, and I27) waves as the dominant component, and S+ ion cyclotron instability above threshold. We infer from wave properties that the atmosphere of Io varies temporally throughout the mission but that it also has a spatial variation in composition at any instant of time.

  9. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track

  10. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, J. A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  11. The influence of temperature variations on ultrasonic guided waves in anisotropic CFRP plates.

    PubMed

    Putkis, O; Dalton, R P; Croxford, A J

    2015-07-01

    Carbon Fibre Reinforced Polymer (CFRP) materials are lightweight and corrosion-resistant and therefore are increasingly used in aerospace, automotive and construction industries. In Structural Health Monitoring (SHM) applications of CFRP materials, ultrasonic guided waves potentially offer large area inspection or inspection from a remote location. This paper addresses the effect of temperature variation on guided wave propagation in highly anisotropic CFRP materials. Temperature variations cause changes in guided wave velocity that can in turn compromise the baseline subtraction procedures employed by many SHM systems for damage detection. A simple model that describes the dependence of elastic properties of the CFRP plates on temperature is presented in this paper. The model can be used to predict anisotropic velocity changes and baseline subtraction performance under varying thermal conditions. The results produced by the model for unidirectional and 0/90 CFRP plates are compared with experimental measurements. PMID:25812468

  12. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyses required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  13. The influence of temperature variations on ultrasonic guided waves in anisotropic CFRP plates.

    PubMed

    Putkis, O; Dalton, R P; Croxford, A J

    2015-07-01

    Carbon Fibre Reinforced Polymer (CFRP) materials are lightweight and corrosion-resistant and therefore are increasingly used in aerospace, automotive and construction industries. In Structural Health Monitoring (SHM) applications of CFRP materials, ultrasonic guided waves potentially offer large area inspection or inspection from a remote location. This paper addresses the effect of temperature variation on guided wave propagation in highly anisotropic CFRP materials. Temperature variations cause changes in guided wave velocity that can in turn compromise the baseline subtraction procedures employed by many SHM systems for damage detection. A simple model that describes the dependence of elastic properties of the CFRP plates on temperature is presented in this paper. The model can be used to predict anisotropic velocity changes and baseline subtraction performance under varying thermal conditions. The results produced by the model for unidirectional and 0/90 CFRP plates are compared with experimental measurements.

  14. A spline approach to trial wave functions for variational and diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bressanini, Dario; Fabbri, Giordano; Mella, Massimo; Morosi, Gabriele

    1999-10-01

    We describe how to combine the variational Monte Carlo method with a spline description of the wave function to obtain a powerful and flexible method to optimize electronic and nuclear wave functions. A property of this method is that the optimization is performed "locally": During the optimization, the attention is focused on a region of the wave function at a certain time, with little or no perturbation in far away regions. This allows a fine tuning of the wave function even in cases where there is no experience on how to choose a good functional form and a good basis set. After the optimization, the splines were fitted using more familiar analytical global functions. The flexibility of the method is shown by calculating the electronic wave function for some two and three electron systems, and the nuclear wave function for the helium trimer. For 4He3, using a two-body helium-helium potential, we obtained the best variational function to date, which allows us to estimate the exact energy with a very small variance by a diffusion Monte Carlo simulation.

  15. Temperature variation effects on sparse representation of guided-waves for damage diagnosis in pipelines

    NASA Astrophysics Data System (ADS)

    Eybpoosh, Matineh; Berges, Mario; Noh, Hae Young

    2015-04-01

    Multiple ultrasonic guided-wave modes propagating along a pipe travel with different velocities which are themselves a function of frequency. Reflections from the features of the structure (e.g., boundaries, pipe welding, damage, etc.), and their complex superposition, adds to the complexity of guided-waves. Guided-wave based damage diagnosis of pipelines becomes even more challenging when environmental and operational conditions (EOCs) vary (e.g., temperature, flow rate, inner pressure, etc.). These complexities make guided-wave based damage diagnosis of operating pipelines a challenging task. This paper reviews the approaches to-date addressing these challenges, and highlights the preferred characteristics of a method that simplifies guided-wave signals for damage diagnosis purposes. A method is proposed to extract a sparse subset of guided-wave signals in time-domain, while retaining optimal damage information for detection purpose. In this paper, the general concept of this method is proved through an extensive set of experiments. Effects of temperature variation on detection performance of the proposed method, and on discriminatory power of the extracted damage-sensitive features are investigated. The potential of the proposed method for real-time damage detection is illustrated, for wide range of temperature variation scenarios (i.e., temperature difference between training and test data varying between -2°C and 13°C).

  16. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Murillo, S. T.; Powell, M. D.; Black, P. G.; Marks, F. D.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane research aircraft at 1.5 kilometer height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. The data were acquired on 24 August 1998 when Hurricane Bonnie was 400 km east of Abaco Island, Bahamas. Individual waves with heights up to 19 meters were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At one position, three different wave systems of comparable energy and wavelength crossed each other. The aircraft spent over five hours within 180 kilometers of the Hurricane Bonnie eye and made five eye penetrations. On 26 August 1998, the SRA at 2.2 kilometer height documented the directional wave spectrum in the region between Charleston, SC, and Cape Hatteras, NC, as Hurricane Bonnie was making landfall near Wilmington, NC. The storm was similar in size during the two flights, but the maximum speed in the NOAA Hurricane Research Division surface wind analysis was 15% lower prior to landfall (39 meters per second) than it had been in the open ocean (46 meters per second). This was compensated for by its faster movement prior to landfall (9.5 meters per second) than when it was encountered in the open ocean (5 meters per second), significantly increasing the effective fetch and duration of waves near the peak of the spectrum which propagated in the direction of the storm track. The open ocean wave height variation indicated that Hurricane Bonnie would have produced waves of 11 meters significant wave height on the shore northeast of Wilmington had it not been for the continental shelf. The bathymetry distributed the steepening and breaking process across the shelf so that the

  17. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract

    NASA Astrophysics Data System (ADS)

    Leichter, James J.; Stokes, M. Dale; Vilchis, L. Ignacio; Fiechter, Jerome

    2014-01-01

    Analysis of 10 year temperature records collected along the Florida Keys reef tract (FLKRT) reveals strong, regional-scale synchrony in high-frequency temperature variation suggestive of internal wave forcing at predominately semidiurnal frequencies. In each year and at all sites, the amplitude of semidiurnal temperature variation was greatest from March to September, and markedly lower from October to February. Comparisons of the semidiurnal component of the temperature variation among sites suggest complex patterns in the arrival of internal waves, with highest cross correlation among closely spaced sites and synchrony in periods of enhanced internal wave activity across the length of the FLKRT, particularly in summer. The periods of enhanced semidiurnal temperature variation at the 20 and 30 m isobaths on the reef slopes appear to be associated with the dynamics of the Florida Current and the onshore movement of warm fronts preceding the passage of Florida Current frontal eddies. Regional-scale satellite altimetry observations suggest temporal linkages to sea surface height anomalies in the Loop Current (upstream of the Florida Current) and setup of the Tortugas Gyre. The synchronized forcing of cool water onto the reef slope sites across the FLKRT is likely to affect physiological responses to temperature variation in corals and other ectothermic organisms, as well as larval transport and nutrient dynamics with the potential for regionally coherent pulses of larvae and nutrients arriving on reef slopes across the FLKRT.

  18. Coherent molecular transistor: Control through variation of the gate wave function

    SciTech Connect

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  19. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    NASA Astrophysics Data System (ADS)

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  20. Coherent molecular transistor: control through variation of the gate wave function.

    PubMed

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  1. Patent foramen ovale screening by ear oximetry in divers.

    PubMed

    Billinger, Michael; Schwerzmann, Markus; Rutishauser, Wilhelm; Wahl, Andreas; Windecker, Stephan; Meier, Bernhard; Seiler, Christian

    2013-01-15

    The aim of this study was to test the hypothesis that ear oximetry immediately after the release of a sustained Valsalva maneuver accurately detects patent foramen ovale (PFO). One hundred sixty-five scuba divers underwent transesophageal echocardiography (TEE; reference method) for PFO assessment. Ear oximetry of the right earlobe was performed in a different room within a time frame of 2 hours before or after TEE. The subject and the oximetry operator were unaware of the results of TEE. Oxygen saturation (SO(2)) measurements were obtained at baseline and during the release phase of 4 Valsalva maneuvers within 10 minutes, and the average SO(2) change (SO(2) at baseline minus SO(2) at Valsalva release) was determined as the primary study end point. One hundred seventeen divers had no PFO, and 48 (29%) had PFO by TEE (mean age 39 ± 8 years). The average SO(2) change was 0.79 ± 1.13% (i.e., a slight absolute SO(2) decrease in response to the Valsalva maneuver) in the group without PFO and 1.67 ± 1.19% in the PFO group (p <0.0001). Using receiver-operating characteristic curve analysis, a PFO as defined by TEE could be detected at a threshold of a Valsalva-induced decrease in SO(2) of ≥0.825 percentage points in comparison to baseline (sensitivity 0.756, specificity 0.706, area under the receiver-operating characteristic curve 0.763, p <0.0001, negative predictive value 0.882). In conclusion, the entirely noninvasive method of ear oximetry in response to repetitive Valsalva maneuvers is accurate and useful as a screening method for the detection of a PFO, as shown in this study of divers.

  2. Finger blood content, light transmission, and pulse oximetry errors.

    PubMed

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.

  3. Optoelectronic blood oximetry as a tool of health safety monitoring

    NASA Astrophysics Data System (ADS)

    Cysewska-Sobusiak, Anna

    2001-08-01

    A metrological approach of some selected problems connected with the significant field of biomedical optics i.e., monitoring of arterial blood oxygenation by use of the tissues as optical media exposed to the controlled light action, has been presented. The subject of the measurements based on utilization of the selection absorption properties of blood is the hemoglobin oxygen saturation. Using optoelectronic sensing allows to convert sophisticated effects of noninvasive light-living tissue interaction to electrical signals which may be convenient to measure. Pulse oximetry which is based upon such a way of sensing and processing, is the recent advance in noninvasive oximetry. The unique advantages of that marvelous diagnostic technique have caused to recommend pulse oximeters as standard equipment in intensive care and other critical situations impending hypoxemia appearance. However, end-users of the pulse oximeters not always are aware of that these devices fall under specific limitations, of both physiological and technical nature. The author of this paper is a metrologist and deals mainly with various interdisciplinary problems of a measurement reliability including the aspects such as uncertainty of an outcome accessible to the user, causes affecting sensitivity, resolution and repeatability of processing function, and response time and stability of results. Referring to the subject discussed herein, and taking into account some open questions, the author's contribution is her own experience in modeling as well as in in vivo measuring of transilluminated living objects. A proposed novel use of the known pulse oximetry concept may be considered as complementary results against a general review background of the achievements obtained in oximetry as the state-of-the-art, and furthermore, the developing studies which are still in progress.

  4. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    NASA Astrophysics Data System (ADS)

    Chou, Chung-Pin; Lee, T. K.; Ho, Chang-Ming

    2009-03-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electon on the projected superconducting state, the ground state of the 2-dimensional t-t'-t"-J model with moderate doped holes describing the high Tc cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid tate) spectoscopies. The contast with the dwave case without projection is alo presented.

  5. A hand-held EPR scanner for transcutaneous oximetry

    NASA Astrophysics Data System (ADS)

    Wolfson, Helen; Ahmad, Rizwan; Twig, Ygal; Blank, Aharon; Kuppusamy, Periannan

    2015-03-01

    Cutaneous (skin) oxygenation is an important prognostic factor for the treatment of chronic wounds, skin cancer, diabetes side effects, and limb amputation. Currently, there are no reliable methods for measuring this parameter. Oximetry, using electron paramagnetic resonance (EPR) spectroscopy, is emerging as a potential tool for clinical oximetry, including cutaneous applications. The problem with EPR oximetry, however, is that the conventional EPR design requires the use of a large magnet that can generate homogeneous field across the sample, making it unattractive for clinical practice. We present a novel approach that makes use of a miniature permanent magnet, combined with a small microwave resonator, to enable the acquisition of EPR signals from paramagnetic species placed on the skin. The instrumentation consists of a hand-held, modular, cylindrical probehead with overall dimensions of 36-mm diameter and 24-mm height, with 150-g weight. The probehead includes a Halbach array of 16 pieces (4×4×8 mm3) of Sm-Co permanent magnet and a loop-gap resonator (2.24 GHz). Preliminary measurements using a Hahn-echo pulse sequence (800 echos in 20 ms) showed a signalto- noise ratio of ~70 compared to ~435 in a homogenous magnet under identical settings. Further work is in progress to improve the performance of the probehead and to optimize the hand-held system for clinical use

  6. Accuracy of retinal oximetry: a Monte Carlo investigation

    PubMed Central

    Liu, Wenzhong; Jiao, Shuliang

    2013-01-01

    Abstract. Retinal hemoglobin oxygen saturation (sO2) level is believed to be associated with the pathophysiology of several leading blinding diseases. Methods to properly measure retinal sO2 have been investigated for decades; however, the accuracy of retinal oximetry is still considered to be limited. The Monte Carlo simulation of photon transport in retina to examine how the accuracy of retinal oximetry is affected by local parameters is discussed. Fundus photography was simulated in a multilayer retinal model, in which a single vessel segment with 0.7  sO2 was embedded, at six optical wavelengths. Then, 200 million photons were traced in each simulation to ensure statistically stable results. The optical reflectance and energy deposit were recorded to measure sO2 using both the reflection method (existing retinal oximetry) and a new absorption method, photoacoustic ophthalmoscopy (PAOM). By varying the vessel diameter and melanin concentration in the retinal pigment epithelium, the relative error of sO2 measurement in the reflection method increased with increasing vessel diameter and melanin concentration; in comparison, the sO2 measurement was insensitive to these two parameters in PAOM. The results suggest that PAOM potentially can be a more accurate tool in quantifying retinal sO2. PMID:23733019

  7. Retinal oximeter for the blue-green oximetry technique

    NASA Astrophysics Data System (ADS)

    Denninghoff, Kurt R.; Sieluzycka, Katarzyna B.; Hendryx, Jennifer K.; Ririe, Tyson J.; Deluca, Lawrence; Chipman, Russell A.

    2011-10-01

    Retinal oximetry offers potential for noninvasive assessment of central venous oxyhemoglobin saturation (SO2) via the retinal vessels but requires a calibrated accuracy of +/-3% saturation in order to be clinically useful. Prior oximeter designs have been hampered by poor saturation calibration accuracy. We demonstrate that the blue-green oximetry (BGO) technique can provide accuracy within +/-3% in swine when multiply scattered light from blood within a retinal vessel is isolated. A noninvasive on-axis scanning retinal oximeter (ROx-3) is constructed that generates a multiwavelength image in the range required for BGO. A field stop in the detection pathway is used in conjunction with an anticonfocal bisecting wire to remove specular vessel reflections and isolate multiply backscattered light from the blood column within a retinal vessel. This design is tested on an enucleated swine eye vessel and a retinal vein in a human volunteer with retinal SO2 measurements of ~1 and ~65%, respectively. These saturations, calculated using the calibration line from earlier work, are internally consistent with a standard error of the mean of +/-2% SO2. The absolute measures are well within the expected saturation range for the site (-1 and 63%). This is the first demonstration of noninvasive on-axis BGO retinal oximetry.

  8. Future Variations of Wave Climate in Winter Japan: Application of Pseudo Global Warming Dynamic Downscaling Method for CMIP5 output and a Wave Model Simulation

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.

    2014-12-01

    Ocean waves change alongshore topographies and their effects reach to ecological systems and coastal infrastructures. Ocean waves are mainly formed by sea surface wind, then variations in sea surface winds can cause changes in ocean waves. Under the condition of global warming, atmospheric motion will change in future climate and they will give changes in wave climates. However, effects of global warming on wave climate have not yet investigated in detail. In this study, a dynamic downscaling method by a weather prediction model (WRF developed by NCAR) is applied to obtain detail information of sea surface wind in the present and future climates. The ocean wave is simulated by a wave model (WaveWatch-III developed by NOAA) with the downscaled wind in the present and future climate, then variations in wave climate in future are investigated. For future climate, climate projections in Coupled Model Intercomparison Project phase 5 (CMIP5) are used. For future scenario, the representative concentrate pathways 4.5 (RCP4.5) is selected. Variations of ocean waves in the Sea of Japan is focused in this work. Over the Sea of Japan, the strong northwesterly blows from the Eurasian Continent to the Japan islands in winter and causes high waves, and sometimes it causes marine accidents and breaks in coastal civil structures. The results of WaveWatch-III showed that the maximum value of significant wave height becomes smaller in the northern and central part of the Sea of Japan, however, clear increases are found in the southern part in future. In some regions, the maximum wave heights in future become 4 meter larger than in present. On the other hand, there are variations in frequency distribution of significant wave height. The frequency of modestly high waves increases and the low wave frequency decreases mainly in January and February (even in areas with smaller maximum significant wave height in future). Without extremely high ocean waves, variations in frequency

  9. ROx3: Retinal oximetry utilizing the blue-green oximetry method

    NASA Astrophysics Data System (ADS)

    Parsons, Jennifer Kathleen Hendryx

    The ROx is a retinal oximeter under development with the purpose of non-invasively and accurately measuring oxygen saturation (SO2) in vivo. It is novel in that it utilizes the blue-green oximetry technique with on-axis illumination. ROx calibration tests were performed by inducing hypoxia in live anesthetized swine and comparing ROx measurements to SO 2 values measured by a CO-Oximeter. Calibration was not achieved to the precision required for clinical use, but limiting factors were identified and improved. The ROx was used in a set of sepsis experiments on live pigs with the intention of tracking retinal SO2 during the development of sepsis. Though conclusions are qualitative due to insufficient calibration of the device, retinal venous SO2 is shown to trend generally with central venous SO2 as sepsis develops. The novel sepsis model developed in these experiments is also described. The method of cecal ligation and perforation with additional soiling of the abdomen consistently produced controllable severe sepsis/septic shock in a matter of hours. In addition, the ROx was used to collect retinal images from a healthy human volunteer. These experiments served as a bench test for several of the additions/modifications made to the ROx. This set of experiments specifically served to illuminate problems with various light paths and image acquisition. The analysis procedure for the ROx is under development, particularly automating the process for consistency, accuracy, and time efficiency. The current stage of automation is explained, including data acquisition processes and the automated vessel fit routine. Suggestions for the next generation of device minimization are also described.

  10. Seasonal variation in Rayleigh-to-Love wave ratio in the secondary microseism

    NASA Astrophysics Data System (ADS)

    Tanimoto, T.; Hadziioannou, C.; Igel, H.; Wassermann, J. M.; Schreiber, U.; Gebauer, A.; Chow, B.

    2015-12-01

    The Ring Laser (the G-ring) at Wettzell (WET), Germany, is a rotation-measurement instrument that can monitor tiny variations in seismic noise. It essentially records only SH-type signals. Combined with a co-located seismograph (three-component seismograph STS-2), we can monitor the amount of Love waves from this instrument and that of Rayleigh waves from the STS seismograph. We report on seasonal variation of Rayleigh-to-Love wave ratio in the secondary microseism. The first step in our analysis is to obtain stacked Fourier spectra that were least affected by earthquakes. We used two earthquake catalogues to do this; the GCMT (Global Centroid Moment Tensor, Earthquakes M > 5.5) catalogue and the EMSC (European-Mediterranean Seismic Centre) catalogue for regional earthquakes (distance < 1000 km) with M > 4.5. We then created monthly averages of noise Fourier spectra for the frequency range 0.13-0.30 Hz using both the G-ring and STS data from 2009 to 2015. Monthly spectra show clear seasonal variations for the secondary microseism. We obtained surface vertical acceleration from STS and surface transverse acceleration from G-ring from which we can directly measure the Rayleigh-to-Love wave ratio. The procedure is the same with an account in our recent GRL paper (Tanimoto et al., 2015). Comparison between vertical acceleration and transverse acceleration shows that Rayleigh-wave surface amplitudes are about 20 percent larger than Love waves but in terms of kinetic energy this ratio will be different. We converted these ratios of surface amplitude to those of kinetic energy using an available earth model (Fichtner et al., 2013). The averaged ratio over the frequency band 0.13-0.30 Hz shows is in the range 0.6-0.8 in spring, autumn and winter but it increases to about 1.2 in summer. Except for the summer, the amount of Love waves are higher but the amount of Rayleigh waves increases in summer and appears to exceed that of Love waves.

  11. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  12. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    SciTech Connect

    Ruban, V. P.

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.

  13. Retinal Oximetry with Scanning Laser Ophthalmoscope in Infants

    PubMed Central

    Vehmeijer, Wouter B.; Magnusdottir, Vigdis; Eliasdottir, Thorunn S.; Hardarson, Sveinn Hakon; Schalij-Delfos, Nicoline E.; Stefánsson, Einar

    2016-01-01

    Purpose Dual wavelength retinal oximetry has been developed for adults, but is not available for infants. Retinal oximetry may provide insight into the pathophysiology of oxygen-mediated diseases like retinopathy of prematurity. More insight in the oxygen metabolism of the retina in infants may provide valuable clues for better understanding and subsequent prevention or treatment of the disease. The measurements of oxygen saturation are obtained with two fundus images simultaneously captured in two different wavelengths of light. The comparison in light absorption of oxygenated and deoxygenated hemoglobin can be used to estimate the oxygen saturation within the retinal vessels by means of a software algorithm. This study aims to make retinal oximetry available for neonates. The first step towards estimating retinal oxygen saturation is determining the optical density ratio. Therefore, the purpose of this study is to image healthy newborn infants with a scanning laser ophthalmoscope and determine the optical density ratio for retinal oximetry analysis. Methods Images of the retina of full-term healthy infants were obtained with an SLO, Optomap 200Tx (Optos), with two laser wavelengths (532nm and 633nm). The infant lay face down on the lower arm of the parent, while the parent supported the chest and chin with one hand, and stabilized the back with the other hand. No mydriatics or eyelid specula were used during this study. The images were analyzed with modified Oxymap Analyzer software for calculation of the Optical Density Ratio (ODR) and vessel width. The ODR is inversely and approximately linearly related to the oxygen saturation. Measurements were included from the superotemporal vessel pair. A paired t-test was used for statistical analysis. Results Fifty-nine infants, (58% female), were included with mean gestational age of 40 ± 1.3 weeks (mean ± SD) and mean post-natal age of 16 ± 4.8 days. A total of 28 images were selected for retinal oximetry analysis

  14. Variation of particle size distribution in Saturn's rings and search for density waves in Uranus rings

    SciTech Connect

    Yanamandra-Fisher, P.A.

    1988-01-01

    A bimodal size distribution for particles in Saturn's rings has been determined via an analysis of PPS, UVS and RSS occultation data. The variation of the size distribution in featureless regions indicates that the dust variation is nearly constant in the Saturn's rings and exhibits a slight anti-correlation with 1 cm sized particles. Sub-centimeter sized particles increase outward in the rings, with a maximum in the B ring, similar to the variation of 1 cm sized particles. However, the ratio of subcentimeter sized particles to 1 cm sized particles does not vary significantly in the rings. Janus 5:4 density wave differs significantly from the featureless regions. The amount of dust is greater by a factor of about 2. Both dust and sub-centimeter sized particles are strongly anti-correlated with 1 cm sized particles. Partial formation of gaps is evident for both sub- and supra-centimeter sized particles, consistent with the predictions of Goldreich and Tremaine (1978). Dust is insensitive to the gravitational torque associated with the resonance. The results are also consistent with Dones (1987). In wave regions, large particles collide and produce dust and do not break up into smaller particles. The author searched the Uranian rings, via time series analysis methods, to identify periodic phenomena in the rings. A possible wave-like feature has been identified in both the {epsilon} and the {delta} rings of Uranus. A density wave has been identified in the inner half of the {delta} ring. It implies the existence of a moonlet between the {gamma} and {delta} rings and a possible shepherd for the outer edge of the {gamma} ring and an inner shepherd for the {delta} ring. Comparison of density waves in the two ring systems are similar, indicating the similarity of the local ring environments.

  15. Variational solution of Poisson's equation using plane waves in adaptive coordinates.

    PubMed

    Pérez-Jordá, José M

    2014-11-01

    A procedure for solving Poisson's equation using plane waves in adaptive coordinates (u) is described. The method, based on Gygi's work, writes a trial potential ξ as the product of a preselected Coulomb weight μ times a plane-wave expansion depending on u. Then, the Coulomb potential generated by a given density ρ is obtained by variationally optimizing ξ, so that the error in the Coulomb energy is second-order with respect to the error in ξ. The Coulomb weight μ is chosen to provide to each ξ the typical long-range tail of a Coulomb potential, so that calculations on atoms and molecules are made possible without having to resort to the supercell approximation. As a proof of concept, the method is tested on the helium atom and the H_{2} and H_{3}^{+} molecules, where Hartree-Fock energies with better than milli-Hartree accuracy require only a moderate number of plane waves.

  16. The detection of T-wave variation linked to arrhythmic risk: an industry perspective.

    PubMed

    Xue, Joel; Rowlandson, Ian

    2013-01-01

    Although the scientific literature contains ample descriptions of peculiar patterns of repolarization linked to arrhythmic risk, the objective quantification and classification of these patterns continues to be a challenge that impacts their widespread adoption in clinical practice. To advance the science, computerized algorithms spawned in the academic environment have been essential in order to find, extract and measure these patterns. However, outside the strict control of a core lab, these algorithms are exposed to poor quality signals and need to be effective in the presence of different forms of noise that can either obscure or mimic the T-wave variation (TWV) of interest. To provide a practical solution that can be verified and validated for the market, important tradeoffs need to be made that are based on an intimate understanding of the end-user as well as the key characteristics of either the signal or the noise that can be used by the signal processing engineer to best differentiate them. To illustrate this, two contemporary medical devices used for quantifying T-wave variation are presented, including the modified moving average (MMA) for the detection of T-wave Alternans (TWA) and the quantification of T-wave shape as inputs to the Morphology Combination Score (MCS) for the trending of drug-induced repolarization abnormalities.

  17. Coda wave interferometry for the measurement of thermally induced ultrasonic velocity variations in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Livings, Richard; Dayal, Vinay; Barnard, Dan

    2016-02-01

    Ultrasonic velocity measurement is a well-established method to measure properties and estimate strength as well as detect and locate damage. Determination of accurate and repeatable ultrasonic wave velocities can be difficult due to the influence of environmental and experimental factors. Diffuse fields created by a multiple scattering environment have been shown to be sensitive to homogeneous strain fields such as those caused by temperature variations, and Coda Wave Interferometry has been used to measure the thermally induced ultrasonic velocity variation in concrete, aluminum, and the Earth's crust. In this work, we analyzed the influence of several parameters of the experimental configuration on the measurement of thermally induced ultrasonic velocity variations in a carbon-fiber reinforced polymer plate. Coda Wave Interferometry was used to determine the relative velocity change between a baseline signal taken at room temperature and the signal taken at various temperatures. The influence of several parameters of the experimental configuration, such as the material type, the receiver aperture size, and fiber orientation on the results of the processing algorithm was evaluated in order to determine the optimal experimental configuration.---This work is supported by the NSF Industry/University Cooperative Research Program of the Center for Nondestructive Evaluation at Iowa State University.

  18. Adjustable fetal phantom for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stubán, Norbert; Niwayama, Masatsugu

    2009-05-01

    As the measuring head of a fetal pulse oximeter must be attached to the head of the fetus inside the mother's uterus during labor, testing, and developing of fetal pulse oximeters in real environment have several difficulties. A fetal phantom could enable evaluation of pulse oximeters in a simulated environment without the restrictions and difficultness of medical experiments in the labor room. Based on anatomic data we developed an adjustable fetal head phantom with three different tissue layers and artificial arteries. The phantom consisted of two arteries with an inner diameter of 0.2 and 0.4 mm. An electronically controlled pump produced pulse waves in the arteries. With the phantom we investigated the sensitivity of a custom-designed wireless pulse oximeter at different pulsation intensity and artery diameters. The results showed that the oximeter was capable of identifying 4% and 2% changes in diameter between the diastolic and systolic point in arteries of over 0.2 and 0.4 mm inner diameter, respectively. As the structure of the phantom is based on reported anatomic values, the results predict that the investigated custom-designed wireless pulse oximeter has sufficient sensitivity to detect the pulse waves and to calculate the R rate on the fetal head.

  19. Laboratory coda wave interferometry for the monitoring of rock property variations

    NASA Astrophysics Data System (ADS)

    Schmittbuhl, Jean; Chaintreuil, Marie; Lengliné, Olivier; Griffiths, Luke; Heap, Mike; Baud, Patrick

    2016-04-01

    A significant effort is on-going in the community to continuously monitor deep geothermal reservoirs using ambient seismic noise tomography (e.g. Calo et al, 2013; Lehujeur et al, 2015). It is a method that determines the Green's function between a pair of receivers by correlating sufficiently long seismic noise records. Very small changes of the medium are accessible using this new monitoring technique (significantly smaller than those deduced from direct arrivals). In particular, very small variations of seismic velocities are shown to appear both in time and space during the stimulation of the reservoir. A central question is how to interpret these transient or lateral variations of the seismic velocities for a precise 4D tomography of the reservoir properties. In this study, we address the direct problem of monitoring small variations in seismic velocities when small variations in stress or temperature are slowly applied to the sample. We use a network of piezo-electric sensors on laboratory samples (sandstone and granite from Soultz-sous-Forêts core samples) to perform coda wave interferometry from the multiple scattering of well-controlled seismic pulses (Grêt et al, 2006). The data collected are estimates of the relative variation of travel time. We combine acoustic measurements and strain gauges to differentiate between travel time variations due to seismic velocity changes and those due to deformation effects. We expect this approach to provide useful information for large scale seismic tomography despite the significant difference of considered wavelengths.

  20. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marks, Frank D.

    2000-01-01

    The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1' half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the off-nadir angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving toward 330 deg at about 5 m/s. Individual waves up to 18 m height were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the eye, and made five eye penetrations. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft flight lines included segments near and along the shoreline as well as far offshore. Animations of the directional wave spectrum spatial variation along the aircraft tracks on the two flights

  1. Studies on gravity waves momentum flux variations in different seasons using MST radar

    NASA Astrophysics Data System (ADS)

    I, V.; Y-H, C.; v, S.; D, N.; S, V.

    2006-12-01

    MST radars are the best tools to study the high frequency gravity waves and its associated momentum fluxes because of excellent temporal and spatial resolutions. The upward propagating gravity waves transport energy and momentum in different regions of the atmosphere along with their propagation to produce effects at upper heights. The estimation of the vertical flux of horizontal momentum in the troposphere and lower stratosphere involves two methods, using three beams V one vertical and two oblique, and using four beams V two pairs of oblique beams systematically offset from the vertical. The rapid steerability of the Indian MST radar allows to make three and four beam measurements simultaneously. The objective of this study is to examine the variations of zonal and meridional momentum fluxes with height, variation of momentum fluxes with wave periods and body forces. We choose frequency bands corresponding to periods of 30 min-2h, 2-8 h, and 2-16h. Vertical profiles of the zonal and meridional flux in each frequency band were found to be consistent, in general, with the total flux. The study also compares momentum fluxes computed with three and four beam methods. Zonal fluxes were small at lower levels and increasingly negative (westward) at higher heights. The dominant contributions to the meridional flux occur in the lower-frequency band. The large vertical momentum flux values observed around the 16 km altitude on most of the observations are due to the presence of large zonal wind shears at that altitude. Due to their persistent southward direction of propagation the meridional momentum flux during winter and summer shows southward direction of propagation and long period waves make contributions to the momentum flux in the lower stratosphere which is comparable to that of short period waves. The detailed discussion will be presented in the meeting.

  2. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; Zhang, Peng; Chen, Hua; Li, Yun

    2016-06-01

    The Eurasian continent has experienced significant year-to-year variations of summer heat waves during the past decades. Several possible factors, such as ocean temperature, soil moisture, and changes in land use and greenhouse gases, have been identified in previous studies, but the mechanisms are still unclear. In this study, it is found that the Tibetan Plateau snow cover (TPSC) is closely linked to the interannual variations of summer heat waves over Eurasia. The TPSC variability explains more than 30 % of the total variances of heat wave variability in the southern Europe and northeastern Asia (SENA) region. A set of numerical experiments reveal that the reduced TPSC may induce a distinct teleconnection pattern across the Eurasian continent, with two anomalous high pressure centers in the upper troposphere over the SENA region, which may lead to a reduction of the cloud formation near the surface. The less cloud cover tends to increase the net shortwave radiation and favor a stronger surface sensible heat flux in the dry surface condition over the SENA region, resulting in a deeper, warmer and drier atmospheric boundary layer that would further inhibit the local cloud formation. Such a positive land-atmosphere feedback may dry the surface even further, heat the near-surface atmosphere and thereby intensify the local heat waves. The above dynamical processes also operate on interdecadal time scales. Given the reduction of the TPSC could become more pronounced with increasing levels of greenhouse gases in a warming climate, we infer that the TPSC may play an increasingly important role in shaping the summer heat waves over the SENA region in next decades.

  3. Application of NIR laser diodes to pulse oximetry

    NASA Astrophysics Data System (ADS)

    Lopez Silva, Sonnia M.; Giannetti, Romano; Dotor, Maria L.; Sendra, Jose R.; Silveira, Juan P.; Briones, Fernando

    1999-01-01

    A transmittance pulse oximeter based on near-infrared laser diodes for monitoring arterial blood hemoglobin oxygen saturation has been developed and tested. The measurement system consists of the optical sensor, sensor electronics, acquisition board and personal computer. The system has been tested in a two-part experimental study involving human volunteers. A calibration curve was derived and healthy volunteers were monitored under normal and apnea conditions, both with the proposed system and with a commercial pulse oximeter. The obtained results demonstrate the feasibility of using a sensor with laser diodes emitting at specific near-infrared wavelengths for pulse oximetry.

  4. Surface oximetry. A new method to evaluate intestinal perfusion.

    PubMed

    Ferrara, J J; Dyess, D L; Lasecki, M; Kinsey, S; Donnell, C; Jurkovich, G J

    1988-01-01

    Accepted methods to evaluate intestinal vascularity intraoperatively include standard clinical criteria (SCC), doppler ultrasound (DUS), and intravenous fluorescein (FLF). A combination of methods is often used to overcome disadvantages of individual techniques. Assessment of intestinal vascularity by FLF was compared to SCC, DUS, and pulse oximetry (POX) in segments of intestine demonstrating arterial, venous and arteriovenous occlusion, to determine if POX might supplement the assessment of intestinal vascularity. POX uses a commercially available instrument to assess tissue oxygenation and arterial flow, and is rapid, reproducible, and noninvasive. POX appears to be a superior technique when compared to SCC and DUS.

  5. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such'as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAxwell's equations by the Finite Integration Algorithm (MAFIA) is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  6. Effects of temperature variations on guided waves propagating in composite structures

    NASA Astrophysics Data System (ADS)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  7. Differential shear wave attenuation and its lateral variation in the North Atlantic region

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne F.; Solomon, Sean C.

    1992-01-01

    A digital data base of over 150 seismograms and a spectral radio technique are used to measure SS-S differential attenuation in the North Atlantic region. Differential attenuation is positively correlated with SS-S travel time residual, and both differential attentuation and travel time residual decrease with increasing seafloor age. Models are developed for seismic Q in which lateral variations include contributions from the asthenospheric low-Q zone as well as from lithospheric cooling. The Q models obtained under this assumption are in good agreement with those obtained from surface wave studies and are therefore preferred over those models with lateral variations confined to the upper 125 km. Systematic long-wavelength (1000-7000 km) variations in differential attenuation, corrected for seafloor age, are evident along the axis of the Mid-Atlantic Ridge. These variations can be qualitatively correlated with long-wavelength variations in SS-S differential travel time residuals and are attributed to along-axis differences in upper mantle temperature.

  8. Structural Diagnostics of Ballistic-Like Damage Variation via Wave Propagation-Based Filtering Techniques

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Apetre, N.; Ruzzene, M.

    2010-02-01

    This paper evaluates the ability of wave filtering techniques to identify and quantify defect variations in structures. The proposed techniques are based on the evaluation of reflection, transmission, and conversion of different Lamb wave modes in the presence of damages and of the spatial evaluation of their phases. The structure is excited by an enhanced fundamental symmetric mode, and the damage is initially located by evaluating the phase gradient of the converted Lamb mode. The process relies on mode separation and incident-wave removal procedures implemented in the frequency/wavenumber domain. Such procedures rely on the spatial integration of wave amplitudes in contrast to point-wise estimation previously proposed in the literature, as a way to reduce the effect of noise. Numerical and experimental parametric studies are conducted, where the specific damage geometry is varied to represent common external ballistic impact, from a sharp rectangular notch to a semi-circular depression. Likewise, the techniques are demonstrated on experimental data obtained from a Scanning Laser Doppler Vibrometer setup.

  9. Seasonal and latitudinal variations of gravity wave-driven fluctuations in OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.; Schubert, G.; Walterscheid, R. L.

    1992-01-01

    A model which incorporates extended OH-layer emission and gravity-wave dynamics with eddy diffusivities is set forth to analyze seasonal and latitudinal variations in the OH nightglow. The 2D analysis is aimed at determining the nature of the relationship between the oscillation in intensity about a mean intensity and the oscillation in temperature of the emission region about a mean temperature. Competing eddy diffusivities modify the local values and altitudes of maximum wave amplitude, so long-period characterization of the relationship is imprecise. Seasonal trends in the relationship are noted for periods of several hrs or less that are primarily related to seasonal changes in the mesopause undisturbed temperature. Latitudinal trends are shown to be less pronounced, and trends that exist at intermediate periods are difficult to isolate due to interference effects.

  10. Detection of the optimal region of interest for camera oximetry.

    PubMed

    Karlen, Walter; Ansermino, J Mark; Dumont, Guy A; Scheffer, Cornie

    2013-01-01

    The estimation of heart rate and blood oxygen saturation with an imaging array on a mobile phone (camera oximetry) has great potential for mobile health applications as no additional hardware other than a camera and LED flash enabled phone are required. However, this approach is challenging as the configuration of the camera can negatively influence the estimation quality. Further, the number of photons recorded with the photo detector is largely dependent on the optical path length, resulting in a non-homogeneous image. In this paper we describe a novel method to automatically detect the optimal region of interest (ROI) for the captured image to extract a pulse waveform. We also present a study to select the optimal camera settings, notably the white balance. The experiments show that the incandescent white balance mode is the preferable setting for camera oximetry applications on the tested mobile phone (Samsung Galaxy Ace). Also, the ROI algorithm successfully identifies the frame regions which provide waveforms with the largest amplitudes. PMID:24110175

  11. HIGH LIFE: High altitude fatalities led to pulse oximetry.

    PubMed

    Severinghaus, John W

    2016-01-15

    In 1875, Paul Bert linked high altitude danger to the low partial pressure of oxygen when 2 of 3 French balloonists died euphorically at about 8,600 m altitude. World War I fatal crashes of high altitude fighter pilots led to a century of efforts to use oximetry to warn pilots. The carotid body, discovered in 1932 to be the hypoxia detector, led to most current physiologic understanding of the body's respiratory responses to hypoxia and CO2. The author describes some of his UCSF group's work: In 1963, we reported both the brain's ventral medullary near-surface CO2 (and pH) chemosensors and the role of cerebrospinal fluid in acclimatization to altitude. In 1966, we reported the effect of altitude on cerebral blood flow and later the changes of carotid body sensitivity at altitude and the differences in natives of high altitude. In 1973, pulse oximetry was invented when Japanese biophysicist Takuo Aoyagi read and applied to pulses a largely forgotten 35-year-old discovery by English medical student J. R. Squire of a method of computing oxygen saturation from red and infrared light passing through both perfused and blanched tissue.

  12. Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2011-02-01

    Foot ulceration remains a serious health concern for diabetic patients and has a major impact on the cost of diabetes treatment. Early detection and preventive care, such as offloading or improved hygiene, can greatly reduce the risk of further complications. We aim to assess the use of hyperspectral tissue oximetry in predicting the risk of diabetic foot ulcer formation. Tissue oximetry measurements are performed during several visits with hyperspectral imaging of the feet in type 1 and 2 diabetes mellitus subjects that are at risk for foot ulceration. The data are retrospectively analyzed at 21 sites that ulcerated during the course of our study and an ulceration prediction index is developed. Then, an image processing algorithm based on this index is implemented. This algorithm is able to predict tissue at risk of ulceration with a sensitivity and specificity of 95 and 80%, respectively, for images taken, on average, 58 days before tissue damage is apparent to the naked eye. Receiver operating characteristic analysis is also performed to give a range of sensitivity/specificity values resulting in a Q-value of 89%.

  13. Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry.

    PubMed

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2011-02-01

    Foot ulceration remains a serious health concern for diabetic patients and has a major impact on the cost of diabetes treatment. Early detection and preventive care, such as offloading or improved hygiene, can greatly reduce the risk of further complications. We aim to assess the use of hyperspectral tissue oximetry in predicting the risk of diabetic foot ulcer formation. Tissue oximetry measurements are performed during several visits with hyperspectral imaging of the feet in type 1 and 2 diabetes mellitus subjects that are at risk for foot ulceration. The data are retrospectively analyzed at 21 sites that ulcerated during the course of our study and an ulceration prediction index is developed. Then, an image processing algorithm based on this index is implemented. This algorithm is able to predict tissue at risk of ulceration with a sensitivity and specificity of 95 and 80%, respectively, for images taken, on average, 58 days before tissue damage is apparent to the naked eye. Receiver operating characteristic analysis is also performed to give a range of sensitivity/specificity values resulting in a Q-value of 89%.

  14. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  15. Comparison of two approaches for the treatment of Gutzwiller variational wave functions

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, J.

    2015-02-01

    In this work, we analyse the variational problem emerging from the Gutzwiller approach to strongly correlated systems. This problem comprises two main steps: evaluation and minimization of the ground state energy ? for the postulated Gutzwiller Wave Function. We discuss the available methods for evaluating ?, in particular the recently proposed diagrammatic expansion method. We compare the two existing approaches to minimize ?: the standard approach based on the effective single-particle Hamiltonian and the so-called Statistically-consistent Gutzwiller Approximation (SGA). On the example of the superconducting phase analysis, we show that these approaches lead to the same minimum as it should be. However, the calculations within the SGA method are easier to perform and the two approaches allow for a simple cross-check of the obtained results. Finally, we show two ways of solving the equations resulting from the variational procedure, as well as how to incorporate the condition for a fixed number of particles.

  16. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings.

    PubMed

    Kot, Brian Chin Wing; Zhang, Zhi Jie; Lee, Arthur Wai Chun; Leung, Vivian Yee Fong; Fu, Siu Ngor

    2012-01-01

    Standardization on Shear wave ultrasound elastography (SWUE) technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI)'s size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.

  17. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves

    SciTech Connect

    Mata, Pablo

    2014-01-15

    This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green–Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three dimensions, and demonstrate its performance with numerical examples.

  18. Diurnal Variation in Gravity Wave Activity at Low and Middle Latitudes

    NASA Technical Reports Server (NTRS)

    Andrioli, V. F.; Fritts, D. C.; Batista, P. P.; Clemesha, B. R.; Janches, Diego

    2013-01-01

    We employ a modified composite day extension of the Hocking (2005) analysis method to study gravity wave (GW) activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7deg S to 53.6deg S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7deg S), do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6deg S) these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km) and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources.

  19. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  20. A physical model study of converted wave amplitude variation in a reservoir of systematically aligned vertical fractures

    NASA Astrophysics Data System (ADS)

    Chang, C.; Sun, L.; Lin, C.; Chang, Y.; Tseng, P.

    2013-12-01

    The existence of fractures not only provides spaces for the residence of oils and gases reside, but it also creates pathways for migration. Characterizing a fractured reservoir thus becomes an important subject and has been widely studied by exploration geophysicists and drilling engineers. In seismic anisotropy, a reservoir of systematically aligned vertical fractures (SAVF) is often treated as a transversely isotropic medium (TIM) with a horizontal axis of symmetry (HTI). Subjecting to HTI, physical properties vary in azimuth. P-wave reflection amplitude, which is susceptible to vary in azimuth, is one of the most popular seismic attributes which is widely used to delineate the fracture strike of an SAVF reservoir. Instead of going further on analyzing P-wave signatures, in this study, we focused on evaluating the feasibility of orienting the fracture strike of an SAVF reservoir using converted (C-) wave amplitude. For a C-wave is initiated by a downward traveling P-wave that is converted on reflection to an upcoming S-wave; the behaviors of both P- and S-waves should be theoretically woven in a C-wave. In our laboratory work, finite offset reflection experiments were carried out on the azimuthal plane of a HTI model at two different offset intervals. To demonstrate the azimuthal variation of C-wave amplitude in a HTI model, reflections were acquired along the principal symmetry directions and the diagonal direction of the HTI model. Inheriting from phenomenon of S-wave splitting in a transversely isotropic medium (TIM), P-waves get converted into both the fast (S1) and slow (S2) shear modes at all azimuths outside the vertical symmetry planes, thus producing split PS-waves (PS1 and PS2). In our laboratory data, the converted PS1- (C1-) wave were observed and identified. As the azimuth varies from the strike direction to the strike normal, C1-wave amplitude exhibits itself in a way of weakening and can be view from the common-reflection-point (CRP) gathers

  1. Influence of linear depth variation on Poincare, Kelvin, and Rossby waves

    SciTech Connect

    Staniforth, A.N. ); Williams, R.T.; Neta, B. )

    1993-04-01

    Exact solutions to the linearized shallow-water equations in a channel with linear depth variation and a mean flow are obtained in terms of confluent hypergeometric functions. These solutions are the generalization to finite s (depth variation parameter) of the approximate solutions for infinitesimal s. The equations also respect an energy conservation principle (and the normal modes are thus neutrally stable) in contradistinction to those of previous studies. They are evaluated numerically for a range in s from s = 0.1 to s = 1.95, and the range of validity of previously derived approximate solutions is established. For small s the Kelvin and Poincare' solutions agree well with those of Hyde, which were obtained by expanding in s. For finite s the solutions differ significantly from the Hyde expansions, and the magnitude of the phase speed decreases as s increases. The Rossby wave phase speeds are close to those obtained when the depth is linearized although the difference increases with s. The eigenfunctions become more distorted as s increases so that the largest amplitude and the smallest scale occur near the shallowest boundary. The negative Kelvin wave has a very unusual behavior as s increases.

  2. The lateral variation of the shear-wave splitting values just above the subducting ridge

    NASA Astrophysics Data System (ADS)

    Iidaka, T.; Kato, A.; Ikuta, R.; Yoshida, Y.; Katsumata, K.; Iwasaki, T.; Sakai, S.; Tsumura, N.; Yamaoka, K.; Watanabe, T.; Kunitomo, T.; Yamazaki, F.; Okubo, M.; Suzuki, S.; Hirata, N.

    2011-12-01

    In Tokai region, central part of Japan, the Philippine Sea plate is descending to the NW direction. The configuration of the subducting slab has been revealed by the seismic tomography and refraction/reflection studies. Those studies suggested that the top of the slab was not smooth. A clear image of the subducting ridges was figured out. The characteristic of the asperity is one of the important topics to know the mechanism of the plate boundary earthquakes. There are many discussions for the relationship between the subducting sea mount and asperity. The Tokai region is one of the good fields to know the relationship. The location and configurations of the subducting ridges have been revealed by the refraction and reflection studies. The subducting ridge is located just beneath the land area. If the subducting ridge causes the stress concentration, the spatial pattern of the stress distribution will be changed. It will be detectable by the shear wave splitting analysis at the seismic stations above the ridge. In this area, slow-slip was also reported. The Tokai area is a very good field to know the whole image of the plate coupling. We did temporal seismic observation with about 70 seismic stations in Tokai region. The seismic stations are located as a linear array trending to NW direction which is consistent with the direction of subduction of the Philippine Sea plate. The length of the array was about 100 km. It was operated from April, 2008 to September, 2008. We studied shear wave splitting in this area using the array. The array is located just above the subducting ridge. The spatial variation of the shear-wave splitting values was obtained. The maximum stress direction of the area is NW-SE. The polarization direction of the area with the direction of NW-SE was obtained. That is very consistent with the stress field of the area. The tame lag values at the south are little bit larger than that of north. But, we could not see large lateral variation of the

  3. Ion cyclotron waves at Io: implications for the temporal variation of Io's atmosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Blanco-Cano, X.; Wang, Y. L.; Kivelson, M. G.

    2003-12-01

    When the flowing torus plasma encounters the upper atmosphere of Jupiter's moon, Io, newly created ions are rapidly accelerated by the motional electric field. Many of these ions are reneutralized and form a spray of fast neutrals that travel far away from Io before being reionized by photoionization and impact. These ions, now far from Io, are unstable to the generation of ion cyclotron waves. These waves in turn act as a mass spectrometer allowing Galileo magnetic measurements to be used to probe the composition of the atmosphere of Io and how it varies in time and in space. We now have six Galileo passes by Io on which we have measurements with sufficient cadence to examine the ion cyclotron waves. One of these passes, on Galileo's 32nd orbit has not been discussed previously. These passes provide sufficient observations to begin to distinguish the sources of variability. We find that while the atmosphere of Io varies temporally throughout the mission, it also has a spatial variation in composition at any instant of time.

  4. Spatial variation of Lg-wave attenuation in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Noriega, Raquel; Ugalde, Arantza; Villaseñor, Antonio; José Jurado, María

    2014-05-01

    Within a global context, the Iberian Peninsula is a region where low to moderate (Mw < 5.5) earthquakes occur, most of them at shallow depths (h < 40 km). Seismicity concentrates mainly around the Pyrenean Range, the northwestern part of the peninsula, and the southern deformation zone that includes the Betics, the Alborán Sea and the Gulf of Cádiz. In recent years, considerable improvements in seismic data quality and geographic coverage have been made by the deployment of new permanent and portable broadband seismic stations in the Iberian Peninsula. The dense accumulation of seismic data has allowed us to investigate lateral variation of crustal seismic attenuation to develop the first regional 2D Lg-wave attenuation model for the entire Iberian Peninsula and its frequency dependence. Seismic data used consist of 71 events with magnitudes 3 ≤ mbLg ≤ 5.4 focal depths less than 30 km and epicentral distances from 100 to 1000 km which were recorded by 343 seismic stations between January 2008 and October 2013. To avoid confusion with fundamental-mode Love-wave energy on the transverse components, we only analyzed vertical component recordings. Among all the methods proposed to measure Lg attenuation, we considered the reliable Two-Station Method that allows removing the common source term by taking the ratio of Lg amplitudes recorded at two different stations along the same great-circle path from the same event. It requires, however, strict source-station configuration and dense event and station coverage. The spectral ratios collected over high-quality interstation paths were used to determine 1 Hz Lg Q (Q0) and its frequency dependence η. Then, the lateral variations of the attenuation parameters were mapped using inversion. Lg-wave propagation was found to be inefficient or blocked for most of the paths crossing the Mediterranean Sea, the western Alborán Sea and the Strait of Gibraltar. Our results reflect large variations in Q0 values across the Iberian

  5. Monitoring Spatial and Temporal Variations in Fracture Networks Using Shear-wave Splitting Analysis

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Wuestefeld, A.; Verdon, J.; Rutledge, J. T.; Wookey, J.

    2011-12-01

    corridor, which thus increase the overall permeability of the rock mass. Our results show that shear wave splitting analysis can provide a useful tool for monitoring spatial and temporal variations in fracture networks in a range of environments.

  6. Variation of Fundamental Mode Surface Wave Group Velocity Dispersion in Iran and the Surrounding Region

    NASA Astrophysics Data System (ADS)

    Rham, D. J.; Preistley, K.; Tatar, M.; Paul, A.

    2006-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across Iran and the surrounding region. Data for these measurements comes from field deployments within Iran by the University of Cambridge (GBR) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), in addition to data from IRIS and Geofone. 1D path- averaged dispersion measurements have been made for ~5500 source-receiver paths using multiple filter analysis. We combine these observations in a tomographic inversion to produce group velocity images between 10 and 60 s period. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. We observe variations in short-period wave group velocity which is consistent with the surface geology. Low group velocities (2.00-2.55 km/s) at short periods (10-20 s), for both Rayleigh and Love waves are observed beneath thick sedimentary deposits; The south Caspian Basin, Black Sea, the eastern Mediterranean, the Persian Gulf, the Makran, the southern Turan shield, and the Indus and Gangetic basins. Somewhat higher group velocity (2.80-3.15 km/s for Rayleigh, and 3.00-3.40 km/s for Love) at these periods occur in sediment poor regions, such as; the Turkish-Iranian plateau, the Arabian shield, and Kazakhstan. At intermediate periods (30-40 s) group velocities over most of the region are low (2.65-3.20 km/s for Rayleigh, and 2.80-3.45 km/s for love) compared to Arabia (3.40-3.70 km/s Rayleigh, 3.50-4.0 km/s Love). At longer periods (50-60 s) Love wave group velocities remain low (3.25-3.70 km/s) over most of Iran, but there are even lower velocities (2.80-3.00 km/s) still associated with the thick sediments of the south Caspian basin, the surrounding shield areas have much higher group velocities (3

  7. Measurement bias in evanescent wave nano-velocimetry due to tracer size variations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guasto, Jeffrey S.; Huang, Peter

    2011-12-01

    Evanescent wave nano-velocimetry is an imaging tool for studying biophysical transport and nano-scale fluid mechanics via tracking the 2D or 3D motion of fluorescent nanoparticles within several hundred nanometers of a fluid--solid interface. Because the information on the third dimension is encoded in the tracer intensity, variation in the tracer size, which is proportional to the particle intensity, can lead to significant measurement uncertainty. In this work, we consider the measurement bias introduced by tracer size polydispersity on the fluid velocimetry measurements. We present a general theoretical model to account for tracer size variation, interaction potentials between tracers and the solid substrate (e.g., electrostatic, van der Waals forces) and analysis of image data. Computational results are provided for typical experimental conditions, and the implications for nano-velocimetry accuracy are discussed. We find that increased tracer particle size variation and the detectability limit of tracer intensity increase measurement bias by up to 10%, which should be accounted for in experimental measurements.

  8. New laser system for highly sensitive clinical pulse oximetry

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; Hamza, Mohammad

    1996-04-01

    This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.

  9. Comparison of finger and forehead oximetry sensors in postanesthesia care patients.

    PubMed

    Blaylock, Vicki; Brinkman, Mary; Carver, Sharon; McLain, Penny; Matteson, Stephanie; Newland, Pam; Pettit, Ruth; Schulman, Christine; vanSchijndel, Willy; Watson, Sheri

    2008-12-01

    We compared loss of pulse oximetry signal (dropout rates) for both finger and forehead sensors in postanesthesia patients. Pulse oximetry is a widely practiced method for measuring oxygen saturation. Several studies in various patient populations have demonstrated that low flow states, patient movement, and hypothermia may result in poor signal quality with the use of finger oximetry sensors. These clinical conditions are common in patients as they emerge from anesthesia. New forehead sensors may reduce signal dropout. A method-comparison design was used to compare finger and forehead oximetry signal dropout rates. Of 48 subjects studied, only three had a signal dropout. Overall, there were seven episodes of signal dropout; six of seven occurred with the finger sensor. Signal dropout occurred rarely in PACU subjects. Use of finger sensors for routine postanesthesia monitoring should be adequate in the majority of patients.

  10. Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

    SciTech Connect

    Yu Yang; Liu Ning; Sassaroli, Angelo; Fantini, Sergio

    2009-04-01

    We present a hybrid continuous-wave, frequency-domain instrument for near-infrared spectral imaging of the female breast based on a tandem, planar scanning of one illumination optical fiber and one collection optical fiber configured in a transmission geometry. The spatial sampling rate of 25 points/cm{sup 2} is increased to 400 points/cm{sup 2} by postprocessing the data with a 2D cubic spline interpolation. We then apply a previously developed spatial second-derivative algorithm to an edge-corrected intensity image (N-image) to enhance the visibility and resolution of optical inhomogeneities in breast tissue such as blood vessels and tumors. The spectral data at each image pixel consist of 515-point spectra over the 650-900 nm wavelength range, thus featuring a spectral density of two data points per nanometer. We process the measured spectra with a paired-wavelength spectral analysis method to quantify the oxygen saturation of detected optical inhomogeneities, under the assumption that they feature a locally higher hemoglobin concentration. Our initial measurements on two healthy human subjects have generated high-resolution optical mammograms displaying a network of blood vessels with values of hemoglobin saturation typically falling within the 60%-95% range, which is physiologically reasonable. This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.

  11. Apparent changes in seismic wave velocity related to microseism noise source variations

    NASA Astrophysics Data System (ADS)

    Friderike Volk, Meike; Bean, Christopher; Lokmer, Ivan; Craig, David

    2014-05-01

    Currently there is a strong interest of using cross correlation of ambient noise for imaging of the subsurface or monitoring of various geological settings where we expect rapid changes (e.g. reservoirs or volcanoes). Through cross correlation retrieved Green's function is usually used to calculate seismic velocities of the subsurface. The assumption of this method is that the wavefields which are correlated must be diffuse. That means that the ambient noise sources are uniformly distributed around the receivers or the scattering in the medium is high enough to mitigate any source directivity. The location of the sources is usually unknown and it can change in time. These temporal and spatial variations of the microseism noise sources may lead to changes in the retrieved Green's functions. The changed Green's functions will then cause apparent changes in the calculated seismic velocity. We track the spatial and temporal distribution of the noise sources using seismic arrays, located in Ireland. It is a good location in which to study these effects, as it is tectonically very quiet and is relatively close to large microseism noise sources in the North Atlantic, allowing a quantification of noise source heterogeneity. Temporal variations in seismic wave velocity are calculated using data recorded in Ireland. The results are compared to the variations in microseism source locations. We also explore the minimum noise trace length required in Ireland for the Green's functions to converge. We quantify the degree to which apparent velocity variations using direct arrivals are caused by changes in the sources and assess if and at what frequencies the scattering of the medium in Ireland is high enough to homogenise the coda wavefield.

  12. Pulse oximetry screening: a review of diagnosing critical congenital heart disease in newborns

    PubMed Central

    Engel, Melissa S; Kochilas, Lazaros K

    2016-01-01

    Congenital heart disease (CHD) is one of the most common birth defects, with an incidence of nine out of every 1,000 live births. The mortality of infants with CHD has decreased over the past 3 decades, but significant morbidity and mortality continue to occur if not diagnosed shortly after birth. Pulse oximetry was recommended as a screening tool to detect critical CHD in 2011 by the American Academy of Pediatrics and the American Heart Association. Pulse oximetry is a tool to measure oxygen saturation, and based on the presence of hypoxemia, many cardiac lesions are detected. Due to its ease of application to the patient, providing results in a timely manner and without the need for calibrating the sensor probe, pulse oximetry offers many advantages as a screening tool. However, pulse oximetry has also important limitations of which physicians should be aware to be able to assess the significance of the pulse oximetry measurement for a given patient. This review aims to highlight the benefits and shortcomings of pulse oximetry within the context of screening for critical CHD and suggests future avenues to cover existing gaps in current practices. PMID:27468253

  13. Downward Link of Solar Activity Variations Through Wave Driven Equatorial Oscillations (QBO and SAO)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Signatures of the 11-year solar activity/irradiance cycle are observed in the Quasi Biennial Oscillation (QBO) of the lower stratosphere. At these altitudes, the QBO is understood to be the result of "downward control" exerted by the wave mean flow interactions that drive the phenomenon. It is reasonable then to speculate that the QBO is a natural conduit to lower altitudes of solar activity variations in radiance (SAV). To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). To account for the SAV, we change the solar heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 kin to 10% at 100 km. With the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the solar activity irradiance effect (SAE) on the zonal circulation at low latitudes. The numerical results obtained show that, under certain conditions, the SAE is significant in the zonal circulation and does extend to lower altitudes where the SAV is small. The differences in the wind velocities can be as large as 5 m/s at 20 kin. We carried out two numerical experiments with integrations over more than 20 years: 1) With the QBO period "tuned" to be 30 months, of academic interest but instructive, the seasonal cycle in the solar forcing [through the Semi-annual Oscillation (SAO)] acts as a strong pacemaker to produce a firm lock on the period and phase of the QBO. The SAE then shows up primarily as a distinct but relatively weak amplitude modulation. 2) With the QBO period between 30 and 34 (or less than 30, presumably) months, the seasonal phase lock is weak compared with (1). The SAV in the seasonal cycle then causes variations in the QBO period and phase, and this amplifies the SAE to produce relatively large variations in the wind field. We conclude that, under realistic conditions as in (2), the solar seasonal forcing, with

  14. The meridional variation of the eddy heat fluxes by baroclinic waves and their parameterization

    NASA Technical Reports Server (NTRS)

    Stone, P. H.

    1974-01-01

    The meridional and vertical eddy fluxes of sensible heat produced by small-amplitude growing baroclinic waves are calculated using solutions to the two-level model with horizontal shear in the mean flow. The results show that the fluxes are primarily dependent on the local baroclinicity, i.e., the local value of the isentropic slopes in the mean state. Where the slope exceeds the critical value, the transports are poleward and upward; where the slope is less than the critical value, the transports are equatorward and downward. These results are used to improve an earlier parameterization of the tropospheric eddy fluxes of sensible heat based on Eady's model. Comparisons with observations show that the improved parameterization reproduces the observed magnitude and sign of the eddy fluxes and their vertical variations and seasonal changes, but the maximum in the poleward flux is too near the equator.

  15. Depth variations of P-wave azimuthal anisotropy beneath Mainland China

    PubMed Central

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-01-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744

  16. Depth variations of P-wave azimuthal anisotropy beneath Mainland China.

    PubMed

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-07-19

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  17. Depth variations of P-wave azimuthal anisotropy beneath Mainland China.

    PubMed

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-01-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744

  18. Depth variations of P-wave azimuthal anisotropy beneath Mainland China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-07-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  19. Quantum variational measurement and the optical lever intracavity topology of gravitational-wave detectors

    SciTech Connect

    Khalili, F. Ya.

    2007-04-15

    The intracavity topologies of laser gravitational-wave detectors proposed several years ago are the promising way to obtain sensitivity of these devices significantly better than the Standard Quantum Limit (SQL). In essence, the intracavity detector is a two-stage device where the end mirrors displacement created by the gravitational wave is transferred to the displacement of an additional local mirror by means of the optical rigidity. The local mirror positions have to be monitored by an additional local meter. It is evident that the local meter precision defines the sensitivity of the detector. To overcome the SQL, the quantum variational measurement can be used in the local meter. In this method a frequency-dependent correlation between the meter backaction noise and measurement noise is introduced, which allows us to eliminate the backaction noise component from the meter output signal. This correlation is created by means of an additional filter cavity. In this article the sensitivity limitations of this scheme imposed by the optical losses both in the local meter itself and in the filter cavity are estimated. It is shown that the main sensitivity limitation stems from the filter cavity losses. In order to overcome it, it is necessary to increase the filter cavity length. In a preliminary prototype experiment, an approximate 10 m long filter cavity can be used to obtain sensitivity approximately 2-3 times better than the SQL. For future Quantum Non-Demolition (QND) gravitational-wave detectors with sensitivity about 10 times better than the SQL, the filter cavity length should be within kilometer range.

  20. Quantum variational measurement and the optical lever intracavity topology of gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Khalili, F. Ya.

    2007-04-01

    The intracavity topologies of laser gravitational-wave detectors proposed several years ago are the promising way to obtain sensitivity of these devices significantly better than the Standard Quantum Limit (SQL). In essence, the intracavity detector is a two-stage device where the end mirrors displacement created by the gravitational wave is transferred to the displacement of an additional local mirror by means of the optical rigidity. The local mirror positions have to be monitored by an additional local meter. It is evident that the local meter precision defines the sensitivity of the detector. To overcome the SQL, the quantum variational measurement can be used in the local meter. In this method a frequency-dependent correlation between the meter backaction noise and measurement noise is introduced, which allows us to eliminate the backaction noise component from the meter output signal. This correlation is created by means of an additional filter cavity. In this article the sensitivity limitations of this scheme imposed by the optical losses both in the local meter itself and in the filter cavity are estimated. It is shown that the main sensitivity limitation stems from the filter cavity losses. In order to overcome it, it is necessary to increase the filter cavity length. In a preliminary prototype experiment, an approximate 10 m long filter cavity can be used to obtain sensitivity approximately 2 3 times better than the SQL. For future Quantum Non-Demolition (QND) gravitational-wave detectors with sensitivity about 10 times better than the SQL, the filter cavity length should be within kilometer range.

  1. Variations in Shear Wave Splitting Beneath Southern Arabia and the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Gallacher, R. J.; Eakin, C. M.; Keir, D.; Leroy, S. D.; Stuart, G. W.; Harmon, N.; Ahmed, A.

    2015-12-01

    Mantle flow beneath Southern Arabia and the Gulf of Aden remains enigmatic due to a paucity of seismic measurements in the region. Potential processes contributing to mantle flow include northward progression of the African Superplume, radial flow from the Afar plume and vertical flow from small-scale convection along the margins of the Gulf of Aden. These would result in characteristic mantle flow directions, creating mantle anisotropy that can be detected by shear wave splitting. We analyse SKS, SKKS & PKS phases for shear wave splitting at 141 stations deployed throughout Yemen, Oman and Socotra along the margins of the Gulf of Aden. Large numbers of null measurements from a range of back azimuths are found beneath the entire region. These may indicate that vertical anisotropy is present in the upper mantle beneath the region, consistent with models of small-scale convection. The null measurements may also be due to complicated layering of crustal anisotropy interfering destructively and precluding measurement of shear wave splitting. Splitting measurements bordering the Red Sea show North-South orientations that may result from shallow aligned melt along the Red Sea or from variations in lower mantle flow. Fast polarization directions of splitting measurements along the Northern margin of the Gulf of Aden are rift parallel suggesting a shallow source such as rift related faulting might be responsible. These results show that anisotropy beneath the region is not controlled by the northward progression of the African Superplume or radial flow from the Afar plume. Upper mantle flow is likely vertical with splitting occurring either in the crust or the lower mantle.

  2. Reproducibility of transcutaneous oximetry and laser Doppler flowmetry in facial skin and gingival tissue.

    PubMed

    Svalestad, J; Hellem, S; Vaagbø, G; Irgens, A; Thorsen, E

    2010-01-01

    Laser Doppler flowmetry (LDF) and transcutaneous oximetry (TcPO(2)) are non-invasive techniques, widely used in the clinical setting, for assessing microvascular blood flow and tissue oxygen tension, e.g. recording vascular changes after radiotherapy and hyperbaric oxygen therapy. With standardized procedures and improved reproducibility, these methods might also be applicable in longitudinal studies. The aim of this study was to evaluate the reproducibility of facial skin and gingival LDF and facial skin TcPO(2). The subjects comprised ten healthy volunteers, 5 men, aged 31-68 years. Gingival perfusion was recorded with the LDF probe fixed to a custom made, tooth-supported acrylic splint. Skin perfusion was recorded on the cheek. TcPO(2) was recorded on the forehead and cheek and in the second intercostal space. The reproducibility of LDF measurements taken after vasodilation by heat provocation was greater than for basal flow in both facial skin and mandibular gingiva. Pronounced intraday variations were observed. Interweek reproducibility assessed by intraclass correlation coefficient ranged from 0.74 to 0.96 for LDF and from 0.44 to 0.75 for TcPO(2). The results confirm acceptable reproducibility of LDF and TcPO(2) in longitudinal studies in a vascular laboratory where subjects serve as their own controls. The use of thermoprobes is recommended. Repeat measurements should be taken at the same time of day.

  3. Seasonal variations in the Rayleigh-to-Love wave ratio in the secondary microseism from colocated ring laser and seismograph

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André; Chow, Bryant

    2016-04-01

    Monthly variations in the ratio of Rayleigh-to-Love waves in the secondary microseism are obtained from a colocated ring laser and an STS-2 seismograph at Wettzell, Germany. Two main conclusions are derived for the Rayleigh-to-Love wave kinetic energy ratios in the secondary microseism; first, the energy ratio is in the range 0.8-0.9 (<1.0) throughout a year except for June and July. It means that Love wave energy is larger than Rayleigh wave energy most of the year by about 10-20%. Second, this ratio suddenly increases to 1.0-1.2 in June and July, indicating a larger fraction of Rayleigh wave energy. This change suggests that the locations and behaviors of excitation sources are different in these months.

  4. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations

    USGS Publications Warehouse

    Tsai, V.C.

    2011-01-01

    It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model

  5. Generation of the cosmic rays flux variations due to surfatron acceleration of charges by electromagnetic waves in space plasma

    NASA Astrophysics Data System (ADS)

    Erokhin, Nikolay; Loznikov, Vladimir; Shkevov, Rumen; Zolnikova, Nadezhda; Mikhailovskaya, Ludmila

    2016-07-01

    The analysis of experimental data on the spectra of cosmic rays (CR) has shown their variability on time scales of a few years, in particular, CR variations observed in E / Z range from TeV to 10000 TeV, where E is the energy of the particle, Z is its charge number. Consequently, the source of these variations must be located at a distance of no more than 1 parsec from the sun in the closest local interstellar clouds. As a mechanism of such variations appearance it is considered the surfatron acceleration of CR particles by electromagnetic wave in a relatively quiet space plasma. On the basis of developed model the numerical calculations were performed for particle capture dynamics (electrons, protons, helium and iron nuclei) in the wave effective potential well with a following growth their energy by 3-6 orders of magnitude. Optimal conditions for the implementation of charged particles surfatron acceleration in space plasma, the rate of trapped particles energy growth, the dynamics of wave phase on the captured particle trajectory, a temporal dynamics of components for charge impulse momentum and speed were studied. It is indicated that the capture of a small fraction of particles by wave for energies about TeV and less followed by their surfatron acceleration to an energy of about 10000 TeV will lead to a significant increase in the CR flux at such high energies. Thus CL flow variations are conditioned by changes in the space weather parameters

  6. Stochastic Variation of Transient-wave Phase Speed: Effect on Forecast Ensemble Performance

    NASA Astrophysics Data System (ADS)

    McLay, J.; Hodyss, D.; Hansen, J.; Reynolds, C.; Bishop, C.

    2011-12-01

    Operational numerical weather prediction (NWP) models continue to produce substantial errors in the propagation of transient waves, e.g. phase errors of O(100km) at the 120h lead time in the case of synoptic extratropical cyclones (Froud 2009). The first part of this study examines the distribution of propagation speed errors for transient 500 hPa geopotential height anomalies in the Northern Hemisphere winter using two independent methods: A feature-shifting anomaly-correlation (AC) optimization method (after Brewster 2003 and Jablonowski and Williamson 2006), and a gradient-based AC optimization method. Among the findings, both methods are consistent in indicating that the spatio-temporal variance of the speed error distribution is substantial, and that the mean of the distribution is often not significantly different from zero. This implies that the speed error cannot be treated as a bias, but rather must be treated as a stochastic quantity. Based on this finding, the second part of this study tests the idea of stochastic variation of transient-wave phase speed in the framework of a 20-member forecast ensemble generated using the local ensemble transform (ET) technique in conjunction with a global spectral NWP model. A multivariate, spatially correlated Gaussian advective forcing is incorporated into the NWP integration, where the statistics of the forcing are guided by the aforementioned speed-error estimation results. The effect of the forcing on the forecast-ensemble performance is evaluated as a function of various distribution parameters including autoregression coefficient, mean, variance, and spatial correlation length scale.

  7. Dust-acoustic solitary waves and double layers in a magnetized dusty plasma with nonthermal ions and dust charge variation

    SciTech Connect

    El-Taibany, W.F.; Sabry, R.

    2005-08-15

    The effect of nonthermal ions and variable dust charge on small-amplitude nonlinear dust-acoustic (DA) waves is investigated. It is found that both compressive and rarefactive solitons exist and depend on the nonthermal parameter a. Using a reductive perturbation theory, a Zakharov-Kuznetsov (ZK) equation is derived. At critical value of a, a{sub c}, a modified ZK equation with third- and fourth-order nonlinearities, is obtained. Depending on a, the solution of the evolution equation reveals whether there is coexistence of both compressive and rarefactive solitary waves or double layers (DLs) with the possibility of their two kinds. In addition, for certain plasma parameters, the solitary wave disappears and a DL is expected. The variation of dust charge number, wave velocity, and soliton amplitude and its width against system parameters is investigated for the DA solitary waves. It is shown that the incorporation of both the adiabatic dust-charge variation and the nonthermal distributed ions modifies significantly the nature of DA solitary waves and DA DLs. The findings of this investigation may be useful in understanding the ion acceleration mechanisms close to the Moon and also enhances our knowledge on pickup ions around unmagnetized bodies, such as comets, Mars, and Venus.

  8. Long-term variations of atmospheric wave activity in the mesosphere and lower thermosphere region over the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Tsuda, T.; Yoshida, S.; Isoda, F.; Nakamura, T.; Nuryanto, A.; Manurung, S.; Sobari, O.; Vincent, R. A.; Reid, I. M.

    2002-05-01

    We have analyzed long-term variations of the wind velocity variance of ultra-fast Kelvin (UFK) waves (3.0-3.8d) and gravity waves in two wave period ranges; 30-35h (0.7-0.8c/d) and 8-11h(2.1-2.9c/d), in the equatorial mesosphere and lower thermosphere region using meteor wind radar (MWR) observations in Jakarta (JKT) (6°S107°E) from November 1992 to June 1998, as well as two medium frequency (MF) radars at Christmas Island (2°N157°W) and Pontianak (0.03°N109°E) from January 1996 to July 1997. The long-term variations of the wind variance of these waves at JKT showed enhancements twice a year in 1993-1995, mostly coinciding with the westward wind phase of MSAO or the transition period of MSAO from eastward to westward wind. The activity of both UFK and gravity waves became significantly weak in 1996-1997. In particular, the UFK wave variance became simultaneously smaller at JKT and the two MF radar sites, indicating that this peculiar event had a global scale.

  9. Variation of Seismic Coda Wave Attenuation in the Garhwal Region, Northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Tripathi, Jayant N.; Singh, Priyamvada; Sharma, Mukat L.

    2012-01-01

    Seismic coda wave attenuation ( Q_{text{c}}^{ - 1} ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250 km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( Q_{text{c}}^{ - 1} ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28 Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( Q_{text{c}}^{ - 1} ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( Q_{text{c}}^{ - 1} left( f right) = Q0^{ - 1} f^{ - n} ). The Q 0 ( Q c at 1 Hz) estimates vary from about 50 for a 10 s lapse time and 10 s window length, to about 350 for a 60 s lapse time and 60 s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q {c/-1} values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.

  10. In-vitro model for evaluation of pulse oximetry

    NASA Astrophysics Data System (ADS)

    Vegfors, Magnus; Lindberg, Lars-Goeran; Lennmarken, Claes; Oberg, P. Ake

    1991-06-01

    An in vitro model with blood circulating in a silicon tubing system and including an artificial arterial bed is an important tool for evaluation of the pulse oximetry technique. The oxygen saturation was measured on an artificial finger using a pulse oximeter (SpO2) and on blood samples using a hemoximeter (SaO2). Measurements were performed at different blood flows and at different blood hematocrits. An increase in steady as well as in pulsatile blood flow was followed by an increase in pulse oximeter readings and a better agreement between SpO2 and SaO2 readings. After diluting the blood with normal saline (decreased hematocrit) the agreement was further improved. These results indicate that the pulse oximeter signal is related to blood hematocrit and the velocity of blood. The flow-related dependance of SpO2 was also evaluated in a human model. These results provided evidence that the pulse oximeter signal is dependent on vascular changes.

  11. Reflection and transmission pulse oximetry during compromised peripheral perfusion.

    PubMed

    Pälve, H

    1992-01-01

    The performance of a reflection pulse oximeter and a transmission pulse oximeter was assessed during open-heart surgery when cardiac output, peripheral temperature, pulse pressure, and systolic pressure were low and vascular resistance was high. Before and after extracorporeal circulation (ECC) there was no difference in ability of the sensors to obtain readings and no difference in the accuracy of those readings. During partial ECC, especially after coronary artery bypass grafting, the reflection sensor gave readings earlier and at a lower pulse pressure. In addition, the transmission sensor failed to give any readings for 2 patients on partial ECC, for whom the reflection sensor did give readings. The accuracy of heart rate (HR) data was comparable for both sensors before ECC; however, during partial ECC, the reflection sensor tended to give values closer to the electrocardiographic HR. The accuracy of saturation data given by the reflection oximeter was comparable to that of the transmission oximeter. It is concluded that the accuracy of the saturation and HR data provided by the two methods of pulse oximetry are comparable, but that the reflection sensor is more likely to obtain readings under conditions of poorer peripheral circulation. PMID:1538246

  12. All-organic optoelectronic sensor for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Lochner, Claire M.; Khan, Yasser; Pierre, Adrien; Arias, Ana C.

    2014-12-01

    Pulse oximetry is a ubiquitous non-invasive medical sensing method for measuring pulse rate and arterial blood oxygenation. Conventional pulse oximeters use expensive optoelectronic components that restrict sensing locations to finger tips or ear lobes due to their rigid form and area-scaling complexity. In this work, we report a pulse oximeter sensor based on organic materials, which are compatible with flexible substrates. Green (532 nm) and red (626 nm) organic light-emitting diodes (OLEDs) are used with an organic photodiode (OPD) sensitive at the aforementioned wavelengths. The sensor’s active layers are deposited from solution-processed materials via spin-coating and printing techniques. The all-organic optoelectronic oximeter sensor is interfaced with conventional electronics at 1 kHz and the acquired pulse rate and oxygenation are calibrated and compared with a commercially available oximeter. The organic sensor accurately measures pulse rate and oxygenation with errors of 1% and 2%, respectively.

  13. Reference values for pulse oximetry at high altitude

    PubMed Central

    Gamponia, M; Babaali, H; Yugar, F; Gilman, R

    1998-01-01

    OBJECTIVE—To determine reference values for oxygen saturation (SaO2) in healthy children younger than 5 years living at high altitude.
DESIGN—One hundred and sixty eight children were examined for SaO2 at 4018 m during well child visits. Physiological state was also noted during the examination.
RESULTS—The mean SaO2 was 87.3% (95% confidence intervals (CI) 86.7%, 87.9%) with a median value of 87.7%. A significant difference was observed in SaO2 between children younger than 1 year compared with older children, although the difference was no longer demonstrable when sleeping children were excluded.
CONCLUSIONS—This study has provided a reference range of SaO2 values for healthy children under 5 years old so that pulse oximetry may be used as an adjunct in diagnosing acute respiratory infections. Younger children were also shown to have a lower mean SaO2 than older children living at high altitude, which suggests physiological adaptation to high altitude over time. In addition, sleep had a lowering effect on SaO2, although the clinical importance of this remains undetermined.

 PMID:9659095

  14. The nonadiabatic dust charge variation on dust acoustic solitary and shock waves in strongly coupled dusty plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Yunliang; Guo, Xiaoyan; Lu, Yanzhen; Wang, Xiaodan

    2016-01-01

    The combined effects of nonadiabatic dust charge fluctuation and strongly coupled dust particles on the nonlinear propagation of dust acoustic (DA) waves in dusty plasma consisting of nonthermal electrons and trapped ions with vortex-like distribution are presented here. We use generalized viscoelastic hydrodynamic model for dust particles. In the weak nonlinearity limit, a modified Korteweg-de Vries (KdV) equation with a damping term and a KdV-Burger equation have been derived in the kinetic regime and hydrodynamic regime, respectively. The approximate analytical solitary solution of modified KdV equation is derived in the weak nonadiabatic dust charge variation limit, which shows that the amplitude of DA solitary waves decreases with time. The presence of viscosity due to strong coupling stands for the formation of DA shock waves in the hydrodynamic regime. The results show that the DA shock waves will be oscillating one for weak viscosity and will become monotonic ones for large viscosity.

  15. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings.

    PubMed

    Floyd, Jessica; Wu, Lindsey; Hay Burgess, Deborah; Izadnegahdar, Rasa; Mukanga, David; Ghani, Azra C

    2015-12-01

    It is estimated that pneumonia is responsible for 15% of childhood deaths worldwide. Recent research has shown that hypoxia and malnutrition are strong predictors of mortality in children hospitalized for pneumonia. It is estimated that 15% of children under 5 who are hospitalized for pneumonia have hypoxaemia and that around 1.5 million children with severe pneumonia require oxygen treatment each year. We developed a deterministic compartmental model that links the care pathway to disease progression to assess the impact of introducing pulse oximetry as a prognostic tool to distinguish severe from non-severe pneumonia in under-5 year olds across 15 countries with the highest burden worldwide. We estimate that, assuming access to supplemental oxygen, pulse oximetry has the potential to avert up to 148,000 deaths if implemented across the 15 countries. By contrast, integrated management of childhood illness alone has a relatively small impact on mortality owing to its low sensitivity. Pulse oximetry can significantly increase the incidence of correctly treated severe cases as well as reduce the incidence of incorrect treatment with antibiotics. We also found that the combination of pulse oximetry with integrated management of childhood illness is highly cost-effective, with median estimates ranging from US$2.97 to $52.92 per disability-adjusted life year averted in the 15 countries analysed. This combination of substantial burden reduction and favourable cost-effectiveness makes pulse oximetry a promising candidate for improving the prognosis for children with pneumonia in resource-poor settings.

  16. Longitudinal frequency variation of long-lasting EMIC Pc1-Pc2 waves localized in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kim, K.-H.; Shiokawa, K.; Mann, I. R.; Park, J.-S.; Kwon, H.-J.; Hyun, K.; Jin, H.; Connors, M.

    2016-02-01

    Long-lasting (> 20 h) electromagnetic ion cyclotron (EMIC) Pc1-Pc2 waves were observed by the Athabasca (L =˜ 4.6) induction magnetometer and Canadian Array for Realtime Investigations of Magnetic Activity (L =˜ 4-6) fluxgate magnetometers on 5 April 2007. These waves showed a systematic frequency change with local time, the minimum frequency near dusk, and the maximum frequency near dawn. Assuming the plasmapause as a potential source region of the waves, we estimated the plasmapause location from localized proton enhancement (LPE) events observed at NOAA-Polar Orbiting Environmental Satellites and METOP-2 satellites. We found that the longitudinal frequency variation of EMIC waves has a clear correlation with the estimated plasmapause location and that the waves are in the frequency band between the equatorial helium and oxygen gyrofrequencies at the estimated plasmapause. With our analysis results we suggest that the LPE events are caused by wave-particle interaction with the helium band EMIC waves generated near the plasmapause.

  17. Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code

    SciTech Connect

    Becoulet, A.; Moreau, D.

    1992-04-01

    Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, {kappa}{perpendicular}, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the {kappa}{perpendicular} upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 {times} 10{sup 19} A m{sup {minus}2}W{sup {minus}1} if one considers only the effective power going to the electrons.

  18. New ear sensor for mobile, continuous and long term pulse oximetry.

    PubMed

    Buschmann, Johannes P; Huang, Jin

    2010-01-01

    Pulse oximetry is a valuable monitoring technology used at present mainly for immobile patients. The reason for the limitation concerning the user's mobility is due principally to unsuitable sensors and sensor locations. This is particularly the case with finger sensors, which tend to work best in respect to signal quality i.e. modulation depth, but are quite susceptible to motion artifacts. In order to achieve mobility for pulse oximetry monitoring, an ear canal sensor was developed. This area was chosen based on the assumption that intensive movement and acceleration of this part of the body is generally avoided as it produces unpleasant feelings.

  19. Implications of Using Pulse Oximetry to Screen for Critical Congenital Heart Disease in Newborns.

    PubMed

    Andrea, Joan

    2015-01-01

    In recent years, pulse oximetry screening for critical congenital heart disease (CCHD) in newborns has been added to the list of recommended uniform screening panels and recommended by several health care organizations. Most states use pulse oximetry to screen for CCHD. Studies have identified problems with compliance and higher failure rate at moderate altitudes than at sea level, suggesting the need for alternate algorithms. Altitude, time, health status of newborns and type of cardiac defect appear to affect results. Early detection of CCHD improves health outcomes and reduces morbidity and mortality. Barriers to screening include out-of-hospital births, cost and knowledge deficits among health care professionals.

  20. Pulse Oximetry in the Physics Lab: A Colorful Alternative to Traditional Optics Curricula

    NASA Astrophysics Data System (ADS)

    Kutschera, Ellynne; Dunlap, Justin C.; Byrd, Misti; Norlin, Casey; Widenhorn, Ralf

    2013-11-01

    We designed a physics laboratory exercise around pulse oximetry, a noninvasive medical technique used to assess a patient's blood oxygen saturation. An alternative to a traditional optics and light lab, this exercise teaches the principles of light absorption, spectroscopy, and the properties of light, while simultaneously studying a common medical device. Pulse oximeters are ubiquitous in clinical environments; many people who have undergone surgery or visited a hospital environment have experienced the use of this device, making it a good candidate for an investigative lab. The experiment elicits the creative process of device development from students as they conduct measurements using a blood analog that reconstructs the principles of pulse oximetry.

  1. P wave signals retrieved from noise cross correlation function and their seasonal variation observed in southwest China

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ni, S.; Wang, B.

    2013-12-01

    The noise cross correlation technique is a breakthrough in imaging the earth's structure and monitoring temporal variation using continuous seismic records. Compared to the fundamental mode surface waves which show up coherently in most noise correlation functions (NCF), body waves are difficult to retrieve but provide essential information of Earth's deep interior. By cross correlating five year continuous seismic records at 88 stations located in southwest China, strong signals with high apparent velocities are observed in the NCF(Noise Cross-correlation Function)) in the secondary microseism frequency band. Polarization analysis of these signals using three component NCFs indicates that these signals are P waves and they originate from coherent teleseismic body wave type noise. Moreover, these P type signals have positive or negative arrival time at specified paths in different seasons, from which we hypothesize that these P wave signals are generated from different source locations in different seasons. The locations of these sources may be related to the ocean activity and its interaction with local bathymetry. Further work on locating these sources will help to understand its generation mechanism and to retrieve P wave Green's Function which will improve deep Earth imaging substantially.

  2. Decomposing variations of geopotential height in the troposphere and stratosphere into stationary and travelling waves

    NASA Astrophysics Data System (ADS)

    Guryanov, Vladimir; Eliseev, Alexey

    2016-07-01

    The ERA-Interim geopotential height in the Northern Hemisphere from November to March, 1992-2015 in the layer from between pressure levels 1000 mb and 1 mb is expanded into stationary and travelling zonal waves with zonal wavenumbers, k, from 1 to 10, and with periods, T, from 2 to 156 days (the so called Hayashi spectra). Among the studied waves, the largest amplitude is attained by the stationary and travelling waves with zonal wavenumber k=1 and with periods from 3 to 4 weeks in the upper stratosphere over the latitudinal belt 60-70oN. The stationary waves with k from 1 to 3 and with T from 2 to 3 weeks are most pronounced in the stratosphere. In turn, the largest amplitudes of the travelling waves with zonal wavenumbers k ≥ 5 are found in the troposphere. The dominant periods of the latter waves are about 1 week or slightly higher, and this dominant period basically decrease with increasing wavenumber. In the upper stratosphere, the eastward travelling waves generally dominate over westward ones. The only exception is the longest zonal mode with k=1, for which the amplitude of the westward travelling wave is larger than that for the eastward one. The period of the travelling waves dominating in the upper stratosphere is close to 3 weeks. In the upper troposphere, the amplitudes of the eastward waves with k from 4 to 10 is several-fold larger than those for their westward counterparts. The latter is reflected in the larger average wavenumber of the eastward travelling wave in comparison to that of the westarward one. The period of the gravest of the dominant travelling waves in the upper troposphere is close to one week, and it decreases to 2-4 days for the dominant travelling waves with k=8-10.

  3. Effects of water depth and spectral bandwidth on Stokes drift estimation based on short-term variation of wave conditions

    NASA Astrophysics Data System (ADS)

    Myrhaug, Dag; Wang, Hong; Holmedal, Lars Erik

    2016-04-01

    The Stokes drift represents an important transport component of ocean circulation models. Locally it is responsible for transport of e.g. contaminated ballast water from ships, oil spills, plankton and larvae. It also plays an important role in mixing processes across the interphase between the atmosphere and the ocean. The Stokes drift is the mean Lagrangian velocity obtained from the water particle trajectory in the wave propagation direction; it is maximum at the surface, decreasing rapidly with the depth below the surface. The total mean mass transport is obtained by integrating the Stokes drift over the water depth; this is also referred to as the volume Stokes transport. The paper provides a simple analytical method which can be used to give estimates of the Stokes drift in moderate intermediate water depth based on short-term variation of wave conditions. This is achieved by using a joint distribution of individual wave heights and wave periods together with an explicit solution of the wave dispersion equation. The mean values of the surface Stokes drift and the volume Stokes transport for individual random waves within a sea state are presented, and the effects of water depth and spectral bandwidth parameter are discussed. Furthermore, example of results corresponding to typical field conditions are presented to demonstrate the application of the method, including the Stokes drift profile in the water column beneath the surface. Thus, the present analytical method can be used to estimate the Stokes drift in moderate intermediate water depth for random waves within a sea state based on available wave statistics.

  4. Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1991-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.

  5. Pulse Oximetry in the Physics Lab: A Colorful Alternative to Traditional Optics Curricula

    ERIC Educational Resources Information Center

    Kutschera, Ellynne; Dunlap, Justin C.; Byrd, Misti; Norlin, Casey; Widenhorn, Ralf

    2013-01-01

    We designed a physics laboratory exercise around pulse oximetry, a noninvasive medical technique used to assess a patient's blood oxygen saturation. An alternative to a traditional optics and light lab, this exercise teaches the principles of light absorption, spectroscopy, and the properties of light, while simultaneously studying a common…

  6. Differential cyanosis and undiagnosed eisenmenger's syndrome: The importance of pulse oximetry

    PubMed Central

    Sharma, Ashima; Parasa, Sujay Kumar; Gudivada, Kiran Kumar; Gopinath, Ramachandran

    2014-01-01

    Eisenmenger's physiology has significant anesthetic implications. The symptamology, in the early course of disease can be subtle at times and missed on regular PAC. Pulse oximetry, in our patient detected differential saturations. The possibility of underlying congenital cardiac illness was assumed, rescheduling of case was debated and finally the abnormal cardiac lesions were identified in ECHO in immediate postoperative period. PMID:25886232

  7. Desaturation Patterns Detected by Oximetry in a Large Population of Athletes

    ERIC Educational Resources Information Center

    Garrido-Chamorro, Raul P.; Gonzalez-Lorenzo, Marta; Sirvent-Belando, Jose; Blasco-Lafarga, Cristina; Roche, Enrique

    2009-01-01

    Optimal exercise performance in well trained athletes can be affected by arterial oxygen saturation failure. Noninvasive detection of this phenomenon when performing a routine ergometric test can be a valuable tool for subsequent planning of the athlete's training, recovery, and nutrition. Oximetry has been used to this end. The authors studied…

  8. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain.

    PubMed

    Jeon, Soo Hyung; Kim, Kyu Kon; Lee, In Seon; Lee, Yong Tae; Kim, Gyeong Cheol; Chi, Gyoo Yong; Cho, Hye Sook; Kang, Hee Jung; Kim, Jong Won

    2016-01-01

    Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n = 329) or a control group with little or no menstrual pain (n = 212). Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI) (p = 0.050) but significantly lower values for pulse wave energy (p = 0.021) and time to first peak from baseline (T1) (p = 0.035) in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance. PMID:27579304

  9. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain

    PubMed Central

    Jeon, Soo Hyung; Kim, Kyu Kon; Lee, In Seon; Lee, Yong Tae; Kim, Gyeong Cheol; Chi, Gyoo Yong; Cho, Hye Sook; Kang, Hee Jung

    2016-01-01

    Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n = 329) or a control group with little or no menstrual pain (n = 212). Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI) (p = 0.050) but significantly lower values for pulse wave energy (p = 0.021) and time to first peak from baseline (T1) (p = 0.035) in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance. PMID:27579304

  10. The seasonal variation of the D region as inferred from propagation characteristics of LF radio waves

    NASA Technical Reports Server (NTRS)

    Ishimine, T.; Ishii, T.; Echizenya, Y.

    1985-01-01

    The propagation data of JG2AS 40 kHz (Japanese Standard Frequency), Loran C 100 kHz radio waves, and meteorological data were analyzed to study the association of propagation characteristics of LF radio waves with the atmospheric circulation in the mesosphere. The monthly averaged electric fields were depicted on the complex plane for typical summer and winter months, June and November. The locus traced out by the electric field vector during daytime is nearly circular. This is because during daytime the amplitude of the sky wave remains nearly constant while its phase changes in accord with the height change of the reflection layer, and thus the electric field vector traces out a circular locus with its center at the tip of the supposed ground wave vector. The locus has a loop during the sunrise or sunset period, which seems to arise from interference of two waves reflected by two different layers. In June the amplitude of the sky wave decreases rapidly before the dawn or increases after the dusk. In November such rapid change is not observed. During nighttime, the sky wave phase changes in such a way as to suggest that the reflection height moves upwards with time before midnight or lowers after midnight in November. In June it changes similarly before midnight, but after midnight it varies erratically. These characteristics are closely related to the structure of the D region, which is clearly shown by simulating the loci traced out by electric fields.

  11. Should pulse oximetry be included in GPs’ assessment of patients with obstructive lung disease?

    PubMed Central

    Dalbak, Lene G.; Straand, Jørund; Melbye, Hasse

    2015-01-01

    Objective: To explore the associations between decreased pulse oximetry values (SpO2) and clinical, laboratory, and demographic variables in general practice patients diagnosed with asthma or chronic obstructive pulmonary disease (COPD), including those with both COPD and asthma in combination. Design/setting: A cross-sectional study in seven Norwegian general practices of patients aged 40 years or over who were diagnosed by their general practitioner (GP) with asthma and/or COPD. The patients were examined during a stable phase of their disease. Patients diagnosed with COPD (including those with combined COPD/asthma) and those diagnosed with asthma only were analysed separately. Main outcome measures: Decreased SpO2 values (≤ 95% and ≤ 92%). Results: Of 372 patients included (mean age 61.5 years, 62% women), 82 (22.0%) had SpO2 ≤ 95%, of which 11 had SpO2 ≤ 92%. In both asthma and COPD patients, SpO2 ≤ 95% was significantly associated with reduced lung function (spirometry), a diagnosis of coronary heart disease and older age (≥ 65 years). In the COPD group, haemoglobin above normal was associated with SpO2 ≤ 95%. These associations were confirmed by multivariable logistic regression, where FEV1% predicted < 50 was the strongest predictor of SpO2 ≤ 95% (odds ratio 6.8, 95% confidence interval 2.8–16.4). Conclusion. Pulse oximetry represents a useful diagnostic adjunct for assessing the severity of obstructive pulmonary disease. Decreased pulse oximetry values in stable-phase patients with asthma and/or COPD should prompt the GP to consider revising the diagnosis and treatment and to look for co-morbidities.Key PointsDespite its common use in general practice, the diagnostic benefits of pulse oximetry remain to be established.Decreased pulse oximetry values are associated with both reduced lung function (spirometry) and with a diagnosis of coronary heart disease.Decreased pulse oximetry values may reflect suboptimal

  12. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings.

    PubMed

    Floyd, Jessica; Wu, Lindsey; Hay Burgess, Deborah; Izadnegahdar, Rasa; Mukanga, David; Ghani, Azra C

    2015-12-01

    It is estimated that pneumonia is responsible for 15% of childhood deaths worldwide. Recent research has shown that hypoxia and malnutrition are strong predictors of mortality in children hospitalized for pneumonia. It is estimated that 15% of children under 5 who are hospitalized for pneumonia have hypoxaemia and that around 1.5 million children with severe pneumonia require oxygen treatment each year. We developed a deterministic compartmental model that links the care pathway to disease progression to assess the impact of introducing pulse oximetry as a prognostic tool to distinguish severe from non-severe pneumonia in under-5 year olds across 15 countries with the highest burden worldwide. We estimate that, assuming access to supplemental oxygen, pulse oximetry has the potential to avert up to 148,000 deaths if implemented across the 15 countries. By contrast, integrated management of childhood illness alone has a relatively small impact on mortality owing to its low sensitivity. Pulse oximetry can significantly increase the incidence of correctly treated severe cases as well as reduce the incidence of incorrect treatment with antibiotics. We also found that the combination of pulse oximetry with integrated management of childhood illness is highly cost-effective, with median estimates ranging from US$2.97 to $52.92 per disability-adjusted life year averted in the 15 countries analysed. This combination of substantial burden reduction and favourable cost-effectiveness makes pulse oximetry a promising candidate for improving the prognosis for children with pneumonia in resource-poor settings. PMID:26633766

  13. Models for electrostatic drift waves with density variations along magnetic field lines

    NASA Astrophysics Data System (ADS)

    Garcia, O. E.; Pécseli, H. L.

    2013-11-01

    Drift waves with vertical magnetic fields in gravitational ionospheres are considered where the unperturbed plasma density is enhanced in a magnetic flux tube. The gravitational field gives rise to an overall decrease of plasma density for increasing altitude. Simple models predict that drift waves with finite vertical wave vector components can increase in amplitude merely due to a conservation of energy density flux of the waves. Field-aligned currents are some of the mechanisms that can give rise to fluctuations that are truly unstable. We suggest a self-consistent generator or "battery" mechanism that in the polar ionospheres can give rise to magnetic field-aligned currents even in the absence of electron precipitation. The free energy here is supplied by steady state electric fields imposed in the direction perpendicular to the magnetic field in the collisional lower parts of the ionosphere or by neutral winds that have similar effects.

  14. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  15. Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lynch, James F; Pereselkov, Serguey; Siegmann, William L

    2005-02-01

    Broadband acoustic data (30-160 Hz) from the SWARM'95 experiment are analyzed to investigate acoustic signal variability in the presence of ocean internal waves. Temporal variations in the intensity of the received signals were observed over periods of 10 to 15 min. These fluctuations are synchronous in depth and are dependent upon the water column variability. They can be explained by significant horizontal refraction taking place when the orientation of the acoustic track is nearly parallel to the fronts of the internal waves. Analyses based on the equations of vertical modes and horizontal rays and on a parabolic equation in the horizontal plane are carried out and show interesting frequency-dependent behavior of the intensity. Good agreement is obtained between theoretical calculations and experimental data.

  16. Effects of planetary-scale waves on temporal wind variations in the Venusian thermosphere

    NASA Astrophysics Data System (ADS)

    Hoshino, N.; Fujiwara, H.; Takagi, M.; Takahashi, Y.; Kasaba, Y.

    2008-12-01

    In recent years, the importance of planetary-scale waves for dynamics of the Venusian upper atmosphere has been recognized. For example, Forbes and Knopliv [2007] suggested propagations of planetary-scale waves originated in the cloud deck to the thermosphere from reanalysis of the Magellan spacecraft data. In addition, recent simulation studies suggest importance of tidal waves for the superrotation in the Venusian cloud deck [Takagi and Matsuda, 2007]. Venus Climate Orbiter (VCO), which will be launched in 2010 as the second Japanese planetary mission, is expected to provide precious information about upward propagating planetary scale-waves which can't be obtained by Venus Express because of the polar orbit and the close-up observations. In order to understand effects of the planetary-scale waves propagating from the cloud top on the thermospheric circulation, we have developed a new general circulation model (GCM) which includes about 80-200 km altitude region. The GCM solves the primitive equations for momentum, energy and composition. The solar EUV heating, NIR heating and 15μm Radiative cooling are considered. We also consider O, CO and CO2 as the major composition of the Venusian mesosphere and thermosphere. The horizontal and vertical resolutions are 10° in longitude, 20° in latitude, and 0.5 scale height in altitude, respectively. In this study, we perform GCM simulations with use of global distributions of planetary-scale waves taking into account the recent simulation results [e.g., Takagi and Matsuda, 2007] and the past observations [e.g., Del genio and Rossow, 1990]. We will also develop a method for GCM simulations with the VCO data.

  17. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    NASA Technical Reports Server (NTRS)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  18. Propagation of ULF waves into mid-latitudes ionosphere directly driven by solar wind dynamic pressure variations

    NASA Astrophysics Data System (ADS)

    Matsushita, T.; Seki, K.; Nishitani, N.; Hori, T.; Teramoto, M.; Kikuchi, T.; Miyoshi, Y.; Reme, H.; Singer, H. J.

    2012-12-01

    this time delay of the arrival is consistent with the fast mode propagation. The global coherence of the power spectra and its similarity to the dynamic pressure fluctuation in the magsnetosheath indicate that the ULF waves are directly driven by solar wind dynamic pressure variations, because it is difficult to explain this similarity with the Kelvin-Helmholtz instability. In addition, we report a statistical analysis of ULF wave event observed by the SuperDARN Hokkaido HF radar in 2007. According to this analysis, this kind of large-amplitude ULF events under low-speed solar wind condition is not frequently seen and most of the ULF events at mid-latitude ionosphere correspond to the high-speed solar wind condition.

  19. Gutzwiller variational wave function for multiorbital Hubbard models in finite dimensions

    NASA Astrophysics Data System (ADS)

    Münster, Kevin zu; Bünemann, Jörg

    2016-07-01

    We develop a diagrammatic method for the evaluation of general multiband Gutzwiller wave functions in finite dimensions. Our approach provides a systematic improvement of the widely used Gutzwiller approximation. As a first application, we investigate itinerant ferromagnetism and correlation-induced deformations of the Fermi surface for a two-band Hubbard model on a square lattice.

  20. Seascape-level variation in turbulence- and wave-generated hydrodynamic signals experienced by plankton

    NASA Astrophysics Data System (ADS)

    Fuchs, Heidi L.; Gerbi, Gregory P.

    2016-02-01

    Plankton exhibit diverse and dramatic responses to fluid motions, and these behaviors are likely critical for survival and fitness. Fluid motions can be generated by organisms or by physical processes, including turbulence and surface gravity waves. Physical processes vary geographically in their intensity and generate hydrodynamic signals experienced by plankton as fluid forces on their sensory receptors. In this synthesis, we review how turbulence and waves vary in space, the scales and statistics of their motions, and the forces exerted on plankton. We then quantify the hydrodynamic signals produced by turbulence and waves in four seascape types - surf zones, inlets and estuaries, the continental shelf, and the open ocean - using published dissipation rates, wind and wave data from buoys, and observations from two coastal sites in Massachusetts, USA. We relate these geographic patterns in signals to the observed behaviors of example species and to the forces sensed by typical plankters with different receptor types. Turbulence-generated shears are largest in the surf zone, inlets and estuaries, while wave-generated accelerations are larger offshore; as a result, each seascape exhibits some range of combined shears and accelerations that is distinct. These signals generate forces on plankton that vary among habitats and with plankton size and swimming speed. Spatial patterns in fluid forces create a potential mechanism for dispersing larvae to distinguish habitats by their hydrodynamic signatures. However, turbulence can be strong in all seascapes and may cause widespread interference in signaling among predators and prey. Plankton with a single receptor type could identify nearshore habitats, while those with multiple receptor types potentially could distinguish inshore vs. offshore seascapes or decode signals produced by physical processes and by other organisms.

  1. Variation in high-frequency wave radiation from small repeating earthquakes as revealed by cross-spectral analysis

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Norishige; Uchida, Naoki; Matsuzawa, Toru; Okada, Tomomi; Nakajima, Junichi; Matsushima, Takeshi; Kono, Toshio; Hirahara, Satoshi; Nakayama, Takashi

    2016-11-01

    We examined the variation in the high-frequency wave radiation for three repeating earthquake sequences (M = 3.1-4.1) in the northeastern Japan subduction zone by waveform analyses. Earthquakes in each repeating sequence are located at almost the same place and show low-angle thrust type focal mechanisms, indicating that they represent repeated ruptures of a seismic patch on the plate boundary. We calculated cross-spectra of the waveforms and obtained the phases and coherences for pairs of events in the respective repeating sequences in order to investigate the waveform differences. We used waveform data sampled at 1 kHz that were obtained from temporary seismic observations we conducted immediately after the 2011 Tohoku earthquake near the source area. For two repeating sequences, we found that the interevent delay times for the two waveforms in a frequency band higher than the corner frequencies are different from those in a lower frequency band for particular event pairs. The phases and coherences show that there are coherent high-frequency waves for almost all the repeaters regardless of the high-frequency delays. These results indicate that high-frequency waves are always radiated from the same vicinity (subpatch) for these events but the time intervals between the ruptures of the subpatch and the centroid times can vary. We classified events in the sequence into two subgroups according to the high-frequency band interevent delays relative to the low-frequency band. For one sequence, we found that all the events that occurred just after (within 11 days) larger nearby earthquakes belong to one subgroup while other events belong to the other subgroup. This suggests that the high-frequency wave differences were caused by stress perturbations due to the nearby earthquakes. In summary, our observations suggest that high-frequency waves from the repeating sequence are radiated not from everywhere but from a long-duration subpatch within the seismic slip area. The

  2. Pulse oximetry error in a patient with a Santa Ana haemoglobinopathy.

    PubMed

    Robertson, Alistair; Rahemtulla, Amin

    2016-01-01

    A young man with a rare unstable haemoglobinopathy presented with a high fever, worsening shortness of breath and abdominal pain. At triage his pulse oximetry (SpO2) suggested that his blood oxygen saturation was 84% at room air. However, an arterial blood gas (ABG) oxygen saturation reading (SaO2) was 100%. The significant disparity between the two measurements demonstrates that using pulse oximetry in some unstable haemoglobinopathies may significantly underestimate the actual reading. This error is most probably due to the structural differences in the variant haemoglobin causing light to be absorbed at a different wavelength beyond the normal range of the oximeter. Haemoglobinopathies affect about 7% of the world's population and is often asymptomatic; so, there may be many more undiagnosed cases. Therefore, clinicians may confirm low SpO2 readings with an ABG and, where there is significant disparity with no obvious extrinsic cause, they should consider haemoglobinopathies. PMID:27599809

  3. An analysis on the theory of pulse oximetry by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Fan, Shangchun; Cai, Rui; Xing, Weiwei; Liu, Changting; Chen, Guangfei; Wang, Junfeng

    2008-10-01

    The pulse oximetry is a kind of electronic instrument that measures the oxygen saturation of arterial blood and pulse rate by non-invasive techniques. It enables prompt recognition of hypoxemia. In a conventional transmittance type pulse oximeter, the absorption of light by oxygenated and reduced hemoglobin is measured at two wavelength 660nm and 940nm. But the accuracy and measuring range of the pulse oximeter can not meet the requirement of clinical application. There are limitations in the theory of pulse oximetry, which is proved by Monte Carlo method. The mean paths are calculated in the Monte Carlo simulation. The results prove that the mean paths are not the same between the different wavelengths.

  4. Theoretical considerations to optimize transabdominal monitoring of fetal arterial blood oxygenation using pulse oximetry

    NASA Astrophysics Data System (ADS)

    Zourabian, Anna; Boas, David A.

    2001-06-01

    Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are: the first in the range of 670-720nm and the second in the range of 825-925nm. Further we discuss the possible systematic errors during our measurements, and their contribution to the obtained saturation results.

  5. Pulse oximetry: A reliable and cost effective screening tool in children with pneumonia for developing countries.

    PubMed

    Hamid, Muhammad Akhter; Chandna, Ayesha; Siddiqui, Sohaib; Fayyaz, Jabeen

    2016-08-01

    The infant mortality rates are high in developing countries and, according to World Health Organisation (WHO), statistics show that the main contributors are acute respiratory infections and pneumonia. In children hypoxaemia is an ominous sign associated with respiratory tract infections. Hypoxia can be detected easily with pulse oximetry. It is a non-invasive, readily available and cost-effective way to identify hypoxaemia. If we identify hypoxaemia at the primary care level, especially in a low-income setting, we can make early referral to tertiary care settings. This will subsequently have a positive impact in saving lives. A detailed search of Medline database was conducted through PubMed from 1990 to date, to review the literature on the usefulness of pulse oximetry at primary care centres in developing countries. Such information will become vital in formulating guidelines for income-poor countries in order to stratify high-risk children with hypoxaemia. PMID:27524539

  6. Variation of shear and compressional wave modulus upon saturation for pure pre-compacted sands

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. H.; Holt, R. M.

    2016-07-01

    Gassmann's fluid substitution theory is commonly used to predict seismic velocity change upon change in saturation, and is hence essential for 4-D seismic and AVO studies. This paper addresses the basics assumptions of the Gassmann theory, in order to see how well they are fulfilled in controlled laboratory experiments. Our focus is to investigate the sensitivity of shear modulus to fluid saturation, and the predictability of Gassmann's fluid substitution theory for P-wave modulus. Ultrasonic P- and S-wave velocities in dry and saturated (3.5 wt per cent NaCl) unconsolidated clean sands (Ottawa and Columbia) were measured in an oedometer test system (uniaxial strain conditions) over a range of 0.5-10 MPa external vertical stress. This study shows shear modulus hardening upon brine saturation, which is consistent with previous data found in the literature. Analysis of the data shows that most of the hardening of the ultrasonic shear modulus may be explained by Biot dispersion. Isotropic Gassmann's fluid substitution is found to underestimate the P-wave modulus upon fluid saturation. However, adding the Biot dispersion effect improves the prediction. More work is required to obtain good measurements of parameters influencing dispersion, such as tortuosity, which is very ambiguous and challenging to measure accurately.

  7. Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.

    2014-01-01

    Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  8. Monthly variation of some parameters about internal solitary waves in the South China sea

    NASA Astrophysics Data System (ADS)

    Cai, Shuqun; Xie, Jieshuo; Xu, Jiexin; Wang, Dongxiao; Chen, Zhiwu; Deng, Xiaodong; Long, Xiaomin

    2014-02-01

    In this paper, by non-dimensional analysis, it is found that finite-depth theory is more appropriate to the study of internal solitary waves (ISWs) in the South China Sea (SCS) than shallow-water theory. The 1-degree grid data of monthly mean temperature and salinity data at standard levels in the SCS are used to solve the linearized vertical eigenvalue problem. The nonlinear parameter and the wave phase speed are computed, then the nonlinear phase speed and the characteristic half-width of ISWs are calculated respectively by two different theories to investigate the difference between these two parameters in the SCS. The nonlinearity is the strongest near the continental slope of the SCS or islands where the bottom topography changes sharply, it is stronger in summer than that in winter; it increases (decreases) as pycnocline depth deepens (shallows), stratification strengthens (weakens) and pycnocline thickness thins (thickens). The nonlinear wave phase speed and the characteristic half-width are the largest in deep sea area, they then reduce peripherally in shallower water. The nonlinear wave phase speed in the SCS changes slightly with time, but the characteristic half-width changes somewhat larger with time. In most of the SCS basin, the nonlinear wave phase speed derived from shallow-water theory is very close to that derived from finite-depth theory, but the characteristic half-width derived from shallow-water theory is about 0.2-0.6 times larger than that derived from finite-depth theory. The ISW induced horizontal current velocity derived from shallow-water theory is larger than that derived from finite-depth theory. Some observed and numerical modeled ISW characteristic half-widths are compared with those derived from shallow-water and finite-depth theories, respectively. It is shown that, the characteristic half-widths derived from finite-depth theory agree better with observational and numerical modeled results than those derived from shallow

  9. [Postoperative monitoring of microvascular flap repair with pulse oximetry--initial experience].

    PubMed

    Strauss, J M; Neukam, F W; Krohn, S; Schmelzeisen, R; Borchard, F

    1994-03-01

    The surgical success of microvascular free flaps or pedicled flaps depends on the function of the nutritive vessels. Complications such as thrombosis or vessel kinking, are dangerous and may result in flap loss. During the last decade, different methods were tested for their capability of monitoring flap perfusion. We report our preliminary experience with the continuous and non-invasive pulse oximetry by using a special reflection sensor positioned on the surface of the flap. PMID:8020852

  10. Optimal spacing between transmitting and receiving optical fibres in reflectance pulse oximetry

    NASA Astrophysics Data System (ADS)

    Hickey, M.; Kyriacou, P. A.

    2007-10-01

    Splanchnic ischaemia can ultimately lead to cellular hypoxia and necrosis, and may well contribute to the development of multiple organ failures and increased mortality. Therefore, it is of utmost importance to monitor abdominal organ blood oxygen saturation (SpO2). Pulse oximetry has been widely accepted as a reliable method for monitoring oxygen saturation of arterial blood. Animal studies have also shown it to be effective in the monitoring of blood oxygen saturation in the splanchnic region. However, commercially available pulse oximeter probes are not suitable for the continuous assessment of SpO2 in the splanchnic region. Therefore, there is a need for a new sensor technology that will allow the continuous measurement of SpO2 in the splanchnic area pre-operatively, operatively and post-operatively. For this purpose, a new fibre optic sensor and processing system utilising the principle of reflectance pulse oximetry has been developed. The accuracy in the estimation of SpO2 in pulse oximetry depends on the quality and amplitude of the photoplethysmographic (PPG) signal and for this reason an experimental procedure was carried out to examine the effect of the source-detector separation distance on the acquired PPG signals, and to ultimately select an optimal separation for the final design of the fibre-optic probe. PPG signals were obtained from the finger for different separation distances between the emitting and detecting fibres. Good quality PPG signals with large amplitudes and high signal-to-noise ratio were detected in the range of 3mm to 6mm. At separation distances between 1mm and 2mm, PPG signals were erratic with no resemblance to a conventional PPG signal. At separation distances greater than 6mm, the amplitudes of PPG signals were very small and not appropriate for processing. This investigation indicates the suitability of optical fibres as a new pulse oximetry sensor for estimating blood oxygen saturation (SpO2) in the splanchnic region.

  11. A rapid Look-Locker imaging sequence for quantitative tissue oximetry

    NASA Astrophysics Data System (ADS)

    Vidya Shankar, Rohini; Kodibagkar, Vikram D.

    2015-03-01

    Tissue oximetry studies using magnetic resonance imaging are increasingly contributing to advances in the imaging and treatment of cancer. The non-invasive measurement of tissue oxygenation (pO2) may facilitate a better understanding of the pathophysiology and prognosis of diseases, particularly in the assessment of the extensive hypoxic regions associated with cancerous lesions. The availability of tumor hypoxia maps could help quantify and predict tumor response to intervention and therapy. The PISTOL (Proton Imaging of Siloxanes to map Tissue Oxygenation Levels) oximetry technique maps the T1 of administered hexamethyldisiloxane (HMDSO), an 1H NMR pO2 reporter molecule in about 3 ½ min. This allows us to subsequently monitor static and dynamic changes in the tissue pO2 (in response to intervention) at various locations due to the linear relationship between 1/T1 and pO2. In this work, an HMDSO-selective Look-Locker imaging sequence with EPI readout has been developed to enable faster PISTOL acquisitions. The new sequence incorporates the fast Look-Locker measurement method to enable T1, and hence, pO2 mapping of HMDSO in under one minute. To demonstrate the application of this pulse sequence in vivo, 50 μL of neat HMDSO was administered to the thigh muscle of a healthy rat (Fischer F344, n=4). Dynamic changes in the mean pO2 of the thigh muscle were measured using both PISTOL and the developed LL oximetry sequence in response to oxygen challenge and compared. Results demonstrate the efficacy of the new sequence in rapidly mapping the pO2 changes, leading to advances in fast quantitative 1H MR oximetry.

  12. The effect of simulated cataract light scatter on retinal vessel oximetry.

    PubMed

    Patel, Sunni R; Hudson, Chris; Flanagan, John G; Heitmar, Rebekka

    2013-11-01

    To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel blood oxygen saturation measurements using poly-bead solutions of varying concentrations. Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intraocular pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography (Oximetry Module, Imedos Systems, Germany). To simulate light scatter, cells comprising a plastic collar and two plano lenses were filled with solutions of differing concentrations (0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA). The adopted light scatter model showed an artifactual increase in venous optical density ratio (p = 0.036), with the 0.004% condition producing significantly higher venous optical density ratio values when compared to images without a cell in place. Spectrophotometric analysis, and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter.

  13. Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry

    NASA Astrophysics Data System (ADS)

    Zourabian, Anna; Siegel, Andrew M.; Chance, Britton; Ramanujam, Nirmala; Rode, Martha; Boas, David A.

    2000-10-01

    Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both the fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are the first in the range of 670 - 720 nm and the second in the range of 825 - 925 nm. Further, we discuss the possible systematic errors during our measurements and their contribution to the obtained saturation results. We present feasibility studies for fetal pulse oximetry, monitored noninvasively through the maternal abdomen. Our preliminary experiments show that the fetal pulse can be discriminated from the maternal pulse and thus, in principle, the fetal arterial oxygen saturation can be obtained. We present the methodology for obtaining these data, and discuss the dependence of our measurements on the fetal position with respect to the optode assembly.

  14. Surveillance for early silicosis in high altitude miners using pulse oximetry.

    PubMed

    Donroe, Joseph A; Maurtua-Neumann, Paola J; Gilman, Robert H; Acosta, Ana Teresa; Cain, Gene; Parker, John E; Carhuaricra, Jaime Carlos Alvarez; Padilla, Juan Jose Retimozo; Mendoza, Daniel; Zimic, Mirko; Moore, David A J

    2008-01-01

    Two cross-sectional studies in a high altitude region of Perú evaluated the role of pulse oximetry for detection of silicosis in high-altitude miners. In study one, exercise pulse oximetry and chest radiographs were used to evaluate 343 silica-exposed miners and 141 unexposed subjects for evidence of silicosis. Study 2 investigated the association between exercise oxygen saturation and silicosis in 32 non-silicotic and 65 silicotic miners. In study one, age (Odds Ratio [OR] 1.10, 95% Cofidence Interval (CI) 1.07-1.12) and resting oxygen saturation (OR 0.95, 95%CI 0.90-0.99) were associated with silicosis. In study two, years of mining employment (OR 1.14, 95%CI 1.05-1.23) and exercise oxygen saturation at 30% maximum heart rate (OR 0.86, 95%CI 0.75-0.99) were associated with silicosis. Hypoxemia at rest and with exercise is associated with silicosis in high altitude miners. Pulse oximetry should be further investigated as a screening tool for silicosis at high altitudes. PMID:18686718

  15. LONG-TERM VARIATION IN THE SUN’S ACTIVITY CAUSED BY MAGNETIC ROSSBY WAVES IN THE TACHOCLINE

    SciTech Connect

    Zaqarashvili, Teimuraz V.; Oliver, Ramon; Ballester, Jose Luis; Hanslmeier, Arnold; Carbonell, Marc; Gachechiladze, Tamar; Usoskin, Ilya G.

    2015-06-01

    Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Sun's magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be, and 14C data as 1000, 500, 350, 200, and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200–1300 G in the lower tachocline are in perfect agreement with the timescales of observed variations. The steady toroidal magnetic field can be generated in the lower tachocline either due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo magnetic field and consequently the solar cycle strength. This result constitutes a key point for long-term prediction of the cycle strength. According to our model, the next deep minimum in solar activity is expected during the first half of this century.

  16. Effects of the planetary-scale waves on the temporal variations of the O2-1.27μm nightglow in the Venusian upper atmosphere

    NASA Astrophysics Data System (ADS)

    Hoshino, N.; Fujiwara, H.; Takagi, M.; Kasaba, Y.; Takahashi, Y.

    2009-12-01

    The O2-1.27 μm nightglow distribution, which has the peak intensity in the depression region of the day-to-night flow, gives us information of the wind field at about 95 km in Venus. The past nightglow observations [Crisp et al., 1996] showed that the intensity of the nightglow in the brightness region changed by 20 % in about one hour, and the brightness region disappeared in less than one day. The observation results obtained by Venus Express (VEX) also showed the temporal variations of the nightglow emission. Some simulation studies suggested contributions of gravity waves generated in the cloud deck (50-70 km) to the temporal variations. However, the causes of the temporal variations are still unknown. In recent years, the importance of planetary-scale waves for the dynamics of the Venusian atmosphere has been recognized. For example, Takagi and Matsuda [2006] suggested that the atmospheric superrotation was driven by the momentum transport due to the vertical propagation of the thermal tides generated in the Venus cloud deck. In order to estimate effects of the planetary-scale waves on the temporal variations of the nightglow, we have performed numerical simulations with a general circulation model (GCM), which includes the altitude region of 80 - about 200 km. The planetary-scale waves (thermal tides, Kelvin wave and Rosbby wave) are imposed at the lower boundary. The amplitudes and phase velocities of the waves are assumed from the study by Del Genio and Rossow [1990]. The nightglow intensity and its global distribution are calculated from the GCM results assuming the chemical equilibration. In this study, we investigate contributions of the planetary-scale waves on the temporal variations of the nightglow shown by past observations. In addition, we show the characteristics of the wave propagation and the interactions between the waves in the Venusian upper atmosphere. Venus Climate Orbiter (VCO), which will be launched in 2010 as the second Japanese

  17. Mass variation of a thin liquid film driven by an acoustic wave

    SciTech Connect

    Batson, W.; Agnon, Y.; Oron, A.

    2015-06-15

    In this work, we investigate the dynamics of a thin liquid film subjected to an acoustic field in its bounding vapor space. For large acoustic wavelengths, the field imposes a spatially uniform, temporally periodic temperature and pressure at the vapor side of the film interface, which leads to a periodic driving force for mass exchange with the vapor. Neglecting the dynamics of the vapor space, we adopt the “one-sided” model for evaporation/condensation of thin liquid films. In the interest of determining the effect of oscillatory mass exchange on film stability, we consider films in thermodynamic equilibrium with the mean vapor conditions. The effects of oscillatory phase change on both linear stability and nonlinear dynamics are investigated for slightly inclined ceiling films that are destabilized by gravity and subject to thermocapillary effects. At linear order, this mass exchange is not found to alter the band of unstable wave numbers and only marginally affects the growth rates. Additionally, the mass exchanged during evaporation is balanced by condensation so that the total mass of the liquid film is conserved. However, due to nonlinear effects, we find that traveling waves encouraged by the inclination are subject to net mass loss. It is then found that normal thermocapillary effects enhance this loss, and that anomalous thermocapillarity mitigates or even reverses the loss to a mass gain.

  18. Variational properties and orbital stability of standing waves for NLS equation on a star graph

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2014-11-01

    We study standing waves for a nonlinear Schrödinger equation on a star graph G, i.e. N halflines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength α⩽0. The nonlinearity is of focusing power type. The dynamics is given by an equation of the form iddtΨt=HΨt-|2μΨt, where H is the Hamiltonian operator which generates the linear Schrödinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every ω>α2N2. Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed ω if the nonlinearity is subcritical or critical, and for ω<ω* otherwise.

  19. Regional variations of seismic attenuation of Lg waves in southern Mexico

    NASA Astrophysics Data System (ADS)

    DomíNguez, Tonatiuh; Rebollar, Cecilio J.; Castro, Raúl R.

    1997-12-01

    Attenuation of Lg waves is estimated using 61 events located in the subduction zone of the Middle American trench and recorded by the seismic network of Laguna Verde, Veracruz, Mexico. We estimate the anelastic attenuation coefficient γ of Lg waves or, equivalently, QLg by calculating the rate of acceleration spectra decay with distance. We consider paths from two regions: Guerrero-Veracruz (NE-SW direction) and Oaxaca-Veracruz (North-South direction). Assuming a frequency dependence of γ of the form γ(ƒ) = γ0ƒη, we find that η=0.175±0.05 for both regions and that γ0 was lower for paths from Guerrero to Veracruz (γ0=0.0071±0.002) than for paths from Oaxaca to Veracruz (γ0=0.0161±0.003) in the frequency range from 2 to 7 Hz. In terms of the quality factor QLg, values of QLg= 134±30ƒ0.83±0.2 and QLg=59±10ƒ0.81±0.2 were found for the Guerrero-Veracruz and the Oaxaca-Veracruz paths, respectively. This difference in attenuation may be due to the state of stresses that prevails in both regions including the density and fluid content of fractures, which are attenuation mechanisms also suggested for other regions [Mitchell, 1995].

  20. Modeling the Observed Solar Cycle Variations of the Quasi-biennial Oscillation (QBO): Amplification by Wave Forcing

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, John G.; Huang, Frank T.; Chan, Kwing L.

    2007-01-01

    In several papers, the solar cycle (SC) effect in the lower atmosphere has been linked observationally to the Quasi-biennial Oscillation (QBO) of the zonal circulation, which is generated primarily by small-scale gravity waves (GW). Salby and Callaghan (2000) in particular analyzed the QBO, covering more than 40 years, and discovered that it contains a large SC signature at 20 km. With our Numerical Spectral Model (NSM), we conducted a 3D study to describe the QBO under the influence of the SC, and some results have been published (Mayr et al., GRL, 2005,2006). For a SC period of 10 years, the relative amplitude of radiative forcing is taken to vary exponentially with height, i.e., 0.2% at the surface, 2% at 50 km, 20% at 100 km and above. Applying spectral analysis to filter out and identify the SC signature, the model generates a relatively large modulation of the QBO, which reproduces the observations qualitatively. Our numerical results demonstrate that the modulation of the QBO, with constant phase relative to the SC, persist at least for 60 years. The same model run generates in the seasonal variations a hemispherically symmetric Equatorial Annual Oscillation (EAO, with 12-month period), which is confined to low latitudes like the QBO and is also modulated by the SC. Although the amplitude of the EAO is relatively small, its SC modulation is large, and it is in phase with that of the QBO. The SC modulated EAO is evidently the pathway and pacemaker for the solar influence on the QBO. To shed light on the dynamical processes involved, we present model results that show how the seasonal cycle induces the SC modulations of the EAO and QBO. Our analysis further demonstrates that the SC modulations of the QBO and EAO are amplified by the GW interaction with the flow. The GW momentum source clearly shows a SC modulation that is in phase with the corresponding modulations of the QBO and EAO. By tapping the momentum from the upward propagating GWs, the QBO and EAO

  1. pp ii Variation in reading error in P times for explosions with body-wave magnitude

    NASA Astrophysics Data System (ADS)

    Douglas, A.; Young, J. B.; Bowers, D.; Lewis, M.

    2005-09-01

    The differences between true travel-times of P and times predicted from travel-time tables (path effects) can be estimated for groups of closely spaced explosions with known hypocentres and origin times, if the onsets are observed at large signal-to-noise ratios (SNR) and read by analysts. Reading error can also be estimated and is usually assumed to be normally distributed with zero mean. Two experiments have been carried out to look at how reading error in P times from explosions varies with magnitude - taken as a measure of SNR - when read by analysts and by automatic systems. Although at low magnitudes there is some evidence of analyst readings being biased late, the largest variation in reading error with magnitude is found for automatic systems. The results show just how difficult it can be to estimate path effects free from observational bias, at least using bulletin data. The current programme to estimate path effects to improve epicentre location for verification of the Comprehensive Test Ban needs to include checks to ensure that apparent variations in path effects with location, are not due to bias from systematic reading error.

  2. A review of signal processing used in the implementation of the pulse oximetry photoplethysmographic fluid responsiveness parameter.

    PubMed

    Addison, Paul S

    2014-12-01

    ΔPOP is a physiological parameter derived from the respiration-induced change in the pulse oximetry plethysmographic (POP) waveform or "pleth." It has been proposed as a proxy for pulse pressure variation used in the determination of the response to intravascular volume expansion in hypovolemic patients. Many studies have now reported on the parameter, and many research groups have constructed algorithms for its computation from the first principles where the implementation details have been described. This review focuses on the signal processing aspects of ΔPOP, as reported in the literature, and aims to provide a comprehensive summary of the wide-ranging algorithmic strategies that have been attempted in its computation. A search was conducted for articles concerning the use of ΔPOP as a fluid responsiveness parameter. In particular, articles concerning the correlation between ΔPOP and pulse pressure variation were targeted. Comments and replies to comments by the authors in which signal processing aspects were discussed were also included in the review. The parameter is first defined, and a history of the early work surrounding pleth-based fluid responsiveness parameters is presented. This is followed by an overview of the signal processing methods used in the reported studies, including details of exclusion criteria, manual filtering (preprocessing), gain change issues, acquisition details, selection of registration periods, averaging methods, physiological influences on the pleth, and comments by the investigators themselves. It is concluded that to develop a robust, fully automated ΔPOP algorithm for use in the clinical environment, more rigorous signal processing is required. Specifically, signals should be evaluated over significant periods of time, with emphasis on the quality and temporal relevance of the information.

  3. Nocturnal plasma thyrotropin variations are related to slow-wave sleep.

    PubMed

    Goichot; Brandenberger; Saini; Wittersheim; Follenius

    1992-09-01

    The thyrotropin (TSH) nycthemeral pattern is known to be strongly influenced by sleep, but previous studies have failed to demonstrate any link between sleep structure and TSH variations. Using 10-min blood sampling, nocturnal TSH profiles were analysed in 24 young healthy subjects during normal sleep. Six of the subjects then underwent a partial sleep deprivation experiment, sleep was permitted from 03.00 hours to 07.00 hours. Descending slopes of TSH values were observed for the first 20 minutes of SWS episodes, whereas no significant trend was found for other sleep stages. During the period of sleep deprivation, nocturnal TSH levels increased and then declined immediately after sleep onset; however, the association between SWS and descending TSH slopes persisted. This temporal concordance suggests that some particular mechanisms associated with SWS may modulate TSH release, or conversely that increasing TSH levels prevent the occurrence of SWS.

  4. Toward efficient light diffraction and intensity variations by using wide bandwidth surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Lee, Young Ok; Chen, Fu; Lee, Kee Keun

    2016-06-01

    We have developed acoustic-optic (AO) based display units for implementing a handheld hologram display by modulating light deflection through wide bandwidth surface acoustic wave (SAW). The developed AO device consists of a metal layer, a ZnS waveguide layer, SAW inter digital transducers (IDTs), and a screen for display. When RF power with a particular resonant frequency was applied to IDTs, SAW was radiated and interfered with confined beam propagating along ZnS waveguide layer. The AO interacted beam was deflected laterally toward a certain direction depending on Bragg diffraction condition, exited out of the waveguide layer and then directed to the viewing screen placed at a certain distance from the device to form a single pixel. The deflected angles was adjusted by modulating the center frequency of the SAW IDT (SAW grating), the RF power of SAW, and the angles between propagating light beam path along waveguide and radiating SAW. The diffraction efficiency was also characterized in terms of waveguide thickness, SAW RF input power, and aperture length. Coupling of mode (COM) modeling was fulfilled to find optimal device parameters prior to fabrication. All the parameters affecting the deflection angle and efficiency to form a pixel for a three-dimensional (3D) hologram image were characterized and then discussed.

  5. Interannual variation of the quasi-two-day wave at 22.7 S

    NASA Astrophysics Data System (ADS)

    Lima, Lourivaldo; Jacobi, Christoph; Batista, Paulo; Rodrigues de Araujo, Luciana; Rodrigues, Chayenny E. S.; Lilienthal, Friederike

    2016-07-01

    In the present investigation, the mesosphere/lower thermosphere winds at Cachoeira Paulista (22.7° S, 45.0° W) obtained by a VHF all sky interferometric meteor radar have been used to investigate the interannual variability of the quasi-two-day wave (QTDW) amplitudes at a low latitude in the Southern Hemisphere. The wind data were obtained from December 1999 to July 2006, from September 2007 to October 2008 and from December 2013 to April 2015. The analysis shows that meridional amplitudes for QTDW are larger than zonal amplitudes and the strongest amplitudes occur after austral summer solstice in January-February. Besides semiannual and annual oscillations, the QTDW amplitudes in the meridional winds also show weak quasi-biennial oscillation (QBO). The summer QTDW in the meridional winds also shows a possible correlation with solar activity. The amplitudes are nearly in phase with the 11 year solar cycle, and the solar maxima leads the QTDW maxima by one year. Finally, larger QTDW amplifications have been observed during 2003, 2004, 2006 and 2015 summers. The unusual major sudden stratospheric warming (SSW) event suggests a coupling between QTDW amplification and SSW during Jan-Feb 2006. The mechanistic global circulation model MUAM of the middle and upper atmosphere has been used to simulate the dynamic configuration during January major and minor SSW events.

  6. Secondary production in a Laminaria hyperborea kelp forest and variation according to wave exposure

    NASA Astrophysics Data System (ADS)

    Norderhaug, Kjell M.; Christie, Hartvig

    2011-11-01

    The secondary production of mobile invertebrate fauna in the Laminaria hyperborea (Gunn.) Foslie kelp forest increases with wave exposure level. This faunal group has a key function in transferring kelp carbon to higher levels in the food web. By using a size-frequency method the calculated production was 68 (±18) g D.W. m -2 yr -1 (±S.E.) at low, 250 (±57) at medium and 308 (±64) at high exposure levels. The calculations included 30 macrofauna species, which accounted for 96% of the specimens registered, with Gastropods, amphipods and bivalves being the most abundant taxa. The calculated secondary production is high, but comparable to that previously reported from other macrophyte systems and was 3%, 8% and 8% of the total primary production at low, medium and high exposure levels, respectively. Our results indicate that large quantities of Laminaria kelp are exported from the system, although the production of sessile animals was not taken into account. The most important factor in determining faunal densities and secondary production was probably habitat size but at low exposure levels the percentage of egg-carrying crustacean females and juveniles were lower than at medium and high exposure levels, thereby indicating lower fitness for animals at low exposure stations.

  7. Spatiotemporal current variation of coastal-trapped waves west of the Noto Peninsula measured by using fishing boats

    NASA Astrophysics Data System (ADS)

    Fukudome, Ken-ichi; Igeta, Yosuke; Senjyu, Tomoharu; Okei, Noriyuki; Watanabe, Tatsuro

    2016-03-01

    Spatiotemporal current variations of coastal-trapped waves (CTWs) were investigated by using a current dataset obtained from daily fishing operations west of the Noto Peninsula (NTP), Japan. Cross-shore lines located in southern, middle, and northern parts of the west coast of the NTP were designed to detect characteristics of CTWs with a time interval of a few days and about 5-km resolution in the cross-shore direction. Accuracy validation by using moored current meter data and sea level data demonstrated that the established dataset expresses accurate variations with periods of several days. The generation and propagation of a CTW event associated with a low-pressure zone passing north of the study area in late May 2010 were analyzed. Along-shore currents with the coast on the right strengthened in every line simultaneously with the domination of the southerly wind, and then weakened in order from south to north simultaneously with weakening of the southerly wind. Although the along-shore currents of the CTWs linearly decreased heading offshore along the south and middle lines, these currents broadened within about 50 km from the coast along the north line, with small variations in the cross-shelf direction, with an increase in shelf width. These generation, propagation and current structure characteristics are clarified and interpreted by the characteristics of the estimated possible CTWs west of the NTP and numerical experiments, which reproduce wind-induced freely propagating CTWs. A change in the propagation characteristics and the structure of the CTWs associated with bottom topography indicates the possibility that adjustments can occur on the order of a few dozen kilometers.

  8. Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian plateaus

    NASA Astrophysics Data System (ADS)

    Kadinsky-Cade, Katharine; Barazangi, Muawia; Oliver, Jack; Isacks, Bryan

    1981-10-01

    In this study we investigate crustal and uppermost mantle physical properties that characterize some of the continental plateaus of the Middle East. This is done as part of a larger effort to map and compare high-frequency wave propagation at regional distances across the earth's continental plateaus. Thousands of short-period WWSSN seismograms recorded at stations located in the Middle East and produced by earthquakes with epicentral distances less than about 20° were examined visually in an effort to study lateral variations of high-frequency (0.5-2 Hz) seismic wave propagation across this area, particularly to the north of the zone of continental collision between the Africa-Arabian and Eurasian plates. Variations of frequencies and amplitudes of Sn and Lg relative to P are examined and mapped throughout the region, and this work is supplemented by a study of velocities of Pn, Sn, and Lg. Sn amplitude variations are very striking in this area. An important observation of this study is that Sn propagates efficiently beneath a major part of the Turkish and Iranian plateaus. Sn is strongly attenuated, however, in the northernmost portion of the plateaus south of the Black and Caspian seas and in an area between the two seas. These regions are characterized, in general, by active tectonism, including volcanism, faulting, and folding. However, this active tectonism is not restricted to the areas of high Sn attenuation but appears to extend beneath other parts of the Iranian and Turkish plateaus. Patterns of lateral variations in the propagation of Lg are not as consistent as those for Sn. Lg propagates efficiently across Turkey, Iran, and adjacent regions, but the Lg waves that cross the Turkish and Iranian plateaus are weak and have relatively long predominant periods of about 2-5 s. The Lg phase is not observed when the path of propagation crosses the southern Caspian and the Black seas, consistent with the evidence of oceanic-type crustal structure beneath these

  9. Global model of P-wave speed variations in Earth's mantle

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Li, C.

    2005-12-01

    Using data from different seismic phases and improved tomography codes we have constructed a new model of 3-D variations in P-wavespeed in Earth's mantle. First, we improve data coverage by adding to the large volume of routinely processed ISC catalog (P, pP, PKP ) data, as reprocessed by Engdahl et al. (BSSA98), travel time residuals from several regional networks in SE Asia, several sets of differential travel times that have been measured by waveform cross correlation. These data include PKP-Pdiff (Wysession) and various PKP branches (Creager and McSweeney), which help improve resolution of structure in the deepest mantle, and PP-P (Bolton and Masters), which greatly improves the mapping of structure in the upper mantle away from belts of high seismic activity. Second, we follow Kerason et al. (JGR01) and use 3-D sensitivity kernels to account for the fact that these data are measured at different frequency, and in different ways. The kernels allow low frequency data (e.g., PP-P, Pdiff) to constrain long wavelengths without preventing short period data (P, PKP) to resolve small scale structure. We use approximate kernels since our research has shown that for this application the precise shape of the kernels is less important than effects of parameterization, regularization, and data quality. Third, the localization of sensitivity is further aided by the use of a grid that is adapted to sampling density. Fourth, for the ray geometry part we use 3-D ray tracing to account for the affects of heterogeneity on ray geometry. Finally, we correct for 3-D variations in crust structure, using the global model CRUST2.0 and more detailed regional models, where available. This correction reduces the artificial smearing of shallow structure along steep ray paths. We present the new model, along with resolution tests, and discuss differences and similarities with other global models, with emphasis on the structure of presumed 'slabs' of subducted lithosphere and 'plumes' of

  10. Nanofiber-based paramagnetic probes for rapid, real-time biomedical oximetry.

    PubMed

    Bhallamudi, Vidya P; Xue, Ruipeng; Purser, Carola M; Presley, Kayla F; Banasavadi-Siddegowda, Yeshavanth K; Hwang, Jinwoo; Kaur, Balveen; Hammel, P Chris; Poirier, Michael G; Lannutti, John J; Pandian, Ramasamy P

    2016-04-01

    EPR (electron paramagnetic resonance) based biological oximetry is a powerful tool that accurately and repeatedly measures tissue oxygen levels. In vivo determination of oxygen in tissues is crucial for the diagnosis and treatment of a number of diseases. Here, we report the first successful fabrication and remarkable properties of nanofiber sensors for EPR-oximetry applications. Lithium octa-n-butoxynaphthalocyanine (LiNc- BuO), an excellent paramagnetic oxygen sensor, was successfully encapsulated in 300-500 nm diameter fibers consisting of a core of polydimethylsiloxane (PDMS) and a shell of polycaprolactone (PCL) by electrospinning. This core-shell nanosensor (LiNc-BuO-PDMS-PCL) shows a linear dependence of linewidth versus oxygen partial pressure (pO2). The nanofiber sensors have response and recovery times of 0.35 s and 0.55 s, respectively, these response and recovery times are ~12 times and ~218 times faster than those previously reported for PDMS-LiNc-BuO chip sensors. This greater responsiveness is likely due to the high porosity and excellent oxygen permeability of the nanofibers. Electrospinning of the structurally flexible PDMS enabled the fabrication of fibers having tailored spin densities. Core-shell encapsulation ensures the non-exposure of embedded LiNc-BuO and mitigates potential biocompatibility concerns. In vitro evaluation of the fiber performed under exposure to cultured cells showed that it is both stable and biocompatible. The unique combination of biocompatibility due to the PCL 'shell,' the excellent oxygen transparency of the PDMS core, and the excellent oxygen-sensing properties of LiNc-BuO makes LiNc-BuO-PDMS-PCL platform promising for long-term oximetry and repetitive oxygen measurements in both biological systems and clinical applications. PMID:27106026

  11. A New Global Model for 3-D variations in P Wave Speed in Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Karason, H.; van der Hilst, R. D.; Li, C.

    2003-12-01

    In an effort to improve the resolution of mantle structure we have combined complementary data sets of short- and long period (absolute and differential) travel time residuals. Our new model is based on short period P (N\\~7.7x10**6), pP (N\\~2.3x10**5), and PKP (N\\~16x10**4) data from the catalog by Engdahl et al (BSSA, 1998), short-period PKP differential times (N\\~1600) measured by McSweeney & Creager, and long-period differential PP-P times - N\\~20,000 measured by Bolton & Masters and N\\~18,000 by Ritsema - and Pdiff-PKP (N\\~560) measured by Wysession. Inversion tests, spectral analysis, and comparison with geology indicate that the large-scale upper mantle structure is better constrained with the addition of PP-P, whereas the Pdiff and PKP data help constrain deep mantle structure (Karason & Van der Hilst, JGR, 2001). The long period data were measured by cross-correlation. We solved the system of equations using 400 iterations of the iterative algorithm LSQR For the short period (1 Hz) data we use a high frequency approximation and trace rays through a fine grid of constant slowness cells to invert for mantle structure. For low frequency Pdiff and PP data we account for sensitivity to structure away from the optical ray path with 3-D Frechet derivatives (sensitivity kernels) estimated from single forward scattering and projected onto basis functions (constant slowness blocks) used for model parameterization. With such kernels the low frequency data can constrain long wavelength heterogeneity without keeping the short period data from mapping details in densely sampled regions. In addition to finite frequency sensitivity kernels we optimized the localization by using a parameterization that adapts to spatial resolution, with small cells in regions of dense sampling and larger cells in regions where sampling is more sparse (the total number of cells was \\~ 350,000). Finally, we corrected all travel times and surface reflections for lateral variations in

  12. Seismicity, Vp/Vs and shear wave anisotropy variations during the 2011 unrest at Santorini caldera, southern Aegean

    NASA Astrophysics Data System (ADS)

    Konstantinou, K. I.; Evangelidis, C. P.; Liang, W.-T.; Melis, N. S.; Kalogeras, I.

    2013-11-01

    The Santorini caldera has been the focus of several large explosive eruptions in the past, the last of which occurred in the early 1950s. The volcano was dormant until early 2011 when increasing number of earthquakes accompanied significant intra-caldera uplift. This seismic activity was recorded by 8 temporary as well as 19 permanent seismic stations that were installed on Santorini and nearby islands after the onset of the unrest. Using data from January 2011 until June 2012 we calculated accurate relative locations for 490 events utilizing both catalog and waveform cross-correlation differential travel times of P- and S-phases. The distribution of relocated events exhibits a large cluster between Thera and Nea Kameni islands along the caldera rim, suggesting the activation of a preexisting ring fault. All hypocenters are located between 5 and 11 km resulting in a sharp cutoff of seismicity above and below these depths. We also used P and S travel times in order to calculate average Vp/Vs ratios and estimated shear wave splitting parameters (fast direction φ, delay time δt) for events within the shear wave window. The Vp/Vs ratios at several stations exhibit a majority of values consistently below the regional one (~ 1.77). Their temporal variations can be explained as periods of gas influx and depletion in the upper crust beneath the caldera. A comparison of δt for a number of earthquake doublets shows a progressive decrease of delay times towards the end of the unrest probably as a result of cracks closing owing to stress relaxation. The seismological observations presented here are compatible with petrological models that suggest the existence of a deep (11-14 km) dacitic magma reservoir and a shallower (< 5 km) rhyolitic magma chamber.

  13. Influence of tidal variation and wave forcing on shallow groundwater discharge to the sea adjoining the Bay of Bengal, India

    NASA Astrophysics Data System (ADS)

    Debnath, P.; Mukherjee, A.; Gujral, K. S.

    2015-12-01

    Tidal fluctuation and wave pumping control the groundwater discharge and solute transport from the coastal aquifers to the sea. This discharged groundwater and solute flux could cause significant geochemical evolution at the groundwater-seawater (GW-SW) interaction zone, and have a potential impact on marine ecosystems. In this study we have tried to trace these tidal influences on discharging groundwater flow path and its quality at the Bay of Bengal, India by using numerical modelling. We have done multi-season time-series sea-bed porewater sampling from nested wells throughout a tidal cycle, along with groundwater sampling from the tube-wells in the vicinity, aquifer parameter estimation and beach geomorphology, to delineate the variations of solute chemistry within a tidal cycle. Numerical modelled data suggest that the tidal pumping at the study area leads seawater intrusion in the backshore aquifers. The local geology and low beach slope (<1°) also accentuate this phenomenon. The salinity of porewater at a specific well was found to vary temporally along tidal cycle, from being highest at the start of high tide and lowest during a low tide period. Time series analysis of chemical characteristics of the samples depicts that tidal fluctuation on a diurnal-scale significantly affects the ionic composition of the discharged groundwater along with piezometric level for unconfined aquifer. Graphical geochemical plots suggest that ionic exchanges at GW-SW interaction zone along with redox cycles are likely to be the main processes responsible for water quality changes. These findings highlight the significant influence of tidal fluctuations and wave pumping on discharged groundwater quality and groundwater-seawater hydrodynamics in the coastal areas.

  14. Effects of the gravitational waves emission on the orbit of the binary neutron stars considering the mass variation.

    NASA Astrophysics Data System (ADS)

    Mabrouk, Zeinab; Rahoma, W. A.

    2016-07-01

    Gravitational waves which have been announced finally to be detected in February 11, 2016 are believed to be emitted from many sources and phenomena in the universe, the binary neutron stars systems specially the inspirals are one kind of them. In this paper we are going to calculate the effects of this emission on the elements of the elliptical orbits of such binary neutron stars before the onset of the mass exchange. We based our work on the Imshennik and Popov (1994) paper then we do some modifications. The main and important results that Imshennik and Popov get were the rate of change of the eccentricity e, the rate of change of the semi major axis a, and the monotonic dependence between them a=a(e). Finally they concluded the smallness of the final eccentricity which make the orbits to be near-circular due to the emission of the gravitational waves. Our modification is to consider the masses of the two binary stars to be varied using the famous Eddington-Jeams law, then we expand them around the time t using Taylor expansion. we do this variation first for one mass with the constancy of the second one, then we let both mosses to vary together. We start the algorithm from the beginning substituting with our new series of masses in the two main equations, the average rate of change of the total energy of the system (dE/dt) , and the average rate of change of the angular momentum (dJ/dt). This modification leads to new expressions of the previous mentioned rate of changes of the orbital elements obtained by Imshennik and Popov, some of them we obtained and still working in the rest.

  15. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, Guruguhan; Pandian, Ramasamy P.; Eteshola, Edward; Lee, Stephen C.; Kuppusamy, Periannan

    2010-03-01

    Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation.

  16. Inaccurate pulse CO-oximetry of carboxyhemoglobin due to digital clubbing: case report.

    PubMed

    Harlan, Nicole; Weaver, Lindell K; Deru, Kayla

    2016-01-01

    Newer pulse CO-oximeters provide a non-invasive and quick means of measuring oxyhemoglobin, carboxyhemoglobin and methemoglobin. Clubbing has been reported to cause inaccuracy in pulse oximeters. We present a case of inaccurate carboxy-hemoglobin measurement by pulse CO-oximetry due to digital clubbing. An 18-year-old man with a history of cystic fibrosis presented after a suicide attempt by inhalation of exhaust. At the initial emergency department evaluation, his blood carboxyhemoglobin was 33%. He was intubated, placed on 100% oxygen and transferred to our facility. Upon arrival, we placed three different pulse CO-oximeters on different fingers and toes. Carboxyhemoglobin levels measured by these meters ranged from 9%-11%. A venous blood gas drawn on arrival showed a carboxyhemoglobin level of 2.3% after four hours on 100% oxygen by endotracheal tube. Thirty minutes later, we checked arterial blood gas, which revealed a COHb level of 0.9%. Again, non-invasive carboxyhemoglobin measurements read 10%. The patient was treated with hyperbaric oxygen for carbon monoxide poisoning. This case suggests that non-invasive measurements of carboxyhemoglobin should be correlated with the clinic history and with an arterial or venous blood gas oximetry analysis. PMID:27000014

  17. Diagnostic accuracy of a mathematical model to predict apnea-hypopnea index using nighttime pulse oximetry

    NASA Astrophysics Data System (ADS)

    Ebben, Matthew R.; Krieger, Ana C.

    2016-03-01

    The intent of this study is to develop a predictive model to convert an oxygen desaturation index (ODI) to an apnea-hypopnea index (AHI). This model will then be compared to actual AHI to determine its precision. One thousand four hundred and sixty-seven subjects given polysomnograms with concurrent pulse oximetry between April 14, 2010, and February 7, 2012, were divided into model development (n=733) and verification groups (n=734) in order to develop a predictive model of AHI using ODI. Quadratic regression was used for model development. The coefficient of determination (r2) between the actual AHI and the predicted AHI (PredAHI) was 0.80 (r=0.90), which was significant at a p<0.001. The areas under the receiver operating characteristic curve ranged from 0.96 for AHI thresholds of ≥10 and ≥15/h to 0.97 for thresholds of ≥5 and ≥30/h. The algorithm described in this paper provides a convenient and accurate way to convert ODI to a predicted AHI. This tool makes it easier for clinicians to understand oximetry data in the context of traditional measures of sleep apnea.

  18. The feasibility and validity of a remote pulse oximetry system for pulmonary rehabilitation: a pilot study.

    PubMed

    Tang, Jonathan; Mandrusiak, Allison; Russell, Trevor

    2012-01-01

    Pulmonary rehabilitation is an effective treatment for people with chronic obstructive pulmonary disease. However, access to these services is limited especially in rural and remote areas. Telerehabilitation has the potential to deliver pulmonary rehabilitation programs to these communities. The aim of this study was threefold: to establish the technical feasibility of transmitting real-time pulse oximetry data, determine the validity of remote measurements compared to conventional face-to-face measures, and evaluate the participants' perception of the usability of the technology. Thirty-seven healthy individuals participated in a single remote pulmonary rehabilitation exercise session, conducted using the eHAB telerehabilitation system. Validity was assessed by comparing the participant's oxygen saturation and heart rate with the data set received at the therapist's remote location. There was an 80% exact agreement between participant and therapist data sets. The mean absolute difference and Bland and Altman's limits of agreement fell within the minimum clinically important difference for both oxygen saturation and heart rate values. Participants found the system easy to use and felt confident that they would be able to use it at home. Remote measurement of pulse oximetry data for a pulmonary rehabilitation exercise session was feasible and valid when compared to conventional face-to-face methods.

  19. Evaluation of oxygen saturation by pulse-oximetry in mouth breathing patients.

    PubMed

    Niaki, Esfandiar Akhavan; Chalipa, Javad; Taghipoor, Elahe

    2010-01-01

    Mouth breathing might not always result in hypoxia, but can contribute to it. The aim of the present study was to determine the effect of mouth breathing on hypoxia. Based on a pilot study, 323 patients with mouth breathing were selected. Assessment of mouth breathing was based on clinical examination and questionnaires filled out by patients and their companions. The patients were also examined for further oral findings that could be attributable to mouth breathing. Oxygen saturation of each case was measured by means of a pulse oximetry device. The level of 95% saturation was set as the limit, under which the patient was considered hypoxemic. Acquired data was analyzed for descriptive data and frequency and also by means of the Chi-square and Spearman's correlation coefficient tests. 34.6% of the cases had normal O2 saturation. 65.4% of cases were hypoxemic (saturation level was below 95% in 42.8% and 95% in 22.6%). Most of the mouth breathing patients were male who were also more hypoxemic. A weak inverse relationship existed between the age of the patients and Oxygen saturation. Deep palatal vaults (29.4%) and gingival hyperplasia (29.2%) were the most frequent intraoral findings. Concerning the effects of hypoxia on body systems, the use of pulse oximetry in suspected mouth breathing patients could be recommended in routine oral and dental examinations.

  20. Diagnostic accuracy of a mathematical model to predict apnea–hypopnea index using nighttime pulse oximetry

    NASA Astrophysics Data System (ADS)

    Ebben, Matthew R.; Krieger, Ana C.

    2016-03-01

    The intent of this study is to develop a predictive model to convert an oxygen desaturation index (ODI) to an apnea-hypopnea index (AHI). This model will then be compared to actual AHI to determine its precision. One thousand four hundred and sixty-seven subjects given polysomnograms with concurrent pulse oximetry between April 14, 2010, and February 7, 2012, were divided into model development (n=733) and verification groups (n=734) in order to develop a predictive model of AHI using ODI. Quadratic regression was used for model development. The coefficient of determination (r2) between the actual AHI and the predicted AHI (PredAHI) was 0.80 (r=0.90), which was significant at a p<0.001. The areas under the receiver operating characteristic curve ranged from 0.96 for AHI thresholds of ≥10 and ≥15/h to 0.97 for thresholds of ≥5 and ≥30/h. The algorithm described in this paper provides a convenient and accurate way to convert ODI to a predicted AHI. This tool makes it easier for clinicians to understand oximetry data in the context of traditional measures of sleep apnea.

  1. Development and initial testing of a pulse oximetry prototype for measuring dental pulp vitality

    NASA Astrophysics Data System (ADS)

    Cerqueira, M.; Ferreira, M.; Caramelo, F.

    2015-05-01

    The guiding principle of endodontic treatment is to preserve teeth while maintaining its aesthetic and functional roles. To accomplish this goal the assessment of teeth pulp vitality is very important since it will determine the procedures that should be adopted and define the therapy strategy. Currently, the most commonly tests for determining dental pulp state are the thermal and the electrical tests, which are based on nerve response and, because of that, have a relatively high rate of false positives and false negatives cases. In this work we present a simple test to be used in the clinical setting for evaluating noninvasively the existence of blood perfusion in dental pulp. This test is based on pulse oximetry principle that was devised to indirectly measure the amount of oxygen in blood. Although pulse oximetry has already demonstrated its usefulness in clinical environment its usage for the determination of dental pulp vitality has been frustrated by several factors, notably the absence of a suitable sensor to the complex shape of the various coronary teeth. We developed a suitable sensor and present the first trials with promising results, regarding the ability for distinguish teeth with and without blood perfusion.

  2. Skeletal Muscle Oxygenation Measured by EPR Oximetry Using a Highly Sensitive Polymer-Encapsulated Paramagnetic Sensor.

    PubMed

    Hou, H; Khan, N; Nagane, M; Gohain, S; Chen, E Y; Jarvis, L A; Schaner, P E; Williams, B B; Flood, A B; Swartz, H M; Kuppusamy, P

    2016-01-01

    We have incorporated LiNc-BuO, an oxygen-sensing paramagnetic material, in polydimethylsiloxane (PDMS), which is an oxygen-permeable, biocompatible, and stable polymer. We fabricated implantable and retrievable oxygen-sensing chips (40 % LiNc-BuO in PDMS) using a 20-G Teflon tubing to mold the chips into variable shapes and sizes for in vivo studies in rats. In vitro EPR measurements were used to test the chip's oxygen response. Oxygen induced linear and reproducible line broadening with increasing partial pressure (pO2). The oxygen response was similar to that of bare (unencapsulated) crystals and did not change significantly on sterilization by autoclaving. The chips were implanted in rat femoris muscle and EPR oximetry was performed repeatedly (weekly) for 12 weeks post-implantation. The measurements showed good reliability and reproducibility over the period of testing. These results demonstrated that the new formulation of OxyChip with 40 % LiNc-BuO will enable the applicability of EPR oximetry for long-term measurement of oxygen concentration in tissues and has the potential for clinical applications. PMID:27526163

  3. [Wavelength selection of the oximetry based on test analysis of variance].

    PubMed

    Lin, Ling; Li, Wei; Zeng, Rui-Li; Liu, Rui-An; Li, Gang; Wu, Xiao-Rong

    2014-07-01

    In order to improve the precision and reliability of the spectral measurement of blood oxygen saturation, and enhance the validity of the measurement, the method of test analysis of variance was employed. Preferred wavelength combination was selected by the analysis of the distribution of the coefficient of oximetry at different wavelength combinations and rational use of statistical theory. Calculated by different combinations of wavelengths (660 and 940 nm, 660 and 805 nm and 805 and 940 nm) through the clinical data under different oxygen saturation, the single factor test analysis of variance model of the oxygen saturation coefficient was established, the relative preferabe wavelength combination can be selected by comparative analysis of different combinations of wavelengths from the photoelectric volume pulse to provide a reliable intermediate data for further modeling. The experiment results showed that the wavelength combination of 660 and 805 nm responded more significantly to the changes in blood oxygen saturation and the introduced noise and method error were relatively smaller of this combination than other wavelength combination, which could improve the measurement accuracy of oximetry. The study applied the test variance analysis to the selection of wavelength combination in the blood oxygen result measurement, and the result was significant. The study provided a new idea for the blood oxygen measurements and other related spectroscopy quantitative analysis. The method of test analysis of variance can help extract the valid information which represents the measured values from the spectrum.

  4. Non-invasive Diagnosis of Early Pulmonary Disease in PECAM Deficient Mice Using Infrared Pulse Oximetry

    PubMed Central

    Early, Merideth A.; Lishnevsky, Marta; Gilchrist, John M.; Higgins, David M.; Orme, Ian M.; Muller, William A.; Gonzalez-Juarerro, Mercedes; Schenkel, Alan R.

    2009-01-01

    Pulse oximetry is a common tool for detecting reduced pulmonary function in human interstitial lung diseases. It has not previously been used in a mouse model of interstitial lung disease. Further, Platelet Endothelial Cell Adhesion Molecule deficient mice rarely show symptoms until disease is advanced. Using blood oxygen saturation, different stages of disease could be identified in a non-invasive manner. These stages could be correlated to pathology. Collagen deposition, using Picrosirius Red, did correlate with blood oxygen saturation. These studies are the first to show the use of an infrared pulse oximetry system to analyze the progression of a fibrotic interstitial lung disease in a mouse model of the human diseases. Further, these studies show that an early alveolar damage/enlargement event precedes the fibrosis in this mouse model, a stage that represents the best targets for disease analysis and prevention. This stage does not have extensive collagen deposition. Most importantly, targeting this earliest stage of disease for therapeutic intervention may lead to novel treatment for human disease. PMID:19646434

  5. Regularity analysis of nocturnal oximetry recordings to assist in the diagnosis of sleep apnoea syndrome.

    PubMed

    Marcos, J Víctor; Hornero, Roberto; Nabney, Ian T; Álvarez, Daniel; Gutiérrez-Tobal, Gonzalo C; del Campo, Félix

    2016-03-01

    The relationship between sleep apnoea-hypopnoea syndrome (SAHS) severity and the regularity of nocturnal oxygen saturation (SaO2) recordings was analysed. Three different methods were proposed to quantify regularity: approximate entropy (AEn), sample entropy (SEn) and kernel entropy (KEn). A total of 240 subjects suspected of suffering from SAHS took part in the study. They were randomly divided into a training set (96 subjects) and a test set (144 subjects) for the adjustment and assessment of the proposed methods, respectively. According to the measurements provided by AEn, SEn and KEn, higher irregularity of oximetry signals is associated with SAHS-positive patients. Receiver operating characteristic (ROC) and Pearson correlation analyses showed that KEn was the most reliable predictor of SAHS. It provided an area under the ROC curve of 0.91 in two-class classification of subjects as SAHS-negative or SAHS-positive. Moreover, KEn measurements from oximetry data exhibited a linear dependence on the apnoea-hypopnoea index, as shown by a correlation coefficient of 0.87. Therefore, these measurements could be used for the development of simplified diagnostic techniques in order to reduce the demand for polysomnographies. Furthermore, KEn represents a convincing alternative to AEn and SEn for the diagnostic analysis of noisy biomedical signals. PMID:26719242

  6. Introduction of a new patient monitoring system during dental procedures: pulse oximetry.

    PubMed

    Luotio, K; Mattila, M A; Kotilainen, R M

    1993-01-01

    This paper describes three cases of early detection of hypoxia with pulse oximeter during intravenous sedation. In the main study group over 40 patients were monitored by pulse oximetry during large dental operation under iv-sedation. Diatsepam with soybean oily solvent and midatsolam were used as intravenous sedative agents in this study. The first signs of hypoxia were seen by pulse oximetry. In three healthy patients some periods of remarkable hypoxia was detected and those cases are reported in this paper. Two of the patients were treated by a surgical operation and one patient underwent large conservative dental treatment under sedation because of dental care fobia. During the dental treatment period external oxygen was added for all these three patients to avoid more complications as a result of hypoxia. Two of the patients received an injection of bentsodiatsepine antagonist, too. One patient needed further follow up but non of these patients developed any additional complications. As a conclusion pulse oximetric monitoring was found to be extremely sensitive as a predictor for coming complications as well as allowing early intervention in ventilation problems. PMID:8935103

  7. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    NASA Astrophysics Data System (ADS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2016-09-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  8. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  9. Is Pulse Oximetry Useful for Screening Neonates for Critical Congenital Heart Disease at High Altitudes?

    PubMed

    Hoffman, Julien I E

    2016-06-01

    Now that pulse oximetry is used widely to screen for critical congenital heart disease, it is time to consider whether this screening method is applicable to those who live at high altitudes. Consideration of basic physical principles and reports from the literature indicate that not only is the 95 % cutoff point for arterial oxygen saturation incorrect at high altitudes, but the lower saturations are accompanied by greater variability and therefore there is the possibility of a greater percentage of false-positive screening tests at high altitudes. Because of ethnic differences in response to high altitudes, normative data will have to be collected separately in different countries and perhaps for different ethnic groups.

  10. An ECG oximetry system for identifying obstructive and central apnoea events.

    PubMed

    de Chazal, Philip; Sadr, Nadi; Jayawardhana, Madhuka

    2015-01-01

    An automatic algorithm for processing simultaneously acquired electrocardiogram (ECG) and oximetry signals that identifies epochs of pure central apnoea, epochs containing obstructive apnoea and epochs of normal breathing is presented. The algorithm uses time and spectral features from the ECG derived heart-rate and respiration information, as well as features capturing desaturations from the oximeter sensor. Evaluation of performance of the system was achieved by using leave-one-record-out cross validation on the St. Vincent's University Hospital / University College Dublin Sleep Apnea Database from the Physionet collections of recorded physiologic signals. When classifying the three epoch types, our system achieved a specificity of 80%, a sensitivity to central apnoea of 44% and sensitivity to obstructive apnoea of 35%. A sensitivity of 81% was achieved when the central and obstructive epochs were combined into one class.

  11. An ECG oximetry system for identifying obstructive and central apnoea events.

    PubMed

    de Chazal, Philip; Sadr, Nadi; Jayawardhana, Madhuka

    2015-01-01

    An automatic algorithm for processing simultaneously acquired electrocardiogram (ECG) and oximetry signals that identifies epochs of pure central apnoea, epochs containing obstructive apnoea and epochs of normal breathing is presented. The algorithm uses time and spectral features from the ECG derived heart-rate and respiration information, as well as features capturing desaturations from the oximeter sensor. Evaluation of performance of the system was achieved by using leave-one-record-out cross validation on the St. Vincent's University Hospital / University College Dublin Sleep Apnea Database from the Physionet collections of recorded physiologic signals. When classifying the three epoch types, our system achieved a specificity of 80%, a sensitivity to central apnoea of 44% and sensitivity to obstructive apnoea of 35%. A sensitivity of 81% was achieved when the central and obstructive epochs were combined into one class. PMID:26738069

  12. Universal Pulse Oximetry Screening for Early Detection of Critical Congenital Heart Disease

    PubMed Central

    Kumar, Praveen

    2016-01-01

    Critical congenital heart disease (CCHD) is a major cause of infant death and morbidity worldwide. An early diagnosis and timely intervention can significantly reduce the likelihood of an adverse outcome. However, studies from the United States and other developed countries have shown that as many as 30%–50% of infants with CCHD are discharged after birth without being identified. This diagnostic gap is likely to be even higher in low-resource countries. Several large randomized trials have shown that the use of universal pulse-oximetry screening (POS) at the time of discharge from birth hospital can help in early diagnosis of these infants. The objective of this review is to share data to show that the use of POS for early detection of CCHD meets the criteria necessary for inclusion to the universal newborn screening panel and could be adopted worldwide. PMID:27279759

  13. Personalized alerts for patients with COPD using pulse oximetry and symptom scores.

    PubMed

    Shah, Syed Ahmar; Velardo, Carmelo; Gibson, Oliver J; Rutter, Heather; Farmer, Andrew; Tarassenko, Lionel

    2014-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a progressive chronic disease, predicted to become the third leading cause of death by 2030. COPD patients are at risk of sudden and acute worsening of symptoms, reducing the patient's quality of life and leading to hospitalization. We present the results of a pilot study with 18 COPD patients using an m-Health system, based on a tablet computer and pulse oximeter, for a period of six months. For prioritizing patients for clinical review, a data-driven approach has been developed which generates personalized alerts using the electronic symptom diary, pulse rate, blood oxygen saturation, and respiratory rate derived from oximetry data. This work examines the advantages of multivariate novelty detection over univariate approaches and shows the benefit of including respiratory rate as a predictor. PMID:25570662

  14. Adaptive pulse width control and sampling for low power pulse oximetry.

    PubMed

    Gubbi, Sagar Venkatesh; Amrutur, Bharadwaj

    2015-04-01

    Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry. PMID:25014964

  15. Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models

    PubMed Central

    Desmet, Céline M.; Lafosse, Aurore; Vériter, Sophie; Porporato, Paolo E.; Sonveaux, Pierre; Dufrane, Denis; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements. PMID:26659378

  16. Electron spin relaxation time measurements using radiofrequency longitudinally detected ESR and application in oximetry.

    PubMed

    Panagiotelis, I; Nicholson, I; Hutchison, J M

    2001-03-01

    Longitudinally detected ESR (LODESR) involves transverse ESR irradiation with a modulated source and observing oscillations in the spin magnetization parallel to the main magnetic field. In this study, radiofrequency-LODESR was used for oximetry by measuring the relaxation times of the electron. T1e and T2e were measured by investigating LODESR signal magnitude as a function of detection frequency. We have also predicted theoretically and verified experimentally the LODESR signal phase dependence on detection frequency and relaxation times. These methods are valid even for inhomogeneous lines provided that T1e>T2e. We have also developed a new method for measuring T1e, valid for inhomogeneous spectra, for all values of T1e and T2e, based on measuring the spectral area as a function of detection frequency. We have measured T1e and T2e for lithium phthalocyanine crystals, for the nitroxide TEMPOL, and for the single line agent Triarylmethyl (TAM). Furthermore, we have collected spectra from aqueous solutions of TEMPOL and TAM at different oxygen concentrations and confirmed that T1e values are reduced with increased oxygen concentration. We have also measured the spin-lattice electronic relaxation time for degassed aqueous solutions of the same agents at different agent concentrations. T1e decreases as a function of concentration for TAM while it remains independent of free radical concentration for TEMPOL, a major advantage for oxygen mapping. This method, combined with the ability of LODESR to provide images of exogenous free radicals in vivo, presents an attractive alternative to the conventional transverse ESR linewidth based oximetry methods.

  17. Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models.

    PubMed

    Desmet, Céline M; Lafosse, Aurore; Vériter, Sophie; Porporato, Paolo E; Sonveaux, Pierre; Dufrane, Denis; Levêque, Philippe; Gallez, Bernard

    2015-01-01

    A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements. PMID:26659378

  18. Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia.

    PubMed

    Yamaya, Yoshiki; Bogaard, Harm J; Wagner, Peter D; Niizeki, Kyuichi; Hopkins, Susan R

    2002-01-01

    During exercise, pulse oximetry is problematic due to motion artifact and altered digital perfusion. New pulse oximeter technology addresses these issues and may offer improved performance. We simultaneously compared Nellcor N-395 (Oxismart XLTM) pulse oximeters with an RS-10 forehead sensor (RS-10), a D-25 digit sensor (D-25), and the Ivy 2000 (Masimo SETTM)/LNOP-Adt digit sensor (Ivy) to arterial blood oxygen saturation (Sa(O(2))) by cooximetry. Nine normal subjects, six athletes, and four patients with chronic disease exercised to maximum oxygen consumption (VO(2 max)) under various conditions [normoxia, hypoxia inspired oxygen fraction (FI(O(2))) = 0.125; hyperoxia, FI(O(2)) = 1.0]. Regression analysis for normoxia and hypoxic data was performed (n = 161 observations, Sa(O(2)) = 73-99.9%), and bias (B) and precision (P) were calculated. RS10 offered greater validity than the other two devices tested (y = 1.009x - 0.52, R(2) = 0.90, B+/-P = 0.3 +/- 2.5). Finger sensors had low precision and a significant negative bias (D-25: y = 1.004x - 2.327, R(2) = 0.52, B+/-P = -2.0 +/- 7.3; Ivy: y = 1.237x - 24.2, R(2) = 0.78, B+/-P = -2.0 +/- 5.2). Eliminating measurements in which heart rate differed by >10 beats/min from the electrocardiogram value improved precision minimally and did not affect bias substantially (B+/-P = 0.5 +/- 2.0, -1.8 +/- 8.4, and -1.25+/-4.33 for RS-10, D-25, and Ivy, respectively). Signal detection algorithms and pulse oximeter were identical between RS-10 and D-25; thus the improved performance of the forehead sensor is likely because of sensor location. RS-10 should be considered for exercise testing in which pulse oximetry is desirable. PMID:11744656

  19. Evaluating future flooding risks by using a probabilistic approach to include wave height distributions in sea level variations

    NASA Astrophysics Data System (ADS)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Kahma, Kimmo K.; Johansson, Milla M.; Pellikka, Hilkka; Särkkä, Jani

    2016-04-01

    Assessing sea flood risks has an essential role in future coastal planning as climate change drives forward the global sea level rise. Safe planning of land utilization and building in coastal areas requires capability to estimate sea level behaviour all the way to 100-200 years ahead. The coastal effect of the sea level is always affected also by the wave conditions, which may vary greatly depending on location. An archipelago acts as an efficient shield against the largest waves penetrating to the shoreline. However, part of the energy of the waves passes through the archipelago and coastal wave height conditions, depending for example on the shape of the shoreline and topography of the seabed, must be evaluated close to the shore separately. The probability of high sea level and wind generated high waves occurring simultaneously is lower than the probability of one of the components occurring alone. Summing the maximum sea level and maximum wave height components together can thus lead to an overestimation of the joint effect. For this reason a method based on probability distributions is reasonable and preferable. In this study, a method of combining sea level and wave height distributions using a location specific probability approach is introduced. First estimates of the joint effect of high sea level and high waves at several locations at the archipelago area on the southern coast of Finland are presented. Constructing sea level scenarios including the effect of wind waves until the end of the century demands knowledge of both sea level and wave height variability in the past, and global mean sea level predictions for the future. In our study, an estimate of short-term sea level variability is based on 30 years (1982-2011) of hourly data from the Helsinki tide gauge located on the coast of the Gulf of Finland. Future predictions for the long-term mean sea level changes at Helsinki are based on scenarios taking into account the global mean sea level rise

  20. Variations of Kelvin waves around the TTL region during the stratospheric sudden warming events in the Northern Hemisphere winter

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Zhang, Shao Dong; Yi, Fan; Huang, Chun Ming; Huang, Kai Ming; Gong, Yun; Gan, Quan

    2016-03-01

    Spatial and temporal variabilities of Kelvin waves during stratospheric sudden warming (SSW) events are investigated by the ERA-Interim reanalysis data, and the results are validated by the COSMIC temperature data. A case study on an exceptionally large SSW event in 2009, and a composite analysis comprising 18 events from 1980 to 2013 are presented. During SSW events, the average temperature increases by 20 K in the polar stratosphere, while the temperature in the tropical stratosphere decreases by about 4 K. Kelvin wave with wave numbers 1 and 2, and periods 10-20 days, clearly appear around the tropical tropopause layer (TTL) during SSWs. The Kelvin wave activity shows obvious coupling with the convection localized in the India Ocean and western Pacific (Indo-Pacific) region. Detailed analysis suggests that the enhanced meridional circulation driven by the extratropical planetary wave forcing during SSW events leads to tropical upwelling, which further produces temperature decrease in the tropical stratosphere. The tropical upwelling and cooling consequently result in enhancement of convection in the equatorial region, which excites the strong Kelvin wave activity. In addition, we investigated the Kelvin wave acceleration to the eastward zonal wind anomalies in the equatorial stratosphere during SSW events. The composite analysis shows that the proportion of Kelvin wave contribution ranges from 5 to 35 % during SSWs, much larger than in the non-SSW mid-winters (less than 5 % in the stratosphere). However, the Kelvin wave alone is insufficient to drive the equatorial eastward zonal wind anomalies during the SSW events, which suggests that the effects of other types of equatorial waves may not be neglected.

  1. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    DOE PAGES

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold

  2. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell from L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory

  3. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  4. Evidence for MAC waves at the top of Earth's core and implications for variations in length of day

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce; Knezek, Nicholas; Holme, Richard

    2016-03-01

    Earth's liquid core hosts a diverse set of waves with periods ranging from days to thousands of years. One class of waves with periods of several decades is known to arise from an interplay between magnetic, Archimedes and Coriolis forces. These so-called MAC waves are thought to be relevant for interpreting historical fluctuations in the geomagnetic field. In this study, we show that MAC waves provide a good description of time-dependent zonal flow at the top of the core. The same collection of waves also offers a simple explanation for observed fluctuations in the dipole field. Both of these predictions require a stratified layer at the top of the core with a thickness of 130-140 km and a buoyancy frequency comparable to Earth's rotation rate. We extend these predictions to include changes in the length of day (LOD) and find that MAC waves can account for about half of the observed fluctuation at decadal periods. Larger fluctuations are possible when electromagnetic stresses couple MAC waves to flow in the interior of the core. In fact, an idealized model for the coupled motion overestimates the LOD fluctuations, probably reflecting limitations in this idealized model. Our results offer support for stable stratification at the top of the core and suggest a common origin for decadal fluctuations in the geomagnetic field and the LOD.

  5. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave

  6. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave

  7. Nonlinear dust acoustic waves in a nonuniform magnetized complex plasma with nonthermal ions and dust charge variation

    SciTech Connect

    El-Taibany, W. F.; Wadati, Miki; Sabry, R.

    2007-03-15

    Propagations of nonlinear dust acoustic (DA) solitary waves and shock waves in a nonuniform magnetized dusty plasma are investigated. The incorporation of the combined effects of nonthermally distributed ions, nonadiabatic dust charge fluctuation, and the inhomogeneity caused by nonuniform equilibrium values of particle density, charging variable, and particle potential on the waves leads to a significant modification to the nature of nonlinear DA solitary waves. The nonlinear wave evolution is governed by a modified Zakhavov-Kusnetsov-Burgers (MZKB) equation, whose coefficients are space dependent. Using a generalized expansion method, new solutions for the MZKB equation are obtained. The form of solutions consists of two parts; one of them is the amplitude factor and the other is a superposition of bell-shaped and kink-type shock waves. New solutions are classified into three categories. A type of the solution is determined depending on the nonthermal parameter. Findings in this investigation should be useful for understanding the ion acceleration mechanisms close to the Moon and also enhancing our knowledge on pickup ions around unmagnetized bodies, such as comets, Mars, and Venus, including medium inhomogeneities with nonadiabatic dust charging processes.

  8. Separation and Enrichment of the Active Component of Carbon Based Paramagnetic Materials for Use in EPR Oximetry

    NASA Astrophysics Data System (ADS)

    Liu, K. J.; Miyake, M.; James, P. E.; Swartz, H. M.

    1998-08-01

    Carbon based paramagnetic materials are frequently used for EPR oximetry, especiallyin vivo,but the EPR spectra of these materials often have more than one paramagnetic center and/or relatively low signal intensity. To determine whether the multi-components of carbon based materials could be separated and enriched in the active component, we used density gradient centrifugation to separate the materials into several fractions. We studied two types of coals, gloxy and Pocahontas, and found these materials to have large density distribution. The separated density fractions had very different EPR spectra and intensities. The active component from the coal material had a more homogeneous EPR signal and significantly increased EPR signal intensity, whereas for India ink, only slight changes were observed. This result can be very useful in the development of better probes for EPR oximetry.

  9. Separation and enrichment of the active component of carbon based paramagnetic materials for use in EPR oximetry.

    PubMed

    Liu, K J; Miyake, M; James, P E; Swartz, H M

    1998-08-01

    Carbon based paramagnetic materials are frequently used for EPR oximetry, especially in vivo, but the EPR spectra of these materials often have more than one paramagnetic center and/or relatively low signal intensity. To determine whether the multi-components of carbon based materials could be separated and enriched in the active component, we used density gradient centrifugation to separate the materials into several fractions. We studied two types of coals, gloxy and Pocahontas, and found these materials to have large density distribution. The separated density fractions had very different EPR spectra and intensities. The active component from the coal material had a more homogeneous EPR signal and significantly increased EPR signal intensity, whereas for India ink, only slight changes were observed. This result can be very useful in the development of better probes for EPR oximetry.

  10. Nonlinear measure of synchrony between blood oxygen saturation and heart rate from nocturnal pulse oximetry in obstructive sleep apnoea syndrome.

    PubMed

    Alvarez, D; Hornero, R; Abásolo, D; del Campo, F; Zamarrón, C; López, M

    2009-09-01

    This study focuses on analysis of the relationship between changes in blood oxygen saturation (SaO(2)) and heart rate (HR) recordings from nocturnal pulse oximetry (NPO) in patients suspected of suffering from obstructive sleep apnoea (OSA) syndrome. Two different analyses were developed: a classical frequency analysis based on the magnitude squared coherence (MSC) and a nonlinear analysis by means of a recently developed measure of synchrony, the cross-approximate entropy (cross-ApEn). A data set of 187 subjects was studied. We found significantly higher correlation and synchrony between oximetry signals from OSA positive patients compared with OSA negative subjects. We assessed the diagnostic ability to detect OSA syndrome of both the classical and nonlinear approaches by means of receiver operating characteristic (ROC) analyses with tenfold cross-validation. The nonlinear measure of synchrony significantly improved the results obtained with classical MSC: 69.2% sensitivity, 90.9% specificity and 78.1% accuracy were reached with MSC, whereas 83.7% sensitivity, 84.3% specificity and 84.0% accuracy were obtained with cross-ApEn. Our results suggest that the use of nonlinear measures of synchrony could provide essential information from oximetry signals, which cannot be obtained with classical spectral analysis.

  11. Recognition of wave-dominated, tide-influenced shoreline systems in the rock record: Variations from a microtidal shoreline model

    NASA Astrophysics Data System (ADS)

    Vakarelov, Boyan K.; Ainsworth, R. Bruce; MacEachern, James A.

    2012-11-01

    Existing wave-dominated facies models are based on microtidal coastlines and do not adequately address wave-dominated environments influenced by significant tidal ranges. Observations from modern environments show that such systems are abundant along tide-influenced shorelines facing wide shelves and large embayments, such as much of the northern Australia coast; yet equivalent deposits have been rarely recognized from the ancient record. Geomorphological literature shows that tidal influence on wave-dominated shorelines has the effect of shifting the shoaling, breaking, and swash wave zones up and down the beach profile; when the tidal range is appreciable, sedimentation is affected significantly. Many macrotidal, wave-dominated systems (tidal range > 4 m), for example, are non-barred and are characterized by poor development of dune-scale bedforms in the subtidal zone and along the beach profile. Other systems do develop cross stratification, but this occurs in the intertidal zone rather than the subtidal zone as is implied in existing wave-dominated facies models. The association of many wave-dominated, tide-influenced environments with shallow shelves also suggests that major storms may be capable of reworking sediment significant distances from the shoreline. We present an ancient example of a wave-dominated, tide-influenced, fluvial-affected system (Wtf) from the Campanian Bearpaw to Horseshoe Canyon Formation transition near Drumheller, Alberta, Canada, which has been described in closely spaced outcrop exposures and core. Wave domination in the coarsening-upward interval is unambiguous and is represented by abundance of micro-hummocky cross stratification and other storm beds in the mudstone-dominated portions, a well-defined swaley cross stratified sandstone interval, and an up to four meter thick, horizontal planar stratified interval interpreted to have been formed by swash waves. Tide influence is suggested by common double carbonaceous and mud drapes

  12. EPR Oximetry for Investigation of Hyperbaric O2 Pre-treatment for Tumor Radiosensitization.

    PubMed

    Williams, Benjamin B; Hou, Huagang; Coombs, Rachel; Swartz, Harold M

    2016-01-01

    A number of studies have reported benefits associated with the application of hyperbaric oxygen treatment (HBO) delivered immediately prior to radiation therapy. While these studies provide evidence that pre-treatment with HBO may be beneficial, no measurements of intratumoral pO2 were carried out and they do not directly link the apparent benefits to decreased hypoxic fractions at the time of radiation therapy. While there is empirical evidence and some theoretical basis for HBO to enhance radiation therapy, without direct and repeated measurements of its effects on pO2, it is unlikely that the use of HBO can be understood and optimized for clinical applications. In vivo EPR oximetry is a technique uniquely capable of providing repeated direct measurements of pO2 through a non-invasive procedure in both animal models and human patients. In order to evaluate the ability of pretreatment with HBO to elevate tumor pO2, a novel small animal hyperbaric chamber system was constructed that allows simultaneous in vivo EPR oximetry. This chamber can be placed within the EPR magnet and is equipped with a variety of ports for multiplace gas delivery, thermoregulation, delivery of anesthesia, physiologic monitoring, and EPR detection. Initial measurements were performed in a subcutaneous RIF-1 tumor model in C3H/HeJ mice. The mean baseline pO2 value was 6.0 ± 1.2 mmHg (N = 7) and responses to two atmospheres absolute pressure HBO varied considerably across subjects, within tumors, and over time. When an increase in pO2 was observed, the effect was transient in all but one case, with durations lasting from 5 min to over 20 min, and returned to baseline levels during HBO administration. These results indicate that without direct measurements of pO2 in the tissue of interest, it is likely to be difficult to know the effects of HBO on actual tissue pO2. PMID:27526165

  13. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    SciTech Connect

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  14. Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes

    NASA Astrophysics Data System (ADS)

    Rivière, G.

    2009-09-01

    Storm tracks play a crucial role in the dynamics of the general circulation of the atmosphere and particularly of the teleconnections such as the North Atlantic Oscillation (NAO). Baroclinic waves may displace the large-scale jets during their breaking with anticyclonic and cyclonic wave breaking leading generally to a northward and southward displacement of the jets respectively. For example, it has been recently shown by different authors that the positive and the negative phases of the NAO are closely related to anticyclonic and cyclonic wave breaking respectively. The purpose of our study is to look at the reverse side: the impact of the jet latitude onto wave-breaking processes by performing idealized numerical simulations using a primitive-equation model on the sphere (the PUMA model). We first focus on normal mode analysis. By prescribing different types of jets, we study the effects of their latitude on normal mode structures and their breaking using nonlinear simulations. A second stage consists in forcing the model by relaxing the temperature field toward a given restoration temperature. Sensitivity runs are performed by using different restoration temperature fields to look at the effect of the latitude of the low-level baroclinicity on eddy life cycles. Implication for the eddy feedback onto the large-scale circulation is more precisely investigated. Our results reveal that eddies exert a positive feedback onto the latitudinal variations of the large-scale jets. Finally, these results are used to interpret some wave-breaking processes found in the observations of the Northern Hemisphere.

  15. Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Sakazaki, Takatoshi; Fujiwara, Masatomo; Mitsuda, Chihiro; Imai, Koji; Manago, Naohiro; Naito, Yoko; Nakamura, Tetsu; Akiyoshi, Hideharu; Kinnison, Douglas; Sano, Takuki; Suzuki, Makoto; Shiotani, Masato

    2013-04-01

    Considerable uncertainties remain in the global pattern of diurnal variation in stratospheric ozone, particularly lower to middle stratospheric ozone, which is the principal contributor to total column ozone. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) attached to the Japanese Experiment Module (JEM) on board the International Space Station (ISS) was developed to gather high-quality global measurements of stratospheric ozone at various local times, with the aid of superconducting mixers cooled to 4K by a compact mechanical cooler. Using the SMILES dataset, as well as data from nudged chemistry-climate models (MIROC3.2-CTM and SD-WACCM), we show that the SMILES observational data have revealed the global pattern of diurnal ozone variations throughout the stratosphere. We also found that these variations can be explained by both photochemistry and dynamics. The peak-to-peak difference in the stratospheric ozone mixing ratio (total column ozone) reached 8% (1%) over the course of a day. This variation needs to be considered when merging ozone data from different satellite measurements and even from measurements made using one specific instrument at different local times.

  16. Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Sakazaki, Takatoshi; Fujiwara, Masatomo; Mitsuda, Chihiro; Imai, Koji; Manago, Naohiro; Naito, Yoko; Nakamura, Tetsu; Akiyoshi, Hideharu; Kinnison, Douglas; Sano, Takuki; Suzuki, Makoto; Shiotani, Masato

    2013-04-01

    Considerable uncertainties remain in the global pattern of diurnal variation in stratospheric ozone, particularly lower to middle stratospheric ozone, which is the principal contributor to total column ozone. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) attached to the Japanese Experiment Module (JEM) on board the International Space Station (ISS), was developed to gather high-quality global measurements of stratospheric ozone at various local times, with the aid of superconducting mixers cooled to 4 K by a compact mechanical cooler. Using the SMILES dataset, as well as data from nudged chemistry-climate models (MIROC3.2-CTM and SD-WACCM), we show that the SMILES observational data have revealed the global pattern of diurnal ozone variations throughout the stratosphere. We also found that these variations can be explained by both photochemistry and dynamics. The peak-to-peak difference in the stratospheric ozone mixing ratio (total column ozone) reached 8% (1%) over the course of a day. This variation needs to be considered when merging ozone data from different satellite measurements and even from measurements made using one specific instrument at different local times.

  17. Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems.

    PubMed Central

    Liu, K J; Gast, P; Moussavi, M; Norby, S W; Vahidi, N; Walczak, T; Wu, M; Swartz, H M

    1993-01-01

    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats. PMID:8390665

  18. Computer assisted pulse oximetry for detecting children with obstructive sleep apnea syndrome.

    PubMed

    Vavrina, J

    1995-11-01

    A prospective study was carried out on 110 children undergoing tonsillectomy or adenotonsillectomy to evaluate the usefulness of computer assisted pulse oximetry (POM) as a screening tool for nocturnal obstructive sleep apnea episodes. Twenty-one healthy age-matched children served as a control group. A self-designed software (CAPO version 1.0) was used to analyse collected oximetric data. Pre-operatively up to 25% of children showed a characteristic pattern of repeated oxygen desaturations related to partial or complete airway obstruction, which was not seen in the matched group. Thirty-one percent had an oxygen desaturation index (ODI) of more than 2 phases/h, being significantly higher than in the matched group. These children could not be identified from history or clinical examination with an acceptable sensitivity. A second monitoring has been performed in 32 patients 5 days after surgery. The nocturnal cyclic oscillations of oxygen saturation resolved in almost all cases. Computer assisted POM is useful in predicting and grading nocturnal obstruction and adds decision making data for the treatment in children suspected of suffering from obstructive sleep apnea.

  19. Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data

    SciTech Connect

    Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.

    1996-03-01

    Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.

  20. Preliminary investigation of multispectral retinal tissue oximetry mapping using a hyperspectral retinal camera.

    PubMed

    Desjardins, Michèle; Sylvestre, Jean-Philippe; Jafari, Reza; Kulasekara, Susith; Rose, Kalpana; Trussart, Rachel; Arbour, Jean Daniel; Hudson, Chris; Lesage, Frédéric

    2016-05-01

    Oximetry measurement of principal retinal vessels represents a first step towards understanding retinal metabolism, but the technique could be significantly enhanced by spectral imaging of the fundus outside of main vessels. In this study, a recently developed Hyperspectral Retinal Camera was used to measure relative oximetric (SatO2) and total hemoglobin (HbT) maps of the retina, outside of large vessels, in healthy volunteers at baseline (N = 7) and during systemic hypoxia (N = 11), as well as in patients with glaucoma (N = 2). Images of the retina, on a field of view of ∼30°, were acquired between 500 and 600 nm with 2 and 5 nm steps, in under 3 s. The reflectance spectrum from each pixel was fitted to a model having oxy- and deoxyhemoglobin as the main absorbers and scattering modeled by a power law, yielding estimates of relative SatO2 and HbT over the fundus. Average optic nerve head (ONH) saturation over 8 eyes was 68 ± 5%. During systemic hypoxia, mean ONH saturation decreased by 12.5% on average. Upon further development and validation, the relative SatO2 and HbT maps of microvasculature obtained with this imaging system could ultimately contribute to the diagnostic and management of diseases affecting the ONH and retina. PMID:27060375

  1. Oximetry system performance assessment with POM (acetal) phantoms incorporating hemoglobin calibration standards and customized saturation levels

    NASA Astrophysics Data System (ADS)

    Jang, Hyounguk; Singh, Karam; Wang, Hsing-Wen; Pfefer, T. J.; Chen, Yu

    2015-03-01

    Standardized approaches for performance assessment of biophotonic devices have the potential to facilitate system development and intercomparison, clinical trial standardization, recalibration, manufacturing quality control and quality assurance during clinical use. Evaluation of devices based on near-infrared spectroscopy (NIRS) for detection of hemoglobin (Hb) content and oxygenation have often involved tissue-simulating phantoms incorporating artificial dyes or flow systems. Towards the development of simple, effective techniques for objective, quantitative evaluation of basic NIRS system performance, we have developed and evaluated two test methods. These methods are based on cuvette inserts in solid turbid phantoms for measuring commercially-available Hb oximetry standards and custom-formulated oxy/deoxy-Hb solutions. Both approaches incorporate solid acetal, or polyoxymethylene (POM), as a tissue-simulating matrix material. First, inverse-adding-doubling (IAD) based on measurements with a spectrophotometer and an integrating sphere was used to measure POM optical properties and their stability over time. Second, two fiberopticprobe- based NIRS systems were used to measure concentration change of oxy- and deoxy-Hb in standard Hb solutions and customized Hb solutions by adding yeast. Differences in system performance were likely due to differences in light source outputs and fiberoptic probe design. Our preliminary results indicate that simple phantom-based approaches based on commercially available polymers and inclusions containing Hb standards, or controlled oxygenation levels may be useful for benchtop assessment of NIRS device quality for a variety of biophotonic devices.

  2. Correlation of Pulse Oximetry and Apgar Scoring in the Normal Newborns

    PubMed Central

    Chauhan, Sandhya; Singh, Prashant K.; Gahalaut, Pratik; Prasad, Prem L.

    2013-01-01

    Context: Apgar score (AS) is routinely used for assessment of newborns immediately after birth. Within acceptable limits, low saturations at birth are normal in vigorous newborn babies. Various studies have questioned the reliability of AS. Aims: To detect whether AS is an accurate indicator of hypoxemia and to study the correlation of different components of AS with the arterial oxygenation saturation (SpO2) levels of normal newborns in the delivery room. Settings and Design: A prospective cross-sectional observational study on normal healthy neonates delivered vaginally in a tertiary level referral medical college. Materials and Methods: SpO2 levels were monitored continuously in the newborns with a pulse oximeter and serial recording of SpO2 levels was done at 5 min intervals starting at 1 min of life until 30 min after birth. Simultaneously, AS was recorded in these newborns at 1 and 5 min of life. Statistical Analysis: Data was analyzed using the Mann-Whitney–U test. Results: AS at 1 and 5 min of life didn’t correlate with the changes in SpO2 of newborns. In AS; though respiratory efforts and muscle tone were significantly correlated with SpO2 of the newborns, body color did not have significant correlation with simultaneously recorded SpO2. Conclusions: A revised AS in which evaluation of color is replaced by pulse oximetry monitoring would prove to be a better tool for neonatal evaluation in the immediate postnatal period. PMID:24027740

  3. Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges.

    PubMed

    Abay, T Y; Kyriacou, P A

    2016-04-01

    Monitoring changes in blood volume, blood flow, and oxygenation in tissues is of vital importance in fields such as reconstructive surgery and trauma medicine. Near infrared spectroscopy (NIRS), laser Doppler (LDF) flowmetry, photoplethysmography (PPG), and pulse oximetry (PO) contribute to such fields due to their safe and noninvasive nature. However, the techniques have been rarely investigated simultaneously or altogether. The aim of this study was to investigate all the techniques simultaneously on healthy subjects during vascular occlusion challenges. Sensors were attached on the forearm (NIRS and LDF) and fingers (PPG and PO) of 19 healthy volunteers. Different degrees of vascular occlusion were induced by inflating a pressure cuff on the upper arm. The responses of tissue oxygenation index (NIRS), tissue haemoglobin index (NIRS), flux (LDF), perfusion index (PPG), and arterial oxygen saturation (PO) have been recorded and analyzed. Moreover, the optical densities were calculated from slow varying dc PPG, in order to distinguish changes in venous blood volumes. The indexes showed significant changes (p  <  0.05) in almost all occlusions, either venous or over-systolic occlusions. However, differentiation between venous and arterial occlusion by LDF may be challenging and the perfusion index (PI) may not be adequate to indicate venous occlusions. Optical densities may be an additional tool to detect venous occlusions by PPG.

  4. Impact of Intraoperative Events on Cerebral Tissue Oximetry in Patients Undergoing Cardiopulmonary Bypass.

    PubMed

    Ševerdija, Ervin E; Vranken, Nousjka P A; Teerenstra, Steven; Ganushchak, Yuri M; Weerwind, Patrick W

    2015-03-01

    Previous studies showed that decreased cerebral saturation during cardiac surgery is related to adverse postoperative outcome. Therefore, we investigated the influence of intraoperative events on cerebral tissue saturation in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). A total of 52 adult patients who underwent cardiac surgery using pulsatile CPB were included in this prospective explorative study. Cerebral tissue oxygen saturation (SctO2) was measured in both the left and right cerebral hemisphere. Intraoperative events, involving interventions performed by anesthesiologist, surgeon, and clinical perfusionist, were documented. Simultaneously, in-line hemodynamic parameters (partial oxygen pressure, partial carbon dioxide pressure, hematocrit, arterial blood pressure, and CPB flow rates) were recorded. Cerebral tissue saturation was affected by anesthetic induction (p < .001), placement of the sternal retractor (p < .001), and initiation (p < .001) as well as termination of CPB (p < .001). Placement (p < .001) and removal of the aortic cross-clamp (p = .026 for left hemisphere, p = .048 for right hemisphere) led to changes in cerebral tissue saturation. In addition, when placing the aortic crossclamp, hematocrit (p < .001) as well as arterial (p = .007) and venous (p < .001) partial oxygen pressures changed. Cerebral tissue oximetry effectively identifies changes related to surgical events or vulnerable periods during cardiac surgery. Future studies are needed to identify methods of mitigating periods of reduced cerebral saturation.

  5. Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs

    NASA Astrophysics Data System (ADS)

    Kurata, Tomohiro; Oda, Shigeto; Kawahira, Hiroshi; Haneishi, Hideaki

    2016-10-01

    We have previously proposed an estimation method of intravascular oxygen saturation (SO_2) from the images obtained by sidestream dark-field (SDF) imaging (we call it SDF oximetry) and we investigated its fundamental characteristics by Monte Carlo simulation. In this paper, we propose a correction method for scattering by the tissue and performed experiments with turbid phantoms as well as Monte Carlo simulation experiments to investigate the influence of the tissue scattering in the SDF imaging. In the estimation method, we used modified extinction coefficients of hemoglobin called average extinction coefficients (AECs) to correct the influence from the bandwidth of the illumination sources, the imaging camera characteristics, and the tissue scattering. We estimate the scattering coefficient of the tissue from the maximum slope of pixel value profile along a line perpendicular to the blood vessel running direction in an SDF image and correct AECs using the scattering coefficient. To evaluate the proposed method, we developed a trial SDF probe to obtain three-band images by switching multicolor light-emitting diodes and obtained the image of turbid phantoms comprised of agar powder, fat emulsion, and bovine blood-filled glass tubes. As a result, we found that the increase of scattering by the phantom body brought about the decrease of the AECs. The experimental results showed that the use of suitable values for AECs led to more accurate SO_2 estimation. We also confirmed the validity of the proposed correction method to improve the accuracy of the SO_2 estimation.

  6. Evaluating Innovative In-Ear Pulse Oximetry for Unobtrusive Cardiovascular and Pulmonary Monitoring During Sleep

    PubMed Central

    Schiefer, Johannes; Blazek, Vladimir; Blanik, Nikolai; Leonhardt, Steffen

    2013-01-01

    Homecare is healthcare based on the principle “outpatient before inpatient,” with the aim of moving at least some care-delivery to the home. But reliable determination of vital signs at home requires new, smart sensors, which can be used by the patients themselves. We present a novel pulse oximetry sensor worn in the ear channel. It was previously shown that measurement of heart rate, arterial oxygen saturation and related respiratory information can be performed with reliable accuracy under laboratory conditions. The present study explores the clinical feasibility of the sensor system for cardiovascular monitoring during sleep, with the aim to diagnose sleep apnea. For this, human trials were performed in a sleep laboratory including patients with a clinical suspicion of sleep apnea. Besides a general analysis of the sensor's signal quality during sleep, the evaluation focuses on heart rate dynamics and time-variant oxygen saturation. In addition, several methods to derive respiration rate from photoplethysmographic signals are examined and discussed. Results from the in-ear sensor are compared with standard polysomnography monitoring and demonstrate that this novel system allows long-term nocturnal measurement of heart rate, oxygen saturation and respiratory rate with sufficient accuracy. PMID:27170855

  7. Newborn Critical Congenital Heart Disease Screening Using Pulse Oximetry: Nursing Aspects.

    PubMed

    Hom, Lisa A; Martin, Gerard R

    2016-09-01

    Congenital heart disease (CCHD) is the most common birth defect. Screening for the most critical forms (CCHD) using pulse oximetry was added to the Recommended Uniform Screening Panel in the United States in 2011. Since then, CCHD screening has become nearly universal in the United States. Nurses are ideally situated to contribute to the development of best practices for implementation and provide education to families on CCHD screening. Much of the standardization, advocacy, and development of national recommendations occurred with key input from nurses. Nurses often have responsibility for educating parents, performing the screening, interpreting the screening algorithm, and the documentation of results. The nurse role often includes implementing follow-up quality improvement initiatives to ensure that systematic and accurate screening occurs. Smooth implementation can be achieved by identifying champions early, obtaining input from a multidisciplinary team including both physician and nursing leaders, and identifying ways to integrate screening into already existing workflow. By knowing the basics of why screening is important, how to screen, current recommendations on the follow-up for positive screens and the limitations of CCHD screening, nurses can advocate for their patients and positively impact outcomes for infants born with CCHD through early identification before discharge. PMID:27603538

  8. Nitrate Effects on Nodule Oxygen Permeability and Leghemoglobin (Nodule Oximetry and Computer Modeling).

    PubMed Central

    Denison, R. F.; Harter, B. L.

    1995-01-01

    Two current hypotheses to explain nitrate inhibition of nodule function both involve decreased O2 supply for respiration in support of N2 fixation. This decrease could result from either (a) decreased O2 permeability (PO) of the nodule cortex, or (b) conversion of leghemoglobin (Lb) to an inactive, nitrosyl form. These hypotheses were tested using alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus) plants grown in growth pouches under controlled conditions. Nodulated roots were exposed to 10 mM KNO3 or KCI. Fractional oxygenation of Lb under air (FOLair), relative concentration of functional Lb, apparent PO, and O2-saturated central zone respiration rate were all monitored by nodule oximetry. Apparent PO and FOLair in nitrate-treated nodules decreased to <50% of values for KCI controls within 24 h, but there was no decrease in functional Lb concentration during the first 72 h. In nitrate-treated alfalfa, but not in birdsfoot trefoil, FOLair, apparent PO, and O2-saturated central zone respiration rate decreased during each light period and recovered somewhat during the subsequent dark period. This species difference could be explained by greater reliance on photoreduction of nitrate in alfalfa than in birdsfoot trefoil. Computer simulations extended the experimental results, showing that previously reported decreases in apparent PO of Glycine max nodules with nitrate exposure cannot be explained by hypothetical decreases in the concentration or O2 affinity of Lb. PMID:12228439

  9. A new method for pulse oximetry possessing inherent insensitivity to artifact.

    PubMed

    Hayes, M J; Smith, P R

    2001-04-01

    A new method for pulse oximetry is presented that possesses an inherent insensitivity to corruption by motion artifact, a primary limitation in the practical accuracy and clinical applicability of current technology. Artifact corruption of the underlying photoplethysmographic signals is reduced in real time, using an electronic processing methodology that is based upon inversion of a physical artifact model. This fundamental approach has the potential to provide uninterrupted output and superior accuracy under conditions of sustained subject motion, therefore, widening the clinical scope of this useful measurement. A new calibration technique for oxygen saturation is developed for use with these processed signals, which is shown to be a generalization of the classical interpretation. The detailed theoretical and practical issues of implementation are then explored, highlighting important engineering simplifications implicit in this new approach. A quantitative investigation of the degree of insensitivity to artifact is also undertaken, with the aid of a custom electronic system and commercial pulse oximeter probes, which is compared and contrasted with the performance of a conventional implementation. It is demonstrated that this new methodology results in a reduced sensitivity to common classes of motion artifact, while retaining the generality to be combined with conventional signal processing techniques.

  10. Oximetry Signal Processing Identifies REM Sleep-Related Vulnerability Trait in Asthmatic Children

    PubMed Central

    Perez, Geovanny F.; Gutierrez, Maria J.; Huseni, Shehlanoor; Pancham, Khrisna; Rodriguez-Martinez, Carlos E.; Nino, Cesar L.; Nino, Gustavo

    2013-01-01

    Rationale. The sleep-related factors that modulate the nocturnal worsening of asthma in children are poorly understood. This study addressed the hypothesis that asthmatic children have a REM sleep-related vulnerability trait that is independent of OSA. Methods. We conducted a retrospective cross-sectional analysis of pulse-oximetry signals obtained during REM and NREM sleep in control and asthmatic children (n = 134). Asthma classification was based on preestablished clinical criteria. Multivariate linear regression model was built to control for potential confounders (significance level P ≤ 0.05). Results. Our data demonstrated that (1) baseline nocturnal respiratory parameters were not significantly different in asthmatic versus control children, (2) the maximal % of SaO2 desaturation during REM, but not during NREM, was significantly higher in asthmatic children, and (3) multivariate analysis revealed that the association between asthma and REM-related maximal % SaO2 desaturation was independent of demographic variables. Conclusion. These results demonstrate that children with asthma have a REM-related vulnerability trait that impacts oxygenation independently of OSA. Further research is needed to delineate the REM sleep neurobiological mechanisms that modulate the phenotypical expression of nocturnal asthma in children. PMID:24288619

  11. The evaluation of new and isotopically labeled isoindoline nitroxides and an azaphenalene nitroxide for EPR oximetry

    PubMed Central

    Khan, Nadeem; Blinco, James P.; Bottle, Steven E.; Hosokawa, Kazuyuki; Swartz, Harold M.; Micallef, Aaron S.

    2011-01-01

    Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogues (2H12- and/or 2H12-15N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O2 concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O2 sensitivity. Labeling the nitroxides with 15N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation. PMID:21665499

  12. Continuous pulse oximetry in the breath-hold diving women of Korea and Japan.

    PubMed

    Stanek, K S; Guyton, G P; Hurford, W E; Park, Y S; Ahn, D W; Qvist, J; Falke, K J; Hong, S K; Kobayashi, K; Kobayashi, H

    1993-12-01

    Arterial oxygen saturation during breath-hold diving has not previously been measured continuously. We devised a submersible, waterproof, backpack computer to continuously record heart rate, depth, and arterial oxygen saturation (SPO2) as determined by earlobe pulse oximetry. Our measurements showed that one assisted (Funado) diver had reduced SPO2 values immediately after surfacing from 22 dives which lasted 23-76 s, from a mean of 99 +/- 1% SPO2 to 96 +/- 3% SPO2. SPO2 returned to 97 +/- 2% within 15 s after surfacing (P < 0.05 surface value differs from predive base line). Four unassisted (Cachido) divers showed no significant reduction of mean predive SPO2 below 98 +/- 2% at any time during the dive or recovery period in 92 routine dives lasting from 15 to 44 s. Upon surfacing from diving, mean SPO2 was 98 +/- 2% and the mean SPO2 15 s after surfacing was 97 +/- 3% for the unassisted divers. Three Cachido divers were asked to dive and breath hold for as long as possible. Mean SPO2 at the conclusion of breath holding was 73% after an average dive and breath hold lasting 69 s.

  13. On the altitude-variation of electron acceleration by HF radio-waves in the F-region

    NASA Astrophysics Data System (ADS)

    Gustavsson, Bjorn

    2016-07-01

    I will talk about artificial aurora, the descending layers we have observed at HAARP and the altitude-variations we have observed in enhanced ion and plasma-lines with the EISCAT UHF-radar, and present an empirical model describing these phenomena.

  14. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves

  15. Can we Replace Arterial Blood Gas Analysis by Pulse Oximetry in Neonates with Respiratory Distress Syndrome, who are Treated According to INSURE Protocol?

    PubMed Central

    Niknafs, Pedram; Norouzi, Elahe; Bahman Bijari, Bahareh; Baneshi, Mohammad Reza

    2015-01-01

    Neonates with respiratory distress syndrome (RDS), who are treated according to INSURE protocol; require arterial blood gas (ABG) analysis to decide on appropriate management. We conducted this study to investigate the validity of pulse oximetry instead of frequent ABG analysis in the evaluation of these patients. From a total of 193 blood samples obtained from 30 neonates <1500 grams with RDS, 7.2% were found to have one or more of the followings: acidosis, hypercapnia, or hypoxemia. We found that pulse oximetry in the detection of hyperoxemia had a good validity to appropriately manage patients without blood gas analysis. However, the validity of pulse oximetry was not good enough to detect acidosis, hypercapnia, and hypoxemia. PMID:25999627

  16. Measurements of Diurnal Variations of Upper Stratospheric ClO with a Ground-based Millimeter-wave Radiometer at Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; Mizuno, A.; Nagahama, T.; Maezawa, H.; Toriyama, N.; Kojima, Y.

    2010-12-01

    We present the first results of measuring the stratospheric chlorine monoxide (ClO) with a ground-based millimeter-wave radiometer at Atacama highland (23S, 68W, Alt. 4800 m), Chile. The chlorine chemistry plays an essential role in the ozone depletion in the upper stratosphere, and ClO is a key molecule for better understandings of the chlorines chemistry and the ozone recovery processes. However, measurements of the ClO distribution in the upper stratosphere are still limited at present because the ClO spectrum can be measured only in millimeter-wave region and its intensity is considerably weak. Therefore, we had newly installed a ground-based millimeter-wave radiometer equipped with a high sensitivity receiver at Atacama highland, Chile in 2004, and started monitoring the vertical profiles of the stratospheric ClO in 2008. Atacama highland is in a desert area of the northern part of Chile, being one of the most suitable places for millimeter-wave observations. Our instrument equips a superconducting (SIS) mixer receiver whose noise temperature is 170 K in double sideband at 204 GHz and a digital FFT spectrometer covering 1 GHz bandwidth with 70 kHz frequency resolution. We had continuously observed ClO spectra in 204 GHz band every 2 minutes from December 2009 to January 2010, and had obtained 11466 spectra. Vertical profiles of ClO in the upper stratosphere were retrieved from the spectra integrated every 2 hours in local time (LT) taken during 4 and 16 December. From these data, we have clearly detected a diurnal variation of ClO at 40 km. Comparing ClO mixing ratio obtained with our radiometer with those of AURA/MLS taken over our site at 12:00 - 15:00 LT, we had confirmed that they are consistent in range of errors. In this presentation, we will show the details of the diurnal variations of upper stratospheric ClO and comparisons among our results, AURA/MLS and JEM/SMILES.

  17. Temporal variation of the Rayleigh admittance: Implication for S-wave velocity changes in the toe of the Nankai accretionary prism

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi; Araki, Eiichiro; Kimura, Toshinori; Nakamura, Takeshi

    2016-04-01

    A cabled seafloor network with 20 stations (DONET: Dense Oceanfloor Network System for Earthquake and Tsunamis) has been constructed on the accretionary prism at the Nankai subduction zone of Japan between March 2010 and August 2011, which means that the observation period became more than 4 years. Each station contains broadband seismometers and absolute and differential pressure gauges. In this study, we estimated the Rayleigh admittance at the seafloor for each station, i.e., an amplitude transfer function from pressure to displacement in the frequency band of microseisms, particularly for the fundamental Rayleigh mode of 0.1-0.2 Hz. The pattern of the transfer function depends on the S-wave velocity structure at shallow depths beneath stations (Ruan et al., 2014, JGR). Therefore, plotting the Rayleigh admittance as functions of time and frequency, we investigated temporal variations of S-wave velocity within the accretionary prism. We calculated the displacement seismogram by removing the instrument response from the velocity seismogram for each station. The pressure record observed at the differential pressure gauge was used in this study because of a high resolution of the pressure observation. In the frequency domain, we smoothed the two kinds of spectra (displacement and pressure) with ±2 neighboring samples, and estimated the amplitude transfer function of displacement/pressure. Here, we used the ambient noise of the two records. To display their temporal variations, we plot the averaged transfer function with intervals of 7 days. As a result, we found a long-term temporal variation of the Rayleigh admittance at two stations. These stations are located at the southern part of the array and near the trench, where the activities of very-low frequency earthquakes (VLFEs) within the accretionary prism on 2004, 2009, and 2011 have been previously reported. The admittance at a frequency of 0.1 Hz has gradually decreased during the observation period, which

  18. Screening for Critical Congenital Heart Defects with Pulse Oximetry: Medical Aspects.

    PubMed

    Ewer, Andrew K

    2016-09-01

    The detection of newborn babies with potentially life-threatening, critical congenital heart defects (CCHDs) before they collapse or expire remains an important clinical challenge. The absence of physical signs and the difficulty assessing mild cyanosis means that the newborn baby check misses up to a third of babies. Fetal anomaly ultrasound scanning identifies an increasing proportion, but this screen is operator-dependent and therefore highly variable; although some units report very high detection rates, overall most babies with CCHD are still missed. Pulse oximetry screening (POS) is an additional test that meets the criteria for universal screening. POS increases overall detection of CCHD to over 90% and also identifies babies with noncardiac, hypoxemic conditions (such as congenital pneumonia, early-onset sepsis, and pulmonary hypertension), which are usually included in the false positives. There is a wealth of published data on the POS, both in a research setting and more recently in routine clinical practice, and consideration of POS is becoming increasingly widespread particularly among high-income countries. But a degree of controversy still remains, and debate continues regarding the most appropriate time to screen, the most effective screening pathway, and screening outside the well-baby nursery. So, should all newborn babies be screened with POS, if so, when and where should screening take place, what saturations are acceptable, and which conditions are we trying to identify? This review will look at the available evidence and try to suggest the way forward for those considering its introduction into their clinical practice. PMID:27603536

  19. Hepatopulmonary syndrome in patients with chronic liver disease: role of pulse oximetry

    PubMed Central

    Deibert, Peter; Allgaier, Hans-Peter; Loesch, Stefanie; Müller, Claudia; Olschewski, Manfred; Hamm, Hinrich; Maier, Klaus-Peter; Blum, Hubert Erich

    2006-01-01

    Background Hepatopulmonary syndrome (HPS) is a rare complication of liver diseases of different etiologies and may indicate a poor prognosis. Therefore, a simple non-invasive screening method to detect HPS would be highly desirable. In this study pulse oximetry was evaluated to identify patients with HPS. Methods In 316 consecutive patients with liver cirrhosis (n = 245), chronic hepatitis (n = 69) or non-cirrhotic portal hypertension (n = 2) arterial oxygen saturation (SaO2) was determined using a pulse oximeter. In patients with SaO2 ≤92% in supine position and/or a decrease of ≥4% after change from supine to upright position further diagnostic procedures were performed, including contrast-enhanced echocardiography and perfusion lung scan. Results Seventeen patients (5.4%) had a pathological SaO2. Four patients (1.3%) had HPS. HPS patients had a significant lower mean SaO2 in supine (89.7%, SD 5.4 vs. 96.0%, SD 2.3; p = 0.003) and upright position (84.3%, SD 5.0 vs. 96.0%, SD 2.4; p = 0.001) and had a lower mean PaO2 (56.2 mm Hg, SD 15.2 vs. 71.2 mm Hg, SD 20.2; p = 0.02) as compared to patients without HPS. The mean ΔSaO2 (difference between supine and upright position) was 5.50 (SD 7) in HPS patients compared to non-HPS patients who showed no change (p = 0.001). There was a strong correlation between shunt volume and the SaO2 values (R = -0.94). Conclusion Arterial SaO2 determination in supine and upright position is a useful non-invasive screening test for HPS and correlates well with the intrapulmonary shunt volume. PMID:16638132

  20. Visible light optical coherence tomography for microvascular oximetry in ocular circulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Yi, Ji; Zhang, Hao F.

    2016-03-01

    Visible light optical coherence tomography (vis-OCT) is intrinsically capable of optical determination of blood oxygen saturation (sO2). Thanks to its 3D sectioning ability, confounding factors that plaque multi-wavelength fundus photography can be avoided. We further supplemented it with motion-enhanced angiography (vis-OCTA), which allowed us to resolve retinal micro vessels without losing spectral information. As a result, spectroscopic vis-OCTA can extract microvascular sO2 which are generally inaccessible. Here we extend the theoretical formulation of vis-OCTA oximetry to include optical attenuation, scattering and motion contrast. The model allows robust estimation of sO2, while also promising reduction of illuminating power to 1/3 of current value of ~1 mW. To demonstrate the capability of our approach, we performed oxygen challenge while taking vis-OCTA measurements on rat ocular circulation in vivo. We supplied the experiment animal with the following gas mixture: normal air, 5% CO2 air, pure O2 and 10% O2 air. For each inhalation gas, the OCTA measurements were compared with peripheral capillary sO2 (spO2) provided by a pulse oximeter. The retinal artery sO2 measurements corresponded well with spO2 reading as expected (R2 = 0.87). We found that both retinal and choroidal circulation sO2 moderately increased when we supplied 5% CO2 air. 100% O2 inhalation significantly increased both artery and vein oxygenation. On the contrary, 10% O2 air could deplete the oxygen reservoir in the circulation and lead to low sO2 readings.

  1. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry

    PubMed Central

    Langan, Laura M.; Dodd, Nicholas J. F.; Owen, Stewart F.; Purcell, Wendy M.; Jackson, Simon K.; Jha, Awadhesh N.

    2016-01-01

    Advanced in vitro culture from tissues of different origin includes three-dimensional (3D) organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells) using Electron Paramagnetic Resonance (EPR) oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc) allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL) is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen) report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid) and absolute size (118±32 μm) allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface) for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid) cultures in biomedical and toxicological

  2. Unexpectedly low pulse oximetry measurements associated with variant hemoglobins: a systematic review.

    PubMed

    Verhovsek, Madeleine; Henderson, Matthew P A; Cox, Gerard; Luo, Hong-yuan; Steinberg, Martin H; Chui, David H K

    2010-11-01

    Pulse oximetry estimates arterial blood oxygen saturation based on light absorbance of oxy- and deoxy-hemoglobin at 660 and 940 nm wavelengths. Patients with unexpectedly low SpO₂ often undergo cardio-pulmonary testing to ascertain the cause of their hypoxemia. However, in a subset of patients, a variant hemoglobin is responsible for low SpO₂ measurements. The extent of this problem is unclear. We performed a systematic literature review for reports of low SpO₂ associated with variant hemoglobins. We also reviewed unpublished cases from an academic hemoglobin diagnostic reference laboratory. Twenty-five publications and four unpublished cases were identified, representing 45 patients with low SpO₂ and confirmed variant hemoglobin. Fifty-seven family members of patients had confirmed or suspected variant hemoglobin. Three low oxygen affinity variant hemoglobins had concordantly low SpO₂ and SaO₂. Eleven variant hemoglobins were associated with unexpectedly low SpO₂ measurements but normal SaO₂. Hemoglobin light absorbance testing was reported in three cases, all of which showed abnormal absorption spectra between 600 and 900 nm. Seven other variant hemoglobins had decreased SpO₂, with unreported or uncertain SaO₂. Twenty-one variant hemoglobins were found to be associated with low SpO₂. Most variant hemoglobins were associated with spuriously low SpO₂. Abnormal absorption spectra explain the discrepancy between SpO₂ and SaO(2) for some variants. The differential diagnosis of possible variant hemoglobin ought to be considered in asymptomatic patients found to have unexpectedly low SpO₂. The correct diagnosis will help to spare patients from unnecessary investigations and anxiety.

  3. Determination of Bedrock Variations and S-wave Velocity Structure in the NW part of Turkey for Earthquake Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Ozel, A. O.; Arslan, M. S.; Aksahin, B. B.; Genc, T.; Isseven, T.; Tuncer, M. K.

    2015-12-01

    Tekirdag region (NW Turkey) is quite close to the North Anatolian Fault which is capable of producing a large earthquake. Therefore, earthquake hazard mitigation studies are important for the urban areas close to the major faults. From this point of view, integration of different geophysical methods has important role for the study of seismic hazard problems including seismotectonic zoning. On the other hand, geological mapping and determining the subsurface structure, which is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards can be performed by integrated geophysical methods. This study has been performed in the frame of a national project, which is a complimentary project of the cooperative project between Turkey and Japan (JICA&JST), named as "Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education". With this principal aim, this study is focused on Tekirdag and its surrounding region (NW of Turkey) where some uncertainties in subsurface knowledge (maps of bedrock depth, thickness of quaternary sediments, basin geometry and seismic velocity structure,) need to be resolved. Several geophysical methods (microgravity, magnetic and single station and array microtremor measurements) are applied and the results are evaluated to characterize lithological changes in the region. Array microtremor measurements with several radiuses are taken in 30 locations and 1D-velocity structures of S-waves are determined by the inversion of phase velocities of surface waves, and the results of 1D structures are verified by theoretical Rayleigh wave modelling. Following the array measurements, single-station microtremor measurements are implemented at 75 locations to determine the predominant frequency distribution. The predominant frequencies in the region range from 0.5 Hz to 8 Hz in study area. On the other hand, microgravity and magnetic measurements are performed on

  4. Three-dimensional elastic wave speeds in the northern Chile subduction zone: variations in hydration in the supraslab mantle

    NASA Astrophysics Data System (ADS)

    Comte, Diana; Carrizo, Daniel; Roecker, Steven; Ortega-Culaciati, Francisco; Peyrat, Sophie

    2016-11-01

    We use seismic tomography to investigate the state of the supraslab mantle beneath northern Chile, a part of the Nazca-South America Plate boundary known for frequent megathrust earthquakes and active volcanism. We performed a joint inversion of arrival times from earthquake generated body waves and phase delay times from ambient noise generated surface waves recorded by a combined 360 seismic stations deployed in northern Chile at various times over several decades. Our preferred model shows an increase in Vp/Vs by as much as 3 per cent from the subducting slab into the supraslab mantle throughout northern Chile. Combined with low values of both Vp and Vs at depths between 40 and 80 km, we attribute this increase in Vp/Vs to the serpentinization of the supraslab mantle in this depth range. The region of high Vp/Vs extends to 80-120 km depth within the supraslab mantle, but Vp and Vs both increase to normal to high values. This combination, along with the greater abundance of ambient seismicity and higher temperatures at these depths, suggest that conversion from basalt to eclogite in the slab accelerates and that the fluids expelled into the supraslab mantle contribute to partial melt. The corresponding maximum melt fraction is estimated to be about 1 per cent. Both the volume of the region affected by hydration and size of the wave speed contrasts are significantly larger north of ˜21°S. This latitude also delimits large coastal scarps and the eruption of ignimbrites in the north. Ambient seismicity is more abundant north of 21°S, and the seismic zone south of this latitude is offset to the east. The high Vp/Vs region in the north may extend along the slab interface to depths as shallow as 20 km, where it corresponds to a region of reduced seismic coupling and overlaps the rupture zone of the recent 2014 M8.2 Pisagua earthquake. A potential cause of these contrasts is enhanced hydration of the subducting oceanic lithosphere related to a string of seamounts

  5. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements. PMID:27192320

  6. Modeling the variations of reflection coefficient of Earth's lower ionosphere using very low frequency radio wave data by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh

    2016-08-01

    The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.

  7. Short baseline variations in site response and wave-propagation effects and their structural causes: Four examples in and around the santa clara valley, California

    USGS Publications Warehouse

    Hartzell, S.; Ramirez-Guzman, L.; Carver, D.; Liu, P.

    2010-01-01

    Ground motion records of local and regional events from a portable array are used to investigate the structural causes of variations in ground motion over distances of a few hundred meters to a few kilometers in the sedimentary basin environment of the Santa Clara Valley, California, and its margins. Arrays of portable seismic stations are used to target four study areas with different ground motion patterns: (1) an edge of the alluvial basin extending up onto a marginal ridge (Blossom Hill), (2) a Cenozoic basin with a nearly flat bottom (Cupertino Basin), (3) a long, narrow Cenozoic basin with a steep V profile (Evergreen Basin), and (4) a line perpendicular to the trace of the Hayward fault. Average peak velocities on Blossom Hill from local earthquakes are a factor of 2.5 times higher than nearby valley sites. Three-dimensional (3D) modeling is used to conclude that the majority of the amplification is due to lower shear-wave velocities along a local fault zone (Shannon–Berrocal). Site amplification over the Cupertino Basin in the frequency band 0.5–4 Hz is generally low (less than 2.0 relative to a Mesozoic rock site) and spatially uniform. This response is attributed to the shallow, flat-bottomed shape of the basin and the uniform, flat-laying sedimentary fill. In contrast, site amplification in the Evergreen Basin generally exceeds 3.0 and is attributed to the deep, V-shaped geometry of the basin and younger sedimentary fill. 3D waveform modeling shows the elongated shape of the Evergreen Basin causes more efficient trapping of long-period waves for sources along the long axis of the basin. A low-velocity zone is postulated along the Hayward fault with a width between 100 and 200 m, based on elevated site response along the fault trace and 4.5-Hz fault zone guided waves on the horizontal components of stations near the fault.

  8. SWDreader: A Wavelet-Based Algorithm Using Spectral Phase to Characterize Spike-Wave Morphological Variation in Genetic Models of Absence Epilepsy

    PubMed Central

    Richard, CD; Tanenbaum, A; Audit, B; Arneodo, A; Khalil, A; Frankel, WN

    2014-01-01

    Background Spike-wave discharges (SWD) found in neuroelectrical recordings are pathognomonic to absence epilepsy. The characteristic spike-wave morphology of the spike-wave complex (SWC) constituents of SWDs can be mathematically described by a subset of possible spectral power and phase values. Morlet wavelet transform (MWT) generates time-frequency representations well-suited to identifying this SWC-associated subset. New method MWT decompositions of SWDs reveal spectral power concentrated at harmonic frequencies. The phase relationships underlying SWC morphology were identified by calculating the differences between phase values at SWD fundamental frequency and the 2nd, 3rd and 4th harmonics. The three phase differences were then used as coordinates to generate a density distribution in a {360° × 360° × 360°} phase difference space. Strain-specific density distributions were generated from SWDs of mice carrying the Gria4, Gabrg2 or Scn8a mutations to determine whether SWC morphological variants reliably mapped to the same regions of the distribution, and if distribution values could be used to detect SWD. Comparison with existing methods To the best of our knowledge, this algorithm is the first to employ spectral phase to quantify SWC morphology, making it possible to computationally distinguish SWC subtypes and detect SWDs. Results/conclusions Proof-of-concept testing of the SWDreader algorithm shows: (1) a major pattern of variation in SWC morphology maps to one axis of the phase difference distribution, (2) variability between the strain-specific distributions reflects differences in the proportion of SWC subtypes generated during SWD, and (3) regularities in the spectral power and phase profiles of SWCs can be used to detect waveforms possessing SWC-like morphology. PMID:25549550

  9. Application of TVD schemes for the Euler equations of gas dynamics. [method of Total Variation Diminishing for shock wave computation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    Highly accurate and yet stable shock-capturing finite difference schemes have been designed for the computation of the Euler equations of gas dynamics. Four different principles for the construction of high resolution total variation diminishing (TVD) schemes are available, including hybrid schemes, a second-order extension of Godunov's scheme by van Leer (1979), the modified flux approach of Harten (1983, 1984), and the numerical fluctuation approach of Roe (1985). The present paper has the objective to review the class of second-order TVD schemes via the modified flux approach. Attention is given to first-order TVD schemes, a second-order accurate explicit TVD scheme, the global order of accuracy of the second-order TVD scheme, extensions to systems and two-dimensional conservation laws, numerical experiments with a second-order explicit TVD scheme, implicit TVD schemes, and second-order implicit TVD schemes.

  10. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  11. Measurement of time-resolved oxygen concentration changes in photosynthetic systems by nitroxide-based EPR oximetry.

    PubMed

    Strzalka, K; Walczak, T; Sarna, T; Swartz, H M

    1990-09-01

    The application of recent developments of EPR oximetry to photosynthetic systems is described and used to study rapid processes in isolated thylakoid membranes from spinach and in intact photoautotrophic soybean cells. Using the peak heights of 15N perdeuterated Tempone and two microwave power levels oxygen evolution and consumption were measured. The method measured time-resolved oxygen concentration changes in the micromolar range. Oxygen evolution was linearly proportionate to the chlorophyl concentration of thylakoid membrane over the range studied (0-2 mg/ml). Oxygen evolution associated with single turnover light pulses was consistent with the four state model. The time (t1/2) to reach equilibrium of oxygen concentrations after a single turnover pulse was 0.4-0.5 ms, indicating that the evolution of oxygen coupled to the S4-S0 transition may be shorter than reported previously. The time for equilibrium of oxygen after single turnover pulses in soybean cells was relatively long (400 ms), which suggests that there are significant barriers to the free diffusion of oxygen in this system. The method also was used to study oxygen consumption by the electron transport chain of photosystem I and photosystem II. We conclude that EPR oximetry can provide quantitative and time-resolved data on oxygen concentrations with a sensitivity that is useful for studies of such systems. PMID:2168161

  12. Rejection of Erroneous Saturation Data in Optical Pulse Oximetry in Newborn Patients

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Marchionni, Paolo; Carnielli, Virgilio P.

    2011-08-01

    Pulse oximetry (PO) is extensively used in intensive care unit (ICU); this is mainly due to the fact that it is a non-invasive and real-time monitoring method. PO allows to measure arterial oxygen saturation (SaO2) and in particular hemoglobin oxygenation. Optical PO is typically realized by the use of a clip (to be applied on the ear or on the finger top) containing a couple of monochromatic LED sources and a photodiode. The main drawback with the use of PO is the presence of movement artifacts or disturbance due to optical sources and skin, causing erroneous saturation data. The aim of this work is to present the measurement procedure based on a specially developed algorithm able to reject erroneous oxygen saturation data during long lasting monitoring of patients in ICU and to compare measurement data with reference data provided by EGA. We have collected SaO2 data from a standard PO and used an intensive care unit monitor to collect data. This device was connected to our acquisition system and heart rate (HR) and SaO2 data were acquired and processed by our specially developed algorithm and directly reproduced on the PC screen for use by the clinicians. The algorithm here used for the individuation and rejection of erroneous saturation data is based on the assessment of the difference between the Heart Rate (HR) measured by respectively by the ECG and PO. We have used an emogasanalyzer (EGA) for comparison of the measured data. The study was carried out in a neonatal intensive care unit (NICU), using 817 data coming from 24 patients and the observation time was of about 10000 hours. Results show a reduction in the maximum difference between the SaO2 data measured, simultaneously, on the same patient by the EGA and by the proposed method of 14.20% and of the 4.76% in average over the 817 samples. The measurement method proposed is therefore able to individuate and eliminate the erroneous saturation data due to motion artifacts and reported by the pulse oxymeter

  13. On the variational computation of a large number of vibrational energy levels and wave functions for medium-sized molecules

    NASA Astrophysics Data System (ADS)

    Mátyus, Edit; Šimunek, Ján; Császár, Attila G.

    2009-08-01

    In a recent publication [J. Chem. Phys. 127, 084102 (2007)], the nearly variational DEWE approach (DEWE denotes Discrete variable representation of the Watson Hamiltonian using the Eckart frame and an Exact inclusion of a potential energy surface expressed in arbitrarily chosen coordinates) was developed to compute a large number of (ro)vibrational eigenpairs for medium-sized semirigid molecules having a single well-defined minimum. In this publication, memory, CPU, and hard disk usage requirements of DEWE, and thus of any DEWE-type approach, are carefully considered, analyzed, and optimized. Particular attention is paid to the sparse matrix-vector multiplication, the most expensive part of the computation, and to rate-determining steps in the iterative Lanczos eigensolver, including spectral transformation, reorthogonalization, and restart of the iteration. Algorithmic improvements are discussed in considerable detail. Numerical results are presented for the vibrational band origins of the C12H4 and C12H2D2 isotopologues of the methane molecule. The largest matrix handled on a personal computer during these computations is of the size of (4•108)×(4•108). The best strategy for determining vibrational eigenpairs depends largely on the actual details of the required computation. Nevertheless, for a usual scenario requiring a large number of the lowest eigenpairs of the Hamiltonian matrix the combination of the thick-restart Lanczos method, shift-fold filtering, and periodic reorthogonalization appears to result in the computationally most feasible approach.

  14. Utility of the Pediatric Sleep Questionnaire and Pulse Oximetry as Screening Tools in Pediatric Patients with Suspected Obstructive Sleep Apnea Syndrome

    PubMed Central

    Peña-Zarza, Jose A.; Osona-Rodriguez de Torres, Borja; Gil-Sanchez, Jose Antonio; Figuerola-Mulet, Joan

    2012-01-01

    Objective. To assess the screening tools in snoring patients. Material and Methods. A retrospective review of data was conducted from children between 2 and 15 years old who were referred on suspicion of obstructive sleep apnea-hypopnea (OSAH) between June 2008 and June 2011. We excluded patients with significant comorbidities. Pediatric Sleep Questionnaire (PSQ), physical exam (PE), and pulse-oximetry data were collected and correlated with the results of the nightly polygraph at home. Results. We selected 98 patients. The 22-item version of the PSQ had sensitivity of 96% and specificity of 36.8%. The overall value of the clinic predictor of OSAH (PSQ and PE together) exhibited an increased specificity 57.6% with 94.6% of sensitivity. The nocturnal home oximetry method used alone was very specific, 92.1%, but had a lower sensitivity, 77.1%. The set of clinical assessment tools used together with pulse-oximetry screening provided excellent specificity 98.1% and a positive predictive value 94.1% globally. The performance of this screening tool is related with the severity of OSAH and accuracy is better in moderate and severe cases. Conclusion. The combination of clinical assessment and pulse-oximetry screening can provide a sufficient diagnostic approach for pediatric patients with suspected OSAH at least in moderate and severe cases. PMID:23471006

  15. Utility of the pediatric sleep questionnaire and pulse oximetry as screening tools in pediatric patients with suspected obstructive sleep apnea syndrome.

    PubMed

    Peña-Zarza, Jose A; Osona-Rodriguez de Torres, Borja; Gil-Sanchez, Jose Antonio; Figuerola-Mulet, Joan

    2012-01-01

    Objective. To assess the screening tools in snoring patients. Material and Methods. A retrospective review of data was conducted from children between 2 and 15 years old who were referred on suspicion of obstructive sleep apnea-hypopnea (OSAH) between June 2008 and June 2011. We excluded patients with significant comorbidities. Pediatric Sleep Questionnaire (PSQ), physical exam (PE), and pulse-oximetry data were collected and correlated with the results of the nightly polygraph at home. Results. We selected 98 patients. The 22-item version of the PSQ had sensitivity of 96% and specificity of 36.8%. The overall value of the clinic predictor of OSAH (PSQ and PE together) exhibited an increased specificity 57.6% with 94.6% of sensitivity. The nocturnal home oximetry method used alone was very specific, 92.1%, but had a lower sensitivity, 77.1%. The set of clinical assessment tools used together with pulse-oximetry screening provided excellent specificity 98.1% and a positive predictive value 94.1% globally. The performance of this screening tool is related with the severity of OSAH and accuracy is better in moderate and severe cases. Conclusion. The combination of clinical assessment and pulse-oximetry screening can provide a sufficient diagnostic approach for pediatric patients with suspected OSAH at least in moderate and severe cases. PMID:23471006

  16. Craniofacial tissue oxygen saturation is associated with blood pH using an examiner's finger-mounted tissue oximetry in mice

    NASA Astrophysics Data System (ADS)

    Uchida, Toshiyuki; Kanayama, Naohiro; Kawai, Kenta; Niwayama, Masatsugu

    2016-04-01

    Although fetal scalp blood sampling is an examination to assess fetal acidosis during the intrapartum period, it has not been widely used by obstetricians because of its invasiveness. We have developed a small, portable oximetry with a sensor attached to the examiner's finger. Our previous report using this oximetry concluded that fetal head tissue oxygen saturation (StO2) correlated with umbilical cord artery blood pH. We investigated whether the association between StO2 and blood pH in mice could be validated using this oximetry. Eleven the Institute for Cancer Research (ICR) mice were measured using a near-infrared spectroscopy probe at the craniofacial site in a closed polyethylene bag while changing the oxygen concentration. A total of nine blood samples were collected and analyzed for pH. The StO2 and tissue blood pH showed a strong positive correlation (r=0.90 and P=0.0009). The StO2 and total hemoglobin index also showed a positive correlation (r=0.84 and P=0.0049). Thus, the results of the present study support those of our previous report on clinical cases and allow examiners to easily check the status of fetal acidosis. Fetal management using this oximetry might gain popularity with obstetricians in the near future.

  17. Beyond Critical Congenital Heart Disease: Newborn Screening Using Pulse Oximetry for Neonatal Sepsis and Respiratory Diseases in a Middle-Income Country

    PubMed Central

    Ang, Hak-Lee; Omar, Asma

    2015-01-01

    Background Studies on pulse oximetry screening for neonatal sepsis and respiratory disease in a middle-income country are lacking. Newborn screening for critical congenital heart disease (CCHD) using pulse oximetry is an effective and life-saving strategy in developed countries. While most studies have reported false-positive results during CCHD screening, they have not elaborated on the detected disease types. We studied the effectiveness and outcomes of pulse oximetry newborn screening for non-cardiac hypoxemic diseases such as neonatal sepsis, respiratory diseases, and CCHD in a middle-income country. Methods and Findings In a pilot study performed at the University Malaya Medical Centre (UMMC), Malaysia, all apparently healthy term newborns, delivered at UMMC were screened pre-discharge using pulse oximetry. Echocardiography was performed for newborns that had positive screening results on two separate occasions, 1-h apart. Newborns with normal echocardiograms were evaluated and treated for other non-cardiac diseases. Fifteen of 5247 term newborns had positive screening results. The median age at screening was 20 h. Thirteen newborns (0.24%) had significant non-cardiac diseases: sepsis (n = 2) and respiratory diseases (n = 11) that required hospitalization and treatment. The remaining two newborns with normal antenatal ultrasonograms had positive screening test and confirmed to have CCHD. Another 18 newborns with negative screening test were later admitted for treatment of sepsis (n = 16) and penumonia (n = 2). All newborns were treated and alive at the end of the study. The sensitivity and specificity of pulse oximetry screening for non-cardiac diseases were 42% and 99.9% respectively, and 100% and 99.7% for CCHD, respectively. Conclusions Routine pulse oximetry screening test was effective in identifying newborns with CCHD and other hypoxemia illnesses, which may led to potential life-threatening condition. This study showed that the expanded use of pulse

  18. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  19. Charge-density wave induced by combined electron-electron and electron-phonon interactions in 1 T -TiSe2: A variational Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Seki, Kazuhiro; Yunoki, Seiji

    2015-05-01

    To clarify the origin of a charge-density wave (CDW) phase in 1 T -TiSe2 , we study the ground-state property of a half-filled two-band Hubbard model in a triangular lattice including electron-phonon interaction. By using the variational Monte Carlo method, the electronic and lattice degrees of freedom are both treated quantum mechanically on an equal footing beyond the mean-field approximation. We find that the cooperation between Coulomb interaction and electron-phonon interaction is essential to induce the CDW phase. We show that the "pure" exciton condensation without lattice distortion is difficult to realize under the poor nesting condition of the underlying Fermi surface. Furthermore, by systematically calculating the momentum-resolved hybridization between the two bands, we examine the character of electron-hole pairing from the viewpoint of BCS-BEC crossover within the CDW phase and find that the strong-coupling BEC-like pairing dominates. We therefore propose that the CDW phase observed in 1 T -TiSe2 originates from a BEC-like electron-hole pairing.

  20. Monitoring Oxygen Levels in Orthotopic Human Glioma Xenograft Following Carbogen Inhalation and Chemotherapy by Implantable Resonator Based Oximetry

    PubMed Central

    Hou, Huagang; Nemani, Venkata Krishnamurthy; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M.; Eastman, Alan; Khan, Nadeem

    2014-01-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognoses of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were approximately 56 – 69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. PMID:25111969

  1. Nocturnal oximetry for the diagnosis of the sleep apnoea hypopnoea syndrome: a method to reduce the number of polysomnographies?

    PubMed Central

    Chiner, E.; Signes-Costa, J.; Arriero, J. M.; Marco, J.; Fuentes, I.; Sergado, A.

    1999-01-01

    BACKGROUND—Polysomnography (PSG) is currently the "gold standard" for the diagnosis of the sleep apnoea hypopnoea syndrome (SAHS). Nocturnal oximetry (NO) has been used with contradictory results. A prospective study was performed to determine the accuracy of NO as a diagnostic tool and to evaluate the reduction in the number of PSGs if the diagnosis of SAHS had been established by this method.
METHODS—Two hundred and seventy five patients with a clinical suspicion of SAHS were admitted to undergo, in the same night, full PSG and NO. Desaturation was defined as a fall in the haemoglobin saturation level (SaO2) to lower than 4% from the baseline level and an oxygen desaturation index per hour (ODI) was obtained in each patient with three cut off points: ⩾5 (ODI-5), ⩾10 (ODI-10), and ⩾15 (ODI-15).
RESULTS—SAHS was diagnosed in 216 patients (194 men). After withdrawing patients with abnormal lung function (forced expiratory volume in one second (FEV1) lower than 80% predicted), sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV) of NO were: ODI-5 (80%, 89%, 97%, 48%); ODI-10 (71%, 93%, 97%, 42%); ODI-15 (63%, 96%, 99%, 38%). The accuracy for each ODI was 0.81, 0.75, and 0.70, respectively. If NO had been considered as a diagnostic tool and PSG had been performed only in patients with a negative NO (false negative and true negative) and those with a positive NO and abnormal pulmonary function tests, 135/275 (ODI-5), 156/275 (ODI-10), and 170/275 (ODI-15) PSGs would have been performed, a reduction of 140, 119, and 105,respectively.
CONCLUSION—Nocturnal oximetry in patients with suspected SAHS and normal spirometric values permits the institution of therapeutic measures in most patients.

 PMID:10525553

  2. Plastic and Heritable Variation in Shell Thickness of the Intertidal Gastropod Nucella lapillus Associated with Risks of Crab Predation and Wave Action, and Sexual Maturation

    PubMed Central

    Pascoal, Sonia; Carvalho, Gary; Creer, Simon; Mendo, Sonia; Hughes, Roger

    2012-01-01

    The intertidal snail Nucella lapillus generally has thicker shells at sites sheltered from wave action, where crabs are abundant and pose a high risk of predation, than at exposed sites where crabs are rare. We studied two populations showing the opposite trend. We reciprocally transplanted snails between field sites and measured shell length, width and lip thickness of those recaptured 12 months later. Snails transplanted to the sheltered site grew larger than sheltered-site residents, which in turn grew larger than transplants to the exposed site. Relative shell-lip thickness was greater in residents at the exposed site than at the sheltered site. Transplants from shelter to exposure developed relatively thicker shells than their controls and relatively thinner shells from exposure to shelter. Progeny of the two populations were reared for 12 months in a common garden experiment presenting effluent from crabs feeding on broken conspecifics as the treatment and fresh sea-water as the control. The crab-effluent treatment decreased foraging activity, concomitantly reducing cumulative somatic growth and reproductive output. Juveniles receiving crab-effluent grew slower in shell length while developing relatively thicker shell lips than controls, the level of response being similar between lineages. F2 progeny of the exposed-site lineage showed similar trends to the F1s; sheltered-site F2s were too few for statistical analysis. At sexual maturity, shell-lip thickness was greater in snails receiving crab-effluent than in controls, indicating plasticity, but was also greater in the exposed-site than in the sheltered-site lineage, indicating heritable variation, probably in degree of sexual thickening of the shell lip. Results corroborate hypotheses that ‘defensive’ shell thickening is a passive consequence of starvation and that heritable and plastic control of defensive shell morphology act synergistically. Shell thickening of juveniles was similar between lineages

  3. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  4. Impact of predischarge nocturnal pulse oximetry (sleep-disordered breathing) on postdischarge clinical outcomes in hospitalized patients with left ventricular systolic dysfunction after acute decompensated heart failure.

    PubMed

    Ohmura, Takayasu; Iwama, Yoshitaka; Kasai, Takatoshi; Kato, Takao; Suda, Shoko; Takagi, Atsutoshi; Daida, Hiroyuki

    2014-02-15

    Stratifying patients at a high risk for readmission and mortality before their discharge after acute decompensated heart failure (ADHF) is important. Although sleep-disordered breathing (SDB) is prevalent in patients with chronic heart failure, only few studies have investigated the impact of SDB on hospitalized patients with left ventricular (LV) systolic dysfunction after ADHF. Thus, we assessed the prevalence of SDB using nocturnal pulse oximetry and the relation between SDB and clinical events in this patient group. One hundred consecutive patients with LV systolic dysfunction who were hospitalized for ADHF were enrolled in the study. Predischarge nocturnal oximetry was performed to determine if they had SDB (defined as an oxygen desaturation index of ≥5 events/hour with ≥4% decrease in saturation level). Data on death and readmission for ADHF were collected. Forty-one patients had SDB. Complete outcome data were collected in the mean follow-up period of 14.2 months during which 33 events occurred. On multivariate Cox proportional hazards regression analysis, the presence of SDB was a significant independent predictor of postdischarge readmission and mortality (hazard ratio 2.93, p = 0.006). In conclusion, SDB, as determined by predischarge nocturnal oximetry, is prevalent and is an independent predictor of the combined end point of readmission and mortality in hospitalized patients with LV systolic dysfunction after ADHF.

  5. Manifestation of planetary wave-type oscillations in variations in the critical frequencies of the ionospheric F2 layer in the Asian region

    NASA Astrophysics Data System (ADS)

    Vergasova, G. V.; Kazimirovskii, E. S.; Polekh, N. M.; Xiong, J.; Liu, L.

    2011-12-01

    Results of studies of the wave structure of the critical frequencies of the ionospheric F2 layer with periods of planetary waves for two Asian stations—Irkutsk and Wuhan (China)—are presented. Estimates of the appearance frequency, amplitudes, and the lifetime of oscillations with periods typical of planetary waves (2-25 days) are obtained. It is shown that these characteristics depend on the season and place of observation. The appearance of joint periodicities in the critical frequencies at both stations, as well as in the planetary index of geomagnetic activity Ap, is noted.

  6. Oximetry: a reflective tool for the detection of physiological expression of emotions in a science education classroom

    NASA Astrophysics Data System (ADS)

    Calderón, Olga

    2016-07-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation—SpO2); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying pilot according to changes in altitude and oxygen availability in the atmosphere. Nonetheless, the uses for pulse oximetry may expand to other fields where there is human interaction and where physiological outputs reflect fluctuations mediated by arising emotions. A classroom, for instance is filled with a plethora of emotions, but very often participants in this space are unaware of others' or their own sentiments as these arise as a result of interactions and responses to class discussions. In this paper I describe part of a larger study-taking place at Brooklyn College of the City University of New York. The focus is on the exploration of emotions and mindfulness in the science classroom. The oximeter is used in this study as a reflexive tool to detect emotions emerging among participants of a graduate History and Philosophy of Science Education course offered in the spring of 2012. Important physiological information of class participants provided by the oximeter is used to analyze the role of emotions in the classroom as sensitive and controversial topics in science education are discussed every week.

  7. Oximetry: a reflective tool for the detection of physiological expression of emotions in a science education classroom

    NASA Astrophysics Data System (ADS)

    Calderón, Olga

    2016-09-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation—SpO2); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying pilot according to changes in altitude and oxygen availability in the atmosphere. Nonetheless, the uses for pulse oximetry may expand to other fields where there is human interaction and where physiological outputs reflect fluctuations mediated by arising emotions. A classroom, for instance is filled with a plethora of emotions, but very often participants in this space are unaware of others' or their own sentiments as these arise as a result of interactions and responses to class discussions. In this paper I describe part of a larger study-taking place at Brooklyn College of the City University of New York. The focus is on the exploration of emotions and mindfulness in the science classroom. The oximeter is used in this study as a reflexive tool to detect emotions emerging among participants of a graduate History and Philosophy of Science Education course offered in the spring of 2012. Important physiological information of class participants provided by the oximeter is used to analyze the role of emotions in the classroom as sensitive and controversial topics in science education are discussed every week.

  8. Phantom materials mimicking the optical properties in the near infrared range for non-invasive fetal pulse oximetry.

    PubMed

    Ley, Sebastian; Stadthalter, Miriam; Link, Dietmar; Laqua, Daniel; Husar, Peter

    2014-01-01

    An optical phantom of the maternal abdomen during pregnancy is an appropriate test environment to evaluate a non-invasive system for fetal pulse oximetry. To recreate the optical properties of maternal tissue, fetal tissue and blood suitable substitutes are required. For this purpose, phantom materials are used, which consist of transparent silicone or water as host material. Cosmetic powder and India ink are investigated as absorbing materials, whereas titanium dioxide particles are examined as scattering medium. Transmittance and reflectance measurements of the samples were performed in the spectral range from 600 nm to 900 nm using integrating sphere technique. The scattering and absorption coefficients and the anisotropy factor were determined using Kubelka-Munk theory. The results were used to compute the required mixture ratios of the respective components to replicate the optical properties of maternal tissue, fetal tissue and blood, and corresponding samples were produced. Their optical properties were investigated in the same manner as mentioned above. The results conform to the values of various types of tissues and blood given in the scientific literature.

  9. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    by the improved threshold algorithm. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is also studied. Calculation of the parameter SWH for Gorky Reservoir from May 2010 to March 2014 showed the anomalously high values of SWH, derived from altimetry data [15], which means that the calibration of this SWH for inland waters is required. Calibration ground measurements were performed at Gorky reservoir in 2011-2013, when wave height, wind speed and air temperature were collected by equipment placed on a buoy [15] collocated with Jason-1 and Jason-2 altimetry data acquisition. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky , Kuibyshev , Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Oneko, Beloye, water areas of which are intersected by the Jason-1,2 tracks, were compared and their correlation with the observed data of hydrological stations in reservoirs and lakes was investigated. It was noted that the Volgograd reservoir regional re-tracking to determine the water level , while the standard GDR data are practically absent. REFERENCES [1] AVISO/Altimetry. User Handbook. Merged TOPEX/ POSEIDON Products. Edition 3.0. AVISO. Toulouse., 1996. [2] C.M. Birkett et al., “Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry,” J. Geophys. Res., vol. 107, pp. 8059, 2002. [3] G. Brown, “The average impulse response of a rough surface and its applications,” IEEE Trans. Antennas Propagat., vol. 25, pp. 67-74, 1977. [4] I.O. Campos et al., “Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin,” Earth and Planetary Sciences, vol. 333, pp. 633-643, 2001. [5] A.V. Kouraev et al., “Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992-2002),” Rem. Sens. Environ., vol. 93, pp. 238-245, 2004

  10. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    SciTech Connect

    Brächer, T.; Pirro, P.; Heussner, F.; Serga, A. A.; Hillebrands, B.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. This provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.

  11. Seasonal and height variations of gravity waves in the middle atmosphere over Syowa Station (69S, 40E) in the Antarctic using Rayleigh/Raman lidar

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuji; Tsutsumi, Masaki; Ejiri, Mitsumu K.; Nishiyama, Takanori; Tomikawa, Yoshihiro; Kogure, Masaru

    2016-07-01

    Gravity waves generated in the lower atmosphere, or near the surface, propagate upward and transfer significant momentum and energy into the middle atmosphere/lower thermosphere. Recently it is known gravity waves are extensively generated in the high latitudes in the southern hemisphere, but not many have been reported on the generation, propagation and dissipation of such waves. In this study, we investigated gravity wave profiles in the high latitude southern hemisphere by potential energy (Ep) in the height range of 15-70 km from May 2011 to October 2013 by using Rayleigh/Raman lidar located at Syowa station (69S, 40E), in the Antarctic. Above 35km altitude, Ep was maximized during winter. The seasonal dependence of Ep over Syowa was similar to those observed at Davis (69S,79E) [Alexander et al., 2011]. Below 35 km altitude, Ep was enhanced in around May, and did not decrease in September. Almost all monthly mean profiles showed similar growth rate (corresponding scale height of about 12-14 km) above 30 km altitude. Furthermore, almost all Ep profiles have a local minimum around 25 km altitude and a local maximum around 20 km altitude, suggesting significant loss of the gravity waves between 20-25 km. In October 2012, The profile of Ep in October 2012 was quite different from those in the other months. Comparisons with zonal wind in the NASA/MERRA reanalysis data suggests that a height region of weak zonal winds descended earlier in 2012 than in the other years. This also suggests gravity waves below stratosphere include waves with slow phase speed.

  12. Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific-Arctic sea surface height gradient

    NASA Astrophysics Data System (ADS)

    Danielson, Seth L.; Weingartner, Thomas J.; Hedstrom, Katherine S.; Aagaard, Knut; Woodgate, Rebecca; Curchitser, Enrique; Stabeno, Phyllis J.

    2014-06-01

    We develop a conceptual model of the closely co-dependent Bering shelf, Bering Strait, and Chukchi shelf circulation fields by evaluating the effects of wind stress over the North Pacific and western Arctic using atmospheric reanalyses, current meter observations, satellite-based sea surface height (SSH) measurements, hydrographic profiles, and numerical model integrations. This conceptual model suggests Bering Strait transport anomalies are primarily set by the longitudinal location of the Aleutian Low, which drives oppositely signed anomalies at synoptic and annual time scales. Synoptic time scale variations in shelf currents result from local wind forcing and remotely generated continental shelf waves, whereas annual variations are driven by basin scale adjustments to wind stress that alter the magnitude of the along-strait (meridional) pressure gradient. In particular, we show that storms centered over the Bering Sea excite continental shelf waves on the eastern Bering shelf that carry northward velocity anomalies northward through Bering Strait and along the Chukchi coast. The integrated effect of these storms tends to decrease the northward Bering Strait transport at annual to decadal time scales by imposing cyclonic wind stress curl over the Aleutian Basin and the Western Subarctic Gyre. Ekman suction then increases the water column density through isopycnal uplift, thereby decreasing the dynamic height, sea surface height, and along-strait pressure gradient. Storms displaced eastward over the Gulf of Alaska generate an opposite set of Bering shelf and Aleutian Basin responses. While Ekman pumping controls Canada Basin dynamic heights (Proshutinsky et al., 2002), we do not find evidence for a strong relation between Beaufort Gyre sea surface height variations and the annually averaged Bering Strait throughflow. Over the western Chukchi and East Siberian seas easterly winds promote coastal divergence, which also increases the along-strait pressure head, as

  13. Plateau Waves of Intracranial Pressure and Multimodal Brain Monitoring.

    PubMed

    Dias, Celeste; Maia, Isabel; Cerejo, Antonio; Smielewski, Peter; Paiva, José-Artur; Czosnyka, Marek

    2016-01-01

    The aim of this study was to describe multimodal brain monitoring characteristics during plateau waves of intracranial pressure (ICP) in patients with head injury, using ICM+ software for continuous recording. Plateau waves consist of an abrupt elevation of ICP above 40 mmHg for 5-20 min. This is a prospective observational study of patients with head injury who were admitted to a neurocritical care unit and who developed plateau waves. We analyzed 59 plateau waves that occurred in 8 of 18 patients (44 %). At the top of plateau waves arterial blood pressure remained almost constant, but cerebral perfusion pressure, cerebral blood flow, brain tissue oxygenation, and cerebral oximetry decreased. After plateau waves, patients with a previously better autoregulation status developed hyperemia, demonstrated by an increase in cerebral blood flow and brain oxygenation. Pressure and oxygen cerebrovascular reactivity indexes (pressure reactivity index and ORxshort) increased significantly during the plateau wave as a sign of disruption of autoregulation. Bedside multimodal brain monitoring is important to characterize increases in ICP and give differential diagnoses of plateau waves, as management of this phenomenon differs from that of regular ICP.

  14. Pulse oximetry recorded from the Phone Oximeter for detection of obstructive sleep apnea events with and without oxygen desaturation in children.

    PubMed

    Garde, Ainara; Dehkordi, Parastoo; Wensley, David; Ansermino, J Mark; Dumont, Guy A

    2015-08-01

    Obstructive sleep apnea (OSA) disrupts normal ventilation during sleep and can lead to serious health problems in children if left untreated. Polysomnography, the gold standard for OSA diagnosis, is resource intensive and requires a specialized laboratory. Thus, we proposed to use the Phone Oximeter™, a portable device integrating pulse oximetry with a smartphone, to detect OSA events. As a proportion of OSA events occur without oxygen desaturation (defined as SpO2 decreases ≥ 3%), we suggest combining SpO2 and pulse rate variability (PRV) analysis to identify all OSA events and provide a more detailed sleep analysis. We recruited 160 children and recorded pulse oximetry consisting of SpO2 and plethysmography (PPG) using the Phone Oximeter™, alongside standard polysomnography. A sleep technician visually scored all OSA events with and without oxygen desaturation from polysomnography. We divided pulse oximetry signals into 1-min signal segments and extracted several features from SpO2 and PPG analysis in the time and frequency domain. Segments with OSA, especially the ones with oxygen desaturation, presented greater SpO2 variability and modulation reflected in the spectral domain than segments without OSA. Segments with OSA also showed higher heart rate and sympathetic activity through the PRV analysis relative to segments without OSA. PRV analysis was more sensitive than SpO2 analysis for identification of OSA events without oxygen desaturation. Combining SpO2 and PRV analysis enhanced OSA event detection through a multiple logistic regression model. The area under the ROC curve increased from 81% to 87%. Thus, the Phone Oximeter™ might be useful to monitor sleep and identify OSA events with and without oxygen desaturation at home. PMID:26738074

  15. Pulse oximetry recorded from the Phone Oximeter for detection of obstructive sleep apnea events with and without oxygen desaturation in children.

    PubMed

    Garde, Ainara; Dehkordi, Parastoo; Wensley, David; Ansermino, J Mark; Dumont, Guy A

    2015-01-01

    Obstructive sleep apnea (OSA) disrupts normal ventilation during sleep and can lead to serious health problems in children if left untreated. Polysomnography, the gold standard for OSA diagnosis, is resource intensive and requires a specialized laboratory. Thus, we proposed to use the Phone Oximeter™, a portable device integrating pulse oximetry with a smartphone, to detect OSA events. As a proportion of OSA events occur without oxygen desaturation (defined as SpO2 decreases ≥ 3%), we suggest combining SpO2 and pulse rate variability (PRV) analysis to identify all OSA events and provide a more detailed sleep analysis. We recruited 160 children and recorded pulse oximetry consisting of SpO2 and plethysmography (PPG) using the Phone Oximeter™, alongside standard polysomnography. A sleep technician visually scored all OSA events with and without oxygen desaturation from polysomnography. We divided pulse oximetry signals into 1-min signal segments and extracted several features from SpO2 and PPG analysis in the time and frequency domain. Segments with OSA, especially the ones with oxygen desaturation, presented greater SpO2 variability and modulation reflected in the spectral domain than segments without OSA. Segments with OSA also showed higher heart rate and sympathetic activity through the PRV analysis relative to segments without OSA. PRV analysis was more sensitive than SpO2 analysis for identification of OSA events without oxygen desaturation. Combining SpO2 and PRV analysis enhanced OSA event detection through a multiple logistic regression model. The area under the ROC curve increased from 81% to 87%. Thus, the Phone Oximeter™ might be useful to monitor sleep and identify OSA events with and without oxygen desaturation at home.

  16. Intraoperative prediction of ischaemic injury of the bowel: a comparison of laser Doppler flowmetry and tissue oximetry to histological analysis.

    PubMed

    Krohg-Sørensen, K; Line, P D; Haaland, T; Horn, R S; Kvernebo, K

    1992-09-01

    Intraoperative diagnosis of inadequate colonic perfusion would contribute to prevention of ischaemic colitis after abdominal aortic reconstructions. The aim of this study was to evaluate laser Doppler flowmetry (LDF) and tissue oximetry (TpO2) as predictors of the development of bowel necrosis. Devascularised loops of colon and ileum in anaesthetised pigs were divided into 10-20 mm segments and measurements of laser Doppler flux and TpO2 were performed in each segment. After 7 h of ischaemia the segments were resected for histological and biochemical analysis. In 65 colonic and 58 ileal segments a significantly lower flux was found in segments with necrosis of greater than or equal to 30% of the mucosal thickness compared to segments with necrosis of less than or equal to 10% (p less than 0.01). The discriminant flux value was 50 perfusion units, confirming a previous clinical study. The specificity was 0.96 and the sensitivity 0.94. Flux was inversely correlated to tissue lactate concentration. Significantly lower TpO2 was found in 19 colonic segments with necrosis of greater than or equal to 30% of mucosa compared to 19 colonic segments with necrosis of less than or equal to 10% (p less than 0.01). Using a discriminant value of 5kPa, a specificity of 0.79, and a sensitivity of 0.95 were calculated. In 27 ileum segments no significant difference in TpO2 between different histological groups was found (p greater than 0.30). The results show that LDF and TpO2 can predict ischaemic injury of the colon, and LDF also of the small bowel. PMID:1397347

  17. The effect of nail polish and acrylic nails on pulse oximetry reading using the Lifebox oximeter in Nigeria.

    PubMed

    Desalu, I; Diakparomre, O I; Salami, A O; Abiola, A O

    2013-12-01

    AIMS AND OBJECTIVES - Pulse oximetry is mandatory during anaesthesia, sedation and transfer of critically ill patients. The effect of nail polish and acrylic nails on the accuracy of saturation reading is inconsistent. The Lifebox pulse oximeter is reliable and recommended for low and middle income countries. We investigated its accuracy in the presence of 4 nail colours and acrylic nails SUBJECTS AND METHODS Fifty non-smoking volunteers had their fingers numbered from right to left (little finger of right hand =1 and little finger of left hand =10). Alternate fingers were nails painted with clear, red, brown and black nail polish and the 5th finger had acrylic nail applied. The corresponding finger on the other hand acted as control. The oxygen saturation was determined using the Lifebox pulse oximeter. Results All fingers (100%) with clear nail polish, red nail polish and acrylic nails recorded a saturation value. Each of the mean saturation value for clear nail polish, red nail polish and acrylic nails was not significantly different from the control mean (p= 0.378, 0.427 and 0.921). Only 12% and 64% of nails polished black and brown respectively recorded a saturation value. The mean SpO- for black and brown polish were significantly different from their control mean (p<0.001). CONCLUSION Black and brown polish resulted in a significant decrease in SpO with the Lifebox oximeter. Dark coloured nail polish should be removed prior to SpO2 determination to ensure that accurate readings can be obtained. PMID:24633278

  18. The effect of nail polish and acrylic nails on pulse oximetry reading using the Lifebox oximeter in Nigeria.

    PubMed

    Desalu, I; Diakparomre, O I; Salami, A O; Abiola, A O

    2013-12-01

    AIMS AND OBJECTIVES - Pulse oximetry is mandatory during anaesthesia, sedation and transfer of critically ill patients. The effect of nail polish and acrylic nails on the accuracy of saturation reading is inconsistent. The Lifebox pulse oximeter is reliable and recommended for low and middle income countries. We investigated its accuracy in the presence of 4 nail colours and acrylic nails SUBJECTS AND METHODS Fifty non-smoking volunteers had their fingers numbered from right to left (little finger of right hand =1 and little finger of left hand =10). Alternate fingers were nails painted with clear, red, brown and black nail polish and the 5th finger had acrylic nail applied. The corresponding finger on the other hand acted as control. The oxygen saturation was determined using the Lifebox pulse oximeter. Results All fingers (100%) with clear nail polish, red nail polish and acrylic nails recorded a saturation value. Each of the mean saturation value for clear nail polish, red nail polish and acrylic nails was not significantly different from the control mean (p= 0.378, 0.427 and 0.921). Only 12% and 64% of nails polished black and brown respectively recorded a saturation value. The mean SpO- for black and brown polish were significantly different from their control mean (p<0.001). CONCLUSION Black and brown polish resulted in a significant decrease in SpO with the Lifebox oximeter. Dark coloured nail polish should be removed prior to SpO2 determination to ensure that accurate readings can be obtained.

  19. Interference of patent blue dye with pulse oximetry readings, methemoglobin measurements, and blue urine in sentinel lymph node mapping: a case report and review of the literature.

    PubMed

    Lai, Hou-Chuan; Hsu, Huan-Ming; Cherng, Chen-Hwan; Lin, Shinn-Long; Wu, Ching-Tang; Yu, Jyh-Cherng; Yeh, Chun-Chang

    2011-12-01

    Patent blue (PB) dye has been successfully used worldwide in breast and cervix surgeries with few complications. Interference of oxyhemoglobin saturation reading by pulse oximetry (SpO(2)) and methemoglobinemia, from injection of PB dye, have rarely been reported in breast and cervix surgeries. We report here the first case of interference of SpO(2) reading, advent of methemoglobinemia, and blue urine from the use of PB dye, which occurred concurrently in a female undergoing bilateral modified radical mastectomy. The unexpected events might be a consequence of excessive administration of PB dye. We also reviewed the published discourses in literature on the adverse effects of PB dye.

  20. Respiratory rate and pulse oximetry derived information as predictors of hospital admission in young children in Bangladesh: a prospective observational study

    PubMed Central

    Garde, Ainara; Zhou, Guohai; Raihana, Shahreen; Dunsmuir, Dustin; Karlen, Walter; Dekhordi, Parastoo; Huda, Tanvir; Arifeen, Shams El; Larson, Charles; Kissoon, Niranjan; Dumont, Guy A; Ansermino, J Mark

    2016-01-01

    Objective Hypoxaemia is a strong predictor of mortality in children. Early detection of deteriorating condition is vital to timely intervention. We hypothesise that measures of pulse oximetry dynamics may identify children requiring hospitalisation. Our aim was to develop a predictive tool using only objective data derived from pulse oximetry and observed respiratory rate to identify children at increased risk of hospital admission. Setting Tertiary-level hospital emergency department in Bangladesh. Participants Children under 5 years (n=3374) presenting at the facility (October 2012–April 2013) without documented chronic diseases were recruited. 1-minute segments of pulse oximetry (photoplethysmogram (PPG), blood oxygen saturation (SpO2) and heart rate (HR)) and respiratory rate were collected with a mobile app. Primary outcome The need for hospitalisation based on expert physician review and follow-up. Methods Pulse rate variability (PRV) using pulse peak intervals of the PPG signal and features extracted from the SpO2 signal, all derived from pulse oximetry recordings, were studied. A univariate age-adjusted logistic regression was applied to evaluate differences between admitted and non-admitted children. A multivariate logistic regression model was developed using a stepwise selection of predictors and was internally validated using bootstrapping. Results Children admitted to hospital showed significantly (p<0.01) decreased PRV and higher SpO2 variability compared to non-admitted children. The strongest predictors of hospitalisation were reduced PRV-power in the low frequency band (OR associated with a 0.01 unit increase, 0.93; 95% CI 0.89 to 0.98), greater time spent below an SpO2 of 98% and 94% (OR associated with 10 s increase, 1.4; 95% CI 1.3 to 1.4 and 1.5; 95% CI 1.4 to 1.6, respectively), high respiratory rate, high HR, low SpO2, young age and male sex. These variables provided a bootstrap-corrected AUC of the receiver operating characteristic

  1. Local measurement of venous saturation in tissue with noninvasive near-infrared respiratory oximetry

    NASA Astrophysics Data System (ADS)

    Franceschini, Maria-Angela; Zourabian, Anna; Moore, John B.; Arora, Aradhana; Fantini, Sergio; Boas, David A.

    2001-06-01

    We present preliminary results of non-invasive, near-infrared measurements of venous saturation (SvO2) on the leg muscle of three anesthetized piglets. We have quantified the local SvO2 by analyzing the optical spectrum of the amplitude of the absorption oscillations synchronous with breathing. To induce a variation in the muscle SvO2, we performed measurements during a protocol involving a cyclic change in the fraction of oxygen inspired by the piglet over the range 10-100% (by volume). In all three piglets, we have found a good agreement between the SvO2 values measured non-invasively with near-infrared spectroscopy (NIRS) and those measured invasively by the analysis of venous blood samples.

  2. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  3. Wave propagation in solids and fluids

    SciTech Connect

    Davis, J. L.

    1988-01-01

    The fundamental principles of mathematical analysis for wave phenomena in gases, solids, and liquids are presented in an introduction for scientists and engineers. Chapters are devoted to oscillatory phenomena, the physics of wave propagation, partial differential equations for wave propagation, transverse vibration of strings, water waves, and sound waves. Consideration is given to the dynamics of viscous and inviscid fluids, wave propagation in elastic media, and variational methods in wave phenomena. 41 refs.

  4. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  5. Seasonal variation of speed and width from kinematic parameters of mode-1 nonlinear internal waves in the northeastern East China Sea

    NASA Astrophysics Data System (ADS)

    Cho, Chomgun; Nam, SungHyun; Song, Heechun

    2016-08-01

    To better understand the statistical and theoretical characteristics of nonlinear internal waves (NLIWs) in the broad continental shelf of the northeastern East China Sea (ECS), historical hydrographic data collected over 50 years between 1962 and 2011 are analyzed to calculate monthly climatology. Based on KdV and extended KdV models under the two-layer approximation (i.e., mode-1 NLIWs), the monthly climatology for propagating speed and characteristic width is constructed, ranging from 0.8 to 1.2 m s-1 and from O(102) to O(103) m, respectively. The result is consistent with a few previous in situ observations in the region. When NLIWs originating in the southeastern slope area approach the shallower regime (northwestward propagation), they propagate more slowly with neither break nor extinction, but with a shorter width, since both the Iribarren and Ostrovsky numbers are small (Ir ≪ 0.45 and Os ≪ 1, respectively). Limitations of the two-layered KdV-type models are discussed (e.g., an importance of mode-2 waves) in the context of occasional extension of the low-salinity Changjiang Discharged Water onto the area, which implies distinct effects on the kinematic parameters of NLIWs in the ECS.

  6. An overview of millimeter-wave spectroscopic measurements of chlorine monoxide at Thule, Greenland, February-March, 1992: Vertical profiles, diurnal variation, and longer-term trends

    NASA Technical Reports Server (NTRS)

    De Zafra, R. L.; Emmons, L. K.; Reeves, J. M.; Shindell, D. T.

    1994-01-01

    Measurements of chlorine monoxide in the stratosphere over Thule, Greenland (73.6 N, 68.4 W) were made quasi-continuously during the period February 8 to March 24, 1992, using a high-sensitivity ground based mm-wave spectrometer. These observations give diurnal, short term, and long term changes in the mixing ratio and vertical distribution of ClO. At an equivalent time after the Antarctic winter solstice, very large concentrations (up to approximately 1.5 ppbv) occur in lower stratospheric ClO, resulting in massive ozone destruction. We saw no evidence for large (approximately 1 top 1.5 ppbv) amounts of ClO in the 16-25 km range over Thule in February or March, in agreement with UARS (satellite) observations by the MLS mm-wave spectrometer for this period, and in marked contrast to UARS/MLS and ER-2 aircraft measurements over northern Europe and eastern Canada, respectively, during January, 1992. We have evidence for smaller enhancements (approximately 0.2 to 0.5 ppbv) in the 18-30 km range during late February-early March, which could result from transport of residual low NO2 air following earlier polar stratospheric cloud (PSC) processing (the last of which occurred at least one month earlier, however) or the result of chemical processing by Pinatubo aerosols. Direct influence of Pinatubo aerosols on Arctic ozone during the spring of 1992 has been difficult to assess, and this enhancement of low-altitude ClO might be a significant indicator of aerosol effects.

  7. Mirages with atmospheric gravity waves.

    PubMed

    Lehn, W H; Silvester, W K; Fraser, D M

    1994-07-20

    The temperature inversions that produce superior mirages are capable of supporting gravity (buoyancy) waves of very low frequency and long wavelength. This paper describes the optics of single mode gravity waves that propagate in a four-layer atmosphere. Images calculated by ray tracing show that (1) relatively short waves add a fine structure to the basic static mirage, and (2) long waves produce cyclic images, similar to those observed in the field, that display significant variation from a base image.

  8. Cerebral and Tissue Oximetry

    PubMed Central

    Steppan, Jochen; Hogue, Charles W.

    2014-01-01

    The use of near-infrared spectroscopy (NIRS) has been increasingly adopted in cardiac surgery to measure regional cerebral oxygen saturation. This method takes advantage of the fact that light in the near-infrared spectrum penetrates tissue, including bone and muscle. Sensors are placed at fixed distances from a light emitter, and algorithms subtract superficial light absorption from deep absorption to provide an index of tissue oxygenation. Although the popularity of NIRS monitoring is growing, definitive data that prove outcome benefits with its use remain sparse. Therefore, widespread, routine use of NIRS as a standard-of-care monitor cannot be recommended at present. Recent investigations have focused on the use of NIRS in subgroups that may benefit from NIRS monitoring, such as pediatric patients. Furthermore, a novel application of processed NIRS information for monitoring cerebral autoregulation and tissue oxygenation (e.g., kidneys and the gut) is promising. PMID:25480772

  9. Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue.

    PubMed

    Ninck, Markus; Untenberger, Markus; Gisler, Thomas

    2010-01-01

    We investigate the effects of blood flow and extravascular tissue shearing on diffusing-wave spectroscopy (DWS) signals from deep tissue, using an ex vivo porcine kidney model perfused artificially at controlled arterial pressure and flow. Temporal autocorrelation functions g((1))(τ) of the multiply scattered light field show a decay which is described by diffusion for constant flow, with a diffusion coefficient scaling linearly with volume flow rate. Replacing blood by a non-scattering fluid reveals a flow-independent background dynamics of the extravascular tissue. For a sinusoidally driven perfusion, field autocorrelation functions g((1))(τ, t') depend on the phase t' within the pulsation cycle and are approximately described by diffusion. The effective diffusion coefficient D(eff)(t') is modulated at the driving frequency in the presence of blood, showing coupling with flow rate; in the absence of blood, D(eff)(t') is modulated at twice the driving frequency, indicating shearing of extravascular tissue as the origin of the DWS signal. For both constant and pulsatile flow the contribution of extravascular tissue shearing to the DWS signal is small.

  10. MJO-related intraseasonal variation of gravity waves in the Southern Hemisphere tropical stratosphere revealed by high-resolution AIRS observations

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Chikara; Sato, Kaoru; Alexander, M. Joan; Hoffmann, Lars

    2016-07-01

    The intraseasonal variability of gravity waves (GWs) in the austral summer middle stratosphere was examined using dedicated high-resolution temperature retrieval from the Atmospheric Infrared Sounder data. Composite maps were made of stratospheric GW temperature variances, large-scale zonal winds around the tropopause, and precipitation based on the real-time multivariate Madden-Julian Oscillation (MJO) index. Regional distributions of these quantities are synchronized with the MJO: The GW variances are larger for stronger precipitation and for more strongly westward wind around the tropopause at a given precipitation. These results suggest that the GWs observed by Atmospheric Infrared Sounder (AIRS) in the stratosphere originate from convection. Moreover, it is shown that the zonal wind around the tropopause likely controls the GW propagation into the stratosphere by a critical level filtering mechanism and/or the GW generation by an obstacle source effect. This means that the MJO can modulate the middle atmospheric circulation by regulating the GWs in two ways, namely, generation and propagation.

  11. Evidence for Chiral d-Wave Superconductivity in URu2Si2 from the Field-Angle Variation of Its Specific Heat

    NASA Astrophysics Data System (ADS)

    Kittaka, Shunichiro; Shimizu, Yusei; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika; Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-03-01

    Low-energy quasiparticle (QP) excitations in the heavy-fermion superconductor URu2Si2 were investigated by specific-heat C(T,H,φ ,θ ) measurements of a high-quality single crystal. The occurrence of QP excitations due to the Doppler-shift effect was detected regardless of the field direction in C(H) of the present clean sample, which is in sharp contrast to a previous report. Furthermore, the polar-angle-dependent C(θ) measured under a rotating magnetic field within the ac plane exhibits a shoulder-like anomaly at θ ˜ 45° and a sharp dip at θ = 90° (H || a) in the moderate-field region. These features are supported by theoretical analyses based on microscopic calculations assuming the gap symmetry of kz(kx + iky), whose gap structure is characterized by a combination of a horizontal line node at the equator and point nodes at the poles. The present results have settled the previous controversy over the gap structure of URu2Si2 and have authenticated its chiral d-wave superconductivity.

  12. Evaluation of multiple modes of oximetry monitoring as an index of splanchnic blood flow in a newborn lamb model of hypoxic, ischemic, and hemorrhagic stress.

    PubMed

    Applegate, Richard L; Ramsingh, Davinder S; Dorotta, Ihab; Sanghvi, Chirag; Blood, Arlin B

    2013-06-01

    Early and aggressive treatment of circulatory failure is associated with increased survival, highlighting the need for monitoring methods capable of early detection. Vasoconstriction and decreased oxygenation of the splanchnic circulation are a sentinel response of the cardiovasculature during circulatory distress. Thus, we measured esophageal oxygenation as an index of decreased tissue oxygen delivery caused by three types of ischemic insult, occlusive decreases in mesenteric blood flow, and hemodynamic adaptations to systemic hypoxia and simulated hemorrhagic stress. Five anesthetized lambs were instrumented for monitoring of mean arterial pressure, mesenteric artery blood flow, central venous hemoglobin oxygen saturation, and esophageal and buccal microvascular hemoglobin oxygen saturation (StO2). The sensitivities of oximetry monitoring to detect cardiovascular insult were assessed by observing responses to graded occlusion of the descending aorta, systemic hypoxia due to decreased FIO2, and acute hemorrhage. Decreases in mesenteric artery flow during aortic occlusions were correlated with decreased esophageal StO2 (R = 0.41). During hypoxia, esophageal StO2 decreased significantly within 1 min of initiation, whereas buccal StO2 decreased within 3 min, and central venous saturation did not change significantly. All modes of oximetry monitoring and arterial blood pressure were correlated with mesenteric artery flow during acute hemorrhage. Esophageal StO2 demonstrated a greater decrease from baseline levels as well as a more rapid return to baseline levels during reinfusion of the withdrawn blood. These experiments suggest that monitoring esophageal StO2 may be useful in the detection of decreased mesenteric oxygen delivery as may occur in conditions associated with hypoperfusion or hypoxia.

  13. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  14. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.

  15. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eiiassen-Palm flux are also discussed.

  16. Making Waves.

    ERIC Educational Resources Information Center

    DeClark, Tom

    2000-01-01

    Presents an activity on waves that addresses the state standards and benchmarks of Michigan. Demonstrates waves and studies wave's medium, motion, and frequency. The activity is designed to address different learning styles. (YDS)

  17. Kinesthetic Transverse Wave Demonstration

    NASA Astrophysics Data System (ADS)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  18. WINDII atmospheric wave airglow imaging

    SciTech Connect

    Armstrong, W.T.; Hoppe, U.-P.; Solheim, B.H.; Shepherd, G.G.

    1996-12-31

    Preliminary WINDII nighttime airglow wave-imaging data in the UARS rolldown attitude has been analyzed with the goal to survey gravity waves near the upper boundary of the middle atmosphere. Wave analysis is performed on O[sub 2](0,0) emissions from a selected 1[sup 0] x 1[sup 0] oblique view of the airglow layer at approximately 95 km altitude, which has no direct earth background and only an atmospheric background which is optically thick for the 0[sub 2](0,0) emission. From a small data set, orbital imaging of atmospheric wave structures is demonstrated, with indication of large variations in wave activity across land and sea. Comparison ground-based imagery is discussed with respect to similarity of wave variations across land/sea boundaries and future orbital mosaic image construction.

  19. Developing serpent-type wave generators to create solitary wave simulations with BEM

    NASA Astrophysics Data System (ADS)

    Weng, Wen-Kai; Shih, Ruey-Syan; Chou, Chung-Ren

    2013-10-01

    Developing serpent-type wave generators to generate solitary waves in a 3D-basin was investigated in this study. Based on the Lagrangian description with time-marching procedures and finite differences of the time derivative, a 3D multiple directional wave basin with multidirectional piston wave generators was developed to simulate ocean waves by using BEM with quadrilateral elements, and to simulate wave-caused problems with fully nonlinear water surface conditions. The simulations of perpendicular solitary waves were conducted in the first instance to verify this scheme. Furthermore, the comparison of the waveform variations confirms that the estimation of 3D solitary waves is a feasible scheme.

  20. Alfven Waves in Interstellar Gasdynamics

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Zweibel, Ellen G.

    1995-02-01

    Magnetohydrodynamic (MHD) waves contribute a significant pressure in both the diffuse interstellar medium and in molecular clouds. Alfvén waves are subject to less damping than compressive MHD waves and are therefore likely to be the dominant mode in astrophysical environments. Provided that the medium in which the waves are propagating is slowly varying, the dynamical effects of ideal MHD waves are governed by equations derived by Dewar. We show that these equations are similar in form to the equations of radiation hydrodynamics to order υ/c, provided that the radiation is nearly isotropic. For the case of Alfvén waves, the pressure due the waves, Pw, is isotropic. Furthermore, Pw is directly observable through the non- thermal line width σnt; for a randomly oriented field, Pw = (3/2)ρσ2nt. In several simple cases, including that in which the Alfvén waves are isotropic, that in which the density is spatially uniform, and that in which the medium undergoes a self-similar contraction or expansion, undamped Alfvén waves behave like a gas with a ratio of specific heats of 3/2; i.e., pressure variations are related to density variations by Δ ln Pw = γwΔ ln ρ with γw = 3/2. In a spatially nonuniform cloud, γw generally depends on position; an explicit expression is given. In the opposite limit of rapid variations, such as in a strong shock, the wave magnetic field behaves like a static field and the wave pressure can increase as fast as ρ2, depending on the orientation of the shock and the polarization of the waves. The jump conditions for a shock in a medium containing MHD waves are given. For strong nonradiative shocks, neither the wave pressure nor the static magnetic field pressure is significant downstream, but for radiative shocks these two pressures can become dominant. Alfvén waves are essential in supporting molecular clouds against gravitational collapse. In a static cloud with a nonuniform density ρ(r), the spatial variation of the wave

  1. Arterial input function of an optical tracer for dynamic contrast enhanced imaging can be determined from pulse oximetry oxygen saturation measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Jonathan T.; Wright, Eric A.; Tichauer, Kenneth M.; Diop, Mamadou; Morrison, Laura B.; Pogue, Brian W.; Lee, Ting-Yim; St. Lawrence, Keith

    2012-12-01

    In many cases, kinetic modeling requires that the arterial input function (AIF)—the time-dependent arterial concentration of a tracer—be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO2) following a bolus injection of a light-absorbing dye. In other words, the change in SaO2 can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.

  2. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  3. Wave characteristics in Lake Peipsi

    NASA Astrophysics Data System (ADS)

    Nikolkina, Irina; Soomere, Tarmo; Didenkulova, Ira

    2013-04-01

    The main features of wave properties in relatively large but shallow Lake Peipsi (Estonia/Russia) are determined based on wave measurements at its western coast (58.75°N 27.1°E) in summer and autumn 2005-2007. Although the data set is relatively limited, it still covers 263 days and characterizes well the basic properties of wave climate in this water body. The wave regime is mostly calm, with the long-term average significant wave height below 0.3 m and seas with Hs <0.2 m covering at least 2/3 of the ice-free time. The seasonal variation in wave properties mimics the analogous variation in the wind speed, with the most stormy months October-December. Wave heights are, on average, considerably lower in summer (July-August) than in autumn (October-November). Significant wave heights >1 m were recorded in autumn and covered 3% or the measurement time. The maximum recorded wave height Hs = 1.98 m occurred on October 27, 2005. The mean periods are mostly concentrated in a range of 1.5-2.5 s and exhibit an almost Gaussian distribution.

  4. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  5. Equatorial waves in the stratosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  6. Pulse Oximetry for the Detection of Obstructive Sleep Apnea Syndrome: Can the Memory Capacity of Oxygen Saturation Influence Their Diagnostic Accuracy?

    PubMed Central

    Nigro, Carlos A.; Dibur, Eduardo; Rhodius, Edgardo

    2011-01-01

    Objective. To assess the diagnostic ability of WristOx 3100 using its three different recording settings in patients with suspected obstructive sleep apnea syndrome (OSAS). Methods. All participants (135) performed the oximetry (three oximeters WristOx 3100) and polysomnography (PSG) simultaneously in the sleep laboratory. Both recordings were interpreted blindly. Each oximeter was set to one of three different recording settings (memory capabilities 0.25, 0.5, and 1 Hz). The software (nVision 5.1) calculated the adjusted O2 desaturation index-mean number of O2 desaturation per hour of analyzed recording ≥2, 3, and 4% (ADI2, 3, and 4). The ADI2, 3, and 4 cutoff points that better discriminated between subjects with or without OSAS arose from the receiver-operator characteristics (ROCs) curve analysis. OSAS was defined as a respiratory disturbance index (RDI) ≥ 5. Results. 101 patients were included (77 men, mean age 52, median RDI 22.6, median BMI 27.4 kg/m2). The area under the ROCs curves (AUC-ROCs) of ADI2, 3, and 4 with different data storage rates were similar (AUC-ROCs with data storage rates of 0.25/0.5/1 Hz: ADI2: 0.958/0.948/0.965, ADI3: 0.961/0.95/0.966, and ADI4: 0.957/0.949/0.963, P NS). Conclusions. The ability of WristOx 3100 to detect patients with OSAS was not affected by the data storage rate of the oxygen saturation signal. Both memory capacity of 0.25, 0.5, or 1 Hz showed a similar performance for the diagnosis of OSAS. PMID:23471171

  7. Variational Method for Two-Electron Atoms

    ERIC Educational Resources Information Center

    Srivastava, M. K.; Bhaduri, R. K.

    1977-01-01

    Proposes a simple two-parameter trial wave function for the helium atom and helium-like ions. Shows that a variational calculation for the ground-state energy yields better results than the usual one-parameter example. (MLH)

  8. Common Genetic Variation in the 3-BCL11B Gene Desert Is Associated With Carotid-Femoral Pulse Wave Velocity and Excess Cardiovascular Disease Risk The AortaGen Consortium

    PubMed Central

    Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Isaacs, Aaron; Smith, Albert V.; Yasmin; Rietzschel, Ernst R.; Tanaka, Toshiko; Liu, Yongmei; Parsa, Afshin; Najjar, Samer S.; O’Shaughnessy, Kevin M.; Sigurdsson, Sigurdur; De Buyzere, Marc L.; Larson, Martin G.; Sie, Mark P.S.; Andrews, Jeanette S.; Post, Wendy S.; Mattace-Raso, Francesco U.S.; McEniery, Carmel M.; Eiriksdottir, Gudny; Segers, Patrick; Vasan, Ramachandran S.; van Rijn, Marie Josee E.; Howard, Timothy D.; McArdle, Patrick F.; Dehghan, Abbas; Jewell, Elizabeth; Newhouse, Stephen J.; Bekaert, Sofie; Hamburg, Naomi M.; Newman, Anne B.; Hofman, Albert; Scuteri, Angelo; De Bacquer, Dirk; Ikram, Mohammad Arfan; Psaty, Bruce; Fuchsberger, Christian; Olden, Matthias; Wain, Louise V.; Elliott, Paul; Smith, Nicholas L.; Felix, Janine F.; Erdmann, Jeanette; Vita, Joseph A.; Sutton-Tyrrell, Kim; Sijbrands, Eric J.G.; Sanna, Serena; Launer, Lenore J.; De Meyer, Tim; Johnson, Andrew D.; Schut, Anna F.C.; Herrington, David M.; Rivadeneira, Fernando; Uda, Manuela; Wilkinson, Ian B.; Aspelund, Thor; Gillebert, Thierry C.; Van Bortel, Luc; Benjamin, Emelia J.; Oostra, Ben A.; Ding, Jingzhong; Gibson, Quince; Uitterlinden, André G.; Abecasis, Gonçalo R.; Cockcroft, John R.; Gudnason, Vilmundur; De Backer, Guy G.; Ferrucci, Luigi; Harris, Tamara B.; Shuldiner, Alan R.; van Duijn, Cornelia M.; Levy, Daniel; Lakatta, Edward G.; Witteman, Jacqueline C.M.

    2012-01-01

    Background Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20,634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5,306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency = 0.42, beta=−0.075±0.012 SD/allele, P = 2.8 x 10−10; replication beta=−0.086±0.020 SD/allele, P = 1.4 x 10−6). Combined results for rs7152623 from 11 cohorts gave beta=−0.076±0.010 SD/allele, P=3.1x10−15. The association persisted when adjusted for mean arterial pressure (beta=−0.060±0.009 SD/allele, P = 1.0 x 10−11). Results were consistent in younger (<55 years, 6 cohorts, N=13,914, beta=−0.081±0.014 SD/allele, P = 2.3 x 10−9) and older (9 cohorts, N=12,026, beta=−0.061±0.014 SD/allele, P=9.4x10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08, P=0.0013) and heart failure (HR=1.10, CI=1.03 to 1.16, P=0.004). Conclusions Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor one or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events. PMID:22068335

  9. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  10. Electromagnetic wave test

    NASA Astrophysics Data System (ADS)

    Matthews, R. K.; Stepanek, S. A.

    Electromagnetic wave testing, which represents a relatively new test technique that involves the union of several disciplines (aerothermodynamics, electromagnetics, materials/structures, and advanced diagnostics) is introduced. The essence of this new technique deals with the transmission and possible distortion of electromagnetic waves (RF or IR) as they pass through the bow shock, flow field, and electromagnetic window of a missile flying at hypersonic speeds. Variations in gas density along the optical path can cause significant distortion of the electromagnetic waves and, therefore the missile seeker system may not effectively track the target. Two specific test techniques are described. The first example deals with the combining of a wind tunnel and an RF range while the second example discusses the complexities of evaluating IR seeker system performance.

  11. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  12. Oximetry: a new non-invasive method to detect metabolic effects induced by a local application of mechanical vibration

    NASA Astrophysics Data System (ADS)

    Felici, A.; Trombetta, C.; Abundo, P.; Foti, C.; Rosato, N.

    2012-10-01

    Mechanical vibrations application is increasingly common in clinical practice due to the effectiveness induced by these stimuli on the human body. Local vibration (LV) application allows to apply and act only where needed, focusing the treatment on the selected body segment. An experimental device for LV application was used to generate the vibrations. The aim of this study was to detect and analyze the metabolic effects induced by LV on the brachial bicep muscle by means of an oximeter. This device monitors tissue and muscle oxygenation using NIRS (Near Infrared Spectroscopy) and is able to determine the concentration of haemoglobin and oxygen saturation in the tissue. In a preliminary stage we also investigated the effects induced by LV application, by measuring blood pressure, heart rate, oxygen saturation and temperature. These data confirmed that the effects induced by LV application are actually localized. The results of the measurements obtained using the oximeter during the vibration application, have shown a variation of the concentrations. In particular an increase of oxygenate haemoglobin was shown, probably caused by an increased muscle activity and/or a rise in local temperature detected during the application.

  13. Satellite observations of the QBO wave driving by Kelvin waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Preusse, Peter; Kalisch, Silvio; Riese, Martin

    2014-05-01

    The quasi-biennial oscillation (QBO) of the zonal wind in the tropical stratosphere is an important process in atmospheric dynamics influencing a wide range of altitudes and latitudes. Effects of the QBO are found also in the mesosphere and in the extra-tropics. The QBO even has influence on the surface weather and climate, for example during winter in the northern hemisphere at midlatitudes. Still, climate models have large difficulties in reproducing a realistic QBO. One reason for this deficiency are uncertainties in the wave driving by planetary waves and, in particular, gravity waves that are usually too small-scale to be resolved in global models. Different global equatorial wave modes (e.g., Kelvin waves) have been identified by longitude-time 2D spectral analysis in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite temperature data, as well as ECMWF temperatures. We find good agreement between SABER satellite observations and ECMWF wave variances in both QBO-related temporal variations and their magnitude. Slow phase speed waves are strongly modulated by the QBO, higher phase speed waves are almost unaffected by the QBO, and ultra-fast equatorial waves can even reach the MLT region. Momentum fluxes and zonal wind drag due to Kelvin waves are derived, and the relative contribution of Kelvin waves to the QBO wind reversal from westward to eastward wind is estimated to be about 30% of the total wave driving. This is in good agreement with the general assumption that gravity waves (GWs) are probably more important for the QBO driving than global-scale waves. This is further supported by SABER and High Resolution Dynamics Limb Sounder (HIRDLS) satellite observations of gravity wave drag in the equatorial region. These observations are compared with the drag still missing in the ECMWF ERA Interim (ERAI) tropical momentum budget after considering zonal wind tendency, Coriolis force, advection terms and drag of resolved global

  14. The Schwinger Variational Method

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    1995-01-01

    Variational methods have proven invaluable in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. The application of the Schwinger variational (SV) method to e-molecule collisions and molecular photoionization has been reviewed previously. The present chapter discusses the implementation of the SV method as applied to e-molecule collisions. Since this is not a review of cross section data, cross sections are presented only to server as illustrative examples. In the SV method, the correct boundary condition is automatically incorporated through the use of Green's function. Thus SV calculations can employ basis functions with arbitrary boundary conditions. The iterative Schwinger method has been used extensively to study molecular photoionization. For e-molecule collisions, it is used at the static exchange level to study elastic scattering and coupled with the distorted wave approximation to study electronically inelastic scattering.

  15. Density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.; Lissauer, J. J.; Shu, F. H.

    1981-08-01

    Certain radial brightness variations in the outer Cassini division of Saturn's rings may be spiral density waves driven by Saturn's large moon Iapetus, in which case a value of approximately 16 g/sq cm for the surface density is calculated in the region where the waves are seen. The kinematic viscosity in the same region is approximately 170 sq cm/s and the vertical scale height of the ring is estimated to be a maximum of approximately 40 m.

  16. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen

    NASA Astrophysics Data System (ADS)

    Weaver, John; Burks, Scott R.; Liu, Ke Jian; Kao, Joseph P. Y.; Rosen, Gerald M.

    2016-10-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethoxycarbonyl-2,2,5,5-tetra(2H3)methyl-1-(3,4,4-2H3,1-15N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ∼2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain.

  17. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen.

    PubMed

    Weaver, John; Burks, Scott R; Liu, Ke Jian; Kao, Joseph P Y; Rosen, Gerald M

    2016-10-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethoxycarbonyl-2,2,5,5-tetra((2)H3)methyl-1-(3,4,4-(2)H3,1-(15)N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ∼2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain.

  18. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen.

    PubMed

    Weaver, John; Burks, Scott R; Liu, Ke Jian; Kao, Joseph P Y; Rosen, Gerald M

    2016-10-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethoxycarbonyl-2,2,5,5-tetra((2)H3)methyl-1-(3,4,4-(2)H3,1-(15)N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ∼2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain. PMID:27567323

  19. Aircraft measurements of wave clouds

    NASA Astrophysics Data System (ADS)

    Cui, Z.; Blyth, A. M.; Bower, K. N.; Crosier, J.; Choularton, T.

    2012-10-01

    In this paper, aircraft measurements are presented of liquid phase (ice-free) wave clouds made at temperatures greater than -5°C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15-45 μm. A small proportion of the drops were drizzle. The measurements presented here and in previous recent studies suggest a different interaction of dynamics and microphysics in wave clouds from the accepted model. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and cloud.

  20. Aircraft measurements of wave cloud

    NASA Astrophysics Data System (ADS)

    Cui, Z.; Blyth, A. M.; Bower, K. N.; Crosier, J.; Choularton, T.

    2012-05-01

    In this paper, aircraft measurements are presented of liquid phase (ice-free) wave clouds made at temperatures greater than -5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15-45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  1. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  2. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  3. Joint inversion of shear wave travel time residuals and geoid and depth anomalies for long-wavelength variations in upper mantle temperature and composition along the Mid-Atlantic Ridge

    NASA Technical Reports Server (NTRS)

    Sheehan, Anne F.; Solomon, Sean C.

    1991-01-01

    Measurements were carried out for SS-S differential travel time residuals for nearly 500 paths crossing the northern Mid-Atlantic Ridge, assuming that the residuals are dominated by contributions from the upper mantle near the surface bounce point of the reflected phase SS. Results indicate that the SS-S travel time residuals decrease linearly with square root of age, to an age of 80-100 Ma, in general agreement with the plate cooling model. A joint inversion was formulated of travel time residuals and geoid and bathymetric anomalies for lateral variation in the upper mantle temperature and composition. The preferred inversion solutions were found to have variations in upper mantle temperature along the Mid-Atlantic Ridge of about 100 K. It was calculated that, for a constant bulk composition, such a temperature variation would produce about a 7-km variation in crustal thickness, larger than is generally observed.

  4. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  5. Monitoring with Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Gret, A.; Snieder, R.

    2004-12-01

    Aki has been a pioneer in monitoring the subsurface with coda waves and with guided waves. His analysis of temporal and spatial variations in coda Q has proven to be a powerful tool for monitoring purposes. We have extended his technique in new method called coda wave interferometry where changes in the full waveforms of coda waves are used to monitor changes in the subsurface. We have developed and implemented the theory to use this technique to monitor the following changes: a change in the seismic velocity, a change in scatterer locations, and a change in the location of earthquakes. As shown by Aki, the seismic coda is dominated by shear waves. Therefore our technique is primarily sensitive to changes in the S-velocity. Aki also worked on wave propagation in volcanoes. We have used coda wave interferometry to monitor two active volcanoes, Arenal (Costa Rica) and Mt. Erebus (Antarctica). I will give several examples to illustrate how coda waves can be used for monitoring purposes.

  6. Nonlinear analysis of helix traveling wave tubes

    SciTech Connect

    Freund, H.P.; Zaidman, E.G.; Mankofsky, A.; Vanderplaats, N.R.; Kodis, M.A.

    1995-10-01

    A time-dependent nonlinear formulation of the interaction in the helix traveling wave tube is presented for a configuration in which an electron beam propagates through a sheath helix surrounded by a conducting wall. In order to describe both the variation in the wave dispersion and in the transverse inhomogeneity of the electromagnetic field with wave number, the field is represented as a superposition of waves in a vacuum sheath helix. An overall explicit sinusoidal variation of the form exp({ital ikz}{minus}{ital i}{omega}{ital t}) is assumed (where {omega} denotes the angular frequency corresponding to the wave number {ital k} in the vacuum sheath helix), and the polarization and radial variation of each wave is determined by the boundary conditions in a vacuum sheath helix. Thus, while the field is three-dimensional in nature, it is azimuthally symmetric. The propagation of each wave {ital in} {ital vacuo} as well as the interaction of each wave with the electron beam is included by allowing the amplitudes of the waves to vary in {ital z} and {ital t}. A dynamical equation for the field amplitudes is derived analogously to Poynting`s equation, and solved in conjunction with the three-dimensional Lorentz force equations for an ensemble of electrons. Numerical examples are presented corresponding to both single- and multiwave interactions. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. PMID:26873972

  8. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.

  9. Wave-function functionals

    SciTech Connect

    Pan Xiaoyin; Slamet, Marlina; Sahni, Viraht

    2010-04-15

    We extend our prior work on the construction of variational wave functions {psi} that are functionals of functions {chi}:{psi}={psi}[{chi}] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions {chi} chosen such that the functional {psi}[{chi}] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H{sup -}, the helium atom He, and its positive ions Li{sup +} and Be{sup 2+}. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W={Sigma}{sub i}r{sub i}{sup n},n=-2,-1,1,2, W={Sigma}{sub i{delta}}(r{sub i}), W=-(1/2){Sigma}{sub i{nabla}i}{sup 2}, and the two-particle operators W={Sigma}{sub n}u{sup n},n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals {psi}[{chi}] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schroedinger equation, there exist {psi}[{chi}] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.

  10. Alfvén wave mixing and non-JWKB waves in stellar winds

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; Zank, G. P.

    2013-03-01

    Alfvén wave mixing equations used in locally incompressible turbulence transport equations in the solar wind contain as a special case, non-Jeffreys-Wentzel-Kramers-Brouillon (non-JWKB) wave equations used in models of Alfvén wave driven winds. We discuss the canonical wave energy equation; the physical wave energy equation, and the JWKB limit of the wave interaction equations. Lagrangian and Hamiltonian variational principles for the waves are developed. Noether’s theorem is used to derive the canonical wave energy equation which is associated with the linearity symmetry of the equations. A further conservation law associated with time translation invariance of the action, applicable for steady background wind flows is also derived. In the latter case, the conserved density is the Hamiltonian density for the waves, which is distinct from the canonical wave energy density. The canonical wave energy conservation law is a special case of a wider class of conservation laws associated with Green’s theorem for the wave mixing system and the adjoint wave mixing system, which are related to Noether’s second theorem. In the sub-Alfvénic flow, inside the Alfvén point of the wind, the backward and forward waves have positive canonical energy densities, but in the super-Alfvénic flow outside the Alfvén critical point, the backward Alfvén waves are negative canonical energy waves, and the forward Alfvén waves are positive canonical energy waves. Reflection and transmission coefficients for the backward and forward waves in both the sub-Alfvénic and super-Alfvénic regions of the flow are discussed.

  11. Micro-scale environmental variation amplifies physiological variation among individual mussels.

    PubMed

    Jimenez, Ana Gabriela; Jayawardene, Sarah; Alves, Shaina; Dallmer, Jeremiah; Dowd, W Wesley

    2015-12-01

    The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change. PMID:26645201

  12. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  13. On shallow water rogue wave formation in strongly inhomogeneous channels

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Pelinovsky, Efim

    2016-05-01

    Rogue wave formation in shallow water is often governed by dispersive focusing and wave-bottom interaction. In this study we try to combine these mechanisms by considering dispersive nonreflecting wave propagation in shallow strongly inhomogeneous channels. Nonreflecting wave propagation provides extreme wave amplification and the transfer of wave energy over large distances, while dispersive effects allow formation of a short-lived wave of extreme height (rogue wave). We found several types of water channels, where this mechanism can be realized, including (i) channels with a monotonically decreasing cross-section (normal dispersion), (ii) an inland basin described by a half of elliptic paraboloid (abnormal dispersion) and (iii) an underwater hill described by a half of hyperbolic paraboloid (normal dispersion). Conditions for variations of local frequency in the wave train providing optimal focusing of the wave train are also found.

  14. Shallow water rogue wave formation in inhomogeneous channels

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Efim; Didenkulova, Ira

    2016-04-01

    Rogue wave formation in shallow water is often governed by dispersive focusing and wave-bottom interaction. In this study we try to combine these mechanisms by considering dispersive nonreflecting wave propagation in shallow strongly inhomogeneous channels. Nonreflecting wave propagation provides extreme wave amplification and transfer of wave energy over large distances, while dispersive effects allow formation of short-lived wave of extreme height (rogue wave). We found several types of water channels, where this mechanism can be realized, including (i) channels with monotonically decreasing cross-section (normal dispersion), (ii) inland basin described by a half of elliptic paraboloid (abnormal dispersion) and (iii) underwater hill described by a half of hyperbolic paraboloid (normal dispersion). Conditions for variations of local frequency in the wave trail providing optimal focusing of the wave train are also found.

  15. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  16. Relativistic spherical plasma waves

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  17. Evaluation of tracheal cuff pressure variation in spontaneously breathing patients

    PubMed Central

    Plotnikow, Gustavo A; Roux, Nicolas; Feld, Viviana; Gogniat, Emiliano; Villalba, Dario; Ribero, Noelia Vairo; Sartore, Marisa; Bosso, Mauro; Quiroga, Corina; Leiva, Valeria; Scrigna, Mariana; Puchulu, Facundo; Distéfano, Eduardo; Scapellato, Jose Luis; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Nielsen, Ernesto Díaz

    2013-01-01

    Background: Most of the studies referring cuff tubes’ issues were conducted on intubated patients. Not much is known about the cuff pressure performance in chronically tracheostomized patients disconnected from mechanical ventilation. Objective: To evaluate cuff pressure (CP) variation in tracheostomized, spontaneously breathing patients in a weaning rehabilitation center. Materials and Methods: Experimental setup to test instruments in vitro, in which the gauge (TRACOE) performance at different pressure levels was evaluated in six tracheostomy tubes, and a clinical setupin which CP variation over 24 h, every 4 h, and for 6 days was measured in 35 chronically tracheostomized clinically stable, patients who had been disconnected from mechanical ventilation for at least 72 h. The following data were recorded: Tube brand, type, and size; date of the tube placed; the patient's body position; the position of the head; axillary temperature; pulse and respiration rates; blood pressure; and pulse oximetry. Results: In vitro difference between the initial pressure (IP) and measured pressure (MP) was statistically significant (P < 0.05). The difference between the IP and MP was significant when selecting for various tube brands (P < 0.05). In the clinical set-up, 207 measurements were performed and the CP was >30 cm H2O in 6.28% of the recordings, 20-30 cm H2O in 42.0% of the recordings, and <20 cm H2O in 51.69% of the recordings. Conclusion: The systematic CP measurement in chronically tracheostomized, spontaneously breathing patients showed high variability, which was independent of tube brand, size, type, or time of placement. Consequently, measurements should be made more frequently. PMID:24459624

  18. Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Newell, Alan C.; Rumpf, Benno

    2011-01-01

    In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.

  19. Quasi-periodic variations in the Doppler shift of HF signals scattered by artificial ionospheric turbulence

    SciTech Connect

    Belenov, A.F.; Ponomarenko, P.V.; Sinitsyn, V.G.; Yampol`skii, Yu.M.

    1994-06-01

    The results of an experimental study of quasi-periodic variations of the Doppler shift (DS) of decimeter-wave signals scattered by artificial ionospheric turbulence are presented. It is suggested that ionospheric MHD waves of natural origin are a possible cause of such variations. The amplitude of the magnetic component of such waves that leads to observable values of DS variations is estimated to be 1{gamma}.

  20. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  1. Asymptotic Linear Stability of Solitary Water Waves

    NASA Astrophysics Data System (ADS)

    Pego, Robert L.; Sun, Shu-Ming

    2016-06-01

    We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (that is, symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.

  2. Waves in a Venus general circulation model

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko; Takagi, Masahiro; Matsuda, Yoshihisa

    2014-11-01

    Waves in the Venus atmosphere are numerically investigated by extending a work of Sugimoto et al. (2014). Fast superrotating zonal flow of 120 m s-1 at the equator is reproduced and maintained by solar heating for more than 10 Earth years. The meridional distribution of the obtained fast zonal flow is quite consistent with observations at the cloud levels. In the cloud layer, baroclinic waves develop continuously with a life cycle of ~25 Earth days at midlatitudes, using available potential energy derived from a baroclinically unstable basic state. Rossby waves observed at the cloud top are generated by the baroclinic waves and induce spatio-temporal variation of the superrotation with amplitude larger than 25 m s-1. Further, Kelvin waves with a period of ˜ 6.2 days appear in the equatorial region below ~50 km. Momentum and heat transports produced by these waves are discussed.

  3. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  4. Unsteadiness effects in wave-current interaction in the nearshore

    NASA Astrophysics Data System (ADS)

    Haller, Merrick; Phaksopa, Jitraporn; Ozkan-Haller, Tuba

    2016-04-01

    Typical analyses of wave-current interaction assume the current field to be quasi-stationary and the absolute wave frequency to be time invariant. However, theory tells us that unsteady currents will induce a time variation in the absolute frequency and wavenumber. In this work we first demonstrate, through a large-scale laboratory experiment, observations of absolute wave frequency modulations. The frequency modulations are shown to be caused by both unsteady water depth and unsteady currents due to the presence of low-frequency standing waves in large wave flume. These observations allow a unique verification of the theoretical predictions. New analytic solutions for the variations in frequency and wave height induced by the unsteady currents are then given via a perturbation analysis and the importance of this phenomenon in natural situations is discussed. Next, we perform a more sophisticated numerical analysis using a coupled model system consisting of the time-integrated Navier-Stokes equations and the wave-action-balance equation including wave breaking dissipation. The model setup again involves standing long waves in an enclosed basin but here the waves and currents are fully coupled. The standing long waves are driven by wave breaking of the incident regular wave field. The coupled numerical system is used to verify the findings from the analytic work regarding variations in absolute frequency. In addition, from this analysis both positive and negative feedbacks between waves and currents are identified and shown to depend on the normalized bed slope. Specifically, for small normalized slopes, the negative feedback reduces the magnitudes of the standing long waves, while on steep slopes the long waves are amplified. The feedback dynamics are shown to correlate with the surf beat similarity introduced by Baldock (2012). This parameter also helps to distinguish between the forcing mechanisms of bound wave release versus time-varying breakpoint forcing.

  5. Making Waves: Seismic Waves Activities and Demonstrations

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  6. Bragg Reflection of Ocean Waves from Sandbars

    NASA Astrophysics Data System (ADS)

    Elgar, S.; Raubenheimer, B.; Herbers, T. H.

    2002-12-01

    Resonant Bragg reflection of surface waves from a field of roughly shore-parallel sandbars was observed in Cape Cod Bay near Truro, MA during low energy wave conditions and during a storm. Although the Bragg resonance mechanism for wave reflection has been demonstrated convincingly in the laboratory, the corresponding impact of natural sandbars on ocean waves is not known. Multiple shore-parallel sandbars frequently are found in bays and gulfs, but observations of associated wave reflection have not been reported. Here, we present the first observations of resonant Bragg reflection of ocean surface waves by a natural field of sandbars. The waves were reflected both from the bars and from the steep beach shoreward of the bars, causing complicated interference patterns of seaward and shoreward propagating waves. The observed cross-shore variations in the onshore- and offshore-directed energy fluxes are consistent with theory (Yu and Mei JFM 2000) for resonant Bragg reflection, including a 20% decay of the incident wave energy flux that is an order of magnitude greater than expected for wave-orbital velocity induced bottom friction. When offshore wave heights were small (less than 0.25 m) there was no wave breaking across the sandbars, and the near-bottom velocities associated with the Bragg reflecting waves likely were too small to cause significant sediment transport. However, sediment mobilized during storms may be transported by velocity convergences and divergences associated with nodes and antinodes of the reflecting Bragg waves, possibly resulting in growth of the sandbars. Funding was provided by the Mellon Foundation, ONR, and NSF.

  7. P-wave Variability and Atrial Fibrillation

    PubMed Central

    Censi, Federica; Corazza, Ivan; Reggiani, Elisa; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Boriani, Giuseppe

    2016-01-01

    The analysis of P-wave template has been widely used to extract indices of Atrial Fibrillation (AF) risk stratification. The aim of this paper was to assess the potential of the analysis of the P-wave variability over time in patients suffering from atrial fibrillation. P-wave features extracted from P-wave template together with novel indices of P-wave variability have been estimated in a population of patients suffering from persistent AF and compared to those extracted from control subjects. We quantify the P-wave variability over time using three algorithms and we extracted three novel indices: one based on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI), one associated to variation in amplitude of the P-waves (Amplitude Dispersion Index, ADI), one sensible to the phase shift among P-waves (Warping Index, WI). The control group resulted to be characterized by shorter P-wave duration and by a less amount of fragmentation and variability, respect to AF patients. The parameter CCI shows the highest sensitivity (97.3%) and a good specificity (95%). PMID:27225709

  8. P-wave Variability and Atrial Fibrillation.

    PubMed

    Censi, Federica; Corazza, Ivan; Reggiani, Elisa; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Boriani, Giuseppe

    2016-01-01

    The analysis of P-wave template has been widely used to extract indices of Atrial Fibrillation (AF) risk stratification. The aim of this paper was to assess the potential of the analysis of the P-wave variability over time in patients suffering from atrial fibrillation. P-wave features extracted from P-wave template together with novel indices of P-wave variability have been estimated in a population of patients suffering from persistent AF and compared to those extracted from control subjects. We quantify the P-wave variability over time using three algorithms and we extracted three novel indices: one based on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI), one associated to variation in amplitude of the P-waves (Amplitude Dispersion Index, ADI), one sensible to the phase shift among P-waves (Warping Index, WI). The control group resulted to be characterized by shorter P-wave duration and by a less amount of fragmentation and variability, respect to AF patients. The parameter CCI shows the highest sensitivity (97.3%) and a good specificity (95%). PMID:27225709

  9. Many-body wave functions

    SciTech Connect

    Chasman, R.R.

    1995-08-01

    In the past few years, we developed many-body variational wave functions that allow one to treat pairing and particle-hole two-body interactions on an equal footing. The complexity of these wave functions depends on the number of levels included in the valence space, but does not depend on the number of nucleons in the system. By using residual interaction strengths (e.g. the quadrupole interaction strength or pairing interaction strength) as generator coordinates, one gets many different wave functions, each having a different expectation value for the relevant interaction mode. These wave functions are particularly useful when one is dealing with a situation in which the mean-field approximation is inadequate. Because the same basis states are used in the construction of the many-body wave functions, it is possible to calculate overlaps and interaction matrix elements for the many-body wave functions (which are not in general orthogonal) easily. The valence space can contain a large number of single-particle basis states, when there are constants of motion that can be used to break the levels up into groups. We added a cranking term to the many-body Hamiltonian and modified the projection procedure to get states of good signature before variation. In our present implementation, each group is limited to eight pairs of single-particle levels. We are working on ways of increasing the number of levels that can be included in each group. We are also working on including particle-particle residual interaction modes, in addition to pairing, in our Hamiltonian.

  10. Contributions regarding chemical composition variation in ultrasonic field overlaying welding

    NASA Astrophysics Data System (ADS)

    Amza, Gh; Petrescu, V.; Niţoi, D. F.; Amza, C. Gh; Dimitrescu, A.; Apostolescu, Z.

    2016-08-01

    Paper presents a new reconditioning method based on ultrasonic field and analyses the modificated structure composition in three zone: filler material, thermal influenced zone, and base material. Also, chemical composition variation as a result of ultrasonic wave influence is studied besides the ultrasonic wave influence on dilution process.

  11. Waves in Plasmas

    SciTech Connect

    Tracy, Eugene R

    2009-09-21

    Quadratic corrections to the metaplectic formulation of mode conversions. In this work we showed how to systematically deal with quadratic corrections beyond the usual linearization of the dispersion matrix at a conversion. The linearization leads to parabolic cylinder functions as the local approximation to the full-wave behavior, but these do not include the variation in amplitude associated with ray refraction in the neighborhood of the conversion. Hence, the region over which they give a good fit to the incoming and outgoing WKB solutions is small. By including higher order corrections it is possible to provide a much more robust matching. We also showed that it was possible, in principle, to extend these methods to arbitrary order. A new normal form for mode conversion. This is based upon our earlier NSF-DOE-funded work on ray helicity. We have begun efforts to apply these new ideas in practical ray tracing algorithms. Group theoretical foundation of path integrals and phase space representations of wave problems. Using the symbol theory of N. Zobin, we developed a new understanding of path integrals on phase space. The initial goal was to find practical computational tools for dealing with non-standard mode conversions. Along the way we uncovered a new way to represent wave functions directly on phase space without the intermediary of a Wigner function. We are exploring the use of these ideas for numerical studies of conversion, with the goal of eventually incorporating kinetic effects. Wave packet studies of gyroresonance crossing. In earlier work, Huanchun Ye and Allan Kaufman -- building upon ideas due to Lazar Friedland -- had shown that gyroresonance crossings could be treated as a double conversion. This perspective is one we have used for many of our papers since then. We are now performing a detailed numerical comparison between full-wave and ray tracing approaches in the study of minority-ion gyroresonance crossing. In this study, a fast magnetosonic

  12. MHD simple waves and the divergence wave

    SciTech Connect

    Webb, G. M.; Pogorelov, N. V.; Zank, G. P.

    2010-03-25

    In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.

  13. Head waves, diving waves, and interface waves at the seafloor

    NASA Astrophysics Data System (ADS)

    Stephen, Ralph A.

    2005-09-01

    Brekhovskikh (1960) summarizes the system of waves that arises from reflection and refraction of spherical waves at the interface between homogeneous solid half-spaces. By eliminating the shear wave potential in one half-space, the system for fluid-solid half-spaces like the seafloor is obtained. There are two cases: one where the shear speed in the bottom is less than the compressional speed in the fluid (soft sediments), and the other where the shear speed in the bottom is greater than the compressional speed in the fluid (hard volcanic basement). This model is the basis for defining interface phenomena such as evanescent waves, head waves, pseudo-Rayleigh waves, and Stoneley/Scholte waves. If a positive gradient is introduced into the compressional and shear sound speeds in the bottom, one obtains diving waves and interference head waves (Cerveny and Ravindra, 1971). There are two types of interface waves: pseudo-Rayleigh waves that are evanescent in the bottom but propagate in the water, and Stoneley/Scholte waves that are evanescent in both media. In multi-interface models there are of course normal modes. In actual seafloors, low speed layers, sound and shear speed gradients, and interface and volume lateral heterogeneities affect the characteristics of propagation and scattering. [Work supported by ONR.

  14. Vertical evolution of gravity wave spectra and the parameterization of associated wave drag

    NASA Astrophysics Data System (ADS)

    Medvedev, A. S.; Klaassen, G. P.

    1995-12-01

    Extensions of Weinstock's theory of nonlinear gravity waves and a parameterization of the related momentum deposition are developed. Our approach, which combines aspects of Hines' Doppler spreading theory with Weinstock's theory of nonlinear wave diffusion, treats the low-frequency part of the gravity wave spectrum as an additional background flow for higher-frequency waves. This technique allows one to calculate frequency shifting and wave amplitude damping produced by the interaction with this additional background wind. For a nearly monochromatic spectrum the parameterization formulae for wave drag coincide with those of Lindzen. It is shown that two processes should be distinguished: wave breaking due to instabilities and saturation due to nonlinear diffusionlike processes. The criteria for wave breaking and wave saturation in terms of wave spectra are derived. For a saturated spectrum the power spectral density's (PSD) dependence S(m) = AN2/m3 is obtained, where m is the vertical wavenumber and N is the Brunt-Väisäla frequency. Unlike Weinstock's original formulation, our coefficient of proportionality A is a slowly varying function of m and mean wind. For vertical wavelengths ranging from 10 km to 100 m and for typical wind shears, A varies from one half to one ninth. Calculations of spectral evolution with height as well as related profiles of wave drag are shown. These results reproduce vertical wavenumber spectral tail slopes which vary near the -3 value reported by observations. An explanation of these variations is given.

  15. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    SciTech Connect

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.

  16. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  17. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  18. Mesosphere Dynamics with Gravity Wave Forcing. 2; Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a non-linear, 3D, time dependent numerical spectral model (NSM) which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere where wave interactions are playing a dominant role. We discuss planetary waves in the present paper and diurnal and semi-diurnal tides in the companion paper. Without external time dependent energy or momentum sources, planetary waves (PWs) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 30 m/s and periods between 2 and 50 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW driven reversal in the latitudinal temperature gradient) is playing an important role. Results from a numerical experiment show that GWs are also involved directly in generating the PWs. For the zonal wavenumber m = 1, the predominant wave periods in summer are around 4 days and in winter between 6 and 10 days. For m = 2, the periods are in summer and close to 2.5 and 3.5 days respectively For m = 3, 4 the predominant wave periods are in both seasons close to two days. The latter waves have the characteristics of Rossby gravity waves with meridional winds at equatorial latitudes. A common feature of the PWs (m = 1 to 4) generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PWs propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter altitudes below 80 km. During spring and fall, for m = 1 and 2 eastward propagating long period PWs are generated that are launched from the smaller

  19. Surfing wave climate variability

    NASA Astrophysics Data System (ADS)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  20. Turbulent boundary layers under irregular waves and currents: Experiments and the equivalent-wave concept

    NASA Astrophysics Data System (ADS)

    Yuan, Jing

    2016-04-01

    A full-scale experimental study of turbulent boundary layer flows under irregular waves and currents is conducted with the primary objective to investigate the equivalent-wave concept by Madsen (1994). Irregular oscillatory flows following the bottom-velocity spectrum under realistic surface irregular waves are produced over two fixed rough bottoms in an oscillatory water tunnel, and flow velocities are measured using a Particle Image Velocimetry. The root-mean-square (RMS) value and representative phase lead of wave velocities have vertical variations very similar to those of the first-harmonic velocity of periodic wave boundary layers, e.g., the RMS wave velocity follows a logarithmic distribution controlled by the physical bottom roughness in the very near-bottom region. The RMS wave bottom shear stress and the associated representative phase lead can be accurately predicted using the equivalent-wave approach. The spectra of wave bottom shear stress and boundary layer velocity are found to be proportional to the spectrum of free-stream velocity. Currents in the presence of irregular waves exhibit the classic two-log-profile structure with the lower log-profile controlled by the physical bottom roughness and the upper log-profile controlled by a much larger apparent roughness. Replacing the irregular waves by their equivalent sinusoidal waves virtually makes no difference for the coexisting currents. These observations, together with the excellent agreement between measurements and model predictions, suggest that the equivalent-wave representation adequately characterizes the basic wave-current interaction under irregular waves.

  1. Spectral wave dissipation over a barrier reef

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Bandet, Marion D.; Pawlak, Geno; Atkinson, Marlin J.; Monismith, Stephen G.; Koseff, Jeffrey R.

    2005-04-01

    A 2 week field experiment was conducted to measure surface wave dissipation on a barrier reef at Kaneohe Bay, Oahu, Hawaii. Wave heights and velocities were measured at several locations on the fore reef and the reef flat, which were used to estimate rates of dissipation by wave breaking and bottom friction. Dissipation on the reef flat was found to be dominated by friction at rates that are significantly larger than those typically observed at sandy beach sites. This is attributed to the rough surface generated by the reef organisms, which makes the reef highly efficient at dissipating energy by bottom friction. Results were compared to a spectral wave friction model, which showed that the variation in frictional dissipation among the different frequency components could be described using a single hydraulic roughness length scale. Surveys of the bottom roughness conducted on the reef flat showed that this hydraulic roughness length was comparable to the physical roughness measured at this site. On the fore reef, dissipation was due to the combined effect of frictional dissipation and wave breaking. However, in this region the magnitude of dissipation by bottom friction was comparable to wave breaking, despite the existence of a well-defined surf zone there. Under typical wave conditions the bulk of the total wave energy incident on Kaneohe Bay is dissipated by bottom friction, not wave breaking, as is often assumed for sandy beach sites and other coral reefs.

  2. Further SEASAT SAR coastal ocean wave analysis

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.

    1981-01-01

    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.

  3. Inertio Gravity Waves in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.

  4. Freak waves observations in the coastal zone of Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Konstantin; Zaytsev, Andrey; Kostenko, Irina; Pelinovsky, Efim; Kurkin, Andrey

    2015-04-01

    Instrumental data of the long-term observation of abnormally large waves (freak waves) on the shelf of Sakhalin Island near the village Vsmorie, cape Ostriy, orifice of the Izmenchivae Lake, cape Svobodniy and cape Aniva since 2007 are adduced. These measurements were made with using bottom stations, measuring variations in bottom pressure, induced by surface waves. These sensors do not interfere with navigation and do not affect the ecology of the area. The important problem of the translation variations of bottom pressure in the vertical oscillations of the sea surface is discussed. The linear theory of water waves used here as a first approximation. About 1,400 waves that are abnormal, and their height twice the height of the background waves (amplitude criterion killer waves) are allocated from the total number of individual waves (several million). About 20 waves have a height greater than the height of the background by 2.7 times. The wave group, which was fixed for the term «three sisters» is typical form of abnormal waves. On average, two or three abnormal waves are recorded per day.

  5. Dissipation of acoustic-gravity waves: an asymptotic approach.

    PubMed

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed. PMID:25480091

  6. Dissipation of acoustic-gravity waves: an asymptotic approach.

    PubMed

    Godin, Oleg A

    2014-12-01

    Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed.

  7. Geometrical versus wave optics under gravitational waves

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Saha, Prasenjit

    2015-06-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely, null geodesics and Maxwell's equations, or geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics—rather than solving Maxwell's equations directly for the fields, as in most previous approaches—we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  8. Variational methods for field theories

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    1986-09-01

    The thesis is presented in four parts dealing with field theory models: Periodic Quantum Electrodynamics (PQED) in (2+1) dimensions, free scalar field theory in (1+1) dimensions, the Quantum XY model in (1+1) dimensions, and the (1+1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. Free field theory is used as a laboratory for a new variational blocking truncation approximation, in which the high frequency modes in a block are truncated to wave functions that depend on the slower background model (Born Oppenheimer approximation). For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. In the 4th part, the transfer matrix method is used to find a good (non blocking) trial ground state for the Ising model in a transverse magnetic field in (1+1) dimensions.

  9. Statistical reconstruction algorithms for continuous wave electron spin resonance imaging

    NASA Astrophysics Data System (ADS)

    Kissos, Imry; Levit, Michael; Feuer, Arie; Blank, Aharon

    2013-06-01

    Electron spin resonance imaging (ESRI) is an important branch of ESR that deals with heterogeneous samples ranging from semiconductor materials to small live animals and even humans. ESRI can produce either spatial images (providing information about the spatially dependent radical concentration) or spectral-spatial images, where an extra dimension is added to describe the absorption spectrum of the sample (which can also be spatially dependent). The mapping of oxygen in biological samples, often referred to as oximetry, is a prime example of an ESRI application. ESRI suffers frequently from a low signal-to-noise ratio (SNR), which results in long acquisition times and poor image quality. A broader use of ESRI is hampered by this slow acquisition, which can also be an obstacle for many biological applications where conditions may change relatively quickly over time. The objective of this work is to develop an image reconstruction scheme for continuous wave (CW) ESRI that would make it possible to reduce the data acquisition time without degrading the reconstruction quality. This is achieved by adapting the so-called "statistical reconstruction" method, recently developed for other medical imaging modalities, to the specific case of CW ESRI. Our new algorithm accounts for unique ESRI aspects such as field modulation, spectral-spatial imaging, and possible limitation on the gradient magnitude (the so-called "limited angle" problem). The reconstruction method shows improved SNR and contrast recovery vs. commonly used back-projection-based methods, for a variety of simulated synthetic samples as well as in actual CW ESRI experiments.

  10. Experimental and numerical studies on wave breaking characteristics over a fringing reef under monochromatic wave conditions.

    PubMed

    Lee, Jong-In; Shin, Sungwon; Kim, Young-Taek

    2014-01-01

    Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r (2) > 0.8) the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A 0/h 0 < 0.07 in this study). However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification. PMID:25276853

  11. Rossby wave energy dispersion from tropical cyclone in zonal basic flows

    NASA Astrophysics Data System (ADS)

    Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu

    2016-04-01

    This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.

  12. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  13. Visualization of Sound Waves Using Regularly Spaced Soap Films

    ERIC Educational Resources Information Center

    Elias, F.; Hutzler, S.; Ferreira, M. S.

    2007-01-01

    We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…

  14. On the propagation of plane waves above an impedance surface

    NASA Technical Reports Server (NTRS)

    Zhong, F. H.; Vanmoorhem, W. K.

    1990-01-01

    The propagation of grazing incidence plane waves along a finite impedance boundary is investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations perpendicular to the boundary. Several approximations to the full solution are considered.

  15. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  16. Evaluation of nearshore wave models in steep reef environments

    NASA Astrophysics Data System (ADS)

    Buckley, Mark; Lowe, Ryan; Hansen, Jeff

    2014-06-01

    To provide coastal engineers and scientists with a quantitative evaluation of nearshore numerical wave models in reef environments, we review and compare three commonly used models with detailed laboratory observations. These models are the following: (1) SWASH (Simulating WAves till SHore) (Zijlema et al. 2011), a phase-resolving nonlinear shallow-water wave model with added nonhydrostatic terms; (2) SWAN (Simulating WAve Nearshore) (Booij et al. 1999), a phase-averaged spectral wave model; and (3) XBeach (Roelvink et al. 2009), a coupled phase-averaged spectral wave model (applied to modeling sea-swell waves) and a nonlinear shallow-water model (applied to modeling infragravity waves). A quantitative assessment was made of each model's ability to predict sea-swell (SS) wave height, infragravity (IG) wave height, wave spectra, and wave setup () at five locations across the laboratory fringing reef profile of Demirbilek et al. (2007). Simulations were performed with the "recommended" empirical coefficients as documented for each model, and then the key wave-breaking parameter for each model ( α in SWASH and γ in both SWAN and XBeach) was optimized to most accurately reproduce the observations. SWASH, SWAN, and XBeach were found to be capable of predicting SS wave height variations across the steep fringing reef profile with reasonable accuracy using the default coefficients. Nevertheless, tuning of the key wave-breaking parameter improved the accuracy of each model's predictions. SWASH and XBeach were also able to predict IG wave height and spectral transformation. Although SWAN was capable of modeling the SS wave height, in its current form, it was not capable of modeling the spectral transformation into lower frequencies, as evident in the underprediction of the low-frequency waves.

  17. Dynamics of quantum wave packets

    SciTech Connect

    Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.

  18. Wave-current interaction in Willapa Bay

    USGS Publications Warehouse

    Olabarrieta, M.; Warner, J.C.; Kumar, N.

    2011-01-01

    This paper describes the importance of wave-current interaction in an inlet-estuary system. The three-dimensional, fully coupled, Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system was applied in Willapa Bay (Washington State) from 22 to 29 October 1998 that included a large storm event. To represent the interaction between waves and currents, the vortex-force method was used. Model results were compared with water elevations, currents, and wave measurements obtained by the U.S. Army Corp of Engineers. In general, a good agreement between field data and computed results was achieved, although some discrepancies were also observed in regard to wave peak directions in the most upstream station. Several numerical experiments that considered different forcing terms were run in order to identify the effects of each wind, tide, and wave-current interaction process. Comparison of the horizontal momentum balances results identified that wave-breaking-induced acceleration is one of the leading terms in the inlet area. The enhancement of the apparent bed roughness caused by waves also affected the values and distribution of the bottom shear stress. The pressure gradient showed significant changes with respect to the pure tidal case. During storm conditions the momentum balance in the inlet shares the characteristics of tidal-dominated and wave-dominated surf zone environments. The changes in the momentum balance caused by waves were manifested both in water level and current variations. The most relevant effect on hydrodynamics was a wave-induced setup in the inner part of the estuary. Copyright 2011 by the American Geophysical Union.

  19. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  20. A Simple Wave Driver

    ERIC Educational Resources Information Center

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  1. Preliminary Results of Oxygen Saturation with a Prototype of Continuous Wave Laser Oximeter

    NASA Astrophysics Data System (ADS)

    Tommasi, R.; Leo, M. G.; Cicco, G.; Cassano, T.; Nitti, L.; Lugarà, P. M.

    Near-infrared tissue spectroscopy is a non invasive, innocuous technique to measure oxygen saturation in tissues. NIR oximetry can be used in almost any area of the body, according to the type of analysis to be done.

  2. Teleseismic S wave microseisms.

    PubMed

    Nishida, Kiwamu; Takagi, Ryota

    2016-08-26

    Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior.

  3. Planetary plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1993-01-01

    The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.

  4. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  5. Density Wave Signatures In VIMS Spectral Data

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, M. M.; Cassini VIMS Team

    2012-10-01

    Spectral scans of Saturn's rings by the Cassini VIMS instrument have revealed both regional and local variations in the depths of the water ice bands at 1.5 and 2.0 microns, which have been interpreted in terms of variations in regolith grain size and the amount of non-icy "contaminants" (Filacchione et al. 2012; Hedman et al. 2012). Noteworthy among the local variations are distinctive patterns associated with the four strong density waves in the A ring. Within each wavetrain there is a peak in band strength relative to the surrounding material, while extending on both sides of the wave is a "halo" of reduced band strength. The typical width of these haloes is 400-500 km, about 2-3 times the visible extent of the density waves. The origin of these features is unknown, but may involve enhanced collisional erosion in the wave zones and transport of the smaller debris into nearby regions. A similar pattern of band depth variations is also seen at several locations in the more opaque B ring in association with the strong 3:2 ILRs of Janus, Pandora and Prometheus. The former shows a pattern just like its siblings in the A ring, while the latter two resonances show haloes, but without central peaks. In each case, the radial widths of the halo approaches 1000 km, but stellar occultation profiles show no detectable density wavetrain. We suggest that this spectral signature may be a useful diagnostic for the presence of strong density waves in regions where the rings are too opaque for occultations to reveal a typical wave profile. More speculatively, the displacement of the haloes' central radii from the calculated ILR locations of 600-700 km could imply a surface density in the central B ring in excess of 500 g/cm^2. This research was supported by the Cassini/Huygens project.

  6. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  7. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    NASA Astrophysics Data System (ADS)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  8. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  9. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  10. Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyang; Chen, Lunjin; Dai, Lei; Claudepierre, Seth G.; Chan, Anthony A.; Soto-Chavez, A. R.; Reeves, G. D.

    2016-09-01

    Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <˜ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.

  11. Instability of Wave Trains and Wave Probabilities

    NASA Astrophysics Data System (ADS)

    Babanin, Alexander

    2013-04-01

    Centre for Ocean Engineering, Science and Technology, Swinburne University of Technology, Melbourne, Australia, ababanin@swin.edu.au Design criteria in ocean engineering, whether this is one in 50 years or one in 5000 years event, are hardly ever based on measurements, and rather on statistical distributions of relevant metocean properties. Of utmost interest is the tail of distribution, that is rare events such as the highest waves with low probability. Engineers have long since realised that the superposition of linear waves with narrow-banded spectrum as depicted by the Rayleigh distribution underestimates the probability of extreme wave heights and crests, which is a critical shortcoming as far as the engineering design is concerned. Ongoing theoretical and experimental efforts have been under way for decades to address this issue. Typical approach is the treating all possible waves in the ocean or at a particular location as a single ensemble for which some comprehensive solution can be obtained. The oceanographic knowledge, however, now indicates that no single and united comprehensive solution is available. We would expect the probability distributions of wave height to depend on a) whether the waves are at the spectral peak or at the tail; b) on wave spectrum and mean steepness in the wave field; c) on the directional distribution of the peak waves; d) on whether the waves are in deep water, in intermediate depth or in shallow water; e) on wave breaking; f) on the wind, particularly if it is very strong, and on the currents if they have suitable horizontal gradients. Probability distributions in the different circumstances according to these groups of conditions should be different, and by combining them together the inevitable scatter is introduced. The scatter and the accuracy will not improve by increasing the bulk data quality and quantity, and it hides the actual distribution of extremes. The groups have to be separated and their probability

  12. Direct measurement of light waves.

    PubMed

    Goulielmakis, E; Uiberacker, M; Kienberger, R; Baltuska, A; Yakovlev, V; Scrinzi, A; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2004-08-27

    The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.

  13. Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves

    SciTech Connect

    Johnston, T. W.; Tyshetskiy, Y.; Ghizzo, A.; Bertrand, P.

    2009-04-15

    Driving a one-dimensional collisionless Maxwellian (Vlasov) plasma with a sufficiently strong longitudinal ponderomotive driver for a sufficiently long time results in a self-sustaining nonsinusoidal wave train with well-trapped electrons even for frequencies well below the plasma frequency, i.e., in the plasma wave spectral gap. Typical phase velocities of these waves are somewhat above the electron thermal velocity. This new nonlinear wave is being termed a kinetic electrostatic electron nonlinear (KEEN) wave. The drive duration must exceed the bounce period {tau}{sub B} of the trapped electrons subject to the drive, as calculated from the drive force and the linear plasma response to the drive. For a given wavenumber a wide range of KEEN wave frequencies can be readily excited. The basic KEEN structure is essentially kinetic, with the trapped electron density variation being almost completely shielded by the free electrons, leaving just enough net charge to support the wave.

  14. Wave power extraction from a transient heaving cylinder

    SciTech Connect

    Hudspeth, R. T.; Slotta, L. S.

    1980-01-01

    Wave power extracted from the transient motion of a periodically restrained-released heaving circular cylinder proposed by Falnes and Budal is examined under the limitations of linear wave theory excitation. Numerical estimates for the normalized radiated wave amplitudes required for the waveforce excitation derived by Mei are computed from the computationally efficient variational method developed by Black and Mei for the wave force diffraction regime. Wave power estimates for the rising period only of the heaving motion are given; while the falling period of the motion is neglected. A graphical summary is presented which demonstrates the parametric dependency of the dimensionless wave power rate on the design wave parameters and the body geometry for three general types of transient power systems heaving in deep water conditions. The total power requirements for the complete power extraction system as well as the real fluid viscous effects are not included.

  15. Lamb Wave Assessment of Fiber Volume Fraction in Composites

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.

    1998-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.

  16. Sensitivity of a Wave Structure to Initial Conditions

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Duval, Walter M. B. (Technical Monitor)

    2000-01-01

    Microgravity experiments aimed at quantifying effects of gentler via controlled sinusoidal forcing transmitted on the interface between two miscible liquids have shown the evolution of a quasi -stationary four-mode wave structure oriented vertically. The sensitivity of the wave structure to phase angle variation is investigated computationally. We show that a slight variation of the phase angle is sufficient to cause a bifurcation to a two-mode structure. The dependence of phase angle on wave structure is attributed to sensitivity on initial conditions due to the strong nonlinearity of the coupled field equations for the parametric space of interest.

  17. Voyager 2 plasma wave observations at saturn.

    PubMed

    Scarf, F L; Gurnett, D A; Kurth, W S; Poynter, R L

    1982-01-29

    The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.

  18. Voyager 2 plasma wave observations at Saturn

    NASA Astrophysics Data System (ADS)

    Scarf, F. L.; Gurnett, D. A.; Kurth, W. S.; Poynter, R. L.

    1982-01-01

    The first inbound Voyager 2 crossing of Saturn's bow shock (at 31.7 Saturn radii near local noon) and the last outbound crossing (at 87.4 Saturn radii near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that were interpreted in terms of ring particle impacts on Voyager 2.

  19. Wave propagation into the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Hirota, I.

    1989-01-01

    Recent observations of various types of waves propagating into the middle atmosphere are reviewed. Emphasis is made on the excitation processes in the lower atmosphere and their vertical propagation through the background flow as a function of the latitude, height and season. The following subjects are discussed: (1) Vertical propagation of quasi-stationary forced Rossby waves into the winter stratosphere in connection with the sudden warming; (2) Spectral distribution and seasonal characteristics of normal mode (free) Rossby waves and the asymmetry of the Northern and Southern Hemispheres; and (3) Seasonal variation of internal gravity waves in the middle atmosphere. Further discussions are presented for future studies based on accumulated observational data during the MAP period.

  20. Spectra of Baroclinic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1996-01-01

    Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.

  1. Electron scattering by magnetosonic waves in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Li, Wen; Thorne, Richard M.; Bortnik, Jacob; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.

    2016-01-01

    We investigate the importance of electron scattering by magnetosonic waves in the Earth's inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of the lower hybrid resonance frequency, but this trend is not observed inside the plasmasphere. Drift and bounce averaged electron diffusion rates due to magnetosonic waves are calculated using a recently developed analytical formula. The resulting timescale of electron energization during disturbed conditions (when AE* > 300 nT) is more than 10 days. We perform a 2-D simulation of the electron phase space density evolution due to magnetosonic wave scattering during disturbed conditions. Outside the plasmapause, the waves accelerate electrons with pitch angles between 50° and 70° and form butterfly pitch angle distributions at energies from ~100 keV to a few MeV over a timescale of several days; whereas inside the plasmapause, the electron acceleration is very weak. Our study suggests that intense magnetosonic waves may cause the butterfly distribution of radiation belt electrons especially outside the plasmapause, but electron acceleration due to magnetosonic waves is generally not as effective as chorus wave acceleration.

  2. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  3. On the Extraordinary Propagation of the Janus 2:1 Density Wave: Synergy between Density Waves and Viscous Overstability

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.; Albers, Nicole; Esposito, Larry W.

    2016-10-01

    The effective damping produced by particle collisions prevents most spiral density waves in Saturn's rings from propagating more than about 100 km from their resonance location. The Janus 2:1 density wave defies the usual behavior and appears to alternatively grow and decay in amplitude repeatedly as it propagates into regions of larger mean optical depth before finally disappearing over 500 km from the resonance location. Borderies et al. (1985) suggested that the effective viscous coefficients in dense rings might lead to wave growth rather than damping. Salo et al. (2001) used N-body simulations to constrain the surface density dependence of the shear and bulk viscosity in the rings and applied them to the study of axisymmetric viscous overstable waves. We modify the formalism used by Latter and Ogilvie (2009) to model the nonlinear propagation of viscous overstable waves and apply it to model the propagation of the Janus 2:1 density wave. Normal optical depth profiles obtained from Cassini UVIS observations of stellar occultations are used to constrain the mean optical depth variation with ring radius as well as the variation of the wave amplitude. We find that the viscous overstability can indeed explain how the wave amplitude can alternately grow and decay repeatedly as the wave propagates into higher optical depth regions. Detailed modeling of the Janus 2:1 density wave profile should allow us to place new constraints on the viscous properties of Saturn's inner B ring.

  4. Observed features of acoustic gravity waves in the heterosphere

    NASA Astrophysics Data System (ADS)

    Fedorenko, A. K.; Kryuchkov, E. I.

    2014-01-01

    According to measurements on the Dynamic Explorer 2 satellite, features of the propagation of acoustic gravity waves (AGWs) in the multicomponent upper atmosphere have been investigated. In the altitude range 250-400 km in wave concentration variations of some atmospheric gases, amplitude and phase differences have been observed. Using the approach proposed in this paper, in different gases, AGW variations have been divided into components associated with elastic compression, adiabatic expansion, and the vertical background distribution. The amplitude and phase differences observed in different gases are explained on the basis of analyzing these components. It is shown how to use this effect in order to determine the wave propagation, the vertical displacement of the volume element, the wave frequency, and the spatial distribution of the wave energy density.

  5. ON THE SOURCE OF PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Prasad, S. Krishna; Jess, D. B.; Khomenko, Elena

    2015-10-10

    Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.

  6. Controls on flood and sediment wave propagation

    NASA Astrophysics Data System (ADS)

    Bakker, Maarten; Lane, Stuart N.; Costa, Anna; Molnar, Peter

    2015-04-01

    The understanding of flood wave propagation - celerity and transformation - through a fluvial system is of generic importance for flood forecasting/mitigation. In association with flood wave propagation, sediment wave propagation may induce local erosion and sedimentation, which will affect infrastructure and riparian natural habitats. Through analysing flood and sediment wave propagation, we gain insight in temporal changes in transport capacity (the flood wave) and sediment availability and transport (the sediment wave) along the river channel. Heidel (1956) was amongst the first to discuss the progressive lag of sediment concentration behind the corresponding flood wave based on field measurements. Since then this type of hysteresis has been characterized in a number of studies, but these were often based on limited amount of floods and measurement sites, giving insufficient insight into associated forcing mechanisms. Here, as part of a project concerned with the hydrological and geomorphic forcing of sediment transfer processes in alpine environments, we model the downstream propagation of short duration, high frequency releases of water and sediment (purges) from a flow intake in the Borgne d'Arolla River in south-west Switzerland. A total of >50 events were measured at 1 minute time intervals using pressure transducers and turbidity probes at a number of sites along the river. We show that flood and sediment wave propagation can be well represented through simple convection diffusion models. The models are calibrated/validated to describe the set of measured waves and used to explain the observed variation in wave celerity and diffusion. In addition we explore the effects of controlling factors including initial flow depth, flood height, flood duration, bed roughness, bed slope and initial sediment concentration, on the wave propagation processes. We show that the effects of forcing mechanisms on flood and sediment wave propagation will lead to different

  7. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  8. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  9. Variational methods for field theories

    SciTech Connect

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  10. Secular obliquity variations for Ceres

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Scott, Bryan R.; Nimmo, Francis

    2016-10-01

    We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.

  11. Detonation Wave Profile

    SciTech Connect

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  12. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  13. Traveling Wave Demonstration.

    ERIC Educational Resources Information Center

    Kluger-Bell, Barry

    1995-01-01

    Describes a traveling-wave demonstration that uses inexpensive materials (crepe-paper streamers) and is simple to assemble and perform. Explains how the properties of light waves are illustrated using the demonstration apparatus. (LZ)

  14. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  15. Waves of Hanta

    NASA Astrophysics Data System (ADS)

    Abramson, Guillermo

    2003-03-01

    A spatially extended model of the hantavirus infection in deer mice is analyzed. Traveling waves solutions of the infected and susceptible populations are studied in different regimes, controlled by an environmental parameter. The wave of infection is shown to lag behind the wave of susceptible population, and the delay between the two is analyzed numerically and through a piecewise linearization.

  16. P-Wave Electron-Hydrogen Scattering

    NASA Technical Reports Server (NTRS)

    Bhtia, Anand

    2012-01-01

    A variational wave function incorporating short range correlations via Hylleraas type functions plus long-range polarization terms of the polarized orbital type but with smooth cut-off factors has been used to calculate P-wave phase shifts for electron-hydrogen scattering. This approach gives the direct r(exp -4) potential and a non-local optical potential which is definite. The resulting phase shifts have rigorous lower bounds and the convergence is much faster than those obtained without the modification of the target function. Final results will be presented at the conference.

  17. Electron acceleration by inertial Alfven waves

    SciTech Connect

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.

  18. Determining surface wave arrival angle anomalies

    NASA Astrophysics Data System (ADS)

    Larson, Erik W. F.; Ekström, Göran

    2002-06-01

    A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.

  19. Elastic waves in ice-covered ocean

    NASA Astrophysics Data System (ADS)

    Presnov, Dmitriy; Zhostkow, Ruslan; Gusev, Vladimir; Shurup, Andrey; Sobisevich, Alex

    2014-05-01

    The problem of propagation of acoustic waves in a shallow ice-covered sea is considered in frames of the mathematical model of the layered medium: ice sheet over a liquid layer (shallow sea) positioned on an elastic half-space (seabed). As the result of analytical solution the simplified dispersion equation has been derived and used for further analytical and numerical analysis. It has been shown that there are five types of waves subject to propagate in the layered model medium: flexural waves of ice-cover, Rayleigh-type wave on the boundary between elastic half-space and the liquid layer, normal modes in ice (as in waveguide), hydro-acoustic normal modes and quasi-longitudinal wave in ice plate. Variations initial conditions as well as source parameters allow obtaining solution for acoustical pressure. Field experiments with geophones, hydrophones and microphones were carried out on the Ladoga Lake (Leningrad Oblast in northwestern Russia) using small controllable explosions as source signals. The experiment has shown satisfactory agreement with theoretical results. Analysis of the dispersion equation for various parameters of the model provides an opportunity to estimate geophysical characteristics of the geophysical medium, based on the experimentally registered wave's velocities. It has been shown, that it is possible to extract valuable information from flexural and Rayleigh-type waves in the low-frequency domain of the recorded data via spatial-temporal analysis. Separate study of those waves allows measuring ice thickness (which is important because of ice melting and ecological situation in Arctic) and velocity of transverse waves in seabed (that can help to determine type of material and can be useful in mineral deposit prospecting).

  20. Wave dynamics of a Pacific Atoll with high frictional effects

    NASA Astrophysics Data System (ADS)

    Rogers, Justin S.; Monismith, Stephen G.; Koweek, David A.; Dunbar, Robert B.

    2016-01-01

    We report field measurements of waves and currents made from September 2011 to July 2014 on Palmyra Atoll in the central Pacific that were used in conjunction with the SWAN wave model to characterize the wave dynamics operant on the atoll. Our results indicate that wave energy is primarily from the north during the northern hemisphere winter and from the south in the northern hemisphere summer. Refraction of waves along the reef terraces due to variations in bathymetry leads to focusing of waves in specific locations. Bottom friction, modeled with a modified bottom roughness formulation, is the significant source of wave energy dissipation on the atoll, a result that is consistent with available observations of wave damping on Palmyra. Indeed modeled wave dissipation rates from bottom friction are on average larger than dissipation rates due to breaking and are an order of magnitude larger than what has been observed on other, less geometrically complex reefs, a result which should be corroborated with future in situ measurements. The SWAN wave model with a modified bottom friction formulation better predicts bulk wave energy properties than the existing formulation at our measurement stations. The near bed squared velocity, a proxy for bottom stress, shows strong spatial variability across the atoll and exerts control over geomorphic structure and benthic community composition.

  1. Effects of the Gulf Stream on ocean waves

    NASA Technical Reports Server (NTRS)

    Holthuijsen, L. H.; Tolman, H. L.

    1991-01-01

    In the present study a third-generation numerical wave model is used to study effects of a straight Gulf Stream ring on ocean waves in swell and storm conditions. The model accounts for all relevant processes of propagation, generation, and dissipation of the waves (including current effects) without imposing a priori restraints on the spectral development of the waves. The dominating mechanism affecting the waves appears to be current-induced refraction even though the short-crestedness of the incoming waves tends to mask its effects (also in swell conditions). Depending on wind and wave conditions, refraction may trap locally generated waves in the straight Gulf Stream or it may reflect wave energy back to the open ocean. In the Gulf Stream ring, refraction induces a considerable variation in significant wave height and short-crestedness, but it hardly affects the mean wave direction. In storm conditions the processes of generation and dissipation are considerably enhanced in countercurrent situations and reduced following-current situations.

  2. Phase-space action conservation for non-eikonal wave fields

    NASA Astrophysics Data System (ADS)

    Cook, Daniel R.; Flynn, William G.; Morehead, James J.; Kaufman, Allan N.

    1993-03-01

    We derive a local phase-space wave-action conservation law, valid for non-eikonal wave fields for which the medium and/or the wave amplitudes have rapid spatial variation. This six-dimensional conservation law leads to conservation laws on three-dimensional subspaces. The law is covariant under linear canonical transformations of phase-space, and under congruent transformations of the multi-component wave field.

  3. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  4. Barotropic standing-progressive Rossby waves

    NASA Astrophysics Data System (ADS)

    Belonenko, T. V.; Foux, V. R.

    2012-04-01

    Isopleths (Hovmoller Diagrams) of the sea-level variation on latitudinal or longitudinal sections demonstrate specific points in which the sea level is stationary (nearly zero values of the sea-level heights) for a time interval. A phase discontinuity of the sea-level variation takes place near such points, which results, because of the phase jump, in converting wave crests into troughs. In general, the wave movement pattern may be said to consist of standing-progressive waves, or more specifically, Rossby's, on accounting their spatial-temporal scales: wavelengths from several kilometers to thousands and periods from several days to several years. A set of sea-level anomaly fields in the northwestern Pacific is taken from the AVISO site, and the seasonal alteration in them is eliminated by filtering out . Meanwhile, longitudinal isopleths drawn by the same data do not contain wave crests testifying of any wave movements. A similar conclusion is suggested by analysis of the wavelet-isopleths (spatial-temporal diagrams of wavelet coefficients for a certain variability scale), indicative of an expressed step-like change of sea level. Indeed, these facts correspond to theory of the Rossby waves in closed basins; in other words, Rossby waves inside of a closed basin are of standing-progressive character [2, 3]. In the simplest case the barotropic standing-progressive waves of Rossby might be described as a zonal progressive wave, the amplitude of which is modulated along the meridian course. This kinematical model does rather correctly describe wave disturbances in the field of altimetry heights of sea surface. It is possible that such disturbances should satisfy to a system of hydrodynamic equations which describe wave movements of the type of gradient-vortex waves [1, 4]. In this model at zero moment, in the center of the rectangular cell bounded on all sides by fixed nodal lines there is a wave crest, and on the east and west there are wave troughs. Since a quarter

  5. Wave turbulence in annular wave tank

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  6. The spartial distribution of the particles of the beam interacting with an inhomogeneous electromagnetic wave

    SciTech Connect

    Serov, A.V.

    1995-12-31

    The time variation of the spartial distribution of an electron beam reflected by an inhomogeneous wave or traverse the wave was investigated. The injected beam is perpendicular to the direction of propagation of the wave. The interaction between an electron beam and an electromagnetic wave not only produces electron oscillation but also substantially changes the electron phase and energy distribution. It is shown that under specific conditions one part of particles are reflected by an electromagnetic wave and other part of particles traverse the wave.

  7. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  8. Signatures of Nonlinear Waves in Coronal Plumes and Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    1999-01-01

    In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.

  9. Waves of energy

    SciTech Connect

    Smith, F.G.W.; Charlier, R.H.

    1981-05-01

    Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator: a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll), a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump), a turbine located at the bottom of an open-topped pipe (the Masuda buoy), a completely submerged closed air chamber from which runs a large pipe open to the sea, a wave piston which acts by the compression of air to drive a turbine, a massive structure with upper and lower reservoirs (the Russel rectifier), and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft). It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.

  10. Waves of energy

    NASA Astrophysics Data System (ADS)

    Smith, F. G. W.; Charlier, R. H.

    1981-06-01

    Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator; a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll); a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump); a turbine located at the bottom of an open-topped pipe (the Masuda buoy); a completely submerged closed air chamber from which runs a large pipe open to the sea; a wave piston which acts by the compression of air to drive a turbine; a massive structure with upper and lower reservoirs (the Russel rectifier); and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft.) It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.

  11. Bound infragravity waves

    NASA Astrophysics Data System (ADS)

    Okihiro, Michele; Guza, R. T.; Seymour, R. J.

    1992-07-01

    Model predictions of bound (i.e., nonlinearly forced by and coupled to wave groups) infragravity wave energy are compared with about 2 years of observations in 8- to 13-m depths at Imperial Beach, California, and Barbers Point, Hawaii. Frequency-directional spectra of free waves at sea and swell frequencies, estimated with a small array of four pressure sensors, are used to predict the bound wave spectra below 0.04 Hz. The predicted total bound wave energy is always less than the observed infragravity energy, and the underprediction increases with increasing water depth and especially with decreasing swell energy. At most half, and usually much less, of the observed infragravity energy is bound. Bound wave spectra are also predicted with data from a single wave gage in 183-m depth at Point Conception, California, and the assumption of unidirectional sea and swell. Even with energetic swell, less than 10% of the total observed infragravity energy in 183-m depth is bound. Free waves, either leaky or edge waves, are more energetic than bound waves at both the shallow and deep sites. The low level of infragravity energy observed in 183-m depth compared with 8- to 13-m depths, with similarly moderate sea and swell energy, suggests that leaky (and very high-mode edge) waves contribute less than 10% of the infragravity energy in 8-13 m. Most of the free infragravity energy in shallow water is refractively trapped and does not reach deep water.

  12. Teleseismic S wave microseisms

    NASA Astrophysics Data System (ADS)

    Nishida, Kiwamu; Takagi, Ryota

    2016-08-01

    Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth’s interior.

  13. Blast wave energy diagnostic.

    PubMed

    Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E

    2008-10-01

    The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574

  14. Teleseismic S wave microseisms.

    PubMed

    Nishida, Kiwamu; Takagi, Ryota

    2016-08-26

    Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior. PMID:27563094

  15. Remote sensing of nearshore wave interference

    NASA Astrophysics Data System (ADS)

    Smit, P. B.; Bland, R.; Janssen, T. T.; Laughlin, B.

    2016-05-01

    Wave focusing of energetic swell fields can result in small-scale variations associated with coherent interference that can be important for nearshore circulation and beach dynamics. However, coherent interference is difficult to measure with conventional in situ instruments and is not accounted for in operational wave models. As a result, such effects are generally ignored. In this work, we analyze X-band radar observations collected at Ocean Beach, San Francisco using a Wigner-Ville or coupled-mode spectrum, to show how long-dwell remote sensing technology allows us to identify coherent wave interference. Our analysis demonstrates that during energetic swell events, the nearshore wave field consists of two noncollinear, but coherent, swell patterns that originate from the same offshore source but are directionally separated due to refraction over the San Francisco Bar. The length scale of the associated alongshore wave height variability (200 m) is consistent with the wavenumber separation obtained from the coupled mode analysis. This confirms that the small-scale variability is primarily due to coherent interference. In addition, our analysis shows that the shoreline exhibits a strong localized response near the radar site on the 200 m scale, which suggests that coherent interference effects can affect wave-driven nearshore transport processes and localized erosion.

  16. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  17. Closing the Gap on Measuring Heat Waves

    NASA Astrophysics Data System (ADS)

    Perkins, S. E.; Alexander, L.

    2012-12-01

    compare the temperature of a three-day window to the previous 30 days and the climatological 95th percentile (see Nairn and Fawcett, 2012, CAWCR Technical Report). Based on a previously defined methodology (Fischer and Shar, 2010, Nature Geoscience), each index is analysed with respect to five properties - heat wave number (HWN) and length (HWD), the number of participating days (HWF), the amplitude or peak of the hottest day (HWA), and mean heat wave magnitude (HWM), thereby assessing the occurrence, intensity and duration of heat waves for each index. The methodology is demonstrated for characterizing changes in observed heat waves at the global scale and regionally over Australia for the latter half of the 20th Century. Overall, general increases in heat wave intensity and duration occur, although the magnitude and significance of this trend shows variation both regionally and among the indices. Trend magnitudes also differ for "warm-spell" (year-round) and summer only events. This framework therefore allows for the broad examination of heat waves, such that the results presented are informative to multiple sectors affected by such events. Indeed, it "closes the gap" on heat wave measurement by reducing the number of indices employed, yet realizing that heat wave measurement cannot be a one size fits all approach, and that there is more than one feature of heat waves that causes adverse impacts.

  18. Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model.

    SciTech Connect

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy