Heart Rate and VO[subscript 2] Responses to Cycle Ergometry in White and African American Men
ERIC Educational Resources Information Center
Vehrs, Pat R.; Fellingham, Gilbert W.
2006-01-01
The validity of estimates of peak oxygen consumption (VO[subscript 2]peak) using submaximal exercise tests may be compromised when the participants being tested are not similar to the participants used to develop the test. This study compared ethnic differences in the heart rate (HR) and oxygen consumption (VO[subscript 2]) responses to submaximal…
VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise
ERIC Educational Resources Information Center
Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.
2011-01-01
We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…
Agreement between VO[subscript 2peak] Predicted from PACER and One-Mile Run Time-Equated Laps
ERIC Educational Resources Information Center
Saint-Maurice, Pedro F.; Anderson, Katelin; Bai, Yang; Welk, Gregory J.
2016-01-01
Purpose: This study examined the agreement between estimated peak oxygen consumption (VO[subscript 2peak]) obtained from the Progressive Aerobic Cardiovascular Endurance Run (PACER) fitness test and equated PACER laps derived from One-Mile Run time (MR). Methods: A sample of 680 participants (324 boys and 356 girls) in Grades 7 through 12…
The Relationship among HRpeak, RERpeak, and VO[subscript 2]peak during Treadmill Testing in Girls
ERIC Educational Resources Information Center
Peyer, Karissa; Pivarnik, James M.; Coe, Dawn Podulka
2011-01-01
Clear criteria for maximal oxygen consumption (VO[subscript 2]max) determination in youth are not available, and no studies have examined this issue in girls. Our purpose was to determine whether different peak heart rate (HRpeak) and peak respiratory exchange ratio (RERpeak) cut points affect girls' (N = 453; M age = 13.3 years, SD = 0.1)…
ERIC Educational Resources Information Center
Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent
2010-01-01
Oxygen consumption at peak physical exertion (VO[subscript 2] maximum) is the most widely used indicator of cardiorespiratory fitness. The purpose of this study was to compare two protocols for its estimation, cycle ergometer testing and the 20 m shuttle run, among children with and without probable developmental coordination disorder (pDCD). The…
ERIC Educational Resources Information Center
Black, Nate E.; Vehrs, Pat R.; Fellingham, Gilbert W.; George, James D.; Hager, Ron
2016-01-01
Purpose: The purpose of this study was to evaluate the use of a treadmill walk-jog-run exercise test previously validated in adults and physical activity questionnaire data to estimate maximum oxygen consumption (VO[subscript 2]max) in boys (n = 62) and girls (n = 66) aged 12 to 17 years old. Methods: Data were collected from Physical Activity…
Ventilation and Speech Characteristics during Submaximal Aerobic Exercise
ERIC Educational Resources Information Center
Baker, Susan E.; Hipp, Jenny; Alessio, Helaine
2008-01-01
Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…
ERIC Educational Resources Information Center
Garner, Dena; Erck, Elizabeth G.
2008-01-01
Background: Lack of physical activity has been noted in breast cancer survivors and been attributed to decreased physical function. Purpose: This study assessed the effects of a moderate-to-vigorous physical exercise program on body fat percentage, maximal oxygen consumption (VO[subscript 2] max), body mass index, and bone mineral density (BMD) of…
An Accurate VO[subscript 2]max Nonexercise Regression Model for 18-65-Year-Old Adults
ERIC Educational Resources Information Center
Bradshaw, Danielle I.; George, James D.; Hyde, Annette; LaMonte, Michael J.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2005-01-01
The purpose of this study was to develop a regression equation to predict maximal oxygen uptake (VO[subscript 2]max) based on nonexercise (N-EX) data. All participants (N = 100), ages 18-65 years, successfully completed a maximal graded exercise test (GXT) to assess VO[subscript 2]max (M = 39.96 mL[middle dot]kg[superscript -1][middle…
ERIC Educational Resources Information Center
Tarnus, Evelyne; Catan, Aurelie; Verkindt, Chantal; Bourdon, Emmanuel
2011-01-01
The maximal rate of O[subscript 2] consumption (VO[subscript 2max]) constitutes one of the oldest fitness indexes established for the measure of cardiorespiratory fitness and aerobic performance. Procedures have been developed in which VO[subscript 2max]is estimated from physiological responses during submaximal exercise. Generally, VO[subscript…
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
Evaluation of the Virtual Physiology of Exercise Laboratory Program
ERIC Educational Resources Information Center
Dobson, John L.
2009-01-01
The Virtual Physiology of Exercise Laboratory (VPEL) program was created to simulate the test design, data collection, and analysis phases of selected exercise physiology laboratories. The VPEL program consists of four modules: (1) cardiovascular, (2) maximal O[subscript 2] consumption [Vo[subscript 2max], (3) lactate and ventilatory thresholds,…
Prediction of Energy Expenditure during Walking in Adults with Down Syndrome
ERIC Educational Resources Information Center
Agiovlasitis, Stamatis; Mendonca, Goncalo V.; McCubbin, Jeffrey A.; Fernhall, Bo
2018-01-01
Background: When developing walking programmes for improving health in adults with Down syndrome (DS), physical activity professionals are in need of an equation for predicting energy expenditure. We therefore developed and cross-validated an equation for predicting the rate of oxygen uptake (VO[subscript 2]; an index of energy expenditure) for…
Top 10 Research Questions Related to Youth Aerobic Fitness
ERIC Educational Resources Information Center
Armstrong, Neil
2017-01-01
Peak oxygen uptake (VO[subscript 2]) is internationally recognized as the criterion measure of youth aerobic fitness, but despite pediatric data being available for almost 80 years, its measurement and interpretation in relation to growth, maturation, and health remain controversial. The trainability of youth aerobic fitness continues to be hotly…
Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults
ERIC Educational Resources Information Center
Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli
2007-01-01
This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…
ERIC Educational Resources Information Center
Nasuti, Gabriella; Stuart-Hill, Lynneth; Temple, Viviene A.
2013-01-01
Background: The Six-Minute Walk Test (6MWT) has been used with clinical and healthy populations to assess functional capacity and cardiovascular fitness. The aim of this study was to determine the test-retest reliability of a modified-6MWT as well as concurrent validity of walk distance with peak oxygen uptake (VO[subscript 2] peak). Method:…
ERIC Educational Resources Information Center
Sam, Cemil Tugrulhan
2015-01-01
The purpose of the research was to evaluate the effect of 4-week vitamin C and E supplementation on the markers of oxidative stress after exercise session in students. 30 non-athlete persons (25.21 ± 1.5 years, 173.42 ± 5.62 cm, 75.6±5.75 kg, VO[subscript 2] max of 42.26 ± 1.11 ml/kg/min, and waist-hip ratio of 0.91 ±0.02 cm) volunteered for the…
Specific Effects of Acute Moderate Exercise on Cognitive Control
ERIC Educational Resources Information Center
Davranche, Karen; McMorris, Terry
2009-01-01
The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO[subscript 2 max]=42 ml/kg/min) and 8 males (VO[subscript 2 max]=48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual…
ERIC Educational Resources Information Center
Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.
2010-01-01
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…
ERIC Educational Resources Information Center
Bonafiglia, Jacob T.; Sawula, Laura J.; Gurd, Brendon J.
2018-01-01
The purpose of this study was to determine if the counting talk test can be used to discern whether an individual is exercising above or at/below maximal lactate steady state. Twenty-two participants completed VO[subscript 2]peak and counting talk test incremental step tests followed by an endurance test at 65% of work rate at VO[subscript 2]peak…
ERIC Educational Resources Information Center
Eler, Nebahat; Acar, Hakan
2018-01-01
The aim of this study is to examine the effects of rope-jump training program in physical education lessons on strength, speed and VO[subscript 2] max in 10-12 year old boys. 240 male students; rope-jump group (n = 120) and control group (n = 120) participated in the study. Rope-Jump group continued 10 weeks of regular physical education and sport…
Benefits of Moderate-Intensity Exercise during a Calorie-Restricted Low-Fat Diet
ERIC Educational Resources Information Center
Apekey, Tanefa A.; Morris, A. E. J.; Fagbemi, S.; Griffiths, G. J.
2012-01-01
Objective: Despite the health benefits, many people do not undertake regular exercise. This study investigated the effects of moderate-intensity exercise on cardiorespiratory fitness (lung age, blood pressure and maximal aerobic power, VO[subscript 2]max), serum lipids concentration and body mass index (BMI) in sedentary overweight/obese adults…
Aerobic Capacity in Children and Adolescents with Cerebral Palsy
ERIC Educational Resources Information Center
Verschuren, Olaf; Takken, Tim
2010-01-01
This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…
A Primer-Test Centered Equating Method for Setting Cut-Off Scores
ERIC Educational Resources Information Center
Zhu, Weimo; Plowman, Sharon Ann; Park, Youngsik
2010-01-01
This study evaluated the use of a new primary field test method based on test equating to address inconsistent classification among field tests. We analyzed students' information on the Progressive Aerobic Cardiovascular Endurance Run (PACER), mile run (MR), and VO[subscript 2]max from three data sets (college: n = 94; middle school: n = 39;…
Development of 1-Mile Walk Tests to Estimate Aerobic Fitness in Children
ERIC Educational Resources Information Center
Sung, Hoyong; Collier, David N.; DuBose, Katrina D.; Kemble, C. David; Mahar, Matthew T.
2018-01-01
To examine the reliability and validity of 1-mile walk tests for estimation of aerobic fitness (VO[subscript 2max]) in 10- to 13-year-old children and to cross-validate previously published equations. Participants (n = 61) walked 1-mile on two different days. Self-reported physical activity, demographic variables, and aerobic fitness were used in…
Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai
2014-12-01
To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.
Intraoperative Oxygen Consumption During Liver Transplantation.
Shibata, M; Matsusaki, T; Kaku, R; Umeda, Y; Yagi, T; Morimatsu, H
2015-12-01
The aim of this study was to investigate the changes in oxygen consumption during liver transplantation and to examine the relationship between intraoperatively elevated systemic oxygen consumption and postoperative liver function. This study was performed in 33 adult patients undergoing liver transplantation between September 2011 and March 2014. We measured intraoperative oxygen consumption through the use of indirect calorimetry, preoperative and intraoperative data, liver function tests, and postoperative complications and outcomes. The mean age of patients was 52 ± 9.7 years; 14 (42%) of them were women. Average Model for End-Stage Liver Disease scores were 20 ± 8.9. Oxygen consumption significantly increased after reperfusion from 172 ± 30 mL/min during the anhepatic phase to 209 ± 30 mL/min (P < .0001). We divided patients into 2 groups according to the increase in oxygen consumption after reperfusion (oxygen consumption after reperfusion minus anhepatic phase oxygen consumption: 40 mL/min increase as cutoff). The higher consumption group had a longer cold ischemia time and higher postoperative aspartate aminotransferase and alanine aminotransferase levels as compared with the lower oxygen consumption group. There were no statistically significant differences in major postoperative complications, but the higher oxygen consumption group tended to have shorter hospital stays than the lower consumption group (58 versus 95 days). We have demonstrated that oxygen consumption significantly increased after reperfusion. Furthermore, this increased oxygen consumption was associated with a longer cold ischemia time and shorter hospital stays. Copyright © 2015 Elsevier Inc. All rights reserved.
Santos, Carla Santana; Kowaltowski, Alicia J; Bertotti, Mauro
2017-09-12
We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in oxygen consumption characteristics. Our results uncover heterogeneous oxygen consumption characteristics between cells and within the same cell´s microenvironments. Single Cell Oxygen Mapping (SCOM) is thus capable of reliably studying mitochondrial oxygen consumption characteristics and heterogeneity at a single-cell level.
Grigoliia, G N; Chokhonelidze, I K; Gvelesiani, L G; Sulakvelidze, K R; Tutberidze, K N
2007-01-01
The body oxygen consumption and the oxygen cost of breathing (which is the difference in oxygen consumption measured during controlled ventilation and again during spontaneous ventilation) were measured in 46 children with congenital heart diseases after open-heart surgery. There was a significant exponential correlation between the body oxygen consumption (ml/m(2)/min) and the oxygen cost of breathing as a percentage of total oxygen consumption during spontaneous ventilation and the duration of weaning in minutes (r=+0,882, p<0,02). Therefore, as the oxygen cost of breathing was correlated with the total weaning time, this may be a useful index on the weaning process (sensitivity 92%, specificity 85%).
NASA Astrophysics Data System (ADS)
Jiang, Yan; Zemp, Roger
2018-01-01
The metabolic rate of oxygen consumption is an important metric of tissue oxygen metabolism and is especially critical in the brain, yet few methods are available for measuring it. We use a custom combined photoacoustic-microultrasound system and demonstrate cerebral oxygen consumption estimation in vivo. In particular, the cerebral metabolic rate of oxygen consumption was estimated in a murine model during variation of inhaled oxygen from hypoxia to hyperoxia. The hypothesis of brain autoregulation was confirmed with our method even though oxygen saturation and flow in vessels changed.
NASA Astrophysics Data System (ADS)
Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei
2017-03-01
Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
Effects of TFM and Bayer 73 on in vivo oxygen consumption of the aquatic midge Chironomus tentans
Kawatski, J.A.; Dawson, V.K.; Reuvers, J.L.
1974-01-01
Exposure of fourth instar larvae of Chironomus tentans to 2.0-8.0 mg/liter of TFM (3-trifluormethyl-4-nitrophenol) for 6 hr at 22 A? 0.5 C in soft water resulted in a significantly increased rate of larval oxygen consumption compared to that of control larvae, as measured with the Warburg respirometer. Maximum stimulation of oxygen consumption occurred with 8.0 mg/liter of TFM, and 1.0 mg/liter of TFM had no measurable effect on basal respiration. When hardness of exposure water was progressively increased, the effect of TFM on oxygen consumption was diminished. Bayer 73 (5,2'-dichloro-4'-nitrosalicylanilide) stimulated oxygen consumption at 0.75 and 1.0 mg/liter, had no significant effect at concentrations less that 0.75 mg/liter, and inhibited oxygen consumption at concentrations of 1.20 mg/liter or greater. Mixtures of TFM and Bayer 73, in the ratio of 98:2, had no greater effect on oxygen consumption than TFM alone.
Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K
2016-01-01
The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. Copyright © 2015 Elsevier B.V. All rights reserved.
Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente
2014-01-01
Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636
[Oxygen consumption rate of Sepia pharaonis embryos.
Wang, Peng Shuai; Jiang, Xia Min; Ruan, Peng; Peng, Rui Bing; Jiang, Mao Wang; Han, Qing Xi
2016-07-01
This research was conducted to unravel the variation of oxygen consumption rate during different developmental stages and the effects of different ecological factors on embryonic oxygen consumption rate of Sepia pharaonis. The oxygen consumption rates were measured at twelve deve-lopmental stages by the sealed volumetric flasks, and four embryonic developmental periods (oosperm, gastrula, the formation of organization, endoskeleton) were selected under various ecological conditions, such as salinity (21, 24, 27, 30, 33), water temperature (18, 21, 24, 27, 30 ℃) and pH (7.0, 7.5, 8.0, 8.5, 9.0). The results showed that the oxygen consumption rate rose along with the developmental progress, and distinctly differed from each other. The oxygen consumption rate was 0.082 mg·(100 eggs) -1 ·h -1 during oosperm period, and rose to 0.279 mg·(100 eggs) -1 ·h -1 during gastrula period, which was significantly higher than that of blastula period. Finally, the oxygen consumption rate rose to 1.367 mg·(100 eggs) -1 ·h -1 during hatching period. The salinity showed a significant effect on oxygen consumption rate during the formation of organization and endoskeleton formation stage (P<0.05), but no significant effect during oosperm and gastrula periods (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of salinity, and reached the highest values [0.082, 0.200, 0.768 and 1.301 mg·(100 eggs) -1 ·h -1 , respectively] at salinity 30. The water temperature had a significant effect on the embryo oxygen consumption rates of gastrula, and the formation of organization and endoskeleton formation stage (P<0.05), with the exception of oosperm (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of temperature, and reached the highest values at 27 ℃ [0.082, 0.286, 0.806 and 1.338 mg·(100 eggs) -1 ·h -1 , respectively]. The pH had no significant effect on the oxygen consumption rates of four embryonic stages (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of pH. The oxygen consumption rates of gastrula, the formation of organization, endoskeleton reached the according highest values [0.281, 0.799 and 1.130 mg·(100 eggs) -1 ·h -1 ] at pH 8.5, but that during oosperm period occurred at pH 8.0 [0.116 mg·(100 eggs) -1 ·h -1 ].
Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe
2012-01-01
Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.
Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.
2014-01-01
Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030
Anomalous oxygen consumption in porcine somatic cell nuclear transfer embryos.
Sugimura, Satoshi; Yokoo, Masaki; Yamanaka, Ken-ichi; Kawahara, Manabu; Moriyasu, Satoru; Wakai, Takuya; Nagai, Takashi; Abe, Hiroyuki; Sato, Eimei
2010-08-01
Oxygen consumption reflects overall metabolic activity of mammalian embryos. We measured oxygen consumption in individual porcine somatic cell nuclear transfer (SCNT) and in vitro-fertilized (IVF) embryos by modified scanning electrochemical microscopy. Oxygen consumption in IVF embryos rapidly increased at day 5 of the blastocyst stage (D5BL). IVF embryos that consumed >0.81 x 10(14)/mol sec(-1) of oxygen at D5BL exhibited significantly higher hatching and hatched rates at D7BL, whereas D5BL SCNT embryos using porcine fetal fibroblasts did not show an increase in oxygen consumption until D7BL. The numbers of inner cell mass and trophectoderm (TE) cells and incidence of apoptosis did not significantly differ between IVF and SCNT embryos at D5BL. At D7BL, a significant lower number of TE cell and higher incidence of apoptosis were observed in SCNT than in IVF embryos; this significantly correlated with their oxygen consumption at D5BL. Use of cumulus cells as donor cells neutralized the low oxygen consumption in SCNT embryos at D5BL, regardless of the difference between the recipient cytoplasm and donor nucleus. Some of SCNT embryos at D7BL were retrieved the hatching completion and were improved the number of TE cell and apoptosis incidence by using cumulus cells. Thus, anomalous oxygen consumption in porcine SCNT embryos at D5BL could be sign of limited hatchability, which may be responsible for the low TE cell number and high apoptosis incidence.
Development of a model to determine oxygen consumption when crawling
Pollard, J.P.; Heberger, J.R.; Dempsey, P.G.
2016-01-01
During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape. PMID:26997858
Oxygen consumption of keloids and hypertrophic scars.
Ichioka, Shigeru; Ando, Taichi; Shibata, Masahiro; Sekiya, Naomi; Nakatsuka, Takashi
2008-02-01
The oxygen consumption of keloids and hypertrophic scars has never been quantitatively presented, although abnormal metabolic conditions must be associated with their pathophysiology. We invented an original measurement system equipped with a Clark oxygen electrode for ex vivo samples. The measurement of a mouse wound-healing model revealed immature repairing tissues consumed more oxygen than mature tissues. This finding is in accord with the current thinking and supported the validity of our measurement system. The analysis of fresh human samples clearly demonstrated the high oxygen consumption rate of keloid hypertrophic scars and the comparatively low consumption of mature scars. A high oxygen consuming potential, as well as insufficient oxygen diffusion, may possibly contribute to the pathophysiology of keloids and hypertrophic scars.
Tejera, Aberto; Herrero, Javier; de Los Santos, M J; Garrido, Nicolás; Ramsing, Niels; Meseguer, Marcos
2011-09-01
To evaluate the effect of different ovarian stimulation protocols on oocyte respiration and to investigate the relationship between oocyte oxygen consumption and reproductive outcome. Prospective observational cohort study. Infertility clinic in a university hospital. A total of 349 oocytes from 56 IVF treatment cycles in our oocyte donation program. None. Average oocyte oxygen consumption rate in fmol/s. We correlated oxygen consumption values with ovarian stimulation features, fertilization, embryo quality on days 2 and 3, and implantation. Differences in the measured oxygen consumption rates were found depending on which type of gonadotropins were used in the stimulation protocol. Higher consumption rates were found for oocytes that underwent normal fertilization compared with rates from nonfertilized or abnormal oocytes (odds ratio = 1.340; 95% confidence intervals = 1.037-1.732). Furthermore, higher oxygen consumption was observed for those oocytes which generated embryos that implanted compared with those that did not implant (6.21 ± 0.849 fmol/s vs. 5.23 ± 0.345 fmol/s. Measurement of oxygen consumption rates for individual oocytes before fertilization provides a noninvasive marker of oocyte quality and hence a quantitative assessment of the reproductive potential for the oocyte. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Del Castillo, Luis F; da Silva, Ana R Ferreira; Hernández, Saul I; Aguilella, M; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente
2015-01-01
We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. Copyright © 2014. Published by Elsevier Espana.
Schlenker, E H; Eikanger, J
1997-06-01
The purposes of these studies were: 1) to determine the effects of various doses of propranolol, a nonspecific beta-adrenergic antagonist, on ventilation, oxygen consumption, and body temperature in hamsters, and 2) to test the hypothesis that in hamsters the stimulatory effects of naloxone, an opioid receptor antagonist, on ventilation and oxygen consumption occur, at least in part, through the release of catecholamines that act via beta-adrenergic receptors. Propranolol, a non-specific beta adrenergic receptor antagonist, at a 20 mg/kg depressed body temperature, oxygen consumption, tidal volume, and ventilation relative to saline. The lower dose of 10 mg/kg had only transitory effects on tidal volume at 60 min and ventilation at 30 min post-injection-Naloxone (1 mg/kg) relative to saline stimulated ventilation and oxygen consumption. These effects were blocked by propranolol pretreatment. The results of these experiments demonstrate that in the hamster, 1) body temperature, oxygen consumption, and ventilation appear to be modulated by beta-adrenergic receptors, and 2) the stimulatory effects of naloxone on oxygen consumption and ventilation may occur through the interaction of endogenous opioids and beta-adrenergic receptor systems.
Li, Meng-Meng; Shi, Hong-Zhuan; Guo, Qiao-Sheng; Wang, Jia; Dai, Dao-Xin
2016-08-01
The oxygen consumption, oxygen consumption rate and suffocation point of different quality Whitmania pigra and Bellamya purificata were determined by hydrostatic breathing room method. The effects of feeding modes on growth of W.pigra were determined by biomass. The results showed that the oxygen consumption correlated positively with the weight of W.pigra and B. purificata(P<0.05), suffocation point increased with the increases of the weight(P<0.05).Oxygen consumption correlated negatively with the weight of W. pigra, the oxygen consumption rate of B.purificata first increased and then decreased with the increasing of the weight. Feeding modes had no significant effects on the finial weight, SGR, WGR, death rates of W. pigra. Feeding modes had significant effects on eating ratio. It suggested that the optimum feeding frequency of W. pigra was once every three days. Scientific and reasonable feeding amount of B. purificata should be calculated based on oxygen consumption and suffocation point of W.pigra and B.purificata at every period. Meanwhile, stocking density, water area and water exchanging frequency should be taken into consideration. Copyright© by the Chinese Pharmaceutical Association.
Drivers of summer oxygen depletion in the central North Sea
NASA Astrophysics Data System (ADS)
Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.
2015-06-01
In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.
In vivo mapping of tumor oxygen consumption using (19)F MRI relaxometry.
Diepart, Caroline; Magat, Julie; Jordan, Bénédicte F; Gallez, Bernard
2011-06-01
Recently, we have developed a new electron paramagnetic resonance (EPR) protocol in order to estimate tissue oxygen consumption in vivo. Because it is crucial to probe the heterogeneity of response in tumors, the aim of this study was to apply our protocol, together with (19)F MRI relaxometry, to the mapping of the oxygen consumption in tumors. The protocol includes the continuous measurement of tumor po(2) during the following respiratory challenge: (i) basal values during air breathing; (ii) increasing po(2) values during carbogen breathing until saturation of tissue with oxygen; (iii) switching back to air breathing. We have demonstrated previously using EPR oximetry that the kinetics of return to the basal value after oxygen saturation are mainly governed by tissue oxygen consumption. This challenge was applied in hyperthyroid mice (generated by chronic treatment with L-thyroxine) and control mice, as hyperthyroidism is known to dramatically affect the oxygen consumption rate of tumor cells. Our recently developed snapshot inversion recovery MRI fluorocarbon oximetry technique allowed the po(2) return kinetics to be measured with a high temporal resolution. The kinetic constants (i.e. oxygen consumption rates) were higher for tumors from hyperthyroid mice than from control mice, data that are consistent with our previous EPR study. The corresponding histograms of the (19)F MRI data showed that the kinetic constants displayed a shift to the right for the hyperthyroid group, indicating a higher oxygen consumption in these tumors. The color maps showed a large heterogeneity in terms of oxygen consumption rate within a tumor. In conclusion, (19)F MRI relaxometry allows the noninvasive mapping of the oxygen consumption in tumors. The ability to assess the heterogeneity of tumor response is critical in order to identify potential tumor regions that might be resistant to treatment and therefore produce a poor response to therapy. Copyright © 2010 John Wiley & Sons, Ltd.
Yu, Daoyong; Huang, Guihong; Xu, Fengxi; Ge, Baosheng; Liu, Shuang; Xu, Hai; Huang, Fang
2014-11-01
Surfactants play a significant role in solubilization of photosystem I (PSI) in vitro. Triton X-100 (TX), n-Dodecyl-β-D-maltoside (DDM), and sodium dodecyl sulfate (SDS) were employed to solubilize PSI particles in MES buffer to compare the effect of surfactant and its dosage on the apparent oxygen consumption rate of PSI. Through a combined assessment of sucrose density gradient centrifugation, Native PAGE and 77 K fluorescence with the apparent oxygen consumption, the nature of the enhancement of the apparent oxygen consumption activity of PSI by surfactants has been analyzed. Aggregated PSI particles can be dispersed by surfactant molecules into micelles, and the apparent oxygen consumption rate is higher for surfactant-solubilized PSI than for integral PSI particles. For DDM, PSI particles are solubilized mostly as the integral trimeric form. For TX, PSI particles are solubilized as incomplete trimeric and some monomeric forms. For the much harsher surfactant, SDS, PSI particles are completely solubilized as monomeric and its subunit forms. The enhancement of the oxygen consumption rate cannot be explained only by the effects of surfactant on the equilibrium between monomeric and trimeric forms of solubililized PSI. Care must be taken when the electron transfer activity of PSI is evaluated by methods based on oxygen consumption because the apparent oxygen consumption rate is influenced by uncoupled chlorophyll (Chl) from PSI, i.e., the larger the amount of uncoupled Chl, the higher the rate of apparent oxygen consumption. 77 K fluorescence spectra can be used to ensure that there is no uncoupled Chl present in the system. In order to eliminate the effect of trace uncoupled Chl, an efficient physical quencher of (1)O2, such as 1 mM NaN3, may be added into the mixture.
NASA Astrophysics Data System (ADS)
Koester, M.; Paffenhofer, G. A.
2016-02-01
The goal of our study was to study the intraspecies physiological diversity of different life stages of the pelagic tunicate Dolioletta gegenbauri (Tunicata, Thaliacea) that occur intermittently in high abundances on the shelf off the southeastern US. The complex life cycle of this species starts with solitary oozooids that develop to nurses with colonies of feeding trophozooids and phorozooids. As the latter mature they produce clusters of gonozooids. As oxygen consumption is a good physiological indicator for metabolic expenditures, we quantified the oxygen consumption of different zooids of D. gegenbauri (nurses, phorozooids and gonozooids) at environmental conditions. Oxygen consumption rates were determined from changes in oxygen concentration that were monitored non-invasively and continuously by an innovative sensor system in time-series-experiments. Specific oxygen consumption rates varied considerably and were related to moving activity, feeding behaviour, biomass, and growth of different life stages of doliolids. The results of our study will advance our understanding of variability in oxygen consumption of different stages of doliolid development due to their specific ecological role.
Duveau, Damien Y; Arce, Pablo M; Schoenfeld, Robert A; Raghav, Nidhi; Cortopassi, Gino A; Hecht, Sidney M
2010-09-01
Analogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2-4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 6-8) reduced, but did not eliminate, oxygen consumption. Idebenone analogues 6-8 also displayed significant cytoprotective properties toward cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate. Copyright 2010 Elsevier Ltd. All rights reserved.
CORRECTING ENERGY EXPENDITURES FOR FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION
The EPA's human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the individual's current level of physical activity (PA), which is determined from activity diaries selected from the Conso...
Deslauriers, R; Moffatt, D J; Smith, I C
1986-05-29
A spectrophotometric assay has been devised to measure oxygen consumption non-invasively in intact murine red cells parasitized by Plasmodium berghei. The method uses oxyhemoglobin in the erythrocytes both as a source of oxygen and as an indicator of oxygen consumption. Spectra of intact cells show broad peaks and sloping baselines due to light-scattering. In order to ascertain the number of varying components in the 370-450 nm range, the resolution of the spectra was enhanced using Fourier transforms of the frequency domain spectra. Calculation of oxygen consumption was carried out for two-component systems (oxyhemoglobin, deoxyhemoglobin) using absorbances at 415 and 431 nm. Samples prepared from highly parasitized mice (greater than 80% parasitemia, 5% hematocrit) showed oxygen consumption rates of (4-8) X 10(-8) microliter/cell per h. This rate was not attributable to the presence of white cells or reticulocytes. The rate of oxygen consumption in the erythrocytes is shown to be modulated by various agents: the respiratory inhibitors NaN3 and KCN (1 mM) reduced oxygen consumption 2-3-fold; salicylhydroxamic acid (2.5 mM) caused a 20% reduction in rate and 10 mM NaN3, completely blocked deoxygenation. Antimalarial drugs and metal-chelating agents were also tested. Chloroquine, EDTA and desferal (desferoxamine mesylate) did not decrease the deoxygenation rate of hemoglobin in parasitized cells. Quinacrine, quinine and primaquine reduced the rate of formation of deoxyhemoglobin but also produced substantial quantities of methemoglobin. The lipophilic chelator, 5-hydroxyquinoline, decreased the rate of deoxygenation one-third. The spectrophotometric assay provides a convenient means to monitor oxygen consumption in parasitized red cells, to test the effects of various agents thereon, and potentially to explore possible mechanisms for oxygen utilization.
Oxygen consumption along bed forms under losing and gaining streamflow conditions
NASA Astrophysics Data System (ADS)
De Falco, Natalie; Arnon, Shai; Boano, Fulvio
2016-04-01
Recent studies have demonstrated that bed forms are the most significant geomorphological structure that drives hyporheic exchange and biogeochemical processes in stream networks. Other studies also demonstrated that due to the hyporheic flow patterns within bed form, biogeochemical processes do not occur uniformly along and within the bed forms. The objective of this work was to systematically evaluate how losing or gaining flow conditions affect oxygen consumption by biofilm along sandy bed forms. We measured the effects of losing and gaining flow conditions on oxygen consumption by combining modeling and experiments in a novel laboratory flume system that enable the control of losing and gaining fluxes. Oxygen consumption was measured after growing a benthic biofilm fed with Sodium Benzoate (as a carbon source) and measuring the distribution of oxygen in the streambed with microelectrodes. The experimental results were analyzed using a novel code that calculates vertical profiles of reaction rates in the presence of hyporheic water fluxes. These experimental observations and modeling revealed that oxygen distribution varied along the bed forms. The zone of oxygen consumption (i.e. depth of penetration) was the largest at the upstream side of the bed form and the smallest in the lee side (at the lowest part of the bed form), regardless of the flow conditions. Also, the zone of oxygen consumption was the largest under losing conditions, the smallest under gaining conditions, and in-between under neutral conditions. The distribution of oxygen consumption rates determined with our new model will be also discussed. Our preliminary results enable us to show the importance of the coupling between flow conditions and oxygen consumption along bed forms and are expected to improve our understanding of nutrient cycling in streams.
Müller, Jonas; Schmidt, Dominik
2016-01-01
Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896
Oxygen Consumption is Limited at an Ecologically Relevant Rearing Temperature in Pupfish Eggs.
Jones, Alexander C; Lim, David; Wayne-Thompson, Jacoby J; Urbina, Natasha; Puentedura, Georgina; Hillyard, Stanley; Breukelen, Frank Van
2016-10-01
The habitat of the critically endangered Devils Hole Pupfish, Cyprinodon diabolis is marked by constant high temperatures and low oxygen availability. In order to explore the effects of these conditions on development and recruitment of eggs in Devils Hole, we tested the effects of two ecologically relevant temperatures on the development, hatch success, and oxygen consumption of eggs from a refuge population of pupfish derived from C. diabolis and eggs from its close sister species, Cyprinodon nevadensis mionectes. We developed a simple method to measure oxygen consumption in a single egg. Parent acclimation temperature, rather than incubation temperature, was the most important factor influencing hatch success. Eggs incubated at 33°C hatched more quickly compared to those incubated at 28°C. Despite this accelerated development, larvae from both temperatures were of similar size at hatch. Unexpectedly, eggs incubated at 33°C experience lower than expected oxygen consumption rates compared to those incubated at 28°C. Oxygen consumption rates would be limited at PO 2 values that are much higher than environmental oxygen tensions. Oxygen consumption increased dramatically upon hatch, indicating that low oxygen conditions such as those present in Devils Hole may limit developing eggs. © 2016 Wiley Periodicals, Inc.
Schneider, Volker; Müller, Jonas; Schmidt, Dominik
2016-12-01
Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.
Carra, Graciela E; Matus, Daniel; Ibáñez, Jorge E; Saraví, Fernando D
2015-01-01
Aerobic metabolism is necessary for ion transport in many transporting epithelia, including the human colonic epithelium. We assessed the effects of the epithelial sodium channel blocker, amiloride, on oxygen consumption and short-circuit current of the human sigmoid epithelium to determine whether these effects were influenced by the age of the subject. Segments of the sigmoid colon were obtained from the safety margin of resections performed in patients of 62-77 years of age. Isolated mucosa preparations were obtained and mounted in airtight Ussing chambers, fit for simultaneous measurement of short-circuit current and oxygen concentration, before and after blocking epithelial sodium channels with amiloride (0.1 mmol/L). Regression analyses were performed to assess the associations between short-circuit current, oxygen consumption, and age of the subject as well as to define the relationship between the decreases in short-circuit current and oxygen consumption after blockade. Epithelial sodium channel blockade caused an 80% reduction in short-circuit current and a 26% reduction in oxygen consumption. Regression analysis indicated that both changes were significantly related (r = 0.884;P = 0.0007). Oxygen consumption decreased by 1 m mol/h/cm2 for each 25 m A/cm2 decrease in short-circuit current. Neither short-circuit current nor oxygen consumption had any significant relationship with the age of the subjects. The decrease in epithelial oxygen consumption caused by amiloride is proportional to the decrease in short-circuit current and independent of the age of the subject.
Sakagami, N; Nishida, K; Akiyama, K; Abe, H; Hoshi, H; Suzuki, C; Yoshioka, K
2015-01-01
Oxygen consumption rate of in vivo-derived porcine embryos was measured, and its value as an objective method for the assessment of embryo quality was evaluated. Embryos were surgically collected 5 or 6 days after artificial insemination (AI), and oxygen consumption rate of embryos was measured using an embryo respirometer. The average oxygen consumption rate (F × 10(14)/mol s(-1)) of the embryos that developed to the compacted morula stage on Day 5 (Day 0 = the day of artificial insemination) was 0.58 ± 0.03 (mean ± standard error of the mean). The Day-6 embryos had consumption rates of 0.56 ± 0.13, 0.87 ± 0.06, and 1.13 ± 0.07 at the early blastocyst, blastocyst, and expanded blastocyst stages, respectively, showing a gradual increase as the embryos developed. Just after collection, the average oxygen consumption rates of embryos that hatched and of those that did not hatch after culture were 0.60 ± 0.04 and 0.50 ± 0.04 for Day 5 (P = 0.08) and 1.05 ± 0.09 and 0.77 ± 0.05 for Day 6 (P < 0.05), respectively. The value and probability of discrimination by measuring the oxygen consumption rates of embryos to predict their hatching ability after culture were 0.56 and 63.6% for Day-5 embryos and 0.91 and 68.4% for Day-6 blastocysts, respectively. When Day-5 embryos were classified based on the oxygen consumption rate and then transferred non-surgically to recipient sows, three of the seven sows, to which embryos having a high oxygen consumption rate (≥ 0.59) were transferred, became pregnant and farrowed a total of 20 piglets. However, none of the four sows, to which embryos having low oxygen consumption rate (< 0.59) were transferred, became pregnant. These results suggest that the viability of in vivo-derived porcine embryos and subsequent development can be estimated by measuring the oxygen consumption rate. Copyright © 2015 Elsevier Inc. All rights reserved.
[Monitoring oxygen consumption in energy metabolism in pediatric anesthesia: clinical utility].
Calvo Vecino, J M; Abad Gurumeta, A; Navarro Pérez, R; Stolle Dueñas, D; Nieto Moreno, E; De Juan García, S
2010-01-01
To determine changes in oxygen consumption as a marker of energy metabolism during general inhaled anesthesia in pediatric patients and to identify factors that might influence consumption. Prospective, observational, double-blind study in children under inhaled anesthesia in spontaneous ventilation. We monitored heart rate electrocardiogram, noninvasive blood pressure, respiratory frequency, carbon dioxide (CO2) end-expiratory pressure, oxygen saturation by pulse oximetry, state entropy, response entropy, esophageal temperature, and (by indirect calorimetry) oxygen consumption and the respiratory quotient. Capillary blood was extracted every 5 minutes to determine lactate concentration. Thirty-six patients (ASA 1-2) between 5 and 11 years old were included. Mean (SD) oxygen consumption was 0.6 (0.12) mL x kg(-1)min(-1) at baseline, 5.3 (03) mL x kg(-1) min(-1) during maintenance of anesthesia, and 8.1 (1.1) mL x kg(-1) min(-1) on awakening. A progressive increase was detected in lactic acid concentration, from a baseline mean of 0.8 (0.1) mmol/L to 2.2 (0.9) mmol/L half an hour later; the change was unrelated to oxygen consumption. After correcting the flow of normal saline solution to 0.9%, a significant increase in oxygen consumption (P < .05) was detected. Factors that were significantly correlated (P < 0.1 and r of +/- 0.95) were temperature (oxygen consumption decreased > 10% for each degree centigrade decrease), inspired oxygen fraction > 0.8; sharp changes in the expired CO2 fraction exceeding 2 standard deviations (+/- 6), use of nitrous oxide in the gas mix (inspired nitrous oxide fraction > 20%), the length of the sampling line, and increased respiratory frequency. A model with 3 factors was constructed to explain the kinetics of oxygen consumption during anesthesia. Oxygen consumption monitoring may provide an indirect indicator of homeostatic changes during surgery. The ideal system for carrying out such monitoring during anesthesia remains to be found, and the values to guide the anesthesiologist in deciding whether or not to intervene immediately still need to be determined.
Brunnekreef, Jaap J J; Thijssen, Dick H J; Oosterhof, Jan; Hopman, Maria T E
2012-04-01
Case-control study. To investigate whether oxygen consumption and blood flow at rest and after exercise are lower in the affected arm of patients with repetitive strain injury (RSI) compared to controls, and lower in the healthy nonaffected forearm within patients with unilateral RSI. RSI is considered an upper extremity overuse injury. Despite the local presentation of complaints, RSI may be represented by systemic adaptations. Insight into the pathophysiology of RSI is important to better understand the development of RSI complaints and to develop effective treatment and prevention strategies. Twenty patients with unilateral RSI and 20 gender-matched control subjects participated in this study. Forearm muscle blood flow and oxygen consumption were measured using near-infrared spectroscopy at baseline and immediately after isometric handgrip exercises at 10%, 20%, and 40% of the individual maximal voluntary contraction. Unilateral RSI resulted in a lower oxygen consumption and blood flow in the affected forearm at baseline and lower oxygen consumption after incremental handgrip exercises compared to controls (P<.05). In addition, exercise-induced blood flow and oxygen consumption in the nonaffected forearm in patients with RSI were similarly reduced. Blood flow and oxygen consumption after exercise are similarly attenuated in the affected and nonaffected arms of patients with unilateral RSI. Our findings suggest that, despite the unilateral character in clinical symptoms, RSI demonstrates systemic adaptations in forearm blood flow and oxygen consumption at rest and after exercise.
Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...
The Effect of Malathion on the Activity and Performance of Activated Sludge
2015-03-26
33 and 59 µg O2 min-1. The oxygen consumption curves were similar in each case, beginning with rapid oxygen AFIT-ENV-MS-15-M-197 v...3: Respirometry Test 6 – Cumulative Oxygen Consumption ............................... 45 Figure 4: SOUR for Malathion Concentrations in Activated...76 Figure 20: Respirometry Test 1 – Cumulative Oxygen Consumption ............................. 86 Figure 21: Respirometry Test 1
17 O MRS assesses the effect of mild hypothermia on oxygen consumption rate in tumors.
Neveu, Marie-Aline; Joudiou, Nicolas; De Preter, Géraldine; Dehoux, Jean-Paul; Jordan, Bénédicte F; Gallez, Bernard
2017-08-01
Although oxygen consumption is a key factor in metabolic phenotyping, its assessment in tumors remains critical, as current technologies generally display poor specificity. The objectives of this study were to explore the feasibility of direct 17 O nuclear magnetic resonance (NMR) spectroscopy to assess oxygen metabolism in tumors and its modulations. To investigate the impact of hypometabolism induction in the murine fibrosarcoma FSAII tumor model, we monitored the oxygen consumption of normothermic (37°C) and hypothermic (32°C) tumor-bearing mice. Hypothermic animals showed an increase in tumor pO 2 (measured by electron paramagnetic resonance oximetry) contrary to normothermic animals. This was related to a decrease in oxygen consumption rate (assessed using 17 O magnetic resonance spectroscopy (MRS) after the inhalation of 17 O 2 -enriched gas). This study highlights the ability of direct 17 O MRS to measure oxygen metabolism in tumors and modulations of tumor oxygen consumption rate. Copyright © 2017 John Wiley & Sons, Ltd.
Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe
2012-01-01
Background/Aim Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. Methods We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Results Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Conclusions Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow. PMID:23285055
Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F
2014-04-01
We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.
Oxygen consumption rates by different oenological tannins in a model wine solution.
Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando
2017-11-01
The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.
Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María
2017-08-15
Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enko, Barbara; Borisov, Sergey M; Regensburger, Johannes; Bäumler, Wolfgang; Gescheidt, Georg; Klimant, Ingo
2013-09-12
A comprehensive study of photodegradation processes in optical sensing materials caused by photosensitized singlet oxygen in different polymers is presented. The stabilities of the polymers are accessed in the oxygen consumption measurements performed with help of optical oxygen sensors. Polystyrene and poly(phenylsilesquioxane) are found to be the most stable among the polymers investigated, whereas poly(2,6-dimethyl-p-phenylene oxide) and particularly poly(methyl methacrylate) and their derivatives show the fastest oxygen consumption. The effect of the stabilizers (singlet oxygen quenchers) on the oxygen consumption rates, the photostability of the sensitizer, and the total photon emission (TPE) by singlet oxygen is studied. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was found to significantly reduce both the TPE and the oxygen consumption rates, indicating its role as a physical quencher of singlet oxygen. The addition of DABCO also significantly improved the photostability of the sensitizer. The N-alkylated derivative of DABCO and DABCO covalently grafted to the polystyrene backbone are prepared in an attempt to overcome the volatility and water solubility of the quencher. These derivatives as well as other tertiary amines investigated were found to be inefficient as stabilizing agents, and some of them even negatively affected the oxygen consumption rates.
U.S. Navy Unmanned Test Methods and Performance Limits for Underwater Breathing Apparatus
2015-06-01
in liters per minute (STPD) ?̇?2 Metabolic oxygen consumption in liters per minute (STPD) max Maximum flow rate ?̇? Ventilation , first time...8-2 8.1.3 Oxygen consumption ... OXYGEN CONSUMPTION SIMULATION ........................................................................... 9-1 CHAPTER 9. NEDU TM 15-01 vii 9-1
The effect of temperature and anoxia of rat-kidney slices on their subsequent respiration
Rochman, H.; Clark, P. B.; Lathe, G. H.; Parsons, F. M.
1967-01-01
1. Rat-kidney slices were kept, aerobically and anaerobically, at 4°, 20° and 38°, for 0·5–24hr. The oxygen consumption was then measured at 38°. 2. After 6hr. of storage at 4° the rate of oxygen consumption was the same as controls, but after 12 and 24hr. of storage the oxygen consumption fell by 22 and 32% respectively; there was no difference between the slices kept aerobically and anaerobically for periods of 2–24hr. at 4°. 3. Anaerobic storage at 20° for 2hr. did not affect the subsequent rate of oxygen consumption, but after 4 and 6hr. the anaerobically stored tissue showed loss of oxygen consumption. Aerobic storage had no effect for 6hr. 4. There was a marked fall in the capacity to consume oxygen after 0·5hr. at 38° without oxygen. 5. Kidney slices stored at 4° lost nitrogen. The presence of oxygen did not affect this nitrogen loss. PMID:6030298
Kurosawa, Hiroki; Utsunomiya, Hiroki; Shiga, Naomi; Takahashi, Aiko; Ihara, Motomasa; Ishibashi, Masumi; Nishimoto, Mitsuo; Watanabe, Zen; Abe, Hiroyuki; Kumagai, Jin; Terada, Yukihiro; Igarashi, Hideki; Takahashi, Toshifumi; Fukui, Atsushi; Suganuma, Ryota; Tachibana, Masahito; Yaegashi, Nobuo
2016-10-01
Does a new system-the chip-sensing embryo respiration monitoring system (CERMs)-enable evaluation of embryo viability for potential application in a clinical IVF setting? The system enabled the oxygen consumption rate of spheroids, bovine embryos and frozen-thawed human embryos to be measured, and this rate corresponded to the developmental potential of embryos. To date, no reliable and clinically suitable objective evaluation methods for embryos are available, which circumvent the differences in inter-observer subjective view. Existing systems such as the scanning electrochemical microscopy (SECM) technique, which enables the measurement of oxygen consumption rate in embryos, need improvement in usability before they can be applied to a clinical setting. This is a prospective original research study. The feasibility of measuring the oxygen consumption rate was assessed using CERMs for 9 spheroids, 9 bovine embryos and 30 redundant frozen-thawed human embryos. The endpoints for the study were whether CERMs could detect a dissolved oxygen gradient with high sensitivity, had comparable accuracy to the SECM measuring system with improved usability, and could predict the development of an embryo to a blastocyst by measuring the oxygen consumption rate. The relationship between the oxygen consumption rate and standard morphological evaluation was also examined. We developed a new CERMs, which enables the oxygen consumption rate to be measured automatically using an electrochemical method. The device was initially used for measuring a dissolved oxygen concentration gradient in order to calculate oxygen consumption rate using nine spheroids. Next, we evaluated data correlation between the CERMs and the SECM measuring systems using nine bovine embryos. Finally, the oxygen consumption rates of 30 human embryos, which were frozen-thawed on 2nd day after fertilization, were measured by CERMs at 6, 24, 48, 72 and 96 h after thawing with standard morphological evaluation. Furthermore, the developed blastocysts were scored using the blastocyst quality score (BQS), and the correlation with oxygen consumption rate was also assessed. The device enabled the oxygen consumption rate of an embryo to be measured automatically within a minute. The oxygen concentration gradient profile showed excellent linearity in a distance-dependent change. A close correlation in the oxygen consumption rates of bovine embryos was observed between the SECM measuring system and CERMs, with a determination coefficient of 0.8203 (P = 0.0008). Oxygen consumption rates of human embryos that have reached the blastocyst stage were significantly higher than those of arrested embryos at 48, 72 and 96 h after thawing (P = 0.039, 0.004 and 0.049, respectively). Thus, in vitro development of frozen-thawed human embryos to the blastocyst stage would be predicted at 48 h after thawing (day 4) by measuring the oxygen consumption using CERMs. Although a positive linear relationship between BQS and the oxygen consumption rate was observed [the determination coefficient was R(2) = 0.6537 (P = 0.008)], two blastocysts exhibited low oxygen consumption rates considering their relatively high BQS. This suggests that morphology and metabolism in human embryos might not correlate consistently. Transfer of the embryo and pregnancy evaluation was not performed. Thus, a correlation between oxygen consumption and the in vivo viability of embryos remains unknown. Clinical trials, including embryo transfer, would be desirable to determine a threshold value to elect clinically relevant, quality embryos for transfer. We utilized frozen-thawed human embryos in this study. The effect of these manipulations on the respiratory activity of the embryo is also unknown. Selection of quality embryos, especially in a single embryo transfer cycle, by CERMs may have an impact on obtaining better clinical outcomes, albeit with clinical trials being required. Furthermore, the early determination of quality embryos by CERMs may enable the omission of long-term in vitro embryo culture to the blastocyst stage. CERMs is scalable technology that can be integrated into incubators and/or other embryo evaluation systems, such as the time-lapse systems, due to its chip-based architecture. Thus, CERMS would enable automatic measurement of oxygen consumption, under 5% CO2, in the near future, in order to reduce oxidative stress from exposure to atmospheric air. This study was supported by grants from the Health and Labor Sciences Research Grant (H24-Hisaichiiki-Shitei-016). The authors have no conflicts of interest. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Drivers of summer oxygen depletion in the central North Sea
NASA Astrophysics Data System (ADS)
Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.
2016-02-01
In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≍ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm-3 day-1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.
Effects of electrical muscle stimulation on oxygen consumption.
Hayter, Tina L; Coombes, Jeff S; Knez, Wade L; Brancato, Tania L
2005-02-01
Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.
Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard
2003-03-01
To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.
2015-07-01
excess deficit, likely related to a flow dependent reduction in systemic oxygen consumption (VO2), but this effect was transient attain- ing values... oxygen delivery index; VO2, systemic oxygen consumption index; Hct, hematocrit, PaCO2, arterial PCO2; PETCO2, end-tidal PCO2. Table S1: Effect of...response that enabled maintaining oxygen consumption close to baseline resulting in minimal lactate increases and high resuscitability and survival without
Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba
2017-01-01
Introduction Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. Methods This study was a descriptive – analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Results Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). Conclusion The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks. PMID:28461880
Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba
2017-03-01
Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. This study was a descriptive - analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks.
Microvascular oxygen consumption during sickle cell pain crisis.
Rowley, Carol A; Ikeda, Allison K; Seidel, Miles; Anaebere, Tiffany C; Antalek, Matthew D; Seamon, Catherine; Conrey, Anna K; Mendelsohn, Laurel; Nichols, James; Gorbach, Alexander M; Kato, Gregory J; Ackerman, Hans
2014-05-15
Sickle cell disease is an inherited blood disorder characterized by chronic hemolytic anemia and episodic vaso-occlusive pain crises. Vaso-occlusion occurs when deoxygenated hemoglobin S polymerizes and erythrocytes sickle and adhere in the microvasculature, a process dependent on the concentration of hemoglobin S and the rate of deoxygenation, among other factors. We measured oxygen consumption in the thenar eminence during brachial artery occlusion in sickle cell patients and healthy individuals. Microvascular oxygen consumption was greater in sickle cell patients than in healthy individuals (median [interquartile range]; sickle cell: 0.91 [0.75-1.07] vs healthy: 0.75 [0.62-0.94] -ΔHbO2/min, P < .05) and was elevated further during acute pain crisis (crisis: 1.10 [0.78-1.30] vs recovered: 0.88 [0.76-1.03] -ΔHbO2/min, P < .05). Increased microvascular oxygen consumption during pain crisis could affect the local oxygen saturation of hemoglobin when oxygen delivery is limiting. Identifying the mechanisms of elevated oxygen consumption during pain crisis might lead to the development of new therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT01568710.
USDA-ARS?s Scientific Manuscript database
The contribution of initial and retained levels of oxygen consumption and reducing capacity to animal variation in color stability were evaluated. Instrumental color values were determined on longissimus thoracis steaks (n=257) during 6 d of display. Oxygen consumption (OC), nitric oxide metmyoglo...
Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio
2016-04-01
Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.
Effect of Training Status on Oxygen Consumption in Women After Resistance Exercise.
Benton, Melissa J; Waggener, Green T; Swan, Pamela D
2016-03-01
This study compared acute postexercise oxygen consumption in 11 trained women (age, 46.5 ± 1.6 years; body mass index [BMI], 28.4 ± 1.7 kg·m(-2) and 11 untrained women (age, 46.5 ± 1.5 years; BMI, 27.5 ± 1.5 kg·m(-2)) after resistance exercise (RE). Resistance exercise consisted of 3 sets of 8 exercises (8-12 repetitions at 50-80% 1 repetition maximum). Oxygen consumption (VO2 ml·min(-1)) was measured before and after (0, 20, 40, 60, 90, and 120 minutes) RE. Immediately after cessation of RE (time 0), oxygen consumption increased in both trained and untrained women and remained significantly above baseline through 60 minutes after exercise (p < 0.01). Total oxygen consumption during recovery was 31.3 L in trained women and 27.4 L in untrained women (p = 0.07). In trained women, total oxygen consumption was strongly related to absolute (kg) lean mass (r = 0.88; p < 0.001), relative (kilogram per square meter) lean mass (r = 0.91; p < 0.001), and duration of exercise (r = 0.68; p ≤ 0.05), but in untrained women, only training volume-load was related to total oxygen consumption (r = 0.67; p ≤ 0.05). In trained women, 86% of the variance in oxygen consumption was explained by lean mass and exercise duration, whereas volume-load explained 45% in untrained women. Our findings suggest that, in women, resistance training increases metabolic activity of lean tissue. Postexercise energy costs of RE are determined by the duration of stimulation provided by RE rather than absolute work (volume-load) performed. This phenomenon may be related to type II muscle fibers and increased protein synthesis.
Li, Dongxing; Redding, Gabe P; Bronlund, John E
2013-01-01
The rate of oxygen consumption by granulosa cells is a key parameter in mathematical models that describe oxygen transport across ovarian follicles. This work measured the oxygen consumption rate of bovine granulosa cells in vitro to be in the range 2.1-3.3×10⁻¹⁶ mol cell⁻¹ s⁻¹ (0.16-0.25 mol m⁻³ s⁻¹). The implications of the rates for oxygen transport in large bovine preantral follicles were examined using a mathematical model. The results indicate that oocyte oxygenation becomes increasingly constrained as preantral follicles grow, reaching hypoxic levels near the point of antrum formation. Beyond a preantral follicle radius of 134 µm, oxygen cannot reach the oocyte surface at typical values of model parameters. Since reported sizes of large bovine preantral follicles range from 58 to 145 µm in radius, this suggests that oocyte oxygenation is possible in all but the largest preantral follicles, which are on the verge of antrum formation. In preantral bovine follicles, the oxygen consumption rate of granulosa cells and fluid voidage will be the key determinants of oxygen levels across the follicle.
Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L
2004-10-01
Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.
An automatic, closed-circuit oxygen consumption apparatus for small animals.
Stock, M J
1975-11-01
An apparatus suitable for the continuous measurement of oxygen consumption of rats and mice is described. The system uses a motorized syringe dispenser to deliver fixed volumes of oxygen to a closed animal chamber. The dispenser is controlled by a micro-differential pressure switch to maintain chamber pressure slightly above ambient. The rate of oxygen consumption is determined by timing the interval between successive operations of the dispenser. The system has proved suitable for a range of experimental conditions and treatments.
2015-08-01
energy depletion. The latter is accompanied by an increased metabolic rate (including in- creased energy expenditure and oxygen consumption ) (14, 18... consumption in response to maximal oxygen availability predicts postinjury multiple organ failure. J Trauma 33: 58–65; discussion 65–67, 1992. 36... oxygen consumption in response to maximal oxygen availability predicts post- injury multiple organ failure. J Trauma. 1992;33(1):58Y65. 16. Minei JP
2015-08-01
energy depletion. The latter is accompanied by an increased metabolic rate (including in- creased energy expenditure and oxygen consumption ) (14, 18... consumption in response to maximal oxygen availability predicts postinjury multiple organ failure. J Trauma 33: 58–65; discussion 65–67, 1992. 36... oxygen consumption in response to maximal oxygen availability predicts post- injury multiple organ failure. J Trauma. 1992;33(1):58Y65. 16. Minei JP
[Effect of antihypoxants on the consumption of oxygen in animals with traumatic brain injury].
Novikov, V E; Ponamareva, N S; Kokhonov, K V
2008-01-01
The effect of drugs on the dynamics of oxygen consumption in experimental animals with traumatic brain injury (TBI) has been measured. It is established that the antihypoxants bemithyl, amtizole, trymeen, and ethomersol in a dose of 25 mg/kg decrease the consumption of oxygen and reduced oxygen demands of tissues in the acute posttraumatic period. These phenomena can play a significant role in the mechanism of the protective action of drugs under conditions of TBI.
Kuo, J; Shi, C; Cisewski, S; Zhang, L; Kern, M J; Yao, H
2011-07-01
To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kuo, Jonathan; Shi, Changcheng; Cisewski, Sarah; Zhang, Lixia; Kern, Michael J.; Yao, Hai
2011-01-01
Objective To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. Design TMJ discs from pigs aged 6–8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve fitting of the recoded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. Results The overall cell density (mean, 95% CI) was 51.3(21.3–81.3)×106cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (p<0.02) and 29.1% higher than the posterior band (p<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (p<0.04) and 25.4% higher than the lateral region (p<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44(0.44–2.44) μmol/mL wet tissue/hr and 28.7(12.2–45.2) nmol/106 cells/hr, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (p<0.02) and cell based (p<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. Conclusions The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. PMID:21397032
van Beek, J H; Westerhof, N
1990-01-01
We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.
Tsuge, Yota; Uematsu, Kimio; Yamamoto, Shogo; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-07-01
Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.
Green, Bridget S
2004-05-01
Variation in size at hatching is common in demersal spawning organisms, suggesting that processes during embryonic development may be critical in determining growth and development. To examine critical periods during embryonic development in the demersal spawning reef fish Amphiprion melanopus, the rate of oxygen consumption within an egg clutch was compared to morphological changes in the embryos. Oxygen consumption was least on day 1 of development where organ differentiation had not begun (mean 1.73+/-0.34x10(-5) micromol O(2) egg(-1) s(-1)). Tail movement throughout the perivitelline fluid began on day 3 and is likely to assist in moving oxygen around the embryo, complementing diffusive transport. The appearance of haemoglobin in the blood corresponded to a peak in oxygen consumption on day 4, where the highest mean rate of oxygen consumption was recorded (6.73+/-0.82x10(-5) micromol O(2) egg(-1) s(-1)). This could be a critical period in development whereby risk of mortality is increased through increased embryo requirements at developmental thresholds.
Production and Consumption of Reactive Oxygen Species by Fullerenes
Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...
Evaluation of Stroma-Free Hemoglobin Solutions as Resuscitative Fluids for the Injured Soldier
1988-11-01
consultation with members of UCSD. The evaluations utilized measurements of blood gases , oxygen contents, blood lactate, cardiac and peripheral pressures...there were additional marked differences in oxygen consumption, total oxygen transport , and aortic pressure. Lactate production and left arterial...unlike the albumin animals these SFHS animals showed no changes in oxygen consumption, oxygen transport , lactate production, heart rate, dF/dt, or
Oxygen consumption of animals under conditions of hypokinesia
NASA Technical Reports Server (NTRS)
Loginova, Y. N.; Volozhin, A. I.; Krasnyku, I. G.; Stroganova, Y. A.
1980-01-01
The influence of hypokinesia on the oxygen consumption of rats, dog, and squirrels was investigated. Three periods of gaseous exchange were revealed in rats under conditions of a limited motor activity. During the first 10-15 days O2 consumption displayed a sharp elevation; on the 20th-30th day, it became stabilized at a higher level (in comparison with control) and it sharply rose again on the 40th-100th day. In dogs, hypokinesia produced a reduction of O2 consumption and then a tendency to its elevation was seen. A short period of physical exercises in squirrels after hypokinesia led to increased oxygen consumption at rest.
Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli
2014-01-01
Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.
Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.
Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J
2016-09-01
This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.
Hentz, F; Kozloski, G V; Zeni, D; Brun, M V; Stefanello, S
2017-02-01
Four Polwarth castrated male sheep (42 ± 4.4 kg live weight (LW) surgically implanted with chronic indwelling catheters into the mesenteric, portal and hepatic veins, housed in metabolism cages and offered Cynodon sp. hay at rates (g of dry matter (DM)/kg LW) of 7, 14, 21 or ad libitum, were used in a 4 × 4 Latin square experiment to evaluate the effect of the level of forage intake on blood flow and oxygen consumption by the portal-drained viscera (PDV), liver and total splanchnic tissues (ST). The portal blood flow and the oxygen consumption by PDV linearly increased at increased organic matter (OM) intake. No effect of level of OM intake was obtained for the hepatic artery blood flow and oxygen consumption by liver. As a consequence, the level of OM intake only tended to directly affect hepatic blood flow and oxygen consumption by total ST. Oxygen consumption was linearly and positively related to blood flow across PDV, liver and total ST. The heat production by PDV and total ST, as proportion of metabolizable energy (ME) intake, decreased curvilinearly at increased ME intake. In conclusion, the oxygen consumption by PDV, but not by liver, was directly related to the level of forage intake by sheep. Moreover, when ingested at levels below maintenance, most of ME was spent as heat produced by ST. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Booth, David T
2009-01-01
Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.
Russell, W J; James, M F
2000-12-01
Theoretically, if the cardiac output were increased in the presence of a given intrapulmonary shunt, the arterial haemoglobin oxygen saturation (SaO2) should improve as the venous oxygen extraction per ml of blood decreases. To test this hypothesis, eight pigs were subjected to one-lung ventilation and adrenaline and isoprenaline infusions used to increase the cardiac output. The mixed venous oxygen, shunt fraction and oxygen consumption were measured. With both adrenaline and isoprenaline, although there was a small rise in mixed venous oxygen content, there was a fall in SaO2. With adrenaline, the mean shunt rose from 48% to 65%, the mean oxygen consumption rose from 126 ml/min to 134 ml/min and the mean SaO2 fell from 86.9% to 82.5%. With isoprenaline, the mean shunt rose from 45% to 59%, the mean oxygen consumption rose from 121 ml/min to 137 ml/min and the mean SaO2 fell from 89.5% to 84.7%. It is concluded that potential improvement in SaO2, which might occur from a catecholamine-induced increase in mixed venous oxygen content during one-lung ventilation, is more than offset by increased shunting and oxygen consumption which reduce SaO2.
Zhao, Huifang; Li, Jing; Zhang, Xuejin
2018-06-01
In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
2016-10-01
Krebs cycle through the generation of alpha-ketoglutarate. However, increased oxidative stress affected oxygen consumption rates at the Complex I...machinery and respiration in PH-Fibs. The difference in endogenous respiration, (i.e., oxygen consumption ) was not statistically different compared...driven through complex I. We found a roughly17% drop in oxygen consumption in PH-Fibs versus Co-Fibs (Figure 3C), which corresponded to the down
Bergstra, A; van Dijk, R B; Hillege, H L; Lie, K I; Mook, G A
1995-05-01
This study was performed because of observed differences between dye dilution cardiac output and the Fick cardiac output, calculated from estimated oxygen consumption according to LaFarge and Miettinen, and to find a better formula for assumed oxygen consumption. In 250 patients who underwent left and right heart catheterization, the oxygen consumption VO2 (ml.min-1) was calculated using Fick's principle. Either pulmonary or systemic flow, as measured by dye dilution, was used in combination with the concordant arteriovenous oxygen concentration difference. In 130 patients, who matched the age of the LaFarge and Miettinen population, the obtained values of oxygen consumption VO2(dd) were compared with the estimated oxygen consumption values VO2(lfm), found using the LaFarge and Miettinen formulae. The VO2(lfm) was significantly lower than VO2(dd); -21.8 +/- 29.3 ml.min-1 (mean +/- SD), P < 0.001, 95% confidence interval (95% CI) -26.9 to -16.7, limits of agreement (LA) -80.4 to 36.9. A new regression formula for the assumed oxygen consumption VO2(ass) was derived in 250 patients by stepwise multiple regression analysis. The VO2(dd) was used as a dependent variable, and body surface area BSA (m2). Sex (0 for female, 1 for male), Age (years), Heart rate (min-1) and the presence of a left to right shunt as independent variables. The best fitting formula is expressed as: VO2(ass) = (157.3 x BSA + 10.0 x Sex - 10.5 x In Age + 4.8) ml.min-1, where ln Age = the natural logarithm of the age. This formula was validated prospectively in 60 patients. A non-significant difference between VO2(ass) and VO2(dd) was found; mean 2.0 +/- 23.4 ml.min-1, P = 0.771, 95% Cl = -4.0 to +8.0, LA -44.7 to +48.7. In conclusion, assumed oxygen consumption values, using our new formula, are in better agreement with the actual values than those found according to LaFarge and Miettinen's formulae.
NASA Astrophysics Data System (ADS)
Verdaguer-Codina, Joan
1996-12-01
This study has been focused to find the importance of the consumption of oxygen for a muscle that works supporting the weight of the human body. The oxygen uptake at rest level is a data know, but by near-IR spectroscopy can be assessed the oxygen uptake used for a muscle. The energy required by the human body is partially used to produce the energy that help to move the human structure. The oxygen required by the muscles to produce the energy to support the human body has been defined as weight oxygen consumption. The purpose of this study was to assess by near-IR spectroscopy the amount of relative oxygenation/deoxygenation that a muscle requires at rest level and a middle-term rest level.
Roper, Jaimie A; Stegemöller, Elizabeth L; Tillman, Mark D; Hass, Chris J
2013-03-01
During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.
Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M
2017-11-01
This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Q c,max , whith differents oxygen tensions (high and low p c ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Q c,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10 -4 cm 3 of O 2 /cm 3 tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2269-2281, 2017. © 2016 Wiley Periodicals, Inc.
Beanlands, R S; Bach, D S; Raylman, R; Armstrong, W F; Wilson, V; Montieth, M; Moore, C K; Bates, E; Schwaiger, M
1993-11-01
The aim of this study was to use positron emission tomography (PET)-derived carbon (C)-11 acetate kinetics to determine the effects of dobutamine on oxidative metabolism and its effects on myocardial efficiency in a group of patients with dilated cardiomyopathy. Dobutamine is known to improve myocardial function but may do so at the expense of myocardial oxygen consumption, which could be a potential deleterious effect. Carbon-11 acetate kinetics correlate with myocardial oxygen consumption as shown in animal models. Combining these scintigraphic measurements of oxygen consumption with estimates of cardiac work results in a work-metabolic index, which reflects cardiac efficiency. Eight patients with nonischemic dilated cardiomyopathy underwent dynamic PET imaging, echocardiography and hemodynamic measurements. Seven of these patients were also studied while receiving dobutamine. Direct measurements of myocardial oxygen consumption using coronary sinus catheterization were obtained with eight of the PET studies to validate C-11 acetate in patients with cardiomyopathy. The mean (+/- SD) C-11 clearance rate significantly increased with dobutamine from 0.105 +/- 0.027 to 0.155 +/- 0.023 min-1 (p = 0.001). Directly measured myocardial oxygen consumption had a linear relation to the mean C-11 clearance rate (r = 0.8, p = 0.018). Dobutamine was noted to significantly reduce systemic vascular resistance as well as the severity of mitral regurgitation. The work-metabolic index determined using hemodynamic variables and PET data increased from 2 +/- 0.7 x 10(4) to 2.6 +/- 0.6 x 10(4) (p = 0.04). Efficiency, estimated by employing the oxygen consumption to k2 relation, also increased from 13 +/- 4.5% to 16.9 +/- 6.4% (p = 0.04). Despite an increase in myocardial oxygen consumption, dobutamine led to an increase in work-metabolic index in patients with dilated nonischemic cardiomyopathy. Dobutamine reduced systemic vascular resistance and mitral regurgitation, suggesting that in this group of patients, it had important vasodilatory action in addition to its inotropic effects. The use of the C-11 acetate PET for determining myocardial oxygen consumption and estimating efficiency could potentially complement existing clinical measures of ventricular performance and may allow improved and objective evaluation of therapy in patients with heart failure.
VO2sim 0.1: Using Simulation to Understand Measurement Error in Indirect Calorimetry
2015-08-01
illness. The Army has recognized the importance of understanding oxygen consumption in the field and is developing models to aid in operational decision...acclimatize to high altitude (Amann et al. 2013) and hypoxia (Self et al. 2013). The Army has recognized the importance of understanding oxygen consumption ...minimum detectable change using the K4b2: oxygen consumption , gait efficiency, and heart rate for healthy adults during submaximal walking. Res Q Exerc
Fuels and Combustion Technologies for Aerospace Propulsion
2016-09-01
20 °C) has a large effect on the extent of oxygen consumption . Increasing the JFTOT set point temperature normally results in increases in deposition...kinetics. Thus, the effect of the extent of oxygen consumption and temperature on deposition rates needs further study under JFTOT conditions to better...by 60 to 85 °C. Several fuels were tested at varying set point temperatures with complete oxygen consumption observed for all fuels by 320 °C; a wide
Circadian rhythm of energy expenditure and oxygen consumption.
Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz
2014-02-01
This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.
Schoknecht, Karl; Berndt, Nikolaus; Rösner, Jörg; Heinemann, Uwe; Dreier, Jens P; Kovács, Richard; Friedman, Alon; Liotta, Agustin
2017-09-07
Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABA A antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH₂ ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.
Das, Suchismita; Gupta, Abhik
2012-11-01
Effects of three sub lethal concentrations of cadmium chloride (0.636, 0.063 and 0.006 mg l(-1)) on oxygen consumption and gill morphology in Indian flying barb, Esomus danricus (Hamilton-Buchanan), a teleost fish, were studied. When compared to control, 0.636 mg l(-1) of cadmium chloride after 7,14, 21 and 28 day exposure showed a significant decline in rates of oxygen consumption at 32.98, 28.40, 23.88 and 21.69 ml hr(1) 100 g(-1) of tissue, respectively; while, 0.063 mg l(-1) of cadmium chloride for the same exposure durations showed a significant decline in rates of oxygen consumption at 34.28, 29.30, 28.05 and 26.47 ml hr(1)100 g(-1) of tissue, respectively. However, significant decline in the rate of oxygen consumption at 0.006 mg l(-1) of cadmium chloride could be observed from 21st day of exposure. Gill tissue showed various histopathological changes including epithelial lifting, hyperplasia, mucous secretion, marked leucocyte infiltration in the epithelium after 28 days of cadmium chloride exposure.
EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...
NASA Technical Reports Server (NTRS)
Muller, Matthew S.; Bauer, Clarence F.
1994-01-01
Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.
Oxygen consumption of human heart cells in monolayer culture.
Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya
2014-09-26
Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart. Copyright © 2014 Elsevier Inc. All rights reserved.
Colom, Adai; Galgoczy, Roland; Almendros, Isaac; Xaubet, Antonio; Farré, Ramon; Alcaraz, Jordi
2014-08-01
Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies. © 2013 Wiley Periodicals, Inc.
Hystad, M E; Rofstad, E K
1994-05-15
Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor types.
Role of Acidophilic Methanotrophs in Long Term Natural Attenuation of cVOCs in Low pH Aquifers
2017-06-15
well was < 0.2 mg/L, although the ORP was slightly oxidizing at +131 mV. The pH was ~4.4 in the microcosms (data not shown). Oxygen consumption was...significant losses of methane were observed in the live or killed samples over 5 weeks, despite the continuing oxygen consumption (Figure 15). Based on...15% (Figure 22). There was significant oxygen consumption in all samples over the first day of incubation, with headspace concentrations dropping to
Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney
Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can
2008-01-01
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066
Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons.
Hansen, Andrew H; Wang, Charles C
2011-04-07
We studied oxygen consumption rate of eleven young able-bodied persons walking at self-selected speed with five different pairs of shoes: one regular pair without rocker soles (REG) and four pairs with uniform hardness (35-40 shore A durometer) rocker soles of different radii (25% of leg length (LL) (R25), 40% LL (R40), 55% LL (R55), and infinite radius (FLAT)). Rocker soled shoes in the study were developed to provide similar vertical lift (three inches higher than the REG shoes condition). Oxygen consumption rate was significantly affected by the use of the different shoes (p<0.001) and pairwise comparisons indicated that persons consumed significantly less oxygen (per minute per kilogram of body mass) when walking on the R40 shoes when compared with both the FLAT (p<0.001) and REG (p=0.021) shoe conditions. Oxygen consumption was also significantly less for the R25 shoes compared with the FLAT shoes (p=0.005) and for the R55 shoes compared with FLAT shoes (p=0.027). The three-inch lift on the FLAT shoe did not cause a significant change in oxygen consumption compared to the shoe without the lift (REG). Published by Elsevier Ltd.
Kieffer, J D; Wakefield, A M
2009-02-01
Experiments were designed to examine the effects of various temperature challenges on oxygen consumption and ammonia excretion rates and protein utilization in juvenile Atlantic salmon Salmo salar. Fish acclimated to 15 degrees C were acutely and abruptly exposed to either 20 or 25 degrees C for a period of 3 h. To simulate a more environmentally relevant temperature challenge, a third group of fish was exposed to a gradual increase in temperature from 15 to 20 degrees C over a period of 3 h (c. 1.7 degrees C h(-1)). Oxygen consumption and ammonia excretion rates were monitored before, during and after the temperature shift. From the ammonia excretion and oxygen consumption rates, protein utilization rates were calculated. Acute temperature changes (15-20 degrees C or 15-25 degrees C) caused large and immediate increases in the oxygen consumption rates. When the temperature was gradually changed (i.e. 1.7 degrees C h(-1)), however, the rates of oxygen consumption and ammonia excretion were only marginally altered. When fish were exposed to warmer temperatures (i.e. 15-20 degrees C or 15-25 degrees C) protein use generally remained at pre-exposure (15 degrees C) levels. A rapid transfer back to 15 degrees C (20-15 degrees C or 25-15 degrees C) generally increased protein use in S. salar. These results indicate that both the magnitude and the rate of temperature change are important in describing the physiological response in juvenile salmonids.
Crouch severity is a poor predictor of elevated oxygen consumption in cerebral palsy.
Steele, Katherine M; Shuman, Benjamin R; Schwartz, Michael H
2017-07-26
Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18±0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5-20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r 2 =0.13-0.73), these variables were only weakly correlated with oxygen consumption (r 2 =0.02-0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual's energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting
2018-02-01
Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.
Computational Model for Oxygen Transport and Consumption in Human Vitreous
Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.
2013-01-01
Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409
Computational model for oxygen transport and consumption in human vitreous.
Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C
2013-10-15
Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.
Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi
2017-05-01
The increased use of silver nanoparticles (AgNPs) will inevitably result in the release of these particles into aquatic environments, with sediments as a substantial sink. However, we do not know whether AgNPs present potential impacts in sediment functioning. In this study, a microcosm approach was constructed, and the potential impacts of AgNPs and PVP-coated AgNPs on oxygen consumption in freshwater sediments (collected from Taihu Lake) were determined using oxygen microelectrodes. To our knowledge, this is the first time that microelectrodes have been used to estimate the impacts of AgNPs in sediments. The steady-state oxygen microprofiles showed that environmental relevant concentration (1 mg/L nano-Ag) did not lead to an apparent change in the oxygen consumption rates of benthic microbial communities in sediment. The addition of 10 mg/L uncoated AgNPs resulted in remarkable differences in the oxygen concentration profiles within 4-5 h and significantly inhibited the oxygen consumption of benthic microbial communities in the upper sediment layer (∼1 mm) after 100 h. Simultaneously, an increase of oxygen consumption in sediment lower zones was observed. These results may suggest that aerobic microorganisms in the upper layer of the sediment reduced metabolic activity to avoid the toxic stress from AgNPs. Concomitantly, facultative aerobes below the metabolically active upper layer switched from fermentation or anaerobic respiration to aerobic respiration as oxygen bioavailability increased in the lower zones of the sediment. In addition, PVP coating reduced the nanotoxicity of AgNPs in benthic microorganisms due to the decreased dissolution of AgNPs in the filtered overlying water, a phenomenon that merits further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ikeo, T; Nagao, T
1985-10-01
We compared the effects of denopamine (TA-064) and isoproterenol on hemodynamics, myocardial oxygen consumption and the left ventricular (LV) dimension in halothane-N2O anesthetized dogs. Denopamine (0.25-1 micrograms/kg/min, i.v., infusion X 15 min) produced a maximum increase in LV dp/dtmax by 64% of the control, without affecting aortic pressure significantly. Doses of isoproterenol (0.01-0.04 micrograms/kg/min, i.v., infusion X 15 min) were selected to produce a positive inotropic action similar to that of denopamine. Denopamine produced significantly less increasing effects in heart rate, cardiac output and myocardial oxygen consumption and had more reducing effects in LV internal diameter than isoproterenol, while isoproterenol tended to produce a more potent increase in coronary blood flow, but a smaller decrease in LV end-diastolic pressure than denopamine. PQ interval was similarly reduced. Denopamine caused no substantial increase in myocardial oxygen consumption at a lower dose, at which LV dp/dtmax was significantly increased. A weak effect of denopamine on myocardial oxygen consumption may result partly from a weak positive chronotropic effect and partly from a reduction of preload and cardiac size.
Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.
1991-01-01
1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210
NASA Technical Reports Server (NTRS)
Glezer, G. A.; Charyyev, M.; Zilbert, N. L.
1980-01-01
Age effect on gas exchange was studied in the recumbent and orthostatic positions and under physical load. In the case of the older age group and for normal as compared with hypersthenic persons, oxygen consumption during rest and during moderate physical overload diminishes. When the vertical position is assumed oxygen consumption in persons of various age groups is distinctly increased, particularly in the elderly group. There is a reduction in the amount of oxygen consumption, oxygen pulse, recovery coefficient, and work efficiency under moderate overload. In persons over 50, physical labor induces a large oxygen requirement and a sharp rise in the level of lactic acid and the blood's lactate/pyruvate ratio. No distinct difference was noted in the amount of oxygen consumed during rest and during physical overload in men and women of the same physical development and age.
A novel approach to the assess biotic oxygen consumption in marine sediment communities
NASA Astrophysics Data System (ADS)
Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg
2016-04-01
Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer reduction was about 30% higher in bioturbated sediment than in defaunated controls, and the correlation between tracer reduction and oxygen consumption was high (r=0.92). This study allowed us to calculate the actual amount of oxygen consumed by organisms in the tanks excluding inorganic oxygen consumption, and access the effects of bioturbation on respiration of the marine muds. We believe that this tracer system can be successfully used for respiration assessment in the marine environment and to improve the assessment of respiration in burrowing infauna.
Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick
2012-01-01
The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103
Weiss, Harvey R; Grayson, Jeremy; Liu, Xia; Barsoum, Sylviana; Shah, Harsh; Chi, Oak Z
2013-09-01
After cerebral vessel blockage, local blood flow and O2 consumption becomes lower and oxygen extraction increases. With reperfusion, blood flow is partially restored. We examined the effects of ischemia-reperfusion on the heterogeneity of local venous oxygen saturation in rats in order to determine the pattern of microregional O2 supply/consumption balance in reperfusion. The middle cerebral artery was blocked for 1 hour using the internal carotid approach in 1 group (n=9) and was then reperfused for 2 hours in another group (n=9) of isoflurane-anesthetized rats. Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small vessel arterial and venous oxygen saturations were determined microspectrophotometrically. After 1 hour of ischemia, local cerebral blood flow (92±10 versus 50±10 mL/min per 100 g) and O2 consumption (4.5±0.6 versus 2.7±0.5 mL O2/min per 100 g) decreased compared with the contralateral cortex. Oxygen extraction increased (4.7±0.2 versus 5.4±0.3 mL O2/100 mL) and the variation in small vein (20-60 μm) O2 saturation as determined by its coefficient of variation (=100×SD/mean) increased (5.5 versus 10.5). With 2 hours of reperfusion, the blood flow decrement was reduced and O2 consumption returned to the value in the contralateral cortex. Oxygen extraction remained elevated in the ischemic-reperfused area and the coefficient of variation of small vein O2 saturation increased further (17.3). These data indicated continued reduction of O2 supply/consumption balance with reperfusion. They also demonstrated many small regions of low oxygenation within the reperfused cortical region.
Bakkehaug, Jens Petter; Kildal, Anders Benjamin; Engstad, Erik Torgersen; Boardman, Neoma; Næsheim, Torvind; Rønning, Leif; Aasum, Ellen; Larsen, Terje Steinar; Myrmel, Truls; How, Ole-Jakob
2015-07-01
Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure-volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase. © 2015 American Heart Association, Inc.
Metabolically Derived Human Ventilation Rates: A Revised ...
EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as a resources for exposure assessors for calculating inhalation and other exposures. In this report, EPA presents a revised approach in which ventilation rate is calculated directly from an individual's oxygen consumption rate.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Sandler, H.
1974-01-01
An analytical method is presented for determining the oxygen consumption rate of the intact heart working (as opposed to empty but beating) human left ventricle. Use is made of experimental recordings obtained for the chamber pressure and the associated dimensions of the LV. LV dimensions are determined by cineangiocardiography, and the chamber pressure is obtained by means of fluid-filled catheters during retrograde or transeptal catheterization. An analytical method incorporating these data is then employed for the evaluation of the LV coronary oxygen consumption in five subjects. Oxygen consumption for these subjects was also obtained by the conventional clinical method in order to evaluate the reliability of the proposed method.
NASA Technical Reports Server (NTRS)
Buehler, K.
1986-01-01
High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.
Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats
NASA Technical Reports Server (NTRS)
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.
1991-01-01
Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.
[Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindron].
Wang, Chun-lin; Wu, Dan-hua; Dong, Tian-ye; Jiang, Xia-min
2008-11-01
The oxygen consumption rate and suffocation point of Sepiella maindroni were determined through the measurement of dissolved oxygen in control and experimental respiration chambers by Winkler's method, and the changes of S. maindroni enzyme activities under different levels of hypoxia stress were studied. The results indicated that the oxygen consumption rate of S. maindroni exhibited an obvious diurnal fluctuation of 'up-down-up-down', and positively correlated with water temperature (16 degrees C-28 degrees C) and illumination (3-500 micromol x m(-2) x s(-1)) while negatively correlated with water pH (6.25-9.25). With increasing water salinity from 18.1 to 29.8, the oxygen consumption rate had a variation of 'up-down-up', being the lowest at salinity 24. 8. Female S. maindroni had a higher oxygen consumption rate than male S. maindroni. The suffocation point of S. maindroni decreased with its increasing body mass, and that of (38.70 +/- 0.52) g in mass was (0.9427 +/- 0.0318) mg x L(-1). With the increase of hypoxia stress, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased after an initial increase, lipase activity decreased, protease activity had a variation of 'decrease-increase-decrease', and lactate dehydrogenase (LDH) activity had a trend of increasing first and decreasing then. The enzyme activities were higher under hypoxia stress than under normal conditions.
Estimating the effect of burrowing shrimp on deep-sea sediment community oxygen consumption.
Leduc, Daniel; Pilditch, Conrad A
2017-01-01
Sediment community oxygen consumption (SCOC) is a proxy for organic matter processing and thus provides a useful proxy of benthic ecosystem function. Oxygen uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution of benthic macro- and mega-infauna respiration is thought to be relatively modest. However, the main contribution of infaunal organisms to benthic respiration, particularly large burrowing organisms, is likely to be indirect and mainly driven by processes such as feeding and bioturbation that stimulate bacterial metabolism and promote the chemical oxidation of reduced solutes. Here, we estimate the direct and indirect contributions of burrowing shrimp ( Eucalastacus cf. torbeni ) to sediment community oxygen consumption based on incubations of sediment cores from 490 m depth on the continental slope of New Zealand. Results indicate that the presence of one shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d -1 , only 1% of which is estimated to be due to shrimp respiration. We estimate that the presence of ten burrowing shrimp m -2 of seabed would lead to an oxygen uptake comparable to current estimates of macro-infaunal community respiration on Chatham Rise based on allometric equations, and would increase total sediment community oxygen uptake by 14% compared to sediment without shrimp. Our findings suggest that oxygen consumption mediated by burrowing shrimp may be substantial in continental slope ecosystems.
Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente
2017-11-01
This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.
Ohnuki, K; Niwa, S; Maeda, S; Inoue, N; Yazawa, S; Fushiki, T
2001-09-01
We investigated the effect of CH-19 Sweet, a non-pungent cultivar of red pepper, on body temperature and oxygen consumption in humans. CH-19 Sweet was given to 11 healthy volunteers, and core body temperature, body surface temperature and oxygen consumption were measured. The control group ingested California-Wandar, which contained neither capsaicin nor capsiate. The core body temperature in the CH-19 Sweet group was significantly higher than that in the control group (P<0.01). The forehead temperature measured by infrared thermography in the CH-19 Sweet group was significantly higher than that in the control group. The body surface temperature was increased for about 20 min after consumption of CH-19 Sweet intake, and the neck temperature was significantly higher (P<0.001) than when the subjects consumed California-Wandar. We also measured respiratory gas by indirect calorimetry while subjects wore a face mask. A significant difference was detected in oxygen consumption between the two groups, and the value was significantly higher in the CH-19 Sweet group (P<0.03). These results suggest that CH-19 Sweet increased thermogenesis and energy consumption.
Shick, J M
1990-08-01
Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.
NASA Astrophysics Data System (ADS)
Brewer, Peter G.; Peltzer, Edward T.
2017-08-01
For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol-1, leading to a Q10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
NASA Astrophysics Data System (ADS)
Rasheed, Mohammed; Wild, Christian; Franke, Ulrich; Huettel, Markus
2004-01-01
In order to investigate benthic photosynthesis and oxygen demand in permeable carbonate sands and the impact of benthic boundary layer flow on sedimentary oxygen consumption, in situ and laboratory chamber experiments were carried out at Heron Island, Great Barrier Reef, Australia. Total photosynthesis, net primary production and respiration were estimated to be 162.9±43.4, 98.0±40.7, and 64.9±15.0 mmol C m -2 d -1, respectively. DIN and DIP fluxes for these sands reached 0.34 and 0.06 mmol m -2 d -1, respectively. Advective pore water exchange had a strong impact on oxygen consumption in the permeable sands. Consumption rates in the chamber with larger pressure gradient (20 rpm, 1.2 Pa between centre and rim) simulating a friction velocity of 0.6 cm s -1 were approximately two-fold higher than in the chambers with slow stirring (10 rpm, 0.2 Pa between centre and rim, friction velocity of 0.3 cm s -1). In the laboratory chamber experiments with stagnant water column, oxygen consumption was eight times lower than in the chamber with fast stirring. Laboratory chamber experiments with Br - tracer revealed solute exchange rates of 2.6, 2.2, 0.7 ml cm -2 d -1 at stirring rates of 20, 10, and 0 rpm, respectively. In a laboratory experiment investigating the effect of sediment permeability on oxygen and DIC fluxes, a three-fold higher permeability resulted in two- to three-fold higher oxygen consumption and DIC release rates. These experiments demonstrate the importance of boundary flow induced flushing of the upper layer of permeable carbonate sediment on oxygen uptake in the coral sands. The high filtration and oxidation rates in the sub-tropical permeable carbonate sediments and the subsequent release of nutrients and DIC reveal the importance of these sands for the recycling of matter in this oligotrophic environment.
NASA Astrophysics Data System (ADS)
Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.
2015-12-01
Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and/or abundance of key microbial populations. Together, the data provide an explanation for the seasonal decrease in methane oxidation: rates of oxygen consumption increase over the season, which decreases the amount of oxygen dissolved in porewater at the peatland surface and reduces rates of methane oxidation.
Murtazina, E P; Sidorova, Yu S; Zhuravlev, B V; Mazo, V K; Zorin, S N; Volodin, V V
2014-11-01
Experiments on rats were performed to study the process of operant feeding learning, locomotor activity, oxygen consumption, and concentrations of corticosterone, β-endorphin, and prostaglandin E in blood serum after dietary treatment with the phytoecdysteroid extract. Administration of phytoecdysteroids was followed by the improvement of learning and increase in oxygen consumption and locomotor activity. Locomotor activity and oxygen consumption in the majority of control rats and phytoecdysteroid-treated animals were shown to be interrelated with the total locomotor activity and goal-directed operant behavior, respectively. No significant differences were found in the concentration of hormones in blood serum from animals of the control and treatment groups.
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Mitochondrial Respiratory Function Induces Endogenous Hypoxia
Prior, Sara; Kim, Ara; Yoshihara, Toshitada; Tobita, Seiji; Takeuchi, Toshiyuki; Higuchi, Masahiro
2014-01-01
Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2′-benzothienyl) pyridinato-kN, kC3’] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions. PMID:24586439
Model of Anoxic-Aerobic Wastewater Treatment at Phoenix 91st Avenue Plant
1993-01-01
46 6. Storage Model; PCOD Profile 47.................... Accesion For NTS CRAMl 7. Storage Model; Oxygen Consumption Rate...69 iv 27. Compare 4 November and 17 November 1992 Data Sets; PCOD Concentrations; Storage Model .... 70 28. 4 November 1992...demand (SCOD), particulate chemical oxygen demand ( PCOD ), and the oxygen consumption rate in each stage. Mass balance equations were written for ammonia
Quantifying consumption rates of dissolved oxygen along bed forms
NASA Astrophysics Data System (ADS)
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2016-04-01
Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.
MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...
Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle
Frisard, Madlyn I.; Wu, Yaru; McMillan, Ryan P.; Voelker, Kevin A.; Wahlberg, Kristin A.; Anderson, Angela S.; Boutagy, Nabil; Resendes, Kyle; Ravussin, Eric; Hulver, Matthew W.
2014-01-01
Objective We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and isolated mitochondria. Materials/ methods Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. Results Acute LPS exposure resulted in significant reductions in cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. Conclusion LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present. PMID:25528444
Gallez, Bernard; Neveu, Marie-Aline; Danhier, Pierre; Jordan, Bénédicte F
2017-08-01
Tumor hypoxia has long been considered as a detrimental factor for the response to irradiation. In order to improve the sensitivity of tumors cells to radiation therapy, tumor hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing the oxygen consumption by tumor cells. Mathematical modelling suggested that decreasing the oxygen consumption should be more efficient than increasing oxygen delivery in order to alleviate tumor hypoxia. In this paper, we review several promising strategies targeting the mitochondrial respiration for which alleviation of tumor hypoxia and increase in sensitivity to irradiation have been demonstrated. Because the translation of these approaches into the clinical arena requires the use of pharmacodynamics biomarkers able to identify shift in oxygen consumption and tumor oxygenation, we also discuss the relative merits of imaging biomarkers (Positron Emission Tomography and Magnetic Resonance) that may be used for therapeutic guidance. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.
Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina
Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.
SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA
2014-01-01
Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a “physically active” home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system. PMID:27182399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murkin, J.M.; Farrar, J.K.; Tweed, W.A.
Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBFmore » was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.« less
Heydari, Payam; Varmazyar, Sakineh; Variani, Ali Safari; Hashemi, Fariba; Ataei, Seyed Sajad
2017-10-01
Test of maximal oxygen consumption is the gold standard for measuring cardio-pulmonary fitness. This study aimed to determine correlation of Gerkin, Queen's College, George, and Jackson methods in estimating maximal oxygen consumption, and demographic factors affecting maximal oxygen consumption. This descriptive cross-sectional study was conducted in a census of medical emergency students (n=57) in Qazvin University of Medical Sciences in 2016. The subjects firstly completed the General Health Questionnaire (PAR-Q) and demographic characteristics. Then eligible subjects were assessed using exercise tests of Gerkin treadmill, Queen's College steps and non-exercise George, and Jackson. Data analysis was carried out using independent t-test, one way analysis of variance and Pearson correlation in the SPSS software. The mean age of participants was 21.69±4.99 years. The mean of maximal oxygen consumption using Gerkin, Queen's College, George, and Jackson tests was 4.17, 3.36, 3.64, 3.63 liters per minute, respectively. Pearson statistical test showed a significant correlation among fours tests. George and Jackson tests had the greatest correlation (r=0.85, p>0.001). Results of tests of one-way analysis of variance and t-test showed a significant relationship between independent variable of weight and height in four tests, and dependent variable of maximal oxygen consumption. Also, there was a significant relationship between variable of body mass index in two tests of Gerkin and Queen's College and variable of exercise hours per week with the George and Jackson tests (p>0.001). Given the obtained correlation, these tests have the potential to replace each other as necessary, so that the non-exercise Jackson test can be used instead of the Gerkin test.
Brewer, Peter G; Peltzer, Edward T
2017-09-13
For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol -1 , leading to a Q 10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Differences in the bioenergetic potential of athletes participating in team sports.
Malacko, Julijan; Doder, Dragan; Djurdjević, Slavisa; Savić, Biljana; Doder, Radoslava
2013-07-01
In modern training technology, assessment of aerobic bioenergetic potential in athletes is commonly performed by standard laboratory procedures to determine basic or specific functional abilities for specific sport activity or discipline. The aim of study was to assess the aerobic bioenergetic potential of athletes participating in basketball, football and handball. The study included 87 athletes (29 basketball players, 29 football players, and 29 handball players) aged 21-24. Evaluation of the aerobic bioenergetic potential of athletes participating in basketball, football and handball was performed followed by both univariate (ANOVA) and multivariate (MANOVA) statistical methods to determine differences among the athletes in relative (VO2 mL/kg/min) and absolute oxygen consumption (VO2 L/min). Statistically significant differences between absolute and relative oxygen consumption were found in basketball players (Mb), football players (Mf), and handball players (Mh) (MANOVA, p = 0.00). ANOVA also revealed significant differences in relative oxygen consumption (VO2 mL/kg/min) (p = 0.00). The football players (55.32 mL/kg/min) had the highest relative oxygen consumption, followed by the handball players (51.84 mL/kg/min) and basketball players (47.00 mL/kg/min). The highest absolute oxygen consumption was recorded in the basketball players (4.47 L/min), followed by the handball players (4.40 L/min) and footballers (4.16 L/min). Statistically significant differences in the aerobic bioenergetic potential, expressed by the relative oxygen consumption were found among atletes participating in different team sports. It can be assumed that the player from the sports in which it is necessary to cross greater distance in total during the match have a greater need for aerobic capacity.
Effect of training in minimalist footwear on oxygen consumption during walking and running
Judge, LW
2015-01-01
The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar. PMID:26060339
Effect of training in minimalist footwear on oxygen consumption during walking and running.
Bellar, D; Judge, L W
2015-06-01
The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg(-1)·min(-1)) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr(-1)), light running (7.2 km·hr(-1)), and moderate running (9.6 km·hr(-1)). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, [Formula: see text]=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr(-1) (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr(-1). At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.
Anderson, Troy D; Jin-Clark, Ying; Begum, Khurshida; Starkey, Sharon R; Zhu, Kun Yan
2008-01-31
Atrazine is an extensively used triazine herbicide in agricultural and residential areas and has been routinely detected in many surface and ground waters. This study reveals various up- and down-regulated genes associated with hypoxic stress in atrazine-treated fourth-instar Chironomus tentans larvae (midges) by using restriction fragment differential display-PCR. Two down-regulated hemoglobin cDNAs were isolated from the midges. Northern blot analysis indicated CteHb-IIbeta and CteHb-III mRNA expressions decreased by 36 and 21%, respectively, in midges exposed to atrazine at 1 microg/L for 96h. Decreased hemoglobin gene expression was associated with elevated oxygen consumption in atrazine-treated midges. Midges exposed to atrazine at 1 microg/L increased their oxygen consumption by 47%, whereas midges exposed to atrazine at 1000 microg/L for 48h increased their oxygen consumption by 66%. Our study demonstrates for the first time that atrazine, at environmentally relevant concentrations, can elevate respiration, possibly eliciting counteractive measures at the transcriptional level to adapt to oxygen deficiency in an ecologically important aquatic insect. Our results further suggest that the ability to modulate both the quantity and quality of Hb serves as an adaptive response to counteract the initial onset of oxygen deficiency induced by atrazine in midges.
Daland, G A; Isaacs, R
1927-06-30
1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells.
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A
2015-07-01
The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determining the Contribution of the Energy Systems During Exercise
Artioli, Guilherme G.; Bertuzzi, Rômulo C.; Roschel, Hamilton; Mendes, Sandro H.; Lancha, Antonio H.; Franchini, Emerson
2012-01-01
One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A1 (mL . s-1) x t1 (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete’s body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study. PMID:22453254
Determining the contribution of the energy systems during exercise.
Artioli, Guilherme G; Bertuzzi, Rômulo C; Roschel, Hamilton; Mendes, Sandro H; Lancha, Antonio H; Franchini, Emerson
2012-03-20
One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A(1;) (mL . s(-1)) x t(1;) (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete's body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study.
Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity
NASA Astrophysics Data System (ADS)
Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen
1988-07-01
Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.
Ion transport and oxygen consumption in kidney cortex slices from young and old rats.
Proverbio, F; Proverbio, T; Marín, R
1985-01-01
The effects of aging on active Na+ extrusion and oxygen consumption associated with it were studied in rat kidney cortex cells. It was found that (a) the active extrusion of Na+ undergoing Na/K exchange and the active extrusion of Na+ with Cl- and water were diminished in old rats (24 months) as compared with young rats (3 months); (b) the oxygen consumption associated with each of the two active mechanisms of Na+ extrusion was also diminished in the old rats; (c) the calculated turnover rate of the Na/K pump was significantly lower for the old rats.
Uzelac, Jovana Jakovljević; Stanić, Marina; Krstić, Danijela; Čolović, Mirjana; Djurić, Dragan
2017-11-29
The objective of this study was to investigate in vitro effects of 10 µM DL-homocysteine (DL-Hcy), DL-homocysteine thiolactone-hydrochloride (DL-Hcy TLHC), and L-homocysteine thiolactone-hydrochloride (L-Hcy TLHC) on the oxygen consumption of rat heart tissue homogenate, as well as the involvement of the gasotransmitters NO, H 2 S and CO in the effects of the most toxic homocysteine compound, DL-Hcy TLHC. The possible contribution of the gasotransmitters in these effects was estimated by using the appropriate inhibitors of their synthesis (N ω -nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (DL-PAG), and zinc protoporphyrin IX (ZnPPR IX), respectively). The oxygen consumption of rat heart tissue homogenate was measured by Clark/type oxygen electrode in the absence and presence of the investigated compounds. All three homocysteine-based compounds caused a similar decrease in the oxygen consumption rate compared to control: 15.19 ± 4.01%, 12.42 ± 1.01%, and 16.43 ± 4.52% for DL-Hcy, DL-Hcy TLHC, or L-Hcy TLHC, respectively. All applied inhibitors of gasotransmitter synthesis also decreased the oxygen consumption rate of tissue homogenate related to control: 13.53 ± 1.35% for L-NAME (30 µM), 5.32 ± 1.23% for DL-PAG (10 µM), and 5.56 ± 1.39% for ZnPPR IX (10 µM). Simultaneous effect of L-NAME (30 µM) or ZnPPR IX (10 µM) with DL-Hcy TLHC (10 µM) caused a larger decrease of oxygen consumption compared to each of the substances individually. However, when DL-PAG (10 µM) was applied together with DL-Hcy TLHC (10 µM), it attenuated the effect of DL-Hcy TLHC from 12.42 ± 1.01 to 9.22 ± 1.58%. In conclusion, cardiotoxicity induced by Hcy-related compounds, which was shown in our previous research, could result from the inhibition of the oxygen consumption, and might be mediated by the certain gasotransmitters.
Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana
2018-05-15
The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ventilation and oxygen uptake during escape from a civil aircraft.
Ross, J A; Watt, S J; Henderson, G D; Vant, J H
1990-01-01
To help develop a specification for equipment providing personal respiratory protection in the event of aircraft fire a study was carried out to quantify ventilation and oxygen consumption during escape from a Trident aircraft. Data were gathered using the P.K. Morgan 'Oxylog' apparatus after its response time to rapid changes in inspired to expired oxygen concentration difference was assessed using a bench test. The 'Oxylog' had a lag time of 30-32 s and a 5-95% response typified by a half time of 20 s. The data gathered were corrected in the light of these findings. Fourteen male subjects aged 17-38 years were studied under two conditions. Four mass evacuations each involving 40 people; a total of nine subjects escaping from the front rank over eight seats being monitored. Six evacuations each involving only two people escaping from the rear of the cabin; a total of 11 subjects escaping over 14 seats being monitored. Escape was made over the seat backs, down an escape chute to a position 12 m from the base of the chute. Resting minute ventilation (mean 16.7 1 STPD) and oxygen consumption (mean 0.41 min-1 STPD) were similar before both evacuations. There were no significant differences between the two conditions either during, or up to 180 s after escape. Ventilation and oxygen consumption were greatest in the recovery period. The highest oxygen consumption seen was 2.08 l min-1 and maximum minute ventilation was 641. Mean total oxygen consumption for the escape and a 150 s recovery period was 2.41 l (s.d. 0.64, max. 3.11) for the mass evacuation and 2.97 l (s.d. 0.68, max. 4.09) for the two person evacuation. The mean total amount of gas inhaled during the same time period was 89.3 l (s.d. 25.6, max. 121.3) for the mass evacuation and 99.01 (s.d. 26.2, max. 137.3) for the other. These was no correlation between ventilation or oxygen consumption and either escape time, body weight, height or age.
De Vis, J B; Petersen, E T; Alderliesten, T; Groenendaal, F; de Vries, L S; van Bel, F; Benders, M J N L; Hendrikse, J
2014-07-15
Brain oxygen consumption reflects neuronal activity and can therefore be used to investigate brain development or neuronal injury in neonates. In this paper we present the first results of a non-invasive MRI method to evaluate whole brain oxygen consumption in neonates. For this study 51 neonates were included. The T1 and T2 of blood in the sagittal sinus were fitted using the 'T2 prepared tissue relaxation inversion recovery' pulse sequence (T2-TRIR). From the T1 and the T2 of blood, the venous oxygenation and the oxygen extraction fraction (OEF) were calculated. The cerebral metabolic rate of oxygen (CMRO2) was the resultant of the venous oxygenation and arterial spin labeling whole brain cerebral blood flow (CBF) measurements. Venous oxygenation was 59±14% (mean±sd), OEF was 40±14%, CBF was 14±5ml/100g/min and CMRO2 was 30±12μmol/100g/min. The OEF in preterms at term-equivalent age was higher than in the preterms and in the infants with hypoxic-ischemic encephalopathy (p<0.01). The OEF, CBF and CMRO2 increased (p<0.01, <0.05 and <0.01, respectively) with postnatal age. We presented an MRI technique to evaluate whole-brain oxygen consumption in neonates non-invasively. The measured values are in line with reference values found by invasive measurement techniques. Preterms and infants with HIE demonstrated significant lower oxygen extraction fraction than the preterms at term-equivalent age. This could be due to decreased neuronal activity as a reflection of brain development or as a result of tissue damage, increased cerebral blood flow due to immature or impaired autoregulation, or could be caused by differences in postnatal age. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of DO cencentration on growth of juvenile channel catfish
USDA-ARS?s Scientific Manuscript database
Dissolved oxygen (DO) concentration has a major impact on feed consumption of channel catfish when raised in ponds; as DO concentration falls below 3.0 mg/L at night, feed consumption is negatively impacted. Channel catfish fry may experience a wide range of oxygen conditions in the hatchery depend...
EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...
Short Term INT-Formazan Production as a Proxy for Marine Prokaryote Respiration
NASA Astrophysics Data System (ADS)
Cajal-Medrano, R.; Villegas-Mendoza, J.; Maske, H.
2016-02-01
Prokaryotes are poisoned by the tetrazolium electron transport probe INT on time scales of less than one hour, invalidating the interpretation of the rate of in vivo INT reduction to formazan as a proxy for oxygen consumption rates (Villegas-Mendoza et al. 2015). We measured oxygen consumption rate (R; µM O2 hour-1) and electron transport activity with in vivo INT formazan production (IFP, mM formazan) at 0.5 mM INT during 1 hour exposure time of natural communities and cultures of the marine bacteria Vibrio harveyi growing in batch and continuous cultures. A strong exponential relationship R = 0.20 IFP2.15 (p<0.05) with oxygen consumption and total formazan production was found over a wide range of growth rates under aerobic condition. We find that IFP and oxygen consumption increase with bacterial specific growth rates and temperature as expected from basic principles of physiology and biochemistry. Oxygen and nitrogen saturated batch cultures of V. harveyi showed that both, IFP and oxygen consumption increased for 0.8 hours but then stopped similar to natural bacterial communities supporting the above relationship of IFP to prokaryote respiration. Our method implies adding 0.5 mM INT to a plankton sample and incubating for less than 1 hour. After prokaryote separation by size filtration (0.8 mm), the formazan crystals are collected by filtration (0.2 mm) and dissolved in propanol. The absorbance at 485 nm per sample volume yields the formazan potential that is related to prokaryote respiration in the sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
Lopez-Pascual, Amaya; Lasa, Arrate; Portillo, María P; Arós, Fernando; Mansego, María L; González-Muniesa, Pedro; Martinez, J Alfredo
2017-01-01
Deoxyribonucleic acid (DNA) methylation is an epigenetic modification involved in gene expression regulation, usually via gene silencing, which contributes to the risks of many multifactorial diseases. The aim of the present study was to analyze the influence of resting oxygen consumption on global and gene DNA methylation as well as protein secretion of inflammatory markers in blood cells from obese subjects with sleep apnea-hypopnea syndrome (SAHS). A total of 44 obese participants with SAHS were categorized in 2 groups according to their resting oxygen consumption. DNA methylation levels were evaluated using a methylation-sensitive high resolution melting approach. The analyzed interleukin 6 (IL6) gene cytosine phosphate guanine (CpG) islands showed a hypomethylation, while serum IL-6 was higher in the low compared to the high oxygen consumption group (p < 0.05). Moreover, an age-related loss of DNA methylation of tumor necrosis factor (B = -0.82, 95% CI -1.33 to -0.30) and long interspersed nucleotide element 1 (B = -0.46; 95% CI -0.87 to -0.04) gene CpGs were found. Finally, studied CpG methylation levels of serpin peptidase inhibitor, clade E member 1 (r = 0.43; p = 0.01), and IL6 (r = 0.41; p = 0.02) were positively associated with fat-free mass. These findings suggest a potential role of oxygen in the regulation of inflammatory genes. Oxygen consumption measurement at rest could be proposed as a clinical biomarker of metabolic health. © 2017 S. Karger AG, Basel.
Cardiorespiratory function associated with dietary nitrate supplementation
Bond, Vernon; Curry, Bryan H.; Adams, Richard G.; Millis, Richard M.; Haddad, Georges E.
2014-01-01
The advent of medical nutrition therapy and nutritional physiology affords the opportunity to link diet to specific cardiovascular mechanisms, suggesting novel treatments for cardiovascular disease. This study tests the hypothesis that beetroot juice increases the plasma nitric oxide (NO) concentration, which is associated with improvements in cardiorespiratory function at rest and during submaximal aerobic exercise. The subjects were 12 healthy, young adult, normotensive African-American females, with a body mass of 61 ± 2 kg, body fat of 28% ± 4%, and peak oxygen consumption of 26 ± 3 mL·kg−1·min−1. The subjects were studied at rest and during cycle ergometer exercise at 40%, 60%, and 80% of peak oxygen consumption. Plasma NO concentration, respiratory quotient (RQ), minute ventilation, systolic and diastolic blood pressure (SBP and DBP), heart rate, and oxygen consumption were compared between isocaloric, isovolumetric placebo control orange juice and experimental beetroot juice treatments on separate days. The beetroot juice treatment increased plasma NO concentration and decreased oxygen consumption, SBP, and the heart rate-SBP product at rest and at 40%, 60%, and 80% of peak oxygen consumption in the absence of significant effects on RQ, minute ventilation, heart rate, and DBP. These findings suggest that, in healthy subjects, beetroot juice treatments increase plasma NO concentration and decrease cardiac afterload and myocardial oxygen demand at rest and during 3 submaximal levels of aerobic exercise. Future studies should determine the cellular and molecular mechanisms responsible for the improvement in cardiorespiratory function associated with dietary nitrate supplementation and whether they translate into better cardiovascular function and exercise tolerance in individuals with a compromised cardiovascular system. PMID:24476472
Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M
2015-08-01
Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. Copyright © 2015 the American Physiological Society.
Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2018-02-01
To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O 2 /min/100 g or 6.0 ± 1.9 mL O 2 /min/100 g, respectively. vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture.
Spangenburg, Espen E; Jackson, Kathryn C; Schuh, Rosemary A
2013-12-01
Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25-1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.
Kaya, Takatoshi; Numai, Daisuke; Nagamine, Kuniaki; Aoyagi, Shigeo; Shiku, Hitoshi; Matsue, Tomokazu
2004-06-01
The metabolic activity of E. coli cells embedded in collagen gel microstructures in a cone-shaped well and in a cylindrical micropore was investigated using scanning electrochemical microscopy (SECM), based on the oxygen consumption rate and the conversion rate from ferrocyanide to ferricyanide. The analysis of the concentration profiles for oxygen and ferrocyanide afforded the oxygen consumption rate and the ferrocyanide production rate. A comparison indicated that the ferrocyanide production rates were larger than the oxygen consumption rate, and also that the rates observed in the cylindrical micropore were larger than those observed in the cone-shaped well. The ferrocyanide production rate of a single E. coli cell was calculated to be (5.4 +/- 2.6) x 10(-19) mol s(-1), using a cylindrical micropore system.
Haworth, P; Hess, F D
1988-03-01
The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.
Haworth, Phil; Hess, F. Dan
1988-01-01
The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968
Grabež, V; Kathri, M; Phung, V; Moe, K M; Slinde, E; Skaugen, M; Saarem, K; Egelandsdal, B
2015-04-01
Oxygen consumption rate (OCR) of muscle fibers from bovine semimembranosus muscle of 41 animals was investigated 3 to 4 h and 3 wk postmortem. Significant relations (P < 0.05) were found between OCR measurements and Warner-Bratzler shear force measurement. Muscles with high mitochondrial OCR after 3 to 4 h and low nonmitochondrial oxygen consumption gave more tender meat. Tender (22.92 ± 2.2 N/cm2) and tough (72.98 ± 7.2 N/cm2) meat samples (4 samples each), separated based on their OCR measurements, were selected for proteomic studies using mitochondria isolated approximately 2.5 h postmortem. Twenty-six differently expressed proteins (P < 0.05) were identified in tender meat and 19 in tough meat. In tender meat, the more prevalent antioxidant and chaperon enzymes may reduce reactive oxygen species and prolong oxygen removal by the electron transport system (ETS). Glycolytic, Krebs cycle, and ETS enzymes were also more abundant in tender meat
Perfilova, A V; Gromova, T A; Lebedinskiĭ, K M; Zaĭchik, A M
2014-01-01
The article deals with calculation of oxygen consumption in the lungs by means of breathing gas mixture analysis and in parallel--in the systemic circulation by reverse Fick method; 32 paired measurements were performed in 8 patients after cardiac surgery with cardiopulmonary bypass. The mean pulmonary oxygen consumption was higher than the same value calculated by the reverse Fick principle--148.4 +/- 39.9 ml x min(-1) x m(-2) and 120 +/- 35.1 ml x min(-1) x m(-2), respectively, the mean difference between two methods was 28.4 +/- 18.4 ml x min(-1) x m(-2). However, in two observations the interrelation was inversed. While analyzing physiological and methodological reasons for these differences, the authors concluded that, despite both methods can be used in monitoring systemic oxygen transport in the critically ill, they are not interchangeable, and valuable additional data could be derived from fast changes in lungs oxygen uptake.
Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal
2002-01-01
The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased. It may be concluded that, despite reduced oxygen delivery, oxygen consumption is maintained during experimentally induced hypochloremic alkalosis in healthy 10-30 day old calves.
Sanchez, Brian C; Ochoa-Acuña, Hugo; Porterfield, D Marshall; Sepúlveda, María S
2008-09-15
The detection of harmful chemicals and biological agents in real time is a critical need for protecting freshwater ecosystems. We studied the real-time effects of five environmental contaminants with differing modes of action (atrazine, cadmium chloride, pentachlorophenol, malathion, and potassium cyanide) on respiratory oxygen consumption in 2-day postfertilization fathead minnow (Pimephales promelas) eggs. Our objective was to assess the sensitivity of fathead minnow eggs using the self-referencing micro-optrode technique to detect instantaneous changes in oxygen consumption after brief exposures to low concentrations of contaminants. Oxygen consumption data indicated that the technique is indeed sensitive enough to reliably detect physiological alterations induced by four of the five contaminants. After 2 h of exposure, we identified significant increases in oxygen consumption upon exposure to pentachlorophenol (100 and 1000 microg/L), cadmium chloride (0.0002 and 0.002 microg/L), and atrazine (150 microg/L). In contrast, we observed a significant decrease in oxygen flux after exposuresto potassium cyanide (44 and 66 microg/L) and atrazine (1500 microg/L). No effects were detected after exposures to malathion (200 and 340 microg/L). Our work is the first step in development of a new technique for physiologically coupled biomonitoring as a sensitive and reliable tool for the detection of environmental toxicants.
Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin
2016-12-01
The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Clarke, John R.; Southerland, David
1999-07-01
Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.
Spatial Variations in Vitreous Oxygen Consumption
Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark
2016-01-01
We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M-1s-1 ± 0.708 M-1s-1 (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration. PMID:26930281
Spatial Variations in Vitreous Oxygen Consumption.
Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark
2016-01-01
We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M(-1) s(-1) ± 0.708 M(-1) s(-1) (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration.
DPPH and oxygen free radicals as pro-oxidant of biomolecules.
Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor
2008-03-01
Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.
Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.
Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S
2016-05-01
Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.
Vlaeminck, Siegfried E; Dierick, Katleen; Boon, Nico; Verstraete, Willy
2007-07-01
Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O(2) ha(-1) day(-1). As the oxygen transfer rate of an abiotic control column was only 17 kg O(2) ha(-1) day(-1), biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.
Zhang, Bo; Messerli, Mark; Randers-Pehrson, Gerhard; Hei, Tom K.; Brenner, David J.
2015-01-01
A noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37°C Krebs–Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure. The experimental procedure and the results are discussed. PMID:25335641
NASA Astrophysics Data System (ADS)
Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe
2017-04-01
Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water column. Additionally, entrainment of POM into the water column during resuspension events, and the associated increase in remineralization there, also increased oxygen consumption in the region of the water column below the pycnocline. During these resuspension events, modeled rates of oxygen consumption increased by factors of up to ˜ 2 and ˜ 8 in the seabed and below the pycnocline, respectively. When averaged over 2 months, the intermittent cycles of erosion and deposition led to a ˜ 16 % increase of oxygen consumption in the seabed, as well as a larger increase of ˜ 140 % below the pycnocline. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhône Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in bottom waters, only a thin seabed oxic layer, and abundant labile organic matter.
USDA-ARS?s Scientific Manuscript database
An indirect calorimetry experiment was conducted to determine the effects of feeding zilpaterol hydrochloride (ZH) for 20 d on total body oxygen consumption, respiratory quotient, methane production, and blood metabolites in finishing beef steers. Sixteen Angus steers (initial BW = 555 ± 12.7 kg) w...
Myocardial metabolism during exposure to carbon monoxide in the conscious dog.
NASA Technical Reports Server (NTRS)
Adams, J. D.; Erickson, H. H.; Stone, H. L.
1973-01-01
Investigation of the relationship between coronary flow, heart rate, left ventricular function, and myocardial oxygen consumption at increasing levels of carboxyhemoglobin in conscious dogs. The results demonstrate a linear increase in coronary flow and heart rate as the carboxyhemoglobin increases up to 20%. Myocardial oxygen consumption declined during the same period.
The Relationship between Aerobic Capacity and Physical Activity in Blind and Sighted Adolescents.
ERIC Educational Resources Information Center
Kobberling, G.; And Others
1991-01-01
This study investigated the relationship between habitual physical activity and aerobic capacity in 30 blind and 30 sighted adolescents. Both physical activity and maximal oxygen consumption were significantly higher among the sighted adolescents. A minimum of 30 minutes of daily activity at a minimal oxygen consumption of 8 METs (resting…
Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M
2014-11-15
Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lopes, Antonio Augusto; dos Anjos Miranda, Rogério; Gonçalves, Rilvani Cavalcante; Thomaz, Ana Maria
2009-01-01
BACKGROUND: In patients with congenital heart disease undergoing cardiac catheterization for hemodynamic purposes, parameter estimation by the indirect Fick method using a single predicted value of oxygen consumption has been a matter of criticism. OBJECTIVE: We developed a computer-based routine for rapid estimation of replicate hemodynamic parameters using multiple predicted values of oxygen consumption. MATERIALS AND METHODS: Using Microsoft® Excel facilities, we constructed a matrix containing 5 models (equations) for prediction of oxygen consumption, and all additional formulas needed to obtain replicate estimates of hemodynamic parameters. RESULTS: By entering data from 65 patients with ventricular septal defects, aged 1 month to 8 years, it was possible to obtain multiple predictions for oxygen consumption, with clear between-age groups (P <.001) and between-methods (P <.001) differences. Using these predictions in the individual patient, it was possible to obtain the upper and lower limits of a likely range for any given parameter, which made estimation more realistic. CONCLUSION: The organized matrix allows for rapid obtainment of replicate parameter estimates, without error due to exhaustive calculations. PMID:19641642
Modulation of brain glutamate dehydrogenase as a tool for controlling seizures.
Rasgado, Lourdes A Vega; Reyes, Guillermo Ceballos; Díaz, Fernando Vega
2015-12-01
Glutamate (Glu) is a major excitatory neurotransmitter involved in epilepsy. Glu is synthesized by glutamate dehydrogenase (GDH, E.C. 1.4.1.3) and dysfunction of the enzymatic activity of GDH is associated with brain pathologies. The main goal of this work is to establish the role of GDH in the effects of antiepileptic drugs (AEDs) such as valproate (VALP), diazepam (DIAZ) and diphenylhydantoin (DPH) and its repercussions on oxygen consumption. Oxidative deamination of Glu and reductive amination of αketoglutarate (αK) in mice brain were investigated. Our results show that AEDs decrease GDH activity and oxygen consumption in vitro. In ex vivo experiments, AEDs increased GDH activity but decreased oxygen consumption during Glu oxidative deamination. VALP and DPH reversed the increase in reductive amination of αK caused by the chemoconvulsant pentylenetetrazol. These results suggest that AEDs act by modulating brain GDH activity, which in turn decreased oxygen consumption. GDH represents an important regulation point of neuronal excitability, and modulation of its activity represents a potential target for metabolic treatment of epilepsy and for the development of new AEDs.
Hofland, J; Tenbrinck, R; van Eijck, C H J; Eggermont, A M M; Gommers, D; Erdmann, W
2003-04-01
Agreement between continuously measured oxygen consumption during quantitative closed system anaesthesia and intermittently Fick-derived calculated oxygen consumption was assessed in 11 patients undergoing simultaneous occlusion of the aorta and inferior vena cava for hypoxic treatment of pancreatic cancer. All patients were mechanically ventilated using a quantitative closed system anaesthesia machine (PhysioFlex) and had pulmonary and radial artery catheters inserted. During the varying haemodynamic conditions that accompany this procedure, 73 paired measurements were obtained. A significant correlation between Fick-derived and closed system-derived oxygen consumption was found (r = 0.78, p = 0.006). Linear regression showed that Fick-derived measure = [(1.19 x closed system derived measure) - 72], with the overall closed circuit-derived values being higher. However, the level of agreement between the two techniques was poor. Bland-Altman analysis found that the bias was 36 ml.min(-1), precision 39 ml.min(-1), difference between 95% limits of agreement 153 ml.min(-1). Therefore, we conclude that the two measurement techniques are not interchangeable in a clinical setting.
Svendsen, M B S; Bushnell, P G; Christensen, E A F; Steffensen, J F
2016-01-01
As intermittent-flow respirometry has become a common method for the determination of resting metabolism or standard metabolic rate (SMR), this study investigated how much of the variability seen in the experiments was due to measurement error. Experiments simulated different constant oxygen consumption rates (M˙O2 ) of a fish, by continuously injecting anoxic water into a respirometer, altering the injection rate to correct for the washout error. The effect of respirometer-to-fish volume ratio (RFR) on SMR measurement and variability was also investigated, using the simulated constant M˙O2 and the M˙O2 of seven roach Rutilus rutilus in respirometers of two different sizes. The results show that higher RFR increases measurement variability but does not change the mean SMR established using a double Gaussian fit. Further, the study demonstrates that the variation observed when determining oxygen consumption rates of fishes in systems with reasonable RFRs mainly comes from the animal, not from the measuring equipment. © 2016 The Fisheries Society of the British Isles.
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption
SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.
Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.
Bracht, Lívia; Caparroz-Assef, Silvana Martins; Bracht, Adelar; Bersani-Amado, Ciomar Aparecida
2016-06-01
The aim of this work was to investigate the effects of chronic treatment with the combination of ezetimibe and simvastatin on gluconeogenesis in rat liver. Rats were treated daily for 28 days with the combination of ezetimibe and simvastatin (10/40 mg/kg) by oral gavage. To measure gluconeogenesis and the associated pathways, isolated perfused rat liver was used. In addition, subcellular fractions, such as microsomes and mitochondria, were used for complementary measures of enzymatic activities. Treatment with the combination of simvastatin and ezetimibe resulted in a decrease in gluconeogenesis from pyruvate (-62%). Basal oxygen consumption of the treated animals was higher (+22%) than that of the control rats, but the resulting oxygen consumption that occurred after pyruvate infusion was 43% lower in animals treated with the combination of simvastatin and ezetimibe. Oxygen consumption in the livers from treated animals was completely inhibited by cyanide (electron transport chain inhibitor), but not by proadifen (cytochrome P450 inhibitor). Chronic treatment with ezetimibe/simvastatin decreased the activity of the key enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase by 59% and 45%, respectively, which is probably the major reason for the decreased gluconeogenesis seen in ezetimibe-/simvastatin-treated rats. It is also possible that part of the effect of this combination on gluconeogenesis and on the oxygen consumption is related to the impairment of mitochondrial energy transduction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Ferguson, Melissa; Sohal, Barbara H.; Forster, Michael J.; Sohal, Rajindar S.
2007-01-01
The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice. PMID:17822741
Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S
2007-10-01
The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.
Water consumption in Iron Age, Roman, and Early Medieval Croatia.
Lightfoot, E; Slaus, M; O'Connell, T C
2014-08-01
Patterns of water consumption by past human populations are rarely considered, yet drinking behavior is socially mediated and access to water sources is often socially controlled. Oxygen isotope analysis of archeological human remains is commonly used to identify migrants in the archeological record, but it can also be used to consider water itself, as this technique documents water consumption rather than migration directly. Here, we report an oxygen isotope study of humans and animals from coastal regions of Croatia in the Iron Age, Roman, and Early Medieval periods. The results show that while faunal values have little diachronic variation, the human data vary through time, and there are wide ranges of values within each period. Our interpretation is that this is not solely a result of mobility, but that human behavior can and did lead to human oxygen isotope ratios that are different from that expected from consumption of local precipitation. © 2014 Wiley Periodicals, Inc.
Avelar, Núbia Cp; Simão, Adriano P; Tossige-Gomes, Rosalina; Neves, Camila Dc; Mezencio, Bruno; Szmuchrowski, Leszek; Coimbra, Cândido C; Lacerda, Ana Cr
2011-12-01
Avelar, NCP, Simão, AP, Tossige-Gomes, R, Neves, CDC, Mezencio, B, Szmuchrowski, L, Coimbra, CC, and Lacerda, ACR. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res 25(12): 3495-3500, 2011-The aim of this study was to investigate whether vibration plus squatting would increase cardiovascular demand to the optimal exercise limits needed for the prescription of cardiovascular training. Oxygen consumption, measured breath by breath by a portable gas analysis system, and heart rate (HR), measured using an HR monitor, were evaluated in 18 elderly individuals, 15 women and 3 men with a mean age of 72 ± 6 years. These variables were measured simultaneously and at the same time points in each subject during rest and randomly during the performance of squatting exercises (8 series of 40 seconds, with 40 seconds of rest between series of performing squats in 3-second cycles with 10-60° of flexion, a total of 5 repetitions for 40 seconds) with or without vibration at a frequency of 40 Hz and amplitude of 4 mm, separated by at least 1 day. Associating whole-body vibration with squatting exercise resulted in an additional increase of around 20% in oxygen consumption and 7.5% in the HR recorded during exercise. However, during squatting exercise with vibration, the increase achieved in oxygen consumption was limited to around 2 metabolic equivalents, and mean HR represented around 56% of the predicted maximum HR for age. The results of this study show that, despite the fact that vibration increased oxygen consumption and HR during the performance of squatting exercise, the minimum standards of intensity for the prescription of physical exercise with the specific objective of improving cardiorespiratory fitness were not achieved. Therefore, a protocol such as that used in the study does not meet the threshold for cardiovascular training prescription.
Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.
Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira
2007-01-01
It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.
Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
Wei, Changyong; Heitmeier, Monique; Hruz, Paul W; Shanmugam, Mala
2018-01-01
Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.
Energetics of osmoregulation: I. Oxygen consumption by Fundulus heteroclitus.
Kidder, George W; Petersen, Christopher W; Preston, Robert L
2006-04-01
We have developed a flow-through method for measuring oxygen consumption in fish which allows continuous monitoring over periods of days with good accuracy. Our goal was to determine the changes in basal metabolic rate in estuarine fish as a function of salinity. We show that in Fundulus heteroclitus, the oxygen consumption drops by 50% during the first 12 hr in the respirometer, as the fish cease exploratory movements. We have determined the influence of temperature and body size on resting respiratory rate, but failed to find any circadian or tidal rhythm in aerobic respiration. With these variables controlled, we determined that changing from 10 to 30 ppt water had no demonstrable effect on oxygen uptake. Since there must be a large change in osmotic flux due to this change in salinity, it appears that the fish might be diverting energy from other uses rather than increasing aerobic energy production to meet the increased osmoregulatory work load.
NASA Astrophysics Data System (ADS)
Hassan, Wan Nurul Husna Wan; Amin, S. M. Nurul; Ghaffar, Mazlan Abd; Cob, Zaidi Che
2015-09-01
Laevistrombus canarium Linnaeus, 1758 is one of the important edible sea snail within the western Johor Straits, Malaysia. In this study, the impact of temperature on oxygen consumption (MO2) of L. canarium based on their ontogenetic changes (juvenile and adult) was measured in the laboratory condition at 22.0, 26.0, 30.0 and 34.0°C. Measurement of MO2 were taken every 1 s for 60 min on 4.20 - 34.00 g dog conch using respirometry chamber. All experiments were carried out in static conditions in five replicates with one snail per chambers. The results of oxygen consumption showed that juvenile dog conch respired at the rate of 0.163 ml h-1 and adult respired at the rate of 0.119 ml h-1. Consequently, the oxygen consumption in juvenile and adult dog conch was expressed as a total energy spends. The results indicates that total energy spend for oxygen consumed (ml h-1) of L. canarium at different temperature regimes (22.0 to 34.0°C) slightly increased over time period (0.63 ± 0.12 to 3.24 ± 0.05 J h-1) respectively. This finding of the present study suggested L. canarium is well adapted for life in high temperature environment.
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
Darr, Christa R; Cortopassi, Gino A; Datta, Sandipan; Varner, Dickson D; Meyers, Stuart A
2016-09-15
Mitochondrial oxygen consumption is a sensitive indicator of spermatozoal health in the context of cryopreservation. We investigated oxygen consumption of equine sperm mitochondria during incubation in four commercially available sperm cryopreservation extenders: modified INRA 96, BotuCrio, EZ Freezin-"LE" and "MFR5", in addition to several other parameters including motility, reactive oxygen species (ROS) production and viability. All experimental endpoints, with the exception of average path velocity, were affected significantly by freezing extender type after freezing and thawing. Sperm in INRA 96 had the lowest average progressive motility after thawing (24 ± 4.8%, P < 0.05). Sperm in EZ Freezin-"LE" had the highest post thaw viability (79 ± 3.1%, P < 0.05) and lowest post thaw ROS production (13 ± 2.4%), but sperm in BotuCrio had the highest maximal oxygen consumption levels, while also demonstrating similar ROS production and viability. This difference would not have been detected using conventional sperm analytical methods. In addition, sperm in BotuCrio had the highest average total motility (49 ± 7.4%), progressive motility (41 ± 6.4%), and velocity (VAP, 90 ± 3.6 μm/s) indicating that this medium preserved mitochondrial function optimally after cryopreservation. Mitochondrial oxygen consumption was positively correlated with traditional measures of sperm function including motility and viability (r = 0.62 and r = 0.49, respectively, P < 0.05), thus making it a sensitive method for determining cryopreservation success and mitochondrial function in stallion sperm. Copyright © 2016 Elsevier Inc. All rights reserved.
Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L
2016-08-01
Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.
Kojima, Mari; Takehara, Hiroaki; Akagi, Takanori; Shiono, Hirofumi; Ichiki, Takanori
2015-01-01
A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH) and poly(dimethylsiloxane) (PDMS) having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min). We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3) and dentate gyrus (DG).
Comparison of Minimally and More Invasive Methods of Determining Mixed Venous Oxygen Saturation.
Smit, Marli; Levin, Andrew I; Coetzee, Johan F
2016-04-01
To investigate the accuracy of a minimally invasive, 2-step, lookup method for determining mixed venous oxygen saturation compared with conventional techniques. Single-center, prospective, nonrandomized, pilot study. Tertiary care hospital, university setting. Thirteen elective cardiac and vascular surgery patients. All participants received intra-arterial and pulmonary artery catheters. Minimally invasive oxygen consumption and cardiac output were measured using a metabolic module and lithium-calibrated arterial waveform analysis (LiDCO; LiDCO, London), respectively. For the minimally invasive method, Step 1 involved these minimally invasive measurements, and arterial oxygen content was entered into the Fick equation to calculate mixed venous oxygen content. Step 2 used an oxyhemoglobin curve spreadsheet to look up mixed venous oxygen saturation from the calculated mixed venous oxygen content. The conventional "invasive" technique used pulmonary artery intermittent thermodilution cardiac output, direct sampling of mixed venous and arterial blood, and the "reverse-Fick" method of calculating oxygen consumption. LiDCO overestimated thermodilution cardiac output by 26%. Pulmonary artery catheter-derived oxygen consumption underestimated metabolic module measurements by 27%. Mixed venous oxygen saturation differed between techniques; the calculated values underestimated the direct measurements by between 12% to 26.3%, this difference being statistically significant. The magnitude of the differences between the minimally invasive and invasive techniques was too great for the former to act as a surrogate of the latter and could adversely affect clinical decision making. Copyright © 2016 Elsevier Inc. All rights reserved.
Cooling System to Treat Exercise-Induced Hyperthermia
2016-06-01
temperatures . Additionally, individual variations in sweat rates, ventilation rates, fitness levels, and oxygen consumption were not...gastrointestinal MHR maximum heart rate NASA National Aeronautics and Space Administration Tc core temperature UCHS uncompensated heat stress VO2peak peak oxygen consumption ...the effectiveness of a cooling pump based patient thermal management system supplied by Aspen Systems on lowering core body temperature
[Effect of monovalent cations on glutamate metabolism in rat brain].
Nilova, N S
1976-10-01
Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples.
Raimondi, Manuela T; Giordano, Carmen; Pietrabissa, Riccardo
2015-12-18
The possibility of developing engineered tissue in vitro and maintaining the cell viability and functionality is primarily related to the possibility of controlling key culture parameters such as oxygen concentration and cell-specific oxygen consumption. We measured these parameters in a three-dimensional (3D) cellularized construct maintained under interstitially perfused culture in a miniaturized bioreactor. MG63 osteosarcoma cells were seeded at high density on a 3D polystyrene scaffold. The 3D scaffolds were sensorized with sensor foils made of a polymer, which fluoresce with intensity proportional to the local oxygen tension. Images of the sensor foil in contact with the cellularized construct were acquired with a video camera every four hours for six culture days and were elaborated with analytical imaging software to obtain oxygen concentration maps. The data collected indicate a globally decreasing oxygen concentration profile, with a total drop of 28% after six days of culture and an average drop of 10.5% between the inlet and outlet of the perfused construct. Moreover, by importing the measured oxygen concentration data and the cell counts in a model of mass transport, we calculated the cell-specific oxygen consumption over the whole culture period. The consumption increased with oxygen availability and ranged from 0.1 to 0.7 µmol/h/106 cells. The sensors used here allowed a non-invasive, contamination-free and non-destructive oxygen measurement over the whole culture period. This study is the basis for optimization of the culture parameters involved in oxygen supply, in order to guarantee maintenance of cell viability in our system.
NASA Astrophysics Data System (ADS)
Singla, Rohit; Chowdhury, Kanchan
2017-02-01
Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.
Fry, Brendan C.; Layton, Anita T.
2014-01-01
We have developed a highly detailed mathematical model of oxygen transport in a cross section of the upper inner medulla of the rat kidney. The model is used to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies, in which descending vasa recta are found to lie distant from clusters of collecting ducts. Specifically, we formulated a two-dimensional oxygen transport model, in which the positions and physical dimensions of renal tubules and vessels are based on an image obtained by immunochemical techniques (Pannabecker and Dantzler, Am J Physiol Renal Physiol, 2006). The model represents oxygen diffusion through interstitium and other renal structures, oxygen consumption by the Na+/K+-ATPase activities of the collecting ducts, and basal metabolic consumption. Model simulations yield marked variations in interstitial PO2, which can be attributed, in large part, to the heterogeneities in the position and physical dimensions of the collecting ducts. Further, results of a sensitivity study suggest that medullary oxygenation is highly sensitive to medullary blood flow, and that, at high active consumption rates, localized patches of tissue may be vulnerable to hypoxic injury. PMID:25260928
The role of intraluminal thrombus on oxygen transport in abdominal aortic aneurysms
NASA Astrophysics Data System (ADS)
Madhavan, Sudharsan; Cherry Kemmerling, Erica
2017-11-01
Abdominal aortic aneurysm is ranked as the 13th leading cause of death in the United States. The presence of intraluminal thrombus is thought to cause hypoxia in the vessel wall eventually aggravating the condition. Our work investigates oxygen transport and consumption in a patient-specific model of an abdominal aortic aneurysm. The model includes intraluminal thrombus and consists of the abdominal aorta, renal arteries, and iliac arteries. Oxygen transport to and within the aortic wall layer was modeled, accounting for oxygen consumption and diffusion. Flow and transport in the lumen layer were modeled using coupled Navier-Stokes and scalar transport equations. The thrombus layer was assumed to be biomechanically inactive but permeable to oxygen transport in accordance with previously-measured diffusion coefficients. Plots of oxygen concentration through the layers illustrating reduced oxygen supply to the vessel walls in parts of the model that include thrombus will be presented.
NASA Astrophysics Data System (ADS)
Sanchez, Brian C.; Yale, Gowri; Chatni, Rameez; Ochoa-Acuña, Hugo G.; Porterfield, D. Marshall; Mclamore, Eric S.; Sepúlveda, María S.
2009-05-01
The detection of harmful chemicals and biological agents in real time is a critical need for protecting water quality. We studied the real-time effects of five environmental contaminants with differing modes of action (atrazine, pentachlorophenol, cadmium chloride, malathion, and potassium cyanide) on respiratory oxygen consumption in 2-day post-fertilization fathead minnow (Pimephales promelas) eggs. Our objective was to assess the sensitivity of fathead minnow eggs using the self-referencing micro-optrode technique to detect instantaneous changes in oxygen consumption after brief exposures to low concentrations of contaminants. Oxygen consumption data indicated that the technique is indeed sensitive enough to reliably detect physiological alterations induced by all contaminants. After 2 h of exposure, we identified significant increases in oxygen consumption upon exposure to pentachlorophenol (100 and 1000 μg/L), cadmium chloride (0.0002 and 0.002 μg/L), and atrazine (150 μg/L). In contrast, we observed a significant decrease in oxygen flux after exposures to potassium cyanide (5.2, 22, and 44 μg/L) and atrazine (1500 μg/L). No effects were detected after exposures to malathion (200 and 340 μg/L). We have also tested the sensitivity of Daphnia magna embryos as another animal model for real-time environmental biomonitoring. Our results are so far encouraging and support further development of this technology as a physiologically coupled biomonitoring tool for the detection of environmental toxicants.
Paradoxical anaerobism in desert pupfish.
Heuton, Matt; Ayala, Luis; Burg, Chris; Dayton, Kyle; McKenna, Ken; Morante, Aldo; Puentedura, Georgina; Urbina, Natasha; Hillyard, Stanley; Steinberg, Spencer; van Breukelen, Frank
2015-12-01
In order to estimate metabolic demands of desert pupfish for conservation purposes, we measured oxygen consumption in fish acclimated to the ecologically relevant temperatures of 28 or 33°C. For these experiments, we used fish derived from a refuge population of Devils Hole pupfish (Cyprinodon diabolis). Measurement of routine oxygen consumption (V̇O2,routine) revealed some 33°C-acclimated fish (10% of 295 assayed fish) periodically exhibited periods of no measurable oxygen consumption despite available ambient oxygen tensions that were above the critical PO2. We call this phenomenon paradoxical anaerobism. The longest observed continuous bout with no oxygen consumption was 149 min, although typical bouts were much shorter. Fish maintained normal posture and ventilation rate (>230 ventilations per minute) during paradoxical anaerobism. Fish rarely demonstrated a compensatory increase in oxygen use following a period of paradoxical anaerobism. In contrast, only one out of 262 sampled fish acclimated at 28°C spontaneously demonstrated paradoxical anaerobism. Muscle lactate concentration was not elevated during periods of paradoxical anaerobism. However, the amount of ethanol released by the 33°C-acclimated fish was 7.3 times greater than that released by the 28°C acclimation group, suggesting ethanol may be used as an alternative end product of anaerobic metabolism. Exposure to exogenous ethanol, in concentrations as low as 0.1%, produced periods of paradoxical anaerobism even in 28°C-acclimated fish. © 2015. Published by The Company of Biologists Ltd.
Rossi, Márcio José; Nascimento, Francisco Xavier; Giachini, Admir José; Oliveira, Vetúria Lopes; Furigo, Agenor
2017-02-01
The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (μ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.
Eshaq, Randa S.; Wright, William S.; Harris, Norman R.
2014-01-01
Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440
Eshaq, Randa S; Wright, William S; Harris, Norman R
2014-01-01
Retinal tissue receives its supply of oxygen from two sources - the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C.
Effect of temperature on heavy metal toxicity to juvenile crayfish, Orconectes immunis (Hagen).
Khan, M A Q; Ahmed, S A; Catalin, Bogdon; Khodadoust, A; Ajayi, Oluwaleke; Vaughn, Mark
2006-10-01
The acute toxicity of four selected heavy metals to juvenile crayfish Orconectes immunis (Hagen) (1-2 g wet body wt. each) at room temperature increased in the following order: cadmium (x3) < copper (x10) < zinc (x2) < lead. The toxicity of these metals to crayfish acclimated at 17, 20, 23/24, and 27 degrees C increased with temperature (by 7-20% between 20 and 24 degrees C and 14-26% between 20 and 27 degrees C) as judged by the lowering of LT(50) (time to kill 50% of test animals at a fixed concentration) values. A 4 degrees C rise in temperature (from 20 to 24 degrees C), which increased the toxicity of copper by about 7%, increased the rate of oxygen consumption by about 34%. Heavy metals inhibited the rate of oxygen consumption at all temperatures. In 20 degrees C-acclimated crayfish, copper caused about 17% inhibition of oxygen consumption compared to about 7-12% by other metals including the most toxic cadmium. A 3-4 degrees C rise in temperature tripled the inhibitory effect of copper (20%), cadmium and zinc (26 and 18%, respectively), but not of lead, on oxygen consumption. A 7 degrees C-rise in temperature (from 20 to 27 degrees C) increased the inhibitory effect of heavy metals, including lead, on oxygen consumption by up to 54% in the case of copper. The data indicate that rising global temperatures (currently 0.60 degrees C) associated with climate change can have the potential to increase the sensitivity of aquatic animals to heavy metals in their environment.
Palstra, A. P.
2017-01-01
Abstract Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon (Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers. PMID:28480037
Alexandre, C M; Palstra, A P
2017-01-01
Migratory species travelling long distances between habitats to spawn or feed are well adapted to optimize their swimming economy. However, human activities, such as river regulation, represent potential threats to fish migration by changing environmental parameters that will have impact on their metabolism. The main objective of this study was to evaluate the changes in the swimming energetics of a salmonid species, Atlantic salmon ( Salmo salar L.), caused by short-term temperature variations that usually result from the operation of hydroelectrical dams. Intermittent flow respirometry in swim tunnels allows to obtain high resolution data on oxygen consumption of swimming fish which can reflect aerobic and anaerobic metabolism. This method was used to compare the metabolic rates of oxygen consumption before, during and after sudden thermal change. Control (no temperature variation) and experimental (temperature variation of approximately 4°C in 1 h) swimming trials were conducted to achieve the following objectives: (i) quantify the variations in oxygen consumption associated with abrupt temperature decrease, and (ii) assess if the tested fish return quickly to initial oxygen consumption rates. Main results revealed that Atlantic salmon smolts show a strong response to sudden temperature variation, significantly reducing the oxygen consumption rate up to a seven-fold change. Fish quickly returned to initial swimming costs shortly after reestablishment of temperature values. Results from this study can be used to evaluate the species-specific effects of the applied operation modes by hydroelectrical dams and to increase the success of conservation and management actions directed to fish species inhabiting regulated rivers.
Wilhelm-Filho, Danilo; Fraga, César G; Boveris, Alberto
2017-09-01
Several oxidative stress markers and liver oxygen consumption were measured in different tissues of the marine fish Trichiurus lepturus in late summer and late winter, as well as in juveniles and adult females. Oxygen consumption in liver, superoxide dismutase (SOD) and catalase (CAT) activity in liver, red cells, lens and roe, vitamin E, ubiquinol 10 , β-carotene in liver, red cells, and roe, as well as contents of reduced glutathione (GSH) and lipoperoxidation (TBARS) in red cells were evaluated. Regarding ontogeny, compared to adult fish, juveniles showed significant higher SOD activity in liver and lens, as well as higher liver contents of vitamin E. In contrast, adult females showed higher contents of vitamin E in roe, ubiquinol 10 in liver and roe, and higher GSH levels in red cells, while the other markers remained unchanged. Regarding seasonal changes, no differences were detected in adult females for liver CAT and ubiquinol 10 , CAT in roe, vitamin E in roe and in red cells, liver and red cell ubiquinol 10 , and in GSH in red cells. However, and coinciding with the spawning period of late summer, liver oxygen consumption, SOD and CAT activity and ubiquinol 10 contents in roe and SOD activity in red cells, and red cell TBARS contents were higher compared to late winter. These temporal antioxidant adjustments of Trichiurus lepturus seem to be parallel to the higher oxygen consumption typical of juvenile forms and also to the intense spawning and foraging activities of adult females in late summer. Copyright © 2017. Published by Elsevier Inc.
Villegas-Mendoza, Josué; Cajal-Medrano, Ramón; Maske, Helmut
2015-11-01
Prokaryote respiration is expected to be responsible for more than half of the community respiration in the ocean, but the lack of a practical method to measure the rate of prokaryote respiration in the open ocean resulted in very few published data leaving the role of organotrophic prokaryotes open to debate. Oxygen consumption rates of oceanic prokaryotes measured with current methods may be biased due to pre-incubation size filtration and long incubation times both of which can change the physiological and taxonomic profile of the sample during the incubation period. In vivo INT reduction has been used in terrestrial samples to estimate respiration rates, and recently, the method was introduced and applied in aquatic ecology. We measured oxygen consumption rates and in vivo INT reduction to formazan in cultures of marine bacterioplankton communities, Vibrio harveyi and the eukaryote Isochrysis galbana. For prokaryotes, we observed a decrease in oxygen consumption rates with increasing INT concentrations between 0.05 and 1 mM. Time series after 0.5 mM INT addition to prokaryote samples showed a burst of in vivo INT reduction to formazan and a rapid decline of oxygen consumption rates to zero within less than an hour. Our data for non-axenic eukaryote cultures suggest poisoning of the eukaryote. Prokaryotes are clearly poisoned by INT on time scales of less than 1 h, invalidating the interpretation of in vivo INT reduction to formazan as a proxy for oxygen consumption rates.
O'Halloran, Joseph; Hamill, Joseph; McDermott, William J; Remelius, Jebb G; Van Emmerik, Richard E A
2012-03-01
Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.
Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C
2014-01-01
TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.
2013-10-01
consumption of fish , seafood, and poultry over red meats and beef All dairy products...Date f.DATE Volume of Oxygen Consumption (VO2 -‐ L/min) f.VO2 Total Energy Expenditure (TEE -‐ kCal...form): Data Entry Date f.DATE Volume of Oxygen Consumption (VO2 -‐ L/min) f.VO2 Total
Identification of Prostate Cancer Prognostic Markers
2016-10-01
Technologies). For this, the oxygen consumption rate (OCR) in the PC-3 control and ECI1-overexpressing clones was measured following their maintenance...carnitine Carnitine β-oxydation Etomoxir Page 25 of 31 Figure 10: Mitochondrial Respiration in ECI1-overexpressing PC-3 Clones. Oxygen Consumption rate... FISH ), prognostic markers, biomarkers, tissue microarrays, autophagy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES
Elizabeth A. Flaherty; Merav Ben-David; Winston P. Smith
2010-01-01
Gliding allows mammals to exploit canopy habitats of old-growth forests possibly as a means to save energy. To assess costs of quadrupedal locomotion for a gliding arboreal mammal, we used open-flow respirometry and a variable-speed treadmill to measure oxygen consumption and to calculate cost of transport, excess exercise oxygen consumption, and excess post-exercise...
USDA-ARS?s Scientific Manuscript database
Eight cross-bred beef steers (initial BW = 241 ± 4.10 kg) were used in a 77-d feeding experiment to determine if ME intake can be determined from carbon emissions, oxygen consumption, and energy retention estimates. Steers were housed in a pen equipped with individual feed bunks and animal access w...
Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise.
Bonjour, Julien; Bringard, Aurélien; Antonutto, Guglielmo; Capelli, Carlo; Linnarsson, Dag; Pendergast, David R; Ferretti, Guido
2011-12-01
The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.
Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G
2016-07-01
Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.
Guided inquiry lab exercises in development and oxygen consumption using zebrafish.
Bagatto, Brian
2009-06-01
Zebrafish have become a model organism in many areas of research and are now being used with more frequency in the classroom to teach important biological concepts. The two guided inquiry exercises in this article are each aimed at a different level of instruction, but each can be modified to fit the needs of many high school or college-level courses. The "Zebrafish Development and Environment" exercise teaches high school students about zebrafish development by presenting a series of embryos at different ages. Without access to visual references, students are asked to rank developing zebrafish by age and explain their choices. The students also learn about the heart and circulatory system and the effects of temperature on physiological processes. The second exercise, "Oxygen Consumption," is a 2-week laboratory designed for introductory college biology majors and involves the concept of oxygen consumption as a predictor of metabolic rate. During the first week of lab, students are introduced to the concept and learn how to measure oxygen consumption in zebrafish. In the second week, they perform an instructor-approved experiment of their own design, analyze the results using statistics, and write a report.
Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C
2018-03-20
We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.
Alcohol consumption and cardiorespiratory fitness in five population-based studies.
Baumeister, Sebastian E; Finger, Jonas D; Gläser, Sven; Dörr, Marcus; Markus, Marcello Rp; Ewert, Ralf; Felix, Stephan B; Grabe, Hans-Jörgen; Bahls, Martin; Mensink, Gert Bm; Völzke, Henry; Piontek, Katharina; Leitzmann, Michael F
2018-01-01
Background Poor cardiorespiratory fitness is a risk factor for cardiovascular morbidity. Alcohol consumption contributes substantially to the burden of disease, but its association with cardiorespiratory fitness is not well described. We examined associations between average alcohol consumption, heavy episodic drinking and cardiorespiratory fitness. Design The design of this study was as a cross-sectional population-based random sample. Methods We analysed data from five independent population-based studies (Study of Health in Pomerania (2008-2012); German Health Interview and Examination Survey (2008-2011); US National Health and Nutrition Examination Survey (NHANES) 1999-2000; NHANES 2001-2002; NHANES 2003-2004) including 7358 men and women aged 20-85 years, free of lung disease or asthma. Cardiorespiratory fitness, quantified by peak oxygen uptake, was assessed using exercise testing. Information regarding average alcohol consumption (ethanol in grams per day (g/d)) and heavy episodic drinking (5+ or 6+ drinks/occasion) was obtained from self-reports. Fractional polynomial regression models were used to determine the best-fitting dose-response relationship. Results Average alcohol consumption displayed an inverted U-type relation with peak oxygen uptake ( p-value<0.0001), after adjustment for age, sex, education, smoking and physical activity. Compared to individuals consuming 10 g/d (moderate consumption), current abstainers and individuals consuming 50 and 60 g/d had significantly lower peak oxygen uptake values (ml/kg/min) (β coefficients = -1.90, β = -0.06, β = -0.31, respectively). Heavy episodic drinking was not associated with peak oxygen uptake. Conclusions Across multiple adult population-based samples, moderate drinkers displayed better fitness than current abstainers and individuals with higher average alcohol consumption.
Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1
Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph
1989-01-01
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024
Brundin, T; Wahren, J
1994-05-01
Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.
Jorge, R A D L V C; Lemos, D; Moreira, G S
2007-02-01
The presence of pollutants in the ocean may affect different physiological parameters of animals. Oxygen consumption and ammonia excretion were evaluated in D-shaped larvae of mussels (Perna perna) exposed to zinc sulphate (ZnSO(4)) and benzene (C(6)H(6)). When compared to the control group, both pollutants presented a significant reduction in oxygen consumption. A reduction in the ammonia excretion was also observed, both for ZnSO(4) and C(6)H(6) and also in the oxygen consumption. The results indicate that anaerobic metabolism may occur at the beginning of P. perna mussels development, as observed in veliger larvae. The O:N ratio under experimental conditions showed low values indicating that catabolism in veliger larvae was predominantly proteic.
Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J
2016-01-01
The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.
Impact of glycerin and lignosulfonate on biodegradation of high explosives in soil.
Won, Jongho; Borden, Robert C
2016-11-01
Soil microcosms were constructed and monitored to evaluate the impact of substrate addition and transient aerobic and anaerobic conditions on TNT, RDX and HMX biodegradation in grenade range soils. While TNT was rapidly biodegraded under both aerobic and anaerobic conditions with and without organic substrate, substantial biodegradation of RDX, HMX, and RDX daughter products was not observed under aerobic conditions. However, RDX and HMX were significantly biodegraded under anaerobic conditions, without accumulation of TNT or RDX daughter products (2-ADNT, 4-ADNT, MNX, DNX, and TNX). In separate microcosms containing grenade range soil, glycerin and lignosulfonate addition enhanced oxygen consumption, increasing the consumption rate >200% compared to untreated soils. Mathematical model simulations indicate that oxygen consumption rates of 5 to 20g/m 3 /d can be achieved with reasonable amendment loading rates. These results indicate that glycerin and lignosulfonate can be potentially used to stimulate RDX and HMX biodegradation by increasing oxygen consumption rates in soil. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C.
2017-11-01
Resistive-switching memory with ultralow-power consumption is very promising technology for next-generation data storage and high-energy-efficiency neurosynaptic chips. Herein, Ta2O5-x-based multilevel memories with ultralow-power consumption and good data retention were achieved by simple Gd-doping. The introduction of a Gd ion, as an oxygen trapper, not only suppresses the generation of oxygen vacancy defects and greatly increases the Ta2O5-x resistance but also increases the oxygen-ion migration barrier. As a result, the memory cells can operate at an ultralow current of 1 μA with the extrapolated retention time of >10 years at 85 °C and the high switching speeds of 10 ns/40 ns for SET/RESET processes. The energy consumption of the device is as low as 60 fJ/bit, which is comparable to emerging ultralow-energy consumption (<100 fJ/bit) memory devices.
Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.
Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L
2017-08-01
Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas
2013-09-01
By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.
Non-signalling energy use in the developing rat brain
Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N
2016-01-01
Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699
Capaz, Juan C.; Tunnah, Louise; MacCormack, Tyson J.; Lamarre, Simon G.; Sykes, Antonio V.; Driedzic, William R.
2017-01-01
The common cuttlefish (Sepia officinalis), a dominant species in the north-east Atlantic ocean and Mediterranean Sea, is potentially subject to hypoxic conditions due to eutrophication of coastal waters and intensive aquaculture. Here we initiate studies on the biochemical response to an anticipated level of hypoxia. Cuttlefish challenged for 1 h at an oxygen level of 50% dissolved oxygen saturation showed a decrease in oxygen consumption of 37% associated with an 85% increase in ventilation rate. Octopine levels were increased to a small but significant level in mantle, whereas there was no change in gill or heart. There were no changes in mantle free glucose or glycogen levels. Similarly, the hypoxic period did not result in changes in HSP70 or polyubiquinated protein levels in mantle, gill, or heart. As such, it appears that although there was a decrease in metabolic rate there was only a minor increase in anaerobic metabolism as evidenced by octopine accumulation and no biochemical changes that are hallmarks of alterations in protein trafficking. Experiments with isolated preparations of mantle, gill, and heart revealed that pharmacological inhibition of protein synthesis could decrease oxygen consumption by 32 to 42% or Na+/K+ ATPase activity by 24 to 54% dependent upon tissue type. We propose that the decrease in whole animal oxygen consumption was potentially the result of controlled decreases in the energy demanding processes of both protein synthesis and Na+/K+ ATPase activity. PMID:28603503
Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C
2003-09-01
The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.
In vivo oxygen transport in the normal rabbit femoral arterial wall.
Crawford, D W; Back, L H; Cole, M A
1980-01-01
In vivo measurements of tissue oxygen tension were made at 10-micrometer intervals through functioning in situ rabbit femoral arterial walls, using inhalation anesthesia and recessed microcathodes with approximately 4-micrometer external diameters. External environment was controlled with a superfusion well at 30 torr PO2, 35 torr PCO2. Blood pressure, gas tension levels, and blood pH were held within the normal range. Radial PO2 measurements closely fit a mathematical model for unidimensional diffusion into a thick-walled artery with uniform oxygen consumption, and the distances traversed fit measured dimensions of quick-frozen in vivo sections. Using standard values of diffusion and solubility coefficients, mean calculated medial oxygen consumption was 99 nl0/ml-s. Mural oxygen consumption appeared to be related linearly to mean tangential wall stress. Differences in experimental design and technique were compared with previous in vivo and in vitro measurements of wall oxygenation, and largely account for the varying results obtained. Control of environment external to the artery, and maintenance of normally flowing blood in the lumen in vivo appeared critical to an understanding of mural oxygenation in life. If the conditions of this experiment prevailed in arteries with thicker avascular layers, PO2 could have been 20 torr at approximately 156 micrometer and 10 torr at 168 micrometer from blood (average values). Images PMID:7410554
Stark, Michael J; Hodyl, Nicolette A; Andersen, Chad C
2015-09-01
The underlying neuro-protective mechanisms of antenatal magnesium sulfate (MgSO(4)) in infants born preterm remain poorly understood. Early neonatal brain injury may be preceded by low cerebral blood flow (CBF) and elevated cerebral fractional tissue oxygen extraction (cFTOE). This study investigated the effect of antenatal MgSO(4) on cerebral oxygen delivery, consumption, and cFTOE in preterm infants. CBF and tissue oxygenation index were measured, and oxygen delivery, consumption, and cFTOE calculated within 24 h of birth and at 48 and 72 h of life in 36 infants ≤ 30 wk gestation exposed to MgSO(4) and 29 unexposed infants. Total internal carotid blood flow and cerebral oxygen delivery did not differ between the groups at the three study time-points. Cerebral oxygen consumption and cFTOE were lower in infants exposed to antenatal MgSO(4) (P = 0.012) compared to unexposed infants within 24 h of delivery. This difference was not evident by 48 h of age. Fewer infants in the MgSO(4) group developed P/IVH by 72 h of age (P = 0.03). Infants exposed to MgSO(4) had similar systemic and cerebral hemodynamics but lower cFTOE compared to nonexposed. These findings suggest reduced cerebral metabolism maybe a component of the neuro-protective actions of antenatal MgSO(4).
Oxygen consumption in T-47D cells immobilized in alginate.
Larsen, B E; Sandvik, J A; Karlsen, J; Pettersen, E O; Melvik, J E
2013-08-01
Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration. © 2013 John Wiley & Sons Ltd.
Engineering Irisin for Understanding Its Benefits to Obesity
2018-03-01
measurement of oxygen consumption rate (OCR) and extracellular acidification rates (ECAR). Following basal respiration, the mitochondrial effectors...mitochondrial respiration, respectively. Effects of irisin on cellular oxygen consumption rate (OCR; A and B) and ECAR (extracellular acidification rates; C...irisin alanine variants for 60 min at room temperature . The cells were then washed and resuspended in PBS/0.5% BSA. Fifty thousand events per sample
Modeling of Oxygen Transport Across Tumor Multicellular Layers
Braun, Rod D.; Beatty, Alexis L.
2007-01-01
Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225
Daland, Geneva A.; Isaacs, Raphael
1927-01-01
1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells. PMID:19869329
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2015-04-01
The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2014-10-01
The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
Oxygen production by urban trees in the United States
David J. Nowak; Robert Hoehn; Daniel E. Crane
2007-01-01
Urban forests in the coterminous United States are estimated to produce ≈61 million metric tons (67 million tons) of oxygen annually, enough oxygen to offset the annual oxygen consumption of approximately two-thirds of the U.S. opulation. Although oxygen production is often cited as a significant benefit of trees, this benefit is relatively insignificant and...
Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P
2016-06-01
The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.
Oxygen requirement of separated hybrid catfish eggs
USDA-ARS?s Scientific Manuscript database
Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...
Nelson, J A
2016-01-01
Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.
Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand
2015-01-01
Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773
Nederlof, Rianne; Denis, Simone; Lauzier, Benjamin; Rosiers, Christine Des; Laakso, Markku; Hagen, Jacob; Argmann, Carmen; Wanders, Ronald; Houtkooper, Riekelt H; Hollmann, Markus W; Houten, Sander M; Zuurbier, Coert J
2017-07-01
Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII. We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII +/- hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII +/- hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03μmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII +/- hearts. These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Mukaimoto, Takahiro; Ohno, Makoto
2012-01-01
The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.
Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.
Chan, Huan Hao; Burns, Stephen Francis
2013-02-01
This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.
Objective and subjective measures of exercise intensity during thermo-neutral and hot yoga.
Boyd, Corinne N; Lannan, Stephanie M; Zuhl, Micah N; Mora-Rodriguez, Ricardo; Nelson, Rachael K
2018-04-01
While hot yoga has gained enormous popularity in recent years, owing in part to increased environmental challenge associated with exercise in the heat, it is not clear whether hot yoga is more vigorous than thermo-neutral yoga. Therefore, the aim of this study was to determine objective and subjective measures of exercise intensity during constant intensity yoga in a hot and thermo-neutral environment. Using a randomized, crossover design, 14 participants completed 2 identical ∼20-min yoga sessions in a hot (35.3 ± 0.8 °C; humidity: 20.5% ± 1.4%) and thermo-neutral (22.1 ± 0.2 °C; humidity: 27.8% ± 1.6%) environment. Oxygen consumption and heart rate (HR) were recorded as objective measures (percentage of maximal oxygen consumption and percentage of maximal HR (%HRmax)) and rating of perceived exertion (RPE) was recorded as a subjective measure of exercise intensity. There was no difference in exercise intensity based on percentage of maximal oxygen consumption during hot versus thermo-neutral yoga (30.9% ± 2.3% vs. 30.5% ± 1.8%, p = 0.68). However, exercise intensity was significantly higher during hot versus thermo-neutral yoga based on %HRmax (67.0% ± 2.3% vs. 60.8% ± 1.9%, p = 0.01) and RPE (12 ± 1 vs. 11 ± 1, p = 0.04). According to established exercise intensities, hot yoga was classified as light-intensity exercise based on percentage of maximal oxygen consumption but moderate-intensity exercise based on %HRmax and RPE while thermo-neutral yoga was classified as light-intensity exercise based on percentage of maximal oxygen uptake, %HRmax, and RPE. Despite the added hemodynamic stress and perception that yoga is more strenuous in a hot environment, we observed similar oxygen consumption during hot versus thermo-neutral yoga, classifying both exercise modalities as light-intensity exercise.
Respiratory gas exchange of high altitude adapted chick embryos
NASA Technical Reports Server (NTRS)
Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.
1974-01-01
Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.
Ammann, Elizabeth C. B.; Fraser-Smith, Antony
1968-01-01
A single culture of Chlorella pyrenoidosa (700 ml) was grown continuously under uniform environmental conditions for a period of 11 months. During this time, the culture remained uncontaminated and its oxygen production, carbon dioxide consumption, and photosynthetic quotient (PQ = CO2/O2) were monitored on a 24-hr basis. The gas exchange characteristics of the alga were found to be extremely reliable; the average oxygen production was 1.21 ± 0.03 ml per min, the carbon dioxide consumption was 1.09 ± 0.03 ml per min, and the PQ was 0.90 ± 0.01 when changes in both lamp intensity and instrument accuracy were taken into consideration. Such long-term dependability in the production of oxygen, consumption of carbon dioxide, and maintenance of a uniform PQ warrants the use of C. pyrenoidosa in a regenerative life support system for space travel. PMID:4385488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quoilin, C., E-mail: cquoilin@ulg.ac.be; Mouithys-Mickalad, A.; Duranteau, J.
Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonancemore » spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.« less
Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.
Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian
2018-07-01
Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Partridge, Jonathan K.
2011-01-01
The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.
Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel
2016-08-01
The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks...tunnel to determine the critical swim speed (Ucrit), oxygen consumption (VO2), and endurance at a single velocity. Tunnel Type Tunnel Size (L...specially designed mobile swim tunnel indicated that it might be used effectively with other large, active, free-swimming planktivores, including bigheaded
Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.
Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L
2015-02-01
Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.
The influence of grip on oxygen consumption and leg forces when using classical style roller skis.
Ainegren, M; Carlsson, P; Laaksonen, M S; Tinnsten, M
2014-04-01
The purpose of this study was to investigate the influence of classical style roller skis' grip (static friction coefficients, μS) on cross-country skiers' oxygen consumption and leg forces during treadmill roller skiing, when using the diagonal stride and kick double poling techniques. The study used ratcheted wheel roller skis from the open market and a uniquely designed roller ski with an adjustable camber and grip function. The results showed significantly (P ≤ 0.05) higher oxygen consumption (∼ 14%), heart rate (∼ 7%), and lower propulsive forces from the legs during submaximal exercise and a shorter time to exhaustion (∼ 30%) in incremental maximal tests when using roller skis with a μS similar to on-snow skiing, while there was no difference between tests when using different pairs of roller skis with a similar, higher μS. Thus, we concluded that oxygen consumption (skiing economy), propulsive leg forces, and performance time are highly changed for the worse when using roller skis with a lower μS, such as for on-snow skiing with grip-waxed cross-country skis, in comparison to ratcheted wheel roller skis with several times higher μS. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao
2015-12-22
The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO₂. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.
Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L
2011-09-08
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.
Ocular oxygen consumption during vitreoperfusion in the cat.
Blair, N P
2000-01-01
Little is known about the total ocular oxygen consumption rate (QO2) in human diseases. Reductions in QO2 may indicate the amount of tissue loss produced by conditions such as retinal ischemia. We sought a method to estimate QO2 that eventually could be used in patients during vitrectomy surgery. We performed vitreoperfusion (perfusion of the vitreous cavity after vitrectomy) in 22 cat eyes with no ocular blood flow. The solution contained nutrients and a high partial pressure of oxygen (PO2). In 8 eyes we placed an oxygen electrode on the sclera, choroid, or outer retina to evaluate oxygen delivery from the vitreoperfusion solution (group 1). In 8 eyes the retinas were undisturbed (group 2), and in 6 eyes we excised the retinas (group 3). In groups 2 and 3 we estimated QO2 from the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. Group 1 demonstrated oxygenation of the entire retina. The means and standard deviations of QO2 were 3.2 +/- 0.8 and 0.4 +/- 0.7 microL/min in groups 2 and 3, respectively, the difference being the retinal contribution, 88%. In group 2, metabolism accounted for an average of 82% of the oxygen loss from the vitreoperfusion solution, whereas flow and diffusion accounted for 13% and 5%, respectively. Ocular oxygen consumption can be estimated by means of vitreoperfusion. Further developments may allow measurements in patients during vitreous surgery to clarify the pathophysiology of their diseases and assess the amount of retinal tissue that has been lost.
Progressive hypoxia decouples activity and aerobic performance of skate embryos
Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.
2016-01-01
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746
Progressive hypoxia decouples activity and aerobic performance of skate embryos.
Di Santo, Valentina; Tran, Anna H; Svendsen, Jon C
2016-01-01
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, S crit). Below S crit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.
Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Myong, Jun-Pyo; Koo, Jung-Wan
2015-02-01
Canes are widely prescribed as walking aids, but little is known about the effects of canes on the physiological cost of walking. The purpose of this study was to investigate the differences in oxygen consumption associated with the gaits of hemiplegic patients in terms of balance capacity according to the type of cane used. Twenty-nine patients with chronic stroke were divided into poor-balance (n=15) and relatively-better-balance groups (n=14) based on a cutoff score of 49 on the Berg balance scale (BBS). Each patient completed three consecutive days of walking with a randomly assigned singlepoint cane, quad cane, or hemi-walker. We measured the oxygen expenditure and oxygen cost using a portable gas analyzer and heart rate during a 6-min walk test (6MWT) and a 10-m walk test (10MWT). The oxygen expenditure, gait endurance, and gait velocity were higher with the single-point cane (p<0.01) than with any of the other cane types, and the oxygen costs were lower (p<0.01) with the single-point cane among the patients with relatively better balance. The oxygen cost for the quad cane was lower (p<0.01) than that found for any the other cane types among the patients with relatively poor balance. Our study revealed that single-point canes require less oxygen use at a given speed and permits greater speed at the same oxygen consumption for hemiplegic patients with good balance. Walking aids with a greater base support may be more suitable than those with a smaller base support for patients with relatively poor balance. However, our conclusions are only preliminary because of the small sample size (KCT0001076). Copyright © 2014 Elsevier B.V. All rights reserved.
Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A
2016-08-01
There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.
Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.
2016-01-01
There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048
Miakotnykh, V V; Khodasevich, L S; Ermakov, B A
2011-01-01
This study included a total of 234 practically healthy men at the age from 40 to 69 years differing in the regimen of daily locomotor activity. They were divided into 4 groups, each comprised of subjects ranged by age with a ten-year interval. Group 1 included former high-level athletes continuing active physical training, group 2 was comprised of former high-level athletes living a sedentary life style, group 3 consisted of subjects regularly engaged in health-giving physical exercises, and group 4 included subjects who were never engaged in physical exercises. The energy consumption by the members of all four groups was estimated when they were undergoing a stepwise increasing workload on the veloergometer measured with the help of a computerized diagnostic system. The results of the study indicate that the high oxygen consumption at a limiting load in the former high-level athletes is associated with the significant economization of basal metabolism and the reduction of oxygen consumption at rest. This mechanism accounts for the possibility to retain adequate physical activity of the organism up to the age of 70 years.
Air Force Studies Board Block 00 Studies
2016-07-14
effectively in efforts aimed at reducing energy consumption . Without more data on energy use, “You don’t know what you don’t know.” The question was raised...with Oxygen Trim Maintain Excess Oxygen Below 5%, Below 8% for Stokers Reduce Stack Temperature to 330°F for Sulfur Bearing Fuels Minimize...current approaches to industrial process energy with a goal of highlighting potential ways to reduce Air Force industrial process energy consumption .1
Navarro, María; Kontoudakis, Nikolaos; Giordanengo, Thomas; Gómez-Alonso, Sergio; García-Romero, Esteban; Fort, Francesca; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando
2016-05-15
The botanical origin, toast level and ellagitannin content of oak chips in a model wine solution have been studied in terms of their influence on oxygen consumption. French oak chips released significantly higher amounts of ellagitannins than American oak chips at any toast level. The release of ellagitannins by oak chips decreased as the toast level increased in the French oak but this trend was not so clear in American oak. Oxygen consumption rate was clearly related to the level of released ellagitannins. Therefore, oak chips should be chosen for their potential to release ellagitannins release should be considered, not only because they can have a direct impact on the flavor and body of the wine, but also because they can protect against oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aksentijević, Dunja; Lewis, Hannah R; Shattock, Michael J
2016-02-01
What is the central question of this study? Rate-pressure product (RPP) is commonly used as an index of cardiac 'effort'. In canine and human hearts (which have a positive force-frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species-independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force-frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac 'effort') in the Langendorff-perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β-adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate-pressure product (RPP); a rather ill-defined index of 'work' or, more correctly, 'effort'. Rate-pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV̇O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force-frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV̇O2 in Langendorff-perfused rat hearts. Paced hearts (300-750 beats min(-1)) were perfused either with Krebs-Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV̇O2) was recorded. Metabolic status was assessed using (31) P magnetic resonance spectroscopy and lactate efflux. Experiments were repeated in the presence of isoprenaline and in unpaced hearts where heart rate was increased by cumulative isoprenaline challenge. In KH buffer-perfused hearts, MV̇O2 increased with increasing heart rate, but given that left ventricular developed pressure decreased with increases in rate, RPP was not correlated with MV̇O2, lactate production or phosphocreatine/ATP ratio. Although the provision of substrates or β-adrenoceptor stimulation changed the shape of the RPP-MV̇O2 relationship, neither intervention resulted in a positive correlation between RPP and oxygen consumption. Rate-pressure product is therefore an unreliable index of oxygen consumption or 'cardiac effort' in the isolated rat heart. © 2015 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Aksentijević, Dunja; Lewis, Hannah R.
2016-01-01
New Findings What is the central question of this study? Rate–pressure product (RPP) is commonly used as an index of cardiac ‘effort’. In canine and human hearts (which have a positive force–frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species‐independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force–frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac ‘effort’) in the Langendorff‐perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β‐adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate–pressure product (RPP); a rather ill‐defined index of ‘work’ or, more correctly, ‘effort’. Rate–pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV˙O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force–frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV˙O2 in Langendorff‐perfused rat hearts. Paced hearts (300–750 beats min−1) were perfused either with Krebs–Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV˙O2) was recorded. Metabolic status was assessed using 31P magnetic resonance spectroscopy and lactate efflux. Experiments were repeated in the presence of isoprenaline and in unpaced hearts where heart rate was increased by cumulative isoprenaline challenge. In KH buffer‐perfused hearts, MV˙O2 increased with increasing heart rate, but given that left ventricular developed pressure decreased with increases in rate, RPP was not correlated with MV˙O2, lactate production or phosphocreatine/ATP ratio. Although the provision of substrates or β‐adrenoceptor stimulation changed the shape of the RPP–MV˙O2 relationship, neither intervention resulted in a positive correlation between RPP and oxygen consumption. Rate–pressure product is therefore an unreliable index of oxygen consumption or ‘cardiac effort’ in the isolated rat heart. PMID:26585840
Potiaumpai, Melanie; Martins, Maria Carolina Massoni; Rodriguez, Roberto; Mooney, Kiersten; Signorile, Joseph F
2016-12-01
To compare energy expenditure and volume of oxygen consumption and carbon dioxide production during a high-speed yoga and a standard-speed yoga program. Randomized repeated measures controlled trial. A laboratory of neuromuscular research and active aging. Sun-Salutation B was performed, for eight minutes, at a high speed versus and a standard-speed separately while oxygen consumption was recorded. Caloric expenditure was calculated using volume of oxygen consumption and carbon dioxide production. Difference in energy expenditure (kcal) of HSY and SSY. Significant differences were observed in energy expenditure between yoga speeds with high-speed yoga producing significantly higher energy expenditure than standard-speed yoga (MD=18.55, SE=1.86, p<0.01). Significant differences were also seen between high-speed and standard-speed yoga for volume of oxygen consumed and carbon dioxide produced. High-speed yoga results in a significantly greater caloric expenditure than standard-speed yoga. High-speed yoga may be an effective alternative program for those targeting cardiometabolic markers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pannevis, M C; Houlihan, D F
1992-01-01
To establish the energetic cost of protein synthesis, isolated trout hepatocytes were used to measure protein synthesis and respiration simultaneously at a variety of temperatures. The presence of bovine serum albumin was essential for the viability of isolated hepatocytes during isolation, but, in order to measure protein synthesis rates, oxygen consumption rates and RNA-to-protein ratios, BSA had to be washed from the cells. Isolated hepatocytes were found to be capable of protein synthesis and oxygen consumption at constant rates over a wide range of oxygen tension. Cycloheximide was used to inhibit protein synthesis. Isolated hepatocytes used on average 79.7 +/- 9.5% of their total oxygen consumption on cycloheximide-sensitive protein synthesis and 2.8 +/- 2.8% on maintaining ouabain-sensitive Na+/K(+)-ATPase activity. The energetic cost of protein synthesis in terms of moles of adenosine triphosphate per gram of protein synthesis decreased with increasing rates of protein synthesis at higher temperatures. It is suggested that the energetic cost consists of a fixed (independent of synthesis rate) and a variable component (dependent on synthesis rate).
The effect of nitrification in the oxygen balance of the Upper Chattahoochee River, Georgia
Ehlke, Theodore A.
1979-01-01
Oxygen consumption as a result of nitrification, and carbonaceous bacterial oxidation were compared in a 108 kilometer reach of the Chattahoochee River, Georgia. Nitrogenous and carbonaceous oxygen consumption were separated by using an inhibitor of nitrification 1-allyl-2-thiourea. The comparison was conducted in the laboratory using samples collected from the water column. Nitrification accounted for 38 to 52 percent of the total oxygen consumption. Nitrifying bacteria were enumerated from the same reach of the river. The population of Nitrosomonas ranged from 10 to 1,000 per milliliter in the water column and 100 to 100,000 per gram of benthic sediment. The nitrobacter population ranged from 10 to 100 per milliliter in the water column and 100 to 1,000 per gram in the benthic sediment. The concentration of ammonium, nitrite, and nitrate as N was determined from water samples collected throughout the study reach. The average rate of ammonium disappearance and of nitrate appearance was 0.02 milligram per liter per hour of flow time. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert
2014-05-01
Interannual variations of the hypoxic area that develops every summer over the Texas-Louisiana Shelf are large. The 2008 Action Plan put forth by an alliance of multiple state and federal agencies and tribes calls for a decrease of the hypoxic area through nutrient management in the watershed. Realistic models help build mechanistic understanding of the processes underlying hypoxia formation and are thus indispensable for devising efficient nutrient reduction strategies. Here we present such a model, evaluate its hypoxia predictions against monitoring observations and assess the sensitivity of hypoxia predictions to model resolution, variations in sediment oxygen consumption and choice of physical horizontal boundary conditions. We find that hypoxia predictions on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We also show that the strength of vertical stratification is an important predictor of oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia predictions.
Respiratory diagnostic possibilities during closed circuit anesthesia.
Verkaaik, A P; Erdmann, W
1990-01-01
An automatic feed back controlled totally closed circuit system (Physioflex) has been developed for quantitative practice of inhalation anesthesia and ventilation. In the circuit system the gas is moved unidirectionally around by a blower at 70 l/min. In the system four membrane chambers are integrated for ventilation. Besides end-expiratory feed back control of inhalation anesthetics, and inspiratory closed loop control of oxygen, the system offers on-line registration of flow, volume and respiratory pressures as well as a capnogram and oxygen consumption. Alveolar ventilation and static compliance can easily be derived. On-line registration of oxygen consumption has proven to be of value for determination of any impairment of tissue oxygen supply when the oxygen delivery has dropped to critical values. Obstruction of the upper or lower airways are immediately detected and differentiated. Disregulations of metabolism, e.g. in malignant hyperthermia, are seen in a pre-crisis phase (increase of oxygen consumption and of CO2 production), and therapy can be started extremely early and before a disastrous condition has developed. Registration of compliance is only one of the continuously available parameters that guarantee a better and adequate control of lung function (e.g. atalectasis is early detected). The newly developed sophisticated anesthesia device enlarges tremendously the monitoring and respiratory diagnostic possibilities of artificial ventilation, gives new insights in the (patho)physiology and detects disturbances of respiratory parameters and metabolism in an early stage.
NASA Astrophysics Data System (ADS)
Gurley, Katelyn; Shang, Yu; Yu, Guoqiang
2012-07-01
This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.
Gurley, Katelyn; Shang, Yu
2012-01-01
Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482
Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi
2016-01-01
Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. © 2015 American Institute of Chemical Engineers.
Air-breathing during activity in the fishes amia calva and lepisosteus oculatus
Farmer; d
1998-04-01
Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air and water was measured during mild activity in bowfin (Amia calva) and spotted gar (Lepisosteus oculatus) by sealing a fish in an acrylic flume that contained an air-hole. At 19-23 degreesC, the rate of oxygen consumption from air in both species was modest at rest. During low-level exercise, more than 50 % of the oxygen consumed by both species was from the air (53.0+/-22.9 % L. oculatus; 66.4+/-8.3 % A. calva).
Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition
Fink, Brian D.; Herlein, Judy A.; O’Malley, Yunxia; Sivitz, William I.
2012-01-01
It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO2 increased, but only marginally after high glucose exposure while oleate oxidation to CO2 decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets. PMID:22745753
FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.
Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A
2009-06-01
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.
FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL
Etzkorn, James R.; McQuaide, Sarah C.; Anderson, Judy B.; Meldrum, Deirdre R.; Parviz, Babak A.
2010-01-01
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing “single-cell” biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells. PMID:20694048
Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba.
Hoffmann, Friederike; Røy, Hans; Bayer, Kristina; Hentschel, Ute; Pfannkuchen, Martin; Brümmer, Franz; de Beer, Dirk
2008-01-01
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6-12 μmol cm -3 sponge day -1 . Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm -3 sponge day -1 , and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.
Influence of experimental hyperthyroidism on skeletal muscle metabolism in the rat.
van Hardeveld, C; Kassenaar, A A
1977-05-01
In this study hind-limb perfusion was used to investigate the influence of thyroid hormones on some metabolic parameters in the skeletal muscle of the rat. Daily injection of 20 microng L-thyroxine (T4) per 100 g b. w. for a week caused a 25% increase in oxygen consumption. Further enlargement of the T4 dose had little additive effect. In the dose range 20--80 microng T4/100g b.w., no important changes occurred in lactate production or glucose consumption. Only at the highest T4 dose did the glucose consumption increase significantly. The most profound effect of T4 was on lipolysis. A daily dose of 20 microng T4/100 g b. w. gave a doubling of glycerol production rate, the maximum occuring at a dose of 40 microng T4/100 g b. w. Inactivation of the nervous system was without influence on the T4-induced increase in oxygen consumption. However, the T4-induced elevation of lipolysis disappeared after abolition of the nervous activity. This raises the possibility that the T4 effect on lipolysis in skeletal muscle is a potentiation of catecholamine effects. The T4-induced oxygen consumption increase might be dependent not on the lipolytic process but rather on other energy-consuming cell processes.
Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion
2009-01-01
Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051
Species-specific impacts of suspended sediments on gill structure and function in coral reef fishes.
Hess, Sybille; Prescott, Leteisha J; Hoey, Andrew S; McMahon, Shannon A; Wenger, Amelia S; Rummer, Jodie L
2017-11-15
Reduced water quality, in particular increases in suspended sediments, has been linked to declines in fish abundance on coral reefs. Changes in gill structure induced by suspended sediments have been hypothesized to impair gill function and may provide a mechanistic basis for the observed declines; yet, evidence for this is lacking. We exposed juveniles of three reef fish species ( Amphiprion melanopus , Amphiprion percula and Acanthochromis polyacanthus ) to suspended sediments (0-180 mg l -1 ) for 7 days and examined changes in gill structure and metabolic performance (i.e. oxygen consumption). Exposure to suspended sediments led to shorter gill lamellae in A. melanopus and A. polyacanthus and reduced oxygen diffusion distances in all three species. While A. melanopus exhibited impaired oxygen uptake after suspended sediment exposure, i.e. decreased maximum and increased resting oxygen consumption rates resulting in decreased aerobic scope, the oxygen consumption rates of the other two species remained unaffected. These findings imply that species sensitive to changes in gill structure such as A. melanopus may decline in abundance as reefs become more turbid, whereas species that are able to maintain metabolic performance despite suspended sediment exposure, such as A. polyacanthus or A. percula , may be able to persist or gain a competitive advantage. © 2017 The Author(s).
Ocular oxygen consumption: estimates using vitreoperfusion in the cat.
Blair, Norman P; Liu, Ting; Warren, Keith A; Glaser, David A; Kennedy, Marc; Tran, Huan; Larson, Christopher A; Atluri, Prasant; Saidel, Michael A; Blair, Michael P
2004-02-01
Little is known about the ocular oxygen consumption rate (QO2) in human diseases. Alterations in QO2 must occur in many conditions, such as retinal ischemia. We present a method of estimating QO2 that eventually could be used in patients during vitrectomy surgery. We performed vitreoperfusion (i.e., perfusion of the vitreous cavity after vitrectomy) in 14 cat eyes with no ocular blood flow. The solution contained nutrients at a high partial pressure of oxygen (PO2). In eight eyes, the retinas were undisturbed (Group 1), and in six eyes, we excised the retinas (Group 2). We estimated QO2 in both groups on the basis of the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. The mean and standard deviation of QO2 was 3.2 +/- 0.8 microL/min in Group 1 and 0.4+/- 0.7 microL/min in Group 2, with the difference being the retinal contribution, 88%. In Group 1, metabolism, bulk flow, and diffusion accounted for 82, 13, and 5%, respectively, of the oxygen loss from the vitreoperfusion solution. We estimated ocular oxygen consumption by means of vitreoperfusion. Eventually, the pathophysiology of human diseases may be clarified by similar measurements during vitrectomy.
NASA Astrophysics Data System (ADS)
Rück, A.; Breymayer, J.; Lilge, L.; Mandel, A.; Schäfer, P.; von Einem, B.; von Arnim, C.; Kalinina, S.
2018-02-01
A common property during tumor development is altered energy metabolism, which could lead to a switch from oxidative phosphorylation and glycolysis. The impact of this switch for theranostic applications could be significant. Interestingly altered metabolism could be correlated with a change in the fluorescence lifetimes of both NAD(P)H and FAD. However, as observed in a variety of investigations, the situation is complex and the result is influenced by parameters like oxidative stress, pH or viscosity. Besides metabolism, oxygen levels and consumption has to be taken into account in order to understand treatment responses. For this, correlated imaging of phosphorescence and fluorescence lifetime parameters has been investigated by us and used to observe metabolic markers simultaneously with oxygen concentrations. The technique is based on time correlated single photon counting to detect the fluorescence lifetime of NAD(P)H and FAD by FLIM and the phosphorescence lifetime of newly developed phosphors and photosensitizers by PLIM. For this, the photosensitizer TLD1433 from Theralase, which is based on a ruthenium (II) coordination complex, was used. TLD1433 which acts as a redox indicator was mainly found in cytoplasmatic organelles. The most important observation was that TLD1433 can be used as a phosphor to follow up local oxygen concentration and consumption during photodynamic therapy. Oxygen consumption was accompanied by a change in cell metabolism, observed by simultaneous FLIM/PLIM. The combination of autofluorescence-FLIM and phosphor-PLIM in luminescence lifetime microscopy provides new insights in light induced reactions.
2006-11-01
analyze the associated gait biomechanics . Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were...measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configurations that were comprised of Army clothing and...increases users’ metabolic cost while carrying various loads and alters their gait biomechanics compared to conventional load carriage using a backpack
Determine the Role of Canonical Wnt Signaling in Ovarian Tumorigenesis
2015-12-01
studies have shown that oxphos is increased during OIS, leading to an increase in oxygen consumption (Fig. 1).38,42,52 This is likely due to increased TCA...senescent cells display an increase in oxygen consumption but no appreciable increase in ATP levels. The mechanism by which increased fatty acid...benign ovarian tumors into invasive EOCs, and to investigate the effects of inhibition of the canonical Wnt signaling on malignant behavior of EOC cells
Ramos-Corella, Karime; Martínez-Córdova, Luis Rafael; Enríquez-Ocaña, Luis Fernando; Miranda-Baeza, Anselmo; López-Elías, José Antonio
2014-09-01
Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate) as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.
Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E
2016-02-01
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Yang, Jehoon; Shen, Jun
2006-09-01
The significance of changes in cerebral oxygen consumption in focally activated brain tissue is still controversial. Since the rate of cerebral oxygen consumption is tightly coupled to that of tricarboxylic acid cycle which can be measured from the turnover kinetics of [4-(13)C]glutamate using in vivo (1)H{(13)C} magnetic resonance spectroscopy, changes in tricarboxylic acid cycle flux rate were assessed in primary somatosensory cortex of alpha-chloralose anesthetized rats during electrical forepaw stimulation. With markedly improved (1)H{(13)C} magnetic resonance spectroscopy technique and the use of high magnetic field strength of 11.7 T accessible to the current study, [4-(13)C]glutamate at 2.35 ppm was spectrally resolved from overlapping resonances of [4-(13)C]glutamine at 2.46 ppm and [2-(13)C]GABA at 2.28 ppm as well as the more distal [3-(13)C]glutamate and [3-(13)C]glutamine. The results showed a significantly increased V(TCA) in focally activated primary somatosensory cortex during forepaw stimulation, corresponding to approximately 51 +/- 27% (n = 6, mean +/- SD) increase in cerebral oxygen consumption rate. Considering the high efficiency in producing adenosine triphosphate by oxidative metabolism of glucose, the results demonstrate that aerobic oxidative metabolism provides the majority of energy required for cerebral focal activation in alpha-chloralose anesthetized rats subjected to forepaw stimulation.
Nigg, B M; Stefanyshyn, D; Cole, G; Stergiou, P; Miller, J
2003-04-01
The purposes of this study were (a) to determine group and individual differences in oxygen consumption during heel-toe running and (b) to quantify the differences in EMG activity for selected muscle groups of the lower extremities when running in shoes with different mechanical heel characteristics. Twenty male runners performed heel-toe running using two shoe conditions, one with a mainly elastic and a visco-elastic heel. Oxygen consumption was quantified during steady state runs of 6 min duration, running slightly above the aerobic threshold providing four pairs of oxygen consumption results for comparison. Muscle activity was quantified using bipolar surface EMG measurements from the tibialis anterior, medial gastrocnemius, vastus medialis and the hamstrings muscle groups. EMG data were sampled for 5 s every minute for the 6 min providing 30 trials. EMG data were compared for the different conditions using an ANOVA (alpha=0.05). The findings of this study showed that changes in the heel material characteristics of running shoes were associated with (a) subject specific changes in oxygen consumption and (b) subject and muscle specific changes in the intensities of muscle activation before heel strike in the lower extremities. It is suggested that further study of these phenomena will help understand many aspects of human locomotion, including work, performance, fatigue and possible injuries.
2017-09-01
oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation
Oxygen consumption and distribution in the Long-Evans rat retina
Lau, Jennifer C.M.; Linsenmeier, Robert A.
2012-01-01
The purpose of this study was to investigate the oxygen distribution and consumption in the pigmented Long-Evans rat retina in vivo during dark and light adaptation, and to compare these results to previous work on cat and albino rat. Double-barreled microelectrodes recorded both intraretinal PO2 depth profiles and the electroretinogram (ERG), which was used to identify the boundaries of the retina. Light adaptation decreased photoreceptor oxygen consumption per unit volume (Qav) from 3.0±0.4 ml•100 g−1•min−1 (mean ± SEM) in darkness to 1.8±0.2 ml•100 g−1•min−1 and increased minimum outer retinal PO2 at the inner segments (Pmin) from 17.4±3.0 to 29.9±5.3 mmHg. The effects of light on outer retinal PO2 and Qav were similar to those previously observed in cat, monkey, and albino rats; however, dark-adapted Pmin was higher in rat than cat. The parameters derived from fitting the oxygen diffusion model to the rat data were compared to those from cat. Oxygen consumption of the inner segments (Q2) and choroidal PO2 (PC) in rat and cat were similar. Pmin was higher in rat than in cat for two reasons: first, rat photoreceptors have a shorter oxygen consuming region; and second, the retinal circulation supplied a greater fraction of consumed oxygen to rat photoreceptors. The average PO2 across the inner retina (PIR) was not different in dark adaptation (25.4±4.8 mm Hg) and light adaptation (28.8±5.4 mmHg) when measured from PO2 profiles. However, with the microelectrode stationary at 9–18% retinal depth, a small consistent decrease in PO2 occurred during illumination. Flickering light at 6 Hz decreased inner retinal PO2 significantly more than an equivalent steady illumination, suggesting that changes in blood flow did not completely compensate for increased metabolism. This study comprehensively characterized rat retinal oxygenation in both light and dark, and determined the similarities and differences between rat and cat retinas. PMID:22828049
Townsend, Logan K; Couture, Katie M; Hazell, Tom J
2014-12-01
Most sprint interval training (SIT) research involves cycling as the mode of exercise and whether running SIT elicits a similar excess postexercise oxygen consumption (EPOC) response to cycling SIT is unknown. As running is a more whole-body-natured exercise, the potential EPOC response could be greater when using a running session compared with a cycling session. The purpose of the current study was to determine the acute effects of a running versus cycling SIT session on EPOC and whether potential sex differences exist. Sixteen healthy recreationally active individuals (8 males and 8 females) had their gas exchange measured over ∼2.5 h under 3 experimental sessions: (i) a cycle SIT session, (ii) a run SIT session, and (iii) a control (CTRL; no exercise) session. Diet was controlled. During exercise, both SIT modes increased oxygen consumption (cycle: male, 1.967 ± 0.343; female, 1.739 ± 0.296 L·min(-1); run: male, 2.169 ± 0.369; female, 1.791 ± 0.481 L·min(-1)) versus CTRL (male, 0.425 ± 0.065 L·min(-1); female, 0.357 ± 0.067; P < 0.001), but not compared with each other (P = 0.234). In the first hour postexercise, oxygen consumption was still increased following both run (male, 0.590 ± 0.065; female, 0.449 ± 0.084) and cycle SIT (male, 0.556 ± 0.069; female, 0.481 ± 0.110 L·min(-1)) versus CTRL and oxygen consumption was maintained through the second hour postexercise (CTRL: male, 0.410 ± 0.048; female, 0.332 ± 0.062; cycle: male, 0.430 ± 0.047; female, 0.395 ± 0.087; run: male, 0.463 ± 0.051; female, 0.374 ± 0.087 L·min(-1)). The total EPOC was not significantly different between modes of exercise or males and females (P > 0.05). Our data demonstrate that the mode of exercise during SIT (cycling or running) is not important to O2 consumption and that males and females respond similarly.
Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croughwell, N.; Lyth, M.; Quill, T.J.
1990-11-01
We tested the hypothesis that insulin-dependent diabetic patients with coronary artery bypass graft surgery experience altered coupling of cerebral blood flow and oxygen consumption. In a study of 23 patients (11 diabetics and 12 age-matched controls), cerebral blood flow was measured using 133Xe clearance during nonpulsatile, alpha-stat blood gas managed cardiopulmonary bypass at the conditions of hypothermia and normothermia. In diabetic patients, the cerebral blood flow at 26.6 +/- 2.42 degrees C was 25.3 +/- 14.34 ml/100 g/min and at 36.9 +/- 0.58 degrees C it was 27.3 +/- 7.40 ml/100 g/min (p = NS). The control patients increased cerebralmore » blood flow from 20.7 +/- 6.78 ml/100 g/min at 28.4 +/- 2.81 degrees C to 37.6 +/- 8.81 ml/100 g/min at 36.5 +/- 0.45 degrees C (p less than or equal to 0.005). The oxygen consumption was calculated from jugular bulb effluent and increased from hypothermic values of 0.52 +/- 0.20 ml/100 g/min in diabetics to 1.26 +/- 0.28 ml/100 g/min (p = 0.001) at normothermia and rose from 0.60 +/- 0.27 to 1.49 +/- 0.35 ml/100 g/min (p = 0.0005) in the controls. Thus, despite temperature-mediated changes in oxygen consumption, diabetic patients did not increase cerebral blood flow as metabolism increased. Arteriovenous oxygen saturation gradients and oxygen extraction across the brain were calculated from arterial and jugular bulb blood samples. The increase in arteriovenous oxygen difference between temperature conditions in diabetic patients and controls was significantly different (p = 0.01). These data reveal that diabetic patients lose cerebral autoregulation during cardiopulmonary bypass and compensate for an imbalance in adequate oxygen delivery by increasing oxygen extraction.« less
NASA Astrophysics Data System (ADS)
Dunaev, Andrey V.; Sidorov, Victor V.; Krupatkin, Alexander I.; Rafailov, Ilya E.; Palmer, Scott G.; Sokolovski, Sergei G.; Stewart, Neil A.; Rafailov, Edik U.
2014-02-01
Multi-functional laser non-invasive diagnostic systems, such as "LAKK-M", allow the study of a number of microcirculatory parameters, including blood microcirculatory index (Im) (by laser Doppler flowmetry, LDF) and oxygen saturation (StO2) of skin tissue (by tissue reflectance oximetry, TRO). Such systems may provide significant information relevant to physiology and clinical medicine. The aim of this research was to use such a system to study the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted with 8 healthy volunteers - 3 females and 5 males of 21-49 years. Each volunteer was subjected to basic 3 minute tests. The volunteers were observed for between 1-4 months each, totalling 422 basic tests. Measurements were performed on the palmar surface of the right middle finger and the forearm medial surface. Wavelet analysis was used to study rhythmic oscillations in LDF- and TRO-data. Tissue oxygen consumption (from arterial and venal blood oxygen saturation and nutritive flux volume) was calculated for all volunteers during "adaptive changes" as (617+/-123 AU) and (102+/-38 AU) with and without arteriovenous anastomoses (AVAs) respectively. This demonstrates increased consumption compared to normal (495+/-170 AU) and (69+/-40 AU) with and without AVAs respectively. Data analysis demonstrated the emergence of resonance and synchronization of rhythms of microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and potentially from psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes suggest increased oxygen consumption resulting from increased microvascular blood flow velocity.
NASA Astrophysics Data System (ADS)
Su, Jianzhong; Dai, Minhan; He, Biyan; Wang, Lifang; Gan, Jianping; Guo, Xianghui; Zhao, Huade; Yu, Fengling
2017-09-01
We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE), a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg-1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was -23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 %) was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.
Clarification of cyanide's effect on oxygen transport characteristics in a canine model.
Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P
2007-03-01
To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. A prospective controlled experiment was performed at a hospital-based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with alpha-chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning.
Liu, Qing; Zhu, Hai-Yan; Liu, Fang; Ding, Zi-Yuan
2011-11-01
A laboratory test was conducted to study the effects of different temperature and salinity on the oxygen consumption rate and asphyxiation point of chaetognath Sagitta crassa. Both temperature and salinity had significant effects on the oxygen consumption rate (IO) and specific oxygen consumption rate (SO) of S. crassa. When the temperature raised from 5 degrees C to 25 degrees C, the IO and SO of S. crassa increased first, and then presented an obvious decreasing trend, with the regression function being y = 0.0058x3-0.2956x2 +4.415x-8.7816 (R2 = 0.99, P < 0.05) for IO and y = 0.0011x3-0.0546x2+0.8161x-1.6232 (R2 = 0.99, P < 0.05) for SO. The IO and SO at different temperature were in the ranges of 6.30-11.71 microg x ind(-1) x h(-1) and 1.22-2.16 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.18-6.87 mg x L(-1). When the salinity increased from 10 to 40, the IO and SO of S. crassa decreased gradually, with the regression function being y = -0.0068x2-0.1412x+21.702 (R2 = 0.89, P < 0.05) for IO and y = -0.0013x2 -0.0261x+ 4.0114 (R2 = 0.89, P < 0.05) for SO. The IO and SO at different salinity were in the ranges of 4.98-17.73 microg x ind(-1) x h(-1) and 0.92-3.56 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.02-6.24 mg x L(-1). Based on the differences in the oxygen consumption rate and asphyxiation point between S. crassa and other aquatic animals, it was concluded that S. crassa was a stenooxybiotic zooplankton species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wack, L. J., E-mail: linda-jacqueline.wack@med.uni
Purpose: To compare a dedicated simulation model for hypoxia PET against tumor microsections stained for different parameters of the tumor microenvironment. The model can readily be adapted to a variety of conditions, such as different human head and neck squamous cell carcinoma (HNSCC) xenograft tumors. Methods: Nine different HNSCC tumor models were transplanted subcutaneously into nude mice. Tumors were excised and immunoflourescently labeled with pimonidazole, Hoechst 33342, and CD31, providing information on hypoxia, perfusion, and vessel distribution, respectively. Hoechst and CD31 images were used to generate maps of perfused blood vessels on which tissue oxygenation and the accumulation of themore » hypoxia tracer FMISO were mathematically simulated. The model includes a Michaelis–Menten relation to describe the oxygen consumption inside tissue. The maximum oxygen consumption rate M{sub 0} was chosen as the parameter for a tumor-specific optimization as it strongly influences tracer distribution. M{sub 0} was optimized on each tumor slice to reach optimum correlations between FMISO concentration 4 h postinjection and pimonidazole staining intensity. Results: After optimization, high pixel-based correlations up to R{sup 2} = 0.85 were found for individual tissue sections. Experimental pimonidazole images and FMISO simulations showed good visual agreement, confirming the validity of the approach. Median correlations per tumor model varied significantly (p < 0.05), with R{sup 2} ranging from 0.20 to 0.54. The optimum maximum oxygen consumption rate M{sub 0} differed significantly (p < 0.05) between tumor models, ranging from 2.4 to 5.2 mm Hg/s. Conclusions: It is feasible to simulate FMISO distributions that match the pimonidazole retention patterns observed in vivo. Good agreement was obtained for multiple tumor models by optimizing the oxygen consumption rate, M{sub 0}, whose optimum value differed significantly between tumor models.« less
Carriker, Colin R.; Vaughan, Roger A.; VanDusseldorp, Trisha A.; Johnson, Kelly E.; Beltz, Nicholas M.; McCormick, James J.; Cole, Nathan H.; Gibson, Ann L.
2016-01-01
[Purpose] To examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. [Methods] Eleven (6 high fit, VO2max 60.1 ± 4.6ml/kg/min; 5 low fit, VO2max 42.4 ± 3.2ml/ kg/min) participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group using a double-blind, placebo-controlled, crossover design. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR with the final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. [Results] Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes were not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively) between VO2max and change in oxygen consumption. No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. [Conclusion] Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max. PMID:28150476
Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T
2002-01-01
Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute hypoxaemia. PMID:11826180
Stark, Michael J; Hodyl, Nicolette A; Belegar V, Kiran Kumar; Andersen, Chad C
2016-03-01
In utero exposure to inflammation results in elevated cerebral oxygen consumption. This increased metabolic demand may contribute to the association between chorioamnionitis and intraventricular haemorrhage (P/IVH). We hypothesised that intrauterine inflammation imposes an elevated cerebral metabolic load and increased fractional oxygen extraction (cFTOE) with cFTOE further increased in the presence of early P/IVH. Eighty-three infants ≤30 weeks gestation were recruited. Exposure to intrauterine inflammation was determined by placental histology. Total internal carotid blood flow (Doppler ultrasound) and near infrared spectroscopy were measured and cerebral oxygen delivery (mcerbDO2), consumption (mcerbVO2) and cFTOE were calculated on days 1 and 3 of life. Primary outcome was defined as death or P/IVH >grade II (cranial sonograph) by day 3. Infants exposed to intrauterine inflammation had higher total internal carotid blood flow (92 vs 63 mL/kg/min) and mcerbDO2 (13.7 vs 10.1 mL/kg/min) than those not exposed to inflammation. Newborns with P/IVH had both higher oxygen consumption and extraction compared with those without sonographic injury regardless of exposure to intrauterine inflammation. Further, in preterms exposed to inflammation, those with P/IVH had higher consumption (6.1 vs 4.8 mL/kg/min) and extraction than those without injury. These differences were observed only on day 1 of life. Although P/IVH is multifactorial in preterm newborns, it is likely that cerebral hypoxic-ischaemia plays a central pathophysiological role. These data provide a mechanistic insight into this process and suggests that the increased cerebral metabolic load imposed by the presence of inflammation results in a higher risk of critical hypoxic ischaemia in the preterm with increased susceptibility to significant P/IVH. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Oxygen dependence of respiration in rat spinotrapezius muscle in situ
Pittman, Roland N.
2012-01-01
The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254
Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch
Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,
2012-01-01
We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.
Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R
2016-03-01
Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Optimizing Hemodynamic Support of Acute Spinal Cord Injury Based on Injury Mechanism
2015-10-01
energy production. tPO2 represents the balance between oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short...extubated (Mechanical ventilation was provided with 100% oxygen ). Over the time course of the next 2 days, SCBF returned to baseline values...1 sheds light on the dynamic changes that occur with oxygenation , blood flow, and metabolic responses in the penumbra of the traumatic spinal cord
Respiration, respiratory metabolism and energy consumption under weightless conditions
NASA Technical Reports Server (NTRS)
Kasyan, I. I.; Makarov, G. F.
1975-01-01
Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.
Chen, C -Y.; Chou, H -N.
2001-07-30
Milkfish (Chanos chanos Forsskal) fingerlings were treated with toxic, nontoxic dinoflagellate Alexandrium minutum cells or toxic algal extract in the water medium without any aeration. Mortality of fish increased with increasing concentrations of toxic, nontoxic algal cells and water-soluble toxic algae extract. Milkfish fingerlings, which were exposed to toxic algae (1.5x10(4)-3.0x10(4) cells/ml) or algal extract [5.13x10(3)-2.05x10(4) cells/ml, 0.195 MU/10(4) cells (toxin concentration)] for 24 h, revealed by light microscopic observations a noticeable edema, hyperplasia and necrosis of secondary gill lamellae. The same toxicological symptom was observed in fish exposed to pure saxitoxin (STX) (6.475x10(-2) &mgr;g/ml) in the water medium. A higher critical oxygen pressure and oxygen consumption rate were also found in the milkfish fingerlings exposed to toxic algae extract (5.13x10(3)-2.05x10(4) cells/ml) and STX (6.475x10(-2) &mgr;g/ml). The cells of nontoxic A. minutum did not cause the gill damage to milkfish, and the extract of nontoxic algae did not cause an increase in oxygen consumption rate or critical oxygen demand of milkfish. From these results, we infer that toxic cells and its extract cause nonspecific response in gill tissues of milkfish. An instant increase in oxygen consumption rate and oxygen demand may be one of the major causes of fish death.
Exercise Heart Rate as a Predictor of Oxygen Consumption During Decompression from Saturation Diving
2002-11-01
Swimming," nt. J. Sports Med., Vol. 18, (1997), pp. 347-353 3. L. B. Rowell, Human Circulation: Regulation during Physical Stress (New York: Oxford...University Press, 1986). 4. American College of Sports Medicine; B. A. Franklin, W. H. Whaley, and E. T. Howley, eds., ACSM’s Guidelines for Exercise...function of oxygen consumption (VO 2)(L/min). Averages of regression parameters for individual subjects. IMMERSED HRvs . V0 2 Depth Slope Min Max Incpt, Min
All About Oxygen in the Ocean: Cheap, Quick and Easy Experiments for Pupils Grades 5 to 10
NASA Astrophysics Data System (ADS)
Soria-Dengg, S.
2015-12-01
The collaborative research project (SFB 754) at GEOMAR Helmholtz-Centre for Ocean Research Kiel, Germany addresses among others the decreasing concentrations of oxygen in the oceans. The school outreach component of the SFB 754 a project funded by the German Science Foundation aims to spread the science behind ocean de-oxygenation in secondary schools in Germany. To realise this goal, a series of hands-on experiments have been developed on different topics like gas solubility in water, gas transport in the ocean, oxygen production by phytoplankton, oxygen consumption by bacteria and experiments on nutrient uptake by phytoplankton. The experiments developed are simple, using low cost and reusable materials thus ensuring affordability in schools. For the hands-on session the following experiments will be presented: (1) The effects of temperature, oxygen partial pressure, nature of solute and nature of solvent on the solubility of oxygen in water will be demonstrated using Luer-Lock syringes, (2) Oxygen transport from the ocean surface to the deep will be shown in an experiment using a modification of the "blue-bottle" experiment, and (3) Simulation of ocean circulation employing a 2-dimensional tank. Applications and experiment ideas using immobilised phytoplankton and other procedures suitable for schools for measuring oxygen consumption by bacteria will be introduced in a poster presentation.
Does Foot Anthropometry Predict Metabolic Cost During Running?
van Werkhoven, Herman; Piazza, Stephen J
2017-10-01
Several recent investigations have linked running economy to heel length, with shorter heels being associated with less metabolic energy consumption. It has been hypothesized that shorter heels require larger plantar flexor muscle forces, thus increasing tendon energy storage and reducing metabolic cost. The goal of this study was to investigate this possible mechanism for metabolic cost reduction. Fifteen male subjects ran at 16 km⋅h -1 on a treadmill and subsequently on a force-plate instrumented runway. Measurements of oxygen consumption, kinematics, and ground reaction forces were collected. Correlational analyses were performed between oxygen consumption and anthropometric and kinetic variables associated with the ankle and foot. Correlations were also computed between kinetic variables (peak joint moment and peak tendon force) and heel length. Estimated peak Achilles tendon force normalized to body weight was found to be strongly correlated with heel length normalized to body height (r = -.751, p = .003). Neither heel length nor any other measured or calculated variable were correlated with oxygen consumption, however. Subjects with shorter heels experienced larger Achilles tendon forces, but these forces were not associated with reduced metabolic cost. No other anthropometric and kinetic variables considered explained the variance in metabolic cost across individuals.
Quantitative confirmation of diffusion-limited oxidation theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, K.T.; Clough, R.L.
1990-01-01
Diffusion-limited (heterogeneous) oxidation effects are often important for studies of polymer degradation. Such effects are common in polymers subjected to ionizing radiation at relatively high dose rate. To better understand the underlying oxidation processes and to aid in the planning of accelerated aging studies, it would be desirable to be able to monitor and quantitatively understand these effects. In this paper, we briefly review a theoretical diffusion approach which derives model profiles for oxygen surrounded sheets of material by combining oxygen permeation rates with kinetically based oxygen consumption expressions. The theory leads to a simple governing expression involving the oxygenmore » consumption and permeation rates together with two model parameters {alpha} and {beta}. To test the theory, gamma-initiated oxidation of a sheet of commercially formulated EPDM rubber was performed under conditions which led to diffusion-limited oxidation. Profile shapes from the theoretical treatments are shown to accurately fit experimentally derived oxidation profiles. In addition, direct measurements on the same EPDM material of the oxygen consumption and permeation rates, together with values of {alpha} and {beta} derived from the fitting procedure, allow us to quantitatively confirm for the first time the governing theoretical relationship. 17 refs., 3 figs.« less
Schlager, Oliver; Gschwandtner, Michael E; Willfort-Ehringer, Andrea; Kurz, Martin; Mueller, Markus; Koppensteiner, Renate; Heinz, Gottfried
2014-12-01
Whether transfusions of packed red blood cells (PRBCs) affect tissue oxygenation in stable critically ill patients is still matter of discussion. The microvascular capacity for tissue oxygenation can be determined noninvasively by measuring transcutaneous oxygen tension (tcpO2). The aim of this study was to assess tissue oxygenation by measuring tcpO2 in stable critically ill patients receiving PRBC transfusions. Nineteen stable critically ill patients, who received 2 units of PRBC, were prospectively included into this pilot study. Transcutaneous oxygen tension was measured continuously during PRBC transfusions using Clark's electrodes. In addition, whole blood viscosity and global hemodynamics were determined. Reliable measurement signals during continuous tcpO2 monitoring were observed in 17 of 19 included patients. Transcutaneous oxygen tension was related to the global oxygen consumption (r=-0.78; P=.003), the arterio-venous oxygen content difference (r=-0.65; P=.005), and the extraction rate (r=-0.71; P=.02). The transfusion-induced increase of the hemoglobin concentration was paralleled by an increase of the whole blood viscosity (P<.001). Microvascular tissue oxygenation by means of tcpO2 was not affected by PRBC transfusions (P=.46). Packed red blood cell transfusions resulted in an increase of global oxygen delivery (P=.02) and central venous oxygen saturation (P=.01), whereas oxygen consumption remained unchanged (P=.72). In stable critically ill patients, microvascular tissue oxygenation can be continuously monitored by Clark's tcpO2 electrodes. According to continuous tcpO2 measurements, the microvascular tissue oxygenation is not affected by PRBC transfusions. Copyright © 2014 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... physical and chemical water quality parameters (such as temperature, dissolved oxygen, pH, and conductivity... unknown. High temperatures can reduce dissolved oxygen concentrations in the water, which slows growth... encystment, increase oxygen consumption, reduce the speed in which they orient themselves in the substrate...
Physical and physiological performances in 10-year-old obese boys.
Osváth, P; Mészáros, Zs; Tóth, Sz; Kiss, K; Mavroudes, M; Ng, N; Mészáros, J
2009-12-01
Fatness generally has a negative influence on the performance of a variety of motor and cardiorespiratory fitness tests. The aim of this comparison was to analyse the effects of three grades of obesity on somatic growth, physical performance and oxygen consumption during exercise. Volunteer boys with definitely different grades of obesity were recruited for the comparison. In the group of mildly obese children (G1; n=23) BMI ranged between 24 kg.m -2 and 26 kg.m -2 ; and individual percent body fat was between 33% and 33.5%. In the case of moderate obesity (G2; n=23) BMI ranged between 26.5 kg.m -2 and 28.5 kg.m -2 ; and percent body fat was between 35% and 36%. In the extremely obese group (G3; n=20) BMI was greater than 31 kg.m -2 ; percent body fat was greater than 37.5%. Oxygen consumption during the 1,200 m run-test was measured by VIMEX-ST-type (USA) telemetric equipment.The greatest absolute aerobic power referred to the G3 boys, and the lowest oxygen consumption was characteristic of the mildly obese group. The very high differences between the body mass means resulted in a more marked inter-group variability in mean relative oxygen uptake.The predicted relative fat and high body fat content observed on the trunk, and the elevated level of resting blood pressure may indicate serious risks for the development of cardio-respiratory and metabolic disease. The very low oxygen consumption relative to body mass and poor physical performance are expected consequences of physiologic and environmental influences on the obese population.
Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.
Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik
2017-05-01
Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.
Weingartner, Gundula M.; Thornton, Sheila J.; Andrews, Russel D.; Enstipp, Manfred R.; Barts, Agnieszka D.; Hochachka, Peter W.
2012-01-01
Many phocid seals are expert divers that remain submerged longer than expected based on estimates of oxygen storage and utilization. This discrepancy is most likely due to an overestimation of diving metabolic rate. During diving, a selective redistribution of blood flow occurs, which may result in reduced metabolism in the hypoperfused tissues and a possible decline in whole-body metabolism to below the resting level (hypometabolism). Thyroid hormones are crucial in regulation of energy metabolism in vertebrates and therefore their control might be an important part of achieving a hypometabolic state during diving. To investigate the effect of thyroid hormones on diving physiology of phocid seals, we measured oxygen consumption, heart rate, and post-dive lactate concentrations in five harbor seals (Phoca vitulina) conducting 5 min dives on command, in both euthyroid and experimentally induced hyperthyroid states. Oxygen consumption during diving was significantly reduced (by 25%) in both euthyroid and hyperthyroid states, confirming that metabolic rate during diving falls below resting levels. Hyperthyroidism increased oxygen consumption (by 7–8%) when resting in water and during diving, compared with the euthyroid state, illustrating the marked effect of thyroid hormones on metabolic rate. Consequently, post-dive lactate concentrations were significantly increased in the hyperthyroid state, suggesting that the greater oxygen consumption rates forced seals to make increased use of anaerobic metabolic pathways. During diving, hyperthyroid seals also exhibited a more profound decline in heart rate than seals in the euthyroid state, indicating that these seals were pushed toward their aerobic limit and required a more pronounced cardiovascular response. Our results demonstrate the powerful role of thyroid hormones in metabolic regulation and support the hypothesis that thyroid hormones play a role in modulating the at-sea metabolism of phocid seals. PMID:23060807
Alders, David J C; Groeneveld, A B Johan; Binsl, Thomas W; van Beek, Johannes H G M
2015-11-15
In normal hearts, myocardial perfusion is fairly well matched to regional metabolic demand, although both are distributed heterogeneously. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. In the present study, we investigated whether metabolism-perfusion correlation diminishes during coronary stenosis, indicating increasing mismatch of regional oxygen supply to demand. Thirty anesthetized male pigs were studied: controls without coronary stenosis (n = 11); group I, left anterior descending (LAD) coronary stenosis leading to coronary perfusion pressure reduction to 70 mmHg (n = 6); group II, stenosis with perfusion pressure of about 35 mmHg (n = 6); and group III, stenosis with perfusion pressure of 45 mmHg combined with adenosine infusion (n = 7). [2-(13)C]- and [1,2-(13)C]acetate infusion was used to calculate regional O2 consumption from glutamate NMR spectra measured for multiple tissue samples of about 100 mg dry mass in the LAD region. Blood flow was measured with microspheres in the same regions. In control hearts without stenosis, regional oxygen extraction did not correlate with basal blood flow. Average myocardial O2 delivery and consumption decreased during coronary stenosis, but vasodilation with adenosine counteracted this. Regional oxygen extraction was on average decreased during stenosis, suggesting adaptation of metabolism to lower oxygen supply after half an hour of ischemia. Whereas regional O2 delivery correlated with O2 consumption in controls, this relation was progressively lost with graded coronary hypotension but partially reestablished by adenosine infusion. Therefore, coronary stenosis leads to heterogeneous metabolic stress indicated by decreasing regional O2 supply to demand matching in myocardium during partial coronary obstruction. Copyright © 2015 the American Physiological Society.
Oxygen consumption during exercise in a heated pool.
Kirby, R L; Sacamano, J T; Balch, D E; Kriellaars, D J
1984-01-01
The heated hydrotherapy pool is a common exercise site for patients with painful musculoskeletal conditions. Oxygen consumption of swimming is 87 to 89% of maximum in postmyocardial infarction patients according to one recent investigation. We studied 13 able-bodied subjects to test the hypothesis that enough energy could be expended during various forms of hydrotherapy to produce both an aerobic training effect and a risk to patients with coronary artery disease. Oxygen consumption (VO2) was measured in six settings: resting supine; resting seated shoulder deep in the pool (36C); walking at comfortable speed in chest-deep water; running at the fastest speed possible in chest-deep water; using hand paddles; and running in place at shoulder depth. The mean VO2 expressed in ml/kg/min (and metabolic equivalents) were 4.91 (1.00), 4.93 (1.02), 9.34 (2.01), 27.79 (6.23), 18.25 (4.30) and 29.11 (7.09) respectively, suggesting that the more vigorous exercises stress aerobic capacity heavily but not excessively.
Wali, Jibran A; Galic, Sandra; Tan, Christina Yr; Gurzov, Esteban N; Frazier, Ann E; Connor, Timothy; Ge, Jingjing; Pappas, Evan G; Stroud, David; Varanasi, L Chitra; Selck, Claudia; Ryan, Michael T; Thorburn, David R; Kemp, Bruce E; Krishnamurthy, Balasubramanian; Kay, Thomas Wh; McGee, Sean L; Thomas, Helen E
2018-01-01
BCL-2 proteins are known to engage each other to determine the fate of a cell after a death stimulus. However, their evolutionary conservation and the many other reported binding partners suggest an additional function not directly linked to apoptosis regulation. To identify such a function, we studied mice lacking the BH3-only protein BIM. BIM -/- cells had a higher mitochondrial oxygen consumption rate that was associated with higher mitochondrial complex IV activity. The consequences of increased oxygen consumption in BIM -/- mice were significantly lower body weights, reduced adiposity and lower hepatic lipid content. Consistent with reduced adiposity, BIM -/- mice had lower fasting blood glucose, improved insulin sensitivity and hepatic insulin signalling. Lipid oxidation was increased in BIM -/- mice, suggesting a mechanism for their metabolic phenotype. Our data suggest a role for BIM in regulating mitochondrial bioenergetics and metabolism and support the idea that regulation of metabolism and cell death are connected.
Gao, Xiaoguang; Wang, Zhenyu; Miao, Jing; Xie, Li; Dai, Yan; Li, Xingmin; Chen, Yong; Luo, Hailing; Dai, Ruitong
2014-02-01
Fifty male Ningxia Tan sheep were randomly divided into five groups (10 per group). Different feeding strategies were applied to each group for 120 days prior to slaughter. The sheep belong to five groups were pastured for 0 h (feedlot-fed), 2h, 4h, 8h, 12h per day on a natural grazing ground, respectively. M. semitendinosus muscle from Tan sheep was obtained after slaughter. Instrumental color, pH values, oxygen consumption rate, metmyoglobin reducing activity and relative metmyoglobin percentages were analyzed after 1, 3, 5, 7 and 9 days of refrigerated storage. Long-term daily grazing and herbage-based diet were conducive to maintain a lower oxygen consumption rate, higher metmyoglobin reducing activity and lower metmyoglobin accumulation. The combination of pasture-fed and feedlot-fed was conducive to weight gain, and at the same time, increased the color stability of the meat from Ningxia Tan sheep. © 2013.
Muscimol microinjected in the arcuate nucleus affects metabolism, body temperature & ventilation.
Schlenker, Evelyn H
2016-06-15
Effects of microinjection of 2 doses of γ-aminobutyric acid (GABA)A receptor agonist, muscimol (M), into the hypothalamic arcuate nucleus on oxygen consumption and control of ventilation over time and body temperature (BT) at the end of the experiment were compared in adult male and female rats. Relative to cerebrospinal fluid (CSF, 0 nmol), BT was decreased only in male rats with both doses of M, while in female rats, the 5 nmol dose depressed oxygen consumption. Ventilation was depressed by 5 nmol M in male and 10 nmol M in female rats by decreasing tidal volume. M did not affect the ventilatory response of male or female rats to hypoxia, whereas in females 5 and 10 nmol M and in males 10 nmol M depressed the ventilatory response to hypercapnia. Thus, in rats GABAA receptors in the arcuate nucleus modulate BT, oxygen consumption, and ventilation in air and in response to hypercapnia in a sexually dimorphic manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Suminski, Richard R; Robertson, Robert J; Goss, Fredric L; Olvera, Norma
2008-08-01
Whether the translation of verbal descriptors from English to Spanish affects the validity of the Children's OMNI Scale of Perceived Exertion is not known, so the validity of a Spanish version of the OMNI was examined with 32 boys and 36 girls (9 to 12 years old) for whom Spanish was the primary language. Oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and ratings of perceived exertion for the overall body (RPE-O) were measured during an incremental treadmill test. All response values displayed significant linear increases across test stages. The linear regression analyses indicated RPE-O values were distributed as positive linear functions of oxygen consumption, ventilation, respiratory rate, respiratory exchange ratio, heart rate, and percent of maximal oxygen consumption. All regression models were statistically significant. The Spanish OMNI Scale is valid for estimating exercise effort during walking and running amongst Hispanic youth whose primary language is Spanish.
INFLUENCE OF INHALATION INJURY ON ENERGY EXPENDITURE IN SEVERELY BURNED CHILDREN
Przkora, Rene; Fram, Ricki Y.; Herndon, David N.; Suman, Oscar E.; Mlcak, Ronald P.
2014-01-01
Objective Determine the effect of inhalation injury on burn-induced hypermetabolism in children. Design Prospective study comparing hypermetabolism (i.e., resting energy expenditure and oxygen consumption) in burned children with and without inhalation injury during acute hospitalization. Setting Single pediatric burn center. Patients Eighty-six children (1–18 years) with ≥ 40% total body surface area burns were stratified to two groups: no inhalation injury and inhalation injury. Interventions None. Main Measurements and Results Inhalation injury was diagnosed based on bronchoscopic evaluation. At admission, PaO2:FiO2 ratios (an index of respiratory distress) were significantly higher in patients with no inhalation injury than in patient with inhalation injury. No differences were detected in resting energy expenditure or percent of the predicted basal metabolic rate between groups. Additionally, oxygen consumption did not significantly differ between groups. Conclusions Inhalation injury does not augment the burn-induced hypermetabolic stress response in children, as reflected by resting energy expenditure and oxygen consumption. PMID:24893760
Dynamics of oxygen supply and consumption during mainstream large-scale composting in China.
Zeng, Jianfei; Shen, Xiuli; Han, Lujia; Huang, Guangqun
2016-11-01
This study characterized some physicochemical and biological parameters to systematically evaluate the dynamics of oxygen supply and consumption during large-scale trough composting in China. The results showed that long active phases, low maximum temperatures, low organic matter losses and high pore methane concentrations were observed in different composting layers. Pore oxygen concentrations in the top, middle and bottom layers maintained <5vol.% for 40, 42 and 45days, respectively, which accounted for more than 89% of the whole period. After each mechanical turning, oxygen was consumed at a stable respiration rate to a concentration of 5vol.% in no more than 99min and remained anaerobic in the subsequent static condition. The daily percentage of time under aerobic condition was no more than 14% of a single day. Therefore, improving FAS, adjusting aeration interval or combining turning with forced aeration was suggested to provide sufficient oxygen during composting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farrell, K; Wasser, T
1997-01-01
We describe a new derived hemodynamic oxygenation parameter, the S factor (S). The factor is based on oxygen delivery and oxygen consumption and can range from -3 to 1. It allows simplified mathematical modeling of clinical problems of oxygen transport and can be applied to many clinical situations. A new hemodynamic oxygenation parameter, the S factor (S), is introduced as an aid to mathematical modeling. It is defined as follows: [formula: see text] (DO2 = oxygen delivery, VO2 = oxygen consumption) S can theoretically vary from -3 (DO2 = VO2) to +1 (VO2 = 0). When DO2/VO2 = 4 (ie. OER = 0.25), S = 0. An S < 0 implies utilization of reserve oxygen transport capacity. An S > 0 implies increased oxygen delivery in relation to oxygen consumption (ie. "shunted oxygen delivery"). By algebraic manipulation and substitution of the components of DO2 into Equation 1: DO2 = Q x Ca x 10 DO2 = Q [(Hb)(Sat)(1.36) + PaO2(.0031)] 10 (2) the following equations can be derived: [formula: see text] [formula: see text] Ca - Cv (Ca = arterial content, Cv = venous content) can be determined by substituting components of oxygen consumption: VO2 = Q (Ca - Cv) x 10 (5) into equation 1 and solving for Ca - Cv. [formula: see text] Equation 6 can be simplified to: [formula: see text] A previously defined relationship between mixed venous PO2 (PvO2) and DO2/VO2 (where calculated P50 is 26.6 +/- 1.0) can be used to modify S in a clinically relevant manner. PvO2 = 5.44D O2/VO2 + 18.16 (8) The relationship between S and PvO2 can be defined by substituting Equation 4 into Equation 1 and solving for PvO2 PvO2 = [21.76/(1-S)] + 18.16 (9) As an example, at a PvO2 of 28 torr (anaerobic threshold), S = -1.2. The relationship between PvO2 and S is shown in Figure 1. S, which can also be defined as 1-4(VO2/DO2) or 1-4(OER), is a useful tool for mathematical modeling of global problems of oxygen transport because the previously derived equations with the S value allow the components of oxygen transport to be interrelated in a clinically relevant manner. Additional advantages of using S in mathematical modeling are: 1. Conceptually it 'fits' in that in regards to the sign (+ or -), as a -S implies utilization of reserve oxygen transport capacity and a +S implies wasted or excess oxygen delivery (shunted). 2. These concepts are easily quantified using the S factor. 3. It 'spreads out' the difference between values for parameters (OER or S) integrating components of oxygen transport, ie. in the 'normal state' regarding oxygen transport, OER = 0.25 and S = 0. At the anaerobic threshold (PvO2 = 28 torr), OER = 0.55 and S = -1.2. Thus, the change in OER from 'normal state' to anaerobic threshold is 0.3 (0.55-0.25) and the change in S is 1.2. This represents a four-fold increase. Four examples of mathematical modeling of global problems of oxygen transport using the S factor are described below.
NASA Astrophysics Data System (ADS)
Prendergast-Miller, Miranda T.; Thurston, Josh; Taylor, Joe; Helgason, Thorunn; Ashauer, Roman; Hodson, Mark E.
2017-04-01
We applied a fluorescence-based respirometry method currently devised for aquatic ecotoxicology studies to rapidly measure soil microbial oxygen consumption as a function of soil quality. In this study, soil was collected from an arable wheat field and the field margin. These two soil habitats are known to differ in their soil quality due to differences in their use and management as well as plant, microbial and earthworm community. The earthworm Lumbricus terrestris was incubated in arable or margin soil for three weeks. After this initial phase, a transfer experiment was then conducted to test the hypothesis that earthworm 'migration' alters soil microbial community function and diversity. In this transfer experiment, earthworms incubated in margin soil were transferred to arable soil. The converse transfer (i.e. earthworms incubated in arable soil) was also conducted. Soils of each type with no earthworms were also incubated as controls. After a further four week incubation, the impact of earthworm migration on the soil microbial community was tested by measuring oxygen consumption. Replicated soil slurry subsamples were aliquoted into individual respirometer wells (600 μl volume) on a glass 24-well microplate (Loligo Systems, Denmark) fitted with non-invasive, reusable oxygen sensor spots. The sealed microplate was then attached to an oxygen fluorescence sensor (SDR SensorDish Reader, PreSens, Germany). Oxygen consumption was measured in real-time over a 2 hr period following standard operating procedures. Soil microbial activity was measured with and without an added carbon source (glucose or cellulose, 50 mg C L-1). Using this system, we were able to differentiate between soil type, earthworm treatment and C source. Earthworm-driven impacts on soil microbial oxygen consumption were also supported by changes in soil microbial community structure and diversity revealed using DNA-based sequencing techniques. This method provides a simple and rapid system for measuring soil quality and has the potential for use in a variety of scenarios investigating impacts on soil microbial function.
Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.
Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio
2005-03-01
To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.
Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.
Tune, J D; Richmond, K N; Gorman, M W; Feigl, E O
2000-06-27
Inhibition of nitric oxide (NO) synthesis results in very little change in coronary blood flow, but this is thought to be because cardiac adenosine concentration increases to compensate for the loss of NO vasodilation. Accordingly, in the present study, adenosine measurements were made before and during NO synthesis inhibition during exercise. Experiments were performed in chronically instrumented dogs at rest and during graded treadmill exercise before and during inhibition of NO synthesis with N(omega)-nitro-L-arginine (L-NNA, 35 mg/kg IV). Before inhibition of NO synthesis, myocardial oxygen consumption increased approximately 3.7-fold, and coronary blood flow increased approximately 3.2-fold from rest to the highest level of exercise, and this was not changed by NO synthesis inhibition. Coronary venous oxygen tension was modestly reduced by L-NNA at all levels of myocardial oxygen consumption. However, the slope of the relationship between myocardial oxygen consumption and coronary venous oxygen tension was not altered by L-NNA. Inhibition of NO synthesis did not increase coronary venous plasma or estimated interstitial adenosine concentration. During exercise, estimated interstitial adenosine remained well below the threshold concentration necessary for coronary vasodilation before or after L-NNA. NO causes a modest coronary vasodilation at rest and during exercise but does not act as a local metabolic vasodilator. Adenosine does not mediate a compensatory local metabolic coronary vasodilation when NO synthesis is inhibited.
Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping
2014-01-01
The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in U crit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585
Edwards, Thomas; Motl, Robert W; Pilutti, Lara A
2018-01-01
Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min) -1 , or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.
Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.
Bains, Onkar S; Kennedy, Christopher J
2004-04-28
The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.
Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling.
Patel, Rishikesh Kankesh; Brouner, James; Spendiff, Owen
2015-01-01
Dark chocolate (DC) is abundant in flavanols which have been reported to increase the bioavailability and bioactivity of nitric oxide (NO). Increasing NO bioavailability has often demonstrated reduced oxygen cost and performance enhancement during submaximal exercise. Nine moderately-trained male participants volunteered to undertake baseline (BL) measurements that comprised a cycle V̇O(2max) test followed by cycling at 80% of their established gas exchange threshold (GET) for 20-min and then immediately followed by a two-minute time-trial (TT). Using a randomised crossover design participants performed two further trials, two weeks apart, with either 40 g of DC or white chocolate (WC) being consumed daily. Oxygen consumption, RER, heart rate and blood lactate (BLa) were measured during each trial. DC consumption increased GET and TT performance compared to both BL and WC (P < 0.05). DC consumption increased V̇O(2max) by 6% compared to BL (P < 0.05), but did not reach statistical significance compared to WC. There were no differences in the moderate-intensity cycling for V̇O₂, RER, BLa and heart rate between conditions, although, V̇O₂ and RER exhibited consistently lower trends following DC consumption compared to BL and WC, these did not reach statistical significance. Chronic supplementation with DC resulted in a higher GET and enhanced TT performance. Consequently, ingestion of DC reduced the oxygen cost of moderate intensity exercise and may be an effective ergogenic aid for short-duration moderate intensity exercise.
Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G
2008-04-01
Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.
Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S
2008-01-01
Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.
Physiological responses and air consumption during simulated firefighting tasks in a subway system.
Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L
2010-10-01
Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared with high-rise firefighting, would have depleted the air supply well before the nominal time used to describe the cylinders.
Clarification of cyanide's effect on oxygen transport characteristics in a canine model
Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P
2007-01-01
Objective To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. Methods A prospective controlled experiment was performed at a hospital‐based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with α‐chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Results Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Conclusion Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning. PMID:17351216
Whitfield, J; Ludzki, A; Heigenhauser, G J F; Senden, J M G; Verdijk, L B; van Loon, L J C; Spriet, L L; Holloway, G P
2016-01-15
Oral consumption of nitrate (NO3(-)) in beetroot juice has been shown to decrease the oxygen cost of submaximal exercise; however, the mechanism of action remains unresolved. We supplemented recreationally active males with beetroot juice to determine if this altered mitochondrial bioenergetics. Despite reduced submaximal exercise oxygen consumption, measures of mitochondrial coupling and respiratory efficiency were not altered in muscle. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased in the absence of markers of lipid or protein oxidative damage. These results suggest that improvements in mitochondrial oxidative metabolism are not the cause of beetroot juice-mediated improvements in whole body oxygen consumption. Ingestion of sodium nitrate (NO3(-)) simultaneously reduces whole body oxygen consumption (V̇O2) during submaximal exercise while improving mitochondrial efficiency, suggesting a causal link. Consumption of beetroot juice (BRJ) elicits similar decreases in V̇O2 but potential effects on the mitochondria remain unknown. Therefore we examined the effects of 7-day supplementation with BRJ (280 ml day(-1), ∼26 mmol NO3(-)) in young active males (n = 10) who had muscle biopsies taken before and after supplementation for assessments of mitochondrial bioenergetics. Subjects performed 20 min of cycling (10 min at 50% and 70% V̇O2 peak) 48 h before 'Pre' (baseline) and 'Post' (day 5 of supplementation) biopsies. Whole body V̇O2 decreased (P < 0.05) by ∼3% at 70% V̇O2 peak following supplementation. Mitochondrial respiration in permeabilized muscle fibres showed no change in leak respiration, the content of proteins associated with uncoupling (UCP3, ANT1, ANT2), maximal substrate-supported respiration, or ADP sensitivity (apparent Km). In addition, isolated subsarcolemmal and intermyofibrillar mitochondria showed unaltered assessments of mitochondrial efficiency, including ADP consumed/oxygen consumed (P/O ratio), respiratory control ratios and membrane potential determined fluorometrically using Safranine-O. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased following BRJ. Therefore, in contrast to sodium nitrate, BRJ supplementation does not alter key parameters of mitochondrial efficiency. This occurred despite a decrease in exercise V̇O2, suggesting that the ergogenic effects of BRJ ingestion are not due to a change in mitochondrial coupling or efficiency. It remains to be determined if increased mitochondrial H2O2 contributes to this response. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Dienel, Gerald A; Cruz, Nancy F
2016-07-01
Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain activation. Aerobic glycolysis, the preferential up-regulation of glucose utilization (CMRglc ) compared with oxygen consumption (CMRO2 ) during brain activation, is blocked by propranolol. Epinephrine release from the adrenal gland stimulates vagus nerve signaling to the locus coeruleus, enhancing norepinephrine release in the brain, and regulation of astrocytic and neuronal metabolism to stimulate CMRglc more than CMRO2 . Propranolol suppresses CMRglc more than CMRO2 . © 2016 International Society for Neurochemistry.
Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration
Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan
2016-01-01
Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment. PMID:27256514
Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration.
Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan
2016-06-03
Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.
Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration
NASA Astrophysics Data System (ADS)
Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan
2016-06-01
Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.
NASA Astrophysics Data System (ADS)
Liu, Fang; Luo, Qingming; Xu, Guodong; Li, Pengcheng
2003-12-01
Near infrared spectroscopy (NIRS) has been developed as a non-invasive method to assess O2 delivery, O2 consumption and blood flow, in diverse local muscle groups at rest and during exercise. The aim of this study was to investigate local O2 consumption in exercising muscle by use of near-infrared spectroscopy (NIRS). Ten elite athletes of different sport items were tested in rest and during step incremental load exercise. Local variations of quadriceps muscles were investigated with our wireless NIRS blood oxygen monitor system. The results show that the changes of blood oxygen relate on the sport items, type of muscle, kinetic capacity et al. These results indicate that NIRS is a potential useful tool to detect local muscle oxygenation and blood flow profiles; therefore it might be easily applied for evaluating the effect of athletes training.
Oxygen production using solid-state zirconia electrolyte technology
NASA Technical Reports Server (NTRS)
Suitor, Jerry W.; Clark, Douglas J.
1991-01-01
High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.
ERIC Educational Resources Information Center
Brunet, Juan E.; And Others
1983-01-01
The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopčić, Nina, E-mail: nkopcic@fkit.hr; Vuković Domanovac, Marija; Kučić, Dajana
Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain amore » substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min{sup −1}. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.« less
Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan
2015-07-01
Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.
Effect of raw legume diets on intestinal absorption of D-galactose by chick.
Lasheras, B; Bolufer, J; Cenarruzabeitia, M N; Lluch, M; Larralde, J
1980-03-01
The effect of four raw legume diets on the intestinal absorption of D-galactose and oxygen consumption were studied in chick. Field beans (Vicia faba), soybeans (Glycine soja), bitter vetch (Vicia ervilia), and navy beans (Phaseolus vulgaris), were used. The intestinal absorption was determined by both in vivo and in vitro techniques. In vivo, only navy beans and soybeans inhibit intestinal transport of D-galactose, while in vitro all the diets do. Oxygen consumption by intestinal rings increases in chicks fed on bitter vetch diet.
2012-10-01
Oxygen Consumption (VO2 -‐ L/min) f.VO2 Total...form): Data Entry Date f.DATE Volume of Oxygen Consumption (VO2 -‐ L/min) f.VO2 Total Energy Expenditure...957–68. Quiz 969–71. 83 Emon ST, Irban AG, Bozkurt SU, Akakin D, Konya D, Ozgen S. Effects of parenteral nutritional support with fish -oil emulsion
Oxygen consumption and distribution in the Long-Evans rat retina.
Lau, Jennifer C M; Linsenmeier, Robert A
2012-09-01
The purpose of this study was to investigate the oxygen distribution and consumption in the pigmented Long-Evans rat retina in vivo during dark and light adaptation, and to compare these results to previous work on cat and albino rat. Double-barreled microelectrodes recorded both intraretinal PO(2) depth profiles and the electroretinogram (ERG), which was used to identify the boundaries of the retina. Light adaptation decreased photoreceptor oxygen consumption per unit volume (Q(av)) from 3.0 ± 0.4 ml·100 g(-1) min(-1) (mean ± SEM) in darkness to 1.8 ± 0.2 ml·100 g(-1) min(-1) and increased minimum outer retinal PO(2) at the inner segments (P(min)) from 17.4 ± 3.0 to 29.9 ± 5.3 mmHg. The effects of light on outer retinal PO(2) and Q(av) were similar to those previously observed in cat, monkey, and albino rats; however, dark-adapted P(min) was higher in rat than cat. The parameters derived from fitting the oxygen diffusion model to the rat data were compared to those from cat. Oxygen consumption of the inner segments (Q(2)) and choroidal PO(2) (P(C)) in rat and cat were similar. P(min) was higher in rat than in cat for two reasons: first, rat photoreceptors have a shorter oxygen consuming region; and second, the retinal circulation supplied a greater fraction of consumed oxygen to rat photoreceptors. The average PO(2) across the inner retina (P(IR)) was not different in dark adaptation (25.4 ± 4.8 mmHg) and light adaptation (28.8 ± 5.4 mmHg) when measured from PO(2) profiles. However, with the microelectrode stationary at 9-18% retinal depth, a small consistent decrease in PO(2) occurred during illumination. Flickering light at 6 Hz decreased inner retinal PO(2) significantly more than an equivalent steady illumination, suggesting that changes in blood flow did not completely compensate for increased metabolism. This study comprehensively characterized rat retinal oxygenation in both light and dark, and determined the similarities and differences between rat and cat retinas. Copyright © 2012 Elsevier Ltd. All rights reserved.
An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice.
Sato, Asako; Kadokura, Kanae; Uchida, Hideyuki; Tsukada, Kosuke
2014-10-31
In a hepatic lobule, different sets of metabolic enzymes are expressed in the periportal (PP) and pericentral (PC) regions, forming a functional zonation, and the oxygen gradient is considered a determinant of zone formation. It is desirable to reproduce lobular microenvironment in vitro, but incubation of primary hepatocytes in conventional culture dishes has been limited at fixed oxygen concentrations due to technical difficulties. We designed a cell culture microdevice with an oxygen gradient to reproduce the hepatic microenvironment in vitro. The oxygen gradient during cell culture was monitored using a laser-assisted phosphorescence quenching method, and the cellular oxygen consumption rate could be estimated from changes in the gradient. Culture medium was continuously exchanged through microchannels installed in the device to maintain the oxygen gradient for a long term without transient hyper-oxygenation. The oxygen consumption rates of hepatocytes at 70.0mmHg and 31.4mmHg of partial oxygen pressure, which correspond to PP and PC regions in the microdevice, were 3.67×10(-10) and 3.15×10(-10)mol/s/10(6) cells, respectively. Antimycin A changed the oxygen gradient profile, indicating that cellular respiration can be estimated during cell culture. RT-PCR analysis of hepatocytes cultured under the oxygen gradient showed that mRNA expression of PEPCK and GK significantly increased in culture areas corresponding to PP and PC regions, respectively. These results indicate that the developed microdevice can reproduce the hepatic lobular microenvironment. The oxygen gradient in the microdevice can be closely controlled by changing the sizes of gas channels and the ambient oxygen concentration around the device; therefore, it could be expected to mimic the oxygen gradient of various organs, and it may be applicable to other pathological models. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing
2011-07-08
Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract:more » Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor {alpha} (TNF{alpha}) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.« less
Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B
2013-08-01
The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead... data or data that are less expensive to collect such as process data or material consumption data. For...)(1) Only annual anode consumption (No CEMS). F 98.66(f)(1) Only annual paste consumption (No CEMS). F...
Wang, Qing-lin; Dong, Shuang-lin
2011-01-01
Physiological responses to temperature reflect the evolutionary adaptations of organisms to their thermal environment and the capability of animals to tolerate thermal stress. Contrary to conventional metabolism theory, increasing environmental temperatures have been shown to reduce metabolic rate in rocky–eulittoral-fringe species inhabiting highly variable environments, possibly as a strategy for energy conservation. To study the physiological adaptations of an intertidal-subtidal species to the extreme and unpredictable heat stress of the intertidal zone, oxygen consumption rate and heat shock protein expression were quantified in the sea cucumber Apostichopus japonicus. Using simulate natural temperatures, the relationship between temperature, physiological performance (oxygen consumption and heat shock proteins) and thermotolerance were assessed. Depression of oxygen consumption rate and upregulation of heat shock protein genes (hsps) occurred in sequence when ambient temperature was increased from 24 to 30°C. Large-scale mortality of the sea cucumber occurred when temperatures rose beyond 30°C, suggesting that the upregulation of heat shock proteins and mortality are closely related to the depression of aerobic metabolism, a phenomenon that is in line with the concept of oxygen- and capacity-limited thermal tolerance (OCLTT). The physiologically-related thermotolerance of this sea cucumber should be an adaptation to its local environment. PMID:22022615
Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.
Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P
2016-01-01
NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.
Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu
2017-01-03
Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.
Protti, Alessandro; Ronchi, Dario; Bassi, Gabriele; Fortunato, Francesco; Bordoni, Andreina; Rizzuti, Tommaso; Fumagalli, Roberto
2016-07-01
To better clarify the pathogenesis of linezolid-induced lactic acidosis. Case report. ICU. A 64-year-old man who died with linezolid-induced lactic acidosis. Skeletal muscle was sampled at autopsy to study mitochondrial function. Lactic acidosis developed during continuous infusion of linezolid while oxygen consumption and oxygen extraction were diminishing from 172 to 52 mL/min/m and from 0.27 to 0.10, respectively. Activities of skeletal muscle respiratory chain complexes I, III, and IV, encoded by nuclear and mitochondrial DNA, were abnormally low, whereas activity of complex II, entirely encoded by nuclear DNA, was not. Protein studies confirmed stoichiometric imbalance between mitochondrial (cytochrome c oxidase subunits 1 and 2) and nuclear (succinate dehydrogenase A) DNA-encoded respiratory chain subunits. These findings were not explained by defects in mitochondrial DNA or transcription. There were no compensatory mitochondrial biogenesis (no induction of nuclear respiratory factor 1 and mitochondrial transcript factor A) or adaptive unfolded protein response (reduced concentration of heat shock proteins 60 and 70). Linezolid-induced lactic acidosis is associated with diminished global oxygen consumption and extraction. These changes reflect selective inhibition of mitochondrial protein synthesis (probably translation) with secondary mitonuclear imbalance. One novel aspect of linezolid toxicity that needs to be confirmed is blunting of reactive mitochondrial biogenesis and unfolded protein response.
Perez-Campo, R; López-Torres, M; Paton, D; Sequeros, E; Barja de Quiroga, G
1990-12-01
In the lung of Rana perezi no differences as a function of age have been found for any of the five major antioxidant enzymes, reduced (GSH), oxidized (GSSG) or glutathione ratio (GSSG/GSH), oxygen consumption (VO2) and for in vivo or in vitro stimulated tissue peroxidation. This frog shows a moderate rate of oxygen consumption and a life span substantially longer than that of rats and mice. Chronic (2.5 months) catalase depletion in the lung did not affect survival or any additional antioxidant enzyme, GSH, GSSG or in vivo and in vitro lung peroxidation in any age group. Only the GSSG/GSH ratio and the VO2 were elevated in catalase depleted old but not young frogs. After comparison of these results with those obtained in other animal species by other authors we suggest the possibility that decreases in antioxidant capacity in old age be restricted to species with high basal metabolic rates. Nevertheless, scavenging of oxygen radicals can not be 100% effective in any species. Thus, aging can still be due to the continuous presence of small concentrations of O2 radicals in the tissues throughout the life span in animals with either high or low metabolic rates.
Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling
NASA Astrophysics Data System (ADS)
Chhabra, Mahendra
The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A new parameter "Oxygen Deficiency Factor" (ODF) is defined to quantify oxygen deficiency in local regions of the cornea. We use this concept to determine the minimum required contact-lens oxygen transmissibility, Dk/L = 150 Barrer/cm, to avoid hypoxia-induced corneal physiologic complications.
Karstoft, Kristian; Wallis, Gareth A; Pedersen, Bente K; Solomon, Thomas P J
2016-09-01
For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC), substrate oxidation rates and lipid metabolism in the hours following exercise in subjects with type 2 diabetes (T2D). Following an overnight fast, ten T2D subjects (M/F: 7/3; age=60.3±2.3years; body mass index (BMI)=28.3±1.1kg/m(2)) completed three 60-min interventions in a counterbalanced, randomized order: 1) control (CON), 2) continuous walking (CW), 3) interval-walking (IW - repeated cycles of 3min of fast and 3min of slow walking). Indirect calorimetry was applied during each intervention and repeatedly for 30min per hour during the following 5h. A liquid mixed meal tolerance test (MMTT, 450kcal) was consumed by the subjects 45min after completion of the intervention with blood samples taken regularly. Exercise interventions were successfully matched for total oxygen consumption (CW=1641±133mL/min; IW=1634±126mL/min, P>0.05). EPOC was higher after IW (8.4±1.3l) compared to CW (3.7±1.4l, P<0.05). Lipid oxidation rates were increased during the MMTT in IW (1.03±0.12mg/kg per min) and CW (0.87±0.04mg/kg per min) compared with CON (0.73±0.04mg/kg per min, P<0.01 and P<0.05, respectively), with no difference between IW and CW. Moreover, free fatty acids and glycerol concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas effects on substrate oxidation and lipid metabolism are comparable. Copyright © 2016 Elsevier Inc. All rights reserved.
Human forearm metabolism during progressive starvation.
Owen, O E; Reichard, G A
1971-07-01
Forearm muscle metabolism was studied in eight obese subjects after an overnight, 3 and 24 day fast. Arterio-deep-venous differences of oxygen, carbon dioxide, glucose, lactate, pyruvate, free fatty acids, acetoacetate, and beta-hydroxybutyrate with simultaneous forearm blood flow were measured. Rates of metabolite utilization and production were thus estimated. Oxygen consumption and lactate and pyruvate production remained relatively constant at each fasting period. Glucose, initially the major substrate consumed, showed decreased consumption after 3 and 24 days of fasting. Acetoacetate and beta-hydroxybutyrate consumption after an overnight fast was low. At 3 days of fasting with increased arterial concentrations of acetoactate and beta-hydroxybutyrate, consumption of these substrates rose dramatically. At 24 days of fasting, despite further elevation of arterial levels of acetoacetate and beta-hydroxybutyrate, the utilization of acetoacetate did not increase further and if anything decreased, while five out of eight subjects released beta-hydroxybutyrate across the forearm. Acetoacetate was preferentially extracted over beta-hydroxybutyrate. At 24 days of starvation, free fatty acids were the principal fuels extracted by forearm muscle; at this time there was a decreased glucose and also ketone-body consumption by skeletal muscle.
Methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childress, J.J.; Fisher, C.R.; Brooks, J.M.
An undescribed mussel (family Mytilidae), which lives in the vicinity of hydrocarbon seeps in the Gulf of Mexico, consumes methane (the principal component of natural gas) at a high rate. The methane consumption is limited to the gills of these animals and is apparently due to the abundant intracellular bacteria found there. This demonstrates a methane-based symbiosis between an animal and intracellular bacteria. Methane consumption is dependent on the availability of oxygen and is inhibited by acetylene. The consumption of methane by these mussels is associated with a dramatic increase in oxygen consumption and carbon dioxide production. As the methanemore » consumption of the bivalve can exceed its carbide dioxide production, the symbiosis may be able to entirely satisfy its carbon needs from methane uptake. The very light (delta/sup 13/C = -51 to -57 per mil) stable carbon isotope ratios found in this animal support methane (delta/sup 13/C = -45 per mil at this site) as the primary carbon source for both the mussels and their symbionts. 19 references, 2 figures, 1 table.« less
2012-02-01
a slight increase in oxygen consumption during exercise, without a decrement in capillary hemoglobin oxygen saturation compared to exercise on 85...must be provided. HSI education and training for program managers and acquisition professionals are required. Meaningful, quantifiable...positions were transferred to the 711th HPW at WPAFB. Only two of the analysts moved to WPAFB, creating a major shortfall in HSI education , training, and
Findlay, S.E.G.; Sinsabaugh, R. L.; Sobczak, W.V.; Hoostal, M.
2003-01-01
Hyporheic sediment bacterial communities were exposed to dissolved organic matter (DOM) from a variety of sources to assess the interdependence of bacterial metabolism and community composition. Experiments ranged from small-scale core perfusions with defined compounds (glucose, bovine serum albumin) to mesocosms receiving natural leaf leachate or water from different streams. Response variables included bacterial production, oxygen consumption, extracellular enzyme activity, and community similarity as manifest by changes in banding patterns of randomly amplified polymorphic DNA (RAPD). All DOM manipulations generated responses in at least one metabolic variable. Additions of both labile and recalcitrant materials increased either oxygen consumption, production, or both depending on background DOM. Enzyme activities were affected by both types of carbon addition with largest effects from the labile mixture. Cluster analysis of RAPD data showed strong divergence of communities exposed to labile versus recalcitrant DOM. Additions of leaf leachate to mesocosms representing hyporheic flow-paths caused increases in oxygen consumption and some enzyme activities with weaker effects on production. Community structure yeas strongly affected; samples from the leachate-amended mesocosms clustered separately from the control samples. In mesocosms receiving water from streams ranging in DOC (0.5-4.5 mg L-1), there were significant differences in bacterial growth, oxygen consumption, and enzyme activities. RAPD analysis showed strongest clustering of samples by stream type with more subtle effects of position along the flowpaths. Responses in community metabolism were always accompanied by shifts in community composition, suggesting carbon supply affects both functional and structural attributes of hyporheic bacterial communities.
Folkedal, Ole; Torgersen, Thomas; Olsen, Rolf Erik; Fernö, Anders; Nilsson, Jonatan; Oppedal, Frode; Stien, Lars H; Kristiansen, Tore S
2012-01-18
We compared behavioural and physiological responses and recovery time after different acute environmental challenges in groups of salmon parr. The fish were prior to the study conditioned to a flashing light signalling arrival of food 30 s later to study if the strength of Pavlovian conditioned food anticipatory behaviour can be used to assess how salmon parr cope with various challenges. The effect on anticipatory behaviour was compared to the effect on feed intake and physiological responses of oxygen hyper-consumption and cortisol excretion. The challenges were temperature fluctuation (6.5C° over 4 h), hyperoxia (up to 380% O(2) saturation over 4 h), and intense chasing for 10 min. Cortisol excretion was only elevated after hyperoxia and chasing, and returned to baseline levels after around 3 h or less. Oxygen hyper-consumption persisted for even shorter periods. Feed intake was reduced the first feeding after all challenges and recovered within 3 h after temperature and hyperoxia, but was reduced for days after chasing. Food anticipatory behaviour was reduced for a longer period than feed intake after hyperoxia and was low at least 6 h after chasing. Our findings suggest that a recovery of challenged Atlantic salmon parr to baseline levels of cortisol excretion and oxygen consumption does not mean full recovery of all psychological and physiological effects of environmental challenges, and emphasise the need for measuring several factors including behavioural parameters when assessing fish welfare. Copyright © 2011 Elsevier Inc. All rights reserved.
2012-01-01
Background Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). Results We found that the introduction of activated H-RasV12 into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. Conclusion Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents. PMID:22917272
Schiffman, Jeffrey M; Chelidze, David; Adams, Albert; Segala, David B; Hasselquist, Leif
2009-09-18
Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.
NASA Astrophysics Data System (ADS)
Trueblood, Lloyd A.; Seibel, Brad A.
2013-10-01
Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.
Cretenet, Marina; Le Gall, Gwenaëlle; Wegmann, Udo; Even, Sergine; Shearman, Claire; Stentz, Régis; Jeanson, Sophie
2014-12-03
Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L. lactis subsp. cremoris MG1363 in the presence of initially high levels of oxygen. This enables the cells to maintain key traits that are of great importance for industry, such as rapid acidification and reduction of the redox potential of the growth media.
Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y
2015-01-01
The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled the causes qf reduced oxygen transport during the preperfu- sion and postperfusion periods, under IR and during the immediate postoperative period. Values of CA, SvO2, AVD, Hb, hemnodilution, T qf the body in oxygen transport indicator dynamics have been proven. A way of maintaining oxygen transport indicators close to the physiological norm in the immediate postoperative period has been justified.
21 CFR 173.350 - Combustion product gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350 Combustion product gas. The food additive combustion product... this section for the purpose of removing and displacing oxygen in accordance with the following...
21 CFR 173.350 - Combustion product gas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350 Combustion product gas. The food additive combustion product... this section for the purpose of removing and displacing oxygen in accordance with the following...
21 CFR 173.350 - Combustion product gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350 Combustion product gas. The food additive combustion product... this section for the purpose of removing and displacing oxygen in accordance with the following...
21 CFR 173.350 - Combustion product gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350 Combustion product gas. The food additive combustion product... this section for the purpose of removing and displacing oxygen in accordance with the following...
NASA Astrophysics Data System (ADS)
Svetlichny, Leonid; Khanaychenko, Antonina; Hubareva, Elena; Aganesova, Larisa
2012-12-01
Total and basal metabolism was studied in the widely distributed copepod species Calanipeda aquaedulcis and Arctodiaptomus salinus of both genders in order to estimate respiratory energy partitioning. Specific oxygen consumption was found to double in C. aquaedulcis than in A. salinus, and double in males than in females both in terms of total and basal metabolism. Respiration rates in females carrying ovisacs were 1.49 and 1.43 times higher than those in females without ovisacs for C. aquaedulcis and A. salinus, respectively. Extra energy expenditures are due to carrying ovisacs and egg respiration. There was no significant effect of salinity (0.1-40), oxygen concentration (1-8 mg O2 l-1) or crowding on oxygen consumption confirming the hypothesis that C. aquaedulcis and A. salinus are the animals with a type of respiratory metabolism independent of salinity and oxygen concentration. At critical oxygen concentrations less than 1 mg O2 l-1 respiration rate fell notably by approximately an order of magnitude in both species and in both genders.
Mortelette, H; Moisan, C; Sébert, P; Belhomme, M; Amérand, A
2010-08-01
Mitochondrion is the main production site for reactive oxygen species (ROS). In endotherms, the existence of a positive relationship between ROS production and metabolic rate is acknowledged. But, little is known about ectotherms, especially fish, with a metabolic rate dependent on the environmental temperature. The maximal oxygen consumption and the production of highly reactive hydroxyl radicals by permeabilized red muscles of yellow and silver eels and trouts were measured concomitantly and compared to those of rats chosen for their comparable body mass, but different metabolic rate. The positive correlation found in fish between the metabolic rate and the ROS production showed a shift with respect to mammals. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.
2016-06-01
Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.
Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold
2000-03-01
Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas levels, pH, and temperature contribute to its life-sustaining capabilities. (b) Possible loss of... populations of aquatic organisms, and for human consumption, recreation, and aesthetics. The introduction of... biochemical oxygen demand (BOD), which in turn can lead to reduced dissolved oxygen, thereby potentially...
Code of Federal Regulations, 2011 CFR
2011-07-01
... gas levels, pH, and temperature contribute to its life-sustaining capabilities. (b) Possible loss of... populations of aquatic organisms, and for human consumption, recreation, and aesthetics. The introduction of... biochemical oxygen demand (BOD), which in turn can lead to reduced dissolved oxygen, thereby potentially...
Code of Federal Regulations, 2013 CFR
2013-07-01
... gas levels, pH, and temperature contribute to its life-sustaining capabilities. (b) Possible loss of... populations of aquatic organisms, and for human consumption, recreation, and aesthetics. The introduction of... biochemical oxygen demand (BOD), which in turn can lead to reduced dissolved oxygen, thereby potentially...
Code of Federal Regulations, 2010 CFR
2010-07-01
... gas levels, pH, and temperature contribute to its life-sustaining capabilities. (b) Possible loss of... populations of aquatic organisms, and for human consumption, recreation, and aesthetics. The introduction of... biochemical oxygen demand (BOD), which in turn can lead to reduced dissolved oxygen, thereby potentially...
Code of Federal Regulations, 2012 CFR
2012-07-01
... gas levels, pH, and temperature contribute to its life-sustaining capabilities. (b) Possible loss of... populations of aquatic organisms, and for human consumption, recreation, and aesthetics. The introduction of... biochemical oxygen demand (BOD), which in turn can lead to reduced dissolved oxygen, thereby potentially...
USSR Report, Cybernetics, Computers and Automation Technology
1987-04-02
Communication Channel (NTR: PROBLEMY I RESHENIYA, No 14, 22 Jul-4 Aug 86) 52 EDUCATION Informatics and the National Information Resource (I. Chebotaru...the method of actions, which were successful in the past. The experience of previous developments is implemented in the prototype programs. Many data...of the converter lining, due to reduction of ferroalloy consumption, oxygen consumption and energy resource consumption and due to a decrease of
Mineralisation assays of some organic resources of aquatic systems.
Bitar, A L; Bianchini, Júnior I
2002-11-01
Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.
Simonin, Vagner; Galina, Antonio
2013-01-01
NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.
Benthic oxygen consumption on continental shelves off eastern Canada
NASA Astrophysics Data System (ADS)
Grant, Jonathan; Emerson, Craig W.; Hargrave, Barry T.; Shortle, Jeannette L.
1991-08-01
The consumption of phytoplankton production by the benthos is an important component of organic carbon budgets for continental shelves. Sediment texture is a major factor regulating benthic processes because fine sediment areas are sites of enhanced deposition from the water column, resulting in increased organic content, bacterial biomass and community metabolism. Although continental shelves at mid- to high latitudes consist primarily of coarse relict sediments ( PIPER, Continental Shelf Research, 11, 1013-1035), shelf regions of boreal and subarctic eastern Canada contain large areas of silt and clay sediments ( FADER, Continental Shelf Research, 11, 1123-1153). We collated estimates of benthic oxygen consumption in coarse (<20% silt-clay, <0.5% organic matter) and fine sediments (20% silt-clay, 0.5% organic matter) for northwest Atlantic continental shelves including new data for Georges Bank, the Scotian Shelf, the Grand Banks of Newfoundland and Labrador Shelf. Estimates were applied to the areal distribution of sediment type on these shelves to obtain a general relationship between sediment texture and benthic carbon consumption. Mean benthic oxygen demand was 2.7 times greater in fine sediment than in coarse sediment, when normalized to mean annual temperature. In terms of carbon equivalents, shelf regions with minimal fine sediment (Georges Bank, the Grand Banks of Newfoundland-northeast Newfoundland) consumed only 5-8% of annual primary production. Benthos of the Gulf of Maine (100% fine sediment) and the Scotian Shelf (35% fine sediment) utilized 16-19% of primary production. Although 32% of the Labrador Shelf area contained fine sediments, benthic consumption of pelagic production (8%) was apparently limited by low mean annual temperature (2°C). These results indicate that incorporation of sediment-specific oxygen uptake into shelf carbon budgets may increase estimates of benthic consumption by 50%. Furthermore, respiration and production by large macrofauna allow an even greater proportion of primary production to enter benthic pathways. Fine sediment areas (shelf basins or "depocenters") are postulated to be sites of enhanced biological activity which must be considered in the modelling of shelf carbon budgets and the role of the benthos in demersal fisheries.
Corneal Equilibrium Flux as a Function of Corneal Surface Oxygen Tension.
Compañ, Vicente; Aguilella-Arzo, Marcel; Weissman, Barry A
2017-06-01
Oxygen is essential for aerobic mammalian cell physiology. Oxygen tension (PO2) should reach a minimum at some position within the corneal stroma, and oxygen flux should be zero, by definition, at this point as well. We found the locations and magnitudes of this "corneal equilibrium flux" (xmin) and explored its physiological implications. We used an application of the Monod kinetic model to calculate xmin for normal human cornea as anterior surface PO2 changes from 155 to 20 mmHg. We find that xmin deepens, broadens, and advances from 1.25 μm above the endothelial-aqueous humor surface toward the epithelium (reaching a position 320 μm above the endothelial-aqueous humor surface) as anterior corneal surface PO2 decreases from 155 to 20 mmHg. Our model supports an anterior corneal oxygen flux of 9 μL O2 · cm · h and an epithelial oxygen consumption of approximately 4 μL O2 · cm · h. Only at the highest anterior corneal PO2 does our model predict that oxygen diffuses all the way through the cornea to perhaps reach the anterior chamber. Of most interest, corneal oxygen consumption should be supported down to a corneal surface PO2 of 60 to 80 mmHg but declines below this range. We conclude that the critical oxygen tension for hypoxia induced corneal swelling is more likely this range rather than a fixed value.
Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption
Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.
2010-01-01
Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397
Lucero, Adam A; Addae, Gifty; Lawrence, Wayne; Neway, Beemnet; Credeur, Daniel P; Faulkner, James; Rowlands, David; Stoner, Lee
2018-01-01
What is the central question of this study? Continuous-wave near-infrared spectroscopy, coupled with venous and arterial occlusions, offers an economical, non-invasive alternative to measuring skeletal muscle blood flow and oxygen consumption, but its reliability during exercise has not been established. What is the main finding and its importance? Continuous-wave near-infrared spectroscopy devices can reliably assess local skeletal muscle blood flow and oxygen consumption from the vastus lateralis in healthy, physically active adults. The patterns of response exhibited during exercise of varying intensity agree with other published results using similar methodologies, meriting potential applications in clinical diagnosis and therapeutic assessment. Near-infrared spectroscopy (NIRS), coupled with rapid venous and arterial occlusions, can be used for the non-invasive estimation of resting local skeletal muscle blood flow (mBF) and oxygen consumption (mV̇O2), respectively. However, the day-to-day reliability of mBF and mV̇O2 responses to stressors such as incremental dynamic exercise has not been established. The aim of this study was to determine the reliability of NIRS-derived mBF and mV̇O2 responses from incremental dynamic exercise. Measurements of mBF and mV̇O2 were collected in the vastus lateralis of 12 healthy, physically active adults [seven men and five women; 25 (SD 6) years old] during three non-consecutive visits within 10 days. After 10 min rest, participants performed 3 min of rhythmic isotonic knee extension (one extension every 4 s) at 5, 10, 15, 20, 25 and 30% of maximal voluntary contraction (MVC), before four venous occlusions and then two arterial occlusions. The mBF and mV̇O2 increased proportionally with intensity [from 0.55 to 7.68 ml min -1 (100 ml) -1 and from 0.05 to 1.86 ml O 2 min -1 (100 g) -1 , respectively] up to 25% MVC, where they began to plateau at 30% MVC. Moreover, an mBF/mV̇O2 muscle oxygen consumption ratio of ∼5 was consistent for all exercise stages. The intraclass correlation coefficient for mBF indicated high to very high reliability for 10-30% MVC (0.82-0.9). There was very high reliability for mV̇O2 across all exercise stages (intraclass correlation coefficient 0.91-0.96). In conclusion, NIRS can reliably assess muscle blood flow and oxygen consumption responses to low- to moderate-intensity exercise, meriting potential applications in clinical diagnosis and therapeutic assessment. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar
2015-08-01
We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stolker, Robert Jan; Mik, Egbert
2016-01-01
Background The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. This study describes the first use of a clinical prototype in skin of humans. Methods The clinical prototype was tested in 30 healthy volunteers. A self-adhesive patch containing 2 mg 5-aminolevulinic acid (ALA) was applied on the skin of the anterior chest wall (sternal) for induction of mitochondrial protoporphyrin IX and was protected from light for 5 h. MitoPO2 was measured by means of oxygen-dependent delayed fluorescence of protoporphyrin IX. MitoVO2 was determined by dynamic mitoPO2 measurements on the primed skin, while locally blocking oxygen supply by applying local pressure with the measurement probe. MitoPO2 was recorded before and during a 60-s period of compression of the microcirculation, at an interval of 1 Hz. Oxygen consumption (i.e. the local oxygen disappearance rate) was calculated from the decay of the mitoPO2 slope. Results Oxygen-dependent delayed fluorescence measurements were successfully performed in the skin of 27 volunteers. The average value (± SD) of mitoPO2 was 44 ± 17 mmHg and mean mitoVO2 values were 5.8 ± 2.3 and 6.1 ± 1.6 mmHg s-1 at a skin temperature of 34°C and 40°C, respectively. No major discomfort during measurement and no long-term dermatological abnormalities were reported in a survey performed 1 month after measurements. Conclusion These results show that the clinical prototype allows measurement of mitochondrial oxygenation and oxygen consumption in humans. The development of this clinically applicable device offers opportunities for further evaluation of the technique in humans and the start of first clinical studies. PMID:27455073
Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms
NASA Astrophysics Data System (ADS)
de Falco, Natalie; Boano, Fulvio; Arnon, Shai
2015-04-01
Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation of labile DOC occurs in the upper millimeters of the streambed, and the size and shape of the hyporheic flow paths are less important for aerobic activity. In addition, the effect of overlying water velocity on labile DOC transformation was shown to be more influential than losing and gaining fluxes.
Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Bocchi, Edimar Alcides
2008-01-01
BACKGROUND The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients either on non-optimized or off beta-blocker therapy is known to be unreliable. The aim of this study was to evaluate the relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients receiving optimized and non-optimized beta-blocker treatment during a treadmill cardiopulmonary exercise test. METHODS A total of 27 sedentary heart failure patients (86% male, 50±12 years) on optimized beta-blocker therapy with a left ventricle ejection fraction of 33±8% and 35 sedentary non-optimized heart failure patients (75% male, 47±10 years) with a left ventricle ejection fraction of 30±10% underwent the treadmill cardiopulmonary exercise test (Naughton protocol). Resting and peak effort values of both the percentage of oxygen consumption reserve and percentage of heart rate reserve were, by definition, 0 and 100, respectively. RESULTS The heart rate slope for the non-optimized group was derived from the points 0.949±0.088 (0 intercept) and 1.055±0.128 (1 intercept), p<0.0001. The heart rate slope for the optimized group was derived from the points 1.026±0.108 (0 intercept) and 1.012±0.108 (1 intercept), p=0.47. Regression linear plots for the heart rate slope for each patient in the non-optimized and optimized groups revealed a slope of 0.986 (almost perfect) for the optimized group, but the regression analysis for the non-optimized group was 0.030 (far from perfect, which occurs at 1). CONCLUSION The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in patients on optimized beta-blocker therapy was reliable, but this relationship was unreliable in non-optimized heart failure patients. PMID:19060991
Diagenetic processes are important drivers of water column biogeochemistry in coastal areas. For example, sediment oxygen consumption can be a significant contributor to oxygen depletion in hypoxic systems, and sediment–water nutrient fluxes support primary productivity in ...
49 CFR 171.8 - Definitions and abbreviations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... which dilutes or replaces oxygen normally in the atmosphere. Associate Administrator means the Associate.... Atmospheric gases means air, nitrogen, oxygen, argon, krypton, neon and xenon. Authorized Inspection Agency... consumption by individuals for purposes of personal care or household use. This term also includes drugs and...
21 CFR 173.350 - Combustion product gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.350... displacing oxygen in accordance with the following prescribed conditions: (a) The food additive is... displace or remove oxygen in the processing, storage, or packaging of beverage products and other food...
Effect of multilayer high-compression bandaging on ankle range of motion and oxygen cost of walking
Roaldsen, K S; Elfving, B; Stanghelle, J K; Mattsson, E
2012-01-01
Objective To evaluate the effects of multilayer high-compression bandaging on ankle range of motion, oxygen consumption and subjective walking ability in healthy subjects. Method A volunteer sample of 22 healthy subjects (10 women and 12 men; aged 67 [63–83] years) were studied. The intervention included treadmill-walking at self-selected speed with and without multilayer high-compression bandaging (Proforeº), randomly selected. The primary outcome variables were ankle range of motion, oxygen consumption and subjective walking ability. Results Total ankle range of motion decreased 4% with compression. No change in oxygen cost of walking was observed. Less than half the subjects reported that walking-shoe comfort or walking distance was negatively affected. Conclusion Ankle range of motion decreased with compression but could probably be counteracted with a regular exercise programme. There were no indications that walking with compression was more exhausting than walking without. Appropriate walking shoes could seem important to secure gait efficiency when using compression garments. PMID:21810941
Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission
NASA Technical Reports Server (NTRS)
Michel, E. L.; Rummel, J. A.; Sawin, C. F.
1975-01-01
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.
DELAYING BLOOD TRANSFUSION IN EXPERIMENTAL ACUTE ANEMIA WITH A PERFLUOROCARBON EMULSION
Cabrales, Pedro; Briceño, Juan Carlos
2011-01-01
Background To avoid unnecessary blood transfusions, physiologic transfusion triggers, rather than exclusively hemoglobin-based transfusion triggers have been suggested. The objective of this study was to determine systemic and microvascular effects of using a perfluorocarbon-based oxygen carrier (PFCOC) to maintaining perfusion and oxygenation during extreme anemia. Methods The hamster (weight 55-65 g) window chamber model was used. Two isovolemic hemodilution steps were performed using 10% hydroxyethyl starch at normoxic conditions to hematocrit of 19% (5.5 gHb/dl), point where the transfusion trigger was reached. Two additional hemodilution exchanges using the PFCOC (Oxycyte™, Synthetic Blood International, Inc. Costa Mesa, CA) and increasing fraction of inspired oxygen to 1.0 were performed to reduce hematocrit to 11% (3.8 gHb/dl) and 6% (2.0 gHb/dl), respectively. No control group was used in the study, as this level of hemodilution is lethal with conventional plasma expanders. Systemic parameters, microvascular perfusion, functional capillary density and oxygen tensions across the microvascular network were measured. Results At 6% hematocrit, the PFCOC maintained mean arterial pressure, cardiac output, systemic oxygen delivery and consumption. As hematocrit was lowered from 11% to 6%, functional capillary density, calculated microvascular oxygen delivery and consumption decreased, and oxygen extraction ratio was close to 100%. Peripheral tissue oxygenation was not predicted by systemic oxygenation. Conclusions PFCOC in conjunction with hyperoxia was able to sustain organ function, and partially provide systemic oxygenation during extreme anemia over the observation period. The PFCOC can work as a bridge until red blood cells are available for transfusion, or where additional oxygen is required, notwithstanding possible limitations in peripheral tissue oxygenation. PMID:21326091
Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.
Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik
2018-06-01
Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.
2015-12-01
oxygen consump- tion,46,47 we studied the effects of cyanide on cellular oxygen consumption using an XF extracellular flux analyzer (Seahorse...baseline values during whole blood resuscitation (−0.24 0.14 μM at the end of resuscita- tion). Figure 2 also shows the effect of inspired oxygen concen...during respiratory challenges. This composite effect demonstrates uncoupling of the hemo- globin oxygen signal changes from CcO redox state signals
76 FR 37815 - Cooperative Agreement To Support Shellfish Safety Assistance Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
...; funding support to research the influence of water and air temperature, dissolved oxygen, and nutrients on... controls to reduce the risk of illness associated with molluscan shellfish consumption, including Vibrio... professionals concerning Vibrio illness and shellfish consumption; 9. Development and maintenance of a World...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption..., App. O Appendix O to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of... condition. 1.9“Flue gases” means reaction products resulting from the combustion of a fuel with the oxygen...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption..., App. O Appendix O to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of... products resulting from the combustion of a fuel with the oxygen of the air, including the inerts and any...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption..., App. O Appendix O to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of... condition. 1.9“Flue gases” means reaction products resulting from the combustion of a fuel with the oxygen...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption..., App. O Appendix O to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of... condition. 1.9“Flue gases” means reaction products resulting from the combustion of a fuel with the oxygen...
The Role of Mitochondrial TCA Cycle Enzymes in Determining Prostate Cancer Chemosensitivity
2012-03-01
mitochondrial OAA measurement is performed by a commercial kit from Biovision . Briefly, whole cell lysates or mitochondria fraction were obtained from... Biovision based on the manufacturer protocols. 2) Cellular oxygen consumption and reactive oxygen (ROS) production. One of the metabolic consequences of
The Persistence of the Candle-and-Cylinder Misconception.
ERIC Educational Resources Information Center
Birk, James P.; Lawson, Anton E.
1999-01-01
Argues that the candle-and-cylinder demonstration does not show that air is composed of 21% oxygen. Finds that the heating of air results in a partial expulsion of air, and that the flame is extinguished by a local, rather than a complete, consumption of oxygen. (WRM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.A.; Bryden, N.A.; Polansky, M.M.
1986-03-05
To determine if degree of training effects urinary Cr losses, Cr excretion of 8 adult trained and 5 untrained runners was determined on rest days and following exercise at 90% of maximal oxygen uptake on a treadmill to exhaustion with 30 second exercise and 30 second rest periods. Subjects were fed a constant daily diet containing 9 ..mu..g of Cr per 1000 calories to minimize changes due to diet. Maximal oxygen consumption of the trained runners was in the good or above range based upon their age and that of the untrained runners was average or below. While consuming themore » control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 ..mu..g/day (mean +/- SEM), respectively. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% of maximal oxygen consumption compared to nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 ..mu..g/day, respectively. Urinary Cr excretion of 5 untrained subjects was not altered following controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to maximal oxygen consumption and therefore degree of fitness.« less
Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models
Ham, Daniel J.; Best, Stuart A.; Carstairs, Greg L.; Savage, Robert J.; Straney, Lahn; Caldwell, Joanne N.
2016-01-01
Objectives Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Methods Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5–37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Conclusion Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks. PMID:27379902
Effect of water-based recovery on blood lactate removal after high-intensity exercise.
Lucertini, Francesco; Gervasi, Marco; D'Amen, Giancarlo; Sisti, Davide; Rocchi, Marco Bruno Luigi; Stocchi, Vilberto; Benelli, Piero
2017-01-01
This study assessed the effectiveness of water immersion to the shoulders in enhancing blood lactate removal during active and passive recovery after short-duration high-intensity exercise. Seventeen cyclists underwent active water- and land-based recoveries and passive water and land-based recoveries. The recovery conditions lasted 31 minutes each and started after the identification of each cyclist's blood lactate accumulation peak, induced by a 30-second all-out sprint on a cycle ergometer. Active recoveries were performed on a cycle ergometer at 70% of the oxygen consumption corresponding to the lactate threshold (the control for the intensity was oxygen consumption), while passive recoveries were performed with subjects at rest and seated on the cycle ergometer. Blood lactate concentration was measured 8 times during each recovery condition and lactate clearance was modeled over a negative exponential function using non-linear regression. Actual active recovery intensity was compared to the target intensity (one sample t-test) and passive recovery intensities were compared between environments (paired sample t-tests). Non-linear regression parameters (coefficients of the exponential decay of lactate; predicted resting lactates; predicted delta decreases in lactate) were compared between environments (linear mixed model analyses for repeated measures) separately for the active and passive recovery modes. Active recovery intensities did not differ significantly from the target oxygen consumption, whereas passive recovery resulted in a slightly lower oxygen consumption when performed while immersed in water rather than on land. The exponential decay of blood lactate was not significantly different in water- or land-based recoveries in either active or passive recovery conditions. In conclusion, water immersion at 29°C would not appear to be an effective practice for improving post-exercise lactate removal in either the active or passive recovery modes.
Instebø, Arne; Norgård, Gunnar; Helgheim, Vegard; Røksund, Ola Drange; Segadal, Leidulf; Greve, Gottfried
2004-10-01
Coarctation of the aorta represents 5-7% of congenital heart defects. Symptoms and prognosis depend on the degree of stenosis, age at surgery, surgical method and the presence of other heart defects. Postoperative complications are hypertension, restenosis and an abnormal blood pressure response during exercise. This study includes 41 patients, 15-40 years old, operated in the period 1975-1996. All were exercised on a treadmill until maximal oxygen consumption was achieved. Blood pressure was measured in the right arm and leg before and immediately after exercise, and in the right arm during exercise. Oxygen consumption was monitored and we defined an aerobic phase, an isocapnic buffering phase and a hypocapnic hyperventilation phase. The resting systolic blood pressure correlates with the resting systolic blood pressure difference between right arm and leg. A resting systolic blood pressure difference between the right arm and leg of 0.13 kPa (1 mmHg) to 2.67 kPa (20 mmHg) corresponds with a slight increase in resting systolic blood pressure. This rise in blood pressure increases the aerobic phase of the exercise test, helping the patients to achieve higher maximal oxygen consumption. A resting systolic blood pressure difference of more than 2.67 kPa (20 mmHg) corresponds with severe hypertension and causes reduction in the aerobic phase and maximal oxygen consumption. Resting systolic blood pressure and resting systolic blood pressure difference between the right arm and leg are not indicators for blood pressure response during exercise. Exercise testing is important to reveal exercise-induced hypertension and to monitor changes in transition from aerobic to anaerobic exercise and limitation to exercise capacity.
High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers.
Hostler, David; Northington, William E; Callaway, Clifton W
2009-08-01
Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, cardiac arrest, or exertional heat illness. While infusion of cold normal saline is a simple and inexpensive method for reducing core temperature, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesized that intravenous administration of diazepam during a rapid infusion of 30 mL.kg-1 of cold (4 degrees C) 0.9% saline to healthy subjects would be more comfortable and reduce core body temperature more than the administration of cold saline alone. Fifteen subjects received rapidly infused cold (4 degrees C) 0.9% saline. Subjects were randomly assigned to receive, intravenously, 20 mg diazepam (HIGH), 10 mg diazepam (LOW), or placebo (CON). Main outcomes were core temperature, skin temperature, and oxygen consumption. Data for the main outcomes were analyzed with generalized estimating equations to identify differences in group, time, or a group x time interaction. Core temperature decreased in all groups (CON, 1.0 +/- 0.2 degrees C; LOW, 1.4 +/- 0.2 degrees C; HIGH, 1.5 +/- 0.2 degrees C), while skin temperature was unchanged. Mean (95% CI) oxygen consumption was 315.3 (253.8, 376.9) mL.kg-1.min-1 in the CON group, 317.9 (275.5, 360.3) in the LOW group, and 226.1 (216.4, 235.9) in the HIGH group. Significant time and group x time interaction was observed for core temperature and oxygen consumption (p < 0.001). Administration of high-dose diazepam resulted in decreased oxygen consumption during cold saline infusion, suggesting that 20 mg of intravenous diazepam may reduce the shivering threshold without compromising respiratory or cardiovascular function.
Simčič, Tatjana; Jesenšek, Dušan; Brancelj, Anton
2015-08-01
Climate change may result in future alterations in thermal regime which could markedly affect the early developmental stages of cold water fish due to their expected high sensitivity to increasing temperature. In the present study, the effect of temperature increase of 2, 4 and 6°C on the oxygen consumption rate (R), the activity of respiratory electron transport system (ETS) and oxidative stress have been studied in four developmental stages of the marble trout (Salmo marmoratus)-eyed eggs, yolk-sac larvae and juveniles of 1 and 3 months. Oxygen consumption rate and ETS activity increased with level of development and with temperature in all four stages. ETS/R ratios decreased during development and correlated with temperature in eyed eggs, larvae and juveniles of 1 month, but not in juveniles of 3 months. Low ETS/R ratios at higher temperatures indicate stress response in eyed eggs, the most temperature sensitive developmental stage. Catalase (CAT) and glutathione reductase (GR) activities increased during development, but responded differently to elevated temperature in the different developmental stages. Stress in eyed eggs, caused by higher temperatures, resulted in increased oxygen consumption rate and increased activities of CAT and GR. Larvae were sensitive to increased temperature only at the highest experimental temperature of 16°C. Increased temperature did not stress the metabolism of the juveniles, since they were able to compensate their metabolic activity. The earlier developmental stages of marble trout are thus more sensitive to temperature increase than juveniles and therefore more endangered by higher water temperatures. This is the first report connecting oxygen consumption, ETS activity and ETS/R ratio with the activities of antioxidant enzymes in relation to increased temperature in salmonids.
Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates
Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.
2018-01-01
There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.
Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans
NASA Astrophysics Data System (ADS)
Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka
2017-07-01
This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.
Do mitochondrial properties explain intraspecific variation in thermal tolerance?
Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M
2009-02-01
As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.
Carriker, Colin R; Vaughan, Roger A; VanDusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; McCormick, James J; Cole, Nathan H; Gibson, Ann L
2016-12-31
to examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group; double-blind, placebo-controlled, crossover. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR; final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively). No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max.
Assessment protocols of maximum oxygen consumption in young people with Down syndrome--a review.
Seron, Bruna Barboza; Greguol, Márcia
2014-03-01
Maximum oxygen consumption is considered the gold standard measure of cardiorespiratory fitness. Young people with Down syndrome (DS) present low values of this indicator compared to their peers without disabilities and to young people with an intellectual disability but without DS. The use of reliable and valid assessment methods provides more reliable results for the diagnosis of cardiorespiratory fitness and the response of this variable to exercise. The aim of the present study was to review the literature on the assessment protocols used to measure maximum oxygen consumption in children and adolescents with Down syndrome giving emphasis to the protocols used, the validation process and their feasibility. The search was carried out in eight electronic databases--Scopus, Medline-Pubmed, Web of science, SportDiscus, Cinhal, Academic Search Premier, Scielo, and Lilacs. The inclusion criteria were: (a) articles which assessed VO2peak and/or VO2max (independent of the validation method), (b) samples composed of children and/or adolescents with Down syndrome, (c) participants of up to 20 years old, and (d) studies performed after 1990. Fifteen studies were selected and, of these, 11 measured the VO2peak using tests performed in a laboratory, 2 used field tests and the remaining 2 used both laboratory and field tests. The majority of the selected studies used maximal tests and conducted familiarization sessions. All the studies took into account the clinical conditions that could hamper testing or endanger the individuals. However, a large number of studies used tests which had not been specifically validated for the evaluated population. Finally, the search emphasized the small number of studies which use field tests to evaluate oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans.
Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka
2017-07-01
This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature (P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.
NASA Astrophysics Data System (ADS)
Garel, M.; Martini, S.; Lefèvre, D.; Tamburini, C.
2016-02-01
The heterotrophic prokaryotes are the main contributor to organic matter degradation in the ocean and particularly in the deep ocean. Nowadays, a classical way to evaluate the prokaryotic carbon demand (PCD) needs the estimation of both prokaryotic heterotrophic production (PHP) and prokaryotic respiration (PR). PHP measurements in deep-sea waters are relatively well documented and the importance of maintaining the in situ conditions (pressure and temperature) to avoid bias of the real deep-sea activities has been highlighted. However, no accurate methodology is available to measure directly, under in situ conditions (pressure and temperature) PR in the dark ocean. This study is presenting PR measurements under in situ conditions. High-pressure bottles have been adapted with a non-invasive sensor to measure prokaryotic oxygen consumption. The methodology is based on fluorescence quenching where molecular oxygen quenches the luminescence of planar-optode-oxygen sensor widely used in oceanography. Firstly, accuracy, detection limit, precision and response time of oxygen concentration measurements have been investigated in relation to an increase of hydrostatic pressure. Secondly, we will present experiments performed on natural prokaryotic consortium mixed with freshly collected particles to assess the O2 consumption in relation with increasing hydrostatic pressure (150 m depth per day). Finally, first results of coupled PHP and PR measurements at in situ conditions (temperature and pressure) from mesopelagic and bathypelagic samples of the Atlantic Ocean (PAP site), will be discussed. Finally, we will discuss first results of coupled PHP and PR measurements at in situ conditions (temperature and pressure) from Atlantic Ocean mesopelagic and bathypelagic samples (PAP site).
Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P
2013-08-01
The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4) μmol cm(-2) s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Decline in global oceanic oxygen content during the past five decades.
Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin
2017-02-15
Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.
Lenkin, Andrey I; Zaharov, Viktor I; Lenkin, Pavel I; Smetkin, Alexey A; Bjertnaes, Lars J; Kirov, Mikhail Y
2013-05-01
In cardiac surgery, the choice of temperature regimen during cardiopulmonary bypass (CPB) remains a subject of debate. Hypothermia reduces tissue metabolic demands, but may impair the autoregulation of cerebral blood flow and contribute to neurological morbidity. The aim of this study was to evaluate the effect of two different temperature regimens during CPB on the systemic oxygen transport and the cerebral oxygenation during surgical correction of acquired heart diseases. In a prospective study, we randomized 40 adult patients with combined valvular disorders requiring surgical correction of two or more valves into two groups: (i) a normothermic (NMTH) group (n = 20), in which the body core temperature was maintained at 36.6°C during CPB and (ii) a hypothermic (HPTH) group (n = 20), in which the body was cooled to a core temperature of 32°C maintained throughout the period of CPB. The systemic oxygen transport and the cerebral oxygen saturation (SctO2) were assessed by means of a PiCCO2 haemodynamic monitor and a cerebral oximeter, respectively. All the patients received standard perioperative monitoring. We assessed haemodynamic and oxygen transport parameters, the duration of mechanical ventilation and the length of the ICU and the hospital stays. During CPB, central venous oxygen saturation was significantly higher in the HPTH group but SctO2 was increased in the NMTH group (P < 0.05). Cardiac index, systemic oxygen delivery and consumption increased postoperatively in both groups. However, oxygen delivery and consumption were significantly higher in the NMTH group (P < 0.05). The duration of respiratory support and the length of ICU and hospital stays did not differ between the groups. During combined valve surgery, normothermic CPB provides lower central venous oxygen saturation, but increases cerebral tissue oxygenation when compared with the hypothermic regimen.
Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong
2011-09-01
The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.
Ma, Yilong; Wu, Shufen
2008-09-30
This study reports an online temperature correction method for determining tissue oxygen partial pressure P(tO2) in the striatum and a novel simultaneous measurement of brain P(tO2) and temperature (T(brain)) in conjunction with global oxygen consumption V(O2) in non-sedated and non-anesthetized freely moving Arctic ground squirrels (AGS, Spermophilus parryii). This method fills an important research gap-the lack of a suitable method for physiologic studies of tissue P(O2) in hibernating or other cool-blooded species. P(tO2) in AGS brain during euthermy (21.22+/-2.06 mmHg) is significantly higher (P=0.016) than during hibernation (13.21+/-0.46 mmHg) suggests brain oxygenation in the striatum is normoxic during euthermy and hypoxic during hibernation. These results in P(tO2) are different from blood oxygen partial pressure P(aO2) in AGS, which are significantly lower during euthermy than during hibernation and are actually hypoxic during euthermy and normoxic during hibernation in our previous study. This intriguing difference between the P(O2) of brain tissue and blood during these two physiological states suggests that regional mechanisms in the brain play a role in maintaining tissue oxygenation and protect against hypoxia during hibernation.
Establishing the Mineral Apposition Rate of Heterotopic Ossification for Prevention of Recurrence
2015-12-01
oxygenation has been demonstrated to have deleterious effects on wound closure rates, latency to resumption of an unperturbed blood flow, and may delay the...techniques like near-infrared spectroscopy and blood oxygen level-dependent magnetic resonance imaging may provide noninvasive, precise, and time- effective ...Itada N, Friedenberg ZB. Cathodic oxygen consumption and electrically induced osteogenesis. Clin Orthop Relat Res. 1975;(107):277–282. 27. Ren H
Hypoxic Response of Tumor Tissues in a Microfluidic Environment
NASA Astrophysics Data System (ADS)
Morshed, Adnan; Dutta, Prashanta
2017-11-01
Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.
Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy
Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter
2015-01-01
Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809
21 CFR 172.260 - Oxidized polyethylene.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION... polyethylene has a minimum number average molecular weight of 1,200, as determined by high temperature vapor pressure osmometry; contains a maximum of 5 percent by weight of total oxygen; and has an acid value of 9...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
40 CFR 63.2550 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... definition of reconstruction in § 63.2. Consumption means the quantity of all HAP raw materials entering a... the process as well as added as a raw material, consumption includes the quantity generated in the... contain primarily carbon, hydrogen, and oxygen atoms. Organic peroxides means organic compounds containing...
Nitric oxide is a versatile sensor of low oxygen stress in plants
Borisjuk, Ljudmilla
2008-01-01
The plant response to low levels of oxygen involves an interplay of transcriptional, translational and post-translational signaling. However, in plants, the sensing mechanism itself remains obscure. The role of nitric oxide (NO) in oxygen sensing and balancing has been extensively explored in our laboratory. We suggest that NO is generated within the mitochondria from nitrite in response to hypoxia, and that this small gaseous molecule can reversibly modify both the respiratory oxygen consumption and the oxygen availability within the seed. We further propose that hemoglobins play a central role in the detoxification of excess NO. PMID:19704575
Plant respirometer enables high resolution of oxygen consumption rates
NASA Technical Reports Server (NTRS)
Foster, D. L.
1966-01-01
Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.
Oxygen requirements of separated hybrid catfish female Ictalurus punctatus male I. furcatus eggs
USDA-ARS?s Scientific Manuscript database
Channel catfish Ictalurus punctatus egg masses require ambient water with over 95% air saturation to maintain maximum oxygen consumption as they near hatch. Since hybrid catfish eggs (channel catfish ' X blue catfish I. furcatus ') are often kept separated after fertilization by the addition of full...
To investigate the relative importance of microphytobenthos (MPB) oxygen (O2) production on a river-dominated shelf, we made sediment core incubation measurements of MPB O2 production and sediment O2 consumption, and compared these to water-column measures of primary production ...
Diurnal Variations in Maximal Oxygen Uptake.
ERIC Educational Resources Information Center
McClellan, Powell D.
A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…
NASA Astrophysics Data System (ADS)
Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.
2012-04-01
Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen penetrating less than 5 mm into the seafloor. In total oxygen uptake by the seafloor, the fraction of the diffusive flux, which comprises microbial consumption plus re-oxidation of reduced compounds, increased with declining oxygen concentrations. Measurements and modeling of penetration depths and fluxes of the electron acceptors nitrate, iron- and manganese oxides, sulfate suggest that as long as oxygen is available in the oxic and the hypoxic zones of the Crimean shelf, the largest fraction of oxygen is consumed directly during aerobic mineralization of organic matter and re-oxidation processes play only a minor role. Furthermore, the combination of rapid and strong fluctuation of bottom water oxygen concentration and low sedimentation rates appear to repress anaerobic organic matter degradation. This study was carried out within the framework of the EU-funded project HYPOX (www.hypox.net), which is set up to improve our understanding of hypoxia formation and to develop capacities and know-how for hypoxia monitoring.
Yamagishi, Anna; Tanabe, Koji; Yokokawa, Masatoshi; Morimoto, Yuji; Kinoshita, Manabu; Suzuki, Hiroaki
2017-09-08
A microfluidic device coupled with a microfabricated Clark-type oxygen electrode was used to measure the bactericidal activity of neutrophil-like cells differentiated from HL-60 cells. The neutrophil-like cells and Escherichia coli (E. coli) cells were cultured in the same medium, which was introduced into the flow channel of the device. Changes in the respiratory activity of E. coli were measured as changes in the consumption of dissolved oxygen. As the activity of the neutrophil-like cells increased, the rate of elimination of E. coli increased. The accompanying decrease in the number of E. coli reduced the consumption of dissolved oxygen. The changes were actually observed as changes in generated current. A distinct difference in changes in dissolved oxygen concentrations was observed between E. coli cells co-incubated with IFN-γ-activated or non-activated neutrophil-like cells. The required sample volume was less than 10 μL, and results could be obtained within 1-2 h. The device may be useful for the assessment of psychological stresses that affect the activity of neutrophils. Copyright © 2017 Elsevier B.V. All rights reserved.
Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank
2017-06-01
Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-01-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-05-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.
In silico analysis of the anti-hypertensive drugs impact on myocardial oxygen balance.
Guala, A; Leone, D; Milan, A; Ridolfi, L
2017-06-01
Hypertension is a very common pathology, and its clinical treatment largely relies on different drugs. Some of these drugs exhibit specific protective functions in addition to those resulting from blood pressure reduction. In this work, we study the impact of commonly used anti-hypertensive drugs (RAAS, [Formula: see text] and calcium channel blockers) on myocardial oxygen supply-consumption balance, which plays a crucial role in type 2 myocardial infarction. To this aim, 42 wash-out hypertensive patients were selected, a number of measured data were used to set a validated multi-scale cardiovascular model to subject-specific conditions, and the administration of different drugs was suitably simulated. Our results ascribe the well-known major cardioprotective efficiency of [Formula: see text] blockers compared to other drugs to a positive change of myocardial oxygen balance due to the concomitant: (1) reduction in aortic systolic, diastolic and pulse pressures, (2) decrease in left ventricular work, diastolic cavity pressure and oxygen consumption, (3) increase in coronary flow and (4) ejection efficiency improvement. RAAS blockers share several positive outcomes with [Formula: see text] blockers, although to a reduced extent. In contrast, calcium channel blockers seem to induce some potentially negative effects on the myocardial oxygen balance.
NASA Astrophysics Data System (ADS)
Schmidt, M.; Eggert, A.
2016-02-01
The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by pole-ward advection of tropical water masses.
Energetic expenditure during vocalization in pups of the subterranean rodent Ctenomys talarum
NASA Astrophysics Data System (ADS)
Schleich, Cristian Eric; Busch, Cristina
2004-11-01
Theoretical signaling models predict that to be honest, begging vocalizations must be costly. To test this hypothesis, oxygen consumption was measured during resting and begging (i.e., vocalizing) activities in pups of the subterranean rodent Ctenomys talarum by means of open-flow respirometry. No statistical differences in individual oxygen consumption between resting and calling pups ranging in age from day 2 to day 20 were found. Given these data, begging calls of C. talarum could not be considered as honest advertisements of offspring need, contrary to what suggested by the behavioral observations of the mother and pups during the nestling period.
Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.
NASA Technical Reports Server (NTRS)
Erickson, H. H.; Stone, H. L.
1972-01-01
Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.
Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.
Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela
2013-03-14
Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain development, and response to therapy in neonates. Moreover, this method adheres to all neonatal intensive care unit (NICU) policies on infection control and institutional policies on laser safety. Future work will seek to integrate the two instruments to reduce acquisition time at the bedside and to implement real-time feedback on data quality to reduce the rate of data rejection.
Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos
2014-01-01
In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.
David, Muniswamy; Sangeetha, Jeyabalan; Harish, Etigemane R
2015-03-01
Sodium cyanide is a common environmental pollutant which is mainly used in many industries such as mining, electroplating, steel manufacturing, pharmaceutical production and other specialized applications including dyes and agricultural products. It enters aquatic environment through effluents from these industries. Static renewal bioassay test has been conducted to determine LC, of sodium cyanide on indigenous freshwater carp, Labeo rohita. The behavioural pattern and oxygen consumption were observed in fish at both lethal and sub lethal concentrations. Labeo rohita in toxic media exhibited irregular and erratic swimming movements, hyper excitability, loss of equilibrium and shrinking to the bottom, which may be due to inhibition of cytochrome C oxidase activity and decreased blood pH. The combination of cytotoxic hypoxia with lactate acidosis depresses the central nervous system resulting in respiratory arrest and death. Decrease in oxygen consumption was observed at both lethal and sub lethal concentrations of sodium cyanide. Mortality was insignificant at sub lethal concentration test when fishes were found under stress. Consequence of impaired oxidative metabolism and elevated physiological response by fish against sodium cyanide stress showed alteration in respiratory rate.
Vijayavel, K; Balasubramanian, M P
2006-06-01
The sublethal effect of naphthalene was studied on the physiology of a mud crab Scylla serrata. The 96 h acute toxicity of naphthalene was determined and found to be 28 mg 1(-1) (LC100), 18 mg 1(-1) (LC50), 10 mg 1(-1) (LC0) respectively. The 30 days sublethal effect (LC0) 9 mg 1(-1), 8 mg 1(-1), 10 mg 1(-1), of naphthalene was investigated in the crab S. serrata with reference to oxygen consumption and changes in the activity of respiratory enzymes. The results indicated that naphthalene caused disturbance in the normal physiology of the crab. The bioaccumulation of naphthalene was also investigated in gills, hepatopancreas, haemolymph and ovary. The consumption of oxygen increased in the naphthalene medium when compared with that of the crabs exposed to naphthalene free medium. A decreased trend in the activity of respiratory enzymes such as lactate dehydrogenase (LDH), isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), alpha-ketoglutarate dehydrogenase (alpha-KDH) and glutathione (GSH) were recorded in the hepatopancreas, ovary and gills of S. serrata for all the tested concentrations of naphthalene and the results were analyzed for their significance.
Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela
2017-02-01
The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of HMX exposure upon metabolic rate of northern bobwhite quail (Colinus virginianus) in ovo.
Liu, Jun; Cox, Stephen B; Beall, Blake; Brunjes, Kristina J; Pan, Xiaoping; Kendall, Ronald J; Anderson, Todd A; McMurry, Scott T; Cobb, George P; Smith, Philip N
2008-05-01
We evaluated the use of the gas exchange rate as an ecologically relevant indicator of chemical stress in avian embryos/eggs. Northern bobwhite quail (Colinus virginianus) were exposed to octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) via feed containing nominal concentrations of 0, 12.5, 50.0, and 125.0 mg kg(-1). Metabolic rates (oxygen consumption) of developing quail eggs were then measured via respirometry to examine potential effects of HMX exposure. Metabolic rates were examined on 5, 9, and 21 d of incubation. Next, concentrations of HMX in embryos/eggs were determined by liquid chromatography-mass spectrometry. Mean (+/-SE) concentrations of HMX in eggs were 21.0+/-5.9, 1113+/-79.0, 3864+/-154.0, and 7426+/-301.1 ng g(-1) in control, low, medium and high dose groups, respectively. There were significant differences in oxygen consumption among the three embryo ages, however differences among the ages were not consistent among dose groups (age x dose group interaction p<0.0001). Oxygen consumption rates did not vary as a function of HMX in embryos (p=0.18). No evidence was observed for alterations of in ovo metabolic rates associated with HMX exposure.
Organic carbon mineralization in the Santa Catalina Basin: benthic boundary layer metabolism
NASA Astrophysics Data System (ADS)
Smith, K. L.; Carlucci, A. F.; Jahnke, R. A.; Craven, D. B.
1987-02-01
Organic carbon mineralization rates in the benthic boundary layer (BBL) of the Santa Catalina Basin (1300 m depth) were estimated to identify the primary sites and organisms involved in the turnover of carbon and to compare these rates with the supply of particulate organic matter entering the system from above. Concurrent in situ measurements of macrozooplankton, epibenthic megafauna, and sediment community oxygen consumption, and bacterioplankton and total microbial (microplankton) metabolism were made on 12 dives with DSRV Alvin in November 1984. Pore water and solid phase chemistries, and sediment microbial activity were measured on samples from box cores. Macrozooplankton oxygen consumption, integrated over the 100 m BBL, was 25.8 μmol O 2 m -2 d -1 (0.3 mg C m -2 d -1). Microplankton carbon mineralization rates were 13-29 mg C m -2 d -1 for the BBL with an assimilation efficiency of 80-90%. The estimated oxygen consumption of the dominant population of epibenthic megafauna, Ophiophthalmus normani, at observed densities was 237.8 μmol O 2 m -2 d -1 (2.4 mg C m -2 d -1). Sediment community oxygen consumption was 2776.8 μmol O 2 m -2 d -1 (28.6 mg C m -2 d -1) which is similar to the estimated microbial carbon mineralization estimate for the sediments of 32 mg C m -2 d -1 assuming a 90% assimilation efficiency. These rates were corroborated further by the observed total inorganic carbon pore water gradients from which a mineralization rate of 10-31 mg C m -2 d -1 was estimated. The combined carbon mineralization by the three consumer groups ranged from 25.7 to 63.7 mg C m -2 d -1. For comparison, the oxygen consumption in the BBL based on hydrographic data from the center and sills of the basin was 3.1-20.0 mg C m -2 d -1. Given the large uncertainties in all of the calculations, there was reasonable agreement between these diverse methods of estimating carbon mineralization. The concurrently measured flux of small particulate organic carbon into the BBL using sediment traps was 11.1 ± 2.4 mg C m -2 d -1, providing 17-43% of the estimated carbon mineralized by the three consumer groups.
2015-12-17
temperature . New device architecture that utilizes cold-electron transport for ultra-low energy consumption electronics has been designed in a configuration...the oxygen has also been found important for the SiC>2 sputter deposition. The sputter was carried out at room temperature . Our optimized process...have been pursued for two electronic devices, 1) room- temperature single-electron transistors, and 2) ultralow energy consumption transistors. For
Purinergic effects of a hydroalcoholic Agaricus brasiliensis (A. blazei) extract on liver functions.
de Oliveira, Andrea L; Eler, G Jacklin; Bracht, Adelar; Peralta, Rosane M
2010-06-23
The effects of a hydroalcoholic extract of Agaricus brasiliensis (A. blazei) on functional parameters in the perfused rat liver were examined with emphasis on its content of nucleotides and nucleosides. Several nucleosides and nucleotides were identified in the A. brasiliensis extract, which was active on several liver functions. A significant part of the effects is the result of the purinergic action of nucleosides and nucleotides: pressure increment, glycogenolysis stimulation, transient inhibition of oxygen consumption, and redox state changes. Other phenomena such as the stimulation of gluconeogenesis, ureogenesis, and oxygen consumption are more likely consequences of the metabolic transformation of substrates contained within the extract, especially amino acids. It seems apparent that consumption of A. brasiliensis represents not only the ingestion of metabolic precursors but also the ingestion of substances that, even at low concentrations, can exert important signaling functions in the liver as well as in the organism as a whole.
Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.
Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong
2010-02-01
Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking.
Research on inert gas narcosis and air velocity effects on metabolic performance
NASA Technical Reports Server (NTRS)
1974-01-01
The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.
Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.
Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva
2016-06-01
The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif
2016-01-01
Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110
Oxygen mapping: Probing a novel seeding strategy for bone tissue engineering.
Westphal, Ines; Jedelhauser, Claudia; Liebsch, Gregor; Wilhelmi, Arnd; Aszodi, Attila; Schieker, Matthias
2017-04-01
Bone tissue engineering (BTE) utilizing biomaterial scaffolds and human mesenchymal stem cells (hMSCs) is a promising approach for the treatment of bone defects. The quality of engineered tissue is crucially affected by numerous parameters including cell density and the oxygen supply. In this study, a novel oxygen-imaging sensor was introduced to monitor the oxygen distribution in three dimensional (3D) scaffolds in order to analyze a new cell-seeding strategy. Immortalized hMSCs, pre-cultured in a monolayer for 30-40% or 70-80% confluence, were used to seed demineralized bone matrix (DBM) scaffolds. Real-time measurements of oxygen consumption in vitro were simultaneously performed by the novel planar sensor and a conventional needle-type sensor over 24 h. Recorded oxygen maps of the novel planar sensor revealed that scaffolds, seeded with hMSCs harvested at lower densities (30-40% confluence), exhibited rapid exponential oxygen consumption profile. In contrast, harvesting cells at higher densities (70-80% confluence) resulted in a very slow, almost linear, oxygen decrease due to gradual achieving the stationary growth phase. In conclusion, it could be shown that not only the seeding density on a scaffold, but also the cell density at the time point of harvest is of major importance for BTE. The new cell seeding strategy of harvested MSCs at low density during its log phase could be a useful strategy for an early in vivo implantation of cell-seeded scaffolds after a shorter in vitro culture period. Furthermore, the novel oxygen imaging sensor enables a continuous, two-dimensional, quick and convenient to handle oxygen mapping for the development and optimization of tissue engineered scaffolds. Biotechnol. Bioeng. 2017;114: 894-902. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Enhancement of C2C12 differentiation by perfluorocarbon-mediated oxygen delivery.
Fujita, Hideaki; Shimizu, Kazunori; Morioka, Yuki; Nagamori, Eiji
2010-09-01
We have studied the effect of enhanced oxygen delivery by perfluorocarbons on the differentiation of C2C12 cells. The extent of differentiation was assessed by means of phase contrast/fluorescence microscopy, active tension measurement and the glucose consumption/lactate production rates. We found that enhanced oxygen delivery is suitable for full differentiation of C2C12 cells. Copyright 2010 The Society for Biotechnology, Japan. All rights reserved.
NASA Astrophysics Data System (ADS)
Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.
2017-11-01
Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.
Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.
Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B
2009-04-01
This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.
USDA-ARS?s Scientific Manuscript database
Since metabolism of energy is a major source of reactive oxygen species, the quantity of dietary antioxidants needed may be related to energy consumption. Antioxidant status in vivo can be altered by diet, but the postprandial response is dependent upon factors such as 1) antioxidant capacity (AOC) ...