Science.gov

Sample records for oxygen activation neutron

  1. Identification of oxygen-19 during in vivo neutron activation analysis of water phantoms.

    PubMed

    Tahir, Syed N A; Chettle, David R

    2015-12-01

    Hand bone equivalent phantoms (250 ml) carrying selenium in various amounts were irradiated and counted for in vivo neutron activation analysis (IVNAA) by employing a 4π NaI(TI) based detection system. During the analysis of counting data, a feature at a higher energy than the gamma ray peak from (77m)Se (0.162 MeV) was observed at 0.197 MeV. Further investigations were made by preparing water phantoms containing only de-ionized water in 250 ml and 1034 ml quantities. Neutrons were produced by the (7)Li(p,n)(7)Be reaction using the high beam current Tandetron accelerator. Phantoms were irradiated at a fixed proton energy of 2.3 MeV and proton currents of 400 μA and 550 μA for 30 s and 22 s respectively. The counting data saved using the 4π NaI(TI) detection system for 10 s intervals in anticoincidence, coincidence and singles modes of detection were analyzed. Areas under gamma peaks at energies 0.197 MeV and 1.357 MeV were computed and half-lives from the number of counts for the two peaks were established. It was concluded that during neutron activation of water phantoms, oxygen-18 is activated, producing short-lived radioactive 19O having T(1/2)  =  26.9 s. Induced activity from 19O may contribute spectral interference in the gamma ray spectrum. This effect may need to be taken into account by researchers while carrying out IVNAA of biological subjects.

  2. Project of the borehole neutron generator for the direct determination of oxygen and carbon by activation method

    NASA Astrophysics Data System (ADS)

    Bogdanovich, B. Yu; Vovchenko, E. D.; Iliinskiy, A. V.; Isaev, A. A.; Kozlovskiy, K. I.; Nesterovich, A. V.; Senyukov, V. A.; Shikanov, A. E.

    2016-09-01

    The paper deals with application features of borehole neutron generator (BNG) based on the vacuum accelerating tube (AT) with laser-plasma ion source for determination of oxygen isotope 16O and carbon isotope 12C by direct activation. The project of pulsed BNG for realization of an activation method in the conditions of natural presence of productive hydrocarbons is offered. The diode system with radial acceleration, magnetic electron insulation and laser-plasma source of deuterons at the anode in a sealed-off vacuum accelerating tube is applied. The permanent NdFeB magnet with induction about 0.5 T for produce the insulating magnetic field in the diode gap is proposed. In the experiments on the model of BNG with the accelerating voltage source (≈350 kV), performed by the scheme of Arkadiev-Marx generator, the output of (d, d) neutrons was ∼107 pulse-1.

  3. Measurement of Oxygen Contamination in Titanium Alloy Ingots by Fast Neutron Activation Analysis.

    DTIC Science & Technology

    1982-03-12

    methods were much faster and more reliable than conventional methods. Bryne et al.( 9 ) devised an automatic system to determine oxygen in beryllium metal...Analysis, pp 259-264, (1965). * 9. Bryne , J. T.; Illslay, C. T. and Price, H. J., "An Automatic System for the Determination of Oxygen in Beryllium

  4. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  5. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  6. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  7. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  8. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis.

    PubMed

    Wang, Zimian; Pierson, Richard N

    2010-10-07

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  9. Neutron activated switch

    DOEpatents

    Barton, David M.

    1991-01-01

    A switch for reacting quickly to a neutron emission. A rod consisting of fissionable material is located inside a vacuum tight body. An adjustable contact is located coaxially at an adjustable distance from one end of the rod. Electrical leads are connected to the rod and to the adjustable contact. With a vacuum drawn inside the body, a neutron bombardment striking the rod causes it to heat and expand longitudinally until it comes into contact with the adjustable contact. This circuit closing occurs within a period of a few microseconds.

  10. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  11. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  12. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect

    Kojda, Danny; Wallacher, Dirk; Hofmann, Tommy; Baudoin, Simon; Hansen, Thomas; Huber, Patrick

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic γ-, orthorhombic β- and monoclinic α-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic α-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  13. Photoneutron cross sections for unstable neutron-rich oxygen isotopes.

    PubMed

    Leistenschneider, A; Aumann, T; Boretzky, K; Cortina, D; Cub, J; Datta Pramanik, U; Dostal, W; Elze, T W; Emling, H; Geissel, H; Grünschloss, A; Hellstr, M; Holzmann, R; Ilievski, S; Iwasa, N; Kaspar, M; Kleinböhl, A; Kratz, J V; Kulessa, R; Leifels, Y; Lubkiewicz, E; Münzenberg, G; Reiter, P; Rejmund, M; Scheidenberger, C; Schlegel, C; Simon, H; Stroth, J; Sümmerer, K; Wajda, E; Walús, W; Wan, S

    2001-06-11

    The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies about 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections d sigma/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength.

  14. Oxygen as a site specific structural probe in neutron diffraction

    SciTech Connect

    Neuefeind, Joerg C; Simonson, J Michael {Mike}; Salmon, Phil; Zeidler, Anita; Fischer, Henry E; Rauch, Helmut; Markland, Thomas; Lemmel, Hartmut

    2011-01-01

    Oxygen is a ubiquitous element, playing an essential role in most scientific and technological disciplines, and is often incorporated within a structurally disordered material where examples include molten silicates in planetary science, glasses used for lasers and optical communication, and water in biological processes. Establishing the structure of a liquid or glassy oxide and thereby its relation to the functional properties of a material is not, however, a trivial task owing to the complexity associated with atomic disorder. Here we approach this challenge by measuring the bound coherent neutron scattering lengths of the oxygen isotopes with the sensitive technique of neutron interferometry. We find that there is a small but finite contrast of 0.204(6) fm between the scattering lengths of the isotope 18O and oxygen of natural isotopic abundance natO, contrary to tables of recommended values. This has enabled us to investigate the structure of both light and heavy water by exploiting, for the first time, the method of oxygen isotope substitution in neutron diffraction, thus circumventing many of the significant problems associated with more traditional methods in which hydrogen is substituted by deuterium. We find a difference of ~0.5% between the O-H and O-D intra-molecular bond distances which is much smaller than recent estimates based on diffraction data and is found to be in excellent agreement with path integral molecular dynamics simulations made with a flexible polarisable water model. Our results demonstrate the potential for using oxygen isotope substitution as a powerful and effective site specific probe in a plethora of materials, of pertinence as instrumentation at next generation neutron sources comes online

  15. Measuring oxygen isotopes beyond the neutron dripline: Two-neutron emission and radioactivity

    NASA Astrophysics Data System (ADS)

    Kohley, Zach

    2013-10-01

    The availability of rare isotope beams has made it possible to extend nuclear structure measurements to nuclei far away from stability. Drastic changes in the structure, properties, and available decay-modes of these exotic isotopes have been observed in comparison to their stable counterparts. The oxygen isotopic chain has been particularly interesting with observations of new shell closures at N = 14 and N = 16. The MoNA-LISA/Sweeper setup at the National Superconducting Cyclotron Laboratory at Michigan State University has allowed for studies of the oxygen isotopes to be extended beyond the neutron dripline. Recently, the 26O ground state was observed for the first time and shown to be unbound by less than 200 keV. The low energy ground state of the two-neutron unbound 26O opened the possibility for the discovery of two-neutron radioactivity. A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. This technique was applied to the 26O decay and a half-life of 4.5-1. 5 + 1 . 1 (stat.) +/-3 (sys.) ps was extracted. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity. Supported by the National Science Foundation, under Grant No. PHY-1102511.

  16. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  17. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  18. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  19. Continuum effects in neutron-drip-line oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Rotureau, J.; Michel, N.; Nazarewicz, W.

    2017-08-01

    The binding-energy pattern along the neutron-rich oxygen chain, governed by an interplay between shell effects and many-body correlations impacted by strong couplings to one- and two-neutron continua, make these isotopes a unique testing ground for nuclear models. In this work, we investigate ground states and low-lying excited states of O-2823 using the complex-energy Gamow shell model and density matrix renormalization group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. Our results suggest that the ground state of 28O has a threshold character, i.e., is very weakly bound or slightly unbound. We also predict narrow excited resonances in 25O and 27O. The inclusion of the large continuum space significantly impacts predicted binding energies of O-2826. This implies that the careful treatment of a neutron continuum is necessary prior to assessing the spectroscopic quality of effective interactions in this region.

  20. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  1. Neutron coincidence imaging for active and passive neutron assays

    SciTech Connect

    Estep, R. J.; Brunson, G. S.; Melton, S. G.

    2001-01-01

    Neutron multiplicity assay algorithms for {sup 240}Pu assume a point source of fission neutrons that are detected in a single detector channel. The {sup 240}Pu in real waste, however, is more likely to be distributed throughout the container in some random way. For different reasons, this leads to significant errors when using either multiplicity or simpler coincidence analyses. Reduction of these errors can be achieved using tomographic imaging. In this talk we report on our results from using neutron singles and coincidence data between tagged detector pairs to provide enhanced tomographic imaging capabilities to a crate nondestructive assay system. Only simulated passive coincidence data is examined here, although the higher signal rates from active coincidence counting hold more promise for waste management. The active coincidence approach has significantly better sensitivity than the passive and is not significantly perturbed by (alpha,n) contributions. Our study was based primarily on simulated neutron pulse trains derived from the Los Alamos SIM3D software, which were subjected to analysis using the Los Alamos CTEN-FIT and TGS-FIT software. We found significantly improved imaging capability using the coincidence and singles rate data than could be obtained using the singles rate alone.

  2. Determining Yankee Nuclear Power Station neutron activation

    SciTech Connect

    Heider, K.J.; Morrissey, K.J. )

    1993-01-01

    The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

  3. Neutron activation analysis of a penny

    NASA Astrophysics Data System (ADS)

    Stevens, Richard E.

    2000-04-01

    Neutron activation analysis has been used for many years as an analysis tool and as an educational tool to teach students about nuclear properties. This article presents an exercise in the neutron activation analysis of a penny which, due to the simplicity of the resulting gamma-ray spectra, is appropriate for general physics classes. Students express a great deal of interest both in seeing the reactor in use as well as determining the composition of something that is familiar to them.

  4. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  5. Neutron Activation Analysis, A Titanium Material Study

    NASA Astrophysics Data System (ADS)

    Dresser, Charles

    2011-04-01

    In order to obtain faster and more accurate measurements of radioactive contaminates within a sample of titanium we expose it to a neutron flux. This flux will activate the stable and quasi stable (those with extremely long half lives) isotopes into resultant daughter cells that are unstable which will result in shorter half lives on the order of minutes to days. We measured the resulting decays in the Germanium Crystal Detector and obtained a complex gamma spectrum. A mathematical model was used to recreate the production of the measured isotopes in the neutron flux and the resultant decays. Using this model we calculated the mass percent of the contaminate isotopes inside our titanium sample. Our mathematical model accounted for two types of neutron activation, fast or thermal activation, since this would determine which contaminate was the source of our signals. By looking at the percent abundances, neutron absorption cross-sections and the resulting mass percents of each contaminate we are able to determine the exact source of our measured signals. Additionally we implemented a unique ratio method to cross check the mathematical model. Our results have verified that for fast neutron activation and thermal neutron activation the method is accurate.

  6. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  7. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  8. Improved neutron activation prediction code system development

    NASA Technical Reports Server (NTRS)

    Saqui, R. M.

    1971-01-01

    Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.

  9. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  10. Overview of Ignitor Neutronics and Activation

    NASA Astrophysics Data System (ADS)

    Rollet, S.; Batistoni, P.; Forrest, R.

    1999-11-01

    The Ignitor experiment is designed to produce D-T plasmas where ignition can take place and the physics of α-particles can be studied. After a first period of operation without significant neutron production, a second phase in deuterium with 2.5 MeV neutron production rate up to 10^17 n/s is planned. This will be followed by operations at increasing percentages of tritium, leading to short, but intense 14 MeV neutron production, up to ≈ 3 × 10^19 n/s. To calculate the neutron fluxes in all the machine components, including the streaming through the ports, a detailed description of the actual Ignitor machine is implemented in the MCNP-4B Monte Carlo code. These fluxes are then used as input for the FISPACT-97 code for the analysis of the activation at the end of life (EOL) and at intermediate times for safety assessment purposes. The estimated neutron emission pulse results in rather modest neutron fluences (≈ 10^18 n/cm^2 on the first wall at EOL). Therefore, radiation damage in the device components is not a concern, with the possible exception of the toroidal magnet insulator. On the other hand, the neutron flux on the first wall can be as high as that of a demonstration reactor (≈ 10^14 n/s/cm^2), inducing, in the absence of a blanket, considerable activation. The shielding strategy and possible solutions to prevent/reduce the activation of the cryostat are presented.

  11. Proposed neutron activation analysis facilities in the Advanced Neutron Source

    SciTech Connect

    Robinson, L.; Dyer, F.F.; Emery, J.F.

    1990-01-01

    A number of analytical chemistry experimental facilities are being proposed for the Advanced Neutron Source. Experimental capabilities will include gamma-ray analysis and neutron depth profiling. This paper describes the various systems proposed and some of their important characteristics.

  12. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  13. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    SciTech Connect

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancy distance in the anion sublattice of the fluorite-related structure of bismuth oxide.

  14. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    SciTech Connect

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancy distance in the anion sublattice of the fluorite-related structure of bismuth oxide.

  15. Geochemical applications for prompt gamma neutron activation

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Coveney, R. M.; Tittle, C. W.; Gartner, M. L.; Murphy, R. D.

    1985-05-01

    Neutron-capture (prompt) gamma-ray neutron activation techniques are finding increasing application for both laboratory and in situ measurement of geological materials. Prompt gamma rays can be used to measure abundances for most light mass elements and several heavier mass elements which are more difficult by other techniques. These elements include many of those routinely measured in rocks and minerals. Geochemical abundance data provide information useful for determining rock and ore genesis, porosity, moisture content, salinity, and the detection of formerly oxidizing or reducing environments. Some of the applications include development of petrogenetic models, exploration and development of oil and mineral deposits, and process control in the mining industry.

  16. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  17. Neutron Yield Measurements via Aluminum Activation

    SciTech Connect

    1999-12-08

    Neutron activation of aluminum may occur by several neutron capture reactions. Four such reactions are described here: {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 27}Al(n, 2n){sup 26}Al and {sup 27}Al(n,p){sup 27}Mg. The radioactive nuclei {sup 28}Al, {sup 24}Na, and {sup 27}Mg, which are produced via the {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg neutron reactions, beta decay to excited states of {sup 28}Si, {sup 24}Mg and {sup 27}Al respectively. These excited states then emit gamma rays as the nuclei de-excite to their respective ground states.

  18. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  19. Fast neutron activation analysis by means of low voltage neutron generator

    NASA Astrophysics Data System (ADS)

    Medhat, M. E.

    A description of D-T neutron generator (NG) is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given.

  20. Active oxygen doctors the evidence

    NASA Astrophysics Data System (ADS)

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando

    2009-02-01

    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  1. Active oxygen doctors the evidence.

    PubMed

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando

    2009-02-01

    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  2. Do electron-capture supernovae make neutron stars?. First multidimensional hydrodynamic simulations of the oxygen deflagration

    NASA Astrophysics Data System (ADS)

    Jones, S.; Röpke, F. K.; Pakmor, R.; Seitenzahl, I. R.; Ohlmann, S. T.; Edelmann, P. V. F.

    2016-09-01

    Context. In the classical picture, electron-capture supernovae and the accretion-induced collapse of oxygen-neon white dwarfs undergo an oxygen deflagration phase before gravitational collapse produces a neutron star. These types of core collapse events are postulated to explain several astronomical phenomena. In this work, the oxygen deflagration phase is simulated for the first time using multidimensional hydrodynamics. Aims: By simulating the oxygen deflagration with multidimensional hydrodynamics and a level-set-based flame approach, new insights can be gained into the explosive deaths of 8-10 M⊙ stars and oxygen-neon white dwarfs that accrete material from a binary companion star. The main aim is to determine whether these events are thermonuclear or core-collapse supernova explosions, and hence whether neutron stars are formed by such phenomena. Methods: The oxygen deflagration is simulated in oxygen-neon cores with three different central ignition densities. The intermediate density case is perhaps the most realistic, being based on recent nuclear physics calculations and 1D stellar models. The 3D hydrodynamic simulations presented in this work begin from a centrally confined flame structure using a level-set-based flame approach and are performed in 2563 and 5123 numerical resolutions. Results: In the simulations with intermediate and low ignition density, the cores do not appear to collapse into neutron stars. Instead, almost a solar mass of material becomes unbound from the cores, leaving bound remnants. These simulations represent the case in which semiconvective mixing during the electron-capture phase preceding the deflagration is inefficient. The masses of the bound remnants double when Coulomb corrections are included in the equation of state, however they still do not exceed the effective Chandrasekhar mass and, hence, would not collapse into neutron stars. The simulations with the highest ignition density (log 10ρc = 10.3), representing the case

  3. Neutron activation for semiconductor materials characterization at Eastman Kodak Company

    SciTech Connect

    Hossain, T.Z.

    1988-01-01

    Several neutron activation analysis (NAA) procedures have been used to establish process parameters in the manufacture of semiconductor devices. In addition to instrumental NAA (INAA), techniques such as neutron depth profiling and neutron-activated accelerator mass spectrometry have been used to obtain depth distribution of elements of interest.

  4. Background and Source Term Identification in Active Neutron Interrogation Methods

    DTIC Science & Technology

    2011-03-24

    theory section, ring detector tallies (f5 – MCNP) provided both neutron and photon fluences [particles/cm2] as functions of their energies. Figure 19...BACKGROUND AND SOURCE TERM IDENTIFICATION IN ACTIVE NEUTRON INTERROGATION METHODS THESIS...M01 BACKGROUND AND SOURCE TERM IDENTIFICATION IN ACTIVE NEUTRON INTERROGATION METHODS THESIS Presented to the Faculty Department of

  5. The A-711 high yield neutron generator and automated pneumatic transfer system for fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Simpson, James D.; Chichester, D. L.; Hill, J. R.

    2005-12-01

    To make fast neutron activation analysis (FNAA) of samples with short half-lives easier, Thermo Electron has updated and modernized its automatic pneumatic transfer system for activation laboratories. For example, with a separation of 10 m from the counting station and a transit speed of 15 m/s, oxygen can be analyzed with improved accuracy. The fast transit time is needed due to the short half-lives of 16N and 19O, 7 s and 27 s respectively, and oxygen-free polyethylene sample bottles are used to allow prompt counting and decrease background counts. Incorporating a dual-axis rotator at the irradiation station for sample and standard, the transfer system also incorporates stations for sample loading, disposal and counting as well as a station to incorporate a chemical neutron source such as Cf-252.

  6. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  7. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10(6)n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Oxygen enhancement ratio for d(800) + (Be + Ta) and d(800) + (Ta + Be) neutrons

    SciTech Connect

    Harrison, G.H.; Balcer-Kubiczek, E.K.

    1980-07-01

    Specialized experiments were performed to determine whether the neutron oxygen enhancement ratio (OER) changes significantly as the mean energy increases above 25 MeV. The experimental design called for OER measurements at two energies in the same experiment. The neutron production reaction d(80) + (Be + Ta) generated a beam with mean energy 38 MeV; upon rotation of the target, d(80) + (Ta + Be) neutrons were generated with mean energy 25 MeV. Suspensions of the bacterium Serratia marcesens were irradiated in oxic-hypoxic pairs, alternately with high- and lower-energy neutrons. Replicate experiments yielded OER values and 95% confidence limits of 2.25 (2.05, 2.50) at 25 MeV and 1.67 (1.57, 1.79) at 38 MeV. The x-ray OER was 3.3 (3.1, 3.5). The significant decrease in OER supports our results with Vicia faba showing OER values of 1.7, 1.4, and 2.6 for 25- and 38-MeV neutrons and for x rays, respectively. The yield of spallation products with mass number 6, 7, 9, 10, and 11 arising from neutrons interacting in tissue was analyzed. The tissue kerma from such product contribute kerma equal to 15 to 30% of the recoil proton kerma and thus may provide the physical basis for the observed OER reduction at high neutron energies.

  9. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  10. Eulogy for a neutron activation analysis facility

    SciTech Connect

    Lepel, E.A.

    2000-07-01

    A relatively inexpensive facility for neutron activation analysis (NAA) was developed in the early 1970s at Pacific Northwest National Laboratory (PNNL). With the availability of large {sup 252}Cf sources, a subcritical facility was designed that could contain up to 100 mg of {sup 252}Cf (T{sub 1/2} = 2.645 yr and a spontaneous fission yield of 2.34 x 10{sup 9} n/s{center_dot}mg{sup {minus}1}). The {sup 252}Cf source was surrounded by a hexagonal array of {sup 235}U enriched fuel rods, which provided a 10- to 20-fold multiplication of the neutrons emitted from the {sup 252}Cf source. This assembly was located near the bottom of a 1.52-m-diam x 6.10-m-deep water-filled pool. The Neutron Multiplier Facility (NMF) was operational from November 1977 to April 1998--a period of 20.4 yr. The NMF began operation with {approximately}100 mg of {sup 252}Cf, and because of decay of the {sup 252}Cf, it had decreased to 0.34 mg at the time of shutdown. Decommissioning of the NMF began April 1998 and was completed in October 1999.

  11. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  12. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  13. Combining fluorescence imaging and neutron radiography to simultaneously record dynamics of oxygen and water content in the root zone

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Nagl, S.; Kardjilov, N.

    2010-12-01

    There is a growing need in non-destructive techniques able to measure life-controlling parameters such as oxygen and water dynamics in ecosystems. We use neutron radiography coupled with fluorescence imaging to map the dynamics of these two essential biogeochemical parameters in the root-zone of plants. Measuring the real-time distribution of water and oxygen concentration can enable us to better understand where the active parts of the roots are located in respect to uptake and respiration. Roots performance itself is a function of age and local conditions such as water and oxygen availability in soil. It is technically challenging to monitor these dynamics in small distances from the roots without disturbing them. Non-destructive imaging methods such as fluorescence and neutron imaging provide a unique opportunity to unravel some of these complex processes. Boron-free glass containers (inner size 10cm x 10cm x 1cm) were filled with fine sand of different grain sizes. A sensor foil for O2 (Borisov et al. 2006) was installed on one inner-side of the containers. We grew lupine plants in the container for two weeks under controlled conditions. We took neutron radiographs and fluorescence images of the samples for a range of water contents, and therefore a range of root activities and oxygen changes. We observed the consumption of oxygen induced by roots of lupine plants during 36 hours. Neutron radiography gives us the information about root development and water content. Due to the high water content, aeration from atmosphere is limited. By focusing on the initial conditions we observe that the fluorescence intensity increases in the lower and upper part, where roots are located. The respiration activity creates oxygen deficits close to the roots, and we observed a higher activity by the lateral roots than the tap root. Moreover, the oxygen consumption increases with increasing root growth or root age. After 24 hours the images indicates better aeration in the upper

  14. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  15. In-situ soil composition and moisture measurement by surface neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  16. Neutron activation analysis of Etruscan pottery

    SciTech Connect

    Whitehead, J.; Silverman, A.; Ouellet, C.G.; Clark, D.D.; Hossain, T.Z

    1992-07-01

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  17. Photon and neutron active interrogation of highly enriched uranium.

    SciTech Connect

    Myers, W. L.; Goulding, C. A.; Hollas, C. L.; Moss, C. E.

    2004-01-01

    The physics of photon and neutron active interrogation of highly enriched uranium (HEU) using the delayed neutron reinterrogation method is described in this paper. Two sets of active interrogation experiments were performed using a set of subcritical configurations of cocentric HEU metal hemishells. One set of measurements utilized a pulsed 14-MeV neutron generator as the active source. The second set of measurements utilized a linear accelerator-based bremsstrahlung photon source as an active interrogation source. The neutron responses were measured for both sets of experiments. The operational details and results for both measurement sets are described.

  18. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  19. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  20. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  1. Neutron activation analysis in archaeological chemistry

    SciTech Connect

    Harbottle, G.

    1987-01-01

    Neutron activation analysis has proven to be a convenient way of performing the chemical analysis of archaeologically-excavated artifacts and materials. It is fast and does not require tedious laboratory operations. It is multielement, sensitive, and can be made nondestructive. Neutron activation analysis in its instrumental form, i.e., involving no chemical separation, is ideally suited to automation and conveniently takes the first step in data flow patterns that are appropriate for many taxonomic and statistical operations. The future will doubtless see improvements in the practice of NAA in general, but in connection with archaeological science the greatest change will be the filling, interchange and widespread use of data banks based on compilations of analytical data. Since provenience-oriented data banks deal with materials (obsidian, ceramics, metals, semiprecious stones, building materials and sculptural media) that participated in trade networks, the analytical data is certain to be of interest to a rather broad group of archaeologists. It is to meet the needs of the whole archaeological community that archaeological chemistry must now turn.

  2. Chemical weapons detection by fast neutron activation analysis techniques

    NASA Astrophysics Data System (ADS)

    Bach, P.; Ma, J. L.; Froment, D.; Jaureguy, J. C.

    1993-06-01

    A neutron diagnostic experimental apparatus has been tested for nondestructive verification of sealed munitions. Designed to potentially satisfy a significant number of van-mobile requirements, this equipment is based on an easy to use industrial sealed tube neutron generator that interrogates the munitions of interest with 14 MeV neutrons. Gamma ray spectra are detected with a high purity germanium detector, especially shielded from neutrons and gamma ray background. A mobile shell holder has been used. Possible configurations allow the detection, in continuous or in pulsed modes, of gamma rays from neutron inelastic scattering, from thermal neutron capture, and from fast or thermal neutron activation. Tests on full scale sealed munitions with chemical simulants show that those with chlorine (old generation materials) are detectable in a few minutes, and those including phosphorus (new generation materials) in nearly the same time.

  3. Searching for isovector signatures in the neutron-rich oxygen and calcium isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, Jorge

    2015-04-01

    We search for potential isovector signatures in the neutron-rich oxygen and calcium isotopes within the framework of a relativistic mean-field theory with an exact treatment of pairing correlations. To probe the isovector sector we calibrate a few relativistic density functionals using the same isoscalar constraints but with one differing isovector assumption. It is found that under certain conditions, the isotopic chain in oxygen can be made to terminate at the experimentally observed 24 O isotope. In the case of the calcium isotopes, the drip line is predicted to be reached beyond 60 Ca. To produce such behavior, the resulting symmetry energy must be soft, with predicted values for the symmetry energy and its slope at saturation density being J = (30 . 92 +/- 0 . 47) MeV and L = (51 . 0 +/- 1 . 5) MeV, respectively. As a consequence, the neutron-skin thickness of 208 Pb is rather small: Rskin208 = (0 . 161 +/- 0 . 011) fm. This same model, labelled FSUGarnet , predicts R1 . 4 = (13 . 1 +/- 0 . 1) km for the radius of a ``canonical'' 1.4M⊙ neutron star, yet is also able to support a two-solar-mass neutron star.

  4. SuperCDMS SNOLAB Experiment and Active Neutron Veto

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    2014-03-01

    The SuperCDMS SNOLAB experiment will attempt direct detection of the most promising candidate for dark matter, Weakly Interacting Massive Particles (WIMPs) using cryogenically cooled germanium and silicon semiconductors that provide sub-keV thresholds and excellent rejection of most radioactivity or cosmic-ray-induced backgrounds. An active neutron veto with high efficiency for tagging neutron-induced backgrounds will not only directly reduce the neutron background rate, but also provide an in-situ measurement of the neutron activity near the dark matter target. This active veto will consist of liquid scintillator doped with an isotope with high neutron-capture cross section. I will present a brief overview of the experiment, and report in detail on the current status of simulation and prototyping of this neutron veto.

  5. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  6. A new instrument for activation analysis - The cold neutron irradiator

    SciTech Connect

    Clark, D.D.; Hossain, T.Z. )

    1993-01-01

    As part of a program of developing analytical applications of cold neutrons, the authors are undertaking optimization studies of a novel design that exploits the combination of the superior analytical properties of cold neutrons with the simplicity and portability of isotopic neutron sources such as [sup 252]Cf. The basic concept is simple: The capabilities of the usual design in which the neutron source is surrounded with a moderator block with access ports and throughports can be enhanced by cooling the moderator to cryogenic temperatures. A proposed name for the device, which is suitable for both neutron activation analysis (NAA) and prompt gamma NAA (PGNAA), is the cold neutron irradiator (CNI). Results from initial scoping studies are summarized. Comparisons are primarily with a room temperature isotopic source and in some respects with thermal reactors. The most obvious advantage is that neutron reaction cross sections, being proportional to 1/v, are, for example, more than eight times larger for cold neutrons corresponding to the temperature of liquid helium than for room temperature neutrons. Cold neutrons are more readily collimated, guided, focused, filtered, and shielded than thermal neutrons. It is therefore easier to achieve a low ambient gamma-ray background and to decrease the distances between source, sample, and detector to obtain further increases in counting rates or to tailor the geometry to suit differing experimental requirements.

  7. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  8. Neutron-activation analysis for thorium in zircon.

    PubMed

    Desai, H B; Parthasarathy, R; Das, M S

    1972-03-01

    The thorium content of zircons and standard rock samples was determined by neutron-activation analysis. The 310-keV photopeak activity of (233)Pa was enhanced by a prior chemical separation which removed interfering induced activities.

  9. 14 MeV neutron activation analysis of geological and lunar samples

    SciTech Connect

    Laul, J.C.; Wogman, N.A.

    1981-04-01

    14 MeV neutron activation analysis (NAA) is ideal for accurately determining Oxygen and Silicon contents in geological and lunar materials. It is fast, nondestructive, economical, and can be used on a routine basis in a laboratory. Although 14 MeV NAA is particularly suited to light elements, its use has been extended to measure other elements as well such as Aluminum, Magnesium, Iron, Calcium, Titanium, Strontium, Nickel, Yttrium, Zirconium, Niobium and Cerium. Thus, the use of 14 MeV neutrons is of considerable importance in NAA. The disadvantages of the method are that interference reactions are common because of high neutron energy; the flux is nonuniform in longer irradiation due to depletion of the target in the neutron generator. Overall, 14 MeV NAA is ideal for short irradiations and when supplemented with thermal NAA provides the maximum elemental information in small aliquants of geological and lunar materials.

  10. Neutron activation analysis at the Californium User Facility for Neutron Science

    SciTech Connect

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide {sup 252}Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world`s largest inventory of compact {sup 252}Cf neutron sources. Neutron source intensities of {le} 10{sup 11} neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10{sup 8} cm{sup {minus}2} s{sup {minus}1} at the sample. Total flux of {ge}10{sup 9} cm{sup {minus}2} s{sup {minus}1} is feasible for large-volume irradiation rabbits within the {sup 252}Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis.

  11. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  12. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  13. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  14. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  15. Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.

    PubMed

    O'Dell, William B; Agarwal, Pratul K; Meilleur, Flora

    2017-01-16

    Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. We have determined high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed "pre-bound" molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygen activation. These results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme-substrate complex. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxygen in activator centers of zinc sulfide

    SciTech Connect

    Golobeva, N.P.; Fok, M.V.

    1986-05-01

    The authors observed the sensitized luminescence of Tm and Dy without addition of Cu and Ag in samples which had been obtained by the sulfonation of zinc sulfide in hydrogen sulfide; the zinc sulfide has a copper concentration below 5.10/sup -6/ mass %. In this case the excitation can be transmitted from the ZnS lattice to the rare-earth activators mainly through defects including oxygen. The following conclusions were made. In the case of activated ZnS, oxygen is present in formations accounting for the excitation and luminescence of a number of luminophors. When an activator is introduced in the region of ZnS layer faults, where also the oxygen must be located, the positioning of the faults in close vicinity is facilitated even when the oxygen concentration of the ZnS is low. All this must be considered when models of luminescence centers of zinc sulfide are developed.

  17. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  18. Activities on Nuclear Data Measurements at Pohang Neutron Facility

    NASA Astrophysics Data System (ADS)

    Kim, Guinyun

    2009-03-01

    We report the activities of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Ta, Mo) are in general agreement with the evaluated data in ENDF/B-VI. We measured the thermal neutron capture cross-sections and the resonance integrals of the 186W(n,γ)187W reaction and the 98Mo(n,γ)99Mo reaction by the activation method using the 197Au(n,γ)198Au monitor reaction as a single comparator. We also report the isomeric yield ratios for the 44 m, gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)52m,gMn, and 103Rh(γ,4n)99m,gRh by using the activation method.

  19. Neutron activation analysis of some building materials

    NASA Astrophysics Data System (ADS)

    Salagean, M. N.; Pantelica, A. I.; Georgescu, I. I.; Muntean, M. I.

    1999-01-01

    Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U. Yb, W and Zn in seven Romanian building materials were determined by the Instrumental Neutron Activation Analysis (INAA) method using the VVR-S Reactor of NIPNE- Bucharest. Raw matarials used in cement obtaining ≈ 75% of limestone and ≈ 25% of clay, cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick have been analyzed. The brick was compacted from furnace slay, fly coal ash, phosphogypsum, lime and cement. The U, Th and K concentrations determined in the brick are in agreement with the natural radioactivity measurements of226Ra,232Th and40K. These specific activities were found about twice and 1.5 higher than the accepted levels in the case of226Ra and232Th, as well as40K, respectively. By consequence, the investigated brick is considered a radioactive waste. The rather high content of Co, Cr, K, Th, and Zh in the brick is especially due to the slag and fly ash, the main componets. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as fluxes in matallurgy.

  20. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    NASA Astrophysics Data System (ADS)

    Tzika, F.; Stamatelatos, I. E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample.

  1. The synchronous active neutron detection system for spent fuel assay

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  2. Industrial Materials Characterization Using Neutron Activation Techniques

    SciTech Connect

    S. Yusuf; W. Rigot; M. Buchmann; T. Quinn

    2000-06-04

    For more than 30 yr now, we have applied neutron activation analysis (NAA) in material characterization by stressing the fundamentals, namely, understanding the nuclear reactions, characterizing the irradiation facility, and establishing a stable counting system. When these three aspects are treated properly, then Eq. (1), A{sub 0} = {lambda}Ce{sup {lambda}t{sub 1}}/(1-e{sup -{lambda}{Delta}})(1-e{sup {lambda}{tau}})={epsilon}{gamma}({theta}mN{sub A}/M){integral}{sub E=0}{sup E={infinity}}{Phi}(E){sigma}(E)dE, is applicable with negligible errors. The quantities in Eq. (1) are all known except for the quantities under the integral and the counting efficiency. It is the treatment of the integral in Eq. (1) that raises a question and is the topic in numerous theses. The object of this paper is to show how the shape-independent approach can be used to cut down time and cost of analysis without compromising accuracy.

  3. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  4. Thermal neutron imaging in an active interrogation environment

    SciTech Connect

    Vanier,P.E.; Forman, L., and Norman, D.R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  5. Neutron activation studies and the effect of exercise on osteoporosis

    SciTech Connect

    Harrison, J.E.

    1984-01-01

    A technique is described to measure calcium content by in vivo neutron activation analysis of the trunk and upper thighs. In postmenopausal women, estrogen and calcium or fluoride reversed osteoporosis.

  6. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  7. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  8. Elemental analysis of combustion products by neutron activation

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification. (DLC)

  9. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  10. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  11. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  12. In vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  13. Simulation and calibration of an active neutron dosemeter.

    PubMed

    Bergmeier, F; Volnhals, M; Wielunski, M; Rühm, W

    2014-10-01

    Here the latest development stages of the HMGU active neutron dosemeter are presented. This work includes the comparison of the dosemeter's response function, calculated with Geant4, and the measurements in monoenergetic neutron fields at the Physikalisch Technische Bundesanstalt in Braunschweig, Germany. These results were used to match the response function and the count-to-dose conversion factors of the dosemeter to the Hp(10) personal dose equivalent.

  14. Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-10-01

    In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

  15. Extraction of polychromatic thermal neutrons by Bragg diffraction to use for prompt gamma neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Byun, S. H.; Choi, H. D.; Jun, B. J.; Kim, M. S.

    2000-07-01

    Extraction method of thermal neutron beam by Bragg diffraction is investigated. A thermal neutron beam is used for the Prompt Gamma Neutron Activation Analysis system at HANARO, a 30 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic beam including all orders of diffraction is obtained by setting a pair of pyrolytic graphite crystals with a Bragg angle of 45° on a horizontal white beam line. Diffracted neutron flux at the sample position is calculated by considering the integrated reflectivity and mosaic spread of crystals. Due to the divergence effect, the mosaic spread of crystals is optimized to give the maximum and flat flux at the sample position. An experiment has been performed to verify the reflectivities for high order diffractions from pyrolytic graphite. When the focusing technique of bending the crystals is adopted, a design value of 1.0×108n/cm2s is expected at the sample position. Hence Bragg diffraction is a promising method of extracting thermal neutrons for PGNAA.

  16. Extending neutron activation analysis to materials with high concentrations of neutron absorbing elements

    NASA Astrophysics Data System (ADS)

    Chilian, Cornelia

    The purpose of this study was to investigate epithermal neutron self-shielding for all nuclides used in Neutron Activation Analysis, NAA. The study started with testing the theory and measuring the nuclear factors characterizing thermal and epithermal self-shielding for 1 mL cylindrical samples containing the halogens Cl, Br and I irradiated in a mixed thermal and epithermal neutron spectrum. For mono-element samples, both thermal and epithermal experimental self-shielding factors were well fitted by sigmoid functions. As a result, to correct thermal neutron self-shielding, the sigmoid uses a single parameter, mth, which can be directly calculated for any element from the sample size, the weighted sum of the thermal absorption cross-sections, sigmaabs, of the elements in the sample and a constant kth characteristic of the irradiation site. However, to correct epithermal self-shielding, the parameter mep, a function of sample geometry and composition, irradiation conditions and nuclear characteristics, needs to be measured for each activated nuclide. Since the preliminary tests were positive and showed that self-shielding, as high as 30%, could be corrected with an accuracy of about 1%, except in cases with significant epithermal shielding of one element by another, we pursued the study with the verification of two additional aspects. First, the dependency of the self-shielding parameters mth, and mep, on the properties of the irradiation site was evaluated using three different irradiation sites of a SLOWPOKE reactor, and it was concluded that the amount of both thermal and epithermal self-shielding varied by less than 10% from one site to another. Second, the variation of the self-shielding parameters, mth, and mep, with the size of the cylinder, as r( r+h), was tested for h/r ratios from 0.02 to 6.0, and this geometry dependence was confirmed even in slightly non-isotropic neutron fields. These results allowed separating from the mep parameter the amount of

  17. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  18. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  19. Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Holt, J. D.; Menéndez, J.; Schwenk, A.

    2013-03-01

    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21, 22, 23O , focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf_{7/2}p_{3/2} valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O , which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.

  20. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  1. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δmore » > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  2. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    PubMed

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ((241)Am/Be, (252)Cf, (241)Am/B, and DT neutron generator). Among the different systems the (252)Cf neutron based PGNAA system has the best performance.

  3. Calibration of the delayed-gamma neutron activation facility

    SciTech Connect

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-02-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99{percent} of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1{percent}. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. {copyright} {ital 1996 American Association of Physicists in Medicine.}

  4. Biochar activated by oxygen plasma for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (<150 °C) plasma treatment that efficiently activates a yellow pine biochar. Particularly, the effects of oxygen plasma on the biochar microstructure and supercapacitor characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  5. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  6. A new facility for rapid neutron activation analysis

    SciTech Connect

    Zeisler, R.; Makarewicz, M.; Grass, F.; Casta, J.

    1996-12-31

    Many research groups have undertaken efforts on the utilization of short-lived nuclides in a broad spectrum of neutron activation analysis (NAA) applications. The advantages of these approaches are obvious because the information on the sample can be extracted more rapidly. In addition to its other advantages, NAA can become extremely competitive in price and analysis time. Nevertheless, NAA with short-lived nuclides has not gained broad popularity, perhaps because of some difficulties in accuracy and the availability of suitable irradiation facilities. This report discusses the ASTRA reactor for neutron activation analysis capabilities.

  7. Influence of oxygen deficiency and of neutron-induced defects on flux pinning in melt textured bulk YBa 2Cu 3O 7- x samples

    NASA Astrophysics Data System (ADS)

    Wisniewski, A.; Czurda, C.; Weber, H. W.; Baran, M.; Reissner, M.; Steiner, W.; Zhang, P. X.; Zhou, L.

    1996-02-01

    Critical current densities ( Jc), irreversibility lines (IL) and the time dependence of magnetic moments in melt-textured YBa 2Cu 3O 7- x with different oxygen contents (92.4 K < Tc < 27.4 K) were investigated. The samples show an increasing tendency towards two-dimensional pinning with decreasing oxygen content. The values of Jc and the effective activation energy decrease systematically and all the ILs shift to lower magnetic fields and temperatures with decreasing oxygen content. The ILs show a crossover from a power law dependence Hirr = β(1 - Tirr/ Tc) α with α ∼ {3}/{2} to a more rapid temperature dependence at higher fields. The field Hcr, at which the crossover occurs, is lower for samples with higher oxygen deficiency. After neutron irradiation Jc increases in all cases except for the material with Tc = 27.4 K, and the temperature dependence of Jc becomes flatter than in the unirradiated state. After irradiation the ILs change differently depending on oxygen content, i.e. they shift markedly to higher fields and temperature at intermediate oxygen content, change only slightly or shift to lower fields and temperatures at high and low oxygen contents. For all the samples the crossover field Hcr increases after irradiation.

  8. Triton burnup measurements in KSTAR using a neutron activation system

    SciTech Connect

    Jo, Jungmin; Shi, Yue-Jiang; Chung, Kyoung-Jae Hwang, Y. S.; Cheon, MunSeong; Rhee, T.; Kim, Junghee; Kim, Jun Young; Isobe, M.; Ogawa, K.

    2016-11-15

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a {sup 3}He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%–0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  9. Triton burnup measurements in KSTAR using a neutron activation system

    NASA Astrophysics Data System (ADS)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  10. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Activation of high- Tc superconductors with neutron irradiation

    NASA Astrophysics Data System (ADS)

    Nakano, Makito; Ogikubo, Kouji; Terai, Takayuki; Yamawaki, Michio; Hoshiya, Taiji

    2002-10-01

    Activation due to nuclear transmutation is a very important factor for feasibility evaluation on the improvement of superconducting property by neutron irradiation. In this paper, the activation of Bi 2Sr 2CaCu 2O 8+ x (Bi-2212) superconductor was evaluated by the activation analysis and calculation using ORIGEN-JR computer code. The activation analysis was carried out to determine the composition and impurity concentrations of the specimen. Then, based on the data about impurities, the contribution of the impurities and the decay of radioactivity after irradiation were calculated. Main elements for activation were Sr as a component of Bi-2212, and Co, Zn and Fe as impurities. Activation caused by the impurities occupied 40% 1 year after irradiation. When thermal neutron flux was reduced by 80% using a Cd filter, the total activation was reduced to about 30%.

  12. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  13. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  14. Borehole neutron activation: The rare earths

    SciTech Connect

    Mikesell, J.L.; Senftle, F.E.

    1988-02-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods offer the mining geologist techniques for mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them as analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the new application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can assist the mining geologist.

  15. Status report of CPHS and neutron activities at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xing, Q.; Zheng, S.; Yang, Y.; Gong, H.; Xiao, Y.; Wu, H.; Guan, X.; Du, T.

    2016-11-01

    The Compact Pulsed Hadron Source (CPHS) project that was launched in September 2009 at Tsinghua University has reached a first commissioning stage in conjunction with ongoing activities to fulfill the eventual design goal of a ˜ 1013 n/s epithermal-to-cold neutron yield for education, instrumentation development, and industrial applications. Here, we report the latest progress on the commissioning and applications of 3MeV proton and neutron beam lines in the last one and half years, and the design, fabrication, engineering of the 13MeV/16kW proton accelerator system.

  16. Active neutron multiplicity analysis and Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Krick, M. S.; Ensslin, N.; Langner, D. G.; Miller, M. C.; Siebelist, R.; Stewart, J. E.; Ceo, R. N.; May, P. K.; Collins, L. L., Jr.

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined.

  17. Application of neutron-activation analysis to geological materials

    SciTech Connect

    Laul, J.C.; Wogman, N.A.

    1980-12-01

    Neutron activation analysis (NAA) is an extremely sensitive, selective, and precise method, which yields a wealth of elemental information from even a small-sized sample. By varying neutron fluxes, irradiation times, decay and counting intervals in instrumental NAA, it is possible to accurately determine about 35 elements in a geological aliquot. When INAA is coupled with coincidence-noncoincidence Ge(Li)-Na(Tl) counting, it enhances the sensitivities of various elements by order of magnitude. The attractive features of INAA are that it is fast, nondestructive and economical.

  18. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  19. Neutron Field Measurements in Phantom with Foil Activation Methods.

    DTIC Science & Technology

    1986-11-29

    jI25 Ii III uumu ullli~ S....- - Lb - w * .qJ’ AD-A 192 122 ulJ. IL (pj DNA-TR-87- 10 N EUTRON FIELD MEASUREMENTS IN PHANTOM WITH FOIL ACTIVATION...SAND II Measurements in Phantom 6 4 The 5-Foil Neutron Dosimetry Method 29 5 Comparison of SAND II and Simple 5-Foil Dosimetry Method 34 6 Thermal ...quite reasonable. The monkey phantom spectrum differs from the NBS U-235 fission spectrum in that the former has a I/E tail plus thermal -neutron peak

  20. Compilation of detection sensitivities in thermal-neutron activation

    NASA Technical Reports Server (NTRS)

    Wahlgren, M. A.; Wing, J.

    1967-01-01

    Detection sensitivities of the chemical elements following thermal-neutron activation have been compiled from the available experimental cross sections and nuclear properties and presented in a concise and usable form. The report also includes the equations and nuclear parameters used in the calculations.

  1. PIXE and neutron activation methods in human hair material analysis

    NASA Astrophysics Data System (ADS)

    Bǎdicǎ, T.; Ciortea, C.; Cojocaru, V.; Ivaşcu, M.; Petrovici, A.; Popa, A.; Popescu, I.; Sǎlǎgean, M.; Spiridon, S.

    1984-04-01

    In order to compare some of the nuclear methods in human hair material analysis, proton induced X-ray excitation and variant techniques of neutron activation analysis have been used. The elemental concentrations are compared with the IAEA-Vienna certified values. The efficiency and reliability of the methods used are briefly discussed.

  2. Neutron activation analysis; A sensitive test for trace elements

    SciTech Connect

    Hossain, T.Z. . Ward Lab.)

    1992-01-01

    This paper discusses neutron activation analysis (NAA), an extremely sensitive technique for determining the elemental constituents of an unknown specimen. Currently, there are some twenty-five moderate-power TRIGA reactors scattered across the United States (fourteen of them at universities), and one of their principal uses is for NAA. NAA is procedurally simple. A small amount of the material to be tested (typically between one and one hundred milligrams) is irradiated for a period that varies from a few minutes to several hours in a neutron flux of around 10{sup 12} neutrons per square centimeter per second. A tiny fraction of the nuclei present (about 10{sup {minus}8}) is transmuted by nuclear reactions into radioactive forms. Subsequently, the nuclei decay, and the energy and intensity of the gamma rays that they emit can be measured in a gamma-ray spectrometer.

  3. Prototyping an active neutron veto for SuperCDMS

    NASA Astrophysics Data System (ADS)

    Calkins, Robert; Loer, Ben

    2015-08-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  4. On-Line Prompt Gamma Neutron Activation Analyzers

    SciTech Connect

    R. J. Proctor; M. J. Hurwitz

    2000-06-04

    Prompt gamma neutron activation analysis (PGNAA) has become an important method for performing elemental analysis for on-line process control. A major advantage of PGNAA is that neutrons are a very penetrating radiation (200 mm), little influenced by the molecular form, temperature, or physical properties of the process materials being measured. The neutrons reacting with the process materials produce the gamma rays 'promptly' (in picoseconds), and the majority of the gamma rays have good penetrability (300 mm). This offers the advantage of very large analysis volumes, and unlike all other analytical methods, PGNAA has the ability to analyze the entire flow of material. PGNAA analyzers deliver rapid, sampling free, elemental analysis on large top-size, bulk materials moving at many metres per second on conveyor belts or in pipes or chutes. This paper describes some applications of PGNAA, the analysis method, sensitivities, and instrumentation.

  5. Prototyping an active neutron veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  6. Prototyping an Active Neutron Veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  7. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  8. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    SciTech Connect

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; McIntosh, Steven

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δ > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.

  9. Activation experiment for concrete blocks using thermal neutrons

    NASA Astrophysics Data System (ADS)

    Okuno, Koichi; Tanaka, Seiichiro

    2017-09-01

    Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.

  10. Neutron Diffraction Study Oxygen Dissolution Alpha(sub 2)-Ti3Al

    NASA Technical Reports Server (NTRS)

    Jones, Camille Y.; Luecke, William E.; Copland, Evan

    2005-01-01

    Rietveld refinements of neutron powder diffraction data on alpha(sub 2)-Ti3Al have been performed to determine the crystal structure as a function of interstitial oxygen (O) concentration for three alloys with a Ti/Al ratio of approximately equal to 2.34 and O concentrations of 0.25%, 3.99% and 7.71%. The structures of the allows are hexagonal in space group P6(sub 3)/mmc where Ti and Al atoms populate unique sites with excess Al at the Ti site and O atoms occupy octahedral interstitial sites surrounded by six Ti sites. The length of the c-axis was found to increase linearly as the O occupancy of the interstitial sites increased; this lattice lengthening effect was much less pronounced along the alpha axis. Correspondingly, the increases in the lengths of Ti-Al and Ti-Ti bonds with a major component of their direction parallel to the c-axis were roughly an order of magnitude greater than the increases in the lengths of Ti-al and Ti-Ti bonds more closely aligned with the alpha-axis. Densities calculated form the lattice parameters and occupancy factors fall in the range (4.118 plus or minus 0.004) grams per cubic centimeter to (4.194 plus or minus 0.004) grams per cubic centimeter, and exhibit a nearly linear increase with oxygen concentration. Measured densities of (4.113 plus or minus 0.001) grams per cubic centimeter, (4.146 plus or minus 0.009) grams per cubic centimeter, and (4.191 plus or minus 0.002) grams per cubic centimeter for these alloys agree with the results of the refinements.

  11. Luminol chemiluminescence and active oxygen generation by activated neutrophils.

    PubMed

    Takahashi, R; Edashige, K; Sato, E F; Inoue, M; Matsuno, T; Utsumi, K

    1991-03-01

    Upon stimulation by various ligands and membrane perturbers, neutrophils produce various active oxygen species. Since luminol chemiluminescence (LCL) in neutrophils can be blocked by azide, an inhibitor of myeloperoxidase, LCL has been believed to reflect mainly the myeloperoxidase-catalyzed reaction. When cells were stimulated by formyl-methionyl-leucyl-phenylalanine, LCL was strongly inhibited by superoxide dismutase (SOD) and uric acid, a scavenger for hydroxy radical (.OH) and singlet oxygen, whereas it was stimulated by azide. LCL was also inhibited by .OH scavengers, such as mannitol, ethanol, and dimethylsulfoxide. However, when stimulated by phorbol myristate acetate or opsonized zymosan, LCL was strongly inhibited by azide but not by uric acid, and the inhibitory action of SOD was low. Thus, the qualitative and quantitative aspects of reactive oxygen generation by activated neutrophils differ significantly from one ligand to another. These results suggest that the metabolic fate of active oxygens in neutrophils and, hence, their effect on microorganisms and the surrounding tissues might differ depending on the stimulus.

  12. Neutron activation and prompt gamma intensity in Ar/CO2-filled neutron detectors at the European Spallation Source.

    PubMed

    Dian, E; Kanaki, K; Hall-Wilton, R J; Zagyvai, P; Czifrus, Sz

    2017-10-01

    Monte Carlo simulations using MCNP6.1 were performed to study the effect of neutron activation in Ar/CO2 neutron detector counting gas. A general MCNP model was built and validated with simple analytical calculations. Simulations and calculations agree that only the (40)Ar activation can have a considerable effect. It was shown that neither the prompt gamma intensity from the (40)Ar neutron capture nor the produced (41)Ar activity have an impact in terms of gamma dose rate around the detector and background level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Activation Counter Using Liquid Light-Guide for Dosimetry of Neutron Burst

    NASA Astrophysics Data System (ADS)

    Hayashi, Mitsunobu; Kawarabayashi, Jun; Tomita, Hideki; Asai, Keisuke; Maeda, Shigetaka; Tsuji, Hiroki; Iguchi, Tetsuo

    2009-08-01

    A novel activation counter is proposed using a liquid light-guide (LLG) and a suitable group of activation foils for dosimetry of neutron burst. The LLG that works as a position sensitive radiation detector, has been covered with appropriate activation materials whose threshold energies are different to each other, with a distance of a few tens of cm between them. Since the induced activities of activation foils irradiated by neutrons are detected independently by the LLG, the neutron energy distribution and its flux can be derived from the activities and their neutron cross-sections by numerical de-convolution calculation. The proposed activation counter would be suitable for the dosimetry of intense neutron burst including fast neutrons because the LLG and the activation foils have a high tolerance for radiation damage. We have designed the system configuration of the proposed activation counter. The preliminary results of the responses due to thermal and fast neutrons have been obtained successfully.

  14. An improved prompt gamma neutron activation analysis facility using a focused diffracted neutron beam

    NASA Astrophysics Data System (ADS)

    Riley, Kent J.; Harling, Otto K.

    1998-09-01

    The performance of the prompt gamma neutron activation analysis (PGNAA) facility at the MIT Research Reactor has been improved by a series of modifications. These modifications have increased the flux by a factor of three at the sample position to 1.7 × 10 7 n/cm 2 s, and have increased the sensitivity, on average, by a factor of 2.5. The background for many samples of interest is dominated by unavoidable neutron interactions that occur in or near the sample. Other background components comprise only 20% of the total background count rate. The implementation of fast electronics has helped to keep dead time reasonable, in spite of the increased count rates. The PGNAA facility at the MIT Research Reactor continues to serve as a major analytical tool for quantifying 10B in biological samples for Boron Neutron Capture Therapy (BNCT) research. The sensitivity for boron-10 in water is 18 750 cps/mg. The sensitivity for pure elements suitable for PGNAA analysis is reported. Possible further improvements are discussed.

  15. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Jalali, M.; Mohammadi, A.

    2007-10-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  16. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  17. Factors affecting the measurement accuracy of ITER neutron activation system

    NASA Astrophysics Data System (ADS)

    Cheon, M. S.; Ahn, Y. H.; Pak, S.; Seon, C.; Krasilnikov, V.; Bertalot, L.

    2017-08-01

    One of the main purposes of the ITER2 neutron activation system (NAS) is to evaluate the total neutron production rate from all over the plasma. The measurement accuracy depends on the position and profile of the plasma and the material in front of the irradiation end. It is required to minimize the amount of material and its density variation across the field of view between the plasma and the irradiation end. Due to the radiation and thermal environment of the ITER in-vessel, however, the measurement from ITER NAS cannot avoid the strong influence from in-vessel materials such as the diagnostic first wall, blanket modules, and divertor cassettes, those are located near the irradiation ends. In order to improve the reliability of the measurement in such environment, special cutouts in the diagnostic first wall are introduced near the irradiation end structures located in the port plugs. The effect of the materials and the position and profile of the neutron source in the plasma are evaluated for these irradiation locations, as well as the ones under the divertor cassettes and between blanket modules, by the neutron transport calculation. Calculation results show that simultaneous measurements at upper port and divertor location can provide highly accurate results even without a position or profile correction from other diagnostics.

  18. Optimization of Neutron Activation of Carbon at the NIF

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Polsin, D.; Russ, M.; Sangster, T.; LLE Collaboration

    2011-10-01

    To determine the rhoR of ignition scale targets at the NIF, a carbon activation diagnostic is being developed to measure tertiary neutron yield. It has been shown theoretically that the ratio of the tertiary yield to the primary yield is directly related to rhoR and is nearly independent of hot-spot electron temperature. Due to carbon's 20.3 MeV reaction threshold, it is insensitive to 14.7 MeV primary neutrons which are measured by other means and allows for an unambiguous determination of the tertiary to primary ratio. The energy distribution of the 20 to 30 MeV DT neutrons folded with the (n,2n) cross section in this energy region determines the degree in which carbon will be activated. However, the published 12C(n,2n) cross sections in this energy range are bifurcated. To set upper and lower limits on the sensitivity of the activation diagnostic, a finite element calculation was used to determine the limits of the method's usefulness at differing primary yields and solid angles for the NIF chamber. It was further used to verify MCNPX activation calculations. This work was funded in part by the USDOE through LLE.

  19. Investigating Coincidence Techniques in Biomedical Applications of Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Gramer, R.; Tandel, S. K.; Reinhardt, C. J.

    2004-05-01

    While neutron activation analysis has been widely used in biomedical applications for some time, the use of non-radioactive tracer techniques, to monitor, for example, organ blood flow, is more recent. In these studies, pre-clinical animal models are injected with micro-spheres labeled with stable isotopes of elements that have a high neutron absorption cross-section. Subsequently, samples of blood and/or tissue from different locations in the body are subjected to neutron activation analysis to measure the propagation of the labeled micro-spheres through the body. Following irradiation, the counting (with high-resolution Ge detectors) is typically delayed by a few days to dissipate short-lived activity in the samples and improve signal-to-noise for the peaks of interest in the activation spectrum. The aim of the present study was to investigate whether coincidence techniques (for isotopes which decay via two-photon cascades) could improve signal-to-noise and turn-around times. The samples were irradiated at the 1 MW research reactor at the UMass Lowell Radiation Laboratory. The analysis of the multi-parameter coincidence data recorded in event-mode will be presented and compared with the standard method of recording singles spectra.

  20. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    SciTech Connect

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements.

  1. Study of concrete activation with IFMIF-like neutron irradiation: Status of EAF and TENDL neutron activation cross-sections

    NASA Astrophysics Data System (ADS)

    García, Mauricio; Sauvan, Patrick; García, Raquel; Ogando, Francisco; Sanz, Javier

    2017-09-01

    The aim of this paper is to check the performance of last versions of EAF and TENDL libraries (EAF2007, EAF2010, and TENDL2014) in the prediction of concrete activation under the neutron irradiation environment expected in IFMIF, an accelerator-based neutron source conceived for fusion materials testing. For this purpose Activity and dose rate responses of three types of concrete (ITER-Bioshield kind, barite and magnetite concretes) have been studied. For these quantities, dominant nuclides and production pathways have been determined and, then, a qualitative analysis of the relevant activation cross-sections involved has been performed by comparing data from mentioned libraries with experimental data from EXFOR database. Concrete activation studies have been carried out with IFMIF-like neutron irradiation conditions using the ACAB code and EAF and TENDL libraries. The cooling times assessed are related to safety and maintenance operations, specifically 1 hour, 1 day and 12 days. Final conclusions are focused on the recommendations for the activation library to be used among those analyzed and cross-section data to be improved.

  2. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained.

  3. Obsidian sources characterized by neutron-activation analysis.

    PubMed

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  4. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  5. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  6. Influence of lightweight ambulatory oxygen on oxygen use and activity patterns of COPD patients receiving long-term oxygen therapy.

    PubMed

    Casaburi, Richard; Porszasz, Janos; Hecht, Ariel; Tiep, Brian; Albert, Richard K; Anthonisen, Nicholas R; Bailey, William C; Connett, John E; Cooper, J Allen; Criner, Gerard J; Curtis, Jeffrey; Dransfield, Mark; Lazarus, Stephen C; Make, Barry; Martinez, Fernando J; McEvoy, Charlene; Niewoehner, Dennis E; Reilly, John J; Scanlon, Paul; Scharf, Steven M; Sciurba, Frank C; Woodruff, Prescott

    2012-02-01

    Lightweight ambulatory oxygen devices are provided on the assumptions that they enhance compliance and increase activity, but data to support these assumptions are lacking. We studied 22 patients with severe chronic obstructive pulmonary disease receiving long-term oxygen therapy (14 men, average age = 66.9 y, FEV(1) = 33.6%pred, PaO(2) at rest = 51.7 torr) who were using E-cylinders as their portable oxygen. Subjects were recruited at 5 sites and studied over a 2-week baseline period and for 6 months after randomizing them to either continuing to use 22-lb E-cylinders towed on a cart or to carrying 3.6-lb aluminum cylinders. Utilizing novel electronic devices, ambulatory and stationary oxygen use was monitored continuously over the 2 weeks prior to and the 6 months following randomization. Subjects wore tri-axial accelerometers to monitor physical activity during waking hours for 2-3 weeks prior to, and at 3 and 6 months after, randomization. Seventeen subjects completed the study. At baseline, subjects used 17.2 hours of stationary and 2.5 hours of ambulatory oxygen daily. At 6 months, ambulatory oxygen use was 1.4 ± 1.0 hrs in those randomized to E-cylinders and 1.9 ± 2.4 hrs in those using lightweight oxygen (P = NS). Activity monitoring revealed low activity levels prior to randomization and no significant increase over time in either group. In this group of severe chronic obstructive pulmonary disease patients, providing lightweight ambulatory oxygen did not increase either oxygen use or activity. Future efforts might focus on strategies to encourage oxygen use and enhance activity in this patient group. This trial is registered at ClinicalTrials.gov (NCT003257540).

  7. Cerebral Oxygen Delivery and Consumption During Evoked Neural Activity

    PubMed Central

    Vazquez, Alberto L.; Masamoto, Kazuto; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2010-01-01

    Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF) induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI). PMID:20616881

  8. Neutron transition strengths of 2{sub 1}{sup +} states in the neutron-rich oxygen isotopes determined from inelastic proton scattering

    SciTech Connect

    Nguyen Dang Chien; Khoa, Dao T.

    2009-03-15

    A coupled-channel analysis of the {sup 18,20,22}O(p,p{sup '}) data has been performed to determine the neutron transition strengths of the 2{sub 1}{sup +} states in oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and isospin-dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hartree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar ({delta}{sub 0}) and isovector ({delta}{sub 1}) deformation lengths of the 2{sub 1}{sup +} states in {sup 18,20,22}O have been extracted from the folding model analysis of the (p,p{sup '}) data. A specific N dependence of {delta}{sub 0} and {delta}{sub 1} has been established which can be linked to the neutron shell closure occurring at N approaching 16. The strongest isovector deformation was found for the 2{sub 1}{sup +} state in {sup 20}O, with {delta}{sub 1} about 2.5 times larger than {delta}{sub 0}, which indicates a strong core polarization by the valence neutrons in {sup 20}O. The ratios of the neutron/proton transition matrix elements (M{sub n}/M{sub p}) determined for the 2{sub 1}{sup +} states in {sup 18,20}O have been compared with those deduced from the mirror symmetry, using the measured B(E2) values of the 2{sub 1}{sup +} states in the proton-rich {sup 18}Ne and {sup 20}Mg nuclei, to discuss the isospin impurity in the 2{sub 1}{sup +} excitation of the A=18, T=1 and A=20, T=2 isobars.

  9. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  10. Neutron Activation Analysis of Trace Elements in Lava

    NASA Astrophysics Data System (ADS)

    Meyer, R. E.; Sabella, J. L.; Thomas, K. J.; Norman, E. B.; Guillamon, P. V.; Goldman, I. D.; Smith, A. R.

    2012-10-01

    The elemental compositions of lavas vary with the locations of the volcanoes from which they emerged. We have used neutron activation analysis to measure the abundances of approximately 32 different elements in lava samples collected from three different Hawaiian islands and from the summit of Mt. Kilimanjaro. Two different neutron irradiations were performed at the McClellan Nuclear Radiation Center to optimize our sensitivities to both short- and long-lived radioisotopes. Gamma-ray counting was done at McClellan, UC Berkeley, and LBNL using large-volume high-purity Ge detectors. Results from the measurements will be presented and comparisons will be made between the trace-element compositions of the lavas from these different sites.

  11. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  12. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  13. DNA evidence uncompromised by active oxygen.

    PubMed

    Castelló, Ana; Francés, Francesc; Verdú, Fernando

    2010-03-05

    Currently, forensic sciences can make use of the potential of instrumental analysis techniques to obtain information from the smallest, even invisible, samples. However, as laboratory techniques improve, so too should the procedures applied in the search for and initial testing of clues in order to be equally effective. This requires continuous revision so that those procedures may resolve the problems that samples present. As far as bloodstains are concerned, there are methods available that are recognized as being both highly sensitive and effective. Nevertheless, the marketing of new cleaning products, those that contain active oxygen, has raised doubts about the ability of those procedures to detect blood. It has been shown that stains washed with these detergents (and still visible) invalidated both the presumptive test (reduced phenolphthalein, luminol, and Bluestar) and that applied for determining human hemoglobin. These findings have caused considerable concern both within the forensic and scientific community, and among the general public, so obliging us to seek solutions. In this work, the effect of these new cleaning products on DNA analyses is studied. The results, encouraging ones, show that these detergents, despite invalidating all other tests, do not hinder the extraction, or the subsequent analysis, of DNA.

  14. MFE/ACT: a TRS-80 code for calculating neutron activation

    SciTech Connect

    Dorn, D.W.

    1982-10-01

    The MFE/ACT code, written to run on the TRS-80, can be used to calculate the neutron activation of materials used in fission and fusion reactors. Input data include the specific isotopes to be calculated, the neutron fluxes, the neutron cross sections, and the nuclear decay half-lives.

  15. Install active/passive neutron examination and assay (APNEA)

    SciTech Connect

    Not Available

    1996-04-01

    This document describes activities pertinent to the installation of the prototype Active/Passive Neutron Examination and Assay (APNEA) system built in Area 336 into its specially designed trailer. It also documents the basic theory of operation, design and protective features, basic personnel training, and the proposed characterization site location at Lockheed Martin Specialty Components, Inc., (Specialty Components) with the estimated 10 mrem/year boundary. Additionally, the document includes the Preventive Change Analysis (PCA) form, and a checklist of items for verification prior to unrestricted system use.

  16. Determination of europium content in Li2SiO3(Eu) by neutron activation analysis using Am-Be neutron source.

    PubMed

    Naik, Yeshwant; Tapase, Anant Shamrao; Mhatre, Amol; Datrik, Chandrashekhar; Tawade, Nilesh; Kumar, Umesh; Naik, Haladhara

    2016-12-01

    Circulardiscs of Li2SiO3 doped with europium were prepared and a new activation procedure for the neutron dose estimation in a breeder blanket of fusion reactor is described. The amount of europium in the disc was determined by neutron activation analysis (NAA) using an isotopic neutron source. The average neutron absorption cross section for the reaction was calculated using neutron distribution of the Am-Be source and available neutron absorption cross section data for the (151)Eu(n,γ)(152m)Eu reaction, which was used for estimation of europium in the pallet. The cross section of the elements varies with neutron energy, and the flux of the neutrons in each energy range seen by the nuclei under investigation also varies. Neutron distribution spectrum of the Am-Be source was worked out prior to NAA and the effective fractional flux for the nuclear reaction considered for the flux estimation was also determined.

  17. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    SciTech Connect

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  18. A militarily fielded thermal neutron activation sensor for landmine detection

    NASA Astrophysics Data System (ADS)

    Clifford, E. T. H.; McFee, J. E.; Ing, H.; Andrews, H. R.; Tennant, D.; Harper, E.; Faust, A. A.

    2007-08-01

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on 14N. The TNA uses a 100 μg252Cf neutron source surrounded by four 7.62 cm×7.62 cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  19. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  20. Thermal neutron activation system for confirmatory nonmetallic land mine detection

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Cousins, Thomas; Jones, Trevor; Brisson, Jean R.; Jamieson, Terry; Waller, Ed; LeMay, Francois; Ing, Harry; Clifford, Edward T. H.; Selkirk, Barkley

    1998-09-01

    To detect and locate buried landmines, the Canadian Department of National Defence (DND) is developing a teleoperated, vehicle-mounted, multisensor system called ILDP. In operation, a suite of 4 detectors scan ahead of the vehicle. Their outputs are combined through data fusion to indicate the possibility of a mine at a particular location, within a 30 cm radius. A thermal neutron activation (TNA) sensor, mounted behind the vehicle, is used to confirm the presence of explosives via detection of the 10.83 MeV gamma-ray associated with neutron capture on 14N. The TNA system developed for this uses a 100 microgram 252Cf neutron source surrounded by four 7.62 cm X 7.62 cm NaI(Tl) detectors. A combination of the use of state-of-the art radiation transport codes for design, judicious choice of specialized shielding materials and development of high-rate, fast pulse processing electronics has led to a system which can; (1) confirm the presence of all surface-laid or shallowly-buried anti-tank mines in a few seconds to a minute (depending on mass of explosive) (2) confirm the presence of anti-tank mines down to 20 cm depth in less than 5 minutes. (3) confirm the presence of large (greater than 100 g Nitrogen) anti-personnel mines in less than five minutes (4) operate in adverse climatic conditions. These results have been verified in field trials using the prototype sensor. Work is now ongoing to miniaturize the electronics, make the system robust and easy to use and investigate the use of an electronic neutron generator expected to enter service by the year 2000.

  1. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  2. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  3. Neutron activation analysis of total diet food composites for iodine

    SciTech Connect

    Allegrini, M.; Boyer, K.W.; Tanner, J.T.

    1981-09-01

    The iodine content of Total Diet food composites was measured using neutron activation analysis. The interfering element chlorine was separated using a modified combustion and gas phase procedure. The average recovery was 94.8% (standard deviation 2.9) for the 10 matrices that were tested. In addition, iodine was measured in National Bureau of Standards Standard Reference Materials, which have no certified values for this element. Preliminary findings of iodine content of adult Total Diet market baskets collected during Fiscal Year 1980 in different regions of the United States ranged from 292 to 901 ..mu..g/day for a 2900 kcal intake.

  4. Neutron distribution and induced activity inside a Linac treatment room.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-01-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff.

  5. Instrumental neutron activation analysis of archaeological ceramics: scale and interpretation.

    PubMed

    Bishop, Ronald L; Blackman, M James

    2002-08-01

    Instrumental neutron activation analysis has become a standard technique for the study of the production and distributional patterns of archaeological pottery. Questions once framed within the context of long distance exchange are now focused on issues of subregional and even intrasite levels. The increasing specificity at which these questions are poised requires a high level of analytical precision as we seek to observe statistically and archaeologically significant differences among groups of pottery produced from geographically closely spaced resources or the compositional differences that arise from production behaviors of the producers of the pottery.

  6. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  7. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    SciTech Connect

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.

  8. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    SciTech Connect

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.

  9. Evaluation of Am–Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    DOE PAGES

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...

    2016-05-25

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less

  10. Activation of high- Tc superconductors due to neutron irradiation

    NASA Astrophysics Data System (ADS)

    Shitamichi, T.; Nakano, M.; Terai, T.; Yamawaki, M.; Hoshiya, T.

    2003-10-01

    For actual application of high- Tc superconductors (HTSC), the improvement of Jc is required. It has been reported that pinning centers in the HTSC increase Jc. Particle beam irradiation is one of the most effective methods to introduce strong pinning centers into HTSC for Jc enhancement. In particular, neutron irradiation is very effective for bulk materials, although the activation might be an important problem. In this study, activation of HTSCs was analysed by using the computer code, ORIGEN-II. The contribution of impurities in Bi 2Sr 2CaCu 2O 8+ x (Bi-2212) to 1 cm dose equivalent occupies about 15%. In RE-123 family, Y, La, Nd, Sm. Gd, Dy, Ho and Yb gave low activation. In the case of U-doped Y-123, about 75% of the activity is from the contribution of the fission products.

  11. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts

    SciTech Connect

    Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca; Madix, Robert J.

    2016-01-01

    The activation of molecular O2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.

  12. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    USDA-ARS?s Scientific Manuscript database

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  13. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    USDA-ARS?s Scientific Manuscript database

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  14. Activation of cobalt by neutrons from the Hiroshima bomb

    SciTech Connect

    Kerr, G.D.; Dyer, F.F.; Emery, J.F.; Pace, J.V. III ); Brodzinski, R.L. ); Marcum, J. )

    1990-02-01

    A study has been completed of cobalt activation in samples from two new locations in Hiroshima. The samples consisted of a piece of steel from a bridge located at a distance of about 1300 m from the hypocenter and pieces of both steel and concrete from a building located at approximately 700 m. The concrete was analyzed to obtain information needed to calculate the cobalt activation in the two steel samples. Close agreement was found between calculated and measured values for cobalt activation of the steel sample from the building at 700 m. It was found, however, that the measured values for the bridge sample at 1300 m were approximately twice the calculated values. Thus, the new results confirm the existence of a systematic error in the transport calculations for neutrons from the Hiroshima bomb. 52 refs., 32 figs., 16 tabs.

  15. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    SciTech Connect

    Guinn, V.P.

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  16. Response in thermal neutrons intensity on the activation of seismic processes

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim

    2017-04-01

    Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.

  17. Neutron-Activated Gamma-Emission: Technology Review

    DTIC Science & Technology

    2012-01-01

    scattering. ..............................4 Figure 3. Neutron cross section (barns) for materials with best stopping power. Gd has the largest known cross ... section of 1x107 barns. Cross section for capture of neutrons is generally reduced as the energy of the neutron increases...D and D-T reactions. .........18 Figure 9. Cross section for the interaction in units of neutrons generated per mC thrown at a target

  18. Professor Howard Mason and oxygen activation.

    PubMed

    Waterman, Michael R

    2005-12-09

    Our understanding of the classification, function, mechanism, and structure of the enzymes which incorporate atoms of oxygen from atmospheric molecular oxygen during catalysis is based on the thoughtful and technically challenging experiments of two giants in the field of Biochemistry, Howard Mason and Osamu Hayaishi. This volume celebrates the 50th anniversary of the discovery and characterization of these "oxygenase" enzymes and provides a broad view of how far this area of research has advanced. Professor Hayaishi describes herein his perspective on the background and major discoveries which led to the development of this field. Regrettably Howard Mason passed away at age 88 in 2003. I am indeed fortunate to have been a Ph.D. student with Howard and to have the opportunity to briefly review his role in the development of this field for this special commemorative issue of BBRC.

  19. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    SciTech Connect

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-06-28

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  20. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    NASA Astrophysics Data System (ADS)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  1. Estimation of the activity generated by neutron activation in control rods of a BWR.

    PubMed

    Ródenas, José; Gallardo, Sergio; Abarca, Agustín; Juan, Violeta

    2010-01-01

    Control rods are activated by neutron reactions into the reactor. The activation is produced mainly in stainless steel and its impurities. The dose produced by this activity is not important inside the reactor, but it has to be taken into account when the rod is withdrawn from the reactor. Activation reactions produced have been modelled by the MCNP5 code based on the Monte Carlo method. The code gives the number of reactions that can be converted into activity.

  2. A neutron diffraction study of oxygen and nitrogen ordering in a kinetically stable orthorhombic iron doped titanium oxynitride

    SciTech Connect

    Wu, On Ying; Parkin, Ivan P; Hyett, Geoffrey

    2012-06-15

    The synthesis of a polycrystalline powder sample of iron doped orthorhombic titanium oxynitride, Ti{sub 2.92}Fe{sub 0.01}O{sub 4.02}N{sub 0.98}, on the scale of 0.7 g has been achieved. This was conducted by the unusual route of delamination from a steel substrate of a thin film deposited using atmospheric pressure chemical vapour deposition. The structure of the titanium oxynitride is presented, determined from a combined analysis of X-ray and neutron powder diffraction data. The use of neutron diffraction allows the position of the oxygen and nitrogen ions in the material to be reported unambiguously for the first time. In this study Ti{sub 2.92}Fe{sub 0.01}O{sub 4.02}N{sub 0.98} is found to crystallise in the Cmcm space group, iso-structural pseudobrookite, with lattice parameters a=3.81080(6) A, b=9.6253(2) A, and c=9.8859(2) A, and contains partial oxygen-nitrogen ordering. Of the three anion sites in this structure one is exclusively occupied by oxygen, while the remaining two sites are occupied by oxygen and nitrogen in a disordered manner. Testing indicates that this iron doped titanium oxynitride is a metastable phase that decomposes above 700 Degree-Sign C into TiN and TiO{sub 2}, the thermodynamic products. - Graphical abstract: We report the synthesis of Ti{sub 2.92}Fe{sub 0.01}O{sub 4.02}N{sub 0.98} deposited as a thin film using atmospheric pressure chemical vapour deposition onto stainless steel, which is then delaminated to produce a polycrystalline powder sample. This powder sample was used in a neutron diffraction experiment, and analysis of this data has allowed the position of the oxygen and nitrogen ions in the material to be reported unambiguously for the first time. Ti{sub 2.92}Fe{sub 0.01}O{sub 4.02}N{sub 0.98} is found to crystallise in the Cmcm space group iso-structural pseudobrookite and contains partial oxygen-nitrogen ordering. Highlights: Black-Right-Pointing-Pointer Partial oxygen and nitrogen ordering has been observed using neutron

  3. Use of the Zetatron D-T neutron generator for the simultaneous measurement of carbon, oxygen, and hydrogen in vivo in humans

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.; Zhuang, H.

    1993-06-01

    A small sealed D-T neutron generator is used for the pulsed (4-8 kHz) production of fast neutrons. Carbon and oxygen are detected in vivo by counting the 4.44 and 6.13 MeV gamma rays resulting from the inelastic scattering of the fast neutrons. Hydrogen is detected by thermal neutron capture. BGO detectors (127 mm diameter × 76 mm thick) were found more tolerant to neutron exposure and improved the signal to background ratio for the carbon detection by a factor of 6, compared to 152 × 152 mm NaI(Tl). The elemental analysis of the body is used to study the changes of body composition with aging. We investigate the causes of depletion of lean body mass and the development of ways of maintaining functional capacity and quality of life of the elderly.

  4. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions.

    PubMed

    Mueller, David N; Machala, Michael L; Bluhm, Hendrik; Chueh, William C

    2015-01-19

    Surface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions. In contrast to the conventional view that the transition metal cations are the dominant redox-active centres, we find that the oxygen anions near the surface are a significant redox partner to molecular oxygen due to the strong hybridization between oxygen 2p and transition metal 3d electronic states. We propose that a narrow electronic state of significant oxygen 2p character near the Fermi level exchanges electrons with the oxygen adsorbates. This result highlights the importance of surface anion-redox chemistry in oxygen-deficient transition-metal oxides.

  5. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region.

  6. Active detection of shielded SNM with 60-keV neutrons

    SciTech Connect

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

  7. Neutron Activation Analysis for the Demonstration of Amphibolite Rock-Weathering Activity of a Yeast

    PubMed Central

    Rades-Rohkohl, E.; Hirsch, P.; Fränzle, O.

    1979-01-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 μm) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components. PMID:16345472

  8. Neutron activation analysis for the demonstration of amphibolite rock-weathering activity of a yeast.

    PubMed

    Rades-Rohkohl, E; Hirsch, P; Fränzle, O

    1979-12-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 mum) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components.

  9. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    PubMed

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code.

  10. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate.

    PubMed

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C; Mathews, F Scott; Jorns, Marilyn Schuman

    2011-06-21

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  11. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  12. Measurement of residual 60Co activity induced by atomic-bomb neutrons in Nagasaki and background contribution by environmental neutrons.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Shimazaki, Tatsuya; Okumura, Yutaka; Fujita, Shoichiro; Watanabe, Tadaaki; Imanaka, Tetsuji

    2002-12-01

    Residual 60Co activity in five steel samples induced by neutrons from the Nagasaki atomic bomb has been measured within about 1000 m from the hypocenter. The chemical separation of cobalt and nickel from steel samples was performed, and cobalt-enriched samples were prepared for all samples. Gamma-ray measurements were carried out with a low-background well-type germanium detector. The gamma-ray spectra for five samples were compared with the spectrum of a control sample to ensure that the observed 60Co was actually induced by A-bomb neutrons. The activation of cobalt by environmental neutrons was also investigated. It has been shown that the present 60Co data are consistent with earlier Hashizume's data.

  13. Effect of initial oxygen content on the void swelling behavior of fast neutron irradiated copper

    SciTech Connect

    Zinkle, S.J.; Garner, F.A.

    1998-03-01

    Density measurements were performed on high purity copper specimens containing {le}10 wt.ppm and {approximately}120 wt.ppm oxygen following irradiation in FFTF MOTA 2B. Significant amounts of swelling were observed in both the oxygen-free and oxygen-doped specimens following irradiation to {approximately}17 dpa at 375 C and {approximately}47 dpa at 430 C. Oxygen doping up to 360 appm (90 wt.ppm) did not significantly affect the void swelling of copper for these irradiation conditions.

  14. Active rehabilitation in a pediatric extracorporeal membrane oxygenation patient.

    PubMed

    Zebuhr, Carleen; Sinha, Amit; Skillman, Heather; Buckvold, Shannon

    2014-05-01

    Decreased intensive care unit (ICU) mortality has led to an increase in ICU morbidity. ICU-induced immobilization plays a major role in this morbidity. Recently, ICU mobility has been shown to be safe and effective in adolescent and adult patients. We report the successful rehabilitation of an 8-year-old boy with severe acute respiratory distress syndrome on extracorporeal membrane oxygenation. A child who is critically ill may safely perform active rehabilitation while on venovenous extracorporeal membrane oxygenation. The gains achieved through active rehabilitation and optimal nutrition can facilitate recovery from severe acute respiratory distress syndrome in select pediatric patients on extracorporeal membrane oxygenation.

  15. In situ characterization of hazardous contaminants using prompt gamma neutron activation analysis

    SciTech Connect

    Ruddy, F.H.; Congedo, T.V.; Seidel, J.G.; Gonzalez, J.L.; Weigle, D.H.

    1993-12-31

    Prompt Gamma Neutron Activation Analysis (PGNAA) has been developed for real-time, in situ measurements of contaminant elements in soil. Pulsed neutron activation coupled with state-of-the-art high count rate throughput electronics and time-sequenced gamma ray energy analysis have been used to obtain sensitivities at the trace level for uranium in soil. The results of detailed neutron dosimetry and prompt neutron-induced gamma ray transport measurements carried out using a soil test matrix will be reported. Initial field deployment of the PGNAA system at a former solution uranium mine in Bruni, Texas will also be described.

  16. The analysis of C 60 and C 70 fullerenes by prompt gamma neutron activation

    NASA Astrophysics Data System (ADS)

    Révay, Zs.; Belgya, T.; Molnár, G. L.; Rausch, H.; Braun, T.

    2006-06-01

    The capabilities of prompt gamma neutron activation analysis (PGAA) are examined for fullerene samples. As shown PGAA is a promising instrumental technique for the determination of the light elements of the periodic table. These elements (C, H, O, N and B) were inaccessible by instrumental neutron activation analysis (INAA) as done by the authors in previous publications.

  17. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    PubMed

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  18. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    NASA Astrophysics Data System (ADS)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  19. Monovalent copper-activated oxygenated insulators

    NASA Astrophysics Data System (ADS)

    Parent, C.; Boutinaud, P.; Flem, G. Le; Moine, B.; Pedrini, C.; Garcia, D.; Faucher, M.

    1994-12-01

    The photoluminescence of monovalent copper in oxygenated insulators has been extensively studied. The spectroscopy and the excited states dynamics of Cu + ions were investigated as a function of the copper concentration and temperature in various glassy and crystallized materials, essentially borates and phosphates. The broad band fluorescences observed in the visible range under UV excitation arise from two main emitting centers: isolated Cu + ions and (Cu +) 2 pairs. The spectroscopic characteristics of isolated Cu + depend strongly on the local structure, whereas those of the copper pairs remain nearly unaltered whatever the host-matrix. Energy diagrams are proposed for both centers, using ab initio LCAO calculations, in connection with structural investigations involving XRD, ND and EXAFS spectroscopies. Borate glasses can be considered as potential laser sources for tunable output in the whole visible range.

  20. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution

    NASA Astrophysics Data System (ADS)

    Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong; Hong, Wesley T.; Lee, Yueh-Lin; Giordano, Livia; Stoerzinger, Kelsey A.; Koper, Marc T. M.; Shao-Horn, Yang

    2017-05-01

    Understanding how materials that catalyse the oxygen evolution reaction (OER) function is essential for the development of efficient energy-storage technologies. The traditional understanding of the OER mechanism on metal oxides involves four concerted proton-electron transfer steps on metal-ion centres at their surface and product oxygen molecules derived from water. Here, using in situ 18O isotope labelling mass spectrometry, we provide direct experimental evidence that the O2 generated during the OER on some highly active oxides can come from lattice oxygen. The oxides capable of lattice-oxygen oxidation also exhibit pH-dependent OER activity on the reversible hydrogen electrode scale, indicating non-concerted proton-electron transfers in the OER mechanism. Based on our experimental data and density functional theory calculations, we discuss mechanisms that are fundamentally different from the conventional scheme and show that increasing the covalency of metal-oxygen bonds is critical to trigger lattice-oxygen oxidation and enable non-concerted proton-electron transfers during OER.

  1. Measurement of cold neutron spectrum by multi-foil activation method

    NASA Astrophysics Data System (ADS)

    Kikawa, Tatsuya; Canada-Japan UCN Collaboration

    2016-09-01

    In 2016, we will start commissioning the ultracold neutron (UCN) source at TRIUMF: the proton beamline including the spallation target, as well as the cold neutron moderators will be tested. In order to gain a better understanding of the UCN production, a measurement of the cold neutron flux in the UCN source is needed. However, a measurement with the time-of-flight (TOF) method is not adaptable to our geometry. Thus, we are planning to measure the cold neutron spectrum using multiple neutron activation foils with unfolding technique. We will place special foils in the (empty) UCN production volume to measure the neutron spectrum; their activities will be measured by Ge detectors after the activation. The neutron spectrum is reconstructed from the measured activities by an unfolding analysis. This technique has been conventionally used for the measurement of the fast neutron spectrum. In this presentation, we will explain the application of this technique to the measurement of cold neutron spectrum and the status of preparations for the measurement at TRIUMF.

  2. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  3. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    SciTech Connect

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  4. Detectors for on-line prompt gamma neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Proctor, Ray; Yusuf, Siaka; Miller, Jim; Scott, Clark

    1999-02-01

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line prompt gamma neutron activation analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a method for quantifying the relative uncertainty from full spectrum analysis on complex materials is presented. The method was applied to three different detector types, NaI, HPGe, and BGO. The results show that the 5-10 times higher detection efficiency of a large size scintillation detector can often outweigh the resolution superiority of a HPGe detector for simple to medium complex bulk materials. The better detector resolution of sodium iodide gave a significantly lower analysis uncertainty than BGO for equal efficiency detectors.

  5. Neutron activation analysis of biological materials by the monostandard method.

    PubMed

    Takeuchi, T; Shinogi, M

    1979-12-01

    Instrumental neutron activation analysis by the monostandard method has been applied to the analyses of biological NBS standard reference materials; 1571 Orchard Leaves and 1577 Bovine Liver. Aluminum foils containing 0.100% gold or 2.00% cobalt were used as the monostandards. The gamma-ray spectral data were recorded on punched paper tape and were analyzed by a computer assisted data processing. The following 25 elements were determined: Al, Ca, Cl Cu, Mg, Mn, V (by short period irradiation), As, Ba, Br, Co, Cr, Cs, Eu, Fe, Hg, K, La, Na, Rb, Sb, Sc, Se, Sm and Zn (by long period irradiation). The results were compared with the certified values by NBS and the reported values in literatures to prove the reliability and accuracy of the monostandard method.

  6. In-vivo neutron activation analysis: principles and clinical applications

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  7. Clinical applications of in vivo neutron-activation analysis

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  8. Neutron activation analysis detection limits using {sup 252}Cf sources

    SciTech Connect

    DiPrete, D.P.; Sigg, R.A.

    2000-07-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux {sup 252}Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an {approximately}6-mg {sup 252}Cf NAA facility. The SRTC {sup 252}Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [{approximately}2 x 10{sup 7} n/cm{sup 2}{center_dot}s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes.

  9. Photo-activated oxygen sensitivity of graphene at room temperature

    NASA Astrophysics Data System (ADS)

    Berholts, Artjom; Kahro, Tauno; Floren, Aare; Alles, Harry; Jaaniso, Raivo

    2014-10-01

    Photo-induced changes in the electrical conductivity and the sensitivity to oxygen gas of graphene sheets grown by chemical vapor deposition and transferred onto Al2O3 and SiO2 thin film substrates were studied at ambient conditions. The pristine graphene sensors were initially completely insensitive to oxygen gas at room temperature but showed significant (up to 100%) response when illuminated with weak ultraviolet (300 nm or 365 nm) light. Oxygen response was governed by Langmuir law and its activation was insensitive to humidity. The mechanism of sensitization is analyzed together with other photo-induced effects—negative persistent photo-conduction and photo-induced hysteresis of field effect transistor characteristics. While the reduction of conductivity in air is persistent effect, the oxygen sensitization and enlargement of hysteresis take place only under the direct influence of light. It is concluded that the charge traps with differently adsorbed oxygen and water are involved in these phenomena.

  10. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation.

    PubMed

    Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang

    2014-11-14

    In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling.

  11. Tables for simplifying calculations of activities produced by thermal neutrons

    USGS Publications Warehouse

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  12. Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen.

    PubMed

    Liang, Yu-Feng; Jiao, Ning

    2017-07-18

    The selective oxidation of organic molecules is a fundamentally important component of modern synthetic chemistry. In the past decades, direct oxidative C-H and C-C bond functionalization has proved to be one of the most efficient and straightforward methods to synthesize complex products from simple and readily available starting materials. Among these oxidative processes, the use of molecular oxygen as a green and sustainable oxidant has attracted considerable attention because of its highly atom-economical, abundant, and environmentally friendly characteristics. The development of new protocols using molecular oxygen as an ideal oxidant is highly desirable in oxidation chemistry. More importantly, the oxygenation reaction of simple molecules using molecular oxygen as the oxygen source offers one of the most ideal processes for the construction of O-containing compounds. Aerobic oxidation and oxygenation by enzymes, such as monooxygenase, tyrosinase, and dopamine β-monooxygenase, have been observed in some biological C-H bond hydroxylation processes. Encouraged by these biological transformations, transition-metal- or organocatalyst-catalyzed oxygenation through dioxygen activation has attracted academic and industrial prospects. In this Account, we describe some advances from our group in oxygenation via C-H/C-C bond activation with molecular oxygen as the oxidant and oxygen source for the synthesis of O-containing compounds. Under an atmosphere of O2 (1 atm) or air (1 atm), we have successfully incorporated one or two O atoms from O2 into simple and readily available substrates through C-H, C-C, C═C, and C≡C bond cleavage by transition-metal catalysis, organocatalysis, and photocatalysis. Moreover, we have devised cyclization reactions with molecular oxygen to construct O-heterocycles. Most of these transformations can tolerate a broad range of functional groups. Furthermore, on the basis of isotope labeling experiments, electron paramagnetic resonance

  13. Near and sub-barrier fusion of neutron-rich oxygen and carbon nuclei using low-intensity beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy K.

    Fusion between neutron-rich light nuclei in the crust of an accreting neutron star has been proposed as a heat source that triggers an X-ray superburst. To explore the probability with which such fusion events occur and examine their decay characteristics, an experimental program using beams of neutron-rich light nuclei has been established. Evaporation residues resulting from the fusion of oxygen and 12C nuclei, are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. Using an experimental setup developed for measurements utilizing low-intensity (< 105 ions/s) radioactive beams, the fusion excitation functions for 16O + 12C and 18O + 12C have been measured. The fusion excitation function for 18O + 12C has been measured in the sub-barrier domain down to the 820 mub level, a factor of 30 lower than previous direct measurements. This measured fusion excitation function is compared to the predictions of a density constrained time-dependent Hartree-Fock model. This comparison reveals a shape difference in the fusion excitation functions, indicating a larger tunneling probability for the experimental data as compared to the theoretical calculations. In addition to the measured cross-section, the measured angular distribution of the evaporation residues provides insight into the relative importance of the different de-excitation channels. These evaporation residue angular distributions are compared to the predictions of a statistical model code, evapOR, revealing an under-prediction of the de-excitation channels associated with alpha particle emission.

  14. A fast neutron spectrum unfolding method using activation measurements and its application to restoration of a thermonuclear reactor blanket neutron spectrum

    NASA Astrophysics Data System (ADS)

    Novikov, V. M.; Shkurpelov, A. A.; Zagryadsky, V. A.; Chuvilin, D. Yu.; Shmonin, Yu. V.

    1982-12-01

    This article describes a fast neutron spectrum unfolding program. The program takes into account a priori information about the neutron spectrum, the experimental values of activation integrals errors and activation detector cross sections errors. The usefulness of the unfolding program was demonstrated by its application to the determination of neutron spectra from 1 to 14 MeV in the molten-salt blanket model of a thermonuclear reactor.

  15. Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts.

    PubMed

    Yang, Chunzhen; Fontaine, Olivier; Tarascon, Jean-Marie; Grimaud, Alexis

    2017-07-17

    Owing to the transient nature of the intermediates formed during the oxygen evolution reaction (OER) on the surface of transition metal oxides, their nature remains largely elusive by the means of simple techniques. The use of chemical probes is proposed, which, owing to their specific affinities towards different oxygen species, unravel the role played by these species on the OER mechanism. For that, tetraalkylammonium (TAA) cations, previously known for their surfactant properties, are introduced, which interact with the active oxygen sites and modify the hydrogen bond network on the surface of OER catalysts. Combining chemical probes with isotopic and pH-dependent measurements, it is further demonstrated that the introduction of iron into amorphous Ni oxyhydroxide films used as model catalysts deeply modifies the proton exchange properties, and therefore the OER mechanism and activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  17. Compressibility of copper-oxygen bonds: a high-pressure neutron powder diffraction study of CuO

    NASA Astrophysics Data System (ADS)

    Ehrenberg, H.; McAllister, J. A.; Marshall, W. G.; Attfield, J. P.

    1999-08-01

    A high-pressure neutron powder diffraction study has been performed on CuO at room temperature for nine different pressures up to 8.8 GPa. Rietveld refinement gives very precise atomic parameters, enabling the copper-oxygen bond compressibility to be determined accurately. The Jahn-Teller elongated bond distance obeys icons/Journals/Common/kappa" ALT="kappa" ALIGN="TOP"/>Cu-O(p) = 0.0710(55)/(p+3.15(55) GPa) and is compared with the Cu-O bond compressibility in other materials. A Birch equation of state fitted to the experimental cell volume data gives K0 = 72(2) GPa, K0´ = 8.7(1.2) and V0 = 80.89(5) Å3.

  18. Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures.

    PubMed

    Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C

    2015-03-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding. © 2014 Wiley Periodicals, Inc.

  19. Improved thermal neutron activation sensor for detection of bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Faust, Anthony A.; Andrews, H. Robert; Clifford, Edward T. H.; Mosquera, Cristian M.

    2012-06-01

    Defence R&D Canada - Suffield and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives since 1994. First generation sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on the ILDS teleoperated, vehicle-mounted, multi-sensor anti-tank landmine detection systems. The first generation TNA could detect anti-tank mines buried 10 cm or less in no more than a minute, but deeper mines and those significantly displaced horizontally required considerably longer times. Mines as deep as 30 cm could be detected with long counting times (1000 s). The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. This improved sensitivity can translate to either decreased counting times, decreased minimum detectable explosive quantities, increased maximum sensor-to-target displacement, or a trade off among all three. Experiments to characterize the performance of the latest generation TNA in detecting buried landmines and IEDs hidden in culverts were conducted during 2011. This paper describes the second generation system. The experimental setup and methodology are detailed and preliminary comparisons between the performance of first and second generation systems are presented.

  20. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  1. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  2. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with Fe-N(x)/C groups.

    PubMed

    Rincón, Rosalba A; Masa, Justus; Mehrpour, Sara; Tietz, Frank; Schuhmann, Wolfgang

    2014-12-07

    The incorporation of Fe-Nx/C moieties into perovskites remarkably activates them for the oxygen reduction reaction (ORR) and also leads to notable improvement of their activity towards the oxygen evolution reaction (OER) thus presenting a new route for realizing high performance, low cost bifunctional catalysts for reversible oxygen electrodes.

  3. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    SciTech Connect

    Walker, Mark E; Mihalczo, John T

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  4. The role of neutron activation analysis in nutritional biomonitoring programs

    SciTech Connect

    Iyengar, V.

    1988-01-01

    Nutritional biomonitoring is a multidisciplinary task and an integral part of a more general bioenvironmental surveillance. In its comprehensive form, it is a combination of biological, environmental, and nutrient monitoring activities. Nutrient monitoring evaluates the input of essential nutrients required to maintain vital bodily functions; this includes vigilance over extreme fluctuations of nutrient intake in relation to the recommended dietary allowances and estimated safe and adequate daily dietary intakes and adherence to the goals of provisional tolerance limits. Environmental monitoring assesses the external human exposure via ambient pathways, namely, air, water, soil, food, etc. Biological monitoring quantifies a toxic agent and its metabolites in representative biologic specimens of an exposed organ to identify health effects. In practice, coordinating all three components of a nutritional biomonitoring program is complex, expensive, and tedious. Experience gained from the US National Health and Nutrition Examination Surveys demonstrates the problems involved. By far the most critical challenge faced here is the question of analytical quality control, particularly when trace element determinations are involved. Yet, measures to ensure reliability of analytical data are mandatory, and there are no short-cuts to this requirement. The purpose of this presentation is to elucidate the potential of neutron activation analysis (NAA) in nutritional biomonitoring activities.

  5. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  6. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    NASA Astrophysics Data System (ADS)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  7. Measurements of activation induced by environmental neutrons using ultra low-level gamma-ray spectrometry.

    PubMed

    Martínez Canet, M J; Hult, M; Köhler, M; Johnston, P N

    2000-03-01

    The flux of environmental neutrons is being studied by activation of metal discs of selected elements. Near the earth's surface the total neutron flux is in the order of 10(-2) cm(-2)s(-1), which gives induced activities of a few mBq in the discs. Initial results from this technique, involving activation at ground level for several materials (W, Au, Ta, In, Re, Sm, Dy and Mn) and ultra low-level gamma-ray spectrometry in an underground laboratory located at 500 m.w.e., are presented. Diffusion of environmental neutrons in water is also measured by activation of gold at different depths.

  8. FY16 Status Report on NEAMS Neutronics Activities

    SciTech Connect

    Lee, C. H.; Shemon, E. R.; Smith, M. A.; Jung, Y. S.

    2016-09-30

    The goal of the NEAMS neutronics effort is to develop a neutronics toolkit for use on sodium-cooled fast reactors (SFRs) which can be extended to other reactor types. The neutronics toolkit includes the high-fidelity deterministic neutron transport code PROTEUS and many supporting tools such as a cross section generation code MC2-3, a cross section library generation code, alternative cross section generation tools, mesh generation and conversion utilities, and an automated regression test tool. The FY16 effort for NEAMS neutronics focused on supporting the release of the SHARP toolkit and existing and new users, continuing to develop PROTEUS functions necessary for performance improvement as well as the SHARP release, verifying PROTEUS against available existing benchmark problems, and developing new benchmark problems as needed. The FY16 research effort was focused on further updates of PROTEUS-SN and PROTEUS-MOCEX and cross section generation capabilities as needed.

  9. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  10. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    USDA-ARS?s Scientific Manuscript database

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  11. Hiroshima and Nagasaki initial radiations: delayed neutron contributions and comparison of calculated and measured cobalt activations

    SciTech Connect

    Loewe, W.E.

    1985-03-01

    Calculated estimates of neutron doses received by atomic-bomb survivors at Hiroshima and Nagasaki have not included contributions from delayed neutrons emitted by fission products in the debris cloud, although the possibility of a significant contribution from this source has been suggested. In the present work, an established model accounting for gamma-ray kermas from these fission products is adapted to provide the desired neutron kerma estimates. Adaptations include use of explicit time dependence of neutron emitters, properly folded with the time-dependent phenomenology of the explosion itself, and detailed air-over-ground neutron transport with a source having an energy spectrum characteristic of these delayed neutrons. Results show that delayed neutrons are indeed negligible contributors to atomic-bomb survivor dosimetry, as well as to neutron activations at Hiroshima. About half the activation at Nagasaki, however, is due to the delayed component. Calculated activation of cobalt, a revision of previous estimates, is compared to measured values at Hiroshima and at Nagasaki. The causes of the substantial discrepancies are discussed and compared to previously reported discrepancies for sulfur activation. Additional investigation is recommended.

  12. The CIELO Collaboration: Progress in International Evaluations of Neutron Reactions on Oxygen, Iron, Uranium and Plutonium

    SciTech Connect

    Chadwick, M. B.; Capote, R.; Trkov, A.; Kahler, A. C.; Herman, M. W.; Brown, D. A.; Hale, G. M.; Pigni, M.; Dunn, M.; Leal, L.; Plompen, A.; Schillebeecks, P.; Hambsch, F. -J.; Kawano, T.; Talou, P.; Jandel, M.; Mosby, S.; Lestone, J.; Neudecker, D.; Rising, M.; Paris, M.; Nobre, G. P. A.; Arcilla, R.; Kopecky, S.; Giorginis, G.; Cabellos, O.; Hill, I.; Dupont, E.; Danon, Y.; Jing, Q.; Zhigang, G.; Tingjin, L.; Hanlin, L.; Xichao, R.; Haicheng, W.; Sin, M.; Bauge, E.; Romain, P.; Morillon, B.; Salvatores, M.; Jacqmin, R.; Bouland, O.; De Saint Jean, C.; Pronyaev, V. G.; Ignatyuk, A.; Yokoyama, K.; Ishikawa, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Kuneada, S.; Lubitz, C. R.; Palmiotti, G.; Kodeli, I.; Kiedrowski, B.; Roubtsov, D.; Thompson, I.; Quaglioni, S.; Kim, H. I.; KLee, Y. O.; Koning, A. J.; Carlson, A.; Fischer, U.

    2016-11-01

    The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear technologies - 16O, 56Fe, 235,8U and 239Pu - with the aim of reducing uncertainties and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.

  13. The CIELO collaboration: Progress in international evaluations of neutron reactions on Oxygen, Iron, Uranium and Plutonium

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Capote, R.; Trkov, A.; Kahler, A. C.; Herman, M. W.; Brown, D. A.; Hale, G. M.; Pigni, M.; Dunn, M.; Leal, L.; Plompen, A.; Schillebeeck, P.; Hambsch, F.-J.; Kawano, T.; Talou, P.; Jandel, M.; Mosby, S.; Lestone, J.; Neudecker, D.; Rising, M.; Paris, M.; Nobre, G. P. A.; Arcilla, R.; Kopecky, S.; Giorginis, G.; Cabellos, O.; Hill, I.; Dupont, E.; Danon, Y.; Jing, Q.; Zhigang, G.; Tingjin, L.; Hanlin, L.; Xichao, R.; Haicheng, W.; Sin, M.; Bauge, E.; Romain, P.; Morillon, B.; Noguere, G.; Jacqmin, R.; Bouland, O.; De Saint Jean, C.; Pronyaev, V. G.; Ignatyuk, A.; Yokoyama, K.; Ishikawa, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Kuneada, S.; Lubitz, C. R.; Palmiotti, G.; Salvatores, M.; Kodeli, I.; Kiedrowski, B.; Roubtsov, D.; Thompson, I.; Quaglioni, S.; Kim, H. I.; Lee, Y. O.; Koning, A. J.; Carlson, A.; Fischer, U.; Sirakov, I.

    2017-09-01

    The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear technologies - 16O, 56Fe, 235,8U and 239Pu - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.

  14. Feasibility of culvert IED detection using thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  15. Microfluidic Platform Generates Oxygen Landscapes for Localized Hypoxic Activation

    PubMed Central

    Rexius, Megan L.; Mauleon, Gerardo; Malik, Asrar B.; Rehman, Jalees; Eddington, David T.

    2014-01-01

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes. PMID:25315003

  16. Microfluidic platform generates oxygen landscapes for localized hypoxic activation.

    PubMed

    Rexius-Hall, Megan L; Mauleon, Gerardo; Malik, Asrar B; Rehman, Jalees; Eddington, David T

    2014-12-21

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes.

  17. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator.

    PubMed

    Bading, J R; Zeitz, L; Laughlin, J S

    1982-01-01

    Neutron fluxes and dose rates in and near the 18-MV x-ray beam of a Therac-20 accelerator were determined with measured activities from the nuclear reactions 31P(n, rho)31Si (fast neutrons) and 31P(n, gamma)32P (thermal neutrons), published cross sections, and neutron energy spectra from Monte Carlo calculations. Measurements were made in the patient plane in air and at a 10-cm depth in a tissue-similar phantom, and in a plane containing the x-ray target. Orthophosphoric acid solution was identified as a suitable and convenient phosphorus dosimeter material. In the 31P activation method, fluxes and dose rates are determined as the product of measured saturation activity per 31P atom and a conversion factor, which depends on the shape of the assumed neutron spectrum. For fast neutrons, which deliver most of the dose, the accuracy error in the saturation activity determinations was shown to be approximately less than 25%. An inconsistency resulting from neglect of the accelerator's adjustable collimator in the Monte Carlo calculations was demonstrated between the measured saturation activities and the theoretical neutron spectra. The maximum neutron dose equivalent rate observed was 5.9 mSv/Gy of x-ray absorbed dose at the accelerator calibration point. Surface dose equivalent rates of the present study are less than those of fluxmeter and remmeter studies at sites outside Therac-20 treatment fields by as much as factors of 2.4 and 2.8, respectively. The phantom study showed that at 18 MV internally produced neutrons have a negligible effect on the neutron field within the patient.

  18. Measurement of residual 152Eu activity induced by atomic bomb neutrons in Nagasaki and the contribution of environmental neutrons to this activity.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Ishikawa, Masayori; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Fujita, Shoichiro; Watanabe, Tadaaki; Yamashita, Tomoaki; Imanaka, Tetsuji

    2003-06-01

    Residual 152Eu activities induced by neutrons from the Nagasaki atomic bomb were measured for nine mineral samples located up to 1,061 m in the slant range and one control sample at 2,850 m from the hypocenter. A chemical separation to prepare europium-enriched samples was performed for all samples, and gamma ray measurements were carried out with a low background well-type germanium detector. In this paper, the measured specific activities of 152Eu are compared with activation calculations based on the DS86 neutron fluence and the 93Rev one. The calculated-to-measured ratios are also compared with those of 60Co and 36Cl. The present results indicate that the measurements agree to the calculation within a factor of three as observed in the nuclear tests at Nevada. The activation level of environmental neutrons and the detection limit for 152Eu are also discussed.

  19. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    PubMed

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes.

  20. Manufacture and properties of erythromycin beads containing neutron-activated erbium-171

    SciTech Connect

    Parr, A.F.; Digenis, G.A.; Sandefer, E.P.; Ghebre-Sellassie, I.; Iyer, U.; Nesbitt, R.U.; Scheinthal, B.M. )

    1990-03-01

    To evaluate the effects of a neutron activation radiolabeling technique on an enteric-coated multiparticulate formulation of erythromycin, test quantities were produced under industrial pilot scale conditions. The pellets contained the stable isotope erbium oxide (Er-170), which was later converted by neutron activation into the short-lived gamma ray-emitting radionuclide, erbium-171. In vitro studies indicated that the dissolution profile, acid resistance, and enteric-coated surface of the pellets were minimally affected by the irradiation procedure. Antimicrobial potency was also unaffected, as determined by microbiological assay. Neutron activation thus appears to simplify the radiolabeling of complex pharmaceutical dosage forms for in vivo study by external gamma scintigraphy.

  1. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  2. Neutron energy spectra unfolding from foil activation detector measurements with MINUIT

    NASA Astrophysics Data System (ADS)

    Seghour, A.; Seghour, F. Z.

    2005-12-01

    A method for unfolding neutron energy spectra from foil activation measurements using the multiparameter function minimisation routine MINUIT of Cernlib has been developed. It is based on the expansion of the neutron energy distribution on a set of parameters that are fitted to minimise the square sum of differences between the measured and calculated activities under smoothness and shape constraints. A modified square sum of differences expression weighted by each activation detector response contribution over the whole neutron energy range is proposed and compared with the classical square sum formulation. The proposed unfolding procedure is first illustrated by a set of 15 detectors to simulate reaction rates calculated using a typical neutron reactor energy spectrum. The demonstration of the proposed method is next achieved using measured reaction rates of the Arkansas Nuclear One power plant (ANO) benchmark spectrum of the Neutron Metrology File (NMF-90). Results of the proposed method were compared with those obtained by STAYNL and MSANDB unfolding codes using the same input data and were found in good agreement with the measured activities. The developed procedure is found to have an interesting advantage in unfolding neutron energy distribution in cases of a lack of information on the a priori solution. This has been illustrated by unfolding the JOYO MK-II fast breeder reactor neutron spectrum, using a set of experimental activation rates without a guess solution.

  3. Excited states in the active media of oxygen - iodine lasers

    SciTech Connect

    Azyazov, V N

    2009-11-30

    A review of investigations of kinetic processes in active media oxygen - iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O{sub 2} and I{sub 2} molecules are considered, and dissociation mechanisms of I{sub 2} in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended. (review)

  4. A Neutron Activation Gamma Ray spectrometer for Planetary Surface Analysis

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Schweitzer, J. S.; Truax, J. A.; Rice, A.; Tombrello, T. A.

    1994-01-01

    A pulsed DT neutron generator system, similar to that used in commercial well logging, offers the possibility of performing accurate elemental analyses to depths of tens of centimeters in a few seconds with the probe on the body's surface.

  5. A neutron activation technique for manganese measurements in humans.

    PubMed

    Bhatia, C; Byun, S H; Chettle, D R; Inskip, M J; Prestwich, W V

    2015-01-01

    Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments. To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the (7)Li(p,n)(7)Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4 π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Neutron activation analysis: A primary method of measurement

    NASA Astrophysics Data System (ADS)

    Greenberg, Robert R.; Bode, Peter; De Nadai Fernandes, Elisabete A.

    2011-03-01

    Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.

  7. Response of thunderstorm activity in data of neutron monitoring at Tien Shan

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Kryukov, Sergey; Lutsenko, Vadim

    2015-04-01

    We present results of the study of data of the monitoring of high-energy and thermal neutrons at Tien Shan at different stages of thunderstorm activity. The data of the neutron monitoring were used taking into account the barometric effect. The intensity of the neutron component of cosmic rays is recorded in seven energy ranges. The electric field has values of ~ 100 V/m under fair weather conditions. Standard deviation of minute values of the neutron monitor data at the high altitude station does not exceed 0.5-0.6 %. Found that the standard deviation of the data during thunderstorms always exceeds these values. We selected events during the passage of thunderstorm clouds over the high altitude station without lightning discharges or with a small number of them. It was found that the particle rate of the neutron monitor changes in antiphase with the electric field changes. Atmospheric electric field of positive polarity decreases the count rate of the neutron monitor, and negative polarity - increases. Change of the count rate occurs at values of electric field ≥ 10-15 kV/m and reaches 2 %. The neutron monitor at the high-altitude station has the ability to measure the energy of recorded particles through determination of their multiplicity. We experimentally established that the sensitivity of the detected particles to change in Ez increases with decreasing their energy. The upper energy threshold of sensitivity of neutrons to change electric field is ~10 GeV. The physical mechanism of effect is based on lead nucleus capture of soft negative muons with the subsequent generation of neutrons. It is known that 7% of the neutron monitor count rate caused by negative muons. Absence of this effect in thermal neutrons data confirms the conclusion since the main difference of the thermal neutrons detector from the neutron monitor is the absence of the lead. In the active phase of a thunderstorm in the formed thundercloud the picture of distribution of charges is

  8. Present and Future Activities on Neutron Imaging in Argentina

    NASA Astrophysics Data System (ADS)

    Tartaglione, Aureliano; Blostein, Jerónimo; Cantargi, Florencia; Marín, Julio; Baruj, Alberto; Meyer, Gabriel; Santisteban, Javier; Sánchez, Fernando

    We present here a short review of the main work which has been done in the latest years in neutron imaging in Argentina, and the future plans for the development of this technique in the country, mainly focused in the design of a new neutron imaging instrument to be installed in the future research reactor RA10. We present here the results of the implementation of the technique in samples belonging to the Argentinean cultural heritage and experiments related with hydrogen storage. At the same time, the Argentinean RA10 project for the design and construction of a 30 MW multipurpose research reactor is rapidly progressing. It started to be designed by the National Atomic Energy Commission (CNEA) and the technology company INVAP SE, both from Argentina, in June 2010. The construction will start in the beginning of 2015 in the Ezeiza Atomic Center, at 36 km from Buenos Aires City, and is expected to be finished by 2020. One of the main aims of the project is to offer to the Argentinean scientific and technology system new capabilities based on neutron techniques. We present here the conceptual design of a neutron imaging facility which will use one of the cold neutron beams, and will be installed in the reactor hall. Preliminary simulation results show that at the farthest detection position, at about 17 m from the cold source, a uniform neutron beam on a detection screen with an intensity of about 108 n/cm2/s is expected.

  9. The use of a small D-T neutron generator for the simultaneous detection of carbon, oxygen, hydrogen and nitrogen in vivo in humans

    SciTech Connect

    Kehayias, J.; Zhuang, H.

    1993-04-01

    A sealed D-T neutron generator is used for the pulsed (4-8 KHz) production of fast neutrons. Carbon and oxygen are detected in vivo by counting the 4.44 and 6.13 MeV gamma rays resulting from the inelastic scattering of fast neutrons from the {sup 12}C and {sup 16}O nuclei respectively. Hydrogen is measured by thermal neutron capture, and nitrogen by the (n,2n) reaction leading to a positron emitter. BGO detectors (127mm dia x 76mm thick) are used for gamma-ray detection during the 10 {mu}s neutron burst. The elemental analysis of the body is used to evaluate energy stores and lean tissue and to study the changes of body composition with aging. The project addresses the causes of depletion of lean body mass and the development of ways to maintain physical function and quality of life of the elderly. Similar compact neutron generator-based instruments are being evaluated for the assay of nuclear waste and for the detection of hidden explosives.

  10. Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) for Elemental Analysis

    SciTech Connect

    Robin P. Gardner

    2006-04-11

    This research project was to improve the prompt gamma-ray neutron activation analysis (PGNAA) measurement approach for bulk analysis, oil well logging, and small sample thermal enutron bean applications.

  11. Dynamic Albedo of Neutrons (DAN): Active Nuclear Experiment Onboard NASA Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Mokrousov, M. I.; Sanin, A. B.; Tretyakov, V. I.

    2005-03-01

    In our presentation we describe instrument DAN based on neutron activation technique and selected for NASA/MSL mission. The main task of this experiment is local measuruments of water distribution in martian subsurface around MSL rover.

  12. Active mode calibration of the combined thermal epithermal neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2001-01-01

    The Combined Thermal Epithermal Neutron (CTEN) system was developed by the Los Alamos National Laboratory to perform active and passive neutron interrogation of waste. The higher energy epithermal neutrons are able to penetrate further into the matrix and active material, thus reducing matrix attenuation and self-shielding effects compared to a thermal neutron pulse alone. The developmental unit was installed in 2001 at the Los Alamos Non-Destructive Assay (NDA) facility to characterize waste for the TRU Waste Characterization Project (TWCP). This paper summarizes the active mode certification results. National Institute of Standards and Technology (NIST) traceable standards were used to determine the system response as a function of mass. Finally, NIST-traceable verification standards were used to verify the calibration in the range 30 milligrams to 25 g of weapons grade plutonium although self-shielding limits the upper active interrogation to 10 g.

  13. Neutron activation analysis traces copper artifacts to geographical point of origin

    NASA Technical Reports Server (NTRS)

    Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.

    1967-01-01

    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.

  14. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  15. Determination of boron in materials by cold neutron prompt gamma-ray activation analysis.

    PubMed

    Paul, Rick L

    2005-01-01

    An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1).

  16. Scattered neutron dose equivalent from an active scanning proton beam delivery system.

    PubMed

    Hecksel, Draik; Sandison, George A; Farr, Jonathan B; Edwards, Andrew C

    2007-12-01

    A study of neutron production from a novel active scanning proton beam delivery system at the Midwest Proton Radiotherapy Institute (MPRI) has been performed. The neutron dose equivalent was determined using a neutron rem (roentgen equivalent in man) detector which has an upper energy limit of 10 MeV. Measurement were taken at 0, 45, and 90 degrees from the proton beam central axis and for various proton beam energies (127-208 MeV) and scanned field sizes (25-144 cm2). The maximum neutron dose observed was 0.43 mSv / (proton treatment Gy) at 90 degrees from the beam axis for a beam energy of 208.4 MeV and a scanned field size of 144 cm2. It is still possible to further mitigate this secondary neutron dose during treatment by optimizing parameters within the treatment nozzle and using shielding.

  17. Studies of neutron cross-sections important for spallation experiments using the activation method

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Chudoba, P.; Krása, A.; Majerle, M.; Suchopár, M.; Svoboda, O.; Wagner, V.

    2014-09-01

    A series of experiments devoted to studies of neutron cross-sections by activation method was carried out. The cross-sections of various threshold reactions were studied by means of different quasi-monoenergetic neutron sources with energies from 14 MeV up to 100 MeV. Threshold reactions in various materials are among other used to measure fast neutron fields produced during accelerator driven system studies. For this reason our measurements of neutron cross-sections are crucial. At present, neither experimental nor evaluated data above 30 MeV are available for neutron threshold reactions in Au, I and In published in this proceedings. We studied materials in the form of thin foils and compared our data with the calculations preformed using the deterministic code TALYS 1.4.

  18. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  19. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  20. Preliminary engineering assessment of the HCLL and HCPB Neutron Activation System

    SciTech Connect

    Calderoni, Pattrick; Leichtle, Dieter; Angelone, Maurizio; Klix, Axel

    2015-07-01

    The Neutron Activation System (NAS) is one of the four types of neutronics sensors considered for the testing of the HCLL and HCPB Test Blanket Module (TBM) in ITER. It measures the absolute neutron flux intensity with information on the neutron spectrum in selected positions of the TBM. The working principle of the NAS is as follows: the system moves small activation probes (capsules) into selected positions in the TBM (irradiation ends) by means of pneumatic transport with pressurized helium gas; the capsules are irradiated for a selected period, depending on their materials composition (several tens of seconds up to the full plasma pulse length); immediately after the irradiation they are extracted and transported to a gamma spectrometer by means of the same pneumatic transport system; the gamma spectrometer determines the induced gamma activity; the neutron flux and neutron fluence is calculated from the measured gamma activity and the known activation cross section of the materials in the activation probe; after the measurement the capsule is sent either to a disposal or storage (for later measurement). This paper summarizes the results of the feasibility assessment of the TBM NAS in the conceptual design phase, including design justification, identification of requirements based on the expected operating conditions in ITER and preliminary engineering assessment of the activation materials, irradiation ends integration in the modules design and the counting station. (authors)

  1. Stable labeled microspheres to measure perfusion: validation of a neutron activation assay technique.

    PubMed

    Reinhardt, C P; Dalhberg, S; Tries, M A; Marcel, R; Leppo, J A

    2001-01-01

    Neutron activation is an accurate analytic method in which trace quantities of isotopes of interest in a sample are activated and the emitted radiation is measured with high-resolution detection equipment. This study demonstrates the application of neutron activation for the measurement of myocardial perfusion using stable isotopically labeled microspheres. Stable labeled and standard radiolabeled microspheres (15 microm) were coinjected in an in vivo rabbit model of myocardial ischemia and reperfusion. Radiolabeled microspheres were detected with a standard gamma-well counter, and stable labeled microspheres were detected with a high-resolution Ge detection after neutron activation of the myocardial and reference blood samples. Regional myocardial blood flow was calculated from the deposition of radiolabeled and stable labeled microspheres. Both sets of microspheres gave similar measurements of regional myocardial blood flow over a wide range of flow with a high linear correlation (r = 0.95-0.99). Neutron activation is capable of detecting a single microsphere in an intact myocardial sample while providing simultaneous quantitative measurements of multiple isotope labels. This high sensitivity and capability for measuring perfusion in intact tissue are advantages over other techniques, such as optical detection of microspheres. Neutron activation also can provide an effective method for reducing the production of low-level radioactive waste generated from biomedical research. Further applications of neutron activation offer the potential for measuring other stable labeled compounds, such as fatty acids and growth factors, in conjunction with microsphere measured flow, providing the capability for simultaneous measurement of regional metabolism and perfusion.

  2. NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    NASA Astrophysics Data System (ADS)

    Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.

    1999-06-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.

  3. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  4. Determination of (n,γ) Cross Sections of 241Am by Cold Neutron Activation

    NASA Astrophysics Data System (ADS)

    Genreith, C.; Rossbach, M.; Révay, Zs.; Kudejova, P.

    2014-05-01

    Accurate cross section data of actinides are crucial for criticality calculations of GEN IV reactors and transmutation but also for analytical purposes such as nuclear waste characterization, decommissioning of nuclear installations and safeguard applications. Tabulated data are inconsistent and sometimes associated with large uncertainties. Neutron activation with external cold neutron beams from high flux reactors offers a chance for determination of accurate capture cross sections scalable to the whole 1/√{E}-region even for isotopes with low-lying resonances like 241Am. Preparation of 241Am samples for irradiation at the PGAA station of the FRM II in Garching has been optimized together with PTB in Braunschweig. Two samples were irradiated together with gold flux monitors to extract the thermal neutron capture cross section after appropriate corrections for attenuation of neutrons and photons in the sample. For one sample, the thermal ground state neutron capture cross section was measured as 663.0 ± 28.8 b. The thermal neutron capture cross section was calculated to 725.4 ± 34.4 b. For the other sample, a ground state neutron capture cross section of 649.9 ± 28.2 b was measured and a thermal neutron capture cross section of 711.1 ± 33.9 b was derived.

  5. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    PubMed Central

    de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  6. Radiolabeling of intact dosage forms by neutron activation: effects on in vitro performance

    SciTech Connect

    Parr, A.; Jay, M.

    1987-12-01

    Compressed tablets containing various quantities of stable isotopes of Ba, Er, and Sm for use in neutron activation studies were evaluated for the effect of stable isotope incorporation on tablet hardness and disintegration times. At concentrations likely to be used in scintigraphic studies employing neutron activation as a radiolabeling method, no significant effect on in vitro parameters were observed. While the incorporation of stable isotopes influenced tablet hardness to a greater degree than disintegration time, irradiation of tablets in a neutron flux of 4.4 x 10(13) n/cm2 sec had a direct effect on tablet disintegration time. Thus, future neutron activation studies should focus on minimizing the amount of stable isotope to be incorporated with the formulation while using the shortest feasible irradiation time.

  7. Cross sections and partial kerma factors for elastic and inelastic neutron scattering from nitrogen, oxygen and calcium at En = 21.6 MeV.

    PubMed

    Olsson, N; Ramström, E; Trostell, B

    1990-09-01

    The Studsvik high-resolution, low-background time-of-flight facility has been used to measure differential neutron scattering cross sections for nitrogen, oxygen and calcium at a neutron energy of 21.6 MeV. Angular distributions in the range 10 degrees-160 degrees have been measured for both elastic and inelastic scattering from some low-lying levels in the three nuclei. Angle-integrated cross sections have been determined by fitting Legendre polynomial expansions to the differential data. Partial kerma factors for elastic and inelastic scattering have been deduced from these fits. Analyses in terms of the spherical optical model and the distorted-wave Born approximation have provided information on potential parameters and deformations, which have been used to calculate cross sections and partial kerma factors. Comparisons have been made with other recent data sets and model predictions, as well as with the evaluated neutron data file ENDF/B-V.

  8. Oxygen storage capacity in La1-xSrxFeO3-{delta} for chemical-looping reactions – an in-situ synchrotron and neutron diffraction study

    SciTech Connect

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; Xu, Wenqian; Whitfield, Pamela S.; Rodriguez, Efrain E.

    2016-01-01

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. The overall performance of OSMs for chemical-looping reactions depends on two factors: the transport of oxygen to and from the bulk of the material, and the reaction of methane or oxygen on the surface of the material. We present the results of in-situ neutron and synchrotron X-ray powder diffraction experiments on La1-xSrxFeO3-δ for x = 0, 1/3, 1/2, 2/3, and 1 between 100 °C and 835 °C to mimic the conditions in chemical-looping reactors in order to understand the key structural and compositional features leading to the ideal OSM. While neutron diffraction experiments provide the amount of lattice oxygen available for cycling, synchrotron X-ray diffraction experiments gave insight into the reaction kinetics. We conclude that each material in this series has an ‘envelope’ of oxygen storage capacity (OSC) over a certain temperature range. Within this envelope, oxygen can easily and reversibly be inserted and removed from the material – the essential property of an OSM. Below the envelope, kinetic limitations keep the lattice oxygen inaccessible for cycling, and above the envelope, the difference in oxygen content for the material under oxidizing and reducing conditions is too small to be practical. While samples with higher Sr contents had a higher OSC, those samples suffered from slower reaction kinetics and had local variations in Sr content which led to regions with different reaction rates. As LaFeO3 was essentially inert in our conditions, we found the optimal OSM in our series to be La2/3Sr1/3FeO3-δ.

  9. Activated oxygen alters cerebral microvascular responses in newborn pigs

    SciTech Connect

    Leffler, C.W.; Busiia, D.W.; Armstead, W.M.; Mirro, R.; Thelin, O. )

    1990-02-26

    In piglets, cerebral ischemia/reperfusion blocks prostanoid dependent cerebral vasodilation to hypercapnia (CO{sub 2}) and hypotension but not prostanoid independent dilation to isoproterenol (Isu) or constriction to norepinephrine (NE). Ischemia/reperfusion increases activated-O{sub 2} production by piglet brains. Using cranial windows in piglets, the authors investigated the hypothesis that activated oxygen can block prostanoid dependent cerebral vasodilator responses to CO{sub 2} and hypotension without altering responses to Isu and NE. Exposure to an activated oxygen generating system of xanthine oxidase, hypoxanthine, and Fe that made about 3 times the activated-O{sub 2} on the brain surface as ischemia/reperfusion caused reversible pial arteriolar dilation. After exposure, pial arteriolar dilation was reduced to CO{sub 2} and hypotension but not to Isu. NE constrictor responses were also unaltered. H{sub 2}O{sub 2} or H{sub 2}O{sub 2} + Fe caused constriction followed by reversible dilation. After exposure, pial arteriolar dilation in response to CO{sub 2} and hypotension was not altered. However, addition of xanthine oxidase and hypoxanthine with H{sub 2}O{sub 2} and Fe totally eliminated pial arteriolar dilator responses to CO{sub 2} and hypotension but did not decrease dilation caused by Isu or constriction caused by NE. The authors conclude that activated oxygen could produce the altered prostanoid dependent pial arteriolar responses observed following ischemia in piglets.

  10. Changes to coral health and metabolic activity under oxygen deprivation.

    PubMed

    Murphy, James W A; Richmond, Robert H

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health.

  11. Changes to coral health and metabolic activity under oxygen deprivation

    PubMed Central

    Richmond, Robert H.

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health. PMID:27114888

  12. DT neutron generator as a source for a thermal neutron activation system for confirmatory land mine detection

    NASA Astrophysics Data System (ADS)

    Haslip, Dean S.; Cousins, Thomas; Andrews, H. Robert; Chen, Jing; Clifford, Edward T. H.; Ing, Harry; McFee, John E.

    2001-12-01

    A DT neutron generator has been integrated into the Canadian Improved Landmine Detection Program's Thermal Neutron Activation sensor. The generator has been redesigned from a commercial version, and the moderator structure around the generator has been completely redesigned. These developments allow the DT generator and its moderator structure to be placed interchangeably into the location currently occupied by a 252Cf source and its moderator structure. Experimental and calculational studies have helped to define the optimal operating parameters for the neutron generator in this application. Performance comparisons between the old californium-based system and the new DT-generator-based system have demonstrated that the new system out-performs the old in all tested scenarios, particularly when the mine is deeply buried or when the source is not directly over the explosive. This is in excellent agreement with calculations performed in the design phase of this system. Combined with the myriad other benefits associated with DT generators over isotopic sources, these results demonstrate the desirability of using a DT generator in a TNA land mine detection system.

  13. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  14. Nondestructive assay of spent boiling-water-reactor fuel by active neutron interrogation

    SciTech Connect

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Results agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondestructive assays.

  15. Detection and depth profiling of hazardous elements using N-SCAN prompt gamma neutron activation analysis

    SciTech Connect

    Ruddy, F.H.; Congedo, T.V.; Dulloo, A.R.

    1995-12-31

    A low-background method of prompt gamma neutron activation analysis (PGNAA) has been developed and demonstrated. This method employs a pulsed electronic neutron generator, a high resolution, high purity germanium detector, and microsecond coordination of neutron pulsing and gamma detection through a computer-controlled acquisition interface module. The system has been used to detect trace amounts of hazardous elements in concretes and soils to provide depth profiles of contaminant burden down to nearly 1 ft in packed soil, and also to perform rapid identification of the contents of munitions bearing simulants of chemical weapons agents.

  16. Energy and angular dependence of active-type personal dosemeter for high-energy neutron.

    PubMed

    Rito, Hirotaka; Yamauchi, Tomoya; Oda, Keiji

    2011-07-01

    In order to develop an active-type personal dosemeter having suitable sensitivity to high-energy neutrons, the characteristic response of silicon surface barrier detector has been investigated experimentally and theoretically. An agreement of the shape of pulse-height distribution, its change with radiator thickness and the relative sensitivity was confirmed between the calculated and experimental results for 14.8-MeV neutrons. The angular dependence was estimated for other neutron energies, and found that the angular dependence decreased with the incident energy. The reason was also discussed with regard to the radiator thickness relative to maximum range of recoil protons.

  17. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani; G. Nebbia

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, a system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code

  18. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    SciTech Connect

    Blackston, Matthew A; Hausladen, Paul

    2010-04-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  19. Development of the prototype pneumatic transfer system for ITER neutron activation systema)

    NASA Astrophysics Data System (ADS)

    Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G.; Bertalot, L.

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  20. Neutron activation analysis via nuclear decay kinetics using gamma-ray spectroscopy at SFU

    NASA Astrophysics Data System (ADS)

    Domingo, Thomas; Chester, Aaron; Starosta, Krzysztof; Williams, Jonathan

    2016-09-01

    Gamma-ray spectroscopy is a powerful tool used in a variety of fields including nuclear and analytical chemistry, environmental science, and health risk management. At SFU, the Germanium detector for Elemental Analysis and Radiation Studies (GEARS), a low-background shielded high-purity germanium gamma-ray detector, has been used recently in all of the above fields. The current project aims to expand upon the number of applications for which GEARS can be used while enhancing its current functionality. A recent addition to the SFU Nuclear Science laboratory is the Thermo Scientific P 385 neutron generator. This device provides a nominal yield of 3 ×108 neutrons/s providing the capacity for neutron activation analysis, opening a major avenue of research at SFU which was previously unavailable. The isotopes created via neutron activation have a wide range of half-lives. To measure and study isotopes with half-lives above a second, a new analogue data acquisition system has been installed on GEARS allowing accurate measurements of decay kinetics. This new functionality enables identification and quantification of the products of neutron activation. Results from the neutron activation analysis of pure metals will be presented.

  1. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  2. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE PAGES

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; ...

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  3. Activation mechanism of Gi and Go by reactive oxygen species.

    PubMed

    Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

    2002-03-15

    Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

  4. Neutron activation increases activity of ruthenium-based complexes and induces cell death in glioma cells independent of p53 tumor suppressor gene.

    PubMed

    Montel, Aline Monezi; Dos Santos, Raquel Gouvêa; da Costa, Pryscila Rodrigues; Silveira-Lacerda, Elisângela de Paula; Batista, Alzir Azevedo; Dos Santos, Wagner Gouvêa

    2017-04-01

    Novel metal complexes have received great attention in the last decades due to their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy, providing less toxicity and side effects to patients. Glioblastoma is an aggressive and invasive type of brain tumor and despite of advances is the field of neurooncology there is no effective treatment until now. Therefore, we sought to investigate the potential antiproliferative activity of phosphine-ruthenium-based complexes on human glioblastoma cell lines. Due to its octahedral structure as opposed to the square-planar geometry of platinum(II) compounds, ruthenium(II) complexes exhibit different structure-function relationship probably acting through a different mechanism from that of cisplatin beyond their ability to bind DNA. To better improve the pharmacological activity of metal complexes we hypothesized that neutron activation of ruthenium in the complexes would allow to decrease the effective concentration of the compound needed to kill tumor cells. Herein we report on the effect of unmodified and neutron activated phosphine ruthenium II complexes on glioblastoma cell lines carrying wild-type and mutated p53 tumor suppressor gene. Induction of apoptosis/authophagy as well as generation of reactive oxygen species were determined. The phosphine ruthenium II complexes tested were highly active against glioblastoma cell lines inducing cell death both through apoptosis and autophagy in a p53 independent fashion. Neutron activation of ruthenium compounds rendered them more active than their original counterparts suggesting a new strategy to improve the antitumor activity of these compounds.

  5. Activation barriers of oxygen transformation at the active site of [FeFe] hydrogenases.

    PubMed

    Finkelmann, Arndt R; Stiebritz, Martin T; Reiher, Markus

    2014-11-17

    Oxygen activation at the active sites of [FeFe] hydrogenases has been proposed to be the initial step of irreversible oxygen-induced inhibition of these enzymes. On the basis of a first theoretical study into the thermodynamics of O2 activation [Inorg. Chem. 2009, 48, 7127] we here investigate the kinetics of possible reaction paths at the distal iron atom of the active site by means of density functional theory. A sequence of steps is proposed to either form a reactive oxygen species (ROS) or fully reduce O2 to water. In this reaction cascade, two branching points are identified where water formation directly competes with harmful oxygen activation reactions. The latter are water formation by O-O bond cleavage of a hydrogen peroxide-bound intermediate competing with H2O2 dissociation and CO2 formation by a putative iron-oxo species competing with protonation of the iron-oxo species to form a hydroxyo ligand. Furthermore, we show that proton transfer to activated oxygen is fast and that proton supply to the active site is vital to prevent ROS dissociation. If sufficiently many reduction equivalents are available, oxygen activation reactions are accelerated, and oxygen reduction to water becomes possible.

  6. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  7. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  8. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  9. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; hide

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  10. Analysis of improved neutron activation technique using thick foils for application on medical LINAC environment

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-01-01

    An improved neutron activation technique is analyzed that can be used for the characterization of the neutron field in low neutron flux environments, such as medical Linacs. Due to the much lower neutron fluence rates, thick materials instead of thin have been used. The study is focused on the calculations of basic components of the neutron activation analysis that are required for accurate results, such as the efficiency of the gamma detector used for γ-spectrometry as well as crucial correction factors that are required when dealing with thick samples in different geometries and forms. A Monte Carlo detector model, implemented by Geant4 MC Code was adjusted in accordance to results from various measurements performed. Moreover, regarding to estimate the self-shielding correction factors a new approach using both Monte Carlo and analytical approach was presented. This improvement gives more accurate results, which are important for both activation and shielding studies that take place in many facilities. A quite good agreement between the neutron fluxes is achieved; according to the data obtained a mean value of (2.13±0.34)×105 ncm-2 s-1 is representative for the isocenter of the specific Linac that corresponds to fluence of (5.53±0.94)×106 ncm-2 Gy-1. Comparable fluencies reported in the literature for similar Linacs operating with photon beams at 15 MeV.

  11. [Metronidazole effect on active oxygen production by human blood neutrophils].

    PubMed

    Shchepetkin, I A

    1997-01-01

    The in vitro effect of metronidazole on production of active oxygen by neutrophila and in the enzymatic system of glucose-glucose oxidase-peroxidase was studied by luminol-dependent chemiluminescence. An increase in the spontaneous and zymozan-stimulated chemiluminescence and a decrease in the phorbolmyristate acetate (PMA)-stimulated chemiluminescence after 2-hour preincubation of the neutrophils with 8.5 mM of metronidazole were observed. In concentrations of 0.9 to 8.7 mM metronidazole (without washing) dose-dependently lowered the neutrophil chemiluminescence in response to the effect of PMA and ionophore A23187 and to a lesser degree to that of zymozan. In doses of 20 to 100 mM the drug had an insignificant effect on production of active oxygen by the neutrophils in response to the cell stimulation by PMA, ionophore A23187 and zymozan. The data are in conformity with the scavenger effect of metronidazole on active oxygen radicals generating in the cell-free enzymatic system both in the presence and in the absence of superoxide dismutase.

  12. Studies of Neutron and Proton Nuclear Activation in Low-Earth Orbit 2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1983-01-01

    The study of neutron and proton nuclear activation in low-Earth orbit reported in NASA CR-162051 has been continued with increasing emphasis given to primary and secondary neutron activation. The previously reported activation due to protons has been modified to include: (1) flux attenuation caused by all inelastic reactions; (2) the modification of the proton flux distribution caused by sample covering material; and (3) the activation of the sample as a function of the distance into the sample from the surface of incidence. A method has been developed for including the effects on the activation of the finite width and length of the samples. The reactant product spectra produced by proton-induced reactions has been studied. Cross sections needed for neutron induced reactions leading to long-lived (half-life 1 day) radioisotopes have been identified and, in some cases, compiled.

  13. Implementation of an enhanced, permanently installed neutron activation diagnostic hardware for NIF

    NASA Astrophysics Data System (ADS)

    Jedlovec, Donald R.; Edwards, Ellen R.; Carrera, Jorge A.; Yeamans, Charles B.

    2015-08-01

    Neutron activation diagnostics are commonly employed as baseline neutron yield and relative spatial flux measurement instruments. Much insight into implosion performance has been gained by deployment of up to 19 identical activation diagnostic samples distributed around the target chamber at unique angular locations. Their relative simplicity and traceability provide neutron facilities with a diagnostic platform that is easy to implement and verify. However, the current National Ignition Facility (NIF) implementation relies on removable activation samples, creating a 1-2 week data turn-around time and considerable labor costs. The system described here utilizes a commercially-available lanthanum bromide (cerium-doped) scintillator with an integrated MCA emulator as the counting system and a machined zirconium-702 cap as the activation medium. The device is installed within the target bay and monitored remotely. Additionally, this system allows the placement of any activation medium tailored to the specific measurement needs. We discuss the design and function of a stand-alone and permanently installed neutron activation detector unit to measure the yield and average energy of a nominal 14 MeV neutron source with a pulse length less than one nanosecond.

  14. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  15. Neutron Activation Analysis of Trace Elements in Lava

    NASA Astrophysics Data System (ADS)

    Meyer, Ross; Sabella, Jordan; Thomas, Keenan; Norman, Eric; Guillamon, P.; Goldman, I.; Smith, A.

    2012-10-01

    The elemental compositions of lavas vary with the locations of the volcanoes from which they emerged. We have used neutron activa- tion analysis to measure the abundances of approximately 32 different elements in lava samples collected from three different Hawaiian islands and from the summit of Mt. Kilimanjaro. Two different neutron ir- radiations were performed at the McClellan Nuclear Radiation Center to optimize our sensitivities to both short- and long-lived radioisotopes. Gamma-ray counting was done at McClellan, UC Berkeley, and LBNL using large-volume high-purity Ge detectors. Results from the mea- surements will be presented and comparisons will be made between the trace-element compositions of the lavas from these different sites.

  16. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  17. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    PubMed

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface.

  18. 3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F

    NASA Astrophysics Data System (ADS)

    Herreras, Y.; Lafuente, A.; Sordo, F.; Cabellos, O.; Perlado, J. M.

    2008-05-01

    This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.

  19. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    SciTech Connect

    Tinsley, J.R., Hurley, J.P., Trainham, R., Keegan, R.P.

    2008-11-14

    In an extension of the Associated Particle Imaging technique that is used for the detection and imaging of hidden explosives, the present measurements use a beam of tagged 14.1 MeV neutrons in coincidence with two or more gammas to probe for the presence of fissionable materials. We have measured neutron-gamma-gamma coincidences with targets of depleted uranium, tungsten, lead, iron, and carbon and will present results that show the multiple-coincidence counting rate for the depleted uranium is substantially higher than any of the non-fissionable materials. In addition, the presence of coincidences involving delayed particle spectra provides a signature for fissionable materials that is distinct from that for non-fissionable ones. Information from the tagged neutron involved in the coincidence event is used to compute the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is compact and portable, and produces relatively low levels of background radiation. Simultaneous measurements on packages of interest for both explosives and fissionable materials are now feasible.

  20. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity.

    PubMed

    Keymer, Philip C; Pratt, Steven; Lant, Paul A

    2013-09-01

    The development of an Electrochemical System for Oxygen Control (ESOC) for examining algal photosynthetic activity as a function of dissolved oxygen (DO) is outlined. The main innovation of the tool is coulombic titration in order to balance the electrochemical reduction of oxygen with the oxygen input to achieve a steady DO set-point. ESOC allows quantification of algal oxygen production whilst simultaneously maintaining a desired DO concentration. The tool was validated abiotically by comparison with a mass transfer approach for quantifying oxygenation. It was then applied to quantify oxygen inhibition of algal activity. Five experiments, using an enriched culture of Scenedesmus sp. as the inoculum, are presented. For each experiment, ESOC was used to quantify algal activity at a series of DO set-points. In all experiments substantial oxygen inhibition was observed at DO >30 mgO2 L-1. Inhibition was shown to fit a Hill inhibition model, with a common Hill coefficient of 0.22±0.07 L mg-1 and common log10  CI50 of 27.2±0.7 mg L-1. This is the first time that the oxygen inhibition kinetic parameters have been quantified under controlled DO conditions. Copyright © 2013 Wiley Periodicals, Inc.

  1. Oxygen reduction activity of carbon nitride supported on carbon nanotubes.

    PubMed

    Lyth, S M; Nabae, Y; Islam, N M; Kuroki, S; Kakimoto, M; Miyata, S

    2012-06-01

    Fuel cells offer an alternative to burning fossil fuels, but use platinum as a catalyst which is expensive and scarce. Cheap, alternative catalysts could enable fuel cells to become serious contenders in the green energy sector. One promising class of catalyst for electrochemical oxygen reduction is iron-containing, nanostructured, nitrogen-doped carbon. The catalytic activity of such N-doped carbons has improved vastly over the years bringing industrial applications ever closer. Stoichiometric carbon nitride powder has only been observed in recent years. It has nitrogen content up to 57% and as such is an extremely interesting material to work with. The electrochemical activity of carbon nitride has already been explored, confirming that iron is not a necessary ingredient for 4-electron oxygen reduction. Here, we synthesize carbon nitride on a carbon nanotube support and subject it to high temperature treatment in an effort to increase the surface area and conductivity. The results lend insight into the mechanism of oxygen reduction and show the potential for carbon nanotube-supported carbon nitride to be used as a catalyst to replace platinum in fuel cells.

  2. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.

  3. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  4. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles.

    PubMed

    Vayssilov, Georgi N; Lykhach, Yaroslava; Migani, Annapaola; Staudt, Thorsten; Petrova, Galina P; Tsud, Nataliya; Skála, Tomáš; Bruix, Albert; Illas, Francesc; Prince, Kevin C; Matolín, Vladimír; Neyman, Konstantin M; Libuda, Jörg

    2011-04-01

    Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

  5. Oxygen transfer into activated sludge with high MLSS concentrations.

    PubMed

    Krampe, J; Krauth, K

    2003-01-01

    In this report, tests on the impact of the sludge properties on the oxygen transfer at low and high solids contents are presented. Additional to the oxygen transfer tests, the activated sludge was intensively analysed to examine the changes of the alpha-factor in relation to the sludge properties (rheology, EPS, CST, etc.). The alpha-factor did strongly decrease in all sludge types at increasing MLSS or increasing viscosity, respectively. In the second test stage, the impact of the aeration system was examined in detail. For these tests, the same sludge from a membrane bioreactor was used throughout. Apart from the impact of the power density in the reactor and the specific air throughput, the main focus was on the economic efficiency of the examined systems in cases of high MLSS. It became apparent that up to solids contents of 18 g/l the fine-bubble aeration is the most economically efficient method.

  6. Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis.

    PubMed

    Baidoo, I K; Dampare, S B; Opata, N S; Nyarko, B J B; Akaho, E H K; Quagraine, R E

    2013-12-01

    In this work, concentrations of silicon, aluminium and magnesium in geological matrices were determined by Neutron Activation Analysis based on k0-IAEA software. The optimum activation and delay times were found to be 5 min and 15-20 min respectively for the determination of Si via (29)Si (n,p) (29)Al reaction. The adopted irradiation scheme did not work for the determination of magnesium. Each sample was irradiated under a thermal neutron flux density of 5.0 × 10(11) ncm(-2)s(-1). Cadmium covered activation indicated that a permanent epithermal irradiation site for research reactors would be very useful for routine determination of silicon in environmental samples.

  7. Probing Planetary Bodies for Subsurface Volatiles: GEANT4 Models of Gamma Ray, Fast, Epithermal, and Thermal Neutron Response to Active Neutron Illumination

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.

    2014-12-01

    Using an active source of neutrons as an in situ probe of a planetary body has proven to be a powerful tool to extract information about the presence, abundance, and location of subsurface volatiles without the need for drilling. The Dynamic Albedo of Neutrons (DAN) instrument on Curiosity is an example of such an instrument and is designed to detect the location and abundance of hydrogen within the top 50 cm of the Martian surface. DAN works by sending a pulse of neutrons towards the ground beneath the rover and detecting the reflected neutrons. The intensity and time of arrival of the reflection depends on the proportion of water, while the time the pulse takes to reach the detector is a function of the depth at which the water is located. Similar instruments can also be effective probes at the polar-regions of the Moon or on asteroids as a way of detecting sequestered volatiles. We present the results of GEANT4 particle simulation models of gamma ray, fast, epithermal, and thermal neutron responses to active neutron illumination. The results are parameterized by hydrogen abundance, stratification and depth of volatile layers, versus the distribution of neutron and gamma ray energy reflections. Models will be presented to approximate Martian, lunar, and asteroid environments and would be useful tools to assess utility for future NASA exploration missions to these types of planetary bodies.

  8. High Sensitive Neutron-Detection by Using a Self-Activation of Iodine-Containing Scintillators for the Photo-Neutron Monitoring around X-ray Radiotherapy Machines

    NASA Astrophysics Data System (ADS)

    Nohtomi, Akihiro; Wakabayashi, Genichiro; Kinoshita, Hiroyuki; Honda, Soichiro; Kurihara, Ryosuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji; Nakamura, Katsumasa

    A novel method for evaluating the neutron dose-equivalent as well as neutron fluence around high-energy X-ray radiotherapy machines has been proposed and examined by using the self-activation of a CsI scintillator. Several filtering conditions were used to extract energy information of the neutron field. The shapes of neutron energy spectra were assumed to be practically unchanged at each three energy regions (thermal, epi-thermal and fast regions) for different irradiations around an X-ray linac whose acceleration potential was fixed to be a certain value. In order to know the actual neutron energy spectrum, an unfolding process was carried out for saturated activities of 128I generated inside the CsI scintillator under different filtering conditions; the response function matrix for each filtering condition was calculated by a Monte Carlo simulation. As the result, neutron dose-equivalent was estimated to be 0.14 (mSv/Gy) at 30 cm from the isocenter of linac. It has been revealed that fast neutron component dominated the total dose-equivalent.

  9. DIVERSE ACTIVE WELL NEUTRON COINCIDENCE COUNTER UTILITY AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Dewberry, R; Saleem Salaymeh, S

    2007-01-08

    In this paper we describe use of the Aquila active well neutron coincidence counter for nuclear material assays of {sup 235}U in multiple analytical techniques at Savannah River Site (SRS), at the Savannah River National Laboratory (SRNL), and at Argonne West National Laboratory (AWNL). The uses include as a portable passive neutron counter for field measurements searching for evidence of {sup 252}Cf deposits and storage; as a portable active neutron counter using an external activation source for field measurements searching for trace {sup 235}U deposits and holdup; for verification measurements of U-Al reactor fuel elements; for verification measurements of uranium metal; and for verification measurements of process waste of impure uranium in a challenging cement matrix. The wide variety of uses described demonstrate utility of the technique for neutron coincidence verification measurements over the dynamic ranges of 100 g-5000 g for U metal, 200 g-1300 g for U-Al, and 8 g-35 g for process waste. In addition to demonstrating use of the instrument in both the passive and active modes, we also demonstrate its use in both the fast and thermal neutron modes.

  10. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

    DOE PAGES

    Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra

    2017-04-07

    The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less

  11. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Grimaud, Alexis; Demortiere, Arnaud; Saubanere, Matthieu; Dachraoui, Walid; Duchamp, Martial; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-01-01

    The oxygen evolution reaction (OER) is of prime importance in multiple energy storage devices; however, deeper mechanistic understanding is required to design enhanced electrocatalysts for the reaction. Current understanding of the OER mechanism based on oxygen adsorption on a metallic surface site fails to fully explain the activity of iridium and ruthenium oxide surfaces, and the drastic surface reconstruction observed for the most active OER catalysts. Here we demonstrate, using La2LiIrO6 as a model catalyst, that the exceptionally high activity found for Ir-based catalysts arises from the formation of active surface oxygen atoms that act as electrophilic centres for water to react. Moreover, with the help of transmission electron microscopy, we observe drastic surface reconstruction and iridium migration from the bulk to the surface. Therefore, we establish a correlation between surface activity and surface stability for OER catalysts that is rooted in the formation of surface reactive oxygen.

  12. Analysis of Neutron Induced Gamma Activity in Lowbackground Ge - Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Jovančević, Nikola; Krmar, Midrag

    Neutron interactions with materials of Ge-spectroscopy systems are one of the main sources of background radiation in low-level gamma spectroscopy measurements. Because of that detailed analysis of neutron induced gamma activity in low-background Ge-spectroscopy systems was done. Two HPGe detectors which were located in two different passive shields: one in pre-WW II made iron and the second in commercial low background lead were used in the experiment. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal and shield materials (lead, iron, hydrogen, NaI) were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. The relative intensities of several gamma lines emitted after the inelastic scattering of neutrons (created by cosmic muons) in 56Fe were report. These relative intensities of detected gamma lines of 56Fe are compared with the results collected in the same iron shield by the use of the 252Cf neutrons.

  13. Testing of regolith of celestial bolides with active neutron gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Vostrukhin, Andrey; Mitrofanov, Igor; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton

    2015-04-01

    Current space instruments for studying planet's surface include gamma ray spectrometers that detect natural radioactive isotopes as well as gamma-rays induced in subsurface by galactic cosmic rays. When measuring from celestial body's surface, statistics and amount of detected elements can be dramatically increased with active methods, where soil exposed to artificial flux of particles. One good example is the Russian Dynamic Albedo of Neutron (DAN) instrument onboard Martian Science Laboratory mission (Curiosity rover) developed in 2005-2011. It is the first active neutron spectrometer flown to another planet as part of a landed mission to investigate subsurface water distribution and which has now successfully operated for more than two years on the Martian surface. Presentation describes a number of space instruments for different landers and rovers being developed in Russian Space Research Institute for studying Moon and Mars, as well as method of active neutron and gamma spectrometry overview.

  14. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  15. Removal of trichlorobenzene using 'oxygen-enriched' highly active absorbent.

    PubMed

    Zhao, Yi; He, Peng; Zhang, Yu-Hai; Ma, Shuangchen

    2011-01-01

    Fly ash, industry lime and an additive, Ca(ClO2)2 (C) were used to prepare the 'oxygen-enriched' highly active absorbent (HAA). The influencing factors for removal of 1,2,4-trichlorobenzene (TCB) using this absorbent such as reaction temperature, simulating gas flow rate, oxygen content, etc. were studied in a self-designed reactor. The optimum experimental conditions of removing 1,2,4-TCB are that the content of an oxidizing additive in the absorbent is 3% (wt), simulating gas flow rate is 100 mL/min, reaction temperature is 250 degrees C, and the content of oxygen in simulating gas is 6%. The maximum removal efficiency is 81.71% in 10 mins. The absorption capacity of the absorbent is 0.000111 g/g. The reaction products were determined by gas chromatograph/mass spectrometer (GC/ MS), 2,6-Bis-[1,1-Dimethylethyl]-4-methyl-Phenol is considered to be the major intermediate product. The reaction route was revealed.

  16. Investigation of the neutron activation of endohedral rare earth metallofullerenes

    SciTech Connect

    Shilin, V. A. Lebedev, V. T.; Kolesnik, S. G.; Kozlov, V. S.; Grushko, Yu. S.; Sedov, V. P.; Kukorenko, V. V.

    2011-12-15

    Endohedral lanthanide metallofullerenes and their water-soluble biocompatible derivatives have been synthesized. The effect that fast-neutron irradiation has on the stability and nuclear physical properties of endohedral metallofullerenes that are used as magnetocontrast materials ({sup 46}Sc, {sup 140}La, {sup 141}Nd, {sup 153}Sm, {sup 152}Eu, {sup 154}Eu, {sup 153}Sm, {sup 160}Tb, {sup 169}Yb, {sup 170}Tm (isomers I and III), and {sup 177}Lu) is studied. Our hypothesis, according to which carbon-shell relaxation is based on the fast nonradiative processes of an electron shake-off type, is confirmed.

  17. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  18. Use of Activation Technique and MCNP Calculations for Measurement of Fast Neutron Spatial Distribution at the MJ Plasma Focus Device.

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Scholz, M.; Wincel, K.; Zaręba, B.

    2008-03-01

    In this paper Plasma-Focus (PF) neutron emission properties have been studied using Monte Carlo calculations for neutron and photon transport. A Thermal Neutron Scaling Factor as a function of angular position of silver activation detectors placed around MJ Plasma Focus (PF-1000) device has been calculated. Detector responses calculated for 2.5 MeV neutrons and neutrons produced by Am-Be calibration source have been obtained .The results have shown the detector response dependence on the kind of calibration neutron source and on local geometrical/structural characteristics of the PF-1000 devices. Thus the proper calibration procedure ought to be performed for correct measurement of neutron yield within Plasma-Focus devices.

  19. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  20. Vacancy Generation and Oxygen Uptake in Cu-Doped Pr-CeO2 Materials using Neutron and in Situ X-ray Diffraction.

    PubMed

    D'Angelo, Anita M; Webster, Nathan A S; Chaffee, Alan L

    2016-12-19

    The oxygen uptake ability of Pr-CeO2-based oxygen carriers, catalysts, and solid oxide fuel cells can be attributed to 3+ cation generation and the presence of vacant oxygen sites. Oxygen occupancies of CeO2, Pr-CeO2, and 5% Cu-doped Pr-CeO2 were investigated using neutron diffraction and related to the oxygen uptake as determined using thermogravimetric analysis (TGA). The presence of vacant tetrahedral oxygen sites at room temperature did not correspond to low-temperature oxygen uptake. The materials did not uptake oxygen at 420 °C, but oxygen uptake was observed at 600 °C, which indicated that a minimum temperature needs to be met to generate sufficient vacancies/3+ cations. Variations in the lattice parameter as a function of temperature were revealed using in situ X-ray diffraction (XRD). With increasing temperature the lattice parameter increased linearly due to thermal expansion and was followed by an exponential increase at ∼300-400 °C as cations were reduced. Despite segregation of Cu into CuO at high dopant concentration, at 600 °C a higher O2 uptake was obtained for Ce0.65Pr0.20Cu0.15O2-δ (120 μmol g(-1)), in comparison to Ce0.75Pr0.2Cu0.05O2-δ (92 μmol g(-1)), and was higher than that for Ce0.8Pr0.2O2-δ (55 μmol g(-1)). Both Pr and Cu introduce vacancies and promote the O2 uptake of CeO2.

  1. Reproducibility of neutron activated Sm-153 oral dose formulations intended for human administration.

    PubMed

    Yeong, C H; Blackshaw, P E; Ng, K H; Abdullah, B J J; Blaauw, M; Dansereau, R J; Perkins, A C

    2011-09-01

    Neutron activation of Sm-152 offers a method of radiolabeling for the in vivo study of oral dose formulations by gamma scintigraphy. Reproducibility measurements are needed to ensure the robustness of clinical studies. 204 enteric-coated guaifenesin core tablets (10mg of Sm(2)O(3)) were irradiated by thermal neutrons to achieve 1 MBq at 48 h. Administered activities were 0.86±0.03 MBq. Good reproducibility (CV=3.5%) was observed over 24 weeks ensuring that volunteer doses were within the dose reference level of 0.8 mSv. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  3. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  4. Large sample neutron activation analysis: a challenge in cultural heritage studies.

    PubMed

    Stamatelatos, Ion E; Tzika, Faidra

    2007-07-01

    Large sample neutron activation analysis compliments and significantly extends the analytical tools available for cultural heritage and authentication studies providing unique applications of non-destructive, multi-element analysis of materials that are too precious to damage for sampling purposes, representative sampling of heterogeneous materials or even analysis of whole objects. In this work, correction factors for neutron self-shielding, gamma-ray attenuation and volume distribution of the activity in large volume samples composed of iron and ceramic material were derived. Moreover, the effect of inhomogeneity on the accuracy of the technique was examined.

  5. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  6. Phenomenology of prompt gamma neutron activation analysis in the detection of mines and near-surface ordnance

    NASA Astrophysics Data System (ADS)

    Sparrow, David A.; Porter, Lisa J.; Broach, J. Thomas; Mehta-Sherbondy, Roshni J.

    1998-09-01

    Prompt gamma neutron activation analysis (PGNAA) has been proposed for confirming the presence of energetic materials as part of a mine or unexploded ordnance detection system. Ancore Corporation (previously SAIC Advanced Nucleonics Division), funded through Night Vision Electro Sciences Directorate by Environmental Security Test Certification Program, has carried out proof-of-concept demonstrations of PGNAA in this confirmatory role at Socorro, NM, and Yuma, AZ. In this, the first part of a two-part paper addressing the use of PGNAA in the detection of surface and near-surface UXO, we explore the phenomenology of PGNAA signals from surface or near-surface ordnance in soil to gain insight into the results of those demonstrations. PGNAA uses the high-energy gamma ray (10.8 MeV) from capture on N14 as a signature of the presence of nitrogen. This is one of the highest energy gamma rays resulting from neutron capture, and nitrogen is a major constituent of explosives, but a small portion of soil. Thus, PGNAA might be effective at confirming the presence of explosives. The phenomenology of dry soil is dominated by the two most common elements, oxygen and silicon. Neutrons injected into the soil elastically scatter from nuclei (predominantly oxygen), losing energy and propagating in a random walk fashion. Once slowed, neutron capture on soil elements produces a broad gamma-ray spectrum. Capture on Si29 produces a 10.6 MeV gamma, which is not resolvable from the nitrogen signal of interest using scintillation detectors. Thus, PGNAA will need either good resolution detectors, or robust background subtraction to estimate the silicon contribution. For any system unable to resolve the Si29 (10.6 MeV) and N14(10.8 MeV) gammas there is an inherently low signal to background, resulting primarily from the silicon in the soil. After background subtraction, there remains a challenging signal to noise level, where the noise is partly due to counting statistics and partly due to the

  7. First principle active neutron coincidence counting measurements of uranium oxide

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  8. Ab-initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes

    SciTech Connect

    Jansen, G. R.; Engel, Jonathan; Hagen, Gaute; Navratil, Petr; Signoracci, Angelo J.

    2014-10-03

    We derive and compute effective valence-space shell-model interactions from ab initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular, our computed 2+ states are consistent with N=14,16 shell closures in 22,24O, and a weaker N=14 shell closure in 20C. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons.

  9. Negative activation volume of oxygen self-diffusion in forsterite

    NASA Astrophysics Data System (ADS)

    Fei, H.; Wiedenbeck, M.; Sakamoto, N.; Yurimoto, H.; Yoshino, T.; Yamazaki, D.; Katsura, T.

    2016-12-01

    Olivine is thought to contribute 60 % in volume of the Earth's upper mantle. Measurement of the diffusion coefficients of elements in olivine is therefore critical to understand the dynamical processes in the Earth's interior. The Mg and Si diffusion coefficients have already been systematically measured as functions of pressure, temperature, and water content in both natural olivine and pure forsterite in previous studies. For O diffusion, a series of studies about the temperature, water content, and oxygen fugacity dependences have been performed. However, the pressure dependence, which is essential to investigate the kinetic problems in the Earth's interior because of its ultrahigh pressure conditions, is still unclear. In this study, we determined the pressure dependence of the oxygen self-diffusion coefficient (DO) in iron-free forsterite. DO was found to be systematically increase with increasing pressure from 1 atm to 13 GPa with an activation volume of -3.9±0.4 cm3/mol. In contract with Si or Mg diffusion, the oxygen diffusion in forsterite has negative activation volume. Although Mg is the fastest diffusion species in forsterite under low-pressure conditions, O becomes the fastest at pressures higher than 10-11 GPa. Because the ionic conduction is dominated by diffusion of the faster species, the ionic electrical conductivity in the upper mantle should decrease with increasing depth in the asthenosphere down to 350-km depth, and then increase in the deeper part of the upper mantle. This variation with pressure well explains the electrical conductivity profile beneath the Canadian Shield.

  10. Monte-carlo simulation of the prompt gamma neutron activation analysis system with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Shim, Hyunha; Hong, Byungsik; Lee, Kyong-Sei; Lee, Sungman; Cha, Hyungki

    2012-09-01

    The prompt gamma neutron activation analysis (PGNAA) system is a useful tool to detect the concentrations of the various composite elements of a sample by measuring the prompt gammas that are activated by neutrons. The composition in terms of the constituent elements is essential information for the identification of the material species of any unknown object. A PGNAA system initiated by a high-power laser has been designed and optimized by using a Monte-Carlo simulation. In order to improve the signal-to-background ratio, we designed an improved neutron-shielding structure and imposed a proper time window in the analysis. In particular, the yield ratio of nitrogen to carbon in a TNT sample was investigated in detail. These simulation results demonstrate that the gamma rays from an explosive sample under a vast level of background can indeed be identified.

  11. The Monte Carlo code CEARCPG for coincidence prompt gamma-ray neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Han, Xiaogang; Gardner, Robin P.

    2007-10-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is widely used to determine the elemental composition of bulk samples. The detection sensitivities of PGNAA are often restricted by the inherent poor signal-to-noise ratio (SNR). There are many sources of noise (background) including the natural background, neutron activation of the detector, gamma-rays associated with the neutron source and prompt gamma-rays from the structural materials of the analyzer. Results of the prompt gamma-ray coincidence technique show that it could greatly improve the SNR by removing almost all of the background interferences. The first specific Monte Carlo code (CEARCPG) for coincidence PGNAA has been developed at the Center for Engineering Application of Radioisotopes (CEAR) to explore the capabilities of this technique. Benchmark bulk sample experiments have been performed with coal, sulfur, and mercury samples and indicate that the code is accurate and will be very useful in the design of coincidence PGNAA devices.

  12. Analysis of active neutron multiplicity data for Y-12 skull oxide samples

    SciTech Connect

    Krick, M.S.; Ensslin, N.; Ceo, R.N.; May, P.K.

    1996-09-01

    Previous work on active neutron multiplicity measurements and analyses is summarized. New active multiplicity measurements are described for samples of Y-12 skull oxide using an Active Well Coincidence Counter and MSR4 multiplicity electronics. Neutron multiplication values for the samples were determined from triples/doubles ratios. Neutron multiplication values were also obtained from Monte Carlo calculations using the MCNP code and the results compared with the experimental values. A calibration curve of AmLi source-sample coupling vs neutron multiplication was determined and used for active multiplicity assay of the skull oxides. The results are compared with those obtained from assay with the conventional calibration-curve technique, where the doubles rate is calibrated vs the {sup 235}U mass. The coupling-multiplication relationship determined for the skull oxides is compared with that determined earlier for pure high-enrichment uranium metal and pure uranium oxide. Conclusions are drawn about the application of active multiplicity techniques to uranium assay. Additional active multiplicity measurements and calculations are recommended.

  13. Analysis of the neutron component at high altitude mountains using active and passive measurement devices

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Schöner, W.; Vana, N.

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active ( 6LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150±15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210±15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.

  14. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; Bernstein, L. A.; Bionta, R. M.; Cooper, G. W.; Drury, O. B.; Hagmann, C. A.; Knittel, K. M.; Leeper, R. J.; Ruiz, C. L.; Schneider, D. H. G.; Yeamans, C. B.

    2013-11-01

    Neutron yields at the National Ignition Facility (NIF) are measured with a suite of diagnostics, including activation of ˜20-200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM), 25-50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n') reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n) reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  15. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  16. Metabolic activity of sodium, measured by neutron activation, in the hands of patients suffering from bone diseases: concise communication

    SciTech Connect

    Spinks, T.J.; Bewley, D.K.; Paolillo, M.; Vlotides, J.; Joplin, G.F.; Ranicar, A.S.O.

    1980-01-01

    Turnover of sodium in the human hand was studied by neutron activation. Patients suffering from various metabolic abnormalities affecting the skeleton, who were undergoing routine neutron activation for the measurement of calcium, were investigated along with a group of healthy volunteers. Neutron activation labels the sodium atoms simultaneously and with equal probability regardless of the turnover time of individual body compartments. The loss of sodium can be described either by a sum of two exponentials or by a single power function. Distinctions between patients and normal subjects were not apparent from the exponential model but were brought out by the power function. The exponent of time in the latter is a measure of clearance rate. The mean values of this parameter in (a) a group of patients suffering from acromegaly; (b) a group including Paget's disease, osteoporosis, Cushing's disease, and hyperparathyroidism; and (c) a group of healthy subjects, were found to be significantly different from each other.

  17. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  18. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  19. Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm.

    PubMed

    Molina, F; Aguilera, P; Romero-Barrientos, J; Arellano, H F; Agramunt, J; Medel, J; Morales, J R; Zambra, M

    2017-11-01

    We present a methodology to obtain the energy distribution of the neutron flux of an experimental nuclear reactor, using multi-foil activation measurements and the Expectation Maximization unfolding algorithm, which is presented as an alternative to well known unfolding methods such as GRAVEL. Self-shielding flux corrections for energy bin groups were obtained using MCNP6 Monte Carlo simulations. We have made studies at the at the Dry Tube of RECH-1 obtaining fluxes of 1.5(4)×10(13)cm(-2)s(-1) for the thermal neutron energy region, 1.9(5)×10(12)cm(-2)s(-1) for the epithermal neutron energy region, and 4.3(11)×10(11)cm(-2)s(-1) for the fast neutron energy region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Luminescent and scintillating properties of lanthanum fluoride nanocrystals in response to gamma/neutron irradiation: codoping with Ce activator, Yb wavelength shifter, and Gd neutron captor

    NASA Astrophysics Data System (ADS)

    Vargas, J. M.; Blostein, J. J.; Sidelnik, I.; Rondón Brito, D.; Rodríguez Palomino, L. A.; Mayer, R. E.

    2016-09-01

    A novel concept for gamma radiation detection and spectroscopy, and detection of thermal neutrons based on co-doped lanthanum fluoride nanocrystals containing gadolinium is presented. The trends of colloidal synthesis of the mentioned material, LaF3 co-doped with Ce3+ as the activator, Yb3+ as the wavelength-shifter and Gd3+ as the neutron captor, is reported. Nanocrystals of the mentioned material were characterized by transmission electron microscopy, X ray diffraction, energy dispersive X ray spectroscopy, optical absorption, and photoluminescence spectroscopy. Gamma detection and its potential spectroscopy feature have been confirmed. The neutron detection capability has been confirmed by experiments performed using a 252Cf neutron source.

  1. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness.

    PubMed

    Boone, Jan; Barstow, Thomas J; Celie, Bert; Prieur, Fabrice; Bourgois, Jan

    2016-01-01

    We investigated whether muscle and ventilatory responses to incremental ramp exercise would be influenced by aerobic fitness status by means of a cross-sectional study with a large subject population. Sixty-four male students (age: 21.2 ± 3.2 years) with a heterogeneous peak oxygen uptake (51.9 ± 6.3 mL·min(-1)·kg(-1), range 39.7-66.2 mL·min(-1)·kg(-1)) performed an incremental ramp cycle test (20-35 W·min(-1)) to exhaustion. Breath-by-breath gas exchange was recorded, and muscle activation and oxygenation were measured with surface electromyography and near-infrared spectroscopy, respectively. The integrated electromyography (iEMG), mean power frequency (MPF), deoxygenated [hemoglobin and myoglobin] (deoxy[Hb+Mb]), and total[Hb+Mb] responses were set out as functions of work rate and fitted with a double linear function. The respiratory compensation point (RCP) was compared and correlated with the breakpoints (BPs) (as percentage of peak oxygen uptake) in muscle activation and oxygenation. The BP in total[Hb+Mb] (83.2% ± 3.0% peak oxygen uptake) preceded (P < 0.001) the BP in iEMG (86.7% ± 4.0% peak oxygen uptake) and MPF (86.3% ± 4.1% peak oxygen uptake), which in turn preceded (P < 0.01) the BP in deoxy[Hb+Mb] (88.2% ± 4.5% peak oxygen uptake) and RCP (87.4% ± 4.5% peak oxygen uptake). Furthermore, the peak oxygen uptake was significantly (P < 0.001) positively correlated to the BPs and RCP, indicating that the BPs in total[Hb+Mb] (r = 0.66; P < 0.001), deoxy[Hb+Mb] (r = 0.76; P < 0.001), iEMG (r = 0.61; P < 0.001), MPF (r = 0.63; P < 0.001), and RCP (r = 0.75; P < 0.001) occurred at a higher percentage of peak oxygen uptake in subjects with a higher peak oxygen uptake. In this study a close relationship between muscle oxygenation, activation, and pulmonary oxygen uptake was found, occurring in a cascade of events. In subjects with a higher aerobic fitness level this cascade occurred at a higher relative intensity.

  2. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.

    PubMed

    Khorshidi, Abdollah

    2015-10-01

    A feasibility study was performed to design thermal and epithermal neutron sources for radioisotope production and boron neutron capture therapy (BNCT) by moderating fast neutrons. The neutrons were emitted from the reaction between (9)Be, (181)Ta, and (184)W targets and 30 MeV protons accelerated by a small cyclotron at 300 μA. In this study, the adiabatic resonance crossing (ARC) method was investigated by means of (207)Pb and (208)Pb moderators, graphite reflector, and boron absorber around the moderator region. Thermal/epithermal flux, energy, and cross section of accumulated neutrons in the activator were examined through diverse thicknesses of the specified regions. Simulation results revealed that the (181)Ta target had the highest neutron yield, and also tungsten was found to have the highest values in both surface and volumetric flux ratio. Transmutation in the (98)Mo sample through radiative capture was investigated for the natural lead moderator. When the sample radial distance from the target was increased inside the graphite region, the production yield had the greatest value of activity. The potential of the ARC method is a replacement or complements the current reactor-based supply sources of BNCT purposes.

  3. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  4. Activation of Oxygen by Cytochrome P-450 and Other Haemoproteins

    NASA Astrophysics Data System (ADS)

    Metelitsa, D. I.

    1982-11-01

    Data on the activation of molecular oxygen by the full microsomal hydroxylating system containing cytochrome P-450 as the terminal oxygenase are examined. The nature of the hydroxylating agent, which is the oxenoid Fe3+O, is analysed. The autoxidation reactions of cytochrome P-450 from various sources, haemoglobin, myoglobin, and peroxidases are compared and the role of the axial ligands of the haem iron and the structure of the active centres of the haemoproteins in this process is demonstrated. The possible mechanisms of the oxidation of organic compounds by peroxides with participation of cytochrome P-450, cytochrome c, haemoglobin, and catalase are examined critically. Haemoproteins have been divided into three groups in terms of the type of peroxide oxidation reactions. The relative contributions of the radical and two-electron reactions in the oxidation of compounds by peroxides with participation of different haemoproteins are analysed. The bibliography includes 184 references.

  5. Antioxidative activity of lactobacilli measured by oxygen radical absorbance capacity.

    PubMed

    Saide, J A O; Gilliland, S E

    2005-04-01

    The reducing ability and antioxidative activity of some species of Lactobacillus were compared under in vitro conditions. Cultures of Lactobacillus delbrueckii ssp. lactis, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Lactobacillus casei were grown at 37 degrees C in de Man, Rogosa, Sharpe (MRS) broth supplemented with 0.5% 2,3,5 triphenyl tetrazolium chloride (TTC) to evaluate reducing activity. Reduced TTC was extracted from the cultures with acetone, and the intensity of the red color measured colorimetrically at 485 nm was an indication of reducing activity. The lactobacilli varied significantly in relative ability to reduce TTC when grown in MRS broth for 15 h. The relative amounts of growth as indicated by pH values at 18 h appeared to influence the amount of reduction. Antioxidative activity was evaluated by the ability of the whole cells or the cell-free extracts from cultures to protect a protein from being attacked by free radicals. These analyses were performed using the oxygen radical absorbance capacity method. All cultures tested exhibited some degree of antioxidative activity. Among the treatments, the cell-free extracts from cells grown in MRS broth exhibited significantly higher values than did whole cells. There was no apparent relationship between the reducing and antioxidative activities of the cultures evaluated. The results from this study show that these cultures can provide a source of dietary antioxidants. Furthermore, selection of cultures that produce antioxidants as starters could provide yet another health or nutritional benefit from cultured or culture-containing dairy products.

  6. UV activates growth factor receptors via reactive oxygen intermediates

    PubMed Central

    1996-01-01

    Exposure of mammalian cells to UV irradiation induces rapid and transient expression of early growth response-1 gene (Egr-1) encoding a transcription factor that plays a role in cell survival. These signals from the irradiated cell surface are likely to involve more than one pathway, and we show here that an essential pathway involves activation of several growth factor receptors by reactive oxygen intermediates (ROI). UVC irradiation causes the tyrosine phosphorylation of EGF receptor (EGFR) in mouse NIH 3T3 fibroblasts and HC11 mouse mammary cells. EGFR activation by irradiation of cells is abrogated by suramin, by antioxidants, and by the presence of a dominant negative EGFR. UV induces the formation of complexes between activated EGFR and SOS, Grb2, PLC gamma, and SHC that can be precipitated with antibodies to EGFR. The activation of EGFR by UV is mimicked by H2O2, suggesting that ROI may function upstream of EGFR activation. Our observations support the hypothesis that ROI and growth factor receptors operate in the early steps of the UV signal that lead to the enhanced expression and activity of Egr-1. PMID:8601609

  7. [Several indicators of tissue oxygen during modeling of extravehicular activity of man].

    PubMed

    Lan'shina, O E; Loginov, V A; Akinfiev, A V; Kovalenko, E A

    1995-01-01

    Investigations of tissue oxygen indices during simulation of extravehicular activity (EVA) of cosmonauts demonstrated that breathing pure oxygen at approximately 280 mmHg elevates oxygen tension in capillary blood, and capillary-tissue gradient during physical work. Physical work alone stimulates tissue oxygenation due to, apparently, intensification of the processes of oxidative phosphorylation. The observed shifts in oxygen status reverse significantly within the first 5 min after completion of the experiment.

  8. TFT-Based Active Pixel Sensors for Large Area Thermal Neutron Detection

    NASA Astrophysics Data System (ADS)

    Kunnen, George

    Due to diminishing availability of 3He, which is the critical component of neutron detecting proportional counters, large area flexible arrays are being considered as a potential replacement for neutron detection. A large area flexible array, utilizing semiconductors for both charged particle detection and pixel readout, ensures a large detection surface area in a light weight rugged form. Such a neutron detector could be suitable for deployment at ports of entry. The specific approach used in this research, uses a neutron converter layer which captures incident thermal neutrons, and then emits ionizing charged particles. These ionizing particles cause electron-hole pair generation within a single pixel's integrated sensing diode. The resulting charge is then amplified via a low-noise amplifier. This document begins by discussing the current state of the art in neutron detection and the associated challenges. Then, for the purpose of resolving some of these issues, recent design and modeling efforts towards developing an improved neutron detection system are described. Also presented is a low-noise active pixel sensor (APS) design capable of being implemented in low temperature indium gallium zinc oxide (InGaZnO) or amorphous silicon (a-Si:H) thin film transistor process compatible with plastic substrates. The low gain and limited scalability of this design are improved upon by implementing a new multi-stage self-resetting APS. For each APS design, successful radiation measurements are also presented using PiN diodes for charged particle detection. Next, detection array readout methodologies are modeled and analyzed, and use of a matched filter readout circuit is described as well. Finally, this document discusses detection diode integration with the designed TFT-based APSs.

  9. Investigation of the oxygen-vacancy (A-center) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors

    SciTech Connect

    Li, Zheng; Kraner, H.W. ); Verbitskaya, E.; Eremin, V.; Ivanov, A. . Physico-Technical Inst.); Rattaggi, M.; Rancoita, P.G. ); Rubinelli, F.A.; Fonash, S.J. . Center for Electronic Materials a

    1992-02-01

    Distributions of the A-center (oxygen-vacancy) in neutron silicon detectors have been studied using Deep Level Transient Spectroscopy. A-centers have been found to be nearly uniformly distributed in the silicon water depth for medium resistivity (0.1 {minus} 0.2 k{Omega}-cm) silicon detectors. A positive filling pulse was needed to detect the A-centers in high resistivity (>4 k{Omega}-cm) silicon detectors, and this effect was found to be dependent on the oxidation temperature. A discussion of this effect is presented. 16 refs.

  10. Investigation of the oxygen-vacancy (A-center) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors

    SciTech Connect

    Li, Zheng; Kraner, H.W.; Verbitskaya, E.; Eremin, V.; Ivanov, A.; Rattaggi, M.; Rancoita, P.G.; Rubinelli, F.A.; Fonash, S.J.; Dale, C.; Marshall, P.

    1992-02-01

    Distributions of the A-center (oxygen-vacancy) in neutron silicon detectors have been studied using Deep Level Transient Spectroscopy. A-centers have been found to be nearly uniformly distributed in the silicon water depth for medium resistivity (0.1 {minus} 0.2 k{Omega}-cm) silicon detectors. A positive filling pulse was needed to detect the A-centers in high resistivity (>4 k{Omega}-cm) silicon detectors, and this effect was found to be dependent on the oxidation temperature. A discussion of this effect is presented. 16 refs.

  11. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  12. Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.

    PubMed

    Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John

    2003-08-15

    A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.

  13. Development of a new electronic personal neutron dosemeter using a CMOS active pixel sensor.

    PubMed

    Trocmé, M; Higueret, S; Husson, D; Nourreddine, A; Lê, T D

    2007-01-01

    A CMOS active pixel sensor, originally designed for the tracking of minimum ionising charged particles in high-energy physics, has been recently used for the detection of fast neutrons. Data were taken at the IRSN Cadarache facility with a (241)Am-Be ISO source and a polyethylene radiator. A high-intrinsic efficiency (1.2 x 10(-3)) has been obtained. It is in good agreement with both calculations and a MCNPX Monte Carlo simulation. This experiment paves the way for a fully electronic personal neutron dosemeter.

  14. A new automated sample transfer system for instrumental neutron activation analysis.

    PubMed

    Ismail, S S

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas.

  15. A New Automated Sample Transfer System for Instrumental Neutron Activation Analysis

    PubMed Central

    Ismail, S. S.

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas. PMID:20369063

  16. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  17. LOFT experimental measurements uncertainty analyses. Volume XX. Fluid-velocity measurement using pulsed-neutron activation

    SciTech Connect

    Lassahn, G.D.; Taylor, D.J.N.

    1982-08-01

    Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading.

  18. Neutron activation study of the composition of lunar surface material from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Surkov, Y. A.; Kirnozov, F. F.; Ivanov, I. N.; Kilesov, G. M.; Ryvkin, B. N.; Shpanov, A. P.

    1974-01-01

    The elemental composition of samples of lunar regolith returned by Luna 16 from the Sea of Fertility was determined by a radio activation method using generator and reactor neutrons, and also by gamma spectrometry with scintillation and Ge(Li) detectors.

  19. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc

    USGS Publications Warehouse

    Czamanske, G.K.; Roedder, E.; Burns, F.C.

    1963-01-01

    Microgram quantities of copper, manganese, and zinc, corresponding to concentrations greater than 100 parts per million, were found in milligram quantities of primary inclusion fluid extracted from samples of quartz and fluorite from two types of ore deposits. The results indicate that neutron activation is a useful analytical method for studying the content of heavy metal in fluid inclusions.

  20. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  1. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  2. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen.

    PubMed

    Stamatelatos, I E; Chettle, D R; Green, S; Scott, M C

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for (alpha, n) type radionuclide neutron sources (238PuBe or 241AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to 252Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors).

  3. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  4. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252.

    PubMed

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P

    1988-01-01

    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  5. Importance of neutron energy distribution in borehole activation analysis in relatively dry, low-porosity rocks

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Philbin, P.W.; Boynton, G.R.; Wager, R.E.

    1977-01-01

    To evaluate the importance of variations in the neutron energy distribution in borehole activation analysis, capture gamma-ray measurements were made in relatively dry, low-porosity gabbro of the Duluth Complex. Although sections of over a meter of solid rock were encountered in the borehole, there was significant fracturing with interstitial water leading to a substantial variation of water with depth in the borehole. The linear-correlation coefficients calculated for the peak intensities of several elements compared to the chemical core analyses were generally poor throughout the depth investigated. The data suggest and arguments are given which indicate that the variation of the thermal-to-intermediate-to-fast neutron flux density as a function of borehole depth is a serious source of error and is a major cause of the changes observed in the capture gamma-ray peak intensities. These variations in neutron energy may also cause a shift in the observed capture gamma-ray energy.

  6. Prompt-gamma neutron activation analysis facility for in vivo body composition studies in small animals.

    PubMed

    Stamatelatos, I E; Kasviki, K; Green, S; Gainey, M; Kalef-Ezra, J; Beddoe, A

    2004-05-01

    The design, calibration, dosimetry and performance evaluation of a prompt-gamma neutron activation analysis facility for in vivo body composition studies in small animals (i.e. rats or rabbits) is discussed. The system design was guided by Monte Carlo transport calculations using MCNP-4C code. A system was built and performance evaluation was made using a 185-GBq Pu-Be neutron source. Prompt-gamma rays produced by neutron capture reactions were detected by a combination of a NaI(Tl) scintillation and a HPGe semiconductor detectors. Nitrogen and chlorine were quantified by analysis of the 10.83-MeV and 6.11-MeV peaks, respectively. Appropriate corrections for the animal body size were determined. The facility described allows the in vivo determination of protein and extracellular space in sets of experimental animals.

  7. Total body chlorine: calibration of the in vivo neutron activation measurement.

    PubMed

    Ma, R; Yasumura, S; Moore, R I; Zhao, X; Rarback, H M; Lomonte, A F; Vodopia, K A

    1998-01-01

    Total body chlorine (TBCI), used to estimate the extracellular space, is measured by delayed-gamma neutron activation (DGNA) using the reaction 37Cl(n, gamma)38Cl, at Brookhaven National Laboratory. During the calibration process, we noticed that different values were obtained when different amounts of Cl were placed in the phantom. This non-linear relationship is due to the thermal neutron flux suppression by the thermal neutron capture reaction 35Cl(n, gamma)36Cl. Monte Carlo simulations confirm the results of phantom measurements showing an inverse relationship between the Cl content in the phantom and the gamma-ray yield per gram Cl. Thus, it is important to calibrate the DGNA system for TBCl using phantom standards containing an amount of Cl close to that expected in the individual undergoing measurement.

  8. Active Oxygen Species Generator by Low Pressure Silent Discharge and its Application to Water Treatment

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ikeda, Akira; Tanimura, Yasuhiro; Ohta, Koji; Yoshiyasu, Hajimu

    We have proposed the new water treatment using the active oxygen species such as an atomic oxygen with the oxidation power that is stronger than ozone. Based on the results of simulations we designed the silent discharge type active oxygen generator with a water ejector, which is operated on the discharge conditions of low pressure of 6.6kPa. and high temperature of about 200°C. The experimental results are as follows. (1) The yield of the active oxygen increases with the increase of the discharge tube temperature and the decrease of the gas pressure. (2) The life time of active oxygen is tens msec. (3) The active oxygen oxidizes efficiently the formic acid compared with ozone. It is assumed from these results that the active oxygen species having a strong oxidation power is generated.

  9. A practical beryllium activation detector for measuring DD neutron yield from ICF targets

    SciTech Connect

    Murphy, T.J.

    1996-06-01

    A neutron activation detector based on the reaction {sup 9}Be(n,{alpha}){sup 6}He({beta}{sup {minus}}){sup 6}Li has been designed which could potentially allow DD yield determinations within a few minutes after an ICF implosion or other pulsed neutron event with precision comparable to methods currently in use in ICF experiments. The detector is based on previous work, but has been redesigned to allow use in a reentrant tube less than six inches in diameter, and to increase detection efficiency. The detector consists of beryllium rods imbedded in plastic scintillator and coupled to a photomultiplier tube. Neutrons interact with the beryllium to produce {sup 6}He, which decays by emission of a {beta}{sup {minus}} particle with a maximum energy of 3.51 MeV with a half life of 808 ms. The {beta}{sup {minus}} particles are counted, and a neutron yield is determined for the total activity produced. The short half life of {sup 6}He will result in high specific activity and allow quick determination of the amount of {sup 6}He produced.

  10. Recent upgrade of the in vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Dilmanian, F.A..; Rarback, H.; Meron, M.; Kamen, Y.; Yasumura, S.; Weber, D.A.; Stamatelatos, I.E.; Lidofsky, L.J.; Pierson, R.N. Jr.

    1993-10-01

    The in vivo neutron activation facility at Brookhaven National Laboratory consists of a delayed- and a prompt-gamma neutron activation (DGNA and PGNA) system and an inelastic neutron scattering (INS) system. The total body contents of several basic elements, including potassium, calcium, chlorine, sodium, and phosphorus are measured at the DGNA system; total body carbon is measured at the INS system; and the nitrogen-tohydrogen ratio is measured at the PGNA system. Based on the elemental composition, body compartments, such as total body fat and total body protein can be computed with additional independently measured parameters, such as total body water, body size, and body weight. Information on elemental and compartmental body composition obtained through neutron activation analysis is useful, if not essential, for research on growth, malnutrition, aging diseases, such as osteoporosis and acquired immunodeficiency syndrome in which the progression of the illness is closely related to changes in major body compartments, such as bone, adipose tissue, and muscle. The DGNA system has been modified and upgraded several times since it was first built. Recently, all three systems underwent major upgrades. This upgrading and some preliminary studies carried out with the modified facilities are reported here.

  11. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received.

  12. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  13. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    SciTech Connect

    Rogers, V.C.; Sandquist, G.M.; Merrell, G.B.; Gozani, T.

    1984-08-01

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations.

  14. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  15. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Active Oxygen Generator by Silent Discharge and Oxidation Power in Formation of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Kawagoe, Yasuyuki; Tsukazaki, Hisashi; Yamanishi, Kenichiro

    We have studied the low pressure silent discharge type active oxygen generator in terms of the application to the formation of oxide thin films. In this paper the oxidation power of active oxygen in the oxide thin film formation is compared with that of oxygen and ozone by forming silicon oxide thin films. It was confirmed that the oxidation power is in turn of active oxygen > ozone > oxygen from the experimental result of the number of x in SiOx thin film. Furthermore we applied active oxygen to the formation of the thin film high temperature super conductor and active oxygen was found to be effective to the formation of the thin film with high performance.

  17. Utilization of /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1983-10-05

    Neutron activation analysis is normally performed at thermal fluxes of 10/sup 13/ n/cm/sup 2//s irradiating samples of a few milligrams. When a ten thousand-fold larger sample is available, neutron activation can be performed at proportionately lower fluxes. Thus, a 10 g sample irradiated at 10/sup 9/ n/cm/sup 2//s contains as much activity as a 1 mg sample irradiated at 10/sup 13/ n/cm/sup 2//s. This paper describes the utilization of a subcritical multiplier operating at about 10/sup 9/ n/cm/sup 2//s for the activation of a broad range of sample types and elemental concentrations.

  18. A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites.

    PubMed

    Betley, Theodore A; Surendranath, Yogesh; Childress, Montana V; Alliger, Glen E; Fu, Ross; Cummins, Christopher C; Nocera, Daniel G

    2008-03-27

    Oxygen-oxygen bond formation and O2 generation occur from the S4 state of the oxygen-evolving complex (OEC). Several mechanistic possibilities have been proposed for water oxidation, depending on the formal oxidation state of the Mn atoms. All fall under two general classifications: the AB mechanism in which nucleophilic oxygen (base, B) attacks electrophilic oxygen (acid, A) of the Mn4Ca cluster or the RC mechanism in which radical-like oxygen species couple within OEC. The critical intermediate in either mechanism involves a metal oxo, though the nature of this oxo for AB and RC mechanisms is disparate. In the case of the AB mechanism, assembly of an even-electron count, high-valent metal-oxo proximate to a hydroxide is needed whereas, in an RC mechanism, two odd-electron count, high-valent metal oxos are required. Thus the two mechanisms give rise to very different design criteria for functional models of the OEC active site. This discussion presents the electron counts and ligand geometries that support metal oxos for AB and RC O-O bond-forming reactions. The construction of architectures that bring two oxygen functionalities together under the purview of the AB and RC scenarios are described.

  19. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  20. Production and Characterization of Active Transparent PET Films for Oxygen Sensitive Foods Packaging

    NASA Astrophysics Data System (ADS)

    Rosaria Galdi, Maria; Incarnato, Loredana

    2010-06-01

    The aim of this work is to investigate possible solutions to realize active, transparent PET film suitable for packaging oxygen sensitive foods. At this purpose, monolayer active PET films at different oxygen scavenger concentrations and multilayer active ones were produced by cast extrusion laboratory scale equipments. To assess their activity and to verify the efficacy of such solutions, O2 absorption analyses were carried out in continuous by an innovative oxygen meter.

  1. Evaluation of Hylife-II and Sombrero using 175- and 566- group neutron transport and activation cross sections

    SciTech Connect

    Cullen, D; Latkowski, J; Sanz, J

    1999-06-18

    Recent modifications to the TART Monte Carlo neutron and photon transport code enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and SOMBRERO inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared to each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross section library.

  2. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  3. Neutron-activation analysis by standard addition and solvent extraction Determination of traces of antimony.

    PubMed

    Alian, A; Shabana, R; Sanad, W; Allam, B; Khalifa, K

    1968-02-01

    The application of neutron activation analysis by standard addition and solvent extraction to the determination of traces of antimony in aluminium and rocks is reported. Three simple extraction procedures, using isopropyl ether, hexone, and tributyl phosphate, are described for the selective separation of radioantimony from interfering radionuclides. Antimony concentration is measured by counting the activities of the (122)Sb and (124)Sb photopeaks at 0.564 and 0.603 MeV.

  4. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    NASA Astrophysics Data System (ADS)

    Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong

    2017-04-01

    The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

  5. Neutron-induced nucleation inside bubble chambers using Freon 115 as the active medium

    NASA Astrophysics Data System (ADS)

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-08-01

    Neutron imaging is used in inertial confinement fusion (ICF) experiments to measure the core symmetry of imploded targets. Liquid bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-target distance than typical scintillator arrays. Due to the fact that nucleation models used in gel detectors research cannot always give correct estimates for the neutron-induced bubble density inside a liquid bubble chamber, an improved theoretical model to describe the mechanism of bubble formation for Freon 115 as the active medium has been developed. It shows that the size of the critical radius for the nucleation process determines the mechanism of bubble formation and the sensitivity of the active medium to the 14.1-MeV incident neutrons resulting from ICF implosions. The bubble-growth mechanism is driven by the excitation of the medium electronic levels and not by electrons ejected from the medium's atoms as happens for the bubble chambers used to detect charged particles. The model accurately predicts the neutron-induced bubble density measured on OMEGA with both liquid bubble chambers and gel detectors.

  6. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    NASA Astrophysics Data System (ADS)

    Gräfe, James L.

    2017-09-01

    Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and

  7. Gamma exposure rates due to neutron activation of soil: site of Hood detonation, Operation Plumbbob

    SciTech Connect

    Auxier, J.A.; Ohnesorge, W.F.

    1980-06-01

    This paper is the result of some recent discussions of exposure rates within the first few hours of the Hood detonation of the Plumbbob series due to neutron activation of soil. We estimated the exposure rates from 1/2 to 3 h after the detonation from ground zero to 1000 yards from ground zero. The area was assumed to be uncontaminated by fallout. Soil samples from the area of the Nevada Test Site at which the Hood device was detonated were sent to ORNL by Dr. John Malik of Los Alamos and by Mr. Gordon Jacks of the Nevada Test Site. These samples were irradiated at the DOSAR facility and the resulting activity analyzed. Calculations of exposure rates were then made based on the analyzed activity and the measured thermal neutron fluences at DOSAR and at the Hood Site.

  8. Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Jang, J. G.; Lee, H. K.

    2014-09-01

    This paper presents the result of a computational study to investigate the neutron shielding and activation characteristics of concretes containing boron carbide and polyethylene. Various mixes were considered with changes in the contents of boron carbide and polyethylene aggregate. The Monte Carlo simulation code MCNP-5 was utilized to determine the transmission of neutron through concrete at different energies from 0.1 eV to 1 MeV, and ORIGEN-S code was then used to predict activation characteristics of the concretes. It was shown that the replacement of polyethylene in borated concrete greatly enhanced the shielding efficiency of the concrete, and total activity levels of the concrete were considerably decreased with this replacement. Furthermore, double-layered structures having the first layer of polyethylene aggregate-replaced concrete and the second layer of 2 wt% borated concrete are shown to improve shielding efficiency more significantly than monolithic structures.

  9. Improved lithium iodide neutron scintillator with Eu2+ activation: The elimination of Suzuki-Phase precipitates

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.

    2017-05-01

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.

  10. Improved lithium iodide neutron scintillator with Eu2+ activation: The elimination of Suzuki-Phase precipitates

    DOE PAGES

    Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...

    2017-02-21

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eumore » dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less

  11. Measurement of Neutrons in Different Pb/U Setups Irradiated by Relativistic Protons and Deuterons by means of Activation Samples

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Svoboda, O.; Vrzalová, J.; Suchopár, M.; Geier, B.; Kugler, A.; Honusek, M.; the Collaboration Energy; Radioactive Waste, Transmutation of

    2012-05-01

    The collaboration Energy and Transmutation of Radioactive Waste uses different setups consisting of lead, uranium and graphite irradiated by relativistic protons and deuterons to study transmutation of radioactive materials by produced neutrons. Our group measured spatial distribution of neutrons by means of activation samples during the assembly irradiation by the JINR Nuclotron beams. We also present results of simulations using MCNPX code and their comparison with obtained experimental data. We use Au, Al, Bi, In and Ta foils as activation detectors, but unfortunately almost no experimental cross-section data for observed threshold (n,xn) reactions are available for higher neutron energies. Therefore we carried out series experiments devoted to determination of neutron cross-sections of various threshold reactions using different quasi-monoenergetic neutron sources.

  12. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  13. A multi-layered active target for the study of neutron-unbound nuclides at NSCL

    NASA Astrophysics Data System (ADS)

    Freeman, Jessica; Gueye, Paul; Redpath, Thomas; MoNA Collaboration

    2017-01-01

    The characteristics of neutron-unbound nuclides were investigated using a multi-layered Si/Be active target designed for use with the MoNA/LISA setup at the National Superconducting Cyclotron (NSCL). The setup consists of the MoNA/LISA arrays (for neutron detection) and a superconducting sweeper magnet (for charged separation) to identify products following the decay of neutron unbound states. The segmented target consisted of three 700 mg/cm2 beryllium targets and four 0.14 mm thick 62x62 mm2 silicon detectors. As a commissioning experiment for the target the decay of two-neutron unbound 26O populated in a one-proton removal reaction from a radioactive 27F beam was performed. The 27F secondary radioactive beam from the NSCL's Coupled Cyclotron Facility was produced from the fragmentation of a 140 MeV/u 48Ca beam incident on a thick beryllium target and then cleanly selected by the A1900 fragment separator. The energy loss and position spectra of the incoming beam and reaction products were used to calibrate the Silicon detectors to within 1.5% in both energy and position. A dedicated Geant4 model of the target was developed to simulate the energy loss within the target. A description of the experimental setup, simulation work, and energy and position calibration will be presented. DoE/NNSA - DE-NA0000979.

  14. Neutron activation analysis, gamma ray spectrometry and radiation environment monitoring instrument concept: GEORAD

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Talboys, D. L.; Sims, M. R.; Bannister, N. P.; Makarewicz, M.; Stevenson, T.; Hutchinson, I. B.; Watterson, J. I. W.; Lanza, R. C.; Richter, L.; Mills, A.; Fraser, G. W.

    2005-02-01

    Geological processes on Earth can be related to those that may have occurred in past epochs on Mars, if analytical methods used on Earth can be operated remotely on the surface of the Red Planet. Nuclear analytical techniques commonly used in terrestrial geology are neutron activation analysis (NAA) and gamma-ray spectroscopy (GRS), which determine the elemental composition, elemental concentration and stratigraphical distribution of water in rocks and soils. We describe a detector concept called GEORAD (GEOlogical and RADiation environment package) for the proposed ExoMars rover within the ESA's Aurora Programme for the exploration of the Solar System. GEORAD consists of a compact neutron source for the NAA of rocks and soils and a GRS. The GRS has a dual role since it can be used for natural radioactivity studies and NAA. A fully depleted silicon detector coupled to neutron sensitive converters measures the solar particle and neutron flux interacting with the Martian surface. We describe how the GEORAD detector suite could contribute to the geological and biological characterisation of Mars both for the detection of extinct or extant life and to evaluate potential hazards facing future manned missions. We show how GEORAD measurements complement the astrobiological objectives of the Aurora programme.

  15. Radiolabelling of parenteral O/W emulsions by means of neutron activation.

    PubMed

    Buszello, K; Schnier, C; Müller, B W

    1999-05-01

    Parenteral O/W emulsions containing lanthanide fatty acid derivatives were prepared. With regard to enhancing the incorporation efficiency of the neutron activatable excipients, the addition of the non-ionic co-emulsifier Solutol HS 15 proved to be most suitable. Comparing the different chain lengths of the fatty acids, the long chain fatty acid derivative lanthanide(tri)stearate seemed to be superior in strengthening the interfacial layer. After neutron activation, the physical and chemical stability of the irradiated formulations was evaluated. The chemical stability, indicated by the concentration of lyso phosphatidylcholine as the degradation product of the main emulsifier, was shown to be dependent on the irradiation time. By applying a neutron flux of 2.1 x 10(13) neutrons/cm2 per s, the maximum should not rise above 60 s. The physical stability indicated by the particle size distribution was affected by the presence of the non-ionic co-emulsifier. Concerning the amount of radiation necessary for in vivo biodistribution studies the maximum load of Samarium fatty acid derivatives did not yield sufficient radioactivity levels. However, Europium derivatives could be shown to be suitable for in vivo studies.

  16. Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2002-06-01

    The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

  17. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  18. Recent activities of the International Group on Research Reactors (IGORR) and of the Advanced Neutron Source (ANS). [Advanced Neutron Source Project

    SciTech Connect

    West, C.D.

    1991-01-01

    The International Group on Research Reactors (IGORR) was formed in 1990 to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research or to make significant upgrades to existing facilities. The Advanced Neutron Source Project expects to complete conceptual design in mid-1992. In the present design concept, the neutron source is a heavy-water-cooled, moderated, and reflected reactor of about 350 MW(f) power. 7 refs., 4 figs., 5 tabs.

  19. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    PubMed

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Neutron-activation study of figurines, pottery, and workshop materials from the Athenian Agora, Greece. [Neutron reactions; France, Israel, Cyprus

    SciTech Connect

    Fillieres, D.; Harbottle, G.; Sayre, E.V.

    1983-01-01

    Ceramic specimens from the excavations of the Agora of ancient Athens, Greece, including material from factories, i.e., trial firing pieces, pottery and figurine wasters, datable to the Protogeometric, Subgeometric, and Classical Periods, and stylistically related figurines and pottery were analyzed by neutron activation. The factory material from the three distinct chronological periods separated respectively into three significantly different compositional groups, indicating either that separate sources of clay were used during each of these periods or that some other significant changes in the traditions of fabrication had occurred. Many of the figurines and sherds analyzed coincided in composition with one of these three groups and therefore were shown to be consistent with the output of Athenian workshops. Some specimens of Corinthian style formed a separate compositional group as did some other specimens that agreed in composition with a clay from Aegina. Comparison of these results with previous analyses on file in the Brookhaven Data Bank revealed a number of specimens that corresponded both in style and composition to the Agora material. Most significant was a sizable amount of Classical Greek pottery excavated in southern France, in Israel, and in Cyprus that conformed in composition to the Attic Classical Group. 6 figures, 2 tables.

  1. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    PubMed

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2017-08-04

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A History of In Vivo Neutron Activation Analysis in Measurement of Aluminum in Human Subjects.

    PubMed

    Mohseni, Hedieh K; Chettle, David R

    2016-01-01

    Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades.

  3. Measurements of 60Co in spoons activated by neutrons during the JCO criticality accident at Tokai-mura in 1999.

    PubMed

    Gasparro, J; Hult, M; Komura, K; Arnold, D; Holmes, L; Johnston, P N; Laubenstein, M; Neumaier, S; Reyss, J-L; Schillebeeckx, P; Tagziria, H; Van Britsom, G; Vasselli, R

    2004-01-01

    Neutron activated items from the vicinity of the place where the JCO criticality accident occurred have been used to determine the fluence of neutrons around the facility and in nearby residential areas. By using underground laboratories for measuring the activation products, it is possible to extend the study to also cover radionuclides with very low activities from long-lived radionuclides. The present study describes gamma-ray spectrometry measurements undertaken in a range of underground laboratories for the purpose of measuring (60)Co more than 2 years after the criticality event. The measurements show that neutron fluence determined from (60)Co activity is in agreement with previous measurements using the short-lived radionuclides (51)Cr and (59)Fe. Limits on contamination of the samples with (60)Co are evaluated and shown to not greatly affect the utility of neutron fluence determinations using (60)Co activation.

  4. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  5. A bulk analysis system using the prompt gamma neutron activation method and neural network

    NASA Astrophysics Data System (ADS)

    Taheri, Ali; Heidary, Saeed; Gholipour Peyvandi, Reza

    2017-06-01

    In this work, an on-line and bulk analysis system based on the prompt gamma neutron activation method and neural network is introduced. Using a setup that includes a 252Cf source and a BGO scintillator detector, a set of semi-experimental data obtained from cement raw materials is produced to train an optimized neural network. The neural network is trained based on a back-propagation algorithm with 100 experimental prompt gamma-ray spectra. The elements existing in the different cement samples are specified. With a good precision compared to the least square analysis, the ANN (Artificial Neural Network) could identify elements. One of the key points in this work is that more than 100 different prompt gamma spectra of neutron activated samples were produced without the need for different cement samples or Monte Carlo simulations.

  6. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  7. Neutron standard data

    SciTech Connect

    Peelle, R.; Conde, H.

    1988-01-01

    The neutron standards are reviewed with emphasis on the evaluation for ENDFB-VI. Also discussed are the neutron spectrum of /sup 252/Cf spontaneous fission, activation cross sections for neutron flux measurement, and standards for neutron energies greater than 20 MeV. Recommendations are made for future work. 21 refs., 6 figs., 3 tabs.

  8. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  9. Determination of Cd and Cr in an ABS candidate reference material by instrumental neutron activation analysis.

    PubMed

    Park, Kwangwon; Kang, Namgoo; Cho, Kyunghaeng; Lee, Jounghae

    2008-12-01

    In order to practically better cope with technical barriers to trade (TBT) of a great number of resin goods, our research presents first-ever results for the determination of Cd and Cr in acrylonitrile butadiene styrene (ABS) candidate reference material using instrumental neutron activation analysis (INAA) recently recognized as a candidate primary ratio method with a particular attention to the estimation of involved measurement uncertainties.

  10. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  11. Investigation of the atmospheric particulates deposited on leaves using instrumental neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Cercasov, V.

    A method for the separation of surface contamination on plant leaves by plastic film stripping was applied. The particulate matter embedded in the film was analysed by neutron activation. The investigation was directed especially towards the determination of the trace element content of the suitable plastic matrices and of the influence of solvents. The practicability of this method is demonstrated by analysing films stripped from plant leaves with different degrees of pollution.

  12. An application of a simple computer program for neutron activation analysis.

    PubMed

    Abdel Basset, N

    2001-01-01

    A simple computer program is designed for estimation of elemental concentration values in complex samples by neutron activation analysis technique. The program is applied for an Egyptian cement sample which irradiated at the Egyptian Research Reactor-1(ET-RR-1). The data obtained is compared with the reported values. The time consumed for such calculations has a remarkable reduction in comparison with the routine work.

  13. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    USGS Publications Warehouse

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis (INAA) and other analytical methods as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurrence of various elements in the coal matrix itself. ?? 1977 Akade??miai Kiado??.

  14. Determination of thorium in seawater by neutron activation analysis and mass spectrometry

    SciTech Connect

    Huh, Chih-An

    1987-01-01

    The recent development of neutron activation analysis and mass spectrometric methods for the determination of /sup 232/Th in seawater has made possible rapid sampling and analysis of this long-lived, non-radiogenic thorium isotope on small-volume samples. The marine geochemical utility of /sup 232/Th, whose concentration in seawater is extremely low, warrants the development of these sensitive techniques. The analytical methods and some results are presented and discussed in this article. 24 refs., 3 figs.

  15. Second Research Coordination Meeting on Reference Database for Neutron Activation Analysis -- Summary Report

    SciTech Connect

    Firestone, Richard B.; Kellett, Mark A.

    2008-03-19

    The second meeting of the Co-ordinated Research Project on"Reference Database for Neutron Activation Analysis" was held at the IAEA, Vienna from 7-9 May, 2007. A summary of the presentations made by participants is given, along with reports on specifically assigned tasks and subsequent discussions. In order to meet the overall objectives of this CRP, the outputs have been reiterated and new task assignments made.

  16. Determination of Np-237 by radiochemical neutron activation analysis combined with extraction chromatography.

    PubMed

    Kalmykov, St N; Aliev, R A; Sapozhnikov, D Yu; Sapozhnikov, Yu A; Afinogenov, A M

    2004-01-01

    A procedure for determination of 237Np, 238Pu, 239,240Pu and 241Pu in environmental samples is described. Neptunium-237 is determined using radiochemical neutron activation analysis with pre- and post-irradiation chemistry based on solvent extraction and extraction chromatography. 238Pu, 239,240Pu is determined using alpha spectrometry and 241Pu by liquid scintillation spectrometry. The vertical profiles of 237Np, 238Pu, 239,240Pu in bottom sediments from the Black Sea are presented.

  17. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Wael M.; Ali, Khaled; El-Samman, Hussein M.; Frontasyeva, Marina V.; Gundorina, Svetlana F.; Duliu, Octavian G.

    2015-07-01

    Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

  18. Salvinia auriculata: aquatic bioindicator studied by instrumental neutron activation analysis (INAA).

    PubMed

    Soares, Daniel Crístian Ferreira; de Oliveira, Ester Figueiredo; Silva, Grácia Divina de Fátima; Duarte, Lucienir Pains; Pott, Vali Joana; Vieira Filho, Sidney Augusto

    2008-05-01

    Through instrumental neutron activation analysis (INAA) the elemental chemical composition of Salvinia auriculata and Ouro Preto city public water was determined. Elements Ce, Th, Cr, Hf, Sb, Sc, Rb, Fe, Zn, Co, Au, La and Br were quantified. High chromium concentration was determined in this plant. But, chromium was determined only in low concentrations in the water. The results indicate the great capacity of this plant to absorb and accumulate inorganic elements.

  19. A comparative neutron activation analysis study of common generic manipulated and reference medicines commercialized in Brazil.

    PubMed

    Leal, A S; Menezes, M A B C; Rodrigues, R R; Andonie, O; Vermaercke, P; Sneyers, L

    2008-10-01

    In this work, a comparative study of neutron activation analysis (NAA) was performed by the nuclear institutes: CDTN/CNEN-Brazil, CCHEN-Chile and the SCK.CEN-Belgium aiming to investigate some generic, manipulated and reference medicines largely commercialized in Brazil. Some impurities such as: As, Ba, Br, Ce, Co, Cr, Eu, Fe, Hf, Sb, Sc, Sm, Ti and Zn were found, and the heterogeneity of the samples pointed out the lack of an efficient public system of quality control.

  20. HPGe well-type detectors for neutron activation measurements on the Frascati Tokamak Upgrade tokamak

    SciTech Connect

    Bertalot, L.; Damiani, M.; Esposito, B.; Lagamba, L.; Podda, S.; Batistoni, P.; De Felice, P.; Biagini, R.

    1997-01-01

    We describe an improvement of the neutron activation system in operation on the Frascati Tokamak Upgrade (FTU) tokamak for the measurement of the total neutron yield. A HPGe well-type detector (200 cm{sup 3} active volume) is used to detect the photoemission from neutron activated samples ({sup 115m}In336.2 keV {gamma} rays from DD neutrons on indium for FTU). Due to their high geometrical efficiency, HPGe well-type detectors are particularly suited to the FTU low-level activity measurements. A particular effort has been devoted to the calibration of the measuring system. In particular, a multi-{gamma} calibration source (59{endash}1332 keV energy range) with a density of 7.31 g/cm{sup 3} consisting of a stack of indium foils has been prepared. This assures that the shape and volume of the calibration source are the same as those of the samples used in the actual measurements. The full-energy-peak efficiency at the {sup 115m}In336.2 keV line is 0.197 with an overall uncertainty of 2{percent} (1{sigma}). For a better characterization of the detector response as a function of the sample density, a further calibration source with the same geometry has been prepared in a gel aqueous solution (density {approximately}1 g/cm{sup 3}). The calibration curves for the well-type detector at the two different density values are compared. {copyright} {ital 1997 American Institute of Physics.}

  1. Impurities analysis of polycrystalline silicon substrates: Neutronic Activation Analysis (NAA) and Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Lenouar, K.; Gritly, Y.; Abbad, B.; Azzaz, M.; Taïbi, K.

    2010-01-01

    In this study we have determined the concentration of some impurities such as carbon, iron, copper, titanium, nickel of the flat product (polycrystalline silicon). These impurities generate a yield decrease in the photovoltaic components. The material (polycrystalline silicon) used in this work is manufactured by the Unit of Silicon Technology Development (UDTS Algiers, Algeria). The 80 kg ingot has been cutted into 16 briquettes in order to have plates (flat product) of 100 mm×100 mm dimensions. Each briquette is divided into three parts top (T), middle (M) and bottom (B). For this purpose, the following instrumental analysis techniques have been employed: neutronic analysis (neutronic activation analysis) and secondary ion mass spectrometry (SIMS). Masses of 80 mg are sampled and form of discs 18 mm in diameter, then exposed to a flux of neutron of 2.1012neutron cm-2 s-1 during 15 min. The energetic profile of incidental flux is constituted of fast neutrons (ΦR = 3.1012n.cm-2 s-1; E = 2 Mev), thermal neutrons (ΦTH = 1013n.cm-2 s-1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n cm-2 s-1; E>4.9 ev), irradiation time 15 mn, after 20 mn of decrement, acquisitions of 300 s are carried out. The results are expressed by disintegration per second which does not exceed the 9000 Bq, 500 Bq and 2600 Bq, respectively for copper, titanium and nickel. It is observed that the impurities concentrations in the medium are higher. The impurities in the bottom of the ingots originate from the crucible. The impurities in the top originate from impurities dissolved in the liquid silicon, which have segregated to the top layer of the ingot and after solidification diffuse. Silicon corresponds to a mixture of three isotopes 28Si, 29Si and 30Si. These elements clearly appear on the mass spectrum (SIMS). The presence of iron and the one of nickel has been noticed.

  2. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems.

    PubMed

    Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen

    2017-05-01

    In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q'air) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.

  3. Measurement of total body chlorine by prompt gamma in vivo neutron activation analysis.

    PubMed

    Beddoe, A H; Streat, S J; Hill, G L

    1987-02-01

    A method of measuring total body chlorine (TBCl) by prompt gamma in vivo neutron activation analysis is described which depends on the same NaI(Tl) spectra used for determinations of total body nitrogen. From these spectra counts ratios of chlorine to hydrogen are derived and TBCl is determined using a model of body composition which depends on measured body weight, total body water (by tritium dilution) and protein (6.25 X nitrogen) as well as estimated body minerals and glycogen. The precision of the method based on scanning an anthropomorphic phantom is at present only approximately 9% (SD), for a patient dose equivalent of less than 0.30 mSv. Spectra collected from 67 normal volunteers (32 male, 35 female) yielded mean values of TBCl of 72 +/- 19 (SD) g in males and 53.6 +/- 15 g in females, in broad agreement with values reported by workers using delayed gamma methods. Results are also presented for two human cadavers analysed both by neutron activation and by conventional chemical analysis; the ratios of TBCl (neutron activation) to TBCl (chemical) were 0.980 +/- 0.028 (SEM) and 0.91 +/- 0.09. Finally, it is suggested that an improvement in precision will be achieved by increasing the scanning time (thereby increasing the radiation dose equivalent) and by adding two more detectors.

  4. Analysis of solid-rocket effluents for aluminum, silicon, and other trace elements by neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Furr, A. K.

    1974-01-01

    The sensitivity and reliability of neutron activation analysis in detecting trace elements in solid rocket effluents are discussed. Special attention was given to Al and Si contaminants. The construction and performance of a thermal column irradiation unit was reported.

  5. Study of proton and neutron activation of metal samples in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1984-01-01

    Progress in the following activities has been made: the analysis of the gamma ray spectra taken from samples flown in Spacelab 2; the search for and review of neutron and proton activation cross sections needed to analyze the results of the Long Duration Exposure Facility (LDEF) activation measurements; the consideration given to data analysis of the LDEF and Spacelab 2 samples; the plan to measure relevant cross sections with nuclear accelerator measurements; and the preparation of an extended gamma ray calibration sources continues through planning and direct measurement of gamma ray efficiency for a Ge(Li) as a function of position along the surface of the detector housing.

  6. Determination of trace contaminants in hydrogenation catalysts by neutron-activation analysis.

    PubMed

    Erdey, L; Gimesi, O; Szabó, E; Csajka, M

    1970-12-01

    A neutron-activation method has been developed for the determination of the active constituents and contaminants in hydrogenation catalysts. The active constituents of palladium and nickel catalysts (Pd and Ni) and Zn and Co contaminants present in small amount were determined by a direct instrumental method. A NaI(Tl) scintillator and a Ge(Li) semiconductor connected to a multichannel analyser were used for the measurements. A computer was used to evaluate the gamma-spectra. Contaminants present in small amount were also determined by means of a radiochemical separation method based on heterogeneous isotopic exchange on mercury(II) sulphide and zinc sulphide precipitates.

  7. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  8. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions.

    PubMed

    Inoue, Yoshihiro; Hoshino, Masanobu; Takahashi, Hiroo; Noguchi, Tomoko; Murata, Tomomi; Kanzaki, Yasushi; Hamashima, Hajime; Sasatsu, Masanori

    2002-09-30

    The bactericidal activity induced by the introduction of silver ions into zeolite was studied. Escherichia coli was used as the test microorganism. Silver ions were loaded into zeolite by the ion-exchange method. Silver-loaded zeolite was demonstrated the strong bactericidal activity. Dissolved oxygen was an essential factor for the occurrence of the bactericidal activity because the activity was observed only under aerated condition. Superoxide anions, hydrogen peroxide, hydroxyl radicals and singlet oxygen were formed. Scavengers of these each reactive oxygen species (ROS) inhibited the bactericidal activity. This means that all ROS contributed to the activity.

  9. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  10. FY15 Status Report on NEAMS Neutronics Activities

    SciTech Connect

    Lee, C. H.; Shemon, E. R.; Smith, M. A.; Connaway, H. M.; Aliberti, G.

    2015-09-30

    This report summarizes the current status of NEAMS activities in FY2015. The tasks this year are (1) to improve solution methods for steady-state and transient conditions, (2) to develop features and user friendliness to increase the usability and applicability of the code, (3) to improve and verify the multigroup cross section generation scheme, (4) to perform verification and validation tests of the code using SFRs and thermal reactor cores, and (5) to support early users of PROTEUS and update the user manuals.

  11. Hydrazide derivatives produce active oxygen species as hydrazine.

    PubMed

    Timperio, Anna Maria; Rinalducci, Sara; Zolla, Lello

    2005-12-01

    It is well documented that some hydrazines are quite sensitive to oxidation and may serve as the electron donor for the reduction of oxygen, whereas hydrazides are not believed to react directly with oxygen. Data presented in this paper show that both hydrazides and hydrazines share an N-N moiety, which is assumed to react with atmospheric oxygen and produce oxygen radicals, at various degrees of efficiency. Since spectrometric measurements of hydrazide just after solubilization showed that the molecular mass remains constant in the absence of oxygen, we can conclude that hydrazides do not react with the oxygen through a slow spontaneous hydrolytic release of hydrazine. However, hydrazine is more reactive than hydrazide, which requires hours rather than minutes to produce measurable quantities of radical species. Differences were also apparent for various substituted derivatives. The reaction was significantly enhanced by the presence of metal ions. Data reported here demonstrate that hydrazides cause irreversible damage to the prosthetic group of proteins as well as causing degradation of the polypeptide chain into small fragments.

  12. Inhibition and oxygen activation in copper amine oxidases.

    PubMed

    Shepard, Eric M; Dooley, David M

    2015-05-19

    the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.

  13. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Burr, Tom; Favalli, Andrea; Nicholson, Andrew

    2016-03-01

    The declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar - Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to model the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. We find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters.

  14. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  15. P38 activation is more important than ERK activation in lung injury induced by prolonged hyperbaric oxygen.

    PubMed

    Ma, Jun; Fang, Yi-Qun; Gu, Ai-Mei; Wang, Fang-Fang; Zhang, Shi; Li, Kai-Cheng

    2013-01-01

    Prolonged exposure to hyperbaric oxygen can cause pulmonary and nerve system toxicity. Although hyperbaric oxygen treatment has been used for a broad spectrum of ailments, the mechanisms of prolonged hyperbaric oxygen-induced lung injury are not fully understood. The purpose of the present work was to investigate the roles of ERK, p38, and caspase-3 in rat lung tissue exposed to hyperbaric oxygen at 2.3 atmospheres absolute (atm abs) for two, six and 10 hours. The results showed that the ERK and p38 were phosphorylated at two hours and reached a peak at six hours into exposure to hyperbaric oxygen. While the phosphorylation level of ERK decreased, p38 remained at a high level of activation at 10 hours. The activation of ERK and p38 was down-regulated when rats were exposed to normoxic hyperbaric nitrogen for 10 hours. However, caspase-3 was activated at six hours and 10 hours into exposure to hyperbaric oxygen. These results demonstrated different changes of activation of ERK and p38 during lung injury induced by prolonged exposure to hyperbaric oxygen. The time course changes of activated caspase-3 were similar to the process of p38 activation upon exposure to hyperbaric oxygen. In this way, activation of p38, not ERK, seems to be a mechanism associated with prolonged hyperbaric oxygen-induced lung injury.

  16. Passive active neutron radioassay measurement uncertainty for combustible and glass waste matrices

    SciTech Connect

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-01-01

    Using a modified statistical sampling and verification approach, total uncertainty of INEL`s Passive Active Neutron (PAN) radioassay system was evaluated for combustible and glass content codes. Waste structure and content of 100 randomly selected drums in each the waste categories were computer modeled based on review of real-time radiography video tapes. Specific quantities of Pu were added to the drum models according to an experimental design. These drum models were then submitted to the Monte Carlo Neutron Photon code processing and subsequent calculations to produce simulated PAN system measurements. The reported Pu masses from the simulation runs were compared with the corresponding input masses. Analysis of the measurement errors produced uncertainty estimates. This paper presents results of the uncertainty calculations and compares them to previous reported results obtained for graphite waste.

  17. Elemental analysis of some Egyptian ores and industrial iron samples by neutron activation analysis.

    PubMed

    Srror, A; Abdel-Basset, N; Abdel-Haleem, A S; Hassan, A M

    2001-01-01

    Elemental analysis of iron ore samples and first industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were determined by instrumental neutron activation analysis technique. Five samples from each kind were irradiated for a 48 hours at a thermal neutron flux of 4 x 10(12) n/(cm2.s) in the first Egyptian research reactor ET-RR-1. Also the Pneumatic irradiation Rabbit system (PIRS) attached to the reactor in Inshass, was used to measure the elements of short-life time. The gamma-ray spectra were recorded by means of the hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. The long and short lived isotopes were considered. A comparative study and a discussion on the elemental concentration values are given.

  18. Nutrient elements of commercial tea from Nigeria by an instrumental neutron activation analysis technique.

    PubMed

    Jona, S A; Williams, I S

    2000-08-30

    A prototype miniature neutron source reactor (MNSR) with a thermal neutron flux of 3.0 x 10(11) n cm(-2) s(-1) has been used to determine the concentrations of some nutrient elements leading to short-lived activation products in commercial tea leaf samples from Nigeria. A total of eight elements Al, Ca, Cl, Cu, K, Mg, Mn and Na, that can be routinely used for quality control purposes, were analyzed in this study. Two biological reference materials, tomato leaves (NIST-1573) and citrus leaves (NIST-1572) were used as the standard and quality control materials, respectively. The analytical results show that the average concentrations of Al, Ca, Cl, Cu, K, Mg, Mn and Na in Nigerian tea are slightly higher when compared with a Chinese herbal tea analyzed in this study. The concentration ratios of K/Ca were found to be high in all the samples analyzed suggesting cultivation in potash-rich soils.

  19. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    SciTech Connect

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  20. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis

    USGS Publications Warehouse

    Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.

    2006-01-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Development of high-activity {sup 252}Cf sources for neutron brachytherapy

    SciTech Connect

    Martin, R.C.; Laxson, R.R.; Miller, J.H.; Wierzbicki, J.G.; Rivard, M.J.; Marsh, D.L.

    1996-10-01

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using {sup 252}Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing {le} 30 {micro}g {sup 252}Cf in the form of a cermet wire of Cf{sub 2}O{sub 3} in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity {sup 252}Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that {sup 252}Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC.

  2. Delayed gamma-ray spectroscopy combined with active neutron interrogation for nuclear security and safeguards

    NASA Astrophysics Data System (ADS)

    Koizumi, Mitsuo; Rossi, Fabiana; Rodriguez, Douglas C.; Takamine, Jun; Seya, Michio; Bogucarska, Tatjana; Crochemore, Jean-Michel; Varasano, Giovanni; Abbas, Kamel; Pederson, Bent; Kureta, Masatoshi; Heyse, Jan; Paradela, Carlos; Mondelaers, Willy; Schillebeeckx, Peter

    2017-09-01

    For the purpose of nuclear security and safeguards, an active neutron interrogation non-destructive assay technique, Delayed Gamma-ray Spectroscopy (DGS), is under development. The technique of DGS uses the detection of decay γ rays from fission products to determine ratios of fissile nuclides in a sample. A proper evaluation of such γ-ray spectra requires integration of nuclear data such as fission cross-sections, fission yields, half-lives, decay-chain patterns, and decay γ-ray yields. Preliminary DGS experiments with the Pulsed Neutron Interrogation Test Assembly, named PUNITA, of the European Commissions' Joint Research Center have been performed. Signals of delayed γ ray from nuclear materials were successfully observed.

  3. Unfolding neutron energy spectra from foil activation detector measurements with the Gold algorithm

    NASA Astrophysics Data System (ADS)

    Seghour, A.; Seghour, F. Z.

    2001-01-01

    In this work, the Gold algorithm is applied to the unfolding of neutron reactor energy spectra from reaction rates data of multiple foil activation detectors. Such a method, which forms the basis of a developed unfolding computer program called SAYD, has the advantage of not requiring a priori knowledge on the spectrum in the unfolding process. The program SAYD is first illustrated by synthesized reaction rates data calculated using a semi-empirical formulation of a typical intermediate and fast neutron reactor spectrum. The demonstration of the unfolding program SAYD is next achieved using measured reaction rates of the Arkansas Nuclear One power plant (ANO) benchmark spectrum by comparing results of SAYD program with those obtained by STAYNL and MSANDB unfolding codes.

  4. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  5. Performance of an improved thermal neutron activation detector for buried bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, J. E.; Faust, A. A.; Andrews, H. R.; Clifford, E. T. H.; Mosquera, C. M.

    2013-06-01

    First generation thermal neutron activation (TNA) sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on multi-sensor landmine detection systems. The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. The sensor is described, with emphasis on the improvements. Experiments to characterize the performance of the second generation TNA in detecting buried landmines and improvised explosive devices (IEDs) hidden in culverts are described. Performance results, including comparisons between the performance of the first and second generation systems are presented.

  6. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis.

    PubMed

    Oden, C P; Schweitzer, J S; McDowell, G M

    2006-09-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min.

  7. Neutron computed tomography.

    PubMed

    Koeppe, R A; Brugger, R M; Schlapper, G A; Larsen, G N; Jost, R J

    1981-02-01

    A neutron-transmission computed tomography scanning system has been built for scanning biological materials. An oxygen filtered beam of 2.35 MeV neutrons was used for the measurements. The studies to date show that the interactions of these energy neutrons with samples simulating biological materials are more sensitive than X-rays to variations in the content of the material, thus providing the ability to produce high quality images. The neutron scans suggest that neutrons can be an effective radiation for the imaging of biological materials.

  8. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  9. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  10. Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation.

    PubMed Central

    Byrne, G I; Faubion, C L

    1983-01-01

    Immune sensitization of spleen cells was required to generate lymphokines (LK) that activated thioglycolate-elicited peritoneal macrophages (thio MACs) to respond via both oxygen-dependent and oxygen-independent systems. LK produced by incubating spleen cells from immunized A/J and LAF mice with concanavalin A stimulated a response by thio MACs to phorbol-12-myristate-13-acetate (PMA)-induced chemiluminescence and activated these cells to inhibit intracellular Chlamydia psittaci replication. Concanavalin A-incubated spleen cell preparations from unimmunized animals stimulated neither PMA-induced chemiluminescence nor antichlamydial activity. Activated thio MACs demonstrated a rapid chemiluminescence response to the intracellular protozoan Toxoplasma gondii, but C. psittaci did not induce chemiluminescence in LK-activated thio MACs, although cells exposed to C. psittaci retained their responsiveness to PMA-induced chemiluminescence. The PMA-induced response was inhibited by the addition of exogenous superoxide dismutase and catalase and was therefore related to the production of superoxide anion (O2 . -) and H2O2 by these cells. LK preparations incubated at 56 degrees C before macrophage treatment retained antichlamydial activity, but heated preparations no longer stimulated thio MACs to respond in the chemiluminescence assay. These data provide evidence that macrophage oxygen-dependent and oxygen-independent systems are simultaneously activated by LK, and these preparations comprise at least two distinct activities. The portion responsible for activating oxygen-dependent systems (PMA-induced chemiluminescence) is heat labile, whereas the portion responsible for activating oxygen-independent systems is heat stable. It is the latter system that results in restriction of chlamydial growth and in vitro parasite persistence. PMID:6840848

  11. Determination of chlorinated pesticides in urine by molecular neutron activation analysis

    SciTech Connect

    Opelanio, L.R.; Rack, E.P.; Blotcky, A.J.; Crow, F.W.

    1983-04-01

    A molecular neutron activation analysis (MoNAA) procedure employing solvent extraction and high-performance liquid chromatography separation techniques with subsequent irradiation of the eluted fractions and radioassay for /sup 38/Cl activity is applied to the determination of trace quantities of DDT and its metabolites DDA (bis(p-chlorophenyl)acetic acid), DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane), and DDE(1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) in urine. Data and confirmation analyses using mass spectrometry are presented.

  12. Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility.

    PubMed

    Cooper, G W; Ruiz, C L; Leeper, R J; Chandler, G A; Hahn, K D; Nelson, A J; Torres, J A; Smelser, R M; McWatters, B R; Bleuel, D L; Yeamans, C B; Knittel, K M; Casey, D T; Frenje, J A; Gatu Johnson, M; Petrasso, R D; Styron, J D

    2012-10-01

    A DT neutron yield diagnostic based on the reactions, (63)Cu(n,2n)(62)Cu(β(+)) and (65)Cu(n,2n)( 64) Cu(β(+)), has been fielded at the National Ignition Facility (NIF). The induced copper activity is measured using a NaI γ-γ coincidence system. Uncertainties in the 14-MeV DT yield measurements are on the order of 7% to 8%. In addition to measuring yield, the ratio of activities induced in two, well-separated copper samples are used to measure the relative anisotropy of the fuel ρR to uncertainties as low as 5%.

  13. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  14. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  15. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    SciTech Connect

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-12-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes.

  16. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.; Aloiz, E.; Paul, R.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  17. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  18. Utilization of a /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis. Rev

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1984-02-01

    A /sup 252/Cf neutron activation analysis facility developed in 1975 has been used for the routine multielement analysis of a wide variety of solid and liquid samples. The present neutron flux is on the order of 10/sup 9/ thermal neutrons per cm/sup 2/ per second. Following activation, the radioisotopes are analyzed through their photon emissions with lithium drifted germanium detectors, anticoincidence shielded germanium detectors and NaI(T1) coincidence spectrometers. Although over 65 elements have been measured in environmental materials with this system, typical analyses include the elements Na, Al, Cl, K, Ca, Ti, V, Mn, Br, Sr, Rb, Ba, and Dy. Detection limits range from the sub parts per million upward. Over 8000 samples have been analyzed at an amortized neutron cost per sample of $31.

  19. Implementation of the active neutron Coincidence Collar for the verification of unirradiated PWR and BWR fuel assemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-01-01

    An active neutron interrogation technique has been developed for the measurement of the /sup 235/U content in fresh fuel assemblies. The method employs an AmLi neutron source to induce fission reactions in the fuel assembly and coincidence counting of the resulting fission reaction neutrons. When no interrogation source is present, the passive neutron coincidence rate gives a measure of the /sup 238/U by the spontaneous fission reactions. The system can be applied to the fissile content determination in fresh fuel assemblies for accountability, criticality control, and safeguards purposes. Field tests have been performed by International Atomic Energy Agency (IAEA) staff using the Coincidence Collar to verify the /sup 235/U content in light-water-reactor fuel assemblies. The results gave an accuracy of 1 to 2% in the active mode (/sup 235/U) and 2 to 3% in the passive mode (/sup 238/U) under field conditions.

  20. Nondestructive assay of spent boiling water reactor fuel by active neutron interrogation

    SciTech Connect

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Spent fuel rods containing 9 kg of heavy metal were chopped into 5-cm segments and loaded into three 1-liter cans. The three cans were assayed in seven combinations of one, two, or three cans, enabling an evaluation of the precision and accuracy of the NDA system for different amounts of fissile material. The fissile mass in each combination was determined by comparing the induced-fission-neutron counts with the counts obtained from a known standard comprising chopped segments of unirradiated Dresden fuel. These masses were compared to the masses determined by chemical analyses of the spent fuel. The results from the nondestructive assays agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondesctuctive assays. The assay of BWR spent fuel served as a test of the NDA system which was developed at the Oak Ridge National Laboratory for the assay of spent liquid metal fast breeder reactor (LMFBR) fuel subassemblies at the heat-end of a reprocessing plant. Results of previous experiments and calculations reported earlier using simulated LMFBR fuel subassemblies indicated that the NDA system can measure the fissile masses of spent fuel subassemblies to within an accuracy of 3%. Results of the assays of spent BWR fuel reported herein support this conclusion.

  1. The Prompt Gamma Neutron Activation Analysis Facility at ICN—Pitesti

    NASA Astrophysics Data System (ADS)

    Bǎrbos, D.; Pǎunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-01

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performace of INAA method. A facility has been developed at Institute for Nuclear Research—Piteşti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA—facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system. Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: φscd = 1.106 n/cm2/s with a cadmium ratio of:80. The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90° with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  2. The Prompt Gamma Neutron Activation Analysis Facility at ICN-Pitesti

    SciTech Connect

    Barbos, D.; Paunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-14

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performance of INAA method. A facility has been developed at Institute for Nuclear Research-Pitesti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA-facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system.Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: {phi}{sub scd} = 1.10{sup 6} n/cm{sup 2}/s with a cadmium ratio of:80.The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90 deg. with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  3. Determination of Long-Lived Neutron Activation Products in Reactor Shielding Concrete Samples

    SciTech Connect

    Zagar, Tomaz; Ravnik, Matjaz

    2002-10-15

    The results of activation studies of TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete were irradiated in the reactor to simulate neutron activation in the shielding concrete. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides were measured in the samples with a high-purity germanium detector. The most active long-lived radioactive nuclides in the ordinary concrete samples were found to be {sup 60}Co and {sup 152}Eu. In the barytes concrete samples, the most active long-lived radioactive nuclides were {sup 60}Co, {sup 133}Ba, and {sup 152}Eu. Activation in the concrete was also calculated using the ORIGEN2 code and compared to experimental results. Simple radioactive nuclide generation and depletion calculation using one-group cross-section libraries provided together with the ORIGEN2 code did not give conservative results. Significant discrepancies were observed for some nuclides. For accurate long-lived radioactive nuclide generation in reactor shielding, material-specific cross-section libraries should be generated and verified by measurement.

  4. Cell death induced by direct laser activation of singlet oxygen at 1270 nm

    NASA Astrophysics Data System (ADS)

    Anquez, F.; El Yazidi Belkoura, I.; Suret, P.; Randoux, S.; Courtade, E.

    2013-02-01

    Singlet oxygen plays a major role in many chemical and biological photo-oxidation processes. It has a high chemical reactivity, which is commonly harnessed for therapeutic issues. Indeed, singlet oxygen is recognized as the major cytotoxic agent in photodynamic therapy. In this treatment of cancer, singlet oxygen is created, among other reactive species, by an indirect transfer of energy from light to molecular oxygen via excitation of a photosensitizer. In this paper, we show that the conventional singlet oxygen production scheme can be simplified. Production of singlet oxygen is achieved in living cells from photosensitizer-free 1270 nm laser excitation of the electronic ground state of molecular oxygen. The quantity of singlet oxygen produced in this way is sufficient to induce an oxidative stress leading to cell death. Other effects such as thermal stress are discriminated, and we conclude that cell death is only due to singlet oxygen creation. This new simplified scheme of singlet oxygen activation can be seen as a breakthrough for phototherapies of malignant diseases and/or as a non-invasive possibility to generate reactive oxygen species in a tightly controlled manner.

  5. Comparison of transmutation and activation effects in five ferritic alloys and aisi 316 stainless steel in a fusion neutron spectrum

    NASA Astrophysics Data System (ADS)

    Butterworth, G. J.; Jarvis, O. N.

    1984-05-01

    Transmutation and activation characteristics are presented for alloys FV448, EM12, 1.4914, HT-9, the Japanese alloy E5 and 316 stainless steel as a reference material. The alloys were assumed to be subjected to a first wall neutron power loading of 7 MWm -2 continuously for 2.5 years in the spectrum of the Culham Conceptual Tokamak Reactor IIA. The computations used a modified ORIGEN code and the neutron cross section data library UKCTRIIIA.

  6. Development of Monte Carlo code for coincidence prompt gamma-ray neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Han, Xiaogang

    Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) offers a non-destructive, relatively rapid on-line method for determination of elemental composition of bulk and other samples. However, PGNAA has an inherently large background. These backgrounds are primarily due to the presence of the neutron excitation source. It also includes neutron activation of the detector and the prompt gamma rays from the structure materials of PGNAA devices. These large backgrounds limit the sensitivity and accuracy of PGNAA. Since most of the prompt gamma rays from the same element are emitted in coincidence, a possible approach for further improvement is to change the traditional PGNAA measurement technique and introduce the gamma-gamma coincidence technique. It is well known that the coincidence techniques can eliminate most of the interference backgrounds and improve the signal-to-noise ratio. A new Monte Carlo code, CEARCPG has been developed at CEAR to simulate gamma-gamma coincidence spectra in PGNAA experiment. Compared to the other existing Monte Carlo code CEARPGA I and CEARPGA II, a new algorithm of sampling the prompt gamma rays produced from neutron capture reaction and neutron inelastic scattering reaction, is developed in this work. All the prompt gamma rays are taken into account by using this new algorithm. Before this work, the commonly used method is to interpolate the prompt gamma rays from the pre-calculated gamma-ray table. This technique works fine for the single spectrum. However it limits the capability to simulate the coincidence spectrum. The new algorithm samples the prompt gamma rays from the nucleus excitation scheme. The primary nuclear data library used to sample the prompt gamma rays comes from ENSDF library. Three cases are simulated and the simulated results are benchmarked with experiments. The first case is the prototype for ETI PGNAA application. This case is designed to check the capability of CEARCPG for single spectrum simulation. The second

  7. Monte Carlo simulation of prompt gamma neutron activation analysis using MCNP code.

    PubMed

    Evans, C J; Ryde, S J; Hancock, D A; al-Agel, F

    1998-01-01

    Prompt gamma neutron activation analysis (PGNAA) is the most direct method of measuring total-body nitrogen. In combination with internal hydrogen standardisation, it is possible to reduce the dependence on body habitus. The uniformity of activation and detection, however, cannot be optimised sufficiently to eliminate the dependence entirely, and so further corrections are essential. The availability of the powerful Monte Carlo code MCNP(4A) has allowed a more accurate analysis of the activation facility, and yields corrections for body habitus and superficial fat layers. The accuracy of the correction is retained as the source-to-skin distance is reduced, although the activation uniformity is thereby degraded. This allows the use of a 252Cf source with lower activity and hence reduces the running cost of the facility.

  8. Au Foil Activation Measurement and Simulation of the Concrete Neutron Shielding Ability for the Proposed New SANRAD Facility

    NASA Astrophysics Data System (ADS)

    Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.

    The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.

  9. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  10. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  11. Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity

    PubMed Central

    Yee, Min; Chess, Patricia R.; McGrath-Morrow, Sharon A.; Wang, Zhengdong; Gelein, Robert; Zhou, Rui; Dean, David A.; Notter, Robert H.

    2009-01-01

    Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes in lung function are attributable to defects in surfactant composition and activity, structural changes in alveolar development, or both. Newborn mice were exposed to room air or 40%, 60%, 80%, or 100% oxygen between postnatal days 1 and 4 and allowed to recover in room air until 8 wk of age. Lung compliance and alveolar size increased, and airway resistance, airway elastance, tissue elastance, and tissue damping decreased, in mice exposed to 60–80% oxygen; changes were even greater in mice exposed to 100% oxygen. These alterations in lung function were not associated with changes in total protein content or surfactant phospholipid composition in bronchoalveolar lavage. Moreover, surface activity and total and hydrophobic protein content were unchanged in large surfactant aggregates centrifuged from bronchoalveolar lavage compared with control. Instead, the number of type II cells progressively declined in 60–100% oxygen, whereas levels of T1α, a protein expressed by type I cells, were comparably increased in mice exposed to 40–100% oxygen. Thickened bundles of elastin fibers were also detected in alveolar walls of mice exposed to ≥60% oxygen. These findings support the hypothesis that changes in lung development, rather than surfactant activity, are the primary causes of oxygen-altered lung function in children who were exposed to oxygen as neonates. Furthermore, the disruptive effects of oxygen on epithelial development and lung mechanics are not equivalently dose

  12. L'analyse par activation de neutrons de réacteur

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    2003-02-01

    Quand les neutrons traversent la matière, certains sont transmis sans interaction, les autres interagissent avec le milieu traversé par diffusion et par absorption. Ce phénomène d'absorption est utilisé pour se protéger des neutrons, mais aussi pour les détecter; il peut également être utilisé pour identifier les noyaux “absorbants" et ainsi analyser le milieu traversé. En effet par différentes réactions nucléaires (n,γ), (n,p), (n,α), (n,fission), on obtient des noyaux résiduels qui sont souvent radioactifs; on dit que l'échantillon est “activé". Si l'on connaît le rendement d'activation et donc le pourcentage de noyaux ainsi “transmutés", les mesures de radioactivité induite vont permettre de déterminer la composition de l'échantillon irradié. Cette méthode dite d'analyse par activation neutronique est pratiquée depuis la découverte du neutron. Elle a permis grâce à sa sélectivité et à sa sensibilité d'avoir accès au domaine des traces et des ultra-traces dans des champs d'application très divers comme la métallurgie, l'archéologie, la biologie, la géochimie etc...

  13. Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau

    NASA Astrophysics Data System (ADS)

    Beman, J. M.

    2016-02-01

    Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.

  14. The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study

    ERIC Educational Resources Information Center

    Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.

    2004-01-01

    This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…

  15. The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study

    ERIC Educational Resources Information Center

    Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.

    2004-01-01

    This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…

  16. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  17. Performance test results of noninvasive characterization of RCRA surrogate waste by prompt gamma neutron activation analysis

    SciTech Connect

    Gehrke, R.J.; Propp, W.A.

    1997-11-01

    A performance evaluation to determine the feasibility of using prompt gamma neutron activation analysis (PGNAA) for noninvasive, quantitative assay of mixed waste containers was sponsored by DOE`s Office of Technology Development (OTD), the Mixed Waste Focus Area (MWFA), and the Idaho National Engineering and Environmental Laboratory (INEEL). The evaluation was conducted using a surrogate waste, based on Portland cement, that was spiked with three RCRA metals, mercury, cadmium, and lead. The results indicate that PGNAA has potential as a process monitor. However, further development is required to improve its sensitivity to meet regulatory requirements for determination of these RCRA metals.

  18. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    NASA Astrophysics Data System (ADS)

    Munive, Marco; Solís, José L.; Revilla, Ángel

    2007-10-01

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO3 was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl2Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  19. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    SciTech Connect

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    1994-01-01

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main stream cigarette smoke, obtained by destructive neutron activation analysis.

  20. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  1. Possible differentiation of natal areas of North American waterfowl by neutron activation analysis

    USGS Publications Warehouse

    Devine, T.; Peterle, T.J.

    1968-01-01

    The possibility of using neutron activation analyses to differentiate sources of North American waterfowl was investigated by irradiating rectrices and wing bones of birds collected in several localities, and comparing the characteristic gamma-ray spectra. Canada goose rectrices from Oregon specimens could be distinguished from those taken in Wisconsin and Colorado based on higher levels of Mn. Mallard, black duck, and blue-winged teal wing bones from Wisconsin, Colorado, and New Brunswick could not be clearly identified as to locality from levels of Ca, Al, Na, Mn, and Cl.

  2. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  3. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  4. Neutron activation analysis by standard addition and solvent extraction: Determination of impurities in aluminium.

    PubMed

    Alian, A; Haggag, A

    1967-09-01

    A separation scheme based on selective extraction in conjunction with the standard addition technique has been developed for the determination of impurities in aluminium by neutron activation. Preliminary investigations have been carried out on the extractability of Sc, Co, Hf, Fe, Sn, Cd, Zn, Ag, Cr, Ce, Cs and Rb by TDA and TBP from acidic media. The best conditions are predicted for the separation of these elements into fractions suitable for analysis by gamma-ray spectrometry. Recovery values of approximately 90% were obtained for all the elements.

  5. Evaluation of homogeneity of a certified reference material by instrumental neutron activation analysis

    SciTech Connect

    Kratochvil, B.; Duke, M.J.M.; Ng, D.

    1986-01-01

    The homogeneity of the marine reference material TORT-1, a spray-dried and acetone-extracted hepatopancreatic material from the lobster, was tested for 26 elements by instrumental neutron activation analysis (INAA). Through a one-way analysis of variance based on six analyses on each of six bottles of TORT-1, it was concluded that the between-bottle heterogeneity is no greater than the within-bottle heterogeneity. The analytical results for those elements for which values were provided by NRC agree with the NRC values within 95% confidence limits. 8 references, 6 tables.

  6. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    SciTech Connect

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug.

  7. An automated microcomputer-controlled system for neutron activation and gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Edward, J. B.; Beeley, P. A.; Bennett, L. G. I.; Anderson, A.; Burbidge, G. A.

    1990-12-01

    An automated instrumental neutron activation analysis (INAA) system has been constructed at the SLOWPOKE-2 reactor at the Royal Military College of Canada (RMC). Its pneumatic transfer system is controlled by an Apple IIe computer, linked in turn to an MS-DOS-compatible microcomputer which controls data acquisition. Custom software has been created for these computers and for off-line spectral analysis using programs that incorporate either peak boundary or Gaussian peak fitting methods of analysis. This system provides the gamut of INAA techniques for the analyst. The design and performance of the hardware and software are discussed.

  8. Development of the activation analysis calculational methodology for the Spallation Neutron Source (SNS)

    SciTech Connect

    Odano, N.; Johnson, J.O.; Charton, L.A.; Barnes, J.M.

    1998-03-01

    For the design of the proposed Spallation Neutron Source (SNS), activation analyses are required to determine the radioactive waste streams, on-line material processing requirements remote handling/maintenance requirements, potential site contamination and background radiation levels. For the conceptual design of the SNS, the activation analyses were carried out using the high-energy transport code HETC96 coupled with MCNP to generate the required nuclide production rates for the ORIHET95 isotope generation code. ORIHET95 utilizes a matrix-exponential method to study the buildup and decay of activities for any system for which the nuclide production rates are known. In this paper, details of the developed methodology adopted for the activation analyses in the conceptual design of the SNS are presented along with some typical results of the analyses.

  9. Detection of spallation neutrons and protons using the (nat)Cd activation technique in transmutation experiments at Dubna.

    PubMed

    Manolopoulou, M; Stoulos, S; Fragopoulou, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Zamani, M

    2006-07-01

    Various spallation sources have been used to transmute long-lived radioactive waste, mostly making use of the wide energy neutron fluence. In addition to neutrons, a large number of protons and gamma rays are also emitted from these sources. In this paper (nat)Cd is proved to be a useful activation detector for determining both thermal-epithermal neutron as well as secondary proton fluences. The fluences measured with (nat)Cd compared with other experimental data and calculations of DCM-DEM code were found to be in reasonable agreement. An accumulation of thermal-epithermal neutrons around the center of the target (i.e. after approx. 10 cm) and of secondary protons towards the end of the target is observed.

  10. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  11. A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging.

    PubMed

    Won, Keehoon; Jang, Nan Young; Jeon, Junsu

    2016-12-28

    Intelligent food packaging can provide consumers with reliable and correct information on the quality and safety of packaged foods. One of the key constituents in intelligent packaging is a colorimetric oxygen indicator, which is widely used to detect oxygen gas involved in food spoilage by means of a color change. Traditional oxygen indicators consisting of redox dyes and strong reducing agents have two major problems: they must be manufactured and stored under anaerobic conditions because air depletes the reductant, and their components are synthetic and toxic. To address both of these serious problems, we have developed a natural component-based oxygen indicator characterized by in-pack activation. The conventional oxygen indicator composed of synthetic and artificial components was redesigned using naturally occurring compounds (laccase, guaiacol, and cysteine). These natural components were physically separated into two compartments by a fragile barrier. Only when the barrier was broken were all of the components mixed and the function as an oxygen indicator was begun (i.e., in-pack activation). Depending on the component concentrations, the natural component-based oxygen indicator exhibited different response times and color differences. The rate of the color change was proportional to the oxygen concentration. This novel colorimetric oxygen indicator will contribute greatly to intelligent packaging for healthier and safer foods.

  12. The 12B counter: an active dosemeter for high-energy neutrons.

    PubMed

    Leuschner, A

    2005-01-01

    High-energy accelerators can produce strong time-structured radiation fields. Such dose shots are generated at linear machines with low duty cycles as well as at circular machines when complete fills are instantaneously lost. The main dose component behind thick shielding is due to high-energy neutrons occurring at that time structure. Dosemeters based on Geiger-Mueller tubes or proportional counters fail here completely. The 12B counter, a novel dosemeter made of a plastic scintillator using carbon activation for event-like exposure, has been introduced. High-energy neutrons activate the carbon nuclei by three inelastic reactions. The decay patterns with half-lives between 20 ms and 20 min can be exploited depending on the time structure of the radiation field. The response of the 12B counter was measured along with some other dosemeters, both active and passive, in the radiation field behind the lateral concrete shielding of a 7.5 GeV proton transfer line.

  13. Simultaneous determination of silica and alumina in bulk bauxite samples by fast neutron activation

    SciTech Connect

    Borsaru, M.; Eisler, P.L.

    1981-10-01

    A prototype of a bulk bauxite analyzer based on fast neutron activation analysis has been developed for simultaneously determining the chemical concentrations of alumina and silica in both dried and undried bulk bauxite samples (about 3.5 kg). The determination of alumina is based on measuring the count rate in the 0.844 MeV ..gamma..-ray peak emitted by /sup 27/Mg formed in the activation of aluminum. The determination of silica is based on measuring the count rate in the 1.78 MeV ..gamma..-ray peak emitted by /sup 28/Al formed in the activation of silicon. The interference from alumina in the determination of silica was eliminated by measuring an additional parameter, the thermal neutrons underneath the bulk sample. The technique enables up to 10 analyses per hour with an accuracy (1 sigma) of 0.28% silica and 0.9% alumina. The samples analyzed contained 48 to 62% alumina and 2 to 11% silica. The tests indicated that the accuracy of analysis was similar for samples which had been oven-dried (0 to 5% free moisture) and samples which were taken from the benefication plant with free moisture varying in a narrow range (10 to 14% free moisture). The results also indicated that crushing and grinding of samples did not significantly improve the accuracy.

  14. Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex.

    PubMed

    Nagy, Gergely; Pieper, Jörg; Krumova, Sashka B; Kovács, László; Trapp, Marcus; Garab, Győző; Peters, Judith

    2012-03-01

    Elastic incoherent neutron scattering (EINS), a non-invasive technique which is capable of measuring the mean square displacement of atoms in the sample, has been widely used in biology for exploring the dynamics of proteins and lipid membranes but studies on photosynthetic systems are scarce. In this study we investigated the dynamic characteristics of Photosystem II (PSII) membrane fragments between 280 and 340 K, i.e., in the physiological temperature range and in the range of thermal denaturation of some of the protein complexes. The mean square displacement values revealed the presence of a hydration-sensitive transition in the sample between 310 and 320 K, suggesting that the oxygen evolving complex (OEC) plays an important role in the transition. Indeed, in samples in which the OEC had been removed by TRIS- or heat-treatments (323 and 333 K) no such transition was found. Further support on the main role of OEC in these reorganizations is provided by data obtained from differential scanning calorimetry experiments, showing marked differences between the untreated and TRIS-treated samples. In contrast, circular dichroism spectra exhibited only minor changes in the excitonic interactions below 323 K, showing that the molecular organization of the pigment-protein complexes remains essentially unaffected. Our data, along with earlier incoherent neutron scattering data on PSII membranes at cryogenic temperatures (Pieper et al., Biochemistry 46:11398-11409, 2007), demonstrate that this technique can be applied to characterize the dynamic features of PSII membranes, and can be used to investigate photosynthetic membranes under physiologically relevant experimental conditions.

  15. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  16. Unconventional neutron sources for oil well logging

    NASA Astrophysics Data System (ADS)

    Frankle, C. M.; Dale, G. E.

    2013-09-01

    Americium-Beryllium (AmBe) radiological neutron sources have been widely used in the petroleum industry for well logging purposes. There is strong desire on the part of various governmental and regulatory bodies to find alternate sources due to the high activity and small size of AmBe sources. Other neutron sources are available, both radiological (252Cf) and electronic accelerator driven (D-D and D-T). All of these, however, have substantially different neutron energy spectra from AmBe and thus cause significantly different responses in well logging tools. We report on simulations performed using unconventional sources and techniques to attempt to better replicate the porosity and carbon/oxygen ratio responses a well logging tool would see from AmBe neutrons. The AmBe response of these two types of tools is compared to the response from 252Cf, D-D, D-T, filtered D-T, and T-T sources.

  17. Summary report for ITER task - D10: Update and implementation of neutron transport and activation codes and processed libraries

    SciTech Connect

    Attaya, H.

    1995-01-01

    The primary goal of this task is to provide the capabilities in the activation code RACC, to treat pulsed operation modes. In addition, it is required that the code utilizes the same spatial mesh and geometrical models as employed in the one or multidimensional neutron transport codes used in ITER design. This would ensure the use of the same neutron flux generated by those codes to calculate the different activation parameters. It is also required to have the capabilities for generating graphical outputs for the calculated activation parameters.

  18. Effects of carbohydrate on the internal oxygen concentration, oxygen uptake, and nitrogenase activity in detached pea nodules

    SciTech Connect

    Monroe, J.D. ); LaRue, T.A. )

    1989-10-01

    The interaction between carbon substrates and O{sub 2} and their effects on nitrogenase activity (C{sub 2}H{sub 2}) were examined in detached nodules of pea (Pisum sativum L. cv Sparkle). The internal O{sub 2} concentration was estimated from the fractional oxygenation of leghemoglobin measured by reflectance spectroscopy. Lowering the endogenous carbohydrate content of nodules by excising the shoots 16 hours before nodule harvest or by incubating detached nodules at 100 kPa O{sub 2} for 2 hours resulted in a 2- to 10-fold increase in internal O{sub 2}, and a decline in nitrogenase activity. Conversely, when detached nodules were supplied with 100 millimolar succinate, the internal O{sub 2} was lowered. Nitrogenase activity was stimulated by succinate but only at high external O{sub 2}. Oxygen uptake increased linearly with external O{sub 2} but was affected only slightly by the carbon treatments. The apparent diffusion resistance in the nodule cortex was similar in all of the treatments. Carbon substrates can thus affect nitrogenase activity indirectly by affecting the O{sub 2} concentration within detached nodules.

  19. Neutron activation of selenium and arsenic with or without chemical separation

    SciTech Connect

    Woittiez, J.R.W.

    1988-01-01

    At the Netherland Energy Research Foundation, neutron activation analysis (NAA) is one of the available techniques for elemental analysis. As the technique is potentially very powerful, considerable effort has been invested during the last 2 yr to optimize the multielement performance and to focus simultaneously on the best achievable single-element determination. This last activity implies concentrating the attention on measuring a well-defined signal rather than on software to evaluate complicated signals. As several irradiation facilities can be used, it is possible to choose the best obtainable instrumental activation technique. For the analysis of trace elements on the nanogram per gram level in biological material, however, the reintroduction of chemical separation of irradiated samples is inevitable. This paper presents recent results on applications of this approach. Although several well-documented techniques have been adapted, installed, and applied, and results are obtained for cadmium, molybdenum, chromium, cobalt, tin, iron, and mercury, this discussion is limited to selenium and arsenic.

  20. Predicting long-lived, neutron-induced activation of concrete in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Carroll, L. R.

    2001-07-01

    Many elements in concrete can become activated by neutrons in a cyclotron vault, but only a few of the activation products are long-lived. The most prominent of these are Eu-152, Eu-154, Co-60, and Cs-134 which build up over time from (n, γ) reactions in trace amounts of stable Europium, Cobalt, and Cesium that are normally present in concrete in concentrations of a few parts per million, or less, by weight. A retrospective analysis of data taken in connection with a previous decommissioning of a cyclotron vault, coupled with independent published data, gives us an estimate of the concentrations of these elements in concrete. With that estimate as a benchmark, we then employ a Monte Carlo Radiation Transport Code to estimate the long-term activation profile in concrete for arbitrary irradiation conditions.