Sample records for oxychlorides

  1. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and specifications. (1) The color additive bismuth oxychloride shall conform in identity and specifications to the...

  2. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use made...

  3. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Bismuth oxychloride. 73.1162 Section 73.1162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The...

  4. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Bismuth oxychloride. 73.1162 Section 73.1162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The...

  5. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Bismuth oxychloride. 73.1162 Section 73.1162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The...

  6. Detachment of sprayed colloidal copper oxychloride-metalaxyl fungicides by a shallow water flow.

    PubMed

    Pose-Juan, Eva; Paradelo-Pérez, Marcos; Rial-Otero, Raquel; Simal-Gándara, Jesus; López-Periago, José E

    2009-06-01

    Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.

  7. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in...

  8. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in...

  9. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in...

  10. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Bismuth oxychloride. 73.2162 Section 73.2162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1...

  11. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Bismuth oxychloride. 73.1162 Section 73.1162 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF... subpart as safe in color additive mixtures for coloring externally applied drugs. (b) Specifications. The...

  12. 21 CFR 172.892 - Food starch-modified.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... phosphorus. 1-Octenyl succinic anhydride, not to exceed 3 percent 1-Octenyl succinic anhydride, not to exceed... beverage bases as defined in § 170.3(n)(3) of this chapter. Phosphorus oxychloride, not to exceed 0.1 percent Phosphorus oxychloride, not to exceed 0.1 percent, followed by either acetic anhydride, not to...

  13. 21 CFR 172.892 - Food starch-modified.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... phosphorus. 1-Octenyl succinic anhydride, not to exceed 3 percent 1-Octenyl succinic anhydride, not to exceed... beverage bases as defined in § 170.3(n)(3) of this chapter. Phosphorus oxychloride, not to exceed 0.1 percent Phosphorus oxychloride, not to exceed 0.1 percent, followed by either acetic anhydride, not to...

  14. [Immobilization of pectawamorine G10x on silichromes].

    PubMed

    Bogatskiĭ, A V; Davidenko, T I; Gren', T A

    1980-01-01

    Immobilization of pectawamorine G10x on silochromes, using cyanuric chloride, 2,4-toluylene diisocyanate, glutaric dialdehyde, thionyl chloride, phosphorus tribromide, titanium tetrachloride, zirconium oxychloride and hafnium oxychloride was studied. The use of glutaric dialdehyde assured the strongest binding and the preatest stability of activity. Properties of the native pectawamorine G10x and immobilized preparations were studied on a comparative basis. Pectawamorine G10x immobilized by means of hafnium oxychloride showed increased stability when stored at 5 degrees C and used repeatedly. In every case, except for cyanuric chloride and glutaric dialdehyde, maximum activity was at a temperature 10 degrees C higher than for the native enzyme, and optimum pH varied for the preparations with different binding reagents.

  15. Integration of chemical and toxicological tools to assess the bioavailability of copper derived from different copper-based fungicides in soil.

    PubMed

    Wang, Quan-Ying; Sun, Jing-Yue; Xu, Xing-Jian; Yu, Hong-Wen

    2018-06-20

    Because the extensive use of Cu-based fungicides, the accumulation of Cu in agricultural soil has been widely reported. However, little information is known about the bioavailability of Cu deriving from different fungicides in soil. This paper investigated both the distribution behaviors of Cu from two commonly used fungicides (Bordeaux mixture and copper oxychloride) during the aging process and the toxicological effects of Cu on earthworms. Copper nitrate was selected as a comparison during the aging process. The distribution process of exogenous Cu into different soil fractions involved an initial rapid retention (the first 8 weeks) and a following slow continuous retention. Moreover, Cu mainly moved from exchangeable and carbonate fractions to Fe-Mn oxides-combined fraction during the aging process. The Elovich model fit well with the available Cu aging process, and the transformation rate was in the order of Cu(NO 3 ) 2 > Bordeaux mixture > copper oxychloride. On the other hand, the biological responses of earthworms showed that catalase activities and malondialdehyde contents of the copper oxychloride treated earthworms were significantly higher than those of Bordeaux mixture treated earthworms. Also, body Cu loads of earthworms from different Cu compounds spiked soils were in the following order: copper oxychloride > Bordeaux mixture. Thus, the bioavailability of Cu from copper oxychloride in soil was significantly higher than that of Bordeaux mixture, and different Cu compounds should be taken into consideration when studying the bioavailability of Cu-based fungicides in the soil. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides.

    PubMed

    Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae

    2008-12-30

    In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process.

  17. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants

    PubMed Central

    Seddigi, Zaki S.; Baig, Umair; Ahmed, Saleh A.; Abdulaziz, M. A.; Danish, Ekram Y.; Khaled, Mazen M.; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles–a light harvesting semiconductor photocatalyst–were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions. PMID:28245225

  18. Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants.

    PubMed

    Seddigi, Zaki S; Gondal, Mohammed A; Baig, Umair; Ahmed, Saleh A; Abdulaziz, M A; Danish, Ekram Y; Khaled, Mazen M; Lais, Abul

    2017-01-01

    In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.

  19. Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina.

    PubMed

    Berenstein, Giselle; Nasello, Soledad; Beiguel, Érica; Flores, Pedro; Di Schiena, Johanna; Basack, Silvana; Hughes, Enrique A; Zalts, Anita; Montserrat, Javier M

    2017-05-15

    The objective of this study was to measure the impact of the mechanized chlorpyrifos, copper oxychloride and myclobutanil application in a small peach orchard, on humans (operators, bystanders and residents) and on the productive soil. The mean Potential Dermal Exposure (PDE) of the workers (tractor drivers) was 30.8mL·h -1 ±16.4mL·h -1 , with no specific pesticide distribution on the laborers body. Although the Margin of Safety (MOS) factor for the application stage were above 1 (safe condition) for myclobutanil and cooper oxycloride it was below 1 for chlorpyrifos. The mix and load stage remained as the riskier operation. Pesticide found on the orchard soil ranged from 5.5% to 14.8% of the total chlorpyrifos, copper oxychloride and myclobutanil applied. Pesticide drift was experimentally measured, finding values in the range of 2.4% to 11.2% of the total pesticide applied. Using experimental drift values, bystander (for one application), resident (for 20 applications) and earthworm (for one application) risk indicators (RIs) were calculated for the chlorpyrifos plus copper oxychloride and for myclobutanil treatments for different distances to the orchard border. Earthworm RI was correlated with experimental Eisenia andrei ecotoxicological assays (enzymatic activities: cholinesterases, carboxylesterases and glutathione S-transferases; behavioral: avoidance and bait-lamina tests) with good correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The use of aluminum oxychlorides to coagulate water having high content of organic impurities and low alkalinity

    NASA Astrophysics Data System (ADS)

    Evsyutin, A. V.; Boglovskii, A. V.

    2007-07-01

    Results from laboratory investigations and industrial tests of the coagulation of source water at the Pskov district power station are presented. It is shown that the source water may not be alkalified if it is treated with aluminum oxychlorides. As a result, the clarified water becomes less corrosive and a lower salt load is placed on water treatment plants as compared with the case when aluminum sulfate is used for coagulation.

  1. Studies on the feeding of cupric sulfate pentahydrate, cupric citrate, and copper oxychloride to broiler chickens.

    PubMed

    Ewing, H P; Pesti, G M; Bakalli, R I; Menten, J F

    1998-03-01

    Male commercial broiler strain chickens were fed either a control diet (based on corn and soybean meal) or the control diet supplemented with cupric sulfate pentahydrate, copper oxychloride, or cupric citrate in two experiments conducted in floor pens. In Experiment 1, feeding copper at 125 mg/kg diet for 42 d significantly increased broiler growth; and the response from cupric citrate was significantly better than either cupric sulfate or copper oxychloride. In Experiment 2, the inclusion of copper from cupric citrate was reduced to 63 mg/kg and the length of the experiment was increased to 56 d. Cupric sulfate pentahydrate and copper oxychloride treatments increased weight gain by 4.9% and cupric citrate increased weight gain by 9.1%. The feed conversion ratios (grams of feed:grams of gain of live birds) in the birds fed copper were not significantly different from those fed the basal diet (P > 0.05) unless corrections were made for the weights of the dead birds; the adjusted feed conversion ratios (grams of feed:grams of gain of live birds + grams of gain of mortalities) for the copper-treated birds in Experiments 1 and 2 were 5.2 and 7.6% lower, respectively, than the ratios of birds fed the basal diets. Plasma copper levels increased in supplemented chicks by 35% in Experiment 1 and 24% in Experiment 2. Liver copper levels in both experiments were increased by 26% with copper supplementation. Mortality was not affected by dietary treatment in either experiment (P > 0.05).

  2. The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials.

    PubMed

    Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason

    2015-11-01

    The conventional CaCl 2 -H 2 O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl 2 -H 2 O phase diagram. This study shows that the Ca(OH) 2 present in a hydrated portland cement can interact with CaCl 2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH) 2 -CaCl 2 -H 2 O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl 2 solution as the temperature changes. Specifically, the Ca(OH) 2 can react with CaCl 2 and H 2 O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl 2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C).

  3. The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials

    PubMed Central

    Farnam, Yaghoob; Dick, Sarah; Wiese, Andrew; Davis, Jeffrey; Bentz, Dale; Weiss, Jason

    2015-01-01

    The conventional CaCl2-H2O phase diagram is often used to describe how calcium chloride behaves when it is used on a concrete pavement undergoing freeze-thaw damage. However, the chemistry of the concrete can alter the appropriateness of using the CaCl2-H2O phase diagram. This study shows that the Ca(OH)2 present in a hydrated portland cement can interact with CaCl2 solution creating a behavior that is similar to that observed in isoplethal sections of a ternary phase diagram for a Ca(OH)2-CaCl2-H2O system. As such, it is suggested that such isoplethal sections provide a reasonable model that can be used to describe the behavior of concrete exposed to CaCl2 solution as the temperature changes. Specifically, the Ca(OH)2 can react with CaCl2 and H2O resulting in the formation of calcium oxychloride. The formation of the calcium oxychloride is expansive and can produce damage in concrete at temperatures above freezing. Its formation can also cause a significant decrease in fluid ingress into concrete. For solutions with CaCl2 concentrations greater than about 11.3 % (by mass), it is found that calcium oxychloride forms rapidly and is stable at room temperature (23 °C). PMID:26692655

  4. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) (C.A.S. #10025-87-3) Phosphorus oxychloride Phosphonyl trichloride Phosphoric chloride Phosphoric trichloride Phosphoroxychloride Phosphoroxytrichloride Phosphorus chloride oxide Phosphorus monoxide trichloride Phosphorus oxide trichloride Phosphorus oxytrichloride Phosphorus trichloride oxide Phosphoryl...

  5. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) (C.A.S. #10025-87-3) Phosphorus oxychloride Phosphonyl trichloride Phosphoric chloride Phosphoric trichloride Phosphoroxychloride Phosphoroxytrichloride Phosphorus chloride oxide Phosphorus monoxide trichloride Phosphorus oxide trichloride Phosphorus oxytrichloride Phosphorus trichloride oxide Phosphoryl...

  6. 40 CFR 116.4 - Designation of hazardous substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 7664382 Orthophosphoric acid Phosphorus 7723140 Black phosphorus, red phosphorus, white phosphorus, yellow phosphorus Phosphorus oxychloride 10025873 Phosphoryl chloride, phosphorus chloride Phosphorus pentasulfide 1314803 Phosphoric sulfide, thiophosphoric anhydride, phosphorus persulfide Phosphorus trichloride 7719122...

  7. 40 CFR 116.4 - Designation of hazardous substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 7664382 Orthophosphoric acid Phosphorus 7723140 Black phosphorus, red phosphorus, white phosphorus, yellow phosphorus Phosphorus oxychloride 10025873 Phosphoryl chloride, phosphorus chloride Phosphorus pentasulfide 1314803 Phosphoric sulfide, thiophosphoric anhydride, phosphorus persulfide Phosphorus trichloride 7719122...

  8. Perchlorate Salts in the Martian Surface Environment - A Reexamination of the 1976 Viking Biology Results

    NASA Astrophysics Data System (ADS)

    Dillon, James; Quinn, R. C.

    2010-01-01

    The Viking Mars landers of 1976 conducted three biology experiments designed to detect the presence of microbial life in the Martian surface. The gas exchange experiment carried out by the Viking landers periodically sampled the gaseous headspace of Mars soil samples saturated with an organic/inorganic aqueous mixture, M4 nutrient. A gas chromatograph measured the change in concentrations of N2, O2, CO2, Kr, H2, and CH4 over various time intervals. The presence of metabolically active microbial life would be confirmed by the consumption or release of one of these gases. A significant release of O2 was detected after the addition of nutrient, however since the Gas Chromatograph - Mass Spectrometer experiment did not detect organics in the soil, this rapid release of O2 could not be attributed to microbial life, but rather a chemical reaction. The recent discovery of the oxidizer perchlorate in the Martian soil by the Phoenix Mars lander was investigated as the principal cause of this O2 release detected by the Viking gas exchange experiment. A variety of oxychloride salts ranging from hypochlorite to perchlorate were examined under conditions similar to the Viking experiment in order to determine if a rapid release of O2 would be detected upon addition of M4 nutrient. No oxychloride species examined decomposed with the kinetics required to support an oxychloride as the cause of the O2 response detected by the Viking experiment.

  9. 15 CFR Supplement No. 1 to Part 745 - Schedules of Chemicals

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., except for those listed in Schedule 1, containing a phosphorus atom to which is bonded one methyl, ethyl.... Precursors: (5) Phosphorus oxychloride 10025-87-3 (6) Phosphorus trichloride 7719-12-2 (7) Phosphorus...

  10. 15 CFR Supplement No. 1 to Part 745 - Schedules of Chemicals

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., except for those listed in Schedule 1, containing a phosphorus atom to which is bonded one methyl, ethyl.... Precursors: (5) Phosphorus oxychloride 10025-87-3 (6) Phosphorus trichloride 7719-12-2 (7) Phosphorus...

  11. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-51-2 Phosphine 0.0035 10025-87-3 Phosphorus oxychloride [Phosphoryl chloride] 0.0030 7719-12-2 Phosphorus trichloride [Phosphorous trichloride] 0.028 110-89-4 Piperidine 0.022 107-12-0 Propionitrile...

  12. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-51-2 Phosphine 0.0035 10025-87-3 Phosphorus oxychloride [Phosphoryl chloride] 0.0030 7719-12-2 Phosphorus trichloride [Phosphorous trichloride] 0.028 110-89-4 Piperidine 0.022 107-12-0 Propionitrile...

  13. Electrochemical Studies of Sulfur Oxychlorides.

    DTIC Science & Technology

    1988-03-28

    It had been proposed to study sulfuroxyhalides (1) as solutes in a non-aqueous solvent, (2) undiluted, employing lithium tetrachloroaluminate and (3...electrodes in N,N-dimethylforeamide (DNF) with tetra-butylammonium hexafluorophosphate (TBAPF6 ) as supporting electrolyte. Cyclic voltammetry showed

  14. Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

    2012-01-01

    Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

  15. Electrochemical characterization and electrode kinetics for antimony electrodeposition from its oxychloride solution in the presence of tartaric acid

    NASA Astrophysics Data System (ADS)

    Majidzade, Vusala Asim; Guliyev, Parvin Heydar; Aliyev, Akif Shikhan; Elrouby, Mahmoud; Tagiyev, Dilgam Babir

    2017-05-01

    This work is devoted to investigate the process of the electrochemical deposition of antimony from antimony oxychloride solution in the presence of tartaric acid in aqueous media. The kinetics and the mechanism of the electrodeposition process at the electrode surface are studied and proposed by the aid of cyclic, linear sweep voltammetric and chronoamperometric characterization methods. It is found that, the process is affected by the presence of tartaric acid and some factors during the electro-reduction process. The results also show that, the temperature, the potential sweep rate and the concentration of antimony have a great influence on the achievement of the electrodeposition process. Some important parameters are calculated such as, the activation energy of the electrochemical reaction, the diffusion coefficient and the number of saturated nucleation sites. The electrodeposited film is examined using X-ray diffraction, scanning electron microscopy and Energy Dispersive Spectroscopy.

  16. Novel Bi₁₂O₁₅Cl₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation.

    PubMed

    Wang, Chu-Ya; Zhang, Xing; Song, Xiang-Ning; Wang, Wei-Kang; Yu, Han-Qing

    2016-03-02

    Bisphenol A (BPA), a typical endocrine-disrupting chemical, is widely present in water environments, and its efficient and cost-effective removal is greatly needed. Among various physicochemical methods for BPA degradation, visible-light-driven catalytic degradation of BPA is a promising approach because of its utilization of solar energy. Bismuth oxychloride (BiOCl) is recognized as an efficient photocatalyst, but its band gap, >3.0 eV, makes it inefficient for solar energy utilization, especially for degrading nondye pollutants like BPA. Thus, preparation and application of bismuth oxychloride photocatalysts with an increased visible-light activity are essential. In this work, inspired by density functional theory calculations, a novel bismuth oxychloride photocatalyst, Bi12O15Cl6, was designed. The nanosheets were successfully synthesized using a facile solvothermal method followed by a thermal treatment route. The prepared Bi12O15Cl6 nanosheets had a favorable energy band structure and thus exhibited a superior visible-light photocatalytic activity for degrading BPA. The BPA degradation rate by the Bi12O15Cl6 was determined to be 13.6 and 8.7 times faster than those for BiOCl and TiO2 (P25), respectively. The photogenerated reactive species and degradation intermediates were identified, and the photocatalytic mechanism was elucidated. Furthermore, the as-synthesized Bi12O15Cl6 nanosheets remained stable in the photocatalytic process and could be used repeatedly, demonstrating their promising application in the degradation of diverse pollutants in water and wastewater.

  17. PROCESS OF PREPARING ZIRCONIUM OXYCHLORIDE

    DOEpatents

    Wilhelm, H.A.; Andrews, M.L.

    1960-06-28

    A process is given for preparing zirconyl chloride by mixing solid zirconyl chloride octahydrate and solid zirconium tetrachloride at room temperature whereby both chlorides are converted to zirconyl chloride trinydrate and hydrogen chloride is formed and volatilized by the reaction heat.

  18. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Iran of dimethyl methylphosphonate, phosphorus oxychloride, and thiodiglycol is February 22, 1989. (5... hydrogen fluoride, sodium fluoride, sodium bifluoride, phosphorus pentasulfide, sodium cyanide... contract sanctity date for exports to all destinations (except Iran or Syria) of phosphorus trichloride...

  19. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Iran of dimethyl methylphosphonate, phosphorus oxychloride, and thiodiglycol is February 22, 1989. (5... hydrogen fluoride, sodium fluoride, sodium bifluoride, phosphorus pentasulfide, sodium cyanide... contract sanctity date for exports to all destinations (except Iran or Syria) of phosphorus trichloride...

  20. Oxygen Reduction Reaction for Generating H2 O2 through a Piezo-Catalytic Process over Bismuth Oxychloride.

    PubMed

    Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong

    2018-02-09

    Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemical treatment makes aromatic polyamide fabric fireproof in oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Cardwell, R. O.; Holsten, J. R.; Rives, J. W.

    1970-01-01

    Organic fabric is reacted first with vapors of a phosphorus oxychloride, phosphorus oxybromide solution and then with bromine vapor, after neutralization it is flameproof in pure oxygen atmosphere. Soaking the fabric with mixture of ammonium polyphosphates increases flame resistance, but the polyphosphates are leached out during laundering.

  2. A convenient synthesis of a novel nucleoside analogue: 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone.

    PubMed

    Gao, K; Orgel, L E

    2000-01-01

    The nucleoside analogue 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone (5) was prepared from the corresponding 4-methyl pyrimidinone nucleoside by means of the Vilsmeier reaction. The unprotected nucleoside can be phosphorylated directly with phosphorus oxychloride in triethyl phosphate.

  3. A convenient synthesis of a novel nucleoside analogue: 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    The nucleoside analogue 4-(alpha-diformyl-methyl)-1-(beta-D-ribofuranosyl)-2-pyrimidinone (5) was prepared from the corresponding 4-methyl pyrimidinone nucleoside by means of the Vilsmeier reaction. The unprotected nucleoside can be phosphorylated directly with phosphorus oxychloride in triethyl phosphate.

  4. A Military Guide to Terrorism in the Twenty-First Century. U.S. Army DCSINT Handbook No. 1 (Version 3.0)

    DTIC Science & Technology

    2005-08-15

    or varnished brown Length: 102mm Width: 61mm Weight: 773g Filler: Amatol Characteristics Color: Black and unmarked Length: 131mm Width: 55mm...isocyanate Diborane Boron tribromide Nitrogen dioxide Ethylene oxide Carbon monoxide Phosphine Fluorine Carbonyl sulfide Phosphorus oxychloride

  5. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  6. Kinetics of electrolysis current reversal boriding of tool steels in a boron-containing oxychloride melt based on CaCl2

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Filatov, E. S.

    2017-08-01

    The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.

  7. Long-Term Container Effects on Root System Architecture of Longleaf Pine

    Treesearch

    Shi-Jean S. Sung; James D. Haywood; Stanley J. Zarnoch; Mary Anne Sword Sayer

    2009-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings cultured in three container cavity volumes and two cavity types (regular or copper oxychloride coating for root pruning) were excavated three years after planting in 2007 in Louisiana, U.S.A. Copper root pruning did not affect seedling growth. Seedlings from small cavities (60 ml) were smaller than those from medium (93...

  8. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-08

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree.

  9. Synthesis of Hydrophobic, Crosslinkable Resins.

    DTIC Science & Technology

    1984-12-01

    insoluble products, in reactions analogous to the preparation of polyimides from polyamic acids . Examples fron7 the recent literature are provided by the...Vilsmeyer formylation,using a secondary amine with formic acid and phosphorous oxychloride [471. d. Probably the most convenient method utilises...such as styrene react with Lewis acids and so the scope for Friedel Crafts reactions is limited. Stilbene and its derivatives may be employed in such

  10. Copper Root Pruning and Container Cavity Size Influence Longleaf Pine Growth through Five Growing Seasons

    Treesearch

    James D. Haywood; Shi-Jean Susana Sung; Mary Anne Sword Sayer

    2012-01-01

    However, type and size of container can influence field performance. In this study, longleaf pine seedlings were grown in Beaver Plastics Styroblocks either without a copper treatment (Superblock) or with a copper oxychloride coating (Copperblock) and with three sizes of cavities that were 60, 108, and 164 ml. Seedlings from the six container types (two types of...

  11. Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (Solanum tuberosum L.) leaves.

    PubMed

    Pérez-Rodríguez, Paula; Paradelo, Marcos; Rodríguez-Salgado, Isabel; Fernández-Calviño, David; López-Periago, José Eugenio

    2013-01-01

    Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha(-1) (BM), 0.3 kg Cu ha(-1) (CO) and 0.47 kg Cu ha(-1) (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.

  12. Effect of pulverized fuel ash and CO{sub 2} curing on the water resistance of magnesium oxychloride cement (MOC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Pingping; Poon, Chi Sun, E-mail: cecspoon@polyu.edu.hk; Tsang, Daniel C.W.

    This paper presents a study on the use of pulverized fuel ash (PFA) to improve the water resistance of magnesium oxychloride cement (MOC). Strength retention coefficients and volume stability were tested to evaluate the water resistance of MOC, in which the addition of PFA resulted in a remarkable improvement. The characterization of hydration products before and after water immersion was carried out using quantitative X-ray diffraction (QXRD), thermogravimetric (TG), Fourier-transformed infrared spectroscopy (FTIR) and scanning electron microscope (SEM). With the Q-XRD analysis, it was shown that the addition of PFA could result in the great increase of the amount ofmore » amorphous phase during air curing. This amorphous gel was identified as a mixture of magnesium-chloride-silicate-hydrate gel (M-Cl-S-H gel) and magnesium-chloride-hydrate gel (M-Cl-H gel) by elemental mapping scanning. It suggested that PFA could not only react with MOC to form M-Cl-S-H gel, but also change the morphology of magnesium oxychloride. The generation of insoluble M-Cl-S-H gel and M-Cl-H gel and densification of the microstructure contributed to the improvement of the water resistance of MOC. The MOC mortar expanded during air curing due to the hydration of excess MgO. Water immersion led to more expansion of MOC mortar as a result of the continuously hydration of excess MgO and the formation of Mg(OH){sub 2}. Adding PFA could increase the expansion of MOC mortar during air curing, which may because the amorphous gel could remain more water and benefit to the hydration of MgO. While, the addition of PFA could decrease the expansion of cement mortar during water immersion perhaps due to the reduction of the content of excess MgO and the insoluble amorphous-gel-layer that protect the MgO from hydration. Moreover, CO{sub 2} curing could further improve the performance of the PFA-blended MOC due to the formation of a higher content of amorphous gel.« less

  13. Study of structural, electronic and optical properties of tungsten doped bismuth oxychloride by DFT calculations.

    PubMed

    Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin

    2014-10-21

    First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.

  14. Plasma Spray Synthesis Of Nanostructured V2O5 Films For Electrical Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanda, Jagjit

    We demonstrate for the first time, the synthesis of nanostructured vanadium pentoxide (V2O5) films and coatings using plasma spray technique. V2O5 has been used in several applications such as catalysts, super-capacitors and also as an electrode material in lithium ion batteries. In the present studies, V2O5 films were synthesized using liquid precursors (vanadium oxychloride and ammonium metavanadate) and powder suspension. In our approach, the precursors were atomized and injected radially into the plasma gun for deposition on the substrates. During the flight towards the substrate, the high temperature of the plasma plume pyrolyzes the precursor particles resulting into the desiredmore » film coatings. These coatings were then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Differential Scanning Calorimetry (DSC). Among the precursors, vanadium oxychloride gave the best results in terms of nanocrystalline and monophasic films. Spraying of commercial powder suspension yielded multi-phasic mixture in the films. Our approach enables deposition of large area coatings of high quality nanocrystalline films of V2O5 with controllable particle morphology. This has been optimized by means of control over precursor composition and plasma spray conditions. Initial electrochemical studies of V2O5 film electrodes show potential for energy storage studies.« less

  15. The behavior of SiC and Si3N4 ceramics in mixed oxidation/chlorination environments

    NASA Technical Reports Server (NTRS)

    Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.

    1989-01-01

    The behavior of silicon-based ceramics in mixed oxidation/chlorination environments was studied. High pressure mass spectrometry was used to quantitatively identify the reaction products. The quantitative identification of the corrosion products was coupled with thermogravimetric analysis and thermodynamic equilibrium calculations run under similar conditions in order to deduce the mechanism of corrosion. Variations in the behavior of the different silicon-based materials are discussed. Direct evidence of the existence of silicon oxychloride compounds is presented.

  16. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-03-02

    Oxychlorides MOCln_2 (Organic Metal Salts) Alkoxides M(OR)n Acetylacetonate M(C5H702)n Acetates M(C2H302)n Oxalates M(C204)n/2 2.2 Hydrolysis and Gel...more deeply understanding hydrothermal dynamics during not only a major rupture LOCA but also a minor rupture LOCA and clarifying the combination of... hydrothermal dynamics of the coolant from the beginning of LOCA to its end, using a scale model of PWR (pressurized water reactor). Under the ROSA-III Plan

  17. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight

    NASA Astrophysics Data System (ADS)

    Hao, Lin; Huang, Hongwei; Guo, Yuxi; Du, Xin; Zhang, Yihe

    2017-10-01

    Fabrication of homo/hetero-junctions by coupling of wide-band gap semiconductor and narrow-band gap semiconductor is desirable as they can achieve a decent balance between photoabsorption and photo-redox ability. Herein, a n-n type bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 was developed by facilely manipulating the basicity in a one-pot hydrothermal process. Compared with BiOCl which only responds to UV light, the photo-responsive range is remarkably extended to visible region. The BiOCl/Bi12O17Cl2 phasejunctions show much higher photocatalytic activity than the single BiOCl and Bi12O17Cl2 toward degradation of methyl orange (MO) under simulated solar light. In particular, it presented a high photo-oxidation ability in degrading diverse industrial contaminants including 2,4-dichlorophenol (2,4-DCP), phenol, bisphenol A (BPA) and tetracycline hydrochloride. Based on a series of photoelectrochemical and photoluminescence measurements, the fortified photocatalytic performance of BiOCl/Bi12O17Cl2 phasejunctions was manifested to be attributed to the efficient separation and transfer efficiencies of photoinduced electron-hole pairs because of the junctional interface formed between BiOCl and Bi12O17Cl2. The study may not only furnish a high-effective photocatalyst in the application of environment purification, but also pave a path to fabricate agnate phase-junctional photocatalyst.

  18. Cation coordination in oxychloride glasses

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Holland, D.; Bland, J.; Johnson, C. E.; Thomas, M. F.

    2003-02-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb2O3]x - [ZnCl2]1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Mössbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb)2(OZn)] and [Zn(ClZn)2(OSb)2].

  19. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template

    NASA Astrophysics Data System (ADS)

    Duan, Guorong; Zhang, Chunxiang; Li, Aimei; Yang, Xujie; Lu, Lude; Wang, Xin

    2008-03-01

    Superfine powders of poly (methyl methacrylate) (PMMA) have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2 adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  20. (YIP-10) Enabling Dynamic Oxidation Mechanisms in Reverse Infiltrated Ultra-High Temperature Ceramic Coated C-C Composites for Application in Hypersonics

    DTIC Science & Technology

    2013-08-09

    of Hf,Zr oxychloride hydrates, triethyl borate , and phenolic resin to form precipitate free sols that turn into stable gels with no catalyst addition...minutes, shows the glass -ceramic coating (that formed a shell upon cooling) was generated from within the UHTC filled C-C composite. Notice, in Figure...generation of the coating during high temperature exposure to oxygen. The formation of a ZrO2-SiO2 glass -ceramic coating on the C-C composite is believed to

  1. Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis.

    PubMed

    Guo, Xiaohui; Zhou, Xuejiao; Li, Xinghua; Shao, Changlu; Han, Chaohan; Li, Xiaowei; Liu, Yichun

    2018-09-01

    The 2,9,16,23-tetranitro phthalocyanine copper (II) nanostructures and bismuth oxychloride nanosheets were grown on electrospun polyacrylonitrile (PAN) nanofibers in sequence by solvothermal method. As a result, the BiOCl/CuTNPc heterostructures were uniformly immobilized on the PAN nanofibers. The obtained BiOCl/CuTNPc/PAN nanofibers had excellent photocatalytic activity for the degradation of rhodamine B (RhB) under UV-vis light irradiation. The first-order rate constant of the BiOCl/CuTNPc/PAN nanofibers was 5.86 and 6.31 times as much as CuTNPc/PAN and BiOCl/PAN nanofibers, respectively. The high photocatalytic activity could be attributed to the formation of BiOCl/CuTNPc heterostructures, which helped the separation of the photogenerated electron-hole pairs. Concurrently, the marcoporous structure of the BiOCl/CuTNPc/PAN nanofibers improved the photocatalytic activity due to the increased interface contacts between the photocatalyst and the RhB solution. The BiOCl/CuTNPc/PAN nanofibers did not need to be separated for reuse due to their flexible self-supporting properties originating from the PAN nanofibers. Moreover, the film-like BiOCl/CuTNPc/PAN nanofibers could float easily on the liquid and maximize the absorption of sunlight during photocatalysis. It was expected that the BiOCl/CuTNPc/PAN nanofibers with high photocatalytic activity and easily separable property will possess great potential in the field of industrial applications and environmental remediation. Copyright © 2018. Published by Elsevier Inc.

  2. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    NASA Astrophysics Data System (ADS)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  3. Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties.

    PubMed

    Sun, Yucong; Shao, Changlu; Li, Xinghua; Guo, Xiaohui; Zhou, Xuejiao; Li, Xiaowei; Liu, Yichun

    2018-04-15

    P-type bismuth oxychloride (p-BiOCl) nanosheets were uniformly grown on n-type zinc ferrite (n-ZnFe 2 O 4 ) electrospun nanofibers via a solvothermal technique to form hierarchical heterostructures of p-BiOCl/n-ZnFe 2 O 4 (p-BiOCl/n-ZnFe 2 O 4 H-Hs). The density and loading amounts of the BiOCl nanosheets with exposed {0 0 1} facets were easily controlled by adjusting the reactant concentration in the solvothermal process. The p-BiOCl/n-ZnFe 2 O 4 H-Hs exhibited enhanced visible-light photocatalytic activities for the degradation of Rhodamine B (RhB). The apparent first-order rate of the p-BiOCl/n-ZnFe 2 O 4 H-Hs and its normalized constant were about 12.6- and 8-fold higher than pure ZnFe 2 O 4 nanofibers. This suggests that both the improved charge separation efficiency from the uniform p-n heterojunctions and the enlarged active surface sites from the hierarchical structures increase the photocatalytic performances. Furthermore, the p-BiOCl/n-ZnFe 2 O 4 H-Hs could be efficiently separated from the solution with an external magnetic field via the ferromagnetic behavior of ZnFe 2 O 4 nanofibers. The magnetic p-BiOCl/n-ZnFe 2 O 4 H-Hs with enhanced visible-light photocatalytic performances might have potential applications in water treatment. Copyright © 2018. Published by Elsevier Inc.

  4. Cl atom recombination on silicon oxy-chloride layers deposited on chamber walls in chlorine-oxygen plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.

    2012-09-15

    Chlorine atom recombination coefficients were measured on silicon oxy-chloride surfaces deposited in a chlorine inductively coupled plasma (ICP) with varying oxygen concentrations, using the spinning wall technique. A small cylinder embedded in the walls of the plasma reactor chamber was rapidly rotated, repetitively exposing its surface to the plasma chamber and a differentially pumped analysis chamber housing a quadruple mass spectrometer for line-of-sight desorbing species detection, or an Auger electron spectrometer for in situ surface analysis. The spinning wall frequency was varied from 800 to 30 000 rpm resulting in a detection time, t (the time a point on themore » surface takes to rotate from plasma chamber to the position facing the mass or Auger spectrometer), of {approx}1-40 ms. Desorbing Cl{sub 2}, due to Langmuir-Hinshelwood (LH) Cl atom recombination on the reactor wall surfaces, was detected by the mass spectrometer and also by a pressure rise in one of the differentially pumped chambers. LH Cl recombination coefficients were calculated by extrapolating time-resolved desorption decay curves to t = 0. A silicon-covered electrode immersed in the plasma was either powered at 13 MHz, creating a dc bias of -119 V, or allowed to electrically float with no bias power. After long exposure to a Cl{sub 2} ICP without substrate bias, slow etching of the Si wafer coats the chamber and spinning wall surfaces with an Si-chloride layer with a relatively small amount of oxygen (due to a slow erosion of the quartz discharge tube) with a stoichiometry of Si:O:Cl = 1:0.38:0.38. On this low-oxygen-coverage surface, any Cl{sub 2} desorption after LH recombination of Cl was below the detection limit. Adding 5% O{sub 2} to the Cl{sub 2} feed gas stopped etching of the Si wafer (with no rf bias) and increased the oxygen content of the wall deposits, while decreasing the Cl content (Si:O:Cl = 1:1.09:0.08). Cl{sub 2} desorption was detectable for Cl recombination on the spinning wall surface coated with this layer, and a recombination probability of {gamma}{sub Cl} = 0.03 was obtained. After this surface was conditioned with a pure oxygen plasma for {approx}60 min, {gamma}{sub Cl} increased to 0.044 and the surface layer was slightly enriched in oxygen fraction (Si:O:Cl = 1:1.09:0.04). This behavior is attributed to a mechanism whereby Cl LH recombination occurs mainly on chlorinated oxygen sites on the silicon oxy-chloride surface, because of the weak Cl-O bond compared to the Cl-Si bond.« less

  5. Intimate contacted two-dimensional/zero-dimensional composite of bismuth titanate nanosheets supported ultrafine bismuth oxychloride nanoparticles for enhanced antibiotic residue degradation.

    PubMed

    Liu, Wenwen; Dai, Zhiqiang; Liu, Yi; Zhu, Anquan; Zhong, Donglin; Wang, Juan; Pan, Jun

    2018-05-31

    Constructing a two-dimensional/zero-dimensional (2D/0D) composite with matched crystal structure, suitable energy band structure as well as intimate contact interface is an effective way to improve carriers separation for achieving highly photocatalytic performance. In this work, a novel bismuth titanate/bismuth oxychloride (Bi 4 Ti 3 O 12 /BiOCl) composite consisting of 2D Bi 4 Ti 3 O 12 nanosheets and 0D BiOCl nanoparticles was constructed for the first time. Germinating ultrafine BiOCl nanoparticles on Bi 4 Ti 3 O 12 nanosheets can provide abundant contact interface and shorten migration distance of photoinduced carriers via two-step synthesis contained molten salt process and facile chemical transformation process. The obtained Bi 4 Ti 3 O 12 /BiOCl 2D/0D composites exhibited enhanced photocatalytic performance for antibiotic tetracycline hydrochloride degradation. The rate constant of optimal Bi 4 Ti 3 O 12 /BiOCl composite was about 4.4 times higher than that of bare Bi 4 Ti 3 O 12 although Bi 4 Ti 3 O 12 /BiOCl composite appeared lesser photoabsorption. The enhanced photocatalytic performance can be mainly ascribed to matched crystal structure, suitable energy band structure and intimate contact interface between Bi 4 Ti 3 O 12 nanosheets and ultrafine BiOCl nanoparticles as well as unique 2D/0D composite structure. Besides, a probable degradation mechanism on the basis of active species trapping experiments, electrochemical impedance spectroscopy, photocurrent responses and energy band structures was proposed. This work may be stretched to other 2D/0D composite photocatalysts construction, which is inspiring for antibiotic residue treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Case study to illustrate an approach for detecting contamination and impurities in pesticide formulations.

    PubMed

    Karasali, Helen; Kasiotis, Konstantinos M; Machera, Kyriaki; Ambrus, Arpad

    2014-11-26

    Counterfeit pesticides threaten public health, food trade, and the environment. The present work draws attention to the importance of regular monitoring of impurities in formulated pesticide products. General screening revealed the presence of carbaryl as a contaminant in a copper oxychloride formulated product. In this paper, as a case study, a liquid chromatographic diode array-mass spectrometric method developed for general screening of pesticide products and quantitative determination of carbaryl together with its validation is presented. The proposed testing strategy is considered suitable for use as a general approach for testing organic contaminants and impurities in solid pesticide formulations.

  7. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    NASA Astrophysics Data System (ADS)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical phase change creating cracks and damage to concrete under freezing and thawing. In a cementitious system exposed to CaCl2, the chemical phase change is mainly due to the presence of calcium hydroxide (CH) in concrete. Calcium hydroxide can react with CaCl2 solution producing calcium oxychloride. Calcium oxychloride forms at room temperature (i.e., 23 °C) for CaCl 2 salt concentrations at or above ~ 12 % by mass in the solution creating expansion and degradation in concrete. In a cementitious system exposed to MgCl2, it was observed that MgCl2 can be entirely consumed in concrete by reacting with CH and produce CaCl2. As such, it followed a response that is more similar to the concrete-CaCl2-water system than that of the MgCl2-water phase diagram. Formation of calcium/magnesium oxychloride is most likely the main source of the chemical phase change (which can cause damage) in concrete exposed to MgCl2. During the LGCC testing for CaCl2 and MgCl2 salts, it was found that the chemical reactions occur rapidly (~ 10 min) and can cause a significant decrease in subsequent fluid ingress into exposed concrete in comparison to NaCl. Isothermal calorimetry, fluid absorption, oxygen permeability, oxygen diffusivity, and X-ray fluorescence testing showed that the formation of calcium oxychloride in concrete exposed to CaCl2 and MgCl 2 can block or fill in the concrete pores on the surface of the specimen; thereby decreasing the CaCl2 and MgCl2 fluid ingress into the concrete. To mitigate the damage and degradation due to the chemical phase transition, two approaches were evaluated: (1) use of a cementitious binder that does not react with salts, and (2) use of a new practical technology to melt ice and snow, thereby decreasing the demand for deicing salt usage. For the first approach, carbonated calcium silicate based cement (CCSC) was used and the CCSC mortar showed a promising performance and resistance to salt degradation than an ordinary portland mortar does. For the second approach, phase change materials (PCM), including paraffin oil and methyl laurate, were used to store heat in concrete elements and release the stored heat during cooling to reduce ice formation and snow accumulation on the surface of concrete. PCM approach also showed a promising performance in melting ice and snow, thereby decreasing the demand for salt usage.

  8. Safety considerations for fabricating lithium battery packs

    NASA Technical Reports Server (NTRS)

    Ciesla, J. J.

    1986-01-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  9. Identifying and Controlling Contamination of Date Palm Tissue Cultures.

    PubMed

    Abdel-Karim, Abeer H I

    2017-01-01

    Fungal and bacterial contaminations are major problems facing in vitro date palm (Phoenix dactylifera L.) proliferation. To overcome this problem, we must first identify the fungal (e.g., Alternaria sp., Aspergillus niger, Penicillium sp.) and bacterial (e.g., Pseudomonas sp.) spread in date palm in vitro cultures. Incorporating fungicides (e.g., copper oxychloride, Vitavax T, and Topsin M) or antibiotics (e.g., streptomycin, Banocin, and Bencid D) at 500 mg/L in medium significantly reduces the contamination rate during various stages of in vitro date palm culture. Streptomyces chloramphenicol (pharmacy) is highly effective in reducing the bacterial contamination of date palm cultures to below 10%, as well as enhancing growth vigor.

  10. Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.

    2012-09-15

    The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate biasmore » reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.« less

  11. Enhancing the ecological and operational characteristics of water treatment units at TPPs based on baromembrane technologies

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Filimonova, A. A.; Saitov, S. R.

    2017-12-01

    The innovative baromembrane technologies for water demineralization were introduced at Russian TPPs more than 25 years ago. While being used in the power engineering industry of Russia, these technologies demonstrated certain advantages over the traditional ion-exchange and thermal technologies of makeup water treatment for steam boilers. Water treatment units based on the baromembrane technology are compact, easy to operate, and highly automated. The experience gained from the use of these units shows that their reliability depends directly on preliminary water treatment. The popular water pretreatment technology with coagulation by aluminum oxychloride proved to be inefficient during the seasonal changes of source water quality that occurs at some stations. The use of aluminum coagulant at pH 8 and higher does not ensure the stable and qualitative pretreatment regime: soluble aluminum forms slip on membranes of the ultrafiltration unit, thereby causing pollution and intoxication as well as leading to structural damages or worsening of mechanical properties of the membranes. The problem of increased pH and seasonal changes of the source water quality can be solved by substitution of the traditional coagulant into a new one. To find the most successful coagulant for water pretreatment, experiments have been performed on both qualitative and quantitative analysis of the content of natural organic matters in the Volga water and their structure. We have developed a software program and measured the concentrations of soluble aluminum and iron salts at different pH values of the source water. The analysis of the obtained results has indicated that iron sulfate at pH 6.0-10.2, in contrast to aluminum oxychloride, is not characterized by increased solubility. Thus, the basic process diagrams of water pretreatment based on baromembrane technologies with pretreatment through coagulation by iron salts and wastewater amount reducing from 60-40 to 5-2% have been introduced for thermal power stations.

  12. Gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN: experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Allaf, Abdul. W.; Kassem, M.; Alibrahim, M.; Boustani, Ihsan

    1999-03-01

    An attempt was made to observe the gas-phase infrared spectrum of Phosphorus (III) oxycyanide, OPCN for the first time. This molecule was produced by an on-line process using phosphorus (III) oxychloride, OPCl as precursor passed over heated AgCN. The products were characterised by the infrared spectra of their vapours. The low resolution gas-phase Fourier transform infrared spectrum shows two bands centered at 2165 and 1385 cm -1. These bands are assigned to, ν1 (CN stretch) and ν2 (OP stretch), respectively. Ab initio self-consistent-field (SCF) molecular orbital (MO) and Møller-Plesset second order perturbation theory (MP2) calculations were performed to determine the geometry, total energy and vibrational frequencies of OPCN.

  13. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  14. Effects of oxidizing adulterants on detection of 11-nor-delta9-THC-9-carboxylic acid in urine.

    PubMed

    Paul, Buddha D; Jacobs, Aaron

    2002-10-01

    Bleach, nitrite, chromate, and hydrogen peroxide-peroxidase are effective urine adulterants used by the illicit drug users to conceal marijuana-positive results. Methods for detecting nitrite and chromate are available. Effects of other oxidizing agents that could possibly be used as adulterants and are difficult to detect or measure are presented in this report. Urine samples containing 40 ng/mL of 11-nor-delta9-THC-9-carboxylic acid (THC-acid) were treated with 10 mmol/L of commonly available oxidizing agents. Effects of horseradish peroxidase of activity 10 unit/mL and extracts from 2.5 g of red radish (Raphanus sativus, Radicula group), horseradish (Armoracia rusticana), Japanese radish (Raphanus sativus, Daikon group), and black mustard seeds (Brassica nigra), all with 10 mmol/L of hydrogen peroxide, were also examined. After 5 min, 16 h and 48 h of exposure at room temperature (23 degrees C) the specimens were tested by a gas chromatographic-mass spectrometric method for THC-acid. A control group treated with sodium hydrosulfite to reduce the oxidants, was also tested to investigate the effect of oxidizing agents on THC-acid in the extraction method. THC-acid was lost completely in the extraction method when treated with chromate, nitrite, oxone, and hydrogen peroxide/ferrous ammonium sulfate (Fenton's reagent). Some losses were also observed with persulfate and periodate (up to 25%). These oxidants, and other oxidizing agents like permanganate, periodate, peroxidase, and extracts from red radish, horseradish, Japanese radish and black mustard seeds destroyed most of the THC-acid (> 94%) within 48 h of exposure. Chlorate, perchlorate, iodate, and oxychloride under these conditions showed little or no effect. Complete loss was observed when THC-acid was exposed to 50 mmol/L of oxychloride for 48 h. Several oxidizing adulterants that are difficult to test by the present urine adulterant testing methods showed considerable effects on the destruction of THC-acid. The time and temperature for these effects were similar to those used by most laboratories to collect and test specimens. In several cases, the loss of THC-acid was > 94%.

  15. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities.

    PubMed

    Mishra, A K; Dubey, N K

    1994-04-01

    During screening of essential oils for their antifungal activities against Aspergillus flavus, the essential oil of Cymbopogon citratus was found to exhibit fungitoxicity. The MIC of the oil was found to be 1,000 ppm, at which it showed its fungistatic nature, wide fungitoxic spectrum, nonphytotoxic nature, and superiority over synthetic fungicides, i.e., Agrosan G. N., Thiride, Ceresan, Dithane M-45, Agrozim, Bavistin, Emison, Thiovit, wettable sulfur, and copper oxychloride. The fungitoxic potency of the oil remained unaltered for 7 months of storage and upon introduction of high doses of inoculum of the test fungus. It was thermostable in nature with treatment at 5 to 100 degrees C. These findings thus indicate the possibility of exploitation of the essential oil of C. citratus as an effective inhibitor of storage fungi.

  16. Effects of twenty-five compounds on four species of aquatic fungi (Saprolegniales) pathogenic to fish

    USGS Publications Warehouse

    Bailey, T.A.

    1984-01-01

    Four species of aquatic fungi (Achlya flagellata, A. racemosa, Saprolegnia hypogyna, and S. megasperma) were exposed to 25 chemicals representing seven classes of compounds for 15 and 60 min, in an effort to identify potential fungicidal agents for use in fish culture. The antifungal activity of each chemical was compared with that of malachite green, a reference compound with known fungicidal properties but not registered for fishery use. Six compounds which inhibited fungal growth on artificial media at concentrations of < 100 mg/l (listed in order of decreasing antifungal activity) were the cationics Du-terA? and copper oxychloride sulfate, the amine LesanA?, the amide BAS-389-O1F and the cationics CuprimyxinA? and RoccalA? II. Certain chemicals from these classes of compounds may have promise as aquatic fungicides.

  17. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities.

    PubMed Central

    Mishra, A K; Dubey, N K

    1994-01-01

    During screening of essential oils for their antifungal activities against Aspergillus flavus, the essential oil of Cymbopogon citratus was found to exhibit fungitoxicity. The MIC of the oil was found to be 1,000 ppm, at which it showed its fungistatic nature, wide fungitoxic spectrum, nonphytotoxic nature, and superiority over synthetic fungicides, i.e., Agrosan G. N., Thiride, Ceresan, Dithane M-45, Agrozim, Bavistin, Emison, Thiovit, wettable sulfur, and copper oxychloride. The fungitoxic potency of the oil remained unaltered for 7 months of storage and upon introduction of high doses of inoculum of the test fungus. It was thermostable in nature with treatment at 5 to 100 degrees C. These findings thus indicate the possibility of exploitation of the essential oil of C. citratus as an effective inhibitor of storage fungi. PMID:8017906

  18. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  19. Properties of concrete containing scrap-tire rubber--an overview.

    PubMed

    Siddique, Rafat; Naik, Tarun R

    2004-01-01

    Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.

  20. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover.

    PubMed

    Leshin, L A; Mahaffy, P R; Webster, C R; Cabane, M; Coll, P; Conrad, P G; Archer, P D; Atreya, S K; Brunner, A E; Buch, A; Eigenbrode, J L; Flesch, G J; Franz, H B; Freissinet, C; Glavin, D P; McAdam, A C; Miller, K E; Ming, D W; Morris, R V; Navarro-González, R; Niles, P B; Owen, T; Pepin, R O; Squyres, S; Steele, A; Stern, J C; Summons, R E; Sumner, D Y; Sutter, B; Szopa, C; Teinturier, S; Trainer, M G; Wray, J J; Grotzinger, J P

    2013-09-27

    Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, K.S.; Lee, C.K.; Lee, P.L.

    The use of low-cost biological materials for the removal and recovery of heavy metals from solution has been investigated extensively in recent times. To enhance their sorption capacities various chemical modifications on the sorbents were attempted. Freer et al. showed that bark from the Pinus radiata (D. Don) had a greater sorption capacity for metals after treatment with both inorganic acid and formaldehyde. Apple wastes treated with phosphorus oxychloride improved the efficiency of removing metal ions. Ethylenediamine tetraacetic acid (EDTA)-modified groundnut, Arachis hypogea, was reported to improve the sorption of cadmium and lead ions. Modifications with the aid of dyesmore » also enhanced metal sorption. Moss and coconut husk (CH) are readily obtainable in Malaysia. Their sorption potential for metals has been reported. This paper reports on the metal sorption enhancement of these two biosorbents after chemical modification with nitrilotriacetic acid (NTA). 13 refs., 5 figs., 2 tabs.« less

  3. [Investigation of emergency capacities for occupational hazard accidents in silicon solar cell producing enterprises].

    PubMed

    Yang, D D; Xu, J N; Zhu, B L

    2016-11-20

    Objective: To investigate and analyze the influential factors of occupational hazard acci-dents, emergency facilities and emergency management in Silicon solar cell producing enterprises, then to pro-vide scientific strategies. Methods: The methods of occupationally healthy field investigating, inspecting of ven-tilation effectiveness, setup of emergency program and wearing chemical suit were used. Results: The mainly occupational hazard accidents factors in the process of Silicon solar cell producing included poisoning chemi-cals, high temperature, onizing radiation and some workplaces. The poisoning chemicals included nitric acid, hydrofluoric acid, sulfuric acid, hydrochloric acid, sodium hydroxide, potassium hydroxide, chlorine, phos-phorus oxychloride, phosphorus pentoxide, nitrogen dioxide, ammonia, silane, and so on; the workplaces in-cluded the area of producing battery slides and auxiliary producing area. Among the nine enterprises, gas detec-tors were installed in special gas supplying stations and sites, but the height, location and alarmvalues of gas detectors in six enterprises were not according with standard criteria; emergency shower and eyewash equip-ment were installed in workplaces with strong corrosive chemicals, but the issues of waste water were not solved; ventilation systems were set in the workplaces with ammonia and silane, but not qualified with part lo-cations and parameters in two enterprises; warehouses with materials of acid, alkali, chemical ammonia and phosphorus oxychloride were equipped with positive - pressure air respirator resuscitator and emergency cabi-nets, but with insufficient quantity in seven enterprises and expiration in part of products. The error rate of set-up emergency program and wearing chemical cloth were 30%~100% and 10%~30%, respectively. Among the nine enterprises, there were emergency rescue plans for dangerous chemical accidents, but without profession-al heatstroke and irradiation accident emergency plans, lack of archives of descripting and evaluating for pro-cessing in emergency exercises as well. There were emergency rescue agreements between enterprises and medi-cal institutions which varied in occupational poisoning rescue capacities and were lack of training and exercise regularly. Conclusion: There were a variety of occupational hazard factors in Silicon solar cell producing enter-prises including potential chemical burns, acute poisoning, occupational heatstroke, accident risk of ionizing radiation, and we must strengthen the management of emergency rescue for Silicon solar cell producing enter-prises.

  4. Flowerlike C-doped BiOCl nanostructures: Facile wet chemical fabrication and enhanced UV photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Yu, Jiahui; Wei, Bo; Zhu, Lin; Gao, Hong; Sun, Wenjun; Xu, Lingling

    2013-11-01

    3D-flowerlike C-doped bismuth oxychloride (BiOCl) hierarchical structures have been synthesized through a facile, low temperature wet-chemical method using polyacrylamide (PAM) as both chelating and doping agents. The flowerlike products are composed of nanosheets, as verified by the scanning electron microscopy (SEM). The crystal structure and compositional characteristics were investigated by X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of C-doped BiOCl samples with different amounts of PAM adding were investigated by the degradation of methyl orange (MO) dye and colorless phonel contaminant under ultra-violet light irradiation. The as-prepared C-doped BiOCl exhibited much higher photocatalytic activity than the pure one. Moreover, the best performance of the photo-degradation was observed on the sample synthesized by 0.4 g PAM adding. The results show that C-doped BiOCl can be used as a promising candidate for water-purification.

  5. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Jun; Chen, Chao; Yang, Shi -Ze

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  6. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE PAGES

    Di, Jun; Chen, Chao; Yang, Shi -Ze; ...

    2017-06-26

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  7. Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.

    PubMed

    Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz

    2018-05-29

    The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.

  8. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR

    PubMed Central

    Lucero, Catherine L.; Spragg, Robert P.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, (w/c), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl2 reacts with the cement paste to produce products (Friedel’s salt, Kuzel’s salt, or calcium oxychloride) that block pores and reduce absorption. PMID:28626299

  9. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR.

    PubMed

    Lucero, Catherine L; Spragg, Robert P; Bentz, Dale P; Hussey, Daniel S; Jacobson, David L; Weiss, W Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl 2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, ( w/c ), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl 2 reacts with the cement paste to produce products (Friedel's salt, Kuzel's salt, or calcium oxychloride) that block pores and reduce absorption.

  10. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batuk, Maria, E-mail: Maria.Batuk@uantwerpen.be; Batuk, Dmitry; Abakumov, Artem M.

    A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5–550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. The structure is built of truncated Pb{submore » 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μ{sub B} and 3.86(5) μ{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. • The structure has been refined using neutron powder diffraction data at 1.5–550 K. • It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n−1}Cl. • Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. • Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}≈450 K.« less

  11. [Reactive airway dysfunction syndrome: more flexible application of diagnostic criteria are important for occupational accident victims].

    PubMed

    Testud, F; Lambert-Chhum, R

    2004-06-01

    Reactive airway dysfunction syndrome (RADS), or Brooks syndrome, is a complication observed after inhalation of caustic or highly irritating substances. The diagnosis is based on a group of criteria which include the absence of prior respiratory disease. Strict application of these criteria could have a prejudicial effect for certain victims. Three serious cases of RADS were observed in workers who were exposed to massive inhalation of caustic substances. The products implicated (phosphoric oxychloride, titanium tetrachloride, and trichloroacetyl chloride) hydrolyze to hydrochloric acid when they come in contact with the airway mucosa. After an initial period of acute respiratory distress, the patients encountered serious difficulties in achieving an appropriate diagnosis, and in having their sequellae recognized as resulting from an occupational accident. The problem was that these patients had a history of cured allergic asthma or smoking-related COPD. The presence of prior respiratory disorders must not exclude the diagnosis of RADS. A prior respiratory disorder cannot be used as an argument to exclude such victims from indemnities for occupational accident sequelae.

  12. Reactions of silicon-based ceramics in mixed oxidation chlorination environments

    NASA Technical Reports Server (NTRS)

    Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.

    1988-01-01

    The reaction of silicon-based ceramics with 2 percent Cl2/Ar and 1 percent Cl2/1 percent to 20 percent O2/Ar at 950 C was studied with thermogravimetric analysis and high-pressure mass spectrometry. Pure Si, SiO2, several types of SiC, and Si3N4 were examined. The primary corrosion products were SiCl4(g) and SiO2(s) with smaller amounts of volatile silicon oxychlorides. The reactions appear to occur by chlorine penetration of the SiO2 layer, and gas-phase diffusion of the silicon chlorides away from the sample appears to be rate limiting. Pure SiO2 shows very little reaction with Cl2, SiC with excess Si is more reactive than the other materials with Cl2, whereas SiC with excess carbon is more reactive than the other materials with Cl2/O2. Si3N4 shows very little reaction with Cl2. These differences are explained on the basis of thermodynamic and microstructural factors.

  13. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Pellett, G. L.

    1978-01-01

    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  14. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity.

    PubMed

    Gao, Zhenzhen; Chen, Jin; Qiu, Shulei; Li, Youying; Wang, Deyun; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Li, Hongquan; Hu, Yuanliang

    2016-01-20

    Garlic polysaccharide (GPS) was modified in selenylation respectively by nitric acid-sodium selenite (NA-SS), glacial acetic acid-selenous acid (GA-SA), glacial acetic acid-sodium selenite (GA-SS) and selenium oxychloride (SOC) methods each under nine modification conditions of L9(3(4)) orthogonal design and each to obtain nine selenizing GPSs (sGPSs). Their structures were identified, yields and selenium contents were determined, selenium yields were calculated, and the immune-enhancing activities of four sGPSs with higher selenium yields were compared taking unmodified GPS as control. The results showed that among four methods the selenylation efficiency of NA-SS method were the highest, the activity of sGPS5 was the strongest and significantly stronger than that of unmodified GPS. This indicates that selenylation modification can significantly enhance the immune-enhancing activity of GPS, NA-SS method is the best method and the optimal conditions are 0.8:1 weight ratio of sodium selenite to GPS, reaction temperature of 70 °C and reaction time of 10h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. THERMODYNAMICS OF THE ACTINIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Burris B.

    1962-04-01

    Recent work on the thermodynamic properties of the transplutonium elements is presented and discussed in relation to trends in thermodynamic properties of the actinide series. Accurate values are given for room temperature lattice parameters of two crystallographic forms, (facecentred cubic) fcc and dhcp (double-hexagonal closepacked), of americium metal and for the coefficients of thermal expansion between 157 and 878 deg K (dhcp) and 295 to 633 deg K (fcc). The meiting point of the metal, and its magnetic susceptibility between 77 and 823 deg K are reported and the latter compared with theoretical values for the tripositive ion calculated frommore » spectroscopic data. Similar data (crystallography, meiting point and magnetic susceptibility) are given for metallic curium. A value for the heat of formation of americium monoxide is reported in conjunction with crystallographic data on the monoxide and mononitride. A revision is made in the current value for the heat of formation of Am/O/sub 2/ and for the potential of the Am(III)-Am(IV) couple. The crystal structures and lattice parameters are reported for the trichloride, oxychloride and oxides of californium. (auth)« less

  16. Cationized pullulan 3D matrices as new materials for gene transfer.

    PubMed

    San Juan, Aurélie; Hlawaty, Hanna; Chaubet, Frédéric; Letourneur, Didier; Feldman, Laurent J

    2007-08-01

    This study deals with the development of a novel biocompatible cationized pullulan three-dimensional matrix for gene delivery. A water-soluble cationic polysaccharide, diethylaminoethyl-pullulan (DEAE-pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE-pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE-pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150-fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE-pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE-pullulan 3D matrices were loaded with up to 50 microg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO-1 fluorescence staining. Moreover, the DEAE-pullulan matrix was shown to protect pSEAP from DNase I degradation. Incubation of cultured SMCs with pSEAP-loaded DEAE-pullulan matrices resulted in significant gene transfer without cell toxicity. This study suggests that these cationized pullulan 3D matrices could be useful biomaterials for local gene transfer.

  17. Research on A3 steel corrosion behavior of basic magnesium sulfate cement

    NASA Astrophysics Data System (ADS)

    Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu

    2017-11-01

    In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.

  18. Investigation of Interrelation between Deformation, Composition and Structural Characteristics of Magnesium Oxychloride Cements

    NASA Astrophysics Data System (ADS)

    Averina, G. F.; Chernykh, T. N.; Kramar, L. Ya

    2017-11-01

    The paper studies the process of volume deformation changes in magnesium cement at its hardening in accordance with its composition and structural peculiarities, which result from the roasting parameters of the raw materials. The study has been carried out with the aim of broadening raw materials sources for production of magnesia cements and construction materials through the use waste products of ore-dressing and processing enterprises. The mineralogical and phase composition of magnesium cements, obtained on the basis of magnesite with high content of impurity minerals from the mine dumps, has been studied by the X-ray phase analysis and derivatography. The roasting of the initial raw materials was carried out at various temperature conditions in order to get cements of different activities. The typical content of hydrated phases has been found for the hardened magnesian stone obtained from cements with different activity degrees. The characteristics of volume deformations developed in the magnesian stone have been described in relation to its phase composition. The influence of low- and high-activity crystals and calcium oxide crystals on the soundness and the structural integrity of magnesian stone has been covered.

  19. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  20. AlNbO oxides as new supports for hydrocarbon oxidation II. Catalytic properties of VO sub x -grafted AlNbO oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.

    1992-09-01

    Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less

  1. Thermal Conductivity Changes Due to Degradation of Cathode Film Subjected to Charge-Discharge Cycles in a Li Ion Battery

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2018-05-01

    A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.

  2. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  3. Problems of reliability and economy work of thermal power plants water treatment based on baromembrane technologies

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Saitov, S. R.

    2017-11-01

    The introduction of baromembrane water treatment technologies for water desalination at Russian thermal power plants was beganed more than 25 years ago. These technologies have demonstrated their definite advantage over the traditional technologies of additional water treatment for steam boilers. However, there are problems associated with the reliability and economy of their work. The first problem is a large volume of waste water (up to 60% of the initial water). The second problem a expensive and unique chemical reagents complex (biocides, antiscalants, washing compositions) is required for units stable and troublefree operation. Each manufacturer develops his own chemical composition for a certain membrane type. This leads to a significant increase in reagents cost, as well as creates dependence of the technology consumer on the certain supplier. The third problem is that the reliability of the baromembrane units depends directly on the water preliminary treatment. The popular pre-cleaning technology with coagulation of aluminum oxychloride proves to be unacceptable during seasonal changes in the quality of the source water at a number of stations. As a result, pollution, poisoning and lesion of the membrane structure or deterioration of their mechanical properties are observed. The report presents ways to solve these problems.

  4. Comparative studies on acid leaching of zinc waste materials

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  5. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  6. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator.

    PubMed

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  7. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    PubMed Central

    Lee, Kuan-Yi

    2017-01-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal–oxide–semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air. PMID:29308260

  8. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  9. A facile iodine(III)-mediated synthesis of 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines via oxidation of 2-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-1-(pyridin-2-yl)hydrazines and their antimicrobial evaluations

    PubMed Central

    2011-01-01

    Background Fused heterocyclic 1,2,4-triazoles have acquired much importance because of their interesting biological properties. Although a number of methods have been reported in the literature which includes oxidation with phosphorus oxychloride, lead tetraacetate, bromine, etc., hypervalent iodine reagents have emerged as reagents of choice for various synthetically useful transformations due to their low toxicity, ready availability and ease of handling. Results A series of new 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines 4 has been conveniently synthesized by oxidative cyclization of 2-(3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-1-(pyridin-2-yl)hydrazines 3 promoted with iodobenzene diacetate under mild conditions (up to 90% isolated yields). All the new compounds were tested in vitro for their antimicrobial activity. Conclusions Iodine(III)-mediated oxidative approach has offered an easy access to new 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines 4. The antibacterial and antifungal activities of newly synthesized compounds have proved them potent antimicrobial agents. PMID:22373059

  10. Hydrolysis of ferric chloride in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves amore » two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.« less

  11. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase.

    PubMed

    Abbas, Hebat-Allah S; Al-Marhabi, Aisha R; Eissa, Sally I; Ammar, Yousry A

    2015-10-15

    In an effort to develop potent anti-cancer agents, we have synthesized some substituted quinoxaline derivatives. Reaction of 6-bromo-3-methylquinoxalin-2(1H)-one 1 with aromatic aldehydes furnished the styryl derivatives 2a-e. Alkylation of 1 with ethyl chloroacetate produced the N-alkyl derivatives 3. Hydrazinolysis of the ester derivative 3 with hydrazine hydrate afforded the hydrazide derivative 4. In addition, chlorination of 1 with phosphorus oxychloride afforded the 2-chloro derivative 5 which was used as a key intermediate for the synthesis of substituted quinoxaline derivatives 6-8, N-pyrazole derivative 9, tetrazolo[1,5-a]quinoxaline derivative 10 and Schiff base derivatives 13, 15 via reaction with several nucleophiles reagents. Docking methodologies were used to predict their binding conformation to explain the differences of their tested biological activities. All the tested compounds were screened in vitro for their cytotoxic effect on three tumor cell lines. Some new quinoxaline derivatives were studied as inhibitors of c-Met kinase, a receptor associated with high tumor grade and poor prognosis in a number of human cancers. Compounds 2e, 4, 7a, 12a, 12b and 13 showed the highest binding affinity with CDOCKER energy score, while showed the lowest IC50 values against three types of cancer cell lines. It is worth to mention that, compounds 2e, 7a, 12b and 13 showed comparable inhibition activity to the reference drug, while compounds 4 and 12a showed a more potent inhibition activity than Doxorubicin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hydrolysis of ZrCl4 and HfCl4: The Initial Steps in the High-Temperature Oxidation of Metal Chlorides to Produce ZrO2 and HfO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zongtang; Dixon, David A.

    2013-03-08

    The gas-phase hydrolysis of MCl4 (M = Zr, Hf) to produce the initial particles on the way to zirconia and hafnia nanoparticles has been studied with electronic structure theory. The potential energy surfaces, the themochemistry of the reaction species, and the reaction paths for the initial steps of MCl4 reacting with H2O have been calculated. The hydrolysis of MCl4 at higher temperatures begins with the formation of oxychlorohydroxides followed by the elimination of HCl instead of the direct production of MOCl2 and HCl or MO2 and HCl due to the substantial endothermicities associated with the formation of gas-phase MO2. Themore » structural properties and heats of formation of the reactants and products are consistent with the available experimental results. A number of metal oxychlorides (oxychlorohydroxides) intermediate clusters have been studied to assess their role in the production of MO2 nanoparticles. The calculated clustering reaction energies of those intermediates are highly exothermic, so they could be readily formed in the hydrolysis process. These intermediate clusters can be formed exothermically from metal oxychlorohydroxides by the elimination of one HCl or H2O molecule. Our calculations show that the mechanisms leading to the formation of MO2 nanoparticles are complicated and are accompanied by the potential production of a wide range of intermediates, as found for the production of TiO2 particles from the high-temperature oxidation of TiCl4.« less

  13. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.

    PubMed

    Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik

    2016-07-15

    Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effects of fungicides and biofungicides on population density and community structure of soil oribatid mites.

    PubMed

    Al-Assiuty, Abdel-Naieem I M; Khalil, Mohamed A; Ismail, Abdel-Wahab A; van Straalen, Nico M; Ageba, Mohamed F

    2014-01-01

    To compare the side-effects of chemical versus biofungicides on non-target organisms in agricultural soil, a study of population structure, spatial distribution and fecundity of oribatid mites, a diverse and species-rich group of microarthropods indicative of decomposer activity in soil was done. Plots laid out in agricultural fields of a research station in Egypt, were cultivated with cucumber and treated with two chemical fungicides: Ridomil Plus 50% wp (active ingredients=metalaxyl and copper oxychloride) and Dithane M-45 (active ingredient=mancozeb), and two biofungicides: Plant Guard (containing the antagonistic fungus Trichoderma harzianum) and Polyversum (containing the fungi-parasitic oomycete Pythium oligandrum). All treatments were done using both low-volume and high-volume spraying techniques to check whether any effects were dependent on the method of application. Oribatid mite communities were assessed from soil core samples collected during the growing season. Total abundance of oribatids was not different across the plots, but some species decreased in number, while one species increased. Species diversity and community equitability decreased with the application of chemical and biofungicides especially when using high-volume spraying. In control plots most oribatid species showed a significant degree of aggregation, which tended to decrease under fungicide treatment. Ridomil Plus, Plant Guard and Polyversum had a negative effect on the gravid/ungravid ratio of some species. Egg number averaged over the whole adult population was not directly related to the application of chemical and biofungicides but it showed a species-specific relationship with population density. In general biofungicides had a smaller effect on population size and community structure of oribatid mite species than chemical fungicides. The results indicate that biofungicides may be the preferred option when aiming to prevent side-effects on sensitive groups among the species-rich soil detritivore community. © 2013.

  15. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    PubMed

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  16. High chloride content calcium silicate glasses.

    PubMed

    Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G

    2017-03-08

    Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl 2 . The CaCl 2 has been added to the calcium metasilicate composition (CaO·SiO 2 ). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl 2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. 29 Si MAS-NMR spectra showed the silicon being present mainly as a Q 2 silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl 2 content, the T g reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl 2 content. However, both linear regressions revealed a breakpoint at a CaCl 2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl 2 crystallized to wollastonite, whilst the compositions with CaCl 2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl 2 . In practice, the crystallization of CaCl 2 could not occur until the crystallization temperature fell below the melting point of CaCl 2 . The implications of the results along with the high chloride retention are discussed.

  17. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    Four individual sample portions from a single scoop of the Rocknest aeolian deposit were sieved ( 150 m) and delivered to the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatography mass spectrometry analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of 0.01 to 2.3 nanomole.The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N- (tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a chemical that leaked from a derivatization cup inside SAM.The best candidate for the oxychloride phase in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated species measured by SAM, although other chlorine bearing phases are being considered. Laboratory pyrolysis experiments suggest that reaction of martian chlorine with organic carbon from MTBSTFA can explain the presence of the chloromethanes and a chloromethylpropene also detected by SAM.However, we cannot exclude the possibility that traces of organic carbon of either martian or exogenous origin contributed to some of the chloromethanes measured by SAM. Although the alteration history and exposure age of the Rocknest deposit is unknown, it is possible that oxidative degradation of complex organic matter by ionizing radiation or other chemical processes in Rocknest has occurred.

  18. Effectiveness of Neutral Electrolyzed Water on Incidence of Fungal Rot on Tomato Fruits ( Solanum lycopersicum L.).

    PubMed

    Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo

    2016-10-01

    We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter -1 active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter -1 active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter -1 active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter -1 active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter -1 active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter -1 is effective in the control of fungal rot in tomatoes.

  19. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.

    PubMed

    Aravind, Priyadharshini; Subramanyan, Vasudevan; Ferro, Sergio; Gopalakrishnan, Rajagopal

    2016-04-15

    The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structural, optical, and ferromagnetic characterization of Sm-doped LaOCl nanocrystalline synthesized by solvothermal route: Significant effect of hydrogen post treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dakhel, A.A.

    Pure and Sm-doped lanthanum oxychloride (LaOCl) nanomaterials were synthesized by solvothermal route followed by a subsequent heat treatment process. The objective of the present work is to study and develop conditions required to create stable room-temperature ferromagnetic (RT-FM) properties in LaOCl. To achieve that aim, magnetic samarium Sm{sup 3+} ions were used as dopant sources for stable FM properties. Systematic structural, optical, and magnetic properties of undoped and Sm-doped LaOCl samples were investigated as function of post-annealing conditions (temperature and atmosphere). The optical absorption properties were studied by diffuse reflection spectroscopy (DRS). The magnetic measurements reveal that Sm-doped LaOCl nanopowdersmore » have partial RT-FM properties due to the doped ions. The variations of magnetic properties with pre-annealing temperature were investigated. Furthermore, the electronic medium of host LaOCl crystalline lattice, which carries the spin-spin (S.S) exchange interaction between localised dopant Sm{sup 3+}(4f{sup 5}) spins, was developed by annealing in hydrogen gas (hydrogenation). It was established that annealing in hydrogen atmosphere boosts the RT-FM properties so that the saturation magnetisation could be increased by more than 100%. Physical explanations and discussions were given in this paper. Thus, it was proved that the magnetic properties could be tailored to diamagnetic LaOCl compound by Sm-doping and post treatment under H{sub 2} atmosphere. Therefore, LaOCl nanocrystals could be used as a potential candidate for optical phosphor applications with magnetic properties. - Graphical abstract: M-H dependence of Sm-doped LaOCl powders. Study the effect of hydrogenation. - Highlights: • Synthesis of Sm-doped LaOCl nanoparticles. • DM LaOCl transforms to FM with dilute concentration of Sm doping. • Annealing under H{sub 2} atmosphere induces drastic boost in the FM properties. • Saturation magnetization attained 29 memu/g with little doping and hydrogenation.« less

  1. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    PubMed

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  3. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating

    NASA Astrophysics Data System (ADS)

    Tinck, S.; Boullart, W.; Bogaerts, A.

    2011-08-01

    In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.

  4. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylwester, Eric Robert

    1998-10-01

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr 4, HfBr 4, RfBr 4, NbBr 5, TaOBr 3, HaCl 5, WBr 6, FrBr, and BiBr 3. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography.more » Adsorption Enthalpy (ΔH a) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and ΔH a was observed: RfBr 4 > ZrBr 4 > HfBr 4. The ΔH a values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of 261Rf was performed. 261Rf was produced via the 248Cm( 18O, 5n) reaction and observed with a half-life of 74 -6 +7 seconds, in excellent agreement with the previous measurement of 78 -6 +11 seconds. We recommend a new half-life of 75±7 seconds for 261Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and ΔH a of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.« less

  5. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides

    PubMed Central

    Johnston, A.S.A.; Hodson, M.E.; Thorbek, P.; Alvarez, T.; Sibly, R.M.

    2014-01-01

    Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species. PMID:25844009

  6. Reduction of Convection in Closed Tube Vapor Transport Experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Tan, Sarwa Bakti; Shin, In-Seok; Kim, Joo Soo

    2002-01-01

    The primary objective of this effort was to develop a method for suppressing convective flows during the growth of mercurous chloride crystals by vapor transport in closed tubes to levels approaching those obtained in the microgravity environment. Mercurous chloride was chosen because it is a technologically interesting acoustical optical material whose optical properties are believed to be affected by convective flows. Since the Grashof number scales as the cube of the smallest dimension in the flow system, reduction of the size scale can be extremely effective in reducing unwanted convective flows. However, since materials of practical interest must be grown at least on the cm scale, reduction of the overall growth system is not feasible. But if the region just above the growing crystal could be restricted to a few mm, considerable reduction in flow velocity would result. By suspending an effusive barrier in the growth ampoule just above the growth interface, it should be possible to reduce the convective velocity in this vicinity to levels approaching flows in microgravity. If successful, this growth technique will offer a screening test for proposed space experiments that involve vapor transport to see if reduction of convection will result in improved material and will set a new standard against which the improvements obtained in microgravity may be judged. In addition, it may provide an improved method for preparing materials on Earth whose growth is affected adversely by convection. If the properties of this material can be improved there is a potential commercial interest from Brimrose Inc., who has agreed to fabricate and test devices from the crystals we have grown. This report describes the development of the growth facility, the purification processes developed for preparing the starting material, and the results from growth experiments with and without the effusive baffle. Mercurous chloride turned out to be a more difficult material to deal with than originally anticipated. At growth temperatures, it is extremely sensitive to practically any impurity which causes it to form oxychlorides and/or to decompose into elemental mercury and bichloride of mercury. We were unable to find a suitable method for protecting the magnetic material used to suspend the effusion barrier from the attack of mercurous chloride vapor. Although we were successful in growing single crystals of mercurous chloride without the effusion baffle, they exhibited severe microcracking which we attribute to wall-induced thermal stresses. This leads us to believe that uncontrolled convection may not be the most important problem in the development of this material and a new growth process was attempted that eliminates the wall-induced stress. Unfortunately, the grant ran out before this new method could be adequately tested.

  7. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  8. Hanawaltite, Hg1+6Hg2+[Cl,(OH)]2O3 - A new mineral from the Clear Creek claim, San Benito County, California: Description and crystal structure

    USGS Publications Warehouse

    Roberts, Andrew C.; Grice, Joel D.; Gault, Robert A.; Criddle, A.J.; Erd, Richard C.

    1996-01-01

    Hanawaltite, ideally Hg1+6Hg2+O3Cl2, is orthorhombic, Pbma (57), with unit-cell parameters refined from powder data: a=11.790(3), b=13.881(4), c=6.450(2) A??, V=1055.7(6) A??3, a:b:c =0.8494:1:0.4647, Z=4. The strongest six lines of the X-ray powder-diffraction pattern [d in A?? (I)(hkl)] are: 5.25 (80)(111), 3.164 (60)(231), 3.053 (100)(041), 2.954 (70)(141), 2.681 (50)(401), and 2.411 (50)(232,341). The mineral is an extremely rare constituent in a small prospect pit near the long-abandoned Clear Creek mercury mine, New Idria district, San Benito County, California. It was found on a single-fracture surface where it is intimately associated with calomel, native mercury, cinnabar, montroydite, and quartz. Individual crystals are subhedral to anhedral, platy to somewhat bladed, and average about 50 ??m in longest dimension. The largest known crystal is approximately 0.3??0.3 mm in size and is striated parallel [001]. Hanawaltite is opaque to translucent (on very thin edges), black to very dark brown-black in color, with a black to dark red-brown streak. Other physical properties include: metallic luster; cleavage {001} good; uneven fracture; brittle; nonfluorescent; H<5; calculated density (for the empirical formula) 9.51 g/cm3. In polished section, hanawaltite is moderately to strongly bireflectant and is pleochroic white (R1) to blue-white (R2). In reflected plane-polarized light, it is white with orange-red internal reflections in very thin grains and at grain margins. The anisotropy is strong with bright metallic blue rotation tints. Measured reflectance values, in air and in oil, are tabulated. Electron-microprobe analysis yielded Hg2O 82.46, HgO 14.27, Cl 3.33, H2O [0.34], sum [100.40], less O=Cl 0.75, total [99.65] wt. %, corresponding to Hg1+6.00H2+1.00[Cl 1.43(OH)0.57]??2.00O3.00, based on O+C1=5. After the crystal structure was determined, the original microprobe value for Hg2O, 96.2, was partitioned in a ratio of 6Hg2O:HgO and (OH) was calculated, such that Cl+(OH)=2. The hanawaltite structure consists of undulatory [Hg-Hg]2+ ribbons which roughly parallel (100). The diatomic [Hg-Hg]2+ groups have anion tails which, in turn, serve as cross linkages between dimer ribbons through [Hg2+O2Cl2] planar rhombs. The structure is compared to that of other mercury oxychlorides and each is found to have its own unique structural features. This structural diversity is attributed to the inherent ability of mercury to adopt either metallic or ionic types of bonds. The mineral name honors the late Dr. J. D. (Don) Hanawalt (1903-1987), who was a pioneer in the field of X-ray powder diffraction. ?? 1996 International Centre for Diffraction Data.

  9. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease.

    PubMed

    Fan, Jing; Yang, Juan; Wang, Yu-Qiu; Li, Guo-Bang; Li, Yan; Huang, Fu; Wang, Wen-Ming

    2016-12-01

    Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain-filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv-rice interaction. Current understandings of the Vv-rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant-pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball-shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3-5 μm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200-500 nm in length. The sclerotia are black, horseshoe-shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark-green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs. © 2015 BSPP and John Wiley & Sons Ltd.

  10. Layered hydrothermal barite-sulfide mound field, East Diamante Caldera, Mariana volcanic arc

    USGS Publications Warehouse

    Hein, James R.; de Ronde, Cornel E. J.; Koski, Randolph A.; Ditchburn, Robert G.; Mizell, Kira; Tamura, Yoshihiko; Stern, Robert J.; Conrad, Tracey; Ishizuka, Osamu; Leybourne, Matthew I.

    2014-01-01

    East Diamante is a submarine volcano in the southern Mariana arc that is host to a complex caldera ~5 × 10 km (elongated ENE-WSW) that is breached along its northern and southwestern sectors. A large field of barite-sulfide mounds was discovered in June 2009 and revisited in July 2010 with the R/V Natsushima, using the ROV Hyper-Dolphin. The mound field occurs on the northeast flank of a cluster of resurgent dacite domes in the central caldera, near an active black smoker vent field. A 40Ar/39Ar age of 20,000 ± 4000 years was obtained from a dacite sample. The mound field is aligned along a series of fractures and extends for more than 180 m east-west and >120 m north-south. Individual mounds are typically 1 to 3 m tall and 0.5 to 2 m wide, with lengths from about 3 to 8 m. The mounds are dominated by barite + sphalerite layers with the margins of each layer composed of barite with disseminated sulfides. Rare, inactive spires and chimneys sit atop some mounds and also occur as clusters away from the mounds. Iron and Mn oxides are currently forming small (<1-m diam, ~0.5-m tall) knolls on the top surface of some of the barite-sulfide mounds and may also drape their flanks. Both diffusely and focused fluids emanate from the small oxide knolls. Radiometric ages of the layered barite-sulfide mounds and chimneys vary from ~3,920 to 3,350 years. One layer, from an outcrop of 10- to 100-cm-thick Cu-rich layers, is notably younger with an age of 2,180 years. The Fe-Mn oxides were <5 years old at the time of collection in 2009.Most mound, chimney, and layered outcrop samples are dominated by barite, silica, and sphalerite; other sulfides, in decreasing order of abundance, are galena, chalcopyrite, and rare pyrite. Anglesite, cerussite, and unidentified Pb oxychloride and Pb phosphate minerals occur as late-stage interstitial phases. The samples contain high Zn (up to 23 wt %), Pb (to 16 wt %), Ag (to 487 ppm), and Au (to 19 ppm) contents. Some layered outcrop samples are dominated by chalcopyrite resulting in ≤4.78 wt % Cu in a bulk sample (28 wt % for a single lens), with a mean of 0.28 wt % for other samples. Other significant metal enrichments are Sb (to 1,320 ppm), Cd (to 1,150 ppm), and Hg (to 55 ppm).The East Diamante mound field has a unique set of characteristics compared to other hydrothermal sites in the Mariana arc and elsewhere. The geochemical differences may predominantly reflect the distribution of fractures and faults and consequently the rock/water ratio, temperature of the fluid in the upper parts of the circulation system, and extensive and prolonged mixing with seawater. The location of mineralization is controlled by fractures. Following resurgent doming within the caldera, mineralization resulted from focused flow along small segments of linear fractures rather than from a point source, typical of hydrothermal chimney fields. Based on the mineral assemblage, the maximum fluid temperatures were ~260°C, near the boiling point for the water depths of the mound field (367–406 m). Lateral fluid flow within the mounds precipitated interstitial sphalerite, silica, and Pb minerals within a network of barite with disseminated sulfides; silica was the final phase to precipitate. The current low-temperature precipitation of Fe and Mn oxides and silica may represent rejuvenation of the system.

  11. Nucleation and growth of dielectric films on III-V semiconductors during atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Granados Alpizar, Bernal

    In order to continue with metal-oxide-semiconductors (CMOS) transistor scaling and to reduce the power density, the channel should be replaced with a material having a higher electron mobility, such as a III-V semiconductor. However, the integration of III-V's is a challenge because these materials oxidize rapidly when exposed to air and the native oxide produced is characterized by a high density of defects. Deposition of high-k materials on III-V semiconductors using Atomic Layer Deposition (ALD) reduces the thickness of these oxides, improving the semiconductor/oxide interface quality and the transistor electrical characteristics. In this work, ALD is used to deposit two dielectrics, Al 2O3 and TiO2, on two III-V materials, GaAs and InGaAs, and in-situ X-ray photoelectron spectroscopy (XPS) and in-situ thermal programmed desorption (TPD) are used for interface characterization. Hydrofluoric acid (HF) etching of GaAs(100) and brief reoxidation in air produces a 9.0 ±1.6 Å-thick oxide overlayer containing 86% As oxides. The oxides are removed by 1 s pulses of trimethylaluminum (TMA) or TiCl4. TMA removes the oxide overlayer while depositing a 7.5 ± 1.6 Å thick aluminum oxide. The reaction follows a ligand exchange mechanism producing nonvolatile Al-O species that remain on the surface. TiCl4 exposure removes the oxide overlayer in the temperature range 89°C to 300°C, depositing approximately 0.04 monolayer of titanium oxide for deposition temperatures from 89°C to 135°C, but no titanium oxide is present from 170 °C to 230 °C. TiCl4 forms a volatile oxychloride product and removes O from the surface while leaving Cl atoms adsorbed to an elemental As layer, chemically passivating the surface. The native oxide of In0.53Ga0.47As(100) is removed using liquid HF and gas phase HF before deposition of Al2O3 using TMA and H2O at 170 °C. An aluminium oxide film with a thickness of 7.2 ± 1.2 Å and 7.3 ± 1.2 Å is deposited during the first pulse of TMA on liquid and gas phase HF treated samples, respectively. After three complete ALD cycles the thickness of the aluminum oxide film is 10.0 ± 1.2 Å on liquid HF treated and 6.6 ± 1.2 Å on gas phase HF treated surfaces. Samples treated with gas phase HF inhibit growth. Inhibition is caused by residual F atoms that passivate the surface and by surface poisoning due to the thicker carbon film deposited during the first pulse of TMA. On InGaAs covered by native oxide, the first TMA pulse deposits 9 Å of aluminum oxide, and reaches saturation at 13 Å after 15 pulses of TMA. The film grows by scavenging oxygen from the substrate oxides. Substrate oxides are reduced by the first pulse of TMA even at 0°C. At 0°C, on a 9 Å thick Ga-rich oxide surface, 1 pulse of TMA mainly physisorbs and a limited amount of aluminum oxide is deposited. At 0°C, 110°C, and 170°C, more aluminum oxide is deposited on surfaces initially containing As oxide, and larger binding energy (BE) shifts of the O 1s peak are observed compared to surfaces that contain Ga oxides only, showing that As oxides improve the nucleation of Al2O 3.

Top