Sample records for oxygen content

  1. Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng

    2016-04-01

    The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  2. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  3. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE PAGES

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping; ...

    2017-02-27

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  4. Oxygen content and oxidation in frying oil.

    PubMed

    Totani, Nagao; Yawata, Miho; Mori, Terutoshi; Hammond, Earl G

    2013-01-01

    The relation between oxygen content and oxidation was investigated in frying oils. When canola oil, a canola-soybean oil blend or a trioctanoylglycerol (glycerol tricaprate) sample were heated with stirring, their dissolved oxygen content decreased abruptly at about 120°C and the carbonyl values (CV) increased gradually with heating and reached values of 6-7 at 180°C in the blended and canola oils, while the CV of trioctanoylglycerol was zero up to 150°C. Probably this abrupt decrease in oxygen content above 120°C can be attributed to the solubility of oxygen in oil rather than because of oxidative reactions. The oxygen content of oil that has been stripped of part of its oxygen, increased at temperatures between 25 and 120°C. In oils that have lost their oxygen by being heated to 180°C, standing at room temperature will slowly restore their oxygen content as the oil cools. Intermittent simple heating of oil promoted oxygen absorbance during cooling periods and standing times, and it resulted in an elevated content of polar compounds (PC). Domestic deep-frying conditions also favor the presence of oxygen in oil below 120°C and during the oil's long standing at room temperature. The oxygen content in oil was low during deep-frying, but oxidation was active at the oil/air interface of bubbles generated by foods being fried. Repeated use of oil at temperatures between 25-180°C resulted in oil with low oxygen values.

  5. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats.

    PubMed

    Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji

    2015-09-01

    Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

  6. The oxygen content of the high-temperature superconducting compound Bi(2+x)Sr(3-y)CayCu2O(8+d) with respect to varying Ca and Bi contents

    NASA Technical Reports Server (NTRS)

    Majewski, P.; Su, H.-L.; Aldinger, F.

    1995-01-01

    The oxygen content of Bi(2+x)Sr(3-y)Cu2O(8+d) (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T(sub c) decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T(sub c) of the 2212 phase primarily is controlled by its cation concentration.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  8. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  9. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE PAGES

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...

    2017-06-29

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  10. Effect of oxygen on the ignition of liquid fuels

    NASA Technical Reports Server (NTRS)

    Pahl, H

    1929-01-01

    The ignition temperature, ignition lag, and ignition strength of simple and homogeneous fuels in combustion air of small oxygen content differ from what they are in air of greater oxygen content. In the case of small oxygen content, these fuels behave as if mixed unevenly. In the case of air with a definite oxygen content, the simple fuels have two ignition points, between which ignition takes place within a certain temperature range. The phenomena are explained by pyrogenous decomposition, comparison of the individual heat quantities, and the effect of the walls.

  11. Influence of oxygen content of the certain types of biodiesels on particulate oxidative potential.

    PubMed

    Hedayat, F; Stevanovic, S; Milic, A; Miljevic, B; Nabi, M N; Zare, A; Bottle, S E; Brown, R J; Ristovski, Z D

    2016-03-01

    Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE PAGES

    Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...

    2017-04-18

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  13. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik; Chen, Aiping; Harrell, Zach

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  14. [Influence of raising oxygen content on function of platelet concentrate during preservation].

    PubMed

    Zhan, Tong; Xiao, Jian-Yu; Tao, Jing; Miao, Xi-Feng; Liu, Yan-Cun; Tang, Rong-Cai

    2006-08-01

    To explore the influence of raising oxygen (dissolved oxygen) content on function of platelet concentrate, the platelet concentrate was prepared by a CS-3000 plus blood cell separator. Experiments were divided into 2 groups: test group and control group. After raising oxygen content in platelet plasma under sterile operation, the platelet samples of two groups were preserved in oscillator with horizontal oscillation at 22 +/- 2 degrees C. The platelet count, platelet aggregation rate, lactic acid content and CD62p expression level of platelet were detected on 0, 1, 2, 3, 4, 5 days of platelet preservation. The results showed that the platelet count and platelet aggregation rate decreased with prolongation of preserved time, while the lactic acid content and CD62p expression level of platelet increased gradually. Compared with control group, there were significant differences in aggregation rate of platelet preserved for 2-3 days, and in CD62p expression level of platelet preserved for 1-3 days, while significant difference was found in lactic acid content of platelet preserved for 1-3 days. It is concluded that raising content of oxygen in platelet plasma can provide more oxygen to compensate oxygen supply deficiency for platelet metabolism and improve the efficiency of platelet oxygenic metabolism and the quality of platelet during preservation.

  15. The oxygen content of the high-temperature superconducting compound Bi{sub 2+x}Sr{sub 3-y}CayCu{sub 2}O{sub 8+d} with respect to varying Ca and Bi contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, P.; Su, H.L.; Aldinger, F.

    1994-12-31

    The oxygen content of Bi{sub 2+x}Sr{sub 3-y}Ca{sub y}Cu{sub 2}O{sub 8+d} (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T{sub c} decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T{sub c} of the 2212 phase primarily is controlled by its cation concentration.

  16. Changes of oxygen content in facial skin before and after cigarette smoking.

    PubMed

    Fan, Guo-Biao; Wu, Pei-Lan; Wang, Xue-Min

    2012-11-01

    Cigarette smoking not only causes systemic health problems, but may also be an underlying cause of premature skin aging. Cigarette smokers frequently have morphological changes in facial skin that may be attributed to reduced oxygen in this region. The purpose of this study was to measure the oxygen content in facial skin before and after smoking. Twenty-five volunteers participated in this study. Changes in oxygen content of the facial skin were measured before and after 30 min of cigarette smoking. Skin temperature and oxygen content were evaluated in the periorbital and periolar regions. There was a significant increase in temperature after smoking. The oxy hemoglobin and partial pressure of oxygen decreased in both the periocular and perioral areas after smoking. There were no changes in deoxy hemoglobin and partial pressure of carbon dioxide at these areas. Significant changes were seen in temperature and oxygen content after only 30 min of smoking. The results from this study suggest that alterations in the skin temperature and oxygen content in facial skin after smoking may be an underlying cause of premature skin aging. © 2011 John Wiley & Sons A/S.

  17. Effect of the oxygen content in solution on the static and cyclic deformation of titanium foams.

    PubMed

    Lefebvre, L P; Baril, E; Bureau, M N

    2009-11-01

    It is well known that interstitials affect the mechanical properties of titanium and titanium alloys. Their effects on the fatigue properties of titanium foams have not, however, been documented in the literature. This paper presents the effect of the oxygen content on the static and dynamic compression properties of titanium foams. Increasing the oxygen content from 0.24 to 0.51 wt% O in solution significantly increases the yield strength and reduces the ductility of the foams. However, the fatigue limit is not significantly affected by the oxygen content and falls within the 92 MPa +/- 12 MPa range for all specimens investigated in this study. During cyclic loading, deformation is initially coming from cumulative creep followed by the formation of microcracks. The coalescence of these microcracks is responsible for the rupture of the specimens. Fracture surfaces of the specimens having lower oxygen content show a more ductile aspect than the specimens having higher oxygen content.

  18. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture.

    PubMed

    Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.

  19. Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing

    2018-02-01

    The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.

  20. Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    PubMed

    Santhirapala, Vatshalan; Williams, Louisa C; Tighe, Hannah C; Jackson, James E; Shovlin, Claire L

    2014-01-01

    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity. 165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100. There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up. Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses.

  1. Arterial Oxygen Content Is Precisely Maintained by Graded Erythrocytotic Responses in Settings of High/Normal Serum Iron Levels, and Predicts Exercise Capacity: An Observational Study of Hypoxaemic Patients with Pulmonary Arteriovenous Malformations

    PubMed Central

    Santhirapala, Vatshalan; Williams, Louisa C.; Tighe, Hannah C.; Jackson, James E.; Shovlin, Claire L.

    2014-01-01

    Background Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity. Methodology 165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100. Principal Findings There was wide variation in SaO2 on air (78.5–99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up. Significance Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses. PMID:24637882

  2. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture

    PubMed Central

    Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394

  3. Effects of biotic and abiotic factors on the oxygen content of green sea turtle nests during embryogenesis.

    PubMed

    Chen, Chiu-Lin; Wang, Chun-Chun; Cheng, I-Jiunn

    2010-10-01

    Several biotic and abiotic factors can influence nest oxygen content during embryogenesis. Several of these factors were determined during each developmental stage of green sea turtle embryos on Wan-an Island, Penghu Archipelago, Taiwan. We examined oxygen content in 7 nests in 2007 and 11 in 2008. Oxygen in the adjacent sand, total and viable clutch sizes, air, sand and nest temperatures, and sand characters of each nest were also determined. Oxygen content was lower in late stages than in the early and middle stages. It was also lower in the middle layer than in the upper and bottom layers. Nest temperature showed opposite trends, reaching its maximum value in late stages of development. Nest oxygen content was influenced by fraction of viable eggs, total clutch sizes, sand temperatures, maximum nest temperature and maximum change in the nest temperature during incubation. Clutch size during embryogenesis was the most influential factor overall. However, the major influential factors were different for different developmental stages. In the first half of the incubation, the development rate was low, and the change in the nest oxygen content was influenced mainly by the clutch size. During the second half, the rapid embryonic development rate became the dominant factor, and hatchling activities caused even greater oxygen consumption during the last stage of development.

  4. 46 CFR 39.40-5 - Operational requirements for vapor balancing-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks have partial bulkheads, the oxygen content of each area of that tank formed by each partial... vapor collection system must be tested prior to cargo transfer to ensure that the oxygen content in the vapor space does not exceed 8 percent by volume. The oxygen content of each tank must be measured at a...

  5. Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ying, E-mail: yingzou@jwri.osaka-u.ac.jp; Ueji, Rintaro; Fujii, Hidetoshi

    The double-shielded advanced A-TIG (AA-TIG) welding method was adopted in this study for the welding of the SUS329J4L duplex stainless steel with the shielding gases of different oxygen content levels. The oxygen content in the shielding gas was controlled by altering the oxygen content in the outer layer gas, while the inner layer remained pure argon to suppress oxidation on the tungsten electrode. As a result, a deep weld penetration was obtained due to the dissolution of oxygen into the weld metals. Additionally, the microstructure of the weld metal was changed by the dissolution of oxygen. The austenite phase atmore » the ferrite grain boundary followed a Kurdjumov–Sachs (K–S) orientation relationship with the ferrite matrix phase at any oxide content. On the other hand, the orientation relationship between the intragranular austenite phase and the ferrite matrix phase exhibited different patterns under different oxygen content levels. When there was little oxide in the fusion zone, only a limited part of the intragranular austenite phase and the ferrite matrix phase followed the K–S orientation relationship. With the increase of the oxide, the correspondence of the K–S relationship increased and fit very well in the 2.5% O{sub 2} shielded sample. The investigation of this phenomenon was carried out along with the nucleation mechanisms of the intragranular austenite phases. - Highlights: • Weld penetration increased with the increase of the oxygen content. • Average diameter and number density of oxide were changed by the oxygen content. • K-S relationship of Widmanstätten austenite/ferrite wasn’t varied by oxide. • Orientation relationship of intragranular austenite/ferrite was varied by oxide.« less

  6. [Russian oxygen generation system "Elektron-VM": hydrogen content in electrolytically produced oxygen for breathing by International Space Station crews].

    PubMed

    Proshkin, V Yu; Kurmazenko, E A

    2014-01-01

    The article presents the particulars of hydrogen content in electrolysis oxygen produced aboard the ISS Russian segment by oxygen generator "Elektron-VM" (SGK) for crew breathing. Hydrogen content was estimated as in the course of SGK operation in the ISS RS, so during the ground life tests. According to the investigation of hydrogen sources, the primary path of H2 appearance in oxygen is its diffusion through the porous diaphragm separating the electrolytic-cell cathode and anode chambers. Effectiveness of hydrogen oxidation in the SGK reheating unit was evaluated.

  7. Influence of Oxygen on Cu Distribution Behavior Between Molten Iron and FeS-Based Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Shin, Kil-Sun; Morita, Kazuki

    2018-06-01

    Cu distribution behavior between molten iron and a sulfide flux was investigated under different oxygen contents in the sulfide flux to clarify the effect of oxygen content in FeS-based flux on Cu removal. The activity coefficient of CuS0.5 could be experimentally estimated according to the oxygen content. Based on the present result, the possibility of Cu removal by sulfide flux containing a certain amount of oxide was discussed.

  8. Impact of oxygen stoichiometry on electroforming and multiple switching modes in TiN/TaOx/Pt based ReRAM

    NASA Astrophysics Data System (ADS)

    Sharath, S. U.; Joseph, M. J.; Vogel, S.; Hildebrandt, E.; Komissinskiy, P.; Kurian, J.; Schroeder, T.; Alff, L.

    2016-10-01

    We have investigated the material and electrical properties of tantalum oxide thin films (TaOx) with engineered oxygen contents grown by RF-plasma assisted molecular beam epitaxy. The optical bandgap and the density of the TaOx films change consistently with oxygen contents in the range of 3.63 to 4.66 eV and 12.4 to 9.0 g/cm3, respectively. When exposed to atmosphere, an oxidized Ta2O5-y surface layer forms with a maximal thickness of 1.2 nm depending on the initial oxygen deficiency of the film. X-ray photoelectron spectroscopy studies show that multiple sub-stoichiometric compositions occur in oxygen deficient TaOx thin films, where all valence states of Ta including metallic Ta are possible. Devices of the form Pt/Ta2O5-y/TaOx/TiN exhibit highly tunable forming voltages of 10.5 V to 1.5 V with decreasing oxygen contents in TaOx. While a stable bipolar resistive switching (BRS) occurs in all devices irrespective of oxygen content, unipolar switching was found to coexist with BRS only at higher oxygen contents, which transforms to a threshold switching behaviour in the devices grown under highest oxidation.

  9. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  10. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-06-08

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  11. OXYGEN DISSOCIATION OF WHOLE BLOOD STUDIED POLAROGRAPHICALLY

    PubMed Central

    Markus, Gabor; Baumberger, J. Percy

    1952-01-01

    The polarographic current of whole blood is in excess of that given by plasma at the same oxygen tension. The magnitude of this difference depends on (a) the oxygen content of the sample and thus is determined by the red blood cell content and by the state of oxygen saturation of hemoglobin, and (b) on the rate of dissociation of oxyhemoglobin and therefore is influenced by changes in pH, pCO2, and temperature. The total current at 37°C. is proportional to the oxygen content of the sample and can be used to determine the latter. The theoretical basis of the studied phenomena is discussed in detail. PMID:13011281

  12. The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.

    2011-03-01

    Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth's outer core is undersaturated in oxygen with respect to plausible mantle FeO contents, which will result in either the depletion of FeO from the base of the mantle or cause the development of an outer core layer that is enriched in oxygen. The oxygen content of the more sulphur-rich Martian core would be in the range 2-4 wt.% if it is in equilibrium with the FeO-rich Martian mantle.

  13. Effect of oxygen content of Nd-Fe-B sintered magnet on grain boundary diffusion process of DyH2 dip-coating

    NASA Astrophysics Data System (ADS)

    Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2015-11-01

    We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.

  14. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  15. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  16. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  17. Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V

    2009-06-01

    The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.

  18. Al Control in High Titanium Ferro with Low Oxygen Prepared by Thermite Reaction

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-he; Wang, Cong; Fan, Shi-gang; Shi, Guan-yong; Zhang, Ting-an

    Based on the pre-works, this paper proposed a new short stage process of the intensify aluminothermy reduction by the stage to prepare high titanium ferroalloy with low O and Al contents. We investigated the effects of Al and Ca and Si combination reduction agent, slag type and step-up reduction conditions on the Al content and distribution in the alloy. The results show that the step-up reduction can not only reduce effectively the oxygen content in the alloy, but also reduce effectively Al content. For instance, the oxygen content in high titanium ferroalloy is within 1%˜4%, and the Al content is within 1%˜5%. Its quality reaches the requirement of high titanium ferroalloy prepared by remelting process.

  19. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  20. Role of temperature and oxygen content on structural and electrical properties of LaBaCo2O5+δ thin films

    NASA Astrophysics Data System (ADS)

    Mace, Brennan; Harrell, Zach; Chen, Chonglin; Enriquez, Erik; Chen, Aiping; Jia, Quanxi

    2018-02-01

    The role of temperature and the oxygen content in the structural transformation and electrical conductivity of epitaxial double perovskite LaBaCo2O5+δ (0≤ δ ≤ 1) thin films was systematically investigated. Reciprocal space mapping and ω-2θ x-ray diffraction performed at different temperatures in vacuum indicate that oxygen vacancies in the films become ordered at high temperature in a reducing environment. The changes of the oxygen content and the degree of oxygen vacancy ordering in the films result in a strong in-plane anisotropic lattice deformation and a large thermal expansion coefficient along the c-axis direction. The electrical conductivity measurements reveal that these behaviors are related to the degree of oxygen vacancy formation and lattice deformation in the films.

  1. Role of temperature and oxygen content on structural and electrical properties of LaBaCo2O5+δ thin films.

    PubMed

    Mace, Brennan; Harrell, Zach; Chen, Chonglin; Enriquez, Erik; Chen, Aiping; Jia, Quanxi

    2018-02-12

    The role of temperature and the oxygen content in the structural transformation and electrical conductivity of epitaxial double perovskite LaBaCo 2 O 5+δ (0≤ δ ≤ 1) thin films was systematically investigated. Reciprocal space mapping and ω-2θ x-ray diffraction performed at different temperatures in vacuum indicate that oxygen vacancies in the films become ordered at high temperature in a reducing environment. The changes of the oxygen content and the degree of oxygen vacancy ordering in the films result in a strong in-plane anisotropic lattice deformation and a large thermal expansion coefficient along the c-axis direction. The electrical conductivity measurements reveal that these behaviors are related to the degree of oxygen vacancy formation and lattice deformation in the films.

  2. Study on the effect of polydimethylsiloxane from the viewpoint of oxygen content in oil.

    PubMed

    Yawata, Miho; Iwahashi, Maiko; Hori, Ryuji; Shiramasa, Hiroshi; Totani, Nagao

    2014-01-01

    It has been reported that polydimethylsiloxane (PDMS) inhibits oxygen dissolution into oil by forming a monolayer on the surface of the oil, thereby reducing thermal oxidation. In the present study, the distribution of PDMS was determined by the inductively coupled plasma atomic emission spectroscopy in standing PDMS-containing canola oil. PDMS did not disperse in the oil uniformly, but there was a tendency that the PDMS concentration decreased as the depth of oil increased, and the concentration of the bottom part was the lowest. When canola oil was covered with PDMS by dropping it gently on the surface of the oil and kept at 60°C, the oxygen content and oxidation of the oil were lower than those of the control canola oil. PDMS-containing canola oil and canola oil were heated with stirring from room temperature to 180°C, and then allowed to stand while cooling. Oxygen contents of both oils increased up to 120°C then dropped abruptly. While cooling, oxygen contents sharply increased at 100°C and approached the saturation content, although the increase for PDMS-containing canola oil was a little slow. Likewise, the thermal treatment of PDMS-containing canola oil and canola oil at 180°C for 1 h under stirring was repeated 5 times with standing intervals for 2-3 days at room temperature. Oxidation of the former was less than that of the latter in spite of its high oxygen content. In conclusion, the oxygen content of oil with/without PDMS addition increased, but oxidation of PDMS-containing canola oil was inhibited both during heating and standing with intermittent heating. It was suggested that PDMS exerted its antioxidative effect regardless of whether it covered the oil or was dispersed in it.

  3. Isothermal crystallization of gamma irradiated LDPE in the presence of oxygen

    NASA Astrophysics Data System (ADS)

    Lanfranconi, M. R.; Alvarez, V. A.; Perez, C. J.

    2015-06-01

    This work is focused on the study of the effect of oxygen on the isothermal crystallization process of gamma irradiated low density polyethylene (LDPE). The induction time increased with the dose indicating a retarding effect. On other hand, at the same dose, this parameter decreased with the augment in the oxygen content. The classical Avrami equation was used to analyze the crystallization kinetic of these materials. n values suggested that both, the dose and the oxygen content, did not affect the mechanism of crystals growth. An Arrhenius type equation was used for the rate constant (k). Used models correctly reproduced the experimental data. TTT diagrams of studied materials were constructed and also reflected the effects of the doses and the oxygen content.

  4. Activated carbon oxygen content influence on water and surfactant adsorption.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  5. Structure and charge transfer correlated with oxygen content for a Y0.8Ca0.2Ba2Cu3Oy (y = 6.84 6.32) system: a positron study

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Li, Lingwei; Liu, Fen; Li, Wenfeng; Chi, Changyun; Jing, Chao; Zhang, Jincang

    2005-05-01

    The structure and charge transfer correlated with oxygen content are studied by measuring the positron lifetime parameters of the Y0.8Ca0.2Ba2Cu3Oy system with a large range of oxygen content (y = 6.84-6.32). The local electron density ne is evaluated from the positron lifetime data. The positron lifetime parameters show a clear change around y = 6.50 where the compounds undergo the orthorhombic-tetragonal phase transition. The effect of ne and oxygen content on the structure, charge transfer and superconductivity are discussed. With the decrease of oxygen content y, O(4) tends to the Cu(1) site, causing carrier localization, and accordingly, the decrease of ne. This would prove that the localized carriers (electrons and holes) in the Cu-O chain region have great influence on the superconductivity by affecting the charge transfer between the reservoir layers and the conducting layers. The positron annihilation mechanism and its relation with superconductivity are also discussed.

  6. Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L

    2011-09-08

    Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.

  7. Taken for Granted: Why Curriculum Content Is Like Oxygen

    ERIC Educational Resources Information Center

    Gosse, Carolyn; Hansel, Lisa

    2014-01-01

    For educators, the content of the curriculum really is like oxygen: it is the necessary precondition for improving schools, closing the achievement gap, engaging parents, and preparing teachers. However, when educators take the content of the curriculum for granted, they lose opportunities to coordinate and collaborate. Good curriculum instruction…

  8. Effect of micro-oxygenation on color and anthocyanin-related compounds of wines with different phenolic contents.

    PubMed

    Cano-López, Marta; Pardo-Mínguez, Francisco; Schmauch, Gregory; Saucier, Cedric; Teissedre, Pierre-Louis; López-Roca, Jose María; Gómez-Plaza, Encarna

    2008-07-23

    Several factors may affect the results obtained when micro-oxygenation is applied to red wines, the most important being the moment of application, the doses of oxygen, and the wine phenolic characteristics. In this study, three red wines, made from Vitis vinifera var. Monastrell (2005 vintage) and with different phenolic characteristics, were micro-oxygenated to determine as to how this technique affected the formation of new pigments in the wines and their chromatic characteristics. The results indicated that the different wines were differently affected by micro-oxygenation. In general, the micro-oxygenated wines had a higher percentage of new anthocyanin-derived pigments, being that this formation is more favored in the wines with the highest total phenol content. These compounds, in turn, significantly increased the wine color intensity. The wine with the lowest phenolic content was less influenced by micro-oxygenation, and the observed evolution in the degree of polymerization of tannins suggested that it might have suffered overoxygenation.

  9. Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved?

    PubMed Central

    Sun, Pengzhan; Wang, Yanlei; Liu, He; Wang, Kunlin; Wu, Dehai; Xu, Zhiping; Zhu, Hongwei

    2014-01-01

    A mild annealing procedure was recently proposed for the scalable enhancement of graphene oxide (GO) properties with the oxygen content preserved, which was demonstrated to be attributed to the thermally driven phase separation. In this work, the structure evolution of GO with mild annealing is closely investigated. It reveals that in addition to phase separation, the transformation of oxygen functionalities also occurs, which leads to the slight reduction of GO membranes and furthers the enhancement of GO properties. These results are further supported by the density functional theory based calculations. The results also show that the amount of chemically bonded oxygen atoms on graphene decreases gradually and we propose that the strongly physisorbed oxygen species constrained in the holes and vacancies on GO lattice might be responsible for the preserved oxygen content during the mild annealing procedure. The present experimental results and calculations indicate that both the diffusion and transformation of oxygen functional groups might play important roles in the scalable enhancement of GO properties. PMID:25372142

  10. Method and apparatus for detection of catalyst failure on-board a motor vehicle using a dual oxygen sensor and an algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemmens, W.B.; Koupal, J.W.; Sabourin, M.A.

    1993-07-20

    Apparatus is described for detecting motor vehicle exhaust gas catalytic converter deterioration comprising a first exhaust gas oxygen sensor adapted for communication with an exhaust stream before passage of the exhaust stream through a catalytic converter and a second exhaust gas oxygen sensor adapted for communication with the exhaust stream after passage of the exhaust stream through the catalytic converter, an on-board vehicle computational means, said computational means adapted to accept oxygen content signals from the before and after catalytic converter oxygen sensors and adapted to generate signal threshold values, said computational means adapted to compare over repeated time intervalsmore » the oxygen content signals to the signal threshold values and to store the output of the compared oxygen content signals, and in response after a specified number of time intervals for a specified mode of motor vehicle operation to determine and indicate a level of catalyst deterioration.« less

  11. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  12. Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O2±x

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi

    2017-04-01

    Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.

  13. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  14. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  15. Capacitive behavior of highly-oxidized graphite

    NASA Astrophysics Data System (ADS)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  16. Investigation of the Effects of Oxygen Content in YBa2Cu3Ox on the Depth and Profile of Direct Ion Milled Trenches

    DTIC Science & Technology

    2014-09-01

    fashion, thereby providing an experimental resolution previously unobtainable. Josephson junctions can be fabricated via many known methods; however... junction formation geometry. The objective of this study is to systematically investigate and de- termine the impact of local oxygen content on the ion...used advantageously in the fabrication of Josephson junction on films of YBa2Cu3O7−δ, wherein the film is annealed such that the oxygen content of the

  17. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-10-01

    AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.

  18. Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: kinetics, isotherms and thermodynamics.

    PubMed

    Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi

    2013-01-01

    The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.

  19. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOEpatents

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  20. Ultimate intrinsic-coercivity samarium-cobalt magnet: An Earth-based feasibility study for space-shuttle missions. [containerless melts

    NASA Technical Reports Server (NTRS)

    Das, D. K.; Kumar, K.; Frost, R. T.; Chang, C. W.

    1980-01-01

    Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent.

  1. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less

  2. Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36 degrees 45'S).

    PubMed

    Rudolph, Anny; Ahumada, Ramón; Pérez, Claudio

    2002-08-01

    The present report describes some effects of industrial and municipal effluents on the waters of San Vicente Bay. Analyses of the main substances contained in the fishing industry effluent suggest rating criteria based on the oxygen saturation of the water as an assessment of organic pollution. Six cruises were carried out throughout the Bay, from June to December 1996. Water samples were analyzed for dissolved oxygen, oil and grease content, and sediment samples for organic matter content. Water parameters (salinity, temperature) were used to characterize the Bay's hydrography, and to calculate values for oxygen saturation. The measurements demonstrated a local broad range of oxygen deficit, with a maximum of 45% in the winter to 95% in the spring. In November more than 65% of the Bay's area showed oxygen deficits greater than 40%. Organic matter was unusually high in sediments along the northern sector of the Bay. The results suggest that the oxygen depletion was a representative parameter for establishing a relative scale of water quality in this Bay.

  3. [Research on human movement with noninvasive tissue oximeter using near infrared spectroscopy].

    PubMed

    Lin, Hong; Xi, Yu-bao; Yu, Hui

    2014-06-01

    The present paper discusses how to monitor and analyze the relative change in muscle oxygen content in quadriceps tissue, and measures and records the change in blood lactate acid concentration, blood volume and heart rate when eight players who are good at middle-distance races perform grade incremental intensity exercise on cycle ergometer by using noninvasive tissue oximeter with near infrared spectroscopy produced by China independently. The results show that muscle oxygen content has a close relationship (p < 0.01)with exercise load, blood lactic acid, blood volume and heart rate. When determined muscle oxygen content and blood lactate acid concentration was determined for many times to the same person, the test proved regular falling and rising. There was no significant changes when analyzed each set of the data was analyzed through horizontal comparison. It verifies we can judge the subjects's endurable exercise intensity and the upward inflection point of blood lactic acid corresponding to the decreasing inflection point of blood lactate acid concentration & muscle oxygen content according to the muscle oxygen content change of skeletal muscle while exercising. This paper shows NIRS research status and present situation in sports field through investigation, and analyzes the main trouble and research tendency in the future. By understanding NIRS technology gradually, the authors can realize that the muscle oxygen content which measured by noninvasive tissue oximeter using near infrared spectroscopy produced by China independently is a sensitive, nondestructive, up-to-date and reliable index, it has irreplaceable advantages when compared with traditional invasive, excised and fussy test methods.

  4. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  5. Study of Cleanliness of High Nitrogen Steel in ESR

    NASA Astrophysics Data System (ADS)

    Xuwei, Tang; Rong, Zhu

    This paper compares inclusions in high nitrogen steel before and after ESR process, analyzes the influence of slag systems and total oxygen content in consumable ingots. The total oxygen content is reduced apparently during ESR process, which indicates good effects on removal of inclusions. In the experiment, it shows that different slag systems will affect the result of inclusions removal significantly; proper w(CaO/Al2O3) will reduce the level of inclusions and total oxygen content in ESR ingots. In ESR process, the type and chemical composition of inclusions have no difference when oxygen content in consumable ingots is different, which means O content in consumable ingots have no direct relationship with cleanliness of ESR ingots. In typical inclusions, w(MnO)/w(MnO+Al2O3)≈0.23 0.32. The total oxygen content of ESR ingots keeps between 20 30ppm when the oxygen contents in consumable ingots are diverse from 40 to 100ppm. Meanwhile, this paper studies desulfurization process of high nitrogen steel in ESR, analyzes the influence of slag systems a nd remelting rates on desulfurization efficiency. The results indicate that the average size and quant ity of sulfide inclusion decrease after ESR process. The typical inclusion after ESR process is MnS+Al2O3. Slag system with proper CaO content has higher sulfur partition ratio, which leads to better desulfurization effect. The desulfurization rate changes greatly with different remelting rates, which indicates the kinetic parameter has more influence in desulfurization. The reason of this phenomenon is that the process of desulfurization can be considered as a non-equilibrium reaction, which differs with thermodynamic equilibrium. In kinetic study, it is founded that the desulfurization efficiency increases with higher remelting area, sulfur partition and lower remelting rate, which is different from experiment. The desulfurization efficiency decreases firstly and then recovers when remelting rate drops. The enrichment of sulfide in slag results in resulfurization in steel, which leads to lower desulfurization efficiency.

  6. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  7. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury.

    PubMed

    Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T

    2008-06-01

    Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.

  8. Analysis of various versions of the deoxidation of rail steel at OAO NTMK

    NASA Astrophysics Data System (ADS)

    Garber, A. K.; Arsenkin, A. M.; Grigorovich, K. V.; Shibaev, S. S.; Kushnarev, A. V.; Petrenko, Yu. P.

    2009-12-01

    The deoxidation of steel melted using various types of deoxidizers during out-of-furnace treatment is studied. The total oxygen and nitrogen content and the oxygen contents in the main types of oxide nonmetallic inclusions are determined by fractional gas analysis of steel samples taken from heats performed by various schedules. The main types of nonmetallic inclusions and their size distributions are found with qualitative and quantitative metallography. The oxygen content in the rail steel is minimal (5 ppm) when calcium carbide CaC2 is introduced into the metal in tapping of a converter. When the metal is deoxidized using a steel wire filled with calcium or a steel wire filled with silicocalcium, the oxygen content in rail steel is ≈8 and ≈11 ppm, respectively. A comparison of various processes of rail steel deoxidation under the OAO NTMK conditions shows that the limitation of the aluminum content (no more than 30 ppm) or the use of a wire with a calcium or calcium carbide filler is more effective than the use of a wire filled with silicocalcium.

  9. Possible effect of oxygen content on the under-doped characteristics of the La2- xSrxCuO4+ δ compound

    NASA Astrophysics Data System (ADS)

    Zhang, Huanbo; Sato, Hiroshi; Liedl, Gerald L.

    1994-12-01

    The effect of oxygen non-stoichiometry on the superconducting characteristics of the La2- xSrxCuO4+ δ compound in the underdoped region ( x<0.16) is reassessed. Although superconductivity in the La2- xSrxCuO4+ δ compound can be unambiguously attributed to the holes in the CuO 2 sheet in the structure, the hole content (ϱ sh) cannot be regarded as equal to the Sr content, x, as was frequently assumed. The parabolic relation between Tc and x for La2- xSrxCuO4+ δ is shown to not fully represent the intrinsic relation between Tc and hole content for the p-type high- Tc cuprates, but to be related to the variation of oxygen non-stoichiometry in the under-doped region. It is demonstrated that the intrinsic relation of Tc vs. ϱ sh can be derived from the parabolic Tc- x relation in the under-doped region of this system, and vice versa, provided that the variation of oxygen content with x is properly taken into account.

  10. An oxygen slow-releasing material and its application in water remediation as oxygen supplier.

    PubMed

    Zhou, Yanbo; Fang, Xingbin; Zhang, Zhiqing; Hu, Yonghua; Lu, Jun

    2017-11-01

    In this study, an oxygen slow-releasing material (OSRM) consisting of calcium peroxide (CaO 2 ), stearic acid (SA) and quartz sand was used to improve oxygen supply during bioremediation. The oxygen-releasing rates of CaO 2 powder and OSRM with different SA contents were investigated. The efficacy of OSRM as an oxygen supplier was assessed by water remediation experiments using activated sludge. Results showed that CaO 2 powder was effectively embedded by SA under anhydrous conditions. The oxygen-releasing rate decreased with increasing SA contents. Moreover, the OSRM exhibited higher oxygen-releasing capacity, and more effective pH control ability than CaO 2 powder. The water remediation experiments showed better removal of COD and [Formula: see text] with OSRM as the oxygen supplier. These results provided detailed information when CaO 2 was applied as the oxygen supplier in water remediation, which can serve as references for field application of bioremediation.

  11. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    PubMed

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-06-01

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.

    PubMed

    Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María

    2017-08-15

    Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkulov, O.V., E-mail: merkulov@ihim.uran.ru; Samigullin, R.R.; Markov, A.A.

    The electrical conductivity of SrFe{sub 1–x}Sn{sub x}O{sub 3–δ} (x=0.05, 0.10, 017) was measured by a four-probe dc technique in the partial oxygen pressure range of 10{sup –18}–0.5 atm at temperatures between 800 °Ð ÐŽ and 950 °Ð ÐŽ. The oxygen content in these oxides was measured under the same ambient conditions by means of coulometric titration. The thermodynamic analysis of oxygen nonstoichiometry data was carried out to determine the equilibrium constants for defect-formation reactions and to calculate the concentrations of ion and electron charge carriers. The partial contributions of oxygen ions, electrons and holes to charge transport were assessed, and the mobilitymore » of respective carriers was evaluated by an integral examination of the electrical conductivity and oxygen nonstoichiometry data. It has been found that the mobility of holes in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} varies in the range of ~0.005–0.04 cm{sup 2} V{sup −1} s{sup −1}, linearly increasing with the oxygen content and decreasing with increased tin concentration. The mobility of electron carriers was shown to be independent of the oxygen content. The average migration energy of an electron was estimated to be ~0.45 eV, with that of a hole being ~0.3 eV. - Highlights: • The conductivity and oxygen nonstoichiometry in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} were measured. • Tin substitution was found to affect insignificantly defect formation reactions. • The hole mobility was found to increase linearly with the oxygen content. • The hole mobility was found to be much higher than the electron mobility.« less

  14. Modern and ancient geochemical constraints on Proterozoic atmosphere-ocean redox evolution

    NASA Astrophysics Data System (ADS)

    Hardisty, D. S.; Horner, T. J.; Wankel, S. D.; Lu, Z.; Lyons, T.; Nielsen, S.

    2017-12-01

    A detailed understanding of the spatiotemporal oxygenation of Earth's atmosphere-ocean system through the Precambrian has important implications for the environments capable of sustaining early eukaryotic life and the evolving oxidant budget of subducted sediments. Proxy records suggest an anoxic Fe-rich deep ocean through much of the Precambrian and atmospheric and surface-ocean oxygenation that started in earnest at the Paleoproterozoic Great Oxidation Event (GOE). The marine photic zone represented the initial site of oxygen production and accumulation via cyanobacteria, yet our understanding of surface-ocean oxygen contents and the extent and timing of oxygen propagation and exchange between the atmosphere and deeper ocean are limited. Here, we present an updated perspective of the constraints on atmospheric, surface-ocean, and deep-ocean oxygen contents starting at the GOE. Our research uses the iodine content of Proterozoic carbonates as a tracer of dissolved iodate in the shallow ocean, a redox-sensitive species quantitatively reduced in modern oxygen minimum zones. We supplement our understanding of the ancient record with novel experiments examining the rates of iodate production from oxygenated marine environments based on seawater incubations. Combining new data from iodine with published shallow marine (Ce anomaly, N isotopes) and atmospheric redox proxies, we provide an integrated view of the vertical redox structure of the atmosphere and ocean across the Proterozoic.

  15. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere

    PubMed Central

    Kump, Lee R.

    2014-01-01

    Considerable geological, geochemical, paleontological, and isotopic evidence exists to support the hypothesis that the atmospheric oxygen level rose from an Archean baseline of essentially zero to modern values in two steps roughly 2.3 billion and 0.8–0.6 billion years ago (Ga). The first step in oxygen content, the Great Oxidation Event, was likely a threshold response to diminishing reductant input from Earth’s interior. Here I provide an alternative to previous suggestions that the second step was the result of the establishment of the first terrestrial fungal–lichen ecosystems. The consumption of oxygen by aerobes respiring this new source of organic matter in soils would have necessitated an increase in the atmospheric oxygen content to compensate for the reduced delivery of oxygen to the weathering environment below the organic-rich upper soil layer. Support for this hypothesis comes from the observed spread toward more negative carbon isotope compositions in Neoproterozoic (1.0–0.542 Ga) and younger limestones altered under the influence of ground waters, and the positive correlation between the carbon isotope composition and oxygen content of modern ground waters in contact with limestones. Thus, the greening of the planet’s land surfaces forced the atmospheric oxygen level to a new, higher equilibrium state. PMID:25225378

  16. Experimental Constraints on the Cr Content, Oxygen Fugacity, and Petrogenesis of EETA79001 Lithology A

    NASA Technical Reports Server (NTRS)

    Herd, C. D. K.; Jones, J. H.; Papike, J. J.

    2000-01-01

    Experiments involving the composition of the groundmass of EETA79001 Lithology A constrain the Cr content of the melt and the oxygen fugacity, and suggest that overgrowth of olivine and pyroxene from the groundmass onto xenocrysts has occurred.

  17. Hydrogen halide cleaning of powder metallurgy nickel-20 chromium-3 thoria.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    The Cr2O3 content of powder metallurgy nickel-20 chromium-3 thoria was reduced with atmospheres consisting of hydrogen plus hydrogen chloride (HCl) or hydrogen bromide (HBr). The nonthoria oxygen content or 'oxygen excess' was reduced from an initial amount of greater than 50,000 ppm to less than 100 ppm. Low temperatures were effective, but lowest oxygen levels were achieved with the highest cleaning temperature of 1200 C.

  18. New trend of radiation application to polymer modification — irradiation in oxygen free atmosphere and at elevated temperature

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao

    2000-03-01

    Polycarbosilane (PCS) fiber as a precursor for ceramic fiber of silicon carbide was cured by electron beam (EB) irradiation under oxygen free atmosphere. Oxygen content in the cured PCS fiber was scarce and the obtained silicon carbide (SiC) fiber with low oxygen content showed high heat resistance up to 1973 K and tensile strength of 3 GPa. Also, the EB cured PCS fiber with very low oxygen content could be converted to silicon nitride (Si 3N 4) fiber by the pyrolysis in NH 3 gas atmosphere, which was the new processing to produce Si 3N 4 fiber. The process of SiC fiber synthesis was developed to the commercial plant. The other application was the crosslinking of polytetrafluoroethylene (PTFE). PTFE, which had been recognized to be a typical chain scission polymer, could be induced to crosslinking by irradiation at the molten state in oxygen free atmosphere. The physical properties such as crystallinity, mechanical properties, etc. changed much by crosslinking, and the radiation resistance was much improved.

  19. Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Barani, Hossein; Haji, Aminoddin

    2015-01-01

    The aim of this study was to investigate the influence of oxygen plasma procedure at different time treatments on wool fiber using the micro-Raman spectroscopy as a non-destructive vibrational spectroscopic technique and Fourier transform infrared spectroscopy. The amide I and III regions, Csbnd C skeletal vibration region, and Ssbnd S and Csbnd S bonds vibration regions were analyzed with the Raman microscope. The Fourier transform infrared spectroscope analysis was employed to find out the effect of oxygen plasma treatment on the cysteic acid residues content of the wool fiber sample. The results indicated that the α-helix structure was the highest component content of wool fiber. Moreover, the protein secondary structure of wool fibers was transformed from α-helical arrangement to the β-pleated sheet configuration during the oxygen plasma treatment. Also, the disulphide bonds content in the treated wool fiber reduced because they were fractured and oxidized during oxygen plasma treatment. The oxygen plasma treated samples presented higher cysteic acid compared to the untreated wool samples due to produce more cleavage of disulfide linkages.

  20. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.

    PubMed

    Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard

    2003-03-01

    To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.

  1. Influence of Oxygen Content in Oriented LaCoO3-δ Thin Films: Probed by X-ray diffraction and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Ahlawat, Anju; Sathe, V. G.

    2011-07-01

    Nonstoichiometric oriented thin films of LaCoO3-δ of equal thickness and varying oxygen content has been deposited on STO (001) substrate by pulsed laser deposition. X-ray diffraction results show that all films are single phase and c-axis oriented in the (001) direction with in plane tensile strain. In these films strain reduces with increasing oxygen content and Raman study also support this result. Low temperature Raman study shows no change in spin state of Co3+ in temperature range from 300 K to down to 80 K.

  2. Comparison of Minimally and More Invasive Methods of Determining Mixed Venous Oxygen Saturation.

    PubMed

    Smit, Marli; Levin, Andrew I; Coetzee, Johan F

    2016-04-01

    To investigate the accuracy of a minimally invasive, 2-step, lookup method for determining mixed venous oxygen saturation compared with conventional techniques. Single-center, prospective, nonrandomized, pilot study. Tertiary care hospital, university setting. Thirteen elective cardiac and vascular surgery patients. All participants received intra-arterial and pulmonary artery catheters. Minimally invasive oxygen consumption and cardiac output were measured using a metabolic module and lithium-calibrated arterial waveform analysis (LiDCO; LiDCO, London), respectively. For the minimally invasive method, Step 1 involved these minimally invasive measurements, and arterial oxygen content was entered into the Fick equation to calculate mixed venous oxygen content. Step 2 used an oxyhemoglobin curve spreadsheet to look up mixed venous oxygen saturation from the calculated mixed venous oxygen content. The conventional "invasive" technique used pulmonary artery intermittent thermodilution cardiac output, direct sampling of mixed venous and arterial blood, and the "reverse-Fick" method of calculating oxygen consumption. LiDCO overestimated thermodilution cardiac output by 26%. Pulmonary artery catheter-derived oxygen consumption underestimated metabolic module measurements by 27%. Mixed venous oxygen saturation differed between techniques; the calculated values underestimated the direct measurements by between 12% to 26.3%, this difference being statistically significant. The magnitude of the differences between the minimally invasive and invasive techniques was too great for the former to act as a surrogate of the latter and could adversely affect clinical decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue.

    PubMed

    Rodriguez-Mendez, M L; Apetrei, C; Gay, M; Medina-Plaza, C; de Saja, J A; Vidal, S; Aagaard, O; Ugliano, M; Wirth, J; Cheynier, V

    2014-07-15

    An electronic panel formed by an electronic nose and an electronic tongue has been used to analyse red wines showing high and low phenolic contents, obtained by flash release and traditional soaking, respectively, and processed with or without micro-oxygenation. Four oxygen transfer rate conditions (0.8, 1.9, 8.0, and 11.9 μl oxygen/bottle/day) were ensured by using synthetic closures with controlled oxygen permeability and storage under controlled atmosphere. Twenty-five chemical parameters associated with the polyphenolic composition, the colour indices and the levels of oxygen were measured in triplicate and correlated with the signals registered (seven replicas) by means of the electronic nose and the electronic tongue using partial least squares regression analysis. The electronic nose and the electronic tongue showed particularly good correlations with those parameters associated with the oxygen levels and, in particular, with the influence of the porosity of the closure to oxygen exposure. In turn, the electronic tongue was particularly sensitive to redox species including oxygen and phenolic compounds. It has been demonstrated that a combined system formed from the electronic nose and the electronic tongue provides information about the chemical composition of both the gas and the liquid phase of red wines. This complementary information improves the capacity to predict values of oxygen-related parameters, phenolic content and colour parameters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.

    PubMed

    Ochando, Thomas; Mouret, Jean-Roch; Humbert-Goffard, Anne; Sablayrolles, Jean-Marie; Farines, Vincent

    2017-08-01

    Available nitrogen, lipids, or oxygen are nutrients with major impact on the kinetics of winemaking fermentation. Assimilable nitrogen is usually the growth-limiting nutrient which availability determines the fermentation rate and therefore the fermentation duration. In some particular cases, as in Champagne, grape musts have high available nitrogen content and low turbidity, i.e., below 50 Nephelometric Turbidity Unit (NTU). In the case of low turbidity, the availability of lipids, particularly phytosterols, becomes limiting. In this situation, control of oxygenation, which is necessary for lipid synthesis by yeast, is particularly crucial during fermentation. To mimic and understand these situations, a synthetic medium simulating the average composition of a Champagne must was used. This medium contained phytosterol (mainly β-sitosterol) concentrations ranging from 0 to 8mg/L corresponding to turbidity between 10 and 90 NTU. Population reached during the stationary phase and the maximum fermentation rate are conditioned by the initial phytosterol concentration determining the amount of nitrogen consumption. An early loss of viability was observed when the lipid concentrations were very low. For example, the viability continuously decreased during the stationary phase to a final value of 50% for an initial phytosterol concentration of 1mg/L. In some fermentations, 10mg/L oxygen were added at the end of the growth phase to combine the effects of initial content of phytosterols in the musts and the de novo synthesis of ergosterol and unsaturated fatty acids induced by oxygen addition. Effect of oxygen supply on the fermentation kinetics was particularly significant for media with low phytosterol contents. For example, the maximum fermentation rate was increased by 1.4-fold and the fermentation time was 70h shorter with oxygen addition in the medium containing 2mg/L of phytosterols. As a consequence of the oxygen supply, for the media containing 3, 5 and 8mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics, as well as the final populations and viabilities (greater than 90%), were identical for the 3 conditions. The impacts of the lipid content and additional oxygen on acetate, glycerol and succinate synthesis were also studied. The phytosterols decreased the acetate and increased the succinate synthesis, and oxygenation resulted in a decrease in succinate formation. This work highlights the similarities and differences between the effects of lipids and oxygen on fermentation kinetics and yeast metabolism. This research highlights the need for an optimal combined management of lipid content in the must via turbidity and oxygenation, particularly in nitrogen-rich musts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Solubility of oxygen in liquid Fe at high pressure and consequences for the early differentiation of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Gessmann, C. K.; Frost, D. J.

    2003-04-01

    Knowledge of the solubility of oxygen in liquid iron enables the partitioning of oxygen between metal and silicates and the oxidation state of residual silicates to be constrained during core formation in planetary bodies. We have determined oxygen solubility experimentally at 5--23 GPa, 2100--2700 K and oxygen fugacities 1--4 log units below the iron-wüstite buffer in samples of liquid Ni-Fe alloy contained in magnesiowüstite capsules using a multianvil apparatus. Results show that oxygen solubility increases with increasing temperature but decreases slightly with increasing pressure over the range of experimental conditions, at constant oxygen fugacity. Using an extrapolation of the results to higher pressures and temperatures, we have modeled the geochemical consequences of metal-silicate separation in magma oceans in order to explain the contrasting FeO contents of the mantles of Earth and Mars. We assume that both Earth and Mars accreted originally from material with a chondritic composition; because the initial oxidation state is uncertain, we vary this parameter by defining the initial oxygen content. Two metal-silicate fractionation models are considered: (1) Metal and silicate are allowed to equilibrate at fictive conditions that approximate the pressure and temperature at the base of a magma ocean. (2) The effect of settling Fe droplets in a magma ocean is determined using a simple polybaric metal-silicate fractionation model. We assume that the temperature at the base of a magma ocean is close to the peridotite liquidus. In the case of Earth, high temperatures in a magma ocean with a depth >1200 km would have resulted in significant quantities of oxygen dissolving in the liquid metal with the consequent extraction of FeO from the residual silicate. In contrast, on Mars, even if the magma ocean extended to the depth of the current core-mantle boundary, temperatures would not have been sufficiently high for oxygen solubility in liquid metal to be significant. The results show that Earth and Mars could have accreted from similar material, with an initial FeO content around 18 wt%. On Earth, oxygen was extracted from silicates by the segregating metal during core formation, leaving the mantle with its present FeO content of ˜8 wt%. On Mars, in contrast, the segregating metal extracted little or no oxygen and left the FeO content unaltered at ˜18 wt%. A consequence of this model is that oxygen should be an important light element in the Earth's core but not in the Martian core.

  6. A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content.

    PubMed

    Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael

    2016-11-01

    A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Performance Characteristics of Jet-type Generator of Singlet Oxygen for Supersonic Chemical Oxygen-Iodine Laser*1

    NASA Astrophysics Data System (ADS)

    Kodymová, Jarmila; Špalek, Otomar

    1998-01-01

    A jet-type singlet oxygen generator based on a gas-liquid chemical reaction yielding singlet oxygen, O2(1Δ g), for pumping the supersonic chemical oxygen-iodine laser was investigated. In addition to O2(1Δ g) and residual chlorine concentrations, a content of water formed during O2(1Δ g) generation was estimated (because of its detrimental effect on lasing) in gas flowing from the generator to the laser active region. The experimental conditions were determined under which an effect of liquid droplets escaping from the generator was negligible, and accordingly, a content of water vapour was suppressed to a value corresponding to the saturated water vapour pressure. It was also proved that a reduction in the relative water content, and a consequent increase in the laser output power, could be achieved by increasing peroxide and hydroxide concentration in the generator liquid, and by decreasing a liquid temperature and a total pressure in the generator.

  8. Structural Variation of LaMnO3+δ by Oxygen Nonstoichiometry

    NASA Astrophysics Data System (ADS)

    Niwa, Eiki; Maeda, Hiroki; Hashimoto, Takuya; Mizusaki, Junichiro

    2013-07-01

    The relationship between oxygen content and crystal structure of LaMnO3+δ, which is mother phase of cathode material for solid oxide fuel cells, has been investigated by X-ray diffraction, thermogravimetry and iodometric titration. It was confirmed that LaMnO3+δ with different oxygen content can be prepared by controlling sintering temperature in static air. Crystal system of LaMnO3.17±0.02 and LaMnO3.13±0.01 at room temperature was rhombohedral with space group of Rbar {3}c, whereas crystal structure of LaMnO3.08±0.01 was orthorhombic whose space group was proposed to be Pmna (No. 53). With increase of oxygen content in LaMnO3+δ, molar volume decreased and higher crystal symmetry was obtained.

  9. Oxygen enhanced switching to combustion of lower rank fuels

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  10. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  11. Air separation and oxygen storage properties of hexagonal rare-earth manganites

    NASA Astrophysics Data System (ADS)

    Abughayada, Castro

    This dissertation presents evaluation results of hexagonal Y1-x RxMnO3+delta (R = Er, Y, Dy, Pr, La, Tb and Ho) rare-earth manganites for prospective air separation applications. In these materials, oxygen content is sensitively dependent on the surrounding conditions of temperature and/or oxygen partial pressure, and therefore they exhibit the ability to selectively absorb, store, and release significant amounts of separated oxygen from air. This study presents a full characterization of their thermogravimetric characteristics and air separation capabilities. With the expected potential impact of oxygen content on the physical properties of these materials, the scope of this work is expanded to explore other relevant properties such as magnetic, transport, and dilatometric characteristics. Single-phase polycrystalline samples of these materials were achieved in the hexagonal P63cm phase through solid state reaction at elevated temperatures. Further annealings under reducing conditions were required for samples with large rare-earth cations in order to suppress the competing perovskite structure and form in the anticipated hexagonal phase. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger R ionic radii show rapid and reversible incorporation of significant amounts of excess oxygen (0.41 > delta > 0) at an unusual low temperature range ~190-325 °C. The reversible oxygen storage characteristics of HoMnO3+delta and related materials shown by the fast incorporation and release of interstitial oxygen at easily accessible elevated temperatures of ~300 °C demonstrate the feasibility and potential for low-cost thermal swing adsorption TSA process for oxygen separation and enrichment from air. Neutron and X-ray powder diffraction measurements confirmed the presence of three line compounds RMnO3+delta, the oxygen stoichiometric P6 3cm (delta = 0 for all R), the intermediate oxygen content superstructure phase R3c (delta ~ 0.28 for R = Ho, Dy, Dy0.5Y0.5, and Dy0.3Y0.7) constructed by tripling the c-axis of the original unit cell, and the highly oxygen-loaded Pca21 phase (delta = 0.40 for all R). In-situ synchrotron diffraction showed thermal stability of these single phases and their coexistence ranges, demonstrating that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. The magnetic properties of the multiferroic RMnO3+delta were found to be dependent on the oxygen content of these compounds. Below the magnetic ordering temperatures, samples with higher oxygen content showed slightly decreased magnetization relative to the less oxygenated ones. Dilatometry measurements suggest that the thermal expansion coefficient TEC of the oxygen-loaded Pca21 phase is slightly larger than that of the stoichiometric P63cm phase. The calculated Pca21 to P63cm chemical expansion coefficient 14.38 x 10-3 [mole-O]-1 was found to be within the expected range for the hexagonal Y0.97La0.03MnO3+delta sample.

  12. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.

    PubMed

    Velimirovic, Milica; Larsson, Per-Olof; Simons, Queenie; Bastiaens, Leen

    2013-11-01

    Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  14. HIGH DENSITY NUCLEAR FUEL COMPOSITION

    DOEpatents

    Litton, F.B.

    1962-07-17

    ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

  15. Reduction behavior and kinetics of vanadium-titanium sinters under high potential oxygen enriched pulverized coal injection

    NASA Astrophysics Data System (ADS)

    Ma, Jin-fang; Wang, Guang-wei; Zhang, Jian-liang; Li, Xin-yu; Liu, Zheng-jian; Jiao, Ke-xin; Guo, Jian

    2017-05-01

    In this work, the reduction behavior of vanadium-titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2 contents. Meanwhile, with the increase in CO and H2 contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2 in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol.

  16. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Jianjun, Huang; Fan, Wang; Ying, Liu; Shishou, Jiang; Xisheng, Wang; Bing, Qi; Liang, Gao

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 μm. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  17. Structural and electrical properties of sputter deposited ZnO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-05-01

    The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.

  18. Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments

    NASA Astrophysics Data System (ADS)

    Luna, Lunet E.; Tadjer, Marko J.; Anderson, Travis J.; Imhoff, Eugene A.; Hobart, Karl D.; Kub, Fritz J.

    2017-10-01

    Cycles of inductively coupled SF6/O2 plasma with low (9%) and high (90%) oxygen content etch segments are used to produce up to 46.6 µm-deep trenches with 5.5 µm-wide openings in single-crystalline 4H-SiC substrates. The low oxygen content segment serves to etch deep in SiC whereas the high oxygen content segment serves to etch SiC at a slower rate, targeting carbon-rich residues on the surface as the combination of carbon-rich and fluorinated residues impact sidewall profile. The cycles work in concert to etch past 30 µm at an etch rate of ~0.26 µm min-1 near room temperature, while maintaining close to vertical sidewalls, high aspect ratio, and high mask selectivity. In addition, power ramps during the low oxygen content segment is used to produce a 1:1 ratio of mask opening to trench bottom width. The effect of process parameters such as cycle time and backside substrate cooling on etch depth and micromasking of the electroplated nickel etch mask are investigated.

  19. Study of dissolved oxygen content in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. I.

    2017-09-01

    Seasonal changes in the dissolved oxygen (DO) content in water were analyzed based on long-term observations (2006-2013) in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan). It was found that the monthly average DO concentrations at the bottom of the strait were significantly lower in summer than the average annual long-term data. The minimum DO contents were recorded during four months, from July to October. It was shown that the DO content in water depended on changes in current directions in the strait: lower DO contents resulted from hypoxic water inflow, mostly from Amur Bay.

  20. Structural and electronic transformations in substituted La-Sr manganites depending on cations and oxygen content

    NASA Astrophysics Data System (ADS)

    Karpasyuk, Vladimir; Badelin, Alexey; Merkulov, Denis; Derzhavin, Igor; Estemirova, Svetlana

    2018-05-01

    In the present research experimental data are obtained for the Jahn-Teller O‧ phase formation, phase transformation "orthorhombic-rhombohedral structure" and the change of the conductance type in the systems of manganites La3+1-c+xSr2+c-xMn3+1-c-x-2γMn4+c+2γZn2+xO3+γ, La3+1-c-xSr2+c+xMn3+1-c-x-2γMn4+c+2γGe4+xO3+γ, La3+1-cSr2+cMn3+1-x-c-2γMn4+c+2γ(Zn2+0.5Ge4+0.5)xO3+γ, where Mn4+ ions concentration is independent of "x". Ceramic samples were sintered in air at 1473 K. As-sintered samples had an excess of oxygen content. In order to provide stoichiometric oxygen content, the samples were annealed at 1223 K and partial pressure of oxygen PO2 = 10-1 Pа. Structural characteristics of the O‧ phase were obtained. The position of the phase boundary "orthorhombic-rhombohedral structure" and the temperature of the conductance type change depending on the cation composition of manganites and oxygen content were determined. Possible approaches to the interpretation of experimental results were suggested.

  1. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    NASA Technical Reports Server (NTRS)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  2. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  3. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE PAGES

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.; ...

    2016-01-19

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  4. Effects of electrode bevel angle on argon arc properties and weld shape

    NASA Astrophysics Data System (ADS)

    Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.

    2012-07-01

    A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.

  5. Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds.

    PubMed

    Vieweg, Michael; Trauth, Nico; Fleckenstein, Jan H; Schmidt, Christian

    2013-09-03

    One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.

  6. Decline in global oceanic oxygen content during the past five decades.

    PubMed

    Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin

    2017-02-15

    Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12  mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15  mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.

  7. Monte Carlo analysis of the oxygen knock-on effects induced by synchrotron x-ray radiation in the B i2S r2CaC u2O8 +δ superconductor

    NASA Astrophysics Data System (ADS)

    Torsello, Daniele; Mino, Lorenzo; Bonino, Valentina; Agostino, Angelo; Operti, Lorenza; Borfecchia, Elisa; Vittone, Ettore; Lamberti, Carlo; Truccato, Marco

    2018-01-01

    We investigate the microscopic mechanism responsible for the change of macroscopic electrical properties of the B i2S r2CaC u2O8 +δ high-temperature superconductor induced by intense synchrotron hard x-ray beams. The possible effects of secondary electrons on the oxygen content via the knock-on interaction are studied by Monte Carlo simulations. The change in the oxygen content expected from the knock-on model is computed convoluting the fluence of photogenerated electrons in the material with the Seitz-Koehler cross section. This approach has been adopted to analyze several experimental irradiation sessions with increasing x-ray fluences. A close comparison between the expected variations in oxygen content and the experimental results allows determining the irradiation regime in which the knock-on mechanism can satisfactorily explain the observed changes. Finally, we estimate the threshold displacement energy of loosely bound oxygen atoms in this material Td=0 .15-0.01+0.025eV .

  8. Ambient effect on thermal stability of amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan

    2016-12-01

    The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.

  9. Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test.

    PubMed

    Fang, Shiwen; Gu, Wenlu; Chen, Lin; Yu, Zhaosheng; Dai, Minquan; Lin, Yan; Liao, Yanfen; Ma, Xiaoqian

    2018-06-01

    In this study, the influences of ultrasonic pretreatment factors (frequency, power, treatment time) on blends of municipal solid waste (MSW) and paper sludge (PS) with additive (MgO) was explored, through orthogonal experiments design. The optimum operating condition wanted to be acquired. However, for the ultimate (H/C) and ash analysis after pretreatment, solid residue mass and oxygenates compounds contents in products, the influences of factors were in different results. With adding PS unceasingly, the contents of hydrocarbon compounds decreased. And the ultrasonic pretreatment had the obvious influence with high PS percentage. Longer treatment time resulted to the lower content of oxygenates compounds. After adding MgO, the residue mass reduced, which meant MgO had the catalytic action, and the oxygenates compounds content reduced only with 100 kHz, which had the sonochemical effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The oxygen paradox of neurovascular coupling

    PubMed Central

    Leithner, Christoph; Royl, Georg

    2014-01-01

    The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931

  11. Evaluation of Characteristic Energy Scales of Pressure Stabilized Oxygen Chain States in YBa2Cu3Ox Films

    DTIC Science & Technology

    2017-03-14

    2], and [4]. In the case of YBa2Cu3O∇x, the application of sufficient uniaxial pressure results in the film having discrete regions of uniform...that discrete regions of uniform oxygen content are stabilized where x ≈ [6, 6.5, 6.72, 6.81, 7]. The latter four oxygen content levels correspond to...associated energy levels of the stabilized lattice states ᝺>, �>, >, and ə>, and find evidence for discrete energy levels of the pressure

  12. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels

    PubMed Central

    Lenfant, Claude; Torrance, John; English, Eugenia; Finch, Clement A.; Reynafarje, Cesar; Ramos, Jose; Faura, Jose

    1968-01-01

    The relationship between oxygen dissociation and 2,3-diphosphoglycerate (2,3-DPG) in the red cell has been studied in subjects moving from low to high altitude and vice versa. Within 24 hr following the change in altitude there was a change in hemoglobin affinity for oxygen; this modification therefore represents an important rapid adaptive mechanism to anoxia. A parallel change occurred in the organic phosphate content of the red cell. While this study does not provide direct evidence of a cause-effect relationship, the data strongly suggest that with anoxia, the observed rise in organic phosphate content of the red cell is responsible for increased availability of oxygen to tissues. Images PMID:5725278

  13. The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Barnes, S. J.

    1986-01-01

    The Cr distributions for a synthetic silicate melt equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151 C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wuestite buffers are studied. The occurrence, chemical composition, and structure of the orthopyroxene-silicate melt and the spinel-silicate melt are described. It is observed that the Cr content between bronzite and the melt increases with falling temperature along a given oxygen buffer and decreases with falling oxygen fugacity at a given temperature; however, the Cr content of the melt in equilibrium with spinel decreases with falling temperature and increases with lower oxygen fugacity.

  14. Auditory Risk of Exploding Hydrogen-Oxygen Balloons

    ERIC Educational Resources Information Center

    Gee, Kent L.; Vernon, Julia A.; Macedone, Jeffrey H.

    2010-01-01

    Although hydrogen-oxygen balloon explosions are popular demonstrations, the acoustic impulse created poses a hearing damage risk if the peak level exceeds 140 dB at the listener's ear. The results of acoustical measurements of hydrogen-oxygen balloons of varying volume and oxygen content are described. It is shown that hydrogen balloons may be…

  15. Zero added oxygen for high quality sputtered ITO: A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    The authors demonstrate mobilities of >45 cm{sup 2}/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO{sub 2}, instead of the more conventional 8–10 wt. %, and had varying ZrO{sub 2} content from 0 to 3 wt. %, with a subsequent reduction in In{sub 2}O{sub 3} content. These films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions.more » However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. This result is attributed to the reduced concentration of SnO{sub 2}. The addition of ZrO{sub 2} yielded the highest mobilities at >55 cm{sup 2}/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  16. Seasonal and ontogenetic changes modulate oxygen consumption and antioxidant defenses in the cutlassfish Trichiurus lepturus (Pisces, Trichiuridae).

    PubMed

    Wilhelm-Filho, Danilo; Fraga, César G; Boveris, Alberto

    2017-09-01

    Several oxidative stress markers and liver oxygen consumption were measured in different tissues of the marine fish Trichiurus lepturus in late summer and late winter, as well as in juveniles and adult females. Oxygen consumption in liver, superoxide dismutase (SOD) and catalase (CAT) activity in liver, red cells, lens and roe, vitamin E, ubiquinol 10 , β-carotene in liver, red cells, and roe, as well as contents of reduced glutathione (GSH) and lipoperoxidation (TBARS) in red cells were evaluated. Regarding ontogeny, compared to adult fish, juveniles showed significant higher SOD activity in liver and lens, as well as higher liver contents of vitamin E. In contrast, adult females showed higher contents of vitamin E in roe, ubiquinol 10 in liver and roe, and higher GSH levels in red cells, while the other markers remained unchanged. Regarding seasonal changes, no differences were detected in adult females for liver CAT and ubiquinol 10 , CAT in roe, vitamin E in roe and in red cells, liver and red cell ubiquinol 10 , and in GSH in red cells. However, and coinciding with the spawning period of late summer, liver oxygen consumption, SOD and CAT activity and ubiquinol 10 contents in roe and SOD activity in red cells, and red cell TBARS contents were higher compared to late winter. These temporal antioxidant adjustments of Trichiurus lepturus seem to be parallel to the higher oxygen consumption typical of juvenile forms and also to the intense spawning and foraging activities of adult females in late summer. Copyright © 2017. Published by Elsevier Inc.

  17. Influence of the Oxygen content on the thermal migration of Xenon in ZrCxO1-x

    NASA Astrophysics Data System (ADS)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Gutierrez, G.; Maître, A.; Gendre, M.

    2013-09-01

    Zirconium carbide (ZrC) is a refractory ceramic presenting interesting properties such as a high melting point, a very high hardness and a good thermal stability. For these reasons, this material is considered as a candidate for fuel coating for fourth-generation reactors in particular for the Gas cooled Fast Reactors (GFR). The ceramic temperature could reach 1200 °C in normal reactor operation and reach 1700 °C in accidental conditions. It is therefore important to assess the ZrC thermal retention capacity regarding abundant and/or volatile fission products. This paper deals with the behavior of Xenon which is the major gaseous fission product created during fission. Previous studies have shown that Xenon remained motionless in an "Oxygen-poor" matrix such as ZrC0.95O0.05, up to temperatures of 1800 °C. However, Zirconium oxycarbides are known to be very sensitive to oxidation. This study aims therefore at studying the behavior of Xenon in Zirconium oxycarbide samples with different Oxygen contents. Xenon is introduced by ion implantation and the samples are annealed in secondary vacuum in the temperature range 1400 °C-1800 °C. The Oxygen profiles are determined by using the 16O(4He, 4He)16O nuclear reaction at 7.5 MeV and the concentration profiles of Xenon are measured by Rutherford Backscattering Spectrometry at each step of the treatment. The results show that the behavior of the material during annealing with respect to oxidation is strongly related to its initial Oxygen content. More generally, the higher the initial Oxygen content, the more important is the oxidation. Consequently, the Xenon migration is enhanced in Oxygen rich Zirconium carbides. at 1950 °C under vacuum with an applied load of 100 MPa by Spark Plasma Sintering (SPS) at the University of Toulouse (CNRS PNF2 platform) [22]. at 1845 °C under an Ar gas flow with an applied load of 40 MPa by Hot Pressing (HP) at Limoges. Sintered pellets were divided into two batches: (i) a batch of sintered pellets cut in the middle to analyze the centre of the pellet and named "Pellet Centre" in the following, and (ii) a batch of intact sintered pellets to analyze the edge of the pellets called "Pellet Edge". The pellet density was measured using Archimedes's method and the grain size was controlled after a 7 min annealing at 1800 °C by SEM.Each pellet was cut into several samples of 7 × 7 × 2 mm3 and polished to micron with a diamond paste. Fig. 1 illustrates the whole cutting process and the characteristics of each type of sample are summarized in Table 1 and are classified in four batches. The stoichiometry strongly influences the Xenon behavior at high temperature. The confinement of Xenon is excellent for the ZrC0.95O0.05 stoichiometry. Gutierrez et al. have already presented these results in previous papers [13,14] and shown that the stability of Xenon is related to the formation of nanometric sized bubbles that are trapped in the dislocation walls. The Xenon confinement is worse for the ZrC0.80O0.20 stoichiometry but, in a first approach, the sintering process does not seem to influence the Xenon behavior. In order to get more insight into the differences observed for this stoichiometry between the "Pellet Edge" and "Pellet Centre" samples, it was mandatory to check the Oxygen content in the Xenon implanted zones of the pellets. For the ZrC0.95O0.05 stoichiometry (Fig. 3a), the general trend for all profiles corresponds to an Oxygen enrichment at the sample surface on a thickness around 20 nm (corresponding to the resolution of the technique) followed by a drop and then a linearity of the Oxygen content in the depth of the samples. The polishing process and the pre annealing at 1400 °C for the "Polished sample" and the "As-Implanted" sample results in a rather strong oxidation of the sample surface but the amount of Oxygen remains lower than 20 at.%, whereas the Oxygen content at depth is similar to the powder's one. For increasing annealing temperatures, the Oxygen content drops at the sample surface as well as in the depth. For the samples annealed at 1800 °C, the Oxygen content in the implanted zone (˜50 nm and 300 nm) is even lower (around 1 at.%) than for the original powder. On the contrary, for all the samples corresponding to the ZrC0.80O0.20 stoichiometry, the Oxygen content is always higher than that of the original powder before sintering. Moreover, for all of these samples, the surface Oxygen contents of the annealed samples are always higher than that of the "Polished samples". The "As-Implanted" samples display heterogeneous Oxygen enrichment levels in the first 50 nm ("Pellet Centre" samples) or even 150 nm ("Pellet edge" samples). The amount of Oxygen enrichment and the enriched thickness are always higher for the "Pellet Edge" samples than for the "Pellet Centre" samples. For the "Pellet Centre" samples, the maximum Oxygen enrichment does not exceed 35 at.% at the very surface and the oxidized thickness does not exceed 150 nm and it decreases with the annealing time. For the "Pellet Edge" samples, maximum Oxygen enrichment reaches 62 at.% at the very surface and the oxidized thickness grows with the annealing time.

  18. Evaluation of Stroma-Free Hemoglobin Solutions as Resuscitative Fluids for the Injured Soldier

    DTIC Science & Technology

    1988-11-01

    consultation with members of UCSD. The evaluations utilized measurements of blood gases , oxygen contents, blood lactate, cardiac and peripheral pressures...there were additional marked differences in oxygen consumption, total oxygen transport , and aortic pressure. Lactate production and left arterial...unlike the albumin animals these SFHS animals showed no changes in oxygen consumption, oxygen transport , lactate production, heart rate, dF/dt, or

  19. Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Kaushal, Ajay; Kaur, Davinder

    2011-06-01

    We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1- x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2-WO3 thin film electrode with higher VO2 content ( x ≥ 0.2). Increase of VO2 content in (WO3)1- x (VO2) x films leads to red shift in optical band gap.

  20. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    PubMed

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  1. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders.

    PubMed

    Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin

    2016-03-01

    Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A System for Controlling the Oxygen Content of a Gas Produced by Combustion

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Puster, R. L. (Inventor)

    1984-01-01

    A mixture of air, CH4 and OH(2) is burned in a combustion chamber to produce a product gas in the test section. The OH(2) content of the product gas is compared with the OH(2) content of reference air in an OH(2) sensor. If there is a difference an error signal is produced at the output of a control circuit which by the means of a solenoid valve, regulates the flow of OH(2) into the combustion chamber to make the error signal zero. The product gas in the test section has the same oxygen content as air.

  3. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... oxygen process furnace shops. Lime Production 327410 Calcium oxide, calcium hydroxide, dolomitic hydrates... Chemists AOD argon-oxygen decarburization API American Petroleum Institute ASTM American Society for... Mandates Reform Act of 1995 VOD vacuum oxygen decarburization Table of Contents I. Background A. How is...

  4. The Rhythm of Oxidization Processes and its Disturbance Under the Action of Radiation; RITMIKA OKISLITEL'-NYKH PROTSESSOV I EE NARUSHENIE PRI DEISTVII RADIATSII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, G.M.; Snezhko, A.D.

    1961-08-28

    A modified polarographic method has been developed to determine continuously variations in the oxygen content of tissue by inserting a platinum needle as an electrode directly into the tissue of a living animal. The''oxygen test," in which the animal is allowed to breathe a controlled amount of pure oxygen, gives information about the rate of utilization of oxygen by the tissue. Ordinarily the increase in the oxygen diffusion current DELTA I is stable in form and amplitude for any given experimental animal and for a given location of the electrode. Thus, after a total irradiation of 700 to 1000 r,more » the value of DELTA I increased by a factor of two. A decrease in the ability of tissue to utilize oxygen after irradiation is indicated. Local irradiation gives a low value of DELTA I, and indicates that the unirradiated cells utilize oxygen at a faster rate than before irradiation. The oxygen content of the tissue was observed to vary rhythmically with two periods. One rhythm had a small amplitude and a high frequency of 15 to 20 oscillations per minute, and the other rhythm had a large amplitude and a low frequency of 2 to 3 oscillations per minute. Irradiation leads to a suppression of this rhythmic oscillation in the oxygen content of the tissue. These effects are most readily apparent in the irradiation of growing rootlets (Vicia fabia) and of a multiplying yeast culture. This method sheds some light on the course of chemical processes such as oxidation that occur in the cell as a function of the period of time after irradiation. (TTT)« less

  5. Influence of Food with High Moisture Content on Oxygen Barrier Property of Polyvinyl Alcohol (PVA)/Vermiculite Nanocomposite Coated Multilayer Packaging Film.

    PubMed

    Kim, Jung Min; Lee, Min Hyeock; Ko, Jung A; Kang, Dong Ho; Bae, Hojae; Park, Hyun Jin

    2018-02-01

    This study investigates the potential complications in applying nanoclay-based waterborne coating to packaging films for food with high moisture content. Multilayer packaging films were prepared by dry laminating commercially available polyvinyl alcohol (PVA)/vermiculite nanocomposite coating films and linear low-density polyethylene film, and the changes in oxygen barrier properties were investigated according to different relative humidity using 3 types of food simulants. When the relative humidity was above 60%, the oxygen permeability increased sharply, but this was reversible. Deionized water and 3% acetic acid did not cause any large structural change in the PVA/vermiculite nanocomposite but caused a reversible deterioration of the oxygen barrier properties. In contrast, 50% ethanol, a simulant for the semifatty food, induced irreversible structural changes with deterioration of the oxygen barrier property. These changes are due to the characteristics of PVA rather than vermiculite. We believe this manuscript would be of interest to the wide group of researchers, organizations, and companies in the field of developing nanoclay-based gas barrier packaging for foods with high moisture content. Hence, we wish to diffuse our knowledge to the scientific community. © 2018 Institute of Food Technologists®.

  6. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  7. The effects on increasing cardiac output with adrenaline or isoprenaline on arterial haemoglobin oxygen saturation and shunt during one-lung ventilation.

    PubMed

    Russell, W J; James, M F

    2000-12-01

    Theoretically, if the cardiac output were increased in the presence of a given intrapulmonary shunt, the arterial haemoglobin oxygen saturation (SaO2) should improve as the venous oxygen extraction per ml of blood decreases. To test this hypothesis, eight pigs were subjected to one-lung ventilation and adrenaline and isoprenaline infusions used to increase the cardiac output. The mixed venous oxygen, shunt fraction and oxygen consumption were measured. With both adrenaline and isoprenaline, although there was a small rise in mixed venous oxygen content, there was a fall in SaO2. With adrenaline, the mean shunt rose from 48% to 65%, the mean oxygen consumption rose from 126 ml/min to 134 ml/min and the mean SaO2 fell from 86.9% to 82.5%. With isoprenaline, the mean shunt rose from 45% to 59%, the mean oxygen consumption rose from 121 ml/min to 137 ml/min and the mean SaO2 fell from 89.5% to 84.7%. It is concluded that potential improvement in SaO2, which might occur from a catecholamine-induced increase in mixed venous oxygen content during one-lung ventilation, is more than offset by increased shunting and oxygen consumption which reduce SaO2.

  8. Retinal oxygen extraction in individuals with type 1 diabetes with no or mild diabetic retinopathy.

    PubMed

    Fondi, Klemens; Wozniak, Piotr A; Howorka, Kinga; Bata, Ahmed M; Aschinger, Gerold C; Popa-Cherecheanu, Alina; Witkowska, Katarzyna J; Hommer, Anton; Schmidl, Doreen; Werkmeister, René M; Garhöfer, Gerhard; Schmetterer, Leopold

    2017-08-01

    The aim of this study was to compare retinal oxygen extraction in individuals with diabetes with no or mild non-proliferative diabetic retinopathy and healthy age- and sex-matched volunteers. A total of 24 participants with type 1 diabetes and 24 healthy age- and sex-matched volunteers were included in this cross-sectional study. Retinal oxygen extraction was measured by combining total retinal blood flow measurements using a custom-built bi-directional Doppler optical coherence tomography system with measurements of oxygen saturation using spectroscopic reflectometry. Based on previously published mathematical modelling, the oxygen content in retinal vessels and total retinal oxygen extraction were calculated. Total retinal blood flow was higher in diabetic participants (46.4 ± 7.4 μl/min) than in healthy volunteers (40.4 ± 5.3 μl/min, p = 0.002 between groups). Oxygen content in retinal arteries was comparable between the two groups, but oxygen content in retinal veins was higher in participants with diabetes (0.15 ± 0.02 ml O 2 /ml) compared with healthy control participants (0.13 ± 0.02 ml O 2 /ml, p < 0.001). As such, the arteriovenous oxygen difference and total retinal oxygen extraction were reduced in participants with diabetes compared with healthy volunteers (total retinal oxygen extraction 1.40 ± 0.44 vs 1.70 ± 0.47 μl O 2 /min, respectively, p = 0.03). Our data indicate early retinal hypoxia in individuals with type 1 diabetes with no or mild diabetic retinopathy as compared with healthy control individuals. Further studies are required to fully understand the potential of the technique in risk stratification and treatment monitoring. ClinicalTrials.gov NCT01843114.

  9. 29 CFR 1910.272 - Grain handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... employees. (B) If toxicity or oxygen deficiency cannot be eliminated by ventilation, employees entering the... there are no toxicity, flammability, oxygen-deficiency, or other atmospheric hazards is covered by... present. Additionally, the atmosphere within a bin, silo, or tank shall be tested for oxygen content...

  10. 29 CFR 1910.272 - Grain handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... employees. (B) If toxicity or oxygen deficiency cannot be eliminated by ventilation, employees entering the... there are no toxicity, flammability, oxygen-deficiency, or other atmospheric hazards is covered by... present. Additionally, the atmosphere within a bin, silo, or tank shall be tested for oxygen content...

  11. 29 CFR 1910.272 - Grain handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... employees. (B) If toxicity or oxygen deficiency cannot be eliminated by ventilation, employees entering the... there are no toxicity, flammability, oxygen-deficiency, or other atmospheric hazards is covered by... present. Additionally, the atmosphere within a bin, silo, or tank shall be tested for oxygen content...

  12. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    USGS Publications Warehouse

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    Sediment samples were collected near each chamber and analyzed for percent water, percent sand, and percent organics. The sand content ranged from 0.1 to 6.2 percent and averaged 1.8 percent. The organic content ranged from 1.4 to 9.6 and averaged 5.6 percent. No statistically significant correlations were found between these sediment characteristics and sediment oxygen demand.

  13. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2018-04-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  14. 40 CFR 60.284 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of § 60.283(a)(1)(v) apply shall not be corrected for oxygen content: C corr = C meas × (21− X... dry basis and the percent of oxygen by volume on a dry basis in the gases discharged into the... percent oxygen for the continuous oxygen monitoring system. (b) Any owner or operator subject to the...

  15. 40 CFR 60.284 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of § 60.283(a)(1)(v) apply shall not be corrected for oxygen content: C corr=C meas×(21−X/21−Y... dry basis and the percent of oxygen by volume on a dry basis in the gases discharged into the... percent oxygen for the continuous oxygen monitoring system. (b) Any owner or operator subject to the...

  16. 40 CFR 60.284 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions of § 60.283(a)(1)(v) apply shall not be corrected for oxygen content: C corr=C meas×(21−X/21−Y... dry basis and the percent of oxygen by volume on a dry basis in the gases discharged into the... percent oxygen for the continuous oxygen monitoring system. (b) Any owner or operator subject to the...

  17. 40 CFR 60.284 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of § 60.283(a)(1)(v) apply shall not be corrected for oxygen content: C corr=C meas×(21−X/21−Y... dry basis and the percent of oxygen by volume on a dry basis in the gases discharged into the... percent oxygen for the continuous oxygen monitoring system. (b) Any owner or operator subject to the...

  18. 40 CFR 60.284 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provisions of § 60.283(a)(1)(v) apply shall not be corrected for oxygen content: C corr=C meas×(21−X/21−Y... dry basis and the percent of oxygen by volume on a dry basis in the gases discharged into the... percent oxygen for the continuous oxygen monitoring system. (b) Any owner or operator subject to the...

  19. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth

    NASA Astrophysics Data System (ADS)

    Orlova, A. G.; Kirillin, M. Yu; Volovetsky, A. B.; Shilyagina, N. Yu; Sergeeva, E. A.; Golubiatnikov, G. Yu; Turchin, I. V.

    2017-01-01

    Tumor oxygenation and hemoglobin content are the key indicators of the tumor status which can be efficiently employed for prognosis of tumor development and choice of treatment strategy. We report on monitoring of these parameters in SKBR-3 (human breast adenocarcinoma) tumors established as subcutaneous tumor xenografts in athymic nude mice by diffuse optical spectroscopy (DOS). A simple continuous wave fiber probe DOS system is employed. Optical properties extraction approach is based on diffusion approximation. Statistically significant difference between measured values of normal tissue and tumor are demonstrated. Hemoglobin content in tumor increases from 7.0  ±  4.2 μM to 30.1  ±  16.1 μM with tumor growth from 150  ±  80 mm3 to 1300  ±  650 mm3 which is determined by gradual increase of deoxyhemoglobin content while measured oxyhemoglobin content does not demonstrate any statistically significant variations. Oxygenation in tumor falls quickly from 52.8  ±  24.7% to 20.2  ±  4.8% preceding acceleration of tumor growth. Statistical analysis indicated dependence of oxy-, deoxy- and total hemoglobin on tumor volume (p  <  0.01). DOS measurements of oxygen saturation are in agreement with independent measurements of oxygen partial pressure by polarography (Pearson’s correlation coefficient equals 0.8).

  20. Influence of argon and oxygen pressure ratio on bipolar-resistive switching characteristics of CeO2- x thin films deposited at room temperature

    NASA Astrophysics Data System (ADS)

    Ismail, Muhammad; Ullah, Rehmat; Hussain, Riaz; Talib, Ijaz; Rana, Anwar Manzoor; Hussain, Muhammad; Mahmood, Khalid; Hussain, Fayyaz; Ahmed, Ejaz; Bao, Dinghua

    2018-02-01

    Cerium oxide (CeO2-x) film was deposited on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Resistive switching characteristics of these ceria films have been improved by increasing oxygen content during deposition process. Endurance and statistical analyses indicate that the operating stability of CeO2-x-based memory is highly dependent on the oxygen content. Results indicate that CeO2-x film-based RRAM devices exhibit optimum performance when fabricated at an argon/oxygen ratio of 6:24. An increase in the oxygen content introduced during CeO2-x film deposition not only stabilizes the conventional bipolar RS but also improves excellent switching uniformity such as large ON/OFF ratio (102), excellent switching device-to-device uniformity and good sweep endurance over 500 repeated RS cycles. Conduction in the low-resistance state (LRS) as well as in the low bias field region in the high-resistance state (HRS) is found to be Ohmic and thus supports the conductive filament (CF) theory. In the high voltage region of HRS, space charge limited conduction (SCLC) and Schottky emission are found to be the dominant conduction mechanisms. A feasible filamentary RS mechanism based on the movement of oxygen ions/vacancies under the bias voltage has been discussed.

  1. Phase transformations of siderite ore by the thermomagnetic analysis data

    NASA Astrophysics Data System (ADS)

    Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.

  2. Oxygen sensitive, refractory oxide composition

    DOEpatents

    Holcombe, Jr., Cressie E.; Smith, Douglas D.

    1976-01-01

    Oxide compositions containing niobium pentoxide and an oxide selected from the group consisting of hafnia, titania, and zirconia have electrical conductivity characteristics which vary greatly depending on the oxygen content.

  3. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    NASA Astrophysics Data System (ADS)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  4. [Change in the content of ATP and 2,3-diphosphoglycerate in the erythrocytes of rats adapted to hypoxia].

    PubMed

    Simanovskiĭ, L N

    1976-01-01

    It was shown that on the 30th-60th days of training rats to hypoxia under conditions of pressure chamber there was an increase in ATP and 2,3-diphosphoglycerate content in erythrocytes. By changing the affinity of hemoglobin to oxygen the mentioned shifts could play an important role in the improvement of oxygen supply to the tissues.

  5. Organic Waste Diversion Guidance for U.S. Army Installations

    DTIC Science & Technology

    2016-11-01

    Windrow temperature ; Windrow moisture content (lab test) stated as a percentage; Windrow pH level; Windrow oxygen content stated as a percentage...much higher turbidity (>999 nephelometric turbidity units [NTU] versus 30 NTU), less dis- solved oxygen (6.32 mg/L versus 7.59 mg/L), higher temperature ... effective ." A Net Zero Waste installation is an installation that reduces, reuses, and recovers waste streams, converting them to valuable

  6. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  7. The effect of Be and Cr electrode deposition rate on the performance of MIS solar cells

    NASA Astrophysics Data System (ADS)

    Moharram, A. H.; Panayotatos, P.; Yeh, J. L.; Lalevic, B.

    1985-07-01

    An experimental study has been performed on MIS solar cells with Be, Cr and layered Cr-Be electrodes on single crystal Si, Wacker and Monsanto poly-Si substrates. Electrical characterization in the dark and under illumination was correlated to X-ray and Auger spectroscopy results. It was found that the electrode deposition rate directly affects the oxygen content of the electrodes for all metal-substrate configurations. This oxygen is believed to originate from the deposition ambient as well as from the SiO2 layer. In the case of cells with Cr and layered Cr-Be electrodes oxygen acts to reduce the electrode work function (thus increasing the open-circuit voltage) in direct proportion to the relative content of oxygen to chromium.

  8. Catalytic biomass conversion methods, catalysts, and methods of making the same

    DOEpatents

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  9. 29 CFR 1910.272 - Grain handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., silo, or tank shall be tested for oxygen content unless there is continuous natural air movement or continuous forced-air ventilation before and during the period employees are inside. If the oxygen level is... toxicity, flammability, oxygen-deficiency, or other atmospheric hazards is covered by paragraph (h) of this...

  10. 29 CFR 1910.272 - Grain handling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., silo, or tank shall be tested for oxygen content unless there is continuous natural air movement or continuous forced-air ventilation before and during the period employees are inside. If the oxygen level is... toxicity, flammability, oxygen-deficiency, or other atmospheric hazards is covered by paragraph (h) of this...

  11. Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsen, S.; Dabrowski, B.; Chmaissem, O.

    2011-10-28

    Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phasesmore » at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.« less

  12. Effect of Exposure on the Mechanical Properties of Gamma MET PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Locci, I. E.; Shazly, M.; Prakash, V.

    2004-01-01

    The effect of a service environment exposure on the mechanical properties of a high Nb content TiAl alloy, Gamma MET PX , was assessed. Gamma MET PX, like other TiAl alloys, experiences a reduction of ductility following high temperature exposure. Exposure in Ar, air, and high-purity oxygen all resulted in a loss of ductility with the ductility reduction increasing with oxygen content in the exposure atmosphere. Embrittling mechanisms, including bulk microstructural changes, moisture induced environmental embrittlement, and near surface effects were investigated. The embrittlement has been shown to be a near-surface effect, most likely due to the diffusion of oxygen into the alloy.

  13. Science & Technology Review November 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radousky, H

    This months issue has the following articles: (1) Expanded Supercomputing Maximizes Scientific Discovery--Commentary by Dona Crawford; (2) Thunder's Power Delivers Breakthrough Science--Livermore's Thunder supercomputer allows researchers to model systems at scales never before possible. (3) Extracting Key Content from Images--A new system called the Image Content Engine is helping analysts find significant but hard-to-recognize details in overhead images. (4) Got Oxygen?--Oxygen, especially oxygen metabolism, was key to evolution, and a Livermore project helps find out why. (5) A Shocking New Form of Laserlike Light--According to research at Livermore, smashing a crystal with a shock wave can result in coherent light.

  14. Restoration of the Baltic Proper to a system in equilibrium with the external phosphorus supply in the presence of huge sustained internal supply connected to anoxic bottoms

    NASA Astrophysics Data System (ADS)

    Stigebrandt, Anders

    2015-04-01

    The phosphorus (P) content of the water column of the Baltic Proper has increased by 20 % since the 1980s in spite of a simultaneous reduction by 50 % of the external supply from land-based human activities and runoff. A simple budget model explains that the increased P content is a result of sustained leakage of P from anoxic bottoms. At the present, the internal P supply from anoxic bottoms is about three times greater than the external supply. Restoration of the Baltic Proper to a less eutrophic state obviously requires that the internal source vanishes which requires that the deepwater is kept oxygenated during a long period. This will not likely happen by natural processes as long as the oxygen consumption in the deepwater is high due to high P content and high biological production in the water column. One might therefore consider man-made oxygenation to keep the deepwater bottoms oxygenated. In the presentation positive and negative effects of man-made oxygenation of the Baltic Proper are discussed based on recently published results from a pilot experiment in the Swedish By Fjord and from analyses of physical, ecological and biogeochemical conditions in the Baltic Proper.

  15. Ultrasonic evaluation of oxidation and reduction effects on the elastic behavior and global microstructure of YBa2Cu3O7-x

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct. of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.

  16. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    PubMed

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  17. Sensor for oxygen-combustibles gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isenberg, A.O.

    1981-08-25

    A molten carbonate electrochemical cell is described which operates at a temperature between 400/sup 0/ and 700/sup 0/ C. It used to remove O/sub 2/ in combination with CO/sub 2/ from an oxygen/combustibles gas mixture to provide a low temperature measurement of the oxygen content of the gas mixture.

  18. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  19. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  20. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  1. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  2. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  3. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere.

    PubMed

    Zhang, Chao; Shan, Baoqing; Tang, Wenzhong; Zhu, Yaoyao

    2017-08-01

    Phyllostachys pubescens (PP) biochars produced under a low oxygen pyrolysis atmosphere (oxygen content 1-4%) were prepared as sorbents for investigating the mechanisms of cadmium and lead sorption. A low-oxygen pyrolysis atmosphere increased biochar ash and specific surface area, promoting heavy metal precipitation and complexation. The maximum sorption capacity (Q m ) of Pb 2+ obtained from the Langmuir model was 67.4mg·g -1 , while Q m of Cd 2+ was 14.7mg·g -1 . The contribution of each mechanism varied with increasing oxygen content at a low pyrolysis temperature. Mineral precipitation with Pb 2+ was the predominant mechanism for Pb 2+ removal and the contribution proportion significantly increased from 17.2% to 71.7% as pyrolysis oxygen atmosphere increased from 0% to 4%. The results showed that cadmium sorption primarily involved coordination with π electrons, at 54.1-82.6% of the total adsorption capacity. The PP biochar shows potential for application in removing heavy metal contaminants, especially Pb 2+ . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimisation of colour stability of cured ham during packaging and retail display by a multifactorial design.

    PubMed

    Møller, Jens K S; Jakobsen, Marianne; Weber, Claus J; Martinussen, Torben; Skibsted, Leif H; Bertelsen, Grete

    2003-02-01

    A multifactorial design, including (1) percent residual oxygen, (2) oxygen transmission rate of packaging film (OTR), (3) product to headspace volume ratio, (4) illuminance level and (5) nitrite level during curing, was established to investigate factors affecting light-induced oxidative discoloration of cured ham (packaged in modified atmosphere of 20% carbon dioxide and balanced with nitrogen) during 14 days of chill storage. Univariate statistical analysis found significant effects of all main factors on the redness (tristimulus a-value) of the ham. Subsequently, Response Surface Modelling of the data further proved that the interactions between packaging and storage conditions are important when optimising colour stability. The measured content of oxygen in the headspace was incorporated in the model and the interaction between measured oxygen content in the headspace and the product to headspace volume ratio was found to be crucial. Thus, it is not enough to keep the headspace oxygen level low, if the headspace volume at the same time is large, there will still be sufficient oxygen for colour deteriorating processes to take place.

  5. The ejector flowmeter as air/oxygen mixing device. An apparatus providing gas mixtures with adjustable oxygen content for high-flow humidification systems.

    PubMed

    Christensen, K N; Waaben, J; Jørgensen, S

    1980-04-01

    The ejector flowmeter is constructed for continuous removal of excess gas from anaesthetic circuits. This instrument can be used as an air/oxygen mixing device for high-flow humidification systems in wards where compressed air is not available. Pure oxygen is used as driving gas through the ejector. A nomogram has been constructed to show the relationship between oxygen driving pressure, inlet of air to the flowmeter, FIO2 and total outflow.

  6. Oxygen index tests of thermosetting resins

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  7. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis

    PubMed Central

    Bellingham, A. J.; Detter, J. C.; Lenfant, C.

    1971-01-01

    The recent reports of the effect of 2,3-diphosphoglycerate (2,3-DPG) on hemoglobin affinity for oxygen suggested that this substance may play a role in man's adaptation to acidosis and alkalosis. A study of the effect of induced acidosis and alkalosis on the oxyhemoglobin dissociation curve of normal man was therefore carried out, and the mechanisms involved in the physiological regulation of hemoglobin oxygen affinity examined. In acute changes of plasma pH there was no alteration in red cell 2,3-DPG content. However, there were changes in hemoglobin oxygen affinity and these correlated with changes in mean corpuscular hemoglobin concentration (MCHC). With maintained acidosis and alkalosis, red cell 2,3-DPG content was altered and correlated with the changes in hemoglobin oxygen affinity. Both of these mechanisms shift the hemoglobin oxygen dissociation curve opposite to the direct pH (Bohr) effect, and providing the rate of pH change is neither too rapid nor too large, they counteract the direct pH effect and the in vivo hemoglobin oxygen affinity remains unchanged. It is also shown that approximately 35% of the change in hemoglobin oxygen affinity resulting from an alteration in red cell 2,3-DPG, is explained by effect of 2,3-DPG on the red cell pH. PMID:5545127

  8. Raman study of HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-02-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) high- Tc superconductor family using different laser frequencies. Local laser annealing measurements were carried out to investigate the variation of the Raman spectra with the excess oxygen content, δ. A systematic evolution of the spectra, which display mainly peaks near 590, 570, 540 and 470 cm -1, with increasing number of CuO 2 layers has been observed; its origin has been shown to lie in the variation of the interstitial oxygen content. In addition to confirming that the 590 cm -1 mode represents vibration of apical oxygens in the absence of neighboring excess oxygen, the 570 cm -1 mode, which may be composed of some finer structures, has been assigned to the vibration of the apical oxygen modified by the presence of the neighboring excess oxygens. The 540 and 470 cm -1 modes may represent the direct vibration of excess oxygens. The implication of possible different distribution sites of excess oxygens is discussed. All other observed lower-frequency modes are also assigned.

  9. Bibliography on contaminants and solubility of organic compounds in oxygen

    NASA Technical Reports Server (NTRS)

    Ordin, P. M. (Compiler)

    1975-01-01

    A compilation of a number of document citations is presented which contains information on contaminants in oxygen. Topics covered include contaminants and solubility of organic compounds in oxygen, reaction characteristics of organic compounds with oxygen, and sampling and detection limits of impurities. Each citation in the data bank contains many items of information about the document. Some of the items are title, author, abstract, corporate source, description of figures pertinent to hazards or safety, key references, and descriptors (keywords) by which the document can be retrieved. Each citation includes an evaluation of the technical contents as to being good/excellent, acceptable, or poor. The descriptors used to define the contents of the documents and subsequently used in the computerized search operations were developed for the cryogenic fluid safety by experts in the cryogenics field.

  10. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    NASA Astrophysics Data System (ADS)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  11. Thermodynamic Stability of Molybdenum Oxycarbides Formed from Orthorhombic Mo 2 C in Oxygen-Rich Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Likith, S. R. J.; Farberow, C. A.; Manna, S.

    Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less

  12. Thermodynamic Stability of Molybdenum Oxycarbides Formed from Orthorhombic Mo 2 C in Oxygen-Rich Environments

    DOE PAGES

    Likith, S. R. J.; Farberow, C. A.; Manna, S.; ...

    2017-12-20

    Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less

  13. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe

    2018-06-01

    Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1

  14. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  15. Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films.

    PubMed

    Chandrasena, Ravini U; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario U; Wijesekara, Kanishka D; Golalikhani, Maryam; Davidson, Bruce A; Arenholz, Elke; Kobayashi, Keisuke; Kobata, Masaaki; de Groot, Frank M F; Aschauer, Ulrich; Spaldin, Nicola A; Xi, Xiaoxing; Gray, Alexander X

    2017-02-08

    We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO 3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.

  16. Quantitative analysis of oxygen content in copper oxide films using ultra microbalance

    NASA Astrophysics Data System (ADS)

    Shu, Yonghua; Wang, Lianhong; Liu, Chong; Fan, Jing

    2014-12-01

    Copper oxide films were prepared on quartz substrates through electron beam physical vapor deposition in a vacuum chamber, and the films were observed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The oxygen content of the films were analyzed using an ultra microbalance. Results indicated that when the substrate was heated to 600°C and the oxygen flow rate was 5 sccm, the film was composed of 47% Cu and 53% Cu2O (mass percent), and the oxidation ratio of copper was 25%. After the deposition process at the same condition, i.e. the substrate at temperature of 600°C and blowed by oxygen flowrate of 5 sccm, then in-stu annealed at 600°C in low oxygen pressure of 10 Pa for 30 minutes, the film composition became 22% Cu2O and 78% CuO (mass percent), and the oxidation ratio of copper greatly increased to about 88%.

  17. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  18. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  19. Computational model for oxygen transport and consumption in human vitreous.

    PubMed

    Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C

    2013-10-15

    Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.

  20. Electrical conductivity of oxidized-graphenic nanoplatelets obtained from bamboo: effect of the oxygen content

    NASA Astrophysics Data System (ADS)

    Gross, K.; Prías Barragán, J. J.; Sangiao, S.; De Teresa, J. M.; Lajaunie, L.; Arenal, R.; Ariza Calderón, H.; Prieto, P.

    2016-09-01

    The large-scale production of graphene and reduced-graphene oxide (rGO) requires low-cost and eco-friendly synthesis methods. We employed a new, simple, cost-effective pyrolytic method to synthetize oxidized-graphenic nanoplatelets (OGNP) using bamboo pyroligneous acid (BPA) as a source. Thorough analyses via high-resolution transmission electron microscopy and electron energy-loss spectroscopy provides a complete structural and chemical description at the local scale of these samples. In particular, we found that at the highest carbonization temperature the OGNP-BPA are mainly in a sp2 bonding configuration (sp2 fraction of 87%). To determine the electrical properties of single nanoplatelets, these were contacted by Pt nanowires deposited through focused-ion-beam-induced deposition techniques. Increased conductivity by two orders of magnitude is observed as oxygen content decreases from 17% to 5%, reaching a value of 2.3 × 103 S m-1 at the lowest oxygen content. Temperature-dependent conductivity reveals a semiconductor transport behavior, described by the Mott three-dimensional variable range hopping mechanism. From the localization length, we estimate a band-gap value of 0.22(2) eV for an oxygen content of 5%. This investigation demonstrates the great potential of the OGNP-BPA for technological applications, given that their structural and electrical behavior is similar to the highly reduced rGO sheets obtained by more sophisticated conventional synthesis methods.

  1. Effect of oxygen concentration and metal electrode on the resistive switching in MIM capacitors with transition metal oxides

    NASA Astrophysics Data System (ADS)

    Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz

    2017-01-01

    The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.

  2. Thermal transport in tantalum oxide films for memristive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, Colin D.; Wilke, Rudeger H. T.; Brumbach, Michael T.

    2015-07-13

    The thermal conductivity of amorphous TaO{sub x} memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO{sub x} switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

  3. Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-12-01

    Vegetation, wildfire and atmospheric oxygen on Earth have changed throughout geological times, and are dependent on each other, determining the evolution of ecosystems, the carbon cycle, and the climate, as found in the fossil record. Previous work in the literature has only studied flaming wildfires, but smouldering is the most persistent type of fire phenomena, consuming large amounts of biomass. In this study, the dependence of smouldering fires in peatlands, the largest wildfires on Earth, with atmospheric oxygen is investigated. A physics-based computational model of reactive porous media for peat fires, which has been previously validated against experiments, is used. Simulations are conducted for wide ranges of atmospheric oxygen concentrations and fuel moisture contents to find thresholds for ignition and extinction. Results show that the predicted rate of spread increases in oxygen-rich atmospheres, while it decreases over wetter fuels. A novel nonlinear relationship between critical oxygen and critical moisture is found. More importantly, we show that compared to previous work on flaming fires, smouldering fires can be ignited and sustained at substantially higher moisture contents (up to 100% MC vs. 40% for 21% oxygen level), and lower oxygen concentrations (down to 13% vs. 16%). This defines a new atmospheric oxygen threshold for wildfires (13%), even lower than previously thought in Earth Sciences (16%). This finding should lead to reinterpretation of how the char remains observed in the fossil record constrain the lower concentration of oxygen in Earth's atmosphere in geological timescale. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [What degree of hypoxemia is tolerable for human beings?].

    PubMed

    Köhler, D

    2010-03-01

    According to the literature, hypoxemia is considered to be severe when oxygen saturation (Sa O(2)) falls below 90 %. Frequently one can discover lower values without impairment of the patient. Especially patients with the obesity hypoventilation syndrome (OHS) will have frequent night time desaturations of significant duration below 50 % Sa O(2), but do still cope with their daytime jobs. This discrepancy can only be explained by the fact, that hypoxemia is not equivalent to tissue hypoxia. The latter is mainly being determined by oxygen delivery (DO2) which is being calculated by multiplying cardiac output (CO) and oxygen content (CaO2). Ca O(2) is determined by the product of Sa O(2) and haemoglobin (Hb) times 1.35. From this context it becomes evident, that assessing hypoxemia without considering oxygen content will frequently be misleading. The human organism has several possible ways of compensation in order to avoid tissue hypoxia. In case of acute hypoxemia that evolves within minutes the organism can shift the oxygen binding curve by changing 2 - 3-DGP erythrocytic activity. Additionally non vital organ systems might reduce their oxygen uptake. During sustained hypoxia (lasting 2 - 3 days) the Krebs cycle and the respiratory chain will express hypoxia-resistant iso-enzymes. Long lasting hypoxia can be compensated by polycythemia. Indirect data suggest, that the critical number for the oxygen content is rather low and is estimated to be somewhere around 33 % of the normal value. These mechanism of hypoxia-resistance are hardly ever maxed out in patients on critical care units.Lack of knowledge of the above described mechanisms does frequently result in diseases like ARDS which frequently develops due to excessive ventilatory pressures and excessive inspired O(2) concentrations. Georg Thieme Verlag KG Stuttgart, New York.

  5. Retinal Oxygen Delivery and Metabolism in Healthy and Sickle Cell Retinopathy Subjects

    PubMed Central

    Felder, Anthony E.; Tan, Ou; Blair, Norman P.; Huang, David

    2018-01-01

    Purpose Reduction in inner retinal oxygen delivery (DO2) can cause retinal hypoxia and impair inner retinal oxygen metabolism (MO2), leading to vision loss. The purpose of the current study was to establish measurements of DO2 and MO2 in healthy subjects and test the hypothesis that DO2 and MO2 are reduced in sickle cell retinopathy (SCR) subjects. Methods Dual wavelength retinal oximetry and Doppler optical coherence tomography were performed in 12 healthy control and 12 SCR subjects. Images were analyzed to measure retinal arterial and venous oxygen content (O2A and O2V), venous diameter (DV), and total retinal blood flow (TRBF). Retinal arteriovenous oxygen content difference (O2AV), DO2, MO2, and oxygen extraction fraction (OEF) were calculated according to the following equations: O2AV = O2A − O2V; DO2 = TRBF * O2A; MO2 = TRBF * O2AV; OEF = MO2/DO2. Results Retinal DV and TRBF were higher in the SCR group as compared to the control group, whereas, O2A, O2V, and O2AV were lower in SCR group as compared to the control group. DO2, MO2, and OEF were not significantly different between control and SCR groups. MO2 and DO2 were linearly related, such that higher MO2 was associated with higher DO2. There was an inverse relationship between TRBF and OEF, such that lower TRBF was associated with higher OEF. Conclusions Increased blood flow compensated for decreased oxygen content, thereby maintaining DO2, MO2, and OEF at predominately lower stages of SCR. Quantitative assessment of these parameters has the potential to advance knowledge and improve diagnostic evaluation of retinal ischemic conditions. PMID:29677351

  6. Electrical transport properties of sputtered Nd2-xCexCuO4±δ thin films

    NASA Astrophysics Data System (ADS)

    Guarino, Anita; Leo, Antonio; Avella, Adolfo; Avitabile, Francesco; Martucciello, Nadia; Grimaldi, Gaia; Romano, Alfonso; Pace, Sandro; Romano, Paola; Nigro, Angela

    2018-05-01

    Thin films of the electron-doped high-temperature superconductor Nd2-xCexCuO4±δ have been deposited by dc sputtering technique on (100) SrTiO3 substrates. A tuning of the oxygen content in the as-grown non-superconducting samples has been achieved by changing the oxygen partial pressure during the growth in the Argon sputtering atmosphere. All samples show the superconducting transition after a suitable two-step thermal treatment in an oxygen-reducing environment. Structural and electrical transport properties on the as-grown as well as on the superconducting samples have been investigated. We find that the structural properties are consistent with a deficiency of the oxygen content with respect to optimally annealed samples, and that the transition to the superconducting phase is always accompanied by an increase of the c-axis lattice parameter. Measurements of the Hall coefficient RH as a function of temperature and in the normal state of our epitaxial films are presented and discussed. RH results negative for all the films regardless of the oxygen content and it decreases with the temperature. In particular, the Hall coefficient is only about 10% lower than the value measured in the as-grown oxygen-deficient phase, in contrast to the results reported in literature. The removal of the excess oxygen in as-grown samples seems not to be the only requirement for triggering the superconducting transition in electron-doped compounds. The microstructural change associated with the increase of the c-axis parameter in our deoxygenated samples could help in understanding the microscopic mechanism underlying the reduction process of n-type superconductors, which is still under debate.

  7. The influence of carbon content on cyclic fatigue of NiTi SMA wires.

    PubMed

    Matheus, T C U; Menezes, W M M; Rigo, O D; Kabayama, L K; Viana, C S C; Otubo, J

    2011-06-01

    To evaluate two NiTi wires with different carbon and oxygen contents in terms of mechanical resistance to rotary bending fatigue (RBF) under varied parameters of strain amplitude and rotational speed. The wires produced from two vacuum induction melting (VIM) processed NiTi ingots were tested, Ti-49.81 at%Ni and Ti-50.33 at%Ni, named VIM 1 and VIM 2. A brief analysis related to wire fabrication is also presented, as well as chemical and microstructural analysis by energy dispersive spectroscopy (EDS) and optical microscope, respectively. A computer controlled RBF machine was specially constructed for the tests. Three radii of curvature were used: 50.0, 62.5 and 75.0 mm, respectively, R(1), R(2) and R(3), resulting in three strain amplitudes ε(a) : 1.00%, 0.80% and 0.67%. The selected rotational speeds were 250 and 455 rpm. The VIM 1 wire had a high carbon content of 0.188 wt% and a low oxygen content of 0.036 wt%. The oxygen and carbon contents of wire VIM 2 did not exceed their maximum, of 0.070 and 0.050 wt%, according to ASTM standard (ASTM F-2063-00 2001). The wire with lower carbon content performed better when compared to the one with higher carbon content, withstanding 29,441 and 12,895 cycles, respectively, to fracture. The surface quality of the wire was associated with resistance to cyclic fatigue. Surface defects acted as stress concentrators points. Overall, the number of cycles to failure was higher for VIM 2 wires with lower carbon content. © 2011 International Endodontic Journal.

  8. Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy.

    NASA Astrophysics Data System (ADS)

    Clemence, Caulle; Meryem, Mojtahid; Karoliina, Koho; Andy, Gooday; Gert-Jan, Reichart; Gerhard, Schmiedl; Frans, Jorissen

    2014-05-01

    Benthic foraminifera from the Arabian Sea oxygen minimum zone: towards a paleo-oxygenation proxy. C. Caulle1, M. Mojtahid1, K. Koho2,3, A. Gooday4, G. J. Reichart2,3, G. Schmiedl5, F. Jorissen1 1UMR CNRS 6112 LPG-BIAF, University of Angers, 2 bd Lavoisier, 49045 Angers Cedex 2Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 3Royal Netherland Institute for Sea Research (Royal NIOZ), Landsdiep 4, 1797 SZ 't Horntje (Texel) 4Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, UK 5Department of Geosciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany The thermohaline circulation oxygenates the deep ocean sediment and therefore enables aerobic life on the sea-floor. In the past, interruption of this deep water formation occurred several times causing hypoxic to anoxic conditions on the sea-floor leading to major ecological turnover. A better understanding of the interaction between climate and bottom water oxygenation is therefore essential in order to predict future oceanic responses. Presently, permanent (stable over decadal timescale) low-oxygen conditions occur naturally at mid-water depths in the northern Indian Ocean (Arabian Sea). Oxygen Minimum Zones (OMZ) are key areas to understand the hypoxic-anoxic events and their impact on the benthic ecosystem. In this context, a good knowledge of the ecology and life cycle adaptations of the benthic foraminiferal assemblages living in these low oxygen areas is essential. A series of multicores were recovered from three transects showing an oxygen gradient across the OMZ: the Murray Ridge, the Oman margin and the Indian margin. The stations located at the same depths showed slightly different oxygen concentrations and large differences in organic matter content. These differences are mainly related to the geographic location in the Arabian Sea. We investigated at these stations live and dead benthic foraminiferal faunas. At each location, faunal diversity seems to be controlled by bottom-water oxygen content; limited diversity corresponding to low oxygen content. Foraminiferal abundances reflect organic matter quantity and quality; higher organic matter quality and quantity are related to higher foraminiferal abundances. When comparing the three study areas, similar foraminiferal species (live and dead) are observed suggesting that benthic foraminifera from the Arabian Sea predominantly respond to bottom-water oxygenation. Based on these observations, we aim to develop a paleo-oxygenation proxy based on live, dead and fossil faunas resulting from both our study and previous studies in the Arabian Sea.

  9. Maximum Oxygen Content of Flowing Eutectic NaK in a Stainless Steel System.

    DTIC Science & Technology

    EUTECTICS, ALKALI METAL ALLOYS), (*LIQUID METALS, OXYGEN), (*POTASSIUM ALLOYS, SODIUM ALLOYS), LIQUID METAL PUMPS , FLUID FLOW, CONCENTRATION...CHEMISTRY), HIGH TEMPERATURE, FLOWMETERS, STAINLESS STEEL, ELECTROMAGNETIC PUMPS , TEMPERATURE, SAMPLING, LIQUID METAL COOLANTS, OXIDES, CRYSTALLIZATION.

  10. Reduced oxygen at high altitude limits maximum size.

    PubMed

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  11. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    NASA Astrophysics Data System (ADS)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  12. The effect of impurities elements on titanium alloy (Ti-6Al-4V) MIM sintered part properties

    NASA Astrophysics Data System (ADS)

    Ahmad, M. Azmirruddin; Jabir, M.; Johari, N.; Ibrahim, R.; Hamidi, N.

    2017-12-01

    The titanium alloys (Ti-6Al-4V) compact were fabricated by Metal Injection Molding (MIM). However, the real challenge of MIM processing for titanium alloy is its affinity to be contaminated by interstitial light elements such as oxygen and carbon which could degrade the mechanical properties of sintered titanium alloy such as its tensile strength and ductility. The sintering temperature effect on carbon and oxygen content that affects its physical and mechanical properties of the sintered titanium alloy was studied. The titanium MIM brown specimen was sintered at four different sintering temperatures which are 1100 °C, 1150 °C, 1200 °C and 1250 °C for 4 hours under furnace control atmosphere. The experimental result indicated that the specimen which has been made from 100% gas atomized powder have a relative density of 92.2 % - 97.6 %, the range of porosity percent around 2.38 %-3.84 %. Ultimate tensile strength of 873.11 MPa - 1007.19 MPa and ductility percent in range of 1.89 %-3.46 %. The titanium alloy MIM specimen which was sintered at 1150 °C contained 0.145 % of carbon and 0.143 % of oxygen possess the highest value of density and tensile strength, with value of 4.344 gcm-3 and 1007.2 MPa respectively. Meanwhile, the titanium alloy MIM specimen which was sintered at 1200 °C contains 0.130 % of carbon and 0.127 % of oxygen, has the highest percentage of ductility with 3.46 %. The carbon content level increased as the sintering temperature increased due to decomposition of high molecule weight of residue binder system which could not be eliminated during solvent extraction debinding process and sintered at low temperature. Contrarily, the oxygen content level indicates a decrease as the sintering temperature increased. Briefly, the sintering temperature could influence the physical and mechanical properties of titanium alloy MIM sintered specimen as it influences the oxygen and carbon content level in the alloys.

  13. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines.

    PubMed

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO 2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO 2 non-bleachable pigments during aging varies with wine composition, with Nebbiolo wines appearing not very reactive in this respect, probably due to their low content in anthocyanins and high content in tannins.

  14. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    PubMed Central

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during aging varies with wine composition, with Nebbiolo wines appearing not very reactive in this respect, probably due to their low content in anthocyanins and high content in tannins. PMID:29755971

  15. Impact of increasing levels of oxygen consumption on the evolution of color, phenolic and volatile compounds of Nebbiolo wines

    NASA Astrophysics Data System (ADS)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-04-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during ageing varies with wine composition, with Nebbiolo wines appearing not very reactive in this respect, probably due to their low content in anthocyanins and high content in tannins.

  16. Geohydrology and geochemistry near coastal ground-water-discharge areas of the Eastern Shore, Virginia

    USGS Publications Warehouse

    Speiran, Gary K.

    1996-01-01

    Local and regional patterns in the organic content of sediments in the surficial aquifer, as reflected in topography and land use, control dissolved oxygen and nitrate concentrations in ground water that recharged through agricultural fields and flowed beneath riparian woodlands. Dissolved oxygen and nitrate concentrations decreased beneath the woodlands as a result of changes in the organic content of the sediments that resulted from deposition of the sediments, not the current presence of riparian woodlands.

  17. Growth of High Purity Oxygen-Free Silicon by Cold Crucible Techniques.

    DTIC Science & Technology

    1982-06-01

    Liquid Metals (A Review). High Temp.-High Pressures 2(6), 583-586, 1970. 1971 Knights, C.F. and Perkins, R. Levitation Melting of Uranium Mono- Carbide . J...content - typically I PPM or less. c) The crystals grown exhibited a high level of carbon contamination (2-30 PPM ) which we believe, is caused by the...grown from melts confined in the cold crucible exhibit an unusually low oxygen content - typically 1 PPM or less. c.) The crystals grown exhibited a

  18. Effects of Ginkgo biloba extract on cerebral oxygen and glucose metabolism in elderly patients with pre-existing cerebral ischemia.

    PubMed

    Xu, Lili; Hu, Zhiyong; Shen, Jianjun; McQuillan, Patrick M

    2015-04-01

    Cerebral injury caused by hypoperfusion during the perioperative period is one of the main causes of disability and death in patients after major surgery. No effective protective or preventative strategies have been identified. This study was designed to evaluate the effects of Ginkgo biloba extract on cerebral oxygen and glucose metabolism in elderly patients with known, pre-existing cerebral ischemia. Sixty ASA (American Society of Anesthesiologists) II-III patients, diagnosed with vertebral artery ischemia by transcranial Doppler ultrasonography (TCD), and scheduled for elective total hip replacement surgery, were enrolled in the study. They were randomly allocated to receive either 1mg/kg Ginkgo biloba extract (G group n=30) or normal saline (D group n=30) after induction of anesthesia. Blood samples were collected from radial artery and jugular venous bulb catheters for blood gas analysis and determination of glucose and lactate concentrations preoperatively, before surgical incision, at the end of surgery, and on post-op day 1. Arterial O2 content (CaO2), jugular venous O2 content (CjvO2), arteriovenous O2 content difference (Da-jvO2), cerebral oxygen extraction rate (CEO2), and arteriovenous glucose and lactate content differences (Da-jvGlu and Da-jvLac) were calculated. There were no significant differences in CaO2 or Da-jvGlu during surgery between groups (p>0.05). However, the Ginkgo group had higher CjvO2, internal jugular venous oxygen saturation (SjvO2) and lower CEO2, Da-jvO2 and Da-jvLac at the end of surgery (T2) and on post-op day 1 (T3) than those in the control group (p<0.05). Ginkgo biloba extract can improve cerebral oxygen supply, decrease cerebral oxygen extraction rate and consumption, and help maintain the balance between cerebral oxygen supply and consumption. It has no effect, however, on cerebral glucose metabolism in elderly patients with known, pre-existing cerebral ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Effect of Pressure on Iron Speciation in Silicate Melts at a Fixed Oxygen Fugacity: The Possibility of a Redox Profile Through a Terrestrial Magma Ocean

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Frost, D. J.; McCammon, C. A.; Rubie, D. C.; Boffa Ballaran, T.

    2017-12-01

    As terrestrial planets accreted, mantle silicates equilibrated with core-forming metallic iron, which would have imposed a mantle oxygen fugacity below the iron-wüstite oxygen buffer. Throughout Earth's history, however, the oxygen fugacity of at least the accessible portions of the upper mantle has been 4-5 orders of magnitude higher. The process that caused the rapid increase in the redox state of the mantle soon after core formation is unclear. Here we test the possibility that pressure stabilises ferric iron in silicate melts, as has been observed in silicate minerals. A deep magma ocean, which would have likely existed towards the end of accretion, could then develop a gradient in oxygen fugacity for a fixed ferric-ferrous ratio as a result of pressure. We have equilibrated an andesitic melt with a Ru-RuO2 buffer in a multianvil press between 5 and 24 GPa. Further experiments were performed on the same melt in equilibrium with iron metal. The recovered melts were then analysed using Mössbauer spectroscopy to determine the ferric/ferrous ratio. The results show that for the Ru-RuO2 buffer at lower pressures, the ferric iron content decreases with pressure, due to a positive volume change of the reaction FeO + 1/4O2 = FeO1.5. Ferric iron content also appears to be sensitive to water content at lower pressures. However, above 15 GPa this trend apparently reverses and the ferric iron content increases with pressure. This reversal in pressure dependence would drive the oxygen fugacity of a deep magma ocean with a fixed ferric/ferrous ratio down with increasing depth. This would create a redox gradient, where the magma ocean could potentially be in equilibrium with metallic iron at its base but more oxidised in its shallower regions. Crystallisation of this magma ocean could render an upper mantle oxygen fugacity similar to that in the Earth's accessible mantle today.

  20. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  1. Highly resolved imaging at the soil - plant root interface: A combination of fluorescence imaging and neutron radiography

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Lehmann, E.

    2012-12-01

    This study represents a novel experimental set up to non-invasivley map the gradients of biogeochemical parameters at the soil -root interface of plants in situ. The patterns of oxygen, pH and the soil water content distribution were mapped in high resolution with a combination of fluorescence imaging and neutron radiography. Measuring the real-time distribution of water, pH and oxygen concentration would enable us to locate the active parts of the roots in respect to water uptake, exudation and respiration. Roots performance itself is variable as a function of age and development stage and is interrelated with local soil conditions such as water and oxygen availability or nutrients and pH buffering capacity in soil. Non-destructive imaging methods such as fluorescence and neutron imaging have provided a unique opportunity to unravel some of these complex processes. Thin glass containers (inner size 10cm x 10cm x 1.5 cm) were filled with 2 different sandy soils. Sensor foil for O2 and pH were installed on the inner-sides of the containers. We grew lupine plants in the container under controlled conditions until the root system was developed. Growing plants at different stages prior to the imaging experiment, we took neutron radiographs and fluorescence images of 10-day old and 30-day old root systems of lupine plants over a range of soil water contents, and therefore a range of root activities and oxygen changes. We observed the oxygen consumption pattern, the pH changes, and the root water uptake of lupine plants over the course of several days. We observed a higher respiration activity around the lateral roots than for the tap root. The oxygen depletion zones around the roots extended to farther distances after each rewatering of the samples. Root systems of the plants were mapped from the neutron radiograps. Close association of the roots distribution and the the location of oxygen depletion patterns provided evidence that this effect was caused by roots. The oxygen deficit pattern intensified with increasing root age. Due to the high soil water content after rewatering, the aeration from atmosphere was limited. pH dynamic was closely related to the root age. Initially, the soil pH strongly decreased around the young growing tap root. This pattern changed with time to an increased pH around the tap root but a strong acidification in the vicinity of lateral roots. After each rewatering, the pH increased which might be due to the dilution of H+ in high soil water contents. With our coupled imaging set up we were able to monitor the dynamics of oxygen, pH and water content around the roots of plant with high spatial and temporal resolutions over day and night at a wide range of soil water contents. Our experimental set up provides the opportunity to simultaneousely map the dynamics of these vital parameters in the root zone of plants.

  2. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  3. The Antioxidation Mechanism of Polydimethylsiloxane in Oil.

    PubMed

    Yawata, Miho; Satoh, Tohru; Iwahashi, Maiko; Hori, Ryuji; Takeuchi, Shigeo; Shiramasa, Hiroshi; Totani, Nagao

    2015-01-01

    Strong and stable antioxidation effects of polydimethylsiloxane (PDMS) are widely accepted and utilized in commercial frying oil; however, the mechanism is not fully established. On the other hand, canola oil contains about 700 ppm (mg/kg-oil) of the natural antioxidant, tocopherol. Canola oil containing 0, 1 and 10 ppm added PDMS was heated at 180°C for 1 h under stirring, then left for 2-3 days at room temperature; this treatment was repeated 5 times. Compared to pure canola oil, PDMS-containing canola oil exhibited remarkably lower peroxide, p-anisidine and acid values, a lower decrease in tocopherol content but a higher oxygen content during the heating experiments, implicating low oxygen consumption for the oxidation. While PDMS has not been known to exhibit antioxidative effects at ambient temperatures, the present results show that PDMS prevents autoxidation as well as thermal oxidation. In addition, PDMS, not tocopherols, provided the major antioxidative effect during intermittent heating, and the decrease of tocopherols was significantly inhibited by PDMS. Phase contrast microscopy confirmed that PDMS contained in canola oil was suspended as particles. Also, the oxygen content in standing PDMS-containing canola oil decreased as the depth of oil increased, corresponding to the PDMS distribution, which also decreased as the depth of oil increased. Moreover, PDMS had a higher affinity for oxygen than canola oil in a mixture of canola oil/PDMS, 1:1 v/v. Thus, it is suggested that PDMS restricted the behavior of oxygen dissolved in canola oil by attracting oxygen in and around the PDMS particles, which is wholly different from the radical scavenging antioxidation of tocopherol.

  4. Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications

    NASA Astrophysics Data System (ADS)

    Sugawara, Toru

    2001-06-01

    A series of Fe and Mg partition experiments between plagioclase and silicate liquid were performed in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O under oxygen fugacities from below the IW buffer up to that of air. A thermodynamic model of plagioclase solid solution for the (CaAl,NaSi,KSi)(Fe3+,Al3+)Si2O8-Ca(Fe2+,Mg)Si3O8 system is proposed and is calibrated by regression analysis based on new and previously reported experimental data of Fe and Mg partitioning between plagioclase and silicate liquid, and reported thermodynamic properties of end members, ternary feldspar and silicate liquid. Using the derived thermodynamic model, FeOt, MgO content and Mg/(Fet+Mg) in plagioclase can be predicted from liquid composition with standard deviations of +/-0.34 wt% (relative error =9%) and +/-0.08 wt% (14%) and +/-0.7 (8%) respectively. Calculated Fe3+-Al exchange chemical potentials of plagioclase, $μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Pl} agree with those calculated using reported thermodynamic models for multicomponent spinel, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Sp} and clinopyroxene, μ { Fe{ 3 + } ( {Al} ){ - 1} }{ Cpx} $ . The FeOt content of plagioclase coexisting with spinel or clinopyroxene is affected by Fe3+/(Fe3++Al) and Mg/(Fe+Mg) of spinel or clinopyroxene and temperature, while it is independent of the anorthite content of plagioclase. Three oxygen barometers based on the proposed model are investigated. Although the oxygen fugacities predicted by the plagioclase-liquid oxygen barometer are scattered, this study found that plagioclase-spinel-clinopyroxene-oxygen and plagioclase-olivine-oxygen equilibria can be used as practical oxygen barometers. As a petrological application, prediction of plagioclase composition and fO2 are carried out for the Upper Zone of the Skaergaard intrusion. The estimated oxygen fugacities are well below QFM buffer and consistent with the estimation of oxidization states in previous studies.

  5. A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix.

    PubMed

    van der Merwe, M M; Bandosz, T J

    2005-02-01

    A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.

  6. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  7. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Le, Hang T. T.; Kalubarme, Ramchandra S.; Ngo, Duc Tung; Jang, Seong-Yong; Jung, Kyu-Nam; Shin, Kyoung-Hee; Park, Chan-Jin

    2015-01-01

    Aluminium doped lithium lanthanum titanate (A-LLTO) powders with various excess Li2O content are synthesized using a simple citrate gel method. The obtained A-LLTO powders show an agglomerated form, composed of nano-sized particles of 20-50 nm. The morphology and conductivity of the A-LLTO ceramics are largely affected by the content of excess Li2O. The highest total ionic conductivity of 3.17 × 10-4 S cm-1 is achieved for the A-LLTO sample containing 20% excess Li2O, exhibiting a vacancy content of 6%, and a total activation energy of 0.358 eV. The A-LLTO can act as a membrane to protect lithium metal from oxygen and other contaminants diffused through the oxygen electrode part. The Li-O2 cell employing the A-LLTO solid electrolyte shows a good cycle life of longer than 100 discharge-charge cycles, under the constant capacity mode of 300 mAh g-1.

  8. Color film preservation system: Breadboard development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an economically feasible system to prevent and/or substantially reduce the degradation of the color dyes of the retinal reflex images recorded on color slide films is discussed. Three different types of film storage systems were designed, fabricated, and tested. An extruded plastic cylindrical container was pressurized and no observable leakage occurred, indicating that long term storage is possible. An operational breadboard was fabricated. The system offers the capability to determine purging requirements to achieve various levels of oxygen concentration and precise leakage of various container configurations. The system has digitial display of oxygen content of the container, automatic control of the oxygen content as well as of the container to atmosphere pressure differential, and flow rate readout during purging.

  9. Thermal transport in tantalum oxide films for memristive applications

    DOE PAGES

    Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; ...

    2015-07-15

    The thermal conductivity of amorphous TaO x memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO x switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically bymore » field-induced charge state migration.« less

  10. Bedside determination of bicarbonate and base excess, blood oxygen saturation and content, VD/VT, and P50 using a programmable calculator.

    PubMed

    Wilkinson, P L

    1979-06-01

    Assessing and modifying oxygen transport are major parts of ICU patient management. Determination of base excess, blood oxygen saturation and content, dead space ventilation, and P50 helps in this management. A program is described for determining these variables using a T1 59 programmable calculator and PC 100A printer. Each variable can be independently calculated without running the whole program. The calculator-printer's small size, low cost, and hard copy printout make it a valuable and versatile tool for calculating physiological variables. The program is easily entered by an stored on magnetic card, and prompts the user to enter the appropriate variables, making is easy to run by untrained personnel.

  11. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    PubMed

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, II, included the following reports:Evolution of Oxygen Isotopes in the Solar Nebula; Disequilibrium Melting of Refractory Inclusions: A Mechanism for High-Temperature Oxygen; Isotope Exchange in the Solar Nebula; Oxygen Isotopic Compositions of the Al-rich Chondrules in the CR Carbonaceous Chondrites: Evidence for a Genetic Link to Ca-Al-rich Inclusions and for Oxygen Isotope Exchange During Chondrule Melting; Nebular Formation of Fayalitic Olivine: Ineffectiveness of Dust Enrichment; Water in Terrestrial Planets: Always an Oxidant?; Oxygen Barometry of Basaltic Glasses Based on Vanadium Valence Determination Using Synchrotron MicroXANES; A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence; The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity ; and Olivine-Silicate Melt Partitioning of Iridium.

  13. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.

    1982-01-01

    Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.

  14. A high-resolution multi-proxy record of geo-environmental change during the last deglaciation in the East Sea

    NASA Astrophysics Data System (ADS)

    Jin, J. H.; Kim, M. J.; Kim, J. H.; Um, I. K.; Bahk, J. J.; Kwon, Y. K.; Lee, K. E.; Khim, B. K.

    2009-04-01

    The East Sea (the Sea of Japan) is a marginal deep basin, almost enclosed by the landmass of Korea and Japan. It is connected with the North Pacific Ocean only by four small shallow straits, Korea and Tsushima Strait (140 m deep), Tsugaru Strait (130 m deep), Soya Strait (55 m deep) and Tartar Strait (12 m deep). For the glacial periods such as the last glaciation, the sea has experienced a large magnitude of sea level fall reinforcing isolation of the sea from the open ocean. The sea level falls can be recognized by presence of dark sediment layers whereas values of oxygen isotope on foraminfera tests are not well accordant with those recorded in open oceans. A 20 m-long sediment core was raised from a deep borehole located on the southern slope of the East Sea where sedimentation rates exceed 0.3 mm/yr for the last deglaciation period. The core was analyzed at a dense interval (ca. 5 cm) to reveal vertical variation of opal content, del values of oxygen and carbon, TOC and CaCO3 content and C/N ratio. Among them, the opal content somewhat mimics the trend of del value of oxygen isotopes in open oceans: low during the last glacial period, increase during the deglaciation and high in Holocene. A sharp negative depression also occurs during the Younger Dryas event. Hence the opal content could be a good proxy record for the environmental change during late Pleistocene to Holocene. A large-scale negative depression of the opal content is also shown during Holocene. The depression is not well matched with the trend of oxygen isotope records in open oceans, suggestive of a particular event in this local area.

  15. Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles.

    PubMed

    Pan, Gang; Yang, Bo

    2012-06-04

    The formation mechanism of a nanoscale gas state is studied on inorganic clay surfaces modified with hexamethyldisilazane, which show different contact angles in ethanol-water solutions. As the dissolved oxygen becomes oversaturated due to the decrease in ethanol-water ratio, oxygen nanoscale gas state are formed and stabilized on the hydrophobic surfaces so that the total oxygen content in the suspension is increased compared to the control solution without the particles. However, the total oxygen content in the suspension with hydrophilic surfaces is lower than the control solution without the particles because the hydrophilic particle surfaces destabilize the nanobubbles on the surfaces by spreading and coagulating them into microbubbles that quickly escape from the suspension solution. No significant correlation was observed between the nanobubble formation and the shape or roughness of the surfaces. Our results suggest that a nanoscale gas state can be formed on both hydrophobic and hydrophilic particle surfaces, but that the stability of the surface nanoscale gas state can vary greatly depending on the hydrophobicity of the solid surfaces. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Superconductors

    DOEpatents

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  17. The effect of diet, temperature and intermittent low oxygen on the metabolism of rainbow trout.

    PubMed

    Stiller, Kevin T; Vanselow, Klaus H; Moran, Damian; Riesen, Guido; Koppe, Wolfgang; Dietz, Carsten; Schulz, Carsten

    2017-03-01

    An automated respirometer system was used to measure VO2, protein catabolism as ammonia quotient and the energy budget to evaluate whether the crude protein content of a standard protein (SP) diet (42·5 %) or a high-protein (HP) diet (49·5 %) influences metabolism in rainbow trout under challenging intermittent, low dissolved oxygen concentrations. In total, three temperature phases (12, 16, 20°C) were tested sequentially, each of which were split into two oxygen periods with 5 d of unmanipulated oxygen levels (50-70 %), followed by a 5d manipulated oxygen period (16.00-08.00 hours) with low oxygen (40-50 %) levels. For both diets, catabolic protein usage was lowest at 16°C and was not altered under challenging oxygen conditions. Low night-time oxygen elevated mean daily VO2 by 3-14 % compared with the unmanipulated oxygen period for both diets at all temperatures. The relative change in VO2 and retained energy during the intermittent low oxygen period was smaller for the HP diet compared with the SP diet. However, in absolute terms, the SP diet was superior to the HP diet as the former demonstrated 30-40 % lower protein fuel use rates, higher retained energy (1-4 % digestible energy) and slightly lowered VO2 (0-8 %) over the range of conditions tested. The decrease in retained energy under low oxygen conditions suggests that there is scope to improve the performance of SP diets under challenging conditions; however, this study suggests that simply increasing the dietary protein content is not a remedy, and other strategies need to be explored.

  18. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  19. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content.

    PubMed

    Zheng, Wei; Lü, Fan; Bolyard, Stephanie C; Shao, Liming; Reinhart, Debra R; He, Pinjing

    2015-02-01

    To understand the applicability of the termination indicators for landfill municipal solid waste (MSW) with low initial lignin content, four different accelerated landfill stabilization techniques were applied to anaerobic landfilled waste, including anaerobic flushing with water, anaerobic flushing with Fenton-treated leachate, and aerobic flushing with Fenton-treated and UV/H2O2-treated leachate. Termination indicators, including total organic carbon (TOC), ammonia-N (NH4(+)-N), the ratio of UV absorbance at 254 nm to TOC concentration (SUVA254), fluorescence spectra of leachate, methane production, oxygen consumption, lignocellulose content, and humus-like content were evaluated. Results suggest that oxygen consumption related indicators used as a termination indicator for low-lignin-content MSW were more sensitive than methane consumption related indicators. Aeration increased humic acid (HA) and (HA+FA)/HyI content by 2.9 and 1.7 times compared to the anaerobically stabilized low-lignin-content MSW. On the other hand, both the fulvic acid (FA) and hydrophilic (HyI) fractions remained constant regardless of stabilization technique. The target value developed for low-lignin-content MSW was quite different than developed countries mainly due to low residual biodegradable organic carbon content in stabilized low-lignin-content MSW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 40 CFR 80.42 - Simple emissions model.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = Fuel aromatics of the fuel in question, in terms of volume percent (as measured under § 80.46) TOXREDS1... Model per § 80.48. (4) If the fuel aromatics content of the fuel in question is less than 10 volume... Range Benzene content 0.0-4.9 vol %. RVP 6.6-9.0 psi. 1 Oxygenate content 0-4.0 wt %. Aromatics content...

  1. 40 CFR 80.42 - Simple emissions model.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... = Fuel aromatics of the fuel in question, in terms of volume percent (as measured under § 80.46) TOXREDS1... Model per § 80.48. (4) If the fuel aromatics content of the fuel in question is less than 10 volume... Range Benzene content 0.0-4.9 vol %. RVP 6.6-9.0 psi. 1 Oxygenate content 0-4.0 wt %. Aromatics content...

  2. Optically reversible electrical soft-breakdown in wide-bandgap oxides—A factorial study

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Ang, D. S.; Kalaga, P. S.

    2018-04-01

    In an earlier work, we found that an electrical soft-breakdown region in wide-bandgap oxides, such as hafnium dioxide, silicon dioxide, etc., could be reversed when illuminated by white light. The effect is evidenced by a decrease in the breakdown leakage current, termed as a negative photoconductivity response. This finding raises the prospect for optical sensing applications based on these traditionally non-photo-responsive but ubiquitous oxide materials. In this study, we examine the statistical distribution for the rate of breakdown reversal as well as the influence of factors such as wavelength, light intensity, oxide stoichiometry (or oxygen content) and temperature on the reversal rate. The rate of breakdown reversal is shown to be best described by the lognormal distribution. Light in the range of ˜400-700 nm is found to have relatively little influence on the reversal rate. On the other hand, light intensity, oxygen content and temperature, each of them has a clear impact; a stronger light intensity, an oxide that is richer in oxygen content and a reduced temperature all speed up the reversal process substantially. These experimental results are consistent with the proposed phenomenological redox model involving photo-assisted recombination of the surrounding oxygen interstitials with vacancy defects in the breakdown path.

  3. Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2.

    PubMed

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang; Wei, Yi; Song, Xiaohe; Ren, Yang; Wang, Weidong; Rao, Mumin; Lin, Yuan; Chen, Zonghai; Lu, Jun; Wang, Chongmin; Amine, Khalil; Pan, Feng

    2016-10-12

    Understanding and further designing new layered Li(Ni x Mn y Co z )O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3 -O-Li 3-x' ): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states from the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the "Ni═Mn" group NMC materials but benefit the thermal stability of "Ni-rich" group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in "Ni-rich" NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.

  4. The Emulsified PFC Oxycyte® Improved Oxygen Content and Lung Injury Score in a Swine Model of Oleic Acid Lung Injury (OALI).

    PubMed

    Haque, Ashraful; Scultetus, Anke H; Arnaud, Francoise; Dickson, Leonora J; Chun, Steve; McNamee, George; Auker, Charles R; McCarron, Richard M; Mahon, Richard T

    2016-12-01

    Perfluorocarbons (PFCs) can transport 50 times more oxygen than human plasma. Their properties may be advantageous in preservation of tissue viability in oxygen-deprived states, such as in acute lung injury. We hypothesized that an intravenous dose of the PFC emulsion Oxycyte ® would improve tissue oxygenation and thereby mitigate the effects of acute lung injury. Intravenous oleic acid (OA) was used to induce lung injury in anesthetized and instrumented Yorkshire swine assigned to three experimental groups: (1) PFC post-OA received Oxycyte ® (5 ml/kg) 45 min after oleic acid-induced lung injury (OALI); (2) PFC pre-OA received Oxycyte ® 45 min before OALI; and (3) Controls which received equivalent dose of normal saline. Animals were observed for 3 h after OALI began, and then euthanized. The median survival times for PFC post-OA, PFC pre-OA, and control were 240, 87.5, and 240 min, respectively (p = 0.001). Mean arterial pressure and mean pulmonary arterial pressure were both higher in the PFC post-OA (p < 0.001 for both parameters). Oxygen content was significantly different between PFC post-OA and the control (p = 0.001). Histopathological grading of lung injury indicated that edema and congestion was significantly less severe in the PFC post-OA compared to control (p = 0.001). The intravenous PFC Oxycyte ® improves blood oxygen content and lung histology when used as a treatment after OALI, while Oxycyte ® used prior to OALI was associated with increased mortality. Further exploration in other injury models is indicated.

  5. Oxygen-charged HTK-F6H8 emulsion reduces ischemia-reperfusion injury in kidneys from brain-dead pigs.

    PubMed

    Asif, Sana; Sedigh, Amir; Nordström, Johan; Brandhorst, Heide; Jorns, Carl; Lorant, Tomas; Larsson, Erik; Magnusson, Peetra U; Nowak, Greg; Theisinger, Sonja; Hoeger, Simone; Wennberg, Lars; Korsgren, Olle; Brandhorst, Daniel

    2012-12-01

    Prolonged cold ischemia is frequently associated with a greater risk of delayed graft function and enhanced graft failure. We hypothesized that media, combining a high oxygen-dissolving capacity with specific qualities of organ preservation solutions, would be more efficient in reducing immediate ischemia-reperfusion injury from organs stored long term compared with standard preservation media. Kidneys retrieved from brain-dead pigs were flushed using either cold histidine-tryptophan-ketoglutarate (HTK) or oxygen-precharged emulsion composed of 75% HTK and 25% perfluorohexyloctane. After 18 h of cold ischemia the kidneys were transplanted into allogeneic recipients and assessed for adenosine triphosphate content, morphology, and expression of genes related to hypoxia, environmental stress, inflammation, and apoptosis. Compared with HTK-flushed kidneys, organs preserved using oxygen-precharged HTK-perfluorohexyloctane emulsion had increased elevated adenosine triphosphate content and a significantly lower gene expression of hypoxia inducible factor-1α, vascular endothelial growth factor, interleukin-1α, tumor necrosis factor-α, interferon-α, JNK-1, p38, cytochrome-c, Bax, caspase-8, and caspase-3 at all time points assessed. In contrast, the mRNA expression of Bcl-2 was significantly increased. The present study has demonstrated that in brain-dead pigs the perfusion of kidneys with oxygen-precharged HTK-perfluorohexyloctane emulsion results in significantly reduced inflammation, hypoxic injury, and apoptosis and cellular integrity and energy content are well maintained. Histologic examination revealed less tubular, vascular, and glomerular changes in the emulsion-perfused tissue compared with the HTK-perfused counterparts. The concept of perfusing organs with oxygen-precharged emulsion based on organ preservation media represents an efficient alternative for improved organ preservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang

    2016-09-19

    Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less

  7. Efficient fluorescence "turn-on" sensing of dissolved oxygen by electrochemical switching.

    PubMed

    Shin, Ik-Soo; Hirsch, Thomas; Ehrl, Benno; Jang, Dong-Hak; Wolfbeis, Otto S; Hong, Jong-In

    2012-11-06

    We report on a novel method for sensing oxygen that is based on the use of a perylene diimide dye (1) which is electrochemically reduced to its nonfluorescent dianion form (1(2-)). In the presence of oxygen, the dianion is oxidized to its initial form via an electron-transfer reaction with oxygen upon which fluorescence is recovered. As a result, the fluorescence intensity of the dianion solution increases upon the addition of oxygen gas. Results demonstrate that high sensitivity is obtained, and the emission intensity shows a linear correlation with oxygen content (0.0-4.0% v/v) at ambient barometric pressure. In addition, using electrochemical reduction, oxygen determination becomes regenerative, and no significant degradation is observed over several turnovers. The limit of detection is 0.4% oxygen in argon gas.

  8. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.

    PubMed

    Morales, Pilar; Rojas, Virginia; Quirós, Manuel; Gonzalez, Ramon

    2015-05-01

    We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.

  9. [Hyperoxia induces reactive oxygen species production and promotes SIRT1 nucleocytoplasmic shuttling of peripheral blood mononuclear cells in premature infants in vitro].

    PubMed

    Yang, Xi; Dong, Wenbin; Li, Qingping; Kang, Lan; Lei, Xiaoping; Zhang, Lianyu; Lu, Youying; Zhai, Xuesong

    2015-12-01

    To explore the relationship between deacetylase sirtuin 1 (SIRT1) and reactive oxygen species (ROS) after oxygen therapy in the peripheral blood mononuclear cells (PBMCs) of the premature infants. According to the fraction of inspired O2 (FiO2), premature infants diagnosed with respiratory distress syndrome (RDS) (gestational age <32 weeks), were divided into three groups: low dosage oxygen group (FiO2 <300 mL/L), moderate dosage oxygen group (FiO2; 300 mL/L-400 mL/L), high dosage oxygen group (FiO2 >400 mL/L). After 48 hours of oxygen treatment, PBMCs and serum were collected from the peripheral blood. Then the intracellular ROS level was detected by MitoSOX(TM) Red labeling combined with confocal laser scanning microscopy; the malondialdehyde (MDA) content in the serum was determined by the whole spectrum spectrophotometer; the SIRT1 localization was observed by immunofluorescence staining; and the SIRT1 levels in PBMCs were examined by Western blotting. With the increase of FiO2, the ROS, MDA content and the rate of SIRT1 nucleocytoplasmic shuttling of PBMCs gradually increased and SIRT1 protein expression was significantly lowered. Hyperoxia induces ROS production in premature infants, promotes SIRT1 to cross from nucleus to cytoplasm, inhibits the resistant ability of SIRT1 to oxidative stress.

  10. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution.

    PubMed

    Rantamäki, Susanne; Meriluoto, Jussi; Spoof, Lisa; Puputti, Eeva-Maija; Tyystjärvi, Taina; Tyystjärvi, Esa

    2016-12-01

    The Earth has had a permanently oxic atmosphere only since the great oxygenation event (GOE) 2.3-2.4 billion years ago but recent geochemical research has revealed short periods of oxygen in the atmosphere up to a billion years earlier before the permanent oxygenation. If these "whiffs" of oxygen truly occurred, then oxygen-evolving (proto)cyanobacteria must have existed throughout the Archaean aeon. Trapping of oxygen by ferrous iron and other reduced substances present in Archaean oceans has often been suggested to explain why the oxygen content of the atmosphere remained negligible before the GOE although cyanobacteria produced oxygen. We tested this hypothesis by growing cyanobacteria in anaerobic high-CO 2 atmosphere in a medium with a high concentration of ferrous iron. Microcystins are known to chelate iron, which prompted us also to test the effects of microcystins and nodularins on iron tolerance. The results show that all tested cyanobacteria, especially nitrogen-fixing species grown in the absence of nitrate, and irrespective of the ability to produce cyanotoxins, were iron sensitive in aerobic conditions but tolerated high concentrations of iron in anaerobicity. This result suggests that current cyanobacteria would have tolerated the high-iron content of Archaean oceans. However, only 1 % of the oxygen produced by the cyanobacterial culture was trapped by iron, suggesting that large-scale cyanobacterial photosynthesis would have oxygenated the atmosphere even if cyanobacteria grew in a reducing ocean. Recent genomic analysis suggesting that ability to colonize seawater is a secondary trait in cyanobacteria may offer a partial explanation for the sustained inefficiency of cyanobacterial photosynthesis during the Archaean aeon, as fresh water has always covered a very small fraction of the Earth's surface. If oxygenic photosynthesis originated in fresh water, then the GOE marks the adaptation of cyanobacteria to seawater, and the late-Proterozoic increase in oxygen concentration of the atmosphere is caused by full oxidation of the oceans.

  11. Deposition and characterization of vanadium oxide based thin films for MOS device applications

    NASA Astrophysics Data System (ADS)

    Rakshit, Abhishek; Biswas, Debaleen; Chakraborty, Supratic

    2018-04-01

    Vanadium Oxide films are deposited on Si (100) substrate by reactive RF-sputtering of a pure Vanadium metallic target in an Argon-Oxygen plasma environment. The ratio of partial pressures of Argon to Oxygen in the sputtering-chamber is varied by controlling their respective flow rates and the resultant oxide films are obtained. MOS Capacitor based devices are then fabricated using the deposited oxide films. High frequency Capacitance-Voltage (C-V) and gate current-gate voltage (I-V) measurements reveal a significant dependence of electrical characteristics of the deposited films on their sputtering deposition parameters mainly, the relative content of Argon/Oxygen in the plasma chamber. A noteworthy change in the electrical properties is observed for the films deposited under higher relative oxygen content in the plasma atmosphere. Our results show that reactive sputtering serves as an indispensable deposition-setup for fabricating vanadium oxide based MOS devices tailor-made for Non-Volatile Memory (NVM) applications.

  12. Oxygen nonstoichiometry and thermodynamic quantities in solid solution SrFe1-xSnxO3-δ

    NASA Astrophysics Data System (ADS)

    Merkulov, O. V.; Markov, A. A.; Leonidov, I. A.; Patrakeev, M. V.; Kozhevnikov, V. L.

    2018-06-01

    The oxygen content (3-δ) variations in tin substituted derivatives SrFe1-xSnxO3-δ, where x = 0.05, 0.1, 0.17 and 0.25, of perovskite-like strontium ferrite, have been studied by coulometric titration measurements within oxygen partial pressure (pO2) range 10-19-10-2 atm at 800-950 °С. The obtained dependencies of (3-δ) from pO2 and temperature are used for calculations of partial molar thermodynamic functions of oxygen in the oxide structure. It is found that a satisfactory explanation of the experimental results can be attained within frameworks of the ideal solution model with ion and electron defects appearing in the result of oxidation and disproportionation of iron cations. The increase of the oxidation reaction enthalpy with tin content is consistent with the increase of the unit cell parameter, i.e., the stretch and relaxation of Fe-O chemical bonds.

  13. Reduced oxygen at high altitude limits maximum size.

    PubMed Central

    Peck, L S; Chapelle, G

    2003-01-01

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal). PMID:14667371

  14. [Effects of oxygenated fuels on emissions and carbon composition of fine particles from diesel engine].

    PubMed

    Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei

    2009-06-15

    Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.

  15. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  16. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  17. Cavitating Jet Method and System for Oxygenation of Liquids

    NASA Technical Reports Server (NTRS)

    Chahine, Georges L.

    2012-01-01

    Reclamation and re-use of water is critical for space-based life support systems. A number of functions must be performed by any such system including removal of various contaminants and oxygenation. For long-duration space missions, this must be done with a compact, reliable system that requires little or no use of expendables and minimal power. DynaJets cavitating jets can oxidize selected organic compounds with much greater energy efficiency than ultrasonic devices typically used in sonochemistry. The focus of this work was to develop cavitating jets to simultaneously accomplish the functions of oxygenation and removal of contaminants of importance to space-structured water reclamation systems. The innovation is a method to increase the concentration of dissolved oxygen or other gasses in a liquid. It utilizes a particular form of novel cavitating jet operating at low to moderate pressures to achieve a high-efficiency means of transporting and mixing the gas into the liquid. When such a jet is utilized to simultaneously oxygenate the liquid and to oxidize organic compounds within the liquid, such as those in waste water, the rates of contaminant removal are increased. The invention is directed toward an increase in the dissolved gas content of a liquid, in general, and the dissolved oxygen content of a liquid in particular.

  18. Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine

    2018-06-01

    To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.

  19. Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants.

    PubMed

    Svanberg, Emilie Krite; Lundin, Patrik; Larsson, Marcus; Åkeson, Jonas; Svanberg, Katarina; Svanberg, Sune; Andersson-Engels, Stefan; Fellman, Vineta

    2016-04-01

    Newborn infants may have pulmonary disorders with abnormal gas distribution, e.g., respiratory distress syndrome. Pulmonary radiography is the clinical routine for diagnosis. Our aim was to investigate a novel noninvasive optical technique for rapid nonradiographic bedside detection of oxygen gas in the lungs of full-term newborn infants. Laser spectroscopy was used to measure contents of oxygen gas (at 760 nm) and of water vapor (at 937 nm) in the lungs of 29 healthy newborn full-term infants (birth weight 2,900-3,900 g). The skin above the lungs was illuminated using two low-power diode lasers and diffusely emerging light was detected with a photodiode. Of the total 390 lung measurements performed, clear detection of oxygen gas was recorded in 60%, defined by a signal-to-noise ratio of >3. In all the 29 infants, oxygen was detected. Probe and detector positions for optimal pulmonary gas detection were determined. There were no differences in signal quality with respect to gender, body side or body weight. The ability to measure pulmonary oxygen content in healthy full-term neonates with this technique suggests that with further development, the method might be implemented in clinical practice for lung monitoring in neonatal intensive care.

  20. Effects of Muscle-Specific Oxidative Stress on Cytochrome c Release and Oxidation-Reduction Potential Properties.

    PubMed

    Ke, Yiling; Mitacek, Rachel M; Abraham, Anupam; Mafi, Gretchen G; VanOverbeke, Deborah L; DeSilva, Udaya; Ramanathan, Ranjith

    2017-09-06

    Mitochondria play a significant role in beef color. However, the role of oxidative stress in cytochrome c release and mitochondrial degradation is not clear. The objective was to determine the effects of display time on cytochrome c content and oxidation-reduction potential (ORP) of beef longissimus lumborum (LL) and psoas major (PM) muscles. PM discolored by day 3 compared with LL. On day 0, mitochondrial content and mitochondrial oxygen consumption were greater in PM than LL. However, mitochondrial content and oxygen consumption were lower (P < 0.05) in PM than LL by day 7. Conversely, cytochrome c content in sarcoplasm was greater on days 3 and 7 for PM than LL. There were no significant differences in ORP for LL during display, but ORP increased for PM on day 3 when compared with day 0. The results suggest that muscle-specific oxidative stress can affect cytochrome c release and ORP changes.

  1. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2013-08-15

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr{sub 3}FeMO{sub 7−δ} (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A{submore » 3}B{sub 2}O{sub 7−δ} oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A{sub 3}B{sub 2}O{sub 7−δ} often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry.« less

  2. Deep oxygenated ground water: Anomaly or common occurrence?

    USGS Publications Warehouse

    Winograd, I.J.; Robertson, F.N.

    1982-01-01

    Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge. Copyright ?? 1982 AAAS.

  3. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development

    DTIC Science & Technology

    1993-03-31

    the crushed material with additional yttria-stabilized zirconia powder to yield a pressable material of appropriate overall composition. This mixture...sensitivity of the system to oxygen content, a dedicated effort is planned to study the effect of residual oxygen in the zirconia powder on composite growth

  4. Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2-NaCl

    NASA Astrophysics Data System (ADS)

    Cai, Zhuo-fei; Zhang, Zhi-mei; Guo, Zhan-cheng; Tang, Hui-qing

    2012-06-01

    V2O5 sintered pellets and graphite rods were employed as the cathode and the anode, respectively; a molten CaCl2-NaCl salt was used as the electrolyte. Then, V2O5 was directly reduced to metal vanadium by the Fray-Farthing-Chen (FFC) method at 873 K to realize low-temperature electrolysis. Two typical experimental conditions, electrolysis time and voltage, were taken into account to investigate the current efficiency and remaining oxygen content in electrolyzed products. The composition and microstructure of the products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations show that a higher voltage (1.8-3.4 V) and a longer electrolysis time (2-5 h) can improve the product quality separately, that is, a lower remaining oxygen content and a more uniform microstructure. The products with an oxygen content of 0.205wt% are successfully obtained below 3.4 V for 10 h. However, the current efficiency is low, and further work is required.

  5. Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films.

    PubMed

    Anni, M; Rella, R

    2010-02-04

    We investigated the fluorescence (FL) dependence on the environment oxygen content of poly(9,9-dioctylfluorene) (PF8) thin films. We show that the PF8 interactions with oxygen are not limited to the known irreversible photo-oxidation, resulting in the formation of Keto defects, but also reversible FL quenching is observed. This effect, which is stronger for the Keto defects than for the PF8, has been exploited for the realization of a prototype oxygen sensor based on FL quenching. The sensing sensitivity of Keto defects is comparable with the state of the art organic oxygen sensors based on phosphorescence quenching.

  6. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  7. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  8. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  9. Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.

    PubMed

    Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian

    2018-07-01

    Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Oxy-fired boiler unit and method of operating the same

    DOEpatents

    Lou, Xinsheng; Zhang, Jundong; Joshi, Abhinaya; McCombe, James A.; Levasseur, Armand A.

    2016-12-06

    An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.

  11. Temperature dependence of the biaxial modulus, intrinsic stress and composition of plasma deposited silicon oxynitride films

    NASA Technical Reports Server (NTRS)

    Harding, David R.; Ogbuji, Linus U. T.; Freeman, Mathieu J.

    1995-01-01

    Silicon oxynitride films were deposited by plasma-enhanced chemical-vapor deposition. The elemental composition was varied between silicon nitride and silicon dioxide: SiO(0.3)N(1.0), SiO(0.7)N(1.6), SiO(0.7)N(1.1), and SiO(1.7)N(0.%). These films were annealed in air, at temperatures of 40-240 C above the deposition temperature (260 C), to determine the stability and behavior or each composition. the biaxial modulus, biaxial intrinsic stress, and elemental composition were measured at discrete intervals within the annealing cycle. Films deposited from primarily ammonia possessed considerable hydrogen (up to 38 at.%) and lost nitrogen and hydrogen at anneal temperatures (260-300 C) only marginally higher than the deposition temperature. As the initial oxygen content increased a different mechanism controlled the behavior or the film: The temperature threshold for change rose to approximately equal to 350 C and the loss of nitrogen was compensated by an equivalent rise in the oxygen content. The transformation from silicon oxynitride to silica was completed after 50 h at 400 C. The initial biaxial modulus of all compositions was 21-3- GPa and the intrinsic stress was -30 to 85 MPa. Increasing the oxygen content raised the temperature threshold where cracking first occurred; the two film compositions with the highest initial oxygen content did not crack, even at the highest temperature (450 C) investigated. At 450 C the biaxial modulus increased to approximately equal to 100 GPa and the intrinsic stress was approximately equal to 200 MPa. These increases could be correlated with the observed change in the film's composition. When nitrogen was replaced by oxygen, the induced stress remained lower than the biaxial strength of the material, but, when nitrogen and hydrogen were lost, stress-relieving microcracking occurred.

  12. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  13. Hydrogen and Ferric Iron in Mars Materials

    NASA Technical Reports Server (NTRS)

    Dyar, Melinda D.

    2004-01-01

    Knowledge of oxygen and hydrogen fugacity is of paramount importance in constraining phase equilibria and crystallization processes of melts, as well as understanding the partitioning of elements between the cope and silicate portions of terrestrial planets. H and Fe(3+) must both be analyzed in order to reconstruct hydrogen and oxygen fugacities on Mars. To date, SIMS data have elucidated D/H and H contents of hydrous phases in SNC meteorites, but until now anhydrous martian minerals have not been systematically examined for trace hydrogen. Ferric iron has been quantified using XANES in many martian phases, but integrated studies of both Fe(3+) and H on the same spots are really needed to address the H budget. Finally, the effects of shock on both Fe(3+) and H in hydrous and anhydrous phases must be quantified. Thus, the overall goal of this research was to understand the oxygen and hydrogen fugacities under which martian samples crystallized. In this research one-year project, we approached this problem by 1) characterizing Fe(3+) and H contents of SNC meteorites using both bulk (Mossbauer spectroscopy and uranium extraction, respectively) and microscale (synchrotron micro-XANES and SIMS) methods; 2) relating Fe(3+) and H contents of martian minerals to their oxygen and hydrogen fugacities through analysis of experimentally equilibrated phases (for pyroxene) and through study of volcanic rocks in which the oxygen and hydrogen fugacities can be independently constrained (for feldspar); and 3) studying the effects of shock processes on Fe(3+) and H contents of the phases of interest. Results have been used to assess quantitatively the distribution of H and Fe(3+) among phases in the martian interior, which will better constrain the geodynamic processes of the interior, as well as the overall hydrogen and water budgets on Mars. There were no inventions funded by this research.

  14. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  15. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  16. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  17. Water Quality: A Field-Based Quality Testing Program for Middle Schools and High Schools.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    This manual contains background information, lesson ideas, procedures, data collection and reporting forms, suggestions for interpreting results, and extension activities to complement a water quality field testing program. Information on testing water temperature, water pH, dissolved oxygen content, biochemical oxygen demand, nitrates, total…

  18. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... danger posed by the permit spaces. Note: A sign reading “DANGER—PERMIT-REQUIRED CONFINED SPACE, DO NOT... tested, with a calibrated direct-reading instrument, for oxygen content, for flammable gases and vapors... dependent and will not provide reliable readings in an oxygen deficient atmosphere. Combustible gasses are...

  19. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    NASA Astrophysics Data System (ADS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-06-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al2O3)1-x(SiO2)x, glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins.

  20. Geometric structure of thin SiO xN y films on Si(100)

    NASA Astrophysics Data System (ADS)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  1. [Influence of dissolved gases on highly diluted aqueous media].

    PubMed

    Belovolova, L V; Glushkov, M V; Vinogradov, E A

    2014-01-01

    In the experiments on redox potential measurement for a series of identical samples of purified and presettled water it was found that the response to ultraviolet irradiation varies appreciably within a few days after treatment, including stepwise changes. In a few hours after exposure, leading to a higher content of reactive oxygen species as compared with the equilibrium values, long-term changes including variations in redox potential and optical system parameters are recorded in water and diluted aqueous media. We propose a heuristic organization model of the water-gas system with an increased content of reactive oxygen species.

  2. Evolution of the surface species of the V 2O 5-WO 3 catalysts

    NASA Astrophysics Data System (ADS)

    Najbar, M.; Brocławik, E.; Góra, A.; Camra, J.; Białas, A.; Wesełucha-Birczyńska, A.

    2000-07-01

    Vanadia-related species formed as a result of vanadium segregation at the surface of V-W oxide bronze crystallites were investigated. The structures of these species and their transformations induced by oxygen removal and oxygen adsorption were monitored using photoelectron spectroscopy and the FT Raman technique. Assignments of the MeO vibrational bands, based on the results of DFT calculations for model clusters, have been proposed. Two kinds of surface species are dominant depending on the tungsten content: V 4+-O-W 6+ at low tungsten content and V 5+-O-W 5+ at higher tungsten concentration.

  3. Effects of Oxygen Content on Tensile and Fatigue Performance of Ti-6Al-4 V Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Quintana, Oscar A.; Tong, Weidong

    2017-12-01

    We investigated the selective laser melting (SLM) process for development of Ti-6Al-4 V solid material with oxygen content corresponding to the extra low interstitial (ELI) and non-ELI conditions. The microstructure, chemistry, and tensile properties of samples in as-built and hot isostatically pressed (HIPed) condition were evaluated for both material types, while fatigue performance was evaluated by rotating bending fatigue tests on both smooth and notched SLM ELI and non-ELI Ti-6Al-4 V samples in HIPed condition.

  4. Investigation of Slag Compositions and Pressure Ranges Suitable for Electroslag Remelting under Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Radwitz, S.; Scholz, H.; Friedrich, B.

    It is well known that high contents of oxygen and hydrogen in creep resistant structural steels like 21CrMoV5-7 have negative influence on a variety of material properties. To investigate the refining ability of various slag compositions under reduced pressure multiple experiments were performed in a 40 kW vacuum-induction furnace with the aim to ensure minimal oxygen and hydrogen contents. With regard to slag evaporation, different mixtures of fluorides and oxides as well as pure oxide systems were utilized. The pressure was varied in the range of 5 and 700 mbar.

  5. Impact of oxygen dissolved at bottling and transmitted through closures on the composition and sensory properties of a Sauvignon Blanc wine during bottle storage.

    PubMed

    Lopes, Paulo; Silva, Maria A; Pons, Alexandre; Tominaga, Takatoshi; Lavigne, Valérie; Saucier, Cédric; Darriet, Philippe; Teissedre, Pierre-Louis; Dubourdieu, Denis

    2009-11-11

    This work outlines the results from an investigation to determine the effect of the oxygen dissolved at bottling and the specific oxygen barrier properties of commercially available closures on the composition, color and sensory properties of a Bordeaux Sauvignon Blanc wine during two years of storage. The importance of oxygen for wine development after bottling was also assessed using an airtight bottle ampule. Wines were assessed for the antioxidants (SO(2) and ascorbic acid), varietal thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol), hydrogen sulfide and sotolon content, and color throughout 24 months of storage. In addition, the aroma and palate properties of wines were also assessed. The combination of oxygen dissolved at bottling and the oxygen transferred through closures has a significant effect on Sauvignon Blanc development after bottling. Wines highly exposed to oxygen at bottling and those sealed with a synthetic, Nomacorc classic closure, highly permeable to oxygen, were relatively oxidized in aroma, brown in color, and low in antioxidants and volatile compounds compared to wines sealed with other closures. Conversely, wines sealed under more airtight conditions, bottle ampule and screw cap Saran-tin, have the slowest rate of browning, and displayed the greatest contents of antioxidants and varietal thiols, but also high levels of H(2)S, which were responsible for the reduced dominating character found in these wines, while wines sealed with cork stoppers and screw cap Saranex presented negligible reduced and oxidized characters.

  6. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.

    PubMed

    Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven

    2016-11-30

    Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.

  8. Development of a Self-calibrating Dissolved Oxygen Microsensor Array for the Monitoring and Control of Plant Growth in a Space Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy

    2004-01-01

    Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,

  9. Oxygen depth profiling by resonant RBS in NiTi after plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Lindner, J. K. N.

    2006-08-01

    NiTi exhibits super-elastic as well as shape-memory properties, which results in a large potential application field in biomedical technology. Using oxygen ion implantation at elevated temperatures, it is possible to improve the biocompatibility. Resonant Rutherford backscattering spectroscopy (RRBS) is used to investigate the oxygen depth profile obtained after oxygen plasma immersion ion implantation (PIII) at 25 kV and 400-600 °C. At all temperatures, a layered structure consisting of TiO2/Ni3Ti/NiTi was found with sharp interfaces while no discernible content of oxygen inside Ni3Ti or nickel in TiO2 was found. These data are compatible with a titanium diffusion from the bulk towards the implanted oxygen.

  10. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films.

    PubMed

    Hu, S; Seidel, J

    2016-08-12

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  11. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films

    NASA Astrophysics Data System (ADS)

    Hu, S.; Seidel, J.

    2016-08-01

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  12. Device for staged carbon monoxide oxidation

    DOEpatents

    Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph

    1993-01-01

    A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

  13. Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants1[OA

    PubMed Central

    Vigeolas, Helene; Hühn, Daniela; Geigenberger, Peter

    2011-01-01

    Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (ω-6) linoleic and C18:3 (ω-3) α-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds. PMID:21205621

  14. Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.

    The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.

  15. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE PAGES

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    2016-11-17

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  16. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  17. Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlistunoff, Jerzy; Sansinena, Jose -Maria

    We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less

  18. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  19. An Approach to the Study of the Interactions between Ellagitannins and Oxygen during Oak Wood Aging.

    PubMed

    García-Estévez, Ignacio; Alcalde-Eon, Cristina; Martínez-Gil, Ana María; Rivas-Gonzalo, Julián C; Escribano-Bailón, M Teresa; Nevares, Ignacio; Del Alamo-Sanza, María

    2017-08-09

    During the aging of red wine in oak wood barrels, or in alternative aging systems, interactions between the compounds released from wood, the compounds of the wine, and oxygen can take place. The main objective of the present work was to study oxygen-ellagitannin interactions by monitoring their levels in three model systems, all containing the same amounts of French oak chips and differing only in the oxygen content: total absence, only the oxygen released from the chips, and air-saturated (model systems F, OW, and OS, respectively). This study has highlighted the influence of oxygen in the ellagitannins' evolution and the relevance of the oxygen trapped into the oak chips, reporting for the first time the kinetics of oxygen release to the model wine. Furthermore, the indirect contribution of oxygen to the ellagitannins' disappearance by boosting autoxidative reactions has also been pointed out. Vescalagin seems to be the ellagitannin most affected by the initial oxygen levels.

  20. Operation and testing of Mark 10 Mod 3 underwater breathing apparatus

    NASA Technical Reports Server (NTRS)

    Milwee, W. I., Jr.

    1972-01-01

    Performance tests on a closed circuit, mixed gas underwater breathing apparatus are reported. The equipment is designed to provide a minimum diving duration of four hours at 1500 ft below sea surface; it senses oxygen partial pressure in the breathing gas mix and controls oxygen content of the breathing gas within narrow limits about a preset value. The breathing circuit subsystem provides respirable gas to the diver and removes carbon dioxide and moisture from the expired gas. Test results indicate undesirable variations in oxygen partial pressure with oxygen addition and insufficient carbon dioxide absorption.

  1. Declining oxygen in the global ocean and coastal waters.

    PubMed

    Breitburg, Denise; Levin, Lisa A; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P; Conley, Daniel J; Garçon, Véronique; Gilbert, Denis; Gutiérrez, Dimitri; Isensee, Kirsten; Jacinto, Gil S; Limburg, Karin E; Montes, Ivonne; Naqvi, S W A; Pitcher, Grant C; Rabalais, Nancy N; Roman, Michael R; Rose, Kenneth A; Seibel, Brad A; Telszewski, Maciej; Yasuhara, Moriaki; Zhang, Jing

    2018-01-05

    Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems. Copyright © 2018, American Association for the Advancement of Science.

  2. Singlet Delta oxygen generation for chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Georges, E.; Mouthon, A.; Barraud, R.

    To improve the overall efficiency of chemical oxygen-iodine lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. The water vapor content must also be as low as possible. A generator model based on gas-liquid reaction and liquid-vapor equilibrium theories is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure.

  3. Synchrotron x-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, J. J.; Almer, J. D.; Vogel, S. C.

    The metallic glass-forming alloy VIT-105 (Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10}Ti{sub 5}) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fcc 'big cube' phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented.

  4. Effect of Si Content on Oxide Formation on Surface of Molten Fe-Cr-C Alloy Bath During Oxygen Top Blowing

    NASA Astrophysics Data System (ADS)

    Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya

    2018-02-01

    Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.

  5. Microbial Methane Fermentation Kinetics for Toxicant Exposure.

    DTIC Science & Technology

    1981-08-31

    percent of digester contents daily. Bauchcp (1967) used chloroform as a specific inhibitor for methane formation in suspensions of rumen fluid. Other...washout. -wt 113 ,YO. it i L ,. . , . . . - _ TABLE OF CONTENTS I temn Page ABSTRACT................ . . ...... . ... .. .. .. .. .. .. .. INTRODUCTION...several environmental factors (McCarty, 1964; Dague, 1968; Metcalf and Eddy, 1979). The reactor contents should be free of dis- solved oxygen and other

  6. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  7. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  8. Evaluation of efficiency of aircraft liquid waste treatment and identification of daily inspection indices: a case study in Changchun, China.

    PubMed

    Xu, Jianling; Yang, Jiaqi; Zhao, Nan; Sheng, Lianxi; Zhao, Yuanhui; Tang, Zhanhui

    2013-07-01

    Evaluation of the efficiency of aircraft liquid waste treatment has previously been conducted to prevent pollution of the environment. The current study aimed to provide a set of practical methods for efficient airport sanitary supervision. Aircraft liquid waste was collected at Longjia International Airport, Changchun from multiple flights. The efficiency of liquid waste treatment as well as the water quality of the wastewater processed via a second-stage wastewater facility were examined by measuring a number of physical, chemical, and biological indices. Our results indicated that treatment solely via resolvable sanitizing liquid was not sufficient. Although the contents of first-class pollutants all met the requirements of the standard criteria, the contents of a number of second-class pollutants did not satisfy these criteria. However, after further treatment via a second-stage wastewater facility installed at the airport, all indices reached second-grade requirements of the discharge standard. We suggest that daily inspection and quarantine indices at airports should include the suspension content, biological oxygen demands after 5 days, chemical oxygen demand total organic carbon content, amino nitrogen content, total phosphorous content, and the level of fecal coliforms.

  9. High resolution photoemission investigation: The oxidation of W

    NASA Astrophysics Data System (ADS)

    Morar, J. F.; Himpsel, F. J.; Hughes, G. J.; Jordan, J. L.; McFeely, F. R.; Hollinge, G.

    High resolution photoemission measurements of surface oxide layers on tungsten has revealed a set of well resolved core level shifts characteristic of individual metal oxidation states. Measurement and analysis of this type of data can provide specific and quantitative chemical information about surface oxides. The formation of bonds between transition metals and strongly electronegative elements such as oxygen and fluorine results in charge transfer with the effect of shifting the metal core electron binding energies. The magnitude of such shifts depends primarily on two factors; the amount of charge transfer and the screening ability of the metals electrons. The size of core-level shifts tend to increase with additional charge transfer and be decreased by screening. In the case of tungsten the amount of screening should be a function of oxygen content since the oxygen ties up free electrons which are effective at screening. A continuous change in the tungsten core level shifts is observed with increasing oxygen content, i.e., as the screening changes from that characteristic of a metal screened to that characteristic of an insulator unscreened.

  10. Vacancy-oxygen defects in p-type Si1-xGex

    NASA Astrophysics Data System (ADS)

    Sgourou, E. N.; Londos, C. A.; Chroneos, A.

    2014-10-01

    Oxygen-vacancy defects and, in particular, the VO pairs (known as A-centers) are common defects in silicon (Si) with a deleterious impact upon its properties. Although oxygen-vacancy defects have been extensively studied in Si there is far less information about their properties in p-type doped silicon germanium (Si1-xGex). Here, we use Fourier transform infrared spectroscopy to determine the production and evolution of oxygen-vacancy defects in p-type Si1-xGex. It was determined that the increase of Ge content affects the production and the annealing behavior of the VO defect as well as its conversion to the VO2 defect. In particular, both the VO production and the VO annealing temperature are reduced with the increase of Ge. The conversion ratio [VO2]/[VO] also decreases with the increase of x, although the ratios [VO3]/[VO2] and [VO4]/[VO3] show a tendency to increase for larger Ge contents. The results are discussed in view of recent experimental and theoretical studies in Si and Si1-xGex.

  11. Aging of SRC liquids

    NASA Astrophysics Data System (ADS)

    Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.

    1981-02-01

    The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.

  12. Influence of shielding gas on the mechanical and metallurgical properties of DP-GMA-welded 5083-H321 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Koushki, Amin Reza; Goodarzi, Massoud; Paidar, Moslem

    2016-12-01

    In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0.1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, M., E-mail: kuhnm@mit.edu; Hashimoto, S.; Sato, K.

    The oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} has been the topic of various reports in the literature, but has been exclusively measured at high oxygen partial pressures, pO{sub 2}, and/or elevated temperatures. For applications of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}}, such as solid oxide fuel cell cathodes or oxygen permeation membranes, knowledge of the oxygen nonstoichiometry and thermo-chemical stability over a wide range of pO{sub 2} is crucial, as localized low pO{sub 2} could trigger failure of the material and device. By employing coulometric titration combined with thermogravimetry, the oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} was measured at highmore » and intermediate pO{sub 2} until the material decomposed (at log(pO{sub 2}/bar) Almost-Equal-To -4.5 at 1073 K). For a gradually reduced sample, an offset in oxygen content suggests that La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} forms a 'super-reduced' solid solution before decomposing. When the sample underwent alternate reduction-oxidation, a hysteresis-like pO{sub 2} dependence of the oxygen content in the decomposition pO{sub 2} range was attributed to the reversible formation of ABO{sub 3} and A{sub 2}BO{sub 4} phases. Reduction enthalpy and entropy were determined for the single-phase region and confirmed interpolated values from the literature. - Graphical abstract: Oxygen nonstoichiometry (shown as 3-{delta}) of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} as a function of pO{sub 2} at 773-1173 K. The experimental data were obtained by thermogravimetric analysis (TG) and coulometric titration (measured either by a simple reduction (CT1) or a 'two-step-forward one-step-back' reduction-oxidation (CT2) procedure). D1 and D2 denote the decomposition pO{sub 2}. The solid lines are the fit to the thermogravimetry and CT1 data. The dashed lines represent the non-equilibrium region where the sample shows a super-reduced state. Highlights: Black-Right-Pointing-Pointer Oxygen nonstoichiometry of La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} at intermediate temperatures and p(O2). Black-Right-Pointing-Pointer Experimental confirmation of previously interpolated reduction enthalpy. Black-Right-Pointing-Pointer Decomposition p(O2) assessed by coulometric titration. Black-Right-Pointing-Pointer Hysteresis-like p(O2) dependence of oxygen content at decomposition p(O2).« less

  14. Dynamics of Productivity-Related Oxygen Minimum Zone along the Shirshov Ridge, Western Bering Sea, during the Last Glacial Termination

    NASA Astrophysics Data System (ADS)

    Ovsepyan, E.; Ivanova, E. V.; Tiedemann, R.

    2017-12-01

    Seasonally sea-ice covered Bering Sea is known to be a sensitive region to study rapid climatic oscillations. Based on benthic (BF) and planktic (PF) foraminiferal data from two sediment cores SO201-2-85KL (85KL, w.d. 968 m) and SO201-2-77KL (77KL, w.d. 2163 m) we reconstruct variations in intensity of oxygen minimum zone (OMZ) and its relation to sea-surface bioproductivity in the central and southern parts of the Shirshov Ridge, western Bering Sea, during the Termination I. A prevalence of suboxic BF group (Kaiho, 1994) in both cores mirrors moderately oxygenated intermediate and deep waters during LGM-Heinrich I interval. Rapid increase in percentages of dysoxic group is registered in the core 77KL at the onset of Bølling/Allerød. This implies that relatively low-oxygen conditions developed at 2 km water depths in the southwestern Bering Sea, but occurrence (20-30%) of suboxic group suggests that oxygen depletion was not dramatic. Simultaneous spikes of high-productivity species point to a bioproductivity rise above the southern part of the ridge. Increase in bioproductivity and decrease in oxygen content are detected 0.9 kyr later above the central part of Shirshov Ridge than above the southern one. This delay might reflect a gradual sea ice retreat from station 77 KL to 85KL during the global warming and sea level rise. Moderate bottom-water oxygenation is suggested for the intermediate depths of 1 km whereas no changes in relative oxygen content are found at 2 km below sea level during the Younger Dryas. Concurrent decrease in bioproductivity is reconstructed from BF records from the core 85KL. However, presence of high-productivity species and elevated BF accumulation rates in the core 77KL point to higher organic matter flux to the sea floor in the southern part of the ridge at the end of Younger Dryas. For the Early Holocene, bioproductivity rise and oxygen depletion in the intermediate waters are inferred from BF data. Strong dominance of dysoxic group in the 85KL indicates that oxygen content at the intermediate depths was much lower during the Early Holocene than during the Bølling/Allerød. The results provide evidence for complex development of OMZ in the western Bering Sea during the Termination I. They also demonstrate high potential to extend such studies to the North Pacific realm.

  15. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-06-21

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al{sub 2}O{sub 3}){sub 1−x}(SiO{sub 2}){sub x}, glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO{sub 5} structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution ofmore » the glass-transition temperature as well as of the fragility as a function of silica content along the three joins.« less

  16. Industrial grade versus scientific pure: Influence on melt properties

    NASA Astrophysics Data System (ADS)

    Jonas, I.; Hembree, W.; Yang, F.; Busch, R.; Meyer, A.

    2018-04-01

    Viscosity, density, and the undercooling ability of the Zr-based bulk glass forming melt, which was manufactured in two different degrees of purity, have been studied. Investigations have been carried out by means of Couette rheometry and electrostatic and electromagnetic levitation with the latter under microgravity conditions. We found that oxygen and impurities present in industrial grade metals do not significantly alter the melt viscosity and density, while they clearly affect the undercooling ability. Comparing container based and containerless results showed that Couette rheometry can be applied in the temperature range between 1150 K and 1375 K, where it provides reliable data, but only at a rather low oxygen content. Higher oxygen contents, as in the case of the industrial grade alloy, cause measurement artefacts. In the case of Zr59.3Cu28.8Al10.4Nb1.5 alloys, these findings allow a better localization of the key factors dominating the glass forming ability.

  17. Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content.

    PubMed

    Navarro, María; Kontoudakis, Nikolaos; Giordanengo, Thomas; Gómez-Alonso, Sergio; García-Romero, Esteban; Fort, Francesca; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando

    2016-05-15

    The botanical origin, toast level and ellagitannin content of oak chips in a model wine solution have been studied in terms of their influence on oxygen consumption. French oak chips released significantly higher amounts of ellagitannins than American oak chips at any toast level. The release of ellagitannins by oak chips decreased as the toast level increased in the French oak but this trend was not so clear in American oak. Oxygen consumption rate was clearly related to the level of released ellagitannins. Therefore, oak chips should be chosen for their potential to release ellagitannins release should be considered, not only because they can have a direct impact on the flavor and body of the wine, but also because they can protect against oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Titanium Dioxide Volatility in High Temperature Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QynhGiao N.

    2008-01-01

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).

  19. Pulsed Dose Delivery of Oxygen in Mechanically Ventilated Pigs with Acute Lung Injury

    DTIC Science & Technology

    2013-03-01

    collapse or arrhythmia were encountered after administration of oleic acid, chest compressions, electrical defibrillation , and epinephrine (0.1-1 mg/kg...endotracheal tube to continuously measure the oxygen content of the gas in the circuit. We designed the study as a crossover trial, so each animal served as... designed to prove that a pulsed dose delivery system would be a better method of oxygen delivery, it is interesting to note that pulsed dose delivery did

  20. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    NASA Astrophysics Data System (ADS)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  1. Combined O2/combustibles solid electrolyte gas monitoring device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickam, W.M.; Lin, C.; Zomp, J.M.

    1980-11-04

    A circuit means in combination with a conventional oxygen ion conductive solid electrolyte cell establishes the cell in a voltage mode for the purposes of measuring excess oxygen and developing a voltage signal indicative thereof, and switching the cell to a current mode of operation in response to an excess combustible environment wherein current drawn by the cell to pump oxygen for combustible reaction with the excess combustibles environment is measured as an indication of the combustibles content of the gas.

  2. Low-Flammability PTFE for High-Oxygen Environments

    NASA Technical Reports Server (NTRS)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  3. Quality changes in sea urchin (Strongylocentrotus nudus) during storage in artificial seawater saturated with oxygen, nitrogen and air.

    PubMed

    Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao

    2012-01-15

    Sea urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of sea urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or air at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or air packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or air packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for sea urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or air packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.

  4. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    PubMed

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Pluronic F127 as auxiliary template for preparing nitrogen and oxygen dual doped mesoporous carbon cathode of lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Wu, Junwei; Liu, Yanchen; Cui, Yanhui; Ouyang, Jue; Baker, Andrew P.; Li, Zuohua; Zhang, Huayu

    2018-02-01

    Two mesoporous carbon foam (MCF) with nitrogen and oxygen dual doped are fabricated through facile templated hydrothermal process. One using fumed silica as single template is named S-MCF, and another using fumed silica and Pluronic F127 as double templates is named D-MCF. When using Pluronic F127 as an auxiliary template, the D-MCF shows different porous architecture and surface chemical nature from S-MCF, thus they behave differently as cathode materials in Li-O2 batteries. The D-MCF electrode exhibits a slight lower discharge capacity and an increased overpotential than that of S-SCF due to the decreased surface area and oxygen content. However, a better cycle stability was proved for the D-MCF electrode because of its higher nitrogen and lower oxygen content. When further composited with RuO2 nanoparticles, the RuO2/D-MCF cathode can operate 160 cycles with capacity cutoff of 500 mAh g-1, and this prolonged cycle life, compared to the 102 cycles of S-MCF cathode, verifies the superior electrochemical stability of D-MCF further and illuminates the crucial role of carbon substrate in the cathodes of Li-O2 batteries.

  6. Benthic foraminiferal paleoecology and depositional patterns during the Albian at DSDP Site 327 (Falkland Plateau)

    NASA Astrophysics Data System (ADS)

    Lopes, Fernando M.; Koutsoukos, Eduardo A. M.; Kochhann, Karlos G. D.; Savian, Jairo F.; Fauth, Gerson

    2017-10-01

    The present paleoenvironmental study uses a spectrum of analytical methods, such as benthic foraminiferal assemblages, total organic carbon (TOC), calcium carbonate (CaCO3) contents and magnetic susceptibility (MS), to monitor variations in primary productivity, bottom-water oxygenation and depositional patterns within the Albian interval recovered at DSDP Site 327, Hole A, Falkland Plateau. Thirty-three benthic foraminiferal species were identified in the studied section and, based on the abundances of morphogroups (epifaunal and shallow infaunal), two distinct associations were identified. Stratigraphic intervals dominated by the epifaunal morphogroup can be interpreted as indicative of bottom-waters with low-oxygen content. However, these decreases in oxygenation were not vigorous enough to establish a dominance of deep-infaunal morphotypes, as supported by the low TOC values. Intervals dominated by the shallow infaunal morphogroup were interpreted as subjected to moderate to high nutrient flux to the ocean floor. These intervals are associated with high MS values and low CaCO3 content, suggesting that dissolution processes, rather than increased primary productivity, controlled CaCO3 accumulation in the studied section. Furthermore, faunal analysis points to deposition in an outer neritic to upper bathyal paleoenvironment.

  7. A New Pyrometallurgical Process for Producing Antimony White from By-Product of Lead Smelting

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Yang, Tianzu; Zhang, Duchao; Chen, Lin; Liu, Yunfeng

    2014-09-01

    Antimonial dust is a by-product of lead smelting and an important material for extracting antimony. A new pyrometallurgical process for producing antimony white from the antimonial dust is reported. The process mainly consists of three steps, which are reduction smelting, alkaline refining, and blowing oxidation. First, the reduction smelting of antimonial dust is carried out in an oxygen-rich bottom blow furnace to enrich antimony and lead in the crude alloy. The antimony and lead contents in the slag can thus be reduced to 2.8 wt.% and 0.1 wt.%, respectively. Second, the conventional method of alkaline refining is adopted to remove arsenic from the crude alloy, and arsenic content in the low-arsenic alloy could be decreased to 0.009 wt.%. Finally, the low-arsenic alloy is oxidized in a special oxidizing pan at 650°C by blowing compressed air or oxygen-rich air on the surface, during which qualified antimony white can be produced and collected in a bag house. The oxygen concentration and antimony content in the bottom alloy have a significant impact on production efficiency and product quality during blowing oxidation.

  8. Variability in magnesium, carbon and oxygen isotope compositions, and trace element contents of brachiopod shells: implications for paleoceanographic studies

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe

    2016-04-01

    Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best explained by kinetic effects linked to changes in growth rate during the brachiopod life. The innermost calcite layer of T. transversa is in isotopic equilibrium for both oxygen and magnesium and could therefore be the best target for reconstructing past δ26Mg values of seawater.

  9. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  10. New Insights into How Increases in Fertility Improve the Growth of Rice at the Seedling Stage in Red Soil Regions of Subtropical China

    PubMed Central

    Li, Yilin; Shi, Weiming; Wang, Xingxiang

    2014-01-01

    The differences in rhizosphere nitrification activities between high- and low- fertility soils appear to be related to differences in dissolved oxygen concentrations in the soil, implying a relationship to differences in the radial oxygen loss (ROL) of rice roots in these soils. A miniaturised Clark-type oxygen microelectrode system was used to determine rice root ROL and the rhizosphere oxygen profile, and rhizosphere nitrification activity was studied using a short-term nitrification activity assay. Rice planting significantly altered the oxygen cycling in the water-soil system due to rice root ROL. Although the oxygen content in control high-fertility soil (without rice plants) was lower than that in control low-fertility soil, high rice root ROL significantly improved the rhizosphere oxygen concentration in the high-fertility soil. High soil fertility improved the rice root growth and root porosity as well as rice root ROL, resulting in enhanced rhizosphere nitrification. High fertility also increased the content of nitrification-induced nitrate in the rhizosphere, resulting in enhanced ammonium uptake and assimilation in the rice. Although high ammonium pools in the high-fertility soil increased rhizosphere nitrification, rice root ROL might also contribute to rhizosphere nitrification improvement. This study provides new insights into the reasons that an increase in soil fertility may enhance the growth of rice. Our results suggest that an amendment of the fertiliser used in nutrient- and nitrification-poor paddy soils in the red soil regions of China may significantly promote rice growth and rice N nutrition. PMID:25291182

  11. Noninvasive oxygen monitoring techniques.

    PubMed

    Wahr, J A; Tremper, K K

    1995-01-01

    As this article demonstrates, tremendous progress has been made in the techniques of oxygen measurement and monitoring over the past 50 years. From the early developments during and after World War II, to the most recent applications of solid state and microprocessor technology today, every patient in a critical care situation will have several continuous measurements of oxygenation applied simultaneously. Information therefore is available readily to alert personnel of acute problems and to guide appropriate therapy. The majority of effort to date has been placed on measuring oxygenation of arterial or venous blood. The next generation of devices will attempt to provide information about living tissue. Unlike the devices monitoring arterial or venous oxygen content, no "gold standards" exist for tissue oxygenation, so calibration will be difficult, as will interpretation of the data provided. The application of these devices ultimately may lead to a much better understanding of how disease (and the treatment of disease) alters the utilization of oxygen by the tissues.

  12. Selected papers in the hydrologic sciences 1984; July 1984

    USGS Publications Warehouse

    Meyer, Eric L.

    1984-01-01

    The rapid, accurate measurement of the oxygen content of soil gas in the unsaturated zone or dissolved oxygen in soil water in the saturated zone can be useful in wetland vegetation studies. A method has been devised and tested in the Great Dismal Swamp, a wetland with fine silt-clay and organic soils, that appears to provide good results. A 60-milliliter sample of soil gas or water is withdrawn from permanently installed chambers at various depths in the soil profile. The oxygen concentration of air samples is measured with a specially constructed analyzer cell fitted to the polarographic oxygen electrode of a portable oxygen meter. The dissolved oxygen concentration of water samples is measured directly with the oxygen electrode while stirring the sample in a 32-milliliter glass bottle with a portable magnetic stirrer. Field tests with duplicate chamber installations showed that consistent results are obtained for soil gas and water.

  13. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles.

    PubMed

    McKenna, D R; Mies, P D; Baird, B E; Pfeiffer, K D; Ellebracht, J W; Savell, J W

    2005-08-01

    Steaks from muscles (n=19 from nine beef carcasses) were evaluated over the course of retail display (0-, 1-, 2-, 3-, 4- or 5-d) for objective measures of discoloration (metmyoglobin, oxymyoglobin, L*-, a*-, and b*-values), reducing ability (metmyoglobin reductase activity (MRA), resistance to induced metmyoglobin formation (RIMF), and nitric oxide metmyoglobin reducing ability (NORA)), oxygen consumption rate (OCR), oxygen penetration depth, myoglobin content, oxidative rancidity, and pH. Muscles were grouped according to objective color measures of discoloration. M. longissimus lumborum, M. longissimus thoracis, M. semitendinosus, and M. tensor fasciae latae were grouped as "high" color stability muscles, M. semimembranosus, M. rectus femoris, and M. vastus lateralis were grouped as "moderate" color stability muscles, M. trapezius, M. gluteus medius, and M. latissimus dorsi were grouped as "intermediate" color stability muscles, M. triceps brachi - long head, M. biceps femoris, M. pectoralis profundus, M. adductor, M. triceps brachi - lateral head, and M. serratus ventralis were grouped as "low" color stability muscles, and M. supraspinatus, M. infraspinatus, and M. psoas major were grouped as "very low" color stability muscles. Generally, muscles of high color stability had high RIMF, nitric oxide reducing ability, and oxygen penetration depth and possessed low OCRs, myoglobin content, and oxidative rancidity. In contrast, muscles of low color stability had high MRA, OCRs, myoglobin content, and oxidative rancidity and low RIMF, NORA, and oxygen penetration depth. Data indicate that discoloration differences between muscles are related to the amount of reducing activity relative to the OCR.

  14. Theoretical investigation on the magnetization enhancement of Fe3O4-reduced graphene oxide nanoparticle system

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Wicaksono, Y.; Fauzi, A. D.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We present a theoretical study on the enhancement of magnetization of Fe3O4 nanoparticle system upon addition of reduced graphene oxide (rGO). Experimental data have shown that the magnetization of Fe3O4-rGO nanoparticle system increases with increasing rGO content up to about 5 wt%, but decreases back as the rGO content increases further. We propose that the enhancement is due to spin-flipping of Fe ions at the tetrahedral sites assisted by oxygen vacancies at the Fe3O4 particle boundaries. These oxygen vacancies are induced by the presence of rGO flakes that adsorb oxygen atoms from Fe3O4 particles around them. To understand the enhancement of the magnetization, we construct a tight-binding based model Hamiltonian for the Fe3O4 nanoparticle system with the concentration of oxygen vacancies being controlled by the rGO content. We calculate the magnetization as a function of the applied magnetic field for various values of rGO wt%. We use the method of dynamical mean-field theory and perform the calculations for a room temperature. Our result for rGO wt% dependence of the saturated magnetization shows a very good agreement with the existing experimental data of the Fe3O4-rGO nanoparticle system. This result may confirm that our model already carries the most essential idea needed to explain the above phenomenon of magnetization enhancement.

  15. Investigation of Structural Re-ordering of Hydrogen Bonds in LiNbO3:Mg Crystals Around the Threshold Concentration of Magnesium

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Teplyakova, N. A.; Palatnikov, M. N.; Bobreva, L. A.

    2017-09-01

    Crystals of LiNbO3congr and LiNbO3:Mg (0.19-5.91 mole %) were studied by IR and Raman spectroscopy. It was found that the intensities of the bands corresponding to the stretching vibrations of the OH groups in the IR spectra of LiNbO3:Mg crystals change and components of the bands disappear with increase of the Mg content. This was explained by disappearance of the OH groups close to {Nb}_{Li}^{4+}-{V}_{Li}- defects as a result of displacement of NbLi defects by Mg cations. In the Raman spectra of the LiNbO3:Mg (5.1 mole %) compared with the congruent crystal the lines corresponding to the vibrations of oxygen atoms in the oxygen octahedra and the stretching bridge vibrations of the oxygen atoms along the polar axis become broader, and new low-intensity lines that may correspond to pseudoscalar vibrations of A2-type symmetry also appear. The broadening of the lines is due to deformation of the oxygen octahedra caused both by increase of the Mg content in the crystal structure and by change in the localization of the protons. Suppression of the photorefraction effect in the LiNbO3:Mg crystals with Mg contents above the threshold level can be explained by change in the localization of the protons in the structure and by screening of the space charge field.

  16. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, Jack R.

    Catalytic hydroprocessing of pyrolysis oils from biomass produces hydrocarbons that can be considered for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. A comprehensive understanding of product oils is useful to optimize cost versus degree of deoxygenation. Additionally, a better understanding of the chemical composition of the distillate fractions can open up other uses of upgraded oils for potentially higher-value chemical streams. We present in this paper the characterization data for five well-defined distillate fractions of two hydroprocessed oils withmore » different oxygen levels: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. Elemental analysis and 13C NMR results suggest that the distillate fractions become more aromatic/unsaturated as they become heavier. Our results also show that the use of sulfided catalysts directly affects the S content of the lightest distillate fraction. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. PIONA analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. These results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  17. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... section 2.4 of appendix D of this part. If a daily coal consumption value is not available, substitute the...

  18. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... procedures in section 2.4 of appendix D of this part. If a daily coal consumption value is not available...

  19. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... section 2.4 of appendix D of this part. If a daily coal consumption value is not available, substitute the...

  20. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... section 2.4 of appendix D of this part. If a daily coal consumption value is not available, substitute the...

  1. [Role of erythrocyte cytoplasmic structures in changes in the affinity of haemoglobin for oxygen].

    PubMed

    Bryzgalova, N Iu; Brazhe, N A; Iusipovich, A U; Maksimov, G V; Rubin, A B

    2009-01-01

    Changes in the refractive index of the cytoplasm and the affinity of haemoporphyrin of erythrocyte haemoglobin to oxygen (pH, 2,3-diphosphoglycerate) have been investigated using laser interference microscopy and Raman spectroscopy. It has been established that a decrease in pH and an increase in the content of 2,3-diphosphoglycerate are accompanied by changes in both the form of the cell and the refractive index of the cytoplasm and the affinity of haemoporphyrin of hemoglobin to oxygen. It has been shown that as pH is reduced, the capacity of haemoporphyrin for binding oxygen decreases and as the concentration of 2,3-diphosphoglycerate is increased, the ability of haemoporphyrin for oxygen reabsorption increases.

  2. Hydrology, aquatic macrophytes, and water quality of Black Earth Creek and its tributaries, Dane County, Wisconsin, 1985-86

    USGS Publications Warehouse

    Field, S.J.; Graczyk, D.J.

    1990-01-01

    An increase in oxygen demand, caused by agricultural runoff, has resulted in reduced dissolved-oxygen content of the water in both Black Earth and Garfoot Creeks. The most substantial reduction occurred at Black Earth Creek at Cross Plains on July 25, 1985, as a result of the largest storm runoff event during the study. A rainfall of 5.54 inches caused streamflow discharges to increase from 9 to 122 ft3/s and dissolved-oxygen concentrations to decline to 3.0 mg/L; the dissolved-oxygen concentration was less than 6.0 mg/L for 30 hours.

  3. Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim

    1993-01-01

    The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.

  4. 40 CFR 503.33 - Vector attraction reduction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...

  5. 40 CFR 503.33 - Vector attraction reduction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...

  6. 40 CFR 503.33 - Vector attraction reduction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...

  7. 40 CFR 503.33 - Vector attraction reduction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...

  8. 40 CFR 503.33 - Vector attraction reduction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... less than 15 percent, vector attraction reduction is achieved. (4) The specific oxygen uptake rate... shall be equal to or greater than 75 percent based on the moisture content and total solids prior to... the moisture content and total solids prior to mixing with other materials. (9)(i) Sewage sludge shall...

  9. Enhancing perovskite electrocatalysis through strain tuning of oxygen deficiency

    DOE PAGES

    Barron, Sara C.; Lee, Ho Nyung; Petrie, Jonathan R.; ...

    2016-05-27

    Oxygen vacancies in transition-metal oxides facilitate catalysis critical for energy storage and generation. However, promoting vacancies at the lower temperatures required for operation in devices such as metal–air batteries and portable fuel cells has proven elusive. Here we used thin films of perovskite-based strontium cobaltite (SrCoO x) to show that epitaxial strain is a powerful tool for manipulating the oxygen content under conditions consistent with the oxygen evolution reaction, yielding increasingly oxygen-deficient states in an environment where the cobaltite would normally be fully oxidized. The additional oxygen vacancies created through tensile strain enhance the cobaltite’s catalytic activity toward this importantmore » reaction by over an order of magnitude, equaling that of precious-metal catalysts, including IrO2. Lastly, our findings demonstrate that strain in these oxides can dictate the oxygen stoichiometry independent of ambient conditions, allowing unprecedented control over oxygen vacancies essential in catalysis near room temperature.« less

  10. Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing

    PubMed Central

    Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei

    2017-01-01

    This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244

  11. Correlation of serum unconjugated oestriol to red cell 2,3-diphosphoglycerate levels in diabetic pregnancy.

    PubMed

    Madsen, H; Ditzel, J

    1983-03-01

    In order to evaluate the possible underlying factors for the increase in red cell 2,3-diphosphoglycerate content observed in late diabetic pregnancy, its relationship with serum unconjugated oestriol, human placental lactogen, haemoglobin and hydrogen ion concentrations was investigated in 42 pregnant diabetic women. A significant correlation was found between red cell 2,3-diphosphoglycerate and serum unconjugated oestriol (r = 0.54, p less than 0.001), whereas no correlation was present between 2,3-diphosphoglycerate and the following variables: arterial pH, haemoglobin concentration and human placental lactogen. The content of 2,3-diphosphoglycerate correlated significantly with haemoglobin-oxygen affinity expressed as P50 at pH 7.4 (r = 0.34, p less than 0.05). The results of this study indicate that serum unconjugated oestriol may participate in the regulation of red cell 2,3-diphosphoglycerate content and thereby of the maternal blood oxygen release to the fetus.

  12. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  13. [Effects of cadmium stress on fatty acid composition and lipid peroxidation of Malus hupehensis].

    PubMed

    You, Shu-Zhen; Yang, Hong-Qiang; Zhang, Long; Shao, Xiao-Jie

    2009-08-01

    This paper studied the fatty acid composition, reactive oxygen species (ROS), lipoxygenase (LOX) activity, and malondialdehyde (MDA) content in the leaves and roots of Malus hupehensis seedlings under effects of cadmium (Cd) stress. Noticeable changes were observed in the kinds and relative contents of fatty acids after treated with CdCl2 for 7-12 hours. The relative contents of unsaturated fatty acids in leaves and roots reached the maximum after treated for 7 hours, being 82. 82% and 72. 43% , respectively. The kinds of fatty acids in leaves increased from 11 to 14 after treated for 12 hours, while those in roots increased from 4 to 6 after treated for 17 hours. The O2* generation rate and the H2O2 content reached the maximum after treated for 3 and 7 hours, respectively, and the MDA content and LOX activity increased with treating time. Cd stress altered the fatty acid composition of Malus hupehensis via the inducement of reactive oxygen species and lipoxygenase, and induced lipid peroxidation, which was caused by both ROS and LOX within the first 12 hours of CdCl2 treatment and mainly by the increase of LOX activity since then.

  14. Studies of protein oxidation as a product quality attribute on a scale-down model for cell culture process development.

    PubMed

    Lee, Nacole D; Kondragunta, Bhargavi; Uplekar, Shaunak; Vallejos, Jose; Moreira, Antonio; Rao, Govind

    2015-01-01

    Of importance to the biological properties of proteins produced in cell culture systems are the complex post-translational modifications that are affected by variations in process conditions. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by such process variations. Dissolved oxygen is a parameter of increasing interest since studies have shown that despite the necessity of oxygen for respiration, there may also be some detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components. Variation, or changes to cell culture products, can affect function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Relative protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by variations in dissolved oxygen levels in cell culture systems. Studies have shown that despite the necessity of oxygen for respiration, there may be detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components, affecting function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. © PDA, Inc. 2015.

  15. Precision of NO2 photolysis rate measurements

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1980-01-01

    Gas-phase kinetic calculations indicate that actinometric measurements of the rate of solar photolysis of NO2 in nitrogen can be in error by +5 to -15% or more, unless odd oxygen N2O5 chemistry, and trace oxygen content are considered. A field experiment confirms that the effect of the quartz tube on the measured photolysis rate is less than 1.7%.

  16. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... has been treated to remove hydrogen sulfide-producing contaminants and the efficiency of such... drained, rinsed and tested for hydrogen sulfide and oxygen deficiency. Employees shall not enter the tank when the hydrogen sulfide level exceeds 20 ppm or oxygen content is less than 19.5 percent, except in...

  17. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... has been treated to remove hydrogen sulfide-producing contaminants and the efficiency of such... drained, rinsed and tested for hydrogen sulfide and oxygen deficiency. Employees shall not enter the tank when the hydrogen sulfide level exceeds 20 ppm or oxygen content is less than 19.5 percent, except in...

  18. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... has been treated to remove hydrogen sulfide-producing contaminants and the efficiency of such... drained, rinsed and tested for hydrogen sulfide and oxygen deficiency. Employees shall not enter the tank when the hydrogen sulfide level exceeds 20 ppm or oxygen content is less than 19.5 percent, except in...

  19. 29 CFR 1917.73 - Terminal facilities handling menhaden and similar species of fish (see also § 1917.2, definition...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... has been treated to remove hydrogen sulfide-producing contaminants and the efficiency of such... drained, rinsed and tested for hydrogen sulfide and oxygen deficiency. Employees shall not enter the tank when the hydrogen sulfide level exceeds 20 ppm or oxygen content is less than 19.5 percent, except in...

  20. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Treesearch

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  1. The gut microenvironment of sediment-dwelling Chironomus plumosus larvae as characterised with O2, pH, and redox microsensors.

    PubMed

    Stief, Peter; Eller, Gundula

    2006-09-01

    We devised a set-up in which microsensors can be used for characterising the gut microenvironment of aquatic macrofauna. In a small flow cell, we measured microscale gradients through dissected guts (O(2), pH, redox potential [E ( h )]), in the haemolymph (O(2)), and towards the body surface (O(2)) of Chironomus plumosus larvae. The gut microenvironment was compared with the chemical conditions in the lake sediment in which the animals reside and feed. When the dissected guts were incubated at the same nominal O(2) concentration as in haemolymph, the gut content was completely anoxic and had pH and E ( h ) values slightly lower than in the ambient sediment. When the dissected guts were artificially oxygenated, the volumetric O(2)-consumption rates of the gut content were at least 10x higher than in the sediment. Using these potential O(2)-consumption rates in a cylindrical diffusion-reaction model, it was predicted that diffusion of O(2) from the haemolymph to the gut could not oxygenate the gut content under in vivo conditions. Additionally, the potential O(2)-consumption rates were so high that the intake of dissolved O(2) along with feeding could be ruled out to oxygenate the gut content. We conclude that microorganisms present in the gut of C. plumosus cannot exhibit an aerobic metabolism. The presented microsensor technique and the data analysis are applicable to guts of other macrofauna species with cutaneous respiration.

  2. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  3. Measurement of OH Radicals in Pulsed Corona and Pulsed Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Oda, Tetsuji

    OH radicals are measured in a pulsed corona or a pulsed dielectric barrier discharge (DBD) using laserinduced fluorescence (LIF) method. The pulsed discharges occur in nitrogen-oxygen mixture with 2.4% water vapor at atmospheric pressure. The pulse width is 100ns and the peak voltage is 35kV. The electrode configuration is a needle to plate electrode with 16-mm gap for corona discharge, and with 5-mm gap for DBD where the barrier is 2mm thick glass plate. It is shown that OH density is approximately proportional to the energy consumed by the discharge. The OH density per the discharge energy is about 2-4×1014cm-3/mJ for both discharges in H2O(2.4%)/N2 mixture. It is shown that OH density increases with oxygen content in DBD, whereas OH density reaches a maximum at 3% oxygen content in corona discharge. The existence of oxygen accelerates OH decay rate in both discharges. A trace amount of trichloroethylene (TCE) is added to the ambient gas. It is shown that the addition of 100ppm TCE to corona discharge reduces discharge current by about 50%. That leads to decrease of OH production.

  4. Fabricating niobium test loops for the SP-100 space reactor

    NASA Technical Reports Server (NTRS)

    Bryhan, Anthony J.; Chan, Ricky C.

    1993-01-01

    This article describes the successful fabrication, operation, and evaluation of a series of niobium-alloy (Nb-1 Zr and PWC-11) thermal convection loops designed to contain and circulate molten lithium at 1,350 K. These loops were used to establish the fabrication variables of significance for a nuclear power supply for space. Approximately 200 weldments were evaluated for their tendency to be attacked by lithium as a function of varying atmospheric contamination. No attack occurred for any weldment free of contamination, with or without heat treatment, and no welds accidentally deviated from purity. The threshold oxygen content for weldment attack was determined to be 170-200 ppm. Attack varied directly with weldment oxygen and nitrogen contents.

  5. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  6. Catalytic biomass pyrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  7. Emerging climate change signals in the interior ocean oxygen content

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry; Goris, Nadine; Schwinger, Jörg; Lauvset, Siv

    2017-04-01

    Earth System Models (ESMs) indicate that human-induced climate change will introduce spatially heterogeneous modifications of dissolved oxygen in the North Atlantic. In the upper ocean, an increase (decrease) is predicted at low (high) latitude. Oxygen increase is driven by a reduction of the oxygen consumption for biological remineralization while warming-induced reduction in air-sea fluxes and increase in remineralization due to weaker overturning circulation lead to the projected decrease. In the interior ocean, modifications in the apparent oxygen utilization (AOU) dominate the overall oxygen changes. Moreover, for the southern subpolar gyre, both observations and model hindcast indicate a close relationship between interior ocean oxygen and the subpolar gyre index. Over the 21st century, all ESMs consistently project a steady weakening of this index and consequently the oxygen. Our finding shows that climate change-induced oxygen depletion in the interior has likely occurred and can already be detected. Nevertheless, considering the observational uncertainties, we show that in the proximity of southern subpolar gyre the projected interior trend is sufficiently large enough for early detection.

  8. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    PubMed

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Moessbauer spectroscopy analysis of {sup 57}Fe-doped YBaCo{sub 4}O{sub 7+{delta}}: Effects of oxygen intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipis, E.V.; Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro; Waerenborgh, J.C.

    2009-03-15

    Moessbauer spectroscopy of layered YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7+{delta}} ({delta}=0.02 and 0.80), where 1% cobalt is substituted with {sup 57}Fe isotope, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. The extremely slow kinetics of isothermal oxidation at 598 K in air, and the changes of Fe{sup 3+} fractions in the alternating triangular and Kagome layers in oxidized YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7.80}, may suggest that oxygen intercalation is accompanied with a substantial structural reconstruction stagnated due to sluggish cation diffusion.more » Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen. The formation of metal-oxygen octahedra and resultant structural distortions extend the temperature range where the paramagnetic and frozen states co-exist, down to 45-50 K. - Graphical abstract: Moessbauer spectroscopy of layered YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7+{delta}} ({delta}=0.02 and 0.80), with 1% {sup 57}Fe isotope substituted for cobalt, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen extending the temperature range where the paramagnetic and frozen states co-exist down to 45-50 K.« less

  10. [XPS analysis of beads formed by fuse breaking of electric copper wire].

    PubMed

    Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man

    2010-05-01

    The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.

  11. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013

    PubMed Central

    Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-01-01

    Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785

  12. The effects of ultraviolet light on the degradation of organic compounds: a possible explanation for the absence of organic matter on Mars.

    PubMed

    Oro, J; Holzer, G

    1979-01-01

    The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. Its disappearance from the top layer could be caused by degradation processes on the surface of the planet. Possible destructive agents include ultraviolet light, oxygen and metal oxides. In this study we tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given period of irradiation. A definite degradation was noticed in the case of naphthalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.

  13. Supercritical CO2 Extraction of Lavandula angustifolia Mill. Flowers: Optimisation of Oxygenated Monoterpenes, Coumarin and Herniarin Content.

    PubMed

    Jerković, Igor; Molnar, Maja; Vidović, Senka; Vladić, Jelena; Jokić, Stela

    2017-11-01

    Lavandula angustifolia is good source of oxygenated monoterpenes containing coumarins as well, which are all soluble in supercritical CO 2 (SC-CO 2 ). The study objective is to investigate SC-CO 2 extraction parameters on: the total yield; GC-MS profile of the extracts; relative content of oxygenated monoterpenes; the amount of coumarin and herniarin; and to determine optimal SC-CO 2 extraction conditions by response surface methodology (RSM). SC-CO 2 extraction was performed under different pressure, temperature and CO 2 flow rate determined by Box-Behnken design (BBD). The sample mass and the extraction time were kept constant. The chemical profiles and relative content of oxygenated monoterpenes (as coumarin equivalents, CE) were determined by GC-MS. Coumarin and herniarin concentrations were dosed by HPLC. SC-CO 2 extracts contained linalool (57.4-217.9 mg CE/100 g), camphor (10.6-154.4 mg CE/100 g), borneol (6.2-99.9 mg CE/100 g), 1,8-cineole (5.0-70.4 mg CE/100 g), linalyl acetate (86.1-267.9 mg CE/100 g), coumarin (0.95-18.16 mg/100 g), and herniarin (0.95-13.63 mg/100 g). The interaction between the pressure and CO 2 flow rate as well as between the temperature and CO 2 flow rate showed statistically significant influence on the extraction yield. Applying BBD, the optimum extraction conditions for higher monoterpenes and lower coumarin content were at 10 MPa, 41°C and CO 2 flow rate 2.3 kg/h, and at 30 MPa, 50°C and CO 2 flow rate 3 kg/h for higher monoterpenes and coumarin content. SC-CO 2 extraction is a viable technique for obtaining lavender extracts with desirable flavour components. The second-order model based on BBD predicts the results for SC-CO 2 extraction quite satisfactorily. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains.

    PubMed

    Benech-Arnold, Roberto L; Gualano, Nicolas; Leymarie, Juliette; Côme, Daniel; Corbineau, Françoise

    2006-01-01

    Two mechanisms have been suggested as being responsible for dormancy in barley grain: (i) ABA in the embryo, and (ii) limitation of oxygen supply to the embryo by oxygen fixation as a result of the oxidation of phenolic compounds in the glumellae. The aim of the present work was to investigate whether hypoxia imposed by the glumellae interferes with ABA metabolism in the embryo, thus resulting in dormancy. In dormant and non-dormant grains incubated at 20 degrees C and in non-dormant grains incubated at 30 degrees C (i.e. when dormancy is not expressed), ABA content in the embryo decreased dramatically during the first 5 h of incubation before germination was detected. By contrast, germination of dormant grains was less than 2% within 48 h at 30 degrees C and embryo ABA content increased during the first hours of incubation and then remained 2-4 times higher than in embryos from grains in which dormancy was not expressed. Removal of the glumellae allowed germination of dormant grains at 30 degrees C and the embryos did not display the initial increase in ABA content. Incubation of de-hulled grains under 5% oxygen to mimic the effect of glumellae, restored the initial increase ABA in content and completely inhibited germination. Incubation of embryos isolated from dormant grains, in the presence of a wide range of ABA concentrations and under various oxygen tensions, revealed that hypoxia increased embryo sensitivity to ABA by 2-fold. This effect was more pronounced at 30 degrees C than at 20 degrees C. Furthermore, when embryos from dormant grains were incubated at 30 degrees C in the presence of 10 microM ABA, their endogenous ABA content remained constant after 48 h of incubation under air, while it increased dramatically in embryos incubated under hypoxia, indicating that the apparent increase in embryo ABA responsiveness induced by hypoxia was, in part, mediated by an inability of the embryo to inactivate ABA. Taken together these results suggest that hypoxia, either imposed artificially or by the glumellae, increases embryo sensitivity to ABA and interferes with ABA metabolism.

  15. Effects of Extrinsic and Intrinsic Proton Activity on The Mechanism of Oxygen Reduction in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Zeller, Robert August

    Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2 *-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm + cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.

  16. Method for Trace Oxygen Detection

    NASA Technical Reports Server (NTRS)

    Man, Kim Fung (Inventor); Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)

    1997-01-01

    Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.

  17. Thermodynamic evaluation of oxygen behavior in Ti powder deoxidized by Ca reductant

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Joong; Oh, Jung-Min; Lim, Jae-Won

    2016-07-01

    To produce low oxygen Ti powder of less than 1000 mass ppm, commercial Ti powder was deoxidized by two types of Ca reductants: a solid Ca and a Ca vapor. Compared with the iso-oxygen partial pressure in the Ti-O binary phase diagram, the PO2 in the raw Ti powder increased with temperature compared to the reduction reaction of Ca. Therefore, the O2 content in the Ti powder decreased as the deoxidation temperature increased from 873 K, showing a local minima at 1273 K. The oxygen concentration at 1373 K was greater than that at 1273 K because the oxygen solubility of the Ti powder was increased by the equilibrium relation between Ca and CaO. On the basis of the thermodynamic assessment, the deoxidation of Ti powder can be improved by increasing the temperature and lowering the oxygen solubility with the saturation of CaO.

  18. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  19. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  20. Singlet delta oxygen generation for Chemical Oxygen-Iodine Lasers

    NASA Astrophysics Data System (ADS)

    Georges, E.; Mouthon, A.; Barraud, R.

    1991-10-01

    The development of Chemical Oxygen-Iodine Lasers is based on the generation of singlet delta oxygen. To improve the overall efficiency of these lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. Furthermore, the water vapor content must be as low as possible. A generator model, based on gas-liquid reaction and liquid-vapor equilibrium theories associated with thermophysical evaluations is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure. A theoretical analysis of these experimental results and their consequences for both subsonic and supersonic lasers are presented.

  1. Effect of Ce2O3, La2O3 and ZnO additives on the oxygenates conversion into liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.

    2018-01-01

    A selective modifying effect of cerium, magnesium and zinc oxide additives on the activity and the selectivity of a pentasil group zeolite catalyst in the reaction of conversion of oxygenates (methanol and dimethyl ether) to liquid hydrocarbons was found. It was found that zinc oxide contributes to the stable operation of the zeolite catalyst in the conversion of oxygenates in the synthesis gas stream and leads to the production of gasolines with low durene content (not more than 6.1 wt%). The obtained results demonstrate the rationale for producing hydrocarbons from synthesis gas without the stage of oxygenate separation with their subsequent conversion to synthetic gasoline.

  2. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-09-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.

  3. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications.

    PubMed

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-25

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  4. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

    NASA Astrophysics Data System (ADS)

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-01

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  5. Non-uniform solute segregation at semi-coherent metal/oxide interfaces

    DOE PAGES

    Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; ...

    2015-08-26

    The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure atmore » metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. As a result, fundamental thermodynamic concepts – the Hume-Rothery rules and the Ellingham diagram – qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.« less

  6. Effect of Growth Conditions and Trehalose Content on Cryotolerance of Bakers' Yeast in Frozen Doughs

    PubMed Central

    Gélinas, Pierre; Fiset, Gisèle; LeDuy, Anh; Goulet, Jacques

    1989-01-01

    The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium. PMID:16348024

  7. Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Gu, Junxing; He, Qian; Zhang, Kelvin H. L.; Wang, Chunchang; Jin, Kuijuan; Wang, Yongqiang; Acosta, Matias; Wang, Haiyan; Borisevich, Albina Y.; MacManus-Driscoll, Judith L.; Yang, Hao

    2018-04-01

    Dielectric relaxation in ABO3 perovskite oxides can result from many different charge carrier-related phenomena. Despite a strong understanding of dielectric relaxations, a detailed investigation of the relationship between the content of oxygen vacancies (VO) and dielectric relaxation has not been performed in perovskite oxide films. In this work, we report a systematic investigation of the influence of the VO concentration on the dielectric relaxation of Eu0.5Ba0.5TiO3-δ epitaxial thin films. Nuclear resonance backscattering spectrometry was used to directly measure the oxygen concentration in Eu0.5Ba0.5TiO3-δ films. We found that dipolar defects created by VO interact with the off-centered Ti ions, which results in the dielectric relaxation in Eu0.5Ba0.5TiO3-δ films. Activation energy gradually increases with the increasing content of VO. The present work significantly extends our understanding of relaxation properties in oxide films.

  8. The oxygen and carbon dioxide balance in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  9. Transparent conducting thin films for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  10. Transparent conducting thin films for spacecraft applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found thatmore » in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.« less

  11. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  12. Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals.

    PubMed

    Cooper, Chris E; Penfold, Stacey-Marie; Elwell, Clare E; Angus, Caroline

    2010-01-01

    Adipose content in the region over the vastus lateralis muscle was measured in a young (21.1 +/- 3.1 years old, mean +/- SD) population of males (n = 62) and females (n = 28). Three techniques were used: skinfold thickness, ultrasound and near infrared spectroscopy. All techniques closely correlated with each other and all showed a significantly larger adipose content in females and a limited overlap with the range of values in males. Spatially resolved near infrared spectroscopy (SRS-NIRS) was then used to measure the tissue oxygenation index (TOI) at the same site. A source-detector separation of 4 cm was used to allow for significant light penetration into muscle tissue. TOI at rest was significantly higher in the female (65.3 +/- 7.0, mean +/- SD) than the male (61.9 +/- 5.1, mean +/- SD) group. There was a strong positive correlation between adipose content and TOI in male subjects. However, no correlation was seen in the female group. The possible optical and physiological explanations for these results are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twu, Nancy; Metzger, Michael; Balasubramanian, Mahalingam

    Here, the lithium-excess Li xNi 2-4x/3Sb x/3O 2 (LNSO) materials were previously shown to demonstrate higher capacities and improved cyclability with increasing lithium content. While the performance trend is promising, observed capacities are much lower than theoretical capacities, pointing to a need for further understanding of active redox processes in these materials. In this work, we study the electrochemical behavior of the LNSO materials as a function of lithium content and at slow and fast rates. Surprisingly, Li 1.15Ni 0.47Sb 0.38O 2 (LNSO-15) exhibits higher discharge capacities at faster rates and traverses distinct voltage curves at slow and fast rates.more » To understand these two peculiarities, we characterize the redox activity of nickel, antimony, and oxygen at different rates. While experiments confirm some nickel redox activity and oxygen loss, these two mechanisms cannot account for all observed capacity. We propose that the balance of the observed capacity may be due reversible oxygen redox and that the rate-dependent voltage curve features may derive from irreversible nickel migration occurring on slow charge. As future high energy density cathodes are likely to contain both lithium excess and high nickel content, both of these findings have important implications for the development of novel high capacity cathode materials.« less

  14. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  15. The hematocrit paradox--how does blood doping really work?

    PubMed

    Böning, D; Maassen, N; Pries, A

    2011-04-01

    The wide-spread assumption that doping with erythropoietin or blood transfusion is only effective by increasing arterial blood O2 content because of rising hematocrit is not self-evident. "Natural blood dopers" (horses, dogs) increase both hematocrit and circulating blood volume during exercise by releasing stored erythrocytes from the spleen. Improvement of aerobic performance by augmenting hemoglobin concentration may be expected until the optimal hematocrit is reached; above this value maximal cardiac output declines due to the steep increase of blood viscosity. Therefore an enlarged blood oxygen content might only be useful if the normal hematocrit of man during exercise is suboptimal. However, recent studies suggest that cardiac power rises after erythropoietin allowing an unchanged cardiac output in spite of increased viscosity. Other factors underlying improved performance after blood doping might be: augmented diffusion capacity for oxygen in lungs and tissues, increased percentage of young red cells with good functional properties (after erythropoietin), increased buffer capacity, increase of blood volume, vasoconstriction, reduced damage by radicals, mood improvement by cerebral effects of erythropoietin. Also the importance of placebo is unknown since double-blind studies are rare. It is suggested that blood doping has multifactorial effects not restricted to the increase in arterial oxygen content. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Molecular simulation and experimental validation of resorcinol adsorption on Ordered Mesoporous Carbon (OMC).

    PubMed

    Ahmad, Zaki Uddin; Chao, Bing; Konggidinata, Mas Iwan; Lian, Qiyu; Zappi, Mark E; Gang, Daniel Dianchen

    2018-04-27

    Numerous research works have been devoted in the adsorption area using experimental approaches. All these approaches are based on trial and error process and extremely time consuming. Molecular simulation technique is a new tool that can be used to design and predict the performance of an adsorbent. This research proposed a simulation technique that can greatly reduce the time in designing the adsorbent. In this study, a new Rhombic ordered mesoporous carbon (OMC) model is proposed and constructed with various pore sizes and oxygen contents using Materials Visualizer Module to optimize the structure of OMC for resorcinol adsorption. The specific surface area, pore volume, small angle X-ray diffraction pattern, and resorcinol adsorption capacity were calculated by Forcite and Sorption module in Materials Studio Package. The simulation results were validated experimentally through synthesizing OMC with different pore sizes and oxygen contents prepared via hard template method employing SBA-15 silica scaffold. Boric acid was used as the pore expanding reagent to synthesize OMC with different pore sizes (from 4.6 to 11.3 nm) and varying oxygen contents (from 11.9% to 17.8%). Based on the simulation and experimental validation, the optimal pore size was found to be 6 nm for maximum adsorption of resorcinol. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Delayed cutaneous wound healing in aged rats compared to younger ones.

    PubMed

    Soybir, Onur C; Gürdal, Sibel Ö; Oran, Ebru Ş; Tülübaş, Feti; Yüksel, Meral; Akyıldız, Ayşenur İ; Bilir, Ayhan; Soybir, Gürsel R

    2012-10-01

    Delayed wound healing in elderly males is a complex process in which the factors responsible are not fully understood. This study investigated the hormonal, oxidative and angiogenic factors affecting wound healing in aged rats. Two groups consisting of eight healthy male Wistar Albino rats [young (30 ± 7 days) and aged (360 ± 30 days)], and a cutaneous incision wound healing model were used. Scar tissue samples from wounds on the 7th, 14th and 21st days of healing were evaluated for hydroxyproline and vascular endothelial growth factor content. Macrophage, lymphocyte, fibroblast and polymorphonuclear cell infiltration; collagen formation and vascularization were assessed by light and electron microscopy. The free oxygen radical content of the wounds was measured by a chemiluminescence method. Blood sample analysis showed that the hydroxyproline and total testosterone levels were significantly higher, and the oxygen radical content was significantly lower in young rats. Histopathological, immunohistochemical and ultrastructural evaluations revealed higher amounts of fibroblasts and collagen fibers, and more vascularization in young rats. These results are indicative of the delayed wound healing in aged rats. A combination of multiple factors including hormonal regulation, free oxygen radicals and impaired angiogenesis appears to be the cause of delayed cutaneous healing. © 2011 The Authors. International Wound Journal © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  18. Fast characterization of solid organic waste content with near infrared spectroscopy in anaerobic digestion.

    PubMed

    Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe

    2017-01-01

    The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impact of the temporal variation of oxygen contents in the water column on the biogeochemistry of the benthic zone

    NASA Astrophysics Data System (ADS)

    Rigaud, Sylvain; Deflandre, Bruno; Grenz, Christian; Pozzato, Lara; Cesbron, Florian; Meulé, Samuel; Bonin, Patricia; Michotey, Valérie; Mirleau, Pascal; Mirleau, Fatma; Knoery, Joel; Zuberer, Frédéric; Guillemain, Dorian; Marguerite, Sébatien; Mayot, Nicolas; Faure, Vincent; Grisel, Raphael; Radakovitch, Olivier

    2017-04-01

    The desoxygenation of the water column in coastal areas, refered as coastal hypoxia, is currently a growing phenomenon still particularly complex to predict. This is mainly due to the fact that the biogeochemical response of the benthic ecosystem to the variation of the oxygen contents in the water column remains poorly understood. Dissolved oxygen concentration is a key parameter controling the benthic micro- and macro-community as well as the biogeochemical reactions occuring in the surface sediment. More particularly, the variation over variable time scales (from hour to years) of the oxygen deficit may induce different pathways for biogeochemical processes such as the oxydation of freshly deposited organic matter and nutrients and metals recycling. This results in variable chemical fluxes at the sediment-water interface, that may in turn, support the eutrophication and desoxygenation of the aquatic system. Our study focus on the Berre lagoon, an eutrophicated mediterranean lagoon impacted by hypoxia events in the water column. Three stations, closely located but impacted by contrasted temporal variation of oxygen deficit in the water column were selected: one station with rare oxygen deficit and with functionnal macrofauna community, one station with almost permanent oxygen deficit and no macrofauna community and one intermediate station with seasonnal oxygen deficit and degraded macrofauna community. Each station was surveyed once during a same field survey while the intermediate station was surveyed seasonnaly. For each campaign, we report vertical profiles of the main chemical components (oxygen, nutrients, metals) along the water-column/sediment continuum, with an increased vertical resolution in the benthic zone using a multi-tool approach (high vertical resolution suprabenthic water sampler and microsensors profiler). In addition, total chemical fluxes at the sediment-water interface was obtained using benthic chambers. This dataset was used to evaluate the influence, of the oxygen concentrations (and its short and long-term variations) in the water column on the nature and location of the main biogeochemical reactions occuring in the benthic zone and the resulting fluxes at the sediment-water interface.

  20. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    PubMed

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30-40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.

  1. Feeding ecology of the copepod Lucicutia aff. L. grandis near the lower interface of the Arabian Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Gowing, Marcia M.; Wishner, Karen F.

    Feeding ecology of the calanoid copepod Lucicutia aff. L. grandis collected in the Arabian Sea at one station during the Spring Intermonsoon and during the Southwest Monsoon of 1995 was studied with transmission electron microscopy of gut-contents. Highest abundances of these animals occurred from ˜400 to 1100 m, near the lower interface of the oxygen minimum zone and at the inflection point where oxygen starts to increase. We expected that their gut-contents would include particles and cells that had sunk relatively undegraded from surface waters as well as those from within the oxygen minimum zone, and that gut-contents would differ between the Spring Intermonsoon and the more productive SW Monsoon. Overall, in both seasons Lucicutia aff. L. grandis was omnivorous, and consumed a variety of detrital particles, prokaryotic and eukaryotic autotrophs, gram-negative bacteria including metal-precipitating bacteria, aggregates of probable gram-positive bacteria, microheterotrophs, virus-like particles and large virus-like particles, as well as cuticle and cnidarian tissue. Few significant differences in types of food consumed were seen among life stages within or among various depth zones. Amorphous, unidentifiable material was significantly more abundant in guts during the Spring Intermonsoon than during the late SW Monsoon, and recognizable cells made up a significantly higher portion of gut-contents during the late SW Monsoon. This is consistent with the Intermonsoon as a time when organic material is considerably re-worked by the surface water microbial loop before leaving the euphotic zone. In both seasons Lucicutia aff. L. grandis had consumed what appeared to be aggregates of probable gram-positive bacteria, similar to those we had previously found in gut-contents of several species of zooplankton from the oxygen minimum zone in the eastern tropical Pacific. By intercepting sinking material, populations of Lucicutia aff. L. grandis act as a filter for carbon sinking to the sea floor. They also modify sinking carbon in several ways: enhancing pelagic-abyssal coupling of carbon from cyanobacteria, eliminating part of the deep-sea microbial loop by direct consumption of bacterial aggregates, and redistributing particulate manganese and iron from association with suspended cells or aggregates to containment in rapidly sinking fecal pellets. Lucicutia aff. L. grandis can be viewed as representative of deep-dwelling detritivorous mesozooplankton. Assessing the magnitude of the effects of such organisms on carbon flux in the Arabian Sea will require data on feeding rates.

  2. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    PubMed

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  3. Animal Model Selection for Inhalational HCN Exposure

    DTIC Science & Technology

    2016-08-01

    temperature and pressure). Health Effects from CN Exposure Cardiovascular responses to CN are complex and include precordial pain and EKG abnormalities...thyroid) may be affected, the brain is selectively sensitive given its high oxygen consumption and low rhodanese content, an enzyme involved in CN...efficiency of oxygenation while in dorsal recumbency under anesthesia, is decreased slightly compared to humans. The alveolar ventilation and perfusion (VA/Q

  4. 40 CFR Table 5 to Subpart Ddddd of... - Performance Testing Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2G in appendix A to part 60 of this chapter. c. Determine oxygen and carbon dioxide concentrations of...) (IBR, see § 63.14(i)). d. Measure the moisture content of the stack gas Method 4 in appendix A to part... stack gas Method 2, 2F, or 2G in appendix A to part 60 of this chapter. c. Determine oxygen and carbon...

  5. 29 CFR Appendix A to Subpart B of... - Compliance Assistance Guidelines for Confined and Enclosed Spaces and Other Dangerous Atmospheres

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... explosive limit (LEL) are used interchangeably in fire science literature. Section 1915.11(b)Definition of... interchangeably in fire science literature. Section 1915.12(a)(3). After a tank has been properly washed and... oxygen content of 19.5 percent can support life and is adequate for entry. However, any oxygen level...

  6. 29 CFR Appendix A to Subpart B of... - Compliance Assistance Guidelines for Confined and Enclosed Spaces and Other Dangerous Atmospheres

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... explosive limit (LEL) are used interchangeably in fire science literature. Section 1915.11(b)Definition of... interchangeably in fire science literature. Section 1915.12(a)(3). After a tank has been properly washed and... oxygen content of 19.5 percent can support life and is adequate for entry. However, any oxygen level...

  7. 29 CFR Appendix A to Subpart B of... - Compliance Assistance Guidelines for Confined and Enclosed Spaces and Other Dangerous Atmospheres

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... explosive limit (LEL) are used interchangeably in fire science literature. Section 1915.11(b)Definition of... interchangeably in fire science literature. Section 1915.12(a)(3). After a tank has been properly washed and... oxygen content of 19.5 percent can support life and is adequate for entry. However, any oxygen level...

  8. Developing the conceptual instructional design with inquiry-based instruction model of secondary students at the 10th grade level on digestion system and cellular degradation issue

    NASA Astrophysics Data System (ADS)

    Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn

    2018-01-01

    The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and dramatic storytelling increases in a relaxed classroom learning environment.

  9. [Metabolism of chromium in femur head in aspect of cigarette smoking].

    PubMed

    Brodziak-Dopierała, Barbara; Kwapuliński, Jerzy; Bogunia, Mariusz; Ahnert, Bozena; Paukszto, Andrzej; Jakubowska, Justyna

    2006-01-01

    The objective of this study was qualification of content chromium in femur head in aspect of smoking cigarette. Investigated of femur head from habitants of Upper Silesian Region. The content of chromium was marked at non-smoking persons, smoking in past and smoking at present. Determination of contents chromium realized by ASA method (Pye Unicam SP-9) in flame acetylene-oxygen. Higher contents of chromium were observed for smoking people. The most of the correlations described by large values of the correlation factors were concerned Cr with Ni, Cu, Zn, Na.

  10. ASTM Committee G-4 metals flammability test program - Data and discussion

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Homa, John M.; Williams, Ralph E.; Benz, Frank J.

    1988-01-01

    Results of metals flammability tests performed on twenty-six metals in the NASA/White Sands Test Facility are discussed together with the test systems. The promoted combustion and ignition characteristics of these metals are described, and the metals are ranked according to their suitability for use in oxygen systems. In general, alloys with high copper and nickel contents and low iron content were found to rank higher than those that had high iron content, while alloys that had high aluminum content were ranked the lowest.

  11. Controls for maintaining low nitrogen oxides content in internal combustion engine exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebke, H.; Moro, B.; Schoenborn, M.

    1976-08-10

    A control system and apparatus for measuring and monitoring the nitrogen oxides content of internal combustion engine exhaust gases is described. The exhaust gases are contacted with the reducing electrode of a sensor cell having a predetermined potential established between the cell electrodes so that the reducing electrode is able to reduce both the nitrogen oxides and oxygen content of the exhaust gas. The current flowing through the sensor cell is measured to determine whether the nitrogen oxides content of the exhaust gas is sufficiently low.

  12. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels.

    PubMed

    Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao

    2015-12-22

    The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO₂. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  13. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis

    PubMed Central

    2010-01-01

    Background Cellular damage caused by reactive oxygen species (ROS) has been implicated in several diseases, and hence natural antioxidants have significant importance in human health. The present study was carried out to evaluate the in vitro antioxidant and reactive oxygen species scavenging activities of Terminalia chebula, Terminalia belerica and Emblica officinalis fruit extracts. Methods The 70% methanol extracts were studied for in vitro total antioxidant activity along with phenolic and flavonoid contents and reducing power. Scavenging ability of the extracts for radicals like DPPH, hydroxyl, superoxide, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen, hypochlorous acid were also performed to determine the potential of the extracts. Results The ability of the extracts of the fruits in exhibiting their antioxative properties follow the order T. chebula >E. officinalis >T. belerica. The same order is followed in their flavonoid content, whereas in case of phenolic content it becomes E. officinalis >T. belerica >T. chebula. In the studies of free radicals' scavenging, where the activities of the plant extracts were inversely proportional to their IC50 values, T. chebula and E. officinalis were found to be taking leading role with the orders of T. chebula >E. officinalis >T. belerica for superoxide and nitric oxide, and E. officinalis >T. belerica >T. chebula for DPPH and peroxynitrite radicals. Miscellaneous results were observed in the scavenging of other radicals by the plant extracts, viz., T. chebula >T. belerica >E. officinalis for hydroxyl, T. belerica >T. chebula >E. officinalis for singlet oxygen and T. belerica >E. officinalis >T. chebula for hypochlorous acid. In a whole, the studied fruit extracts showed quite good efficacy in their antioxidant and radical scavenging abilities, compared to the standards. Conclusions The evidences as can be concluded from the study of the 70% methanol extract of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis, imposes the fact that they might be useful as potent sources of natural antioxidant. PMID:20462461

  14. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity.

    PubMed

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-04-01

    Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10(4) mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D99, the homogeneous radiation dose required for a tumor control probability of 0.99. In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D99 by up to 10%. Furthermore, the D99 vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D99, necrotic fractions ranging from 0% to 97%, and a maximal D99 increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D99 strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D99. Our present analysis of necrotic formation and the impact of tumor oxygenation on D99 demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies. © 2014 American Association of Physicists in Medicine.

  15. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  16. Hybrid membrane--PSA system for separating oxygen from air

    DOEpatents

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  17. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy.

    PubMed

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  18. Addition of ammonia and/or oxygen to an ionic liquid for delignification of miscanthus.

    PubMed

    Rodríguez, Héctor; Padmanabhan, Sasisanker; Poon, Geoffrey; Prausnitz, John M

    2011-09-01

    Ammonia and/or oxygen were used to enhance the delignification of miscanthus dissolved in 1-ethyl-3-methylimidazolium acetate at 140°C. After dissolution of the gas at 9 bar, water was added as antisolvent to regenerate the dissolved biomass. In a next step, an acetone/water mixture was used to remove carbohydrate-free lignin from the regenerated biomass. The lignin content in the final product was around 10%, much lower than the ca. 23% lignin content of the raw dry miscanthus. This lignin reduction is achieved without diminution of cellulose or of total carbohydrates recovered, relative to the recovery achieved with the ionic liquid pretreatment in contact with air or nitrogen. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. EFFECTS OF SUNLIGHT ON CARBOXYL CONTENT OF DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, UNITED STATES

    EPA Science Inventory

    A study examined the effect of sunlight-initiated photo-degradation of dissolved organic matter (DOM) on its carboxyl content, and the role of oxygen and iron in this process. Solar-simulated irradiations were performed on 0.2-mm filtered water samples collected from the highly c...

  20. Variation in the chemistry of macerals in coals of the Mist Mountain Formation, Elk Valley coalfield, British Columbia, Canada

    USGS Publications Warehouse

    Mastalerz, Maria; Bustin, R.M.

    1997-01-01

    Variations in elemental and molecular chemistry of macerals, with vitrinite, semifusinite and sporinite in particular, are discussed for the coal seams of the Mist Mountain Formation in the Elk Valley coalfield, in western Canada. In the south Elk Valley coalfield, carbon content of vitrinite oscillates around 85%, and oxygen content increases gradually up section, from seam A to C. In the north Elk Valley coalfield, carbon content in vitrinite shows marked variations (from 70% to 85%) between the samples and is lower than in the south Elk Valley coalfield, which is consistent with a higher maturation level of south Elk Valley coalfield samples. Sulphur content is below 1% in both coalfields. Semifusinite, in general, has higher carbon and lower oxygen content than vitrinite, whereas cutinite has higher carbon content than vitrinite and slightly higher or comparable to that of semifusinite. Functional group distributions show large variations between the seams and these variations are attributed mainly to differences in a primary depositional environment and only occasionally to later weathering and oxidation processes. The results presented in this paper provide also information on the length and branching of aliphatic chains, which, for liptinite macerals is valuable from the oil generation viewpoint, whereas for semifusinite, it may help to understand reactive versus non-reactive behaviour during coking.

  1. [Phospholipids under combined ozone-oxygen administration].

    PubMed

    Müller-Tyl, E; Hernuss, P; Salzer, H; Reisinger, L; Washüttl, J; Wurst, F

    1975-01-01

    The parenterally application of oxygen-ozone gas mixture gives good resultats in the treatment of various deseases. Ozone seems to influence the metabolic process of fat, so it was of interest to analyse this influence especially to phospholipids. 40 women with gynaecological cancer got 10 ml oxygen-ozone gas mixture with a content of 450 gamma ozone into the cubital vene. Venous blood was removed before and 10 minutes after application and the level of lecithin, lysolecithin, cephalin and spingomyelin was determined by the method of Randerath. A decrease of all four substances was obvious, although all values remained in normal range.

  2. RESOLVE OVEN Field Demonstration Unit for Lunar Resource Extraction

    NASA Technical Reports Server (NTRS)

    Paz, Aaron; Oryshchyn, Lara; Jensen, Scott; Sanders, Gerald B.; Lee, Kris; Reddington, Mike

    2013-01-01

    The Oxygen and Volatile Extraction Node (OVEN) is a subsystem within the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) project. The purpose of the OVEN subsystem is to release volatiles from lunar regolith and extract oxygen by means of a hydrogen reduction reaction. The complete process includes receiving, weighing, sealing, heating, and disposing of core sample segments while transferring all gaseous contents to the Lunar Advanced Volatile Analysis (LAVA) subsystem. This document will discuss the design and performance of the OVEN Field Demonstration Unit (FDU), which participated in the 2012 RESOLVE field demonstration.

  3. Simple method to make a supersaturated oxygen fluid.

    PubMed

    Tange, Yoshihiro; Yoshitake, Shigenori; Takesawa, Shingo

    2018-01-22

    Intravenous oxygenation has demonstrated significant increase in partial pressure of oxygen (PO 2 ) in animal models. A highly dissolved oxygen solution might be able to provide a sufficient level of oxygen delivery to the tissues and organs in patients with hypoxia. However, conventional fluid oxygenation methods have required the use of original devices. If simpler oxygenation of a solution is possible, it will be a useful strategy for application in clinical practice. We simply developed its administration by injection of either air or oxygen gas into conventional saline. We determined the PO 2 values in the solutions in comparison with conventional saline in vitro. To examine the effects of the administration of the new solutions on the blood gas profile, we diluted bovine blood with either conventional or the new solutions and analyzed PO 2 , oxygen saturation (SO 2 ) and total oxygen content. PO 2 levels in the blood and new solution mixture significantly increased with each additional injected gas volume. Significant increases in the PO 2 and SO 2 of the bovine blood were found in those blood samples with the new solution, as compared with those with the control solution. These results suggest that this solution promotes oxygen delivery to the hypoxic tissue and recovery from hypoxia. This method is simpler and easier than previous methods.

  4. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress.

    PubMed

    Torabian, Shahram; Farhangi-Abriz, Salar; Rathjen, Judith

    2018-05-31

    This research was conducted to evaluate effects of biochar (50 and 100 g kg -1 soil) and lignite (50 and 100 g kg -1 soil) treatments on H + -ATPase and H + -PPase activity of root tonoplast, nutrient content, and performance of mung bean under salt stress. High saline conditions increased H + -ATPase and H + -PPase activities in root tonoplast, sodium (Na) content, reactive oxygen species (H 2 O 2 and O 2 - ) generation, relative electrolyte leakage (REL) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) activity in root and leaf, but decreased relative water content (RWC), chlorophyll content index, leaf area, potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) content of plant tissues, root and shoot dry weight of mung bean. Lignite and biochar treatments decreased the H + -ATPase and H + -PPase activities of root tonoplast under salt stress. Moreover, these treatments increased the cation exchange capacity of soil and nutrient values in plant tissues. Biochar and lignite diminished the generation of reactive oxygen species and DPPH activity in root and leaf cells, and these superior effects improved chlorophyll content index, leaf area and growth of mung bean under both conditions. In general, the results of this study demonstrated that biochar and lignite decreased the entry of Na ion into the cells, enriched plant cells with nutrients, and consequently improved mung bean performance under salt toxicity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.

    PubMed

    Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S

    2015-01-01

    Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds. © 2015 by the Wound Healing Society.

  6. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    DTIC Science & Technology

    2016-10-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Coherent anti-stokes Raman spectroscopy ( CARS ) can be used to detect differences in the oxygen content...oxygen, eye, retina, photoreceptor, neuron, TRPM7, neurodegeneration, neurotoxicity, coherent anti-Stokes Raman spectroscopy, CARS , mouse 16...ANSI Std. Z39.18 Section 1: Introduction The study is based on the premise that Coherent Anti-Stokes Raman scattering ( CARS ) imaging provides a

  7. Plasma Catecholamines and Stress Assessment in Men Exposed to Moderate Altitudes.

    DTIC Science & Technology

    1982-01-01

    posure, as evidenced by a significant fall in PC02 and a respiratory alkalosis , was able to improve blood oxygenation. Heart rate did not fall with...Survey . . . . 21 Oxygen Content and P02 ...... .. ..... 33 Venous PCO2 :’" 33 Venous pH . .. . . . . . . .. 37 Respiratory Rate ............. ... 37 Blood...a 68 L. Venous PC02 Levels . ... .............. 69 M. Venous pH. . .9. . . . . . .. . . . . . . . . . . . 70 N. Respiratory Rates

  8. Improvement of microwave-assisted digestion of milk powder with diluted nitric acid using oxygen as auxiliary reagent

    NASA Astrophysics Data System (ADS)

    Bizzi, Cezar A.; Barin, Juliano S.; Garcia, Edivaldo E.; Nóbrega, Joaquim A.; Dressler, Valderi L.; Flores, Erico M. M.

    2011-05-01

    The feasibility of using diluted HNO 3 solutions under oxygen pressure for decomposition of whole and non-fat milk powders and whey powder samples has been evaluated. Digestion efficiency was evaluated by determining the carbon content in solution (digests) and the determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Pb and Zn was performed by inductively coupled plasma optical emission spectrometry and Hg by chemical vapor generation coupled to inductively coupled plasma mass spectrometry. Samples (up to 500 mg) were digested using HNO 3 solutions (1 to 14 mol L - 1 ) and the effect of oxygen pressure was evaluated between 2.5 and 20 bar. It was possible to perform the digestion of 500 mg of milk powder using 2 mol L - 1 HNO 3 with oxygen pressure ranging from 7.5 to 20 bar with resultant carbon content in digests lower than 1700 mg L - 1 . Using optimized conditions, less than 0.86 mL of concentrated nitric acid (14 mol L - 1 ) was enough to digest 500 mg of sample. The accuracy was evaluated by determination of metal concentrations in certified reference materials, which presented an agreement better than 95% (Student's t test, P < 0.05) for all the analytes.

  9. The effects of ultraviolet light on the degradation of organic compounds - A possible explanation for the absence of organic matter on Mars

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.

    1979-01-01

    The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However, the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. The study tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given part of irradiation. A definite degradation was noticed in the case of naphtalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.

  10. Blood modulates the kinetics of reactive oxygen release in pancreatic ischemia-reperfusion injury.

    PubMed

    Neeff, Hannes P; Sommer, Olaf; Meyer, Sebastian; Tinelli, Anja; Scholtes, Moritz; Hopt, Ulrich T; Drognitz, Oliver; von Dobschuetz, Ernst

    2012-10-01

    Reason for the unsuccessful use of antioxidants in transplantation might be the unknown kinetics of reactive oxygen species (ROS) release. In this study, we compared the kinetics of ROS release from rat pancreata in the presence and absence of blood. In vivo, ischemia-reperfusion injury (IRI) was induced in pancreata of male Wistar rats by occlusion of the arterial blood supply for 1 or 2 hours. In vitro, isolated pancreata were single-pass perfused with Krebs-Henseleit bicarbonate solution. Reactive oxygen species were quantified by electron spin resonance spectroscopy using CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) as spin label. Thiols (glutathione), nicotinamide adenine dinucleotide phosphate-oxidase activity, myeloperoxidase activity, and adenosine triphosphate content were measured. During reperfusion, an increase in IRI-induced ROS in arterial blood was noted after 2 hours of warm ischemia. In sharp contrast, ROS release was immediate and short lived in blood-free perfused organs. The degree of tissue damage correlated with nicotinamide adenine dinucleotide phosphate-oxidase activity and adenosine triphosphate content. Antioxidative capacity of tissues was reduced. Electron spin resonance spectroscopy in conjunction with spin labels allows for the detection of ROS kinetics in pancreatic IRI. Reactive oxygen species kinetics are dependent on the length of the ischemic period and the presence or absence of blood.

  11. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  12. Defect Chemistry, Electrical Properties, and Evaluation of New Oxides Sr2 CoNb1-x Tix O6-δ (0≤x≤1) as Cathode Materials for Solid Oxide Fuel Cells.

    PubMed

    Azcondo, María Teresa; Yuste, Mercedes; Pérez-Flores, Juan Carlos; Muñoz-Gil, Daniel; García-Martín, Susana; Muñoz-Noval, Alvaro; Orench, Inés Puente; García-Alvarado, Flaviano; Amador, Ulises

    2017-07-21

    The perovskite series Sr 2 CoNb 1-x Ti x O 6-δ (0≤x≤1) was investigated in the full compositional range to assess its potential as cathode material for solid oxide fuel cell (SOFC). The variation of transport properties and thus, the area specific resistances (ASR) are explained by a detailed investigation of the defect chemistry. Increasing the titanium content from x=0-1 produces both oxidation of Co 3+ to Co 4+ (from 0 up to 40 %) and oxygen vacancies (from 6.0 to 5.7 oxygen atom/formula unit), although each charge compensation mechanism predominates in different compositional ranges. Neutron diffraction reveals that samples with high Ti-contents lose a significant amount of oxygen upon heating above 600 K. Oxygen is partially recovered upon cooling as the oxygen release and uptake show noticeably different kinetics. The complex defect chemistry of these compounds, together with the compositional changes upon heating/cooling cycles and atmospheres, produce a complicated behavior of electrical conductivity. Cathodes containing Sr 2 CoTiO 6-δ display low ASR values, 0,13 Ω cm 2 at 973 K, comparable to those of the best compounds reported so far, being a very promising cathode material for SOFC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf.

    PubMed

    Giammichele, N; Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Bergeron, P; Zong, W; Dupret, M-A

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars-in particular their oxygen content and the stratification of their cores-is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  14. Is The Oxygen Decreasing In The Mediterranean Sea ?

    NASA Astrophysics Data System (ADS)

    El Boukhary, M. S.; Ruiz-Pino, D.; Béthoux, J. P.

    The Mediterranean Sea, surrounded by more than 300 million of inhabitants, is sub- jected to strong environmental perturbations. The nutrients (phosphorus, P and nitro- gen, N) external inputs increases by 3 % per year since the 1960s as a consequence of the local industrial and agricultural activities. Its led the increases of : deep P con- centrations (0.53 % per year) and N (0.56 % per year), new or exported production and the modifications of molar ratios in the Western basin (Béthoux et al., 2001). P/N/Si/C is about 1/22/21/154 in this basin; instead the classic world ocean molar ratio of 1/16/15/106. Associated to these biogeochemical changes, a drastic increase of the quantity of deep water formed in the Aegean Sea (Roether et al., 1996 ; Klein et al., 1999) has been occurred since 1988 probably induced by the climatic pertur- bation (Lascaratos et al., 1999). Both modifications, nutrients and circulation would lead to important changes in the oxygen content of Mediterranean deep waters. The long-term trends of the oxygen content were estimated by using the historical data existing between 1960 and 2000 in the following basins : Alboran, Algero Provençal, Tyrrhenian, Ionian, Levantine, Adriatic and Aegean (SELMEDAR, Ifremer database), MAST European program). A statistical treatment allowed simultaneously to define the confidence interval of the data distributed in different layers (surface (100 m), in- termediate (500 m), deep (1200 m) and very deep), and to estimate the significativity of the long term trend variation. A significant decrease (~0.2 % per year) of the oxy- gen is detectable in deep Alboran sea only. This intense oxygen decrease would be linked to the strong quantity of carbon which deposit in this sea, consequence of the intense primary productivity. The absence of the oxygen decrease in the other Mediter- ranean basins, in spite of the increases of exported production, could be connected to a more important contribution of oxygen during the Mediterranean deep water forma- tion compared to the oxygen consumed during the remineralization. The thermohaline circulation changes affect considerably the oxygen trends in both Western and Eastern basins. Then, that no decrease had been revealed in the Algero Provençal basin before 1988, it is a decrease of about 0.6 % per year that is estimated after this period. This decrease, would be the consequence of a contribution of an oxygen impoverished Lev- antine water; associated probably to the upwelling intensification (Lascaratos et al., 1999). At the contrary, in the Eastern basin, an oxygen increase from 0.3 to 1.3 % per year are respectively estimated for the Ionian and Levantine very deep waters. These two changes are associated to the oxygen input coming from the Aegean Sea new deep 1 water also. All these variations of the deep waters oxygen content affect considerably the remineralization and the preservation of the organic matter. The marked decrease in the Alboran sea would be in agreement with a very marked presence of sapropels in this basin from the late Pliocene to the Holocene (Béthoux and Pierre, 1999). The oxygen increase in the Eastern basin following the intensification of the deep water formation suggests a present trend which is opposite to the sapropel periods 2

  15. Is The Oxygen Decreasing In The Mediterranean Sea ?

    NASA Astrophysics Data System (ADS)

    El Boukhary, M. S.; Ruiz-Pino, D.; Béthoux, J. P.

    The Mediterranean Sea, surrounded by more than 300 million of inhabitants, is sub- jected to strong environmental perturbations. The nutrients (phosphorus, P and nitro- gen, N) external inputs increases by 3 % per year since the 1960s as a consequence of the local industrial and agricultural activities. Its led the increases of : deep P con- centrations (0.53 % per year) and N (0.56 % per year), new or exported production and the modifications of molar ratios in the Western basin (Béthoux et al., 2001). P/N/Si/C is about 1/22/21/154 in this basin; instead the classic world ocean molar ratio of 1/16/15/106. Associated to these biogeochemical changes, a drastic increase of the quantity of deep water formed in the Aegean Sea (Roether et al., 1996 ; Klein et al., 1999) has been occurred since 1988 probably induced by the climatic pertur- bation (Lascaratos et al., 1999). Both modifications, nutrients and circulation would lead to important changes in the oxygen content of Mediterranean deep waters. The long-term trends of the oxygen content were estimated by using the historical data existing between 1960 and 2000 in the following basins : Alboran, Algero Provençal, Tyrrhenian, Ionian, Levantine, Adriatic and Aegean (SELMEDAR, Ifremer database), MAST European program). A statistical treatment allowed simultaneously to define the confidence interval of the data distributed in different layers (surface (100 m), in- termediate (500 m), deep (1200 m) and very deep), and to estimate the significativity of the long term trend variation. A significant decrease (~0.2 % per year) of the oxy- gen is detectable in deep Alboran sea only. This intense oxygen decrease would be linked to the strong quantity of carbon which deposit in this sea, consequence of the intense primary productivity. The absence of the oxygen decrease in the other Mediter- ranean basins, in spite of the increases of exported production, could be connected to a more important contribution of oxygen during the Mediterranean deep water forma- tion compared to the oxygen consumed during the remineralization. The thermohaline circulation changes affect considerably the oxygen trends in both Western and Eastern basins. Then, that no decrease had been revealed in the Algero Provençal basin before 1988, it is a decrease of about 0.6 % per year that is estimated after this period. This decrease, would be the consequence of a contribution of an oxygen impoverished Lev- antine water; associated probably to the upwelling intensification (Lascaratos et al., 1999). At the contrary, in the Eastern basin, an oxygen increase from 0.3 to 1.3 % per year are respectively estimated for the Ionian and Levantine very deep waters. These two changes are associated to the oxygen input coming from the Aegean Sea new deep 1 water also. All these variations of the deep waters oxygen content affect considerably the remineralization and the preservation of the organic matter. The marked decrease in the Alboran sea would be in agreement with a very marked presence of sapropels in this basin from the late Pliocene to the Holocene (Béthoux and Pierre, 1999). The oxygen increase in the Eastern basin following the intensification of the deep water formation suggests a present trend which is opposite to the sapropel periods. 2

  16. Typhoon June /1975/ viewed by a scanning microwave spectrometer

    NASA Technical Reports Server (NTRS)

    Rosenkranz, P. W.; Staelin, D. H.; Grody, N. C.

    1978-01-01

    Data were collected by the scanning microwave spectrometer onboard Nimbus 6 during the June 1975 typhoon in the Philippine Sea. The spectrometer was equipped with channels centered on 22.23 GHz (a water vapor band), 31.65 GHz (a transmittance window), and 52.85, 53.85, and 55.45 GHz (an oxygen band). Temperature maps, derived from oxygen band measurements, showed that the typhoon eye had a single peak varying in amplitude with time. Water line and window measurements were used to develop a coordinate system having mutually orthogonal atmospheric variables of column water-vapor content and cloud liquid-water content. Vapor measurements showed a maximum around the intensifying typhoon with a more developed structure during typhoon development. Values were extrapolated for surface wind speed and cloud liquid water vapor content by assuming the troposphere to be saturated with respect to the water vapor in the typhoon. Comparisons with infrared cloud imagery and aircraft flight data show different time variations, attributed to poor typhoon-eye resolution in the microwave images.

  17. [Effects of packaging forms on the stability of vitamin B1 and vitamin C in TPN admixtures].

    PubMed

    Hashimoto, Daisuke; Iwahara, Ryosei; Sato, Hideki

    2010-12-01

    In order to reduce a microbial contamination and needle stick injuries that are associated with a mixing procedure in home parentera nutrition(HPN), nutrition(TPN)solution bags pre-mixed with trace elements may be provided in a form of outer packaging. On the other hand, a packaging form used to enclose the TPN bag after admixture may significantly affect the stability of vitamins. With a focus on possible decrease in vitamin B1 and C content, we investigated the effects of the packaging form. As a result, the TPN bag, which is packed in a light-resistant outer wrap of oxygen-barrier film with an oxygen absorbent under reduced pressure, suppressed a decrease in vitamin content most. However, the decrease in vitamin C content was observed when there was a long time-lag between a preparation and a packaging. We thought it was desirable to pack the TPN bag promptly after the preparation.

  18. Towards noninvasive method for the detection of pathological tissue variations by mapping different blood parameters

    NASA Astrophysics Data System (ADS)

    Abdallah, Omar; Qananwah, Qasem; Abo Alam, Kawther; Bolz, Armin

    2010-04-01

    This paper describes the development of an early detection method for probing pathological tissue variations. The method could be used for classifying various tissue alteration namely tumors tissue or skin disorders. The used approach is based on light scattering and absorption spectroscopy. Spectral content of the scattered light provides diagnostic information about the tissue contents. The importance of this method is using a safe light that has less power than the used in the imaging methods that will enable the frequent examination of tissue, while the exiting modalities have drawbacks like ionization, high cost, time-consuming, and agents' usage. A modality for mapping the oxygen saturation distribution in tissues noninvasively is new in this area of research, since this study focuses on the oxygen molecule in the tissue which supposed to be homogenously distributed through the tissues. Cancers may cause greater vascularization and greater oxygen consumption than in normal tissue. Therefore, oxygen existence and homogeneity will be alternated depending on the tissue state. In the proposed system, the signal was extracted after illuminating the tissue by light emitting diodes (LED's) that emits light in two wavelengths, red (660 nm) and infrared (880 nm). The absorption in these wavelengths is mainly due to oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) while other blood and tissue contents nearly have low effect on the signal. The backscattered signal which is received by a photodiodes array (128 PDs) was measured and processed using LabVIEW. Photoplethysmogram (PPG) signals have been measured at different locations. These signals will be used to differentiate between the normal and the pathological tissues. Variations in hemoglobin concentration and blood perfusion will also be used as an important indication feature for this purpose.

  19. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    PubMed

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  20. The primary evaluation and characterization of obsolete DDT pesticide from a precalciner of a cement kiln.

    PubMed

    Li, Yang; Wang, Qi; Huang, Qifei; He, Jie

    2014-01-01

    1,1,1-Trichloro-2,2-bi(4-chlorophenyl)ethane (DDT) pesticide that has been extensively used in agriculture in China in the last century, and even now, has been banned from all purposes. The disposal of obsolete DDT pesticide has been an urgent task for the Chinese government. In order to evaluate the feasibility of co-processing DDT in the current new style dry-process rotary kiln with a precalciner as the feeding point, the destruction efficiency (DE) of DDTs (including p,p(')-DDT, o,p(')-DDT, p,p(')-DDE and p,p(')-DDD), proportion of DDTs in the combustion residue and exhaust gas, and the release of chlorine were studied under different operating conditions of temperature, oxygen content and gas retention time in the laboratory. The DE of DDTs exceeded 99% when the temperature was over 800 °C with enough oxygen. As the temperature increased from 600 °C to 1200 °C, the proportion of p,p(')-DDD increased and p,p(')-DDT decreased but still the main effective component remained in the combustion residue. In the exhaust gas, the most dominant phenomenon was the rapid increase in p,p(')-DDE concentration as the temperature increased. The release of chlorine reached a peak between 800 °C and 900 °C. It was found that the oxygen content had a positive correlation with the process of dechlorination. The proportion of p,p(')-DDE increased as the oxygen content was increased in the exhaust gas. The gas retention time had almost no influenced on the DE of DDTs, but affected the degradation extent of DDTs in the gas phase. These experiments showed that co-processing of obsolete DDT pesticide in cement kiln precalciners is feasible.

  1. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system.

    PubMed

    Gorcek, Zeynep; Erdal, Serkan

    2015-11-01

    Soil salinity is one of the most detrimental environmental factors affecting the growth of plants and limiting their agricultural productivity. This study investigated whether exogenous lipoic acid (LA) pretreatment plays a role in promoting salt tolerance in wheat seedlings. The seedlings were treated with LA (1.75 mmol L(-1)) and salt (100 mmol L(-1) NaCl) separately and a combination of them. Salt stress significantly reduced relative water content, leaf surface area, ribulose bisphosphate carboxylase expression, and chlorophyll content but increased the content of osmo-regulator protein, carbohydrates and proline. In addition, salinity led to an imbalance in the inorganic composition of wheat leaves. While it elevated Na(+) content compared to control, Ca content and K(+)/Na(+) ratio were reduced. Under saline conditions, despite increases in antioxidant enzyme activity and levels of antioxidant compounds (ascorbate and glutathione), the content of reactive oxygen species (superoxide anion, hydrogen peroxide) and malondialdehyde were higher than in control seedlings. LA significantly promoted osmo-regulator level and antioxidant enzyme activities compared to stressed seedlings alone. Also, it both increased levels of ascorbate and glutathione and regenerated their oxidised forms, thus contributing to maintaining cellular redox status. Similarly, LA prevented excessive accumulation of Na(+) and promoted K(+)/Na(+) ratio and Ca content. Reactive oxygen species content was significantly reduced, and the inhibitions in the above parameters markedly recovered. LA reduced salinity-induced oxidative damage and thus contributed to the growth and development of plants in saline soils by modulating ion homeostasis between plant and soil as well as in osmo-regulator content and antioxidant system. © 2014 Society of Chemical Industry.

  2. Oxygen storage properties of La 1-xSr xFeO 3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    DOE PAGES

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  3. Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting

    NASA Astrophysics Data System (ADS)

    Bartosinski, M.; Hassan-Pour, S.; Friedrich, B.; Ratiev, S.; Ryabtsev, A.

    2016-07-01

    This paper focuses on deoxidation of titanium alloys produced by aluminothermic reduction (ATR) and subsequent homogenizing and alloying by vacuum induction melting (VIM). The main goal of the performed research work is to outline the deoxidation limit during pressure electro slag remelting (PESR) of the described material. To obtain electrodes for deoxidation, a Ti-24Al-16V masteralloy was produced by ATR and afterwards melted in a 0.5 litre calcium- zirconate (lab scale) or 14 litres high purity calcia (pilot scale) crucibles with continuous addition of Ti-sponge after reaching liquid state in order to obtain a final Ti-6Al-4V alloy. During melting, in both cases evaporation of calcium was noticed. The cast ingots were analysed for oxygen using inert gas fusion method, matrix and alloying elements were analysed by XRF. Results show oxygen levels between 0.5 and 0.95 wt.-% for the ingots which were melted in calcium-zirconate crucibles and approx. 1 - 1.2 wt.-% for the material produced by utilization of calcia crucibles. The subsequent deoxidation was carried out in lab and pilot scale electroslag remelting furnaces using a commercially pure calcium fluoride slag and metallic calcium as deoxidation agent. It could be shown, that deoxidation of the highly contaminated material is possible applying this method to a certain limit. Pilot scale trials showed a reduction of oxygen contents by 1500 - 3500 ppm. Oxygen levels in lab scale trials showed weaker deoxidation effects. In order to describe the achieved deoxidation effects in a quantitative way, the analyzed oxygen contents of the obtained ingots are compared with calculated data resulting from a mathematical kinetic model. The modelled datasets are in good agreement with experimental oxygen values.

  4. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.

  5. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  6. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  7. Solid state solubility of copper oxides in hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  8. A Metabolomic Approach to the Study of Wine Micro-Oxygenation

    PubMed Central

    Arapitsas, Panagiotis; Scholz, Matthias; Vrhovsek, Urska; Di Blasi, Stefano; Biondi Bartolini, Alessandra; Masuero, Domenico; Perenzoni, Daniele; Rigo, Adelio; Mattivi, Fulvio

    2012-01-01

    Wine micro-oxygenation is a globally used treatment and its effects were studied here by analysing by untargeted LC-MS the wine metabolomic fingerprint. Eight different procedural variations, marked by the addition of oxygen (four levels) and iron (two levels) were applied to Sangiovese wine, before and after malolactic fermentation. Data analysis using supervised and unsupervised multivariate methods highlighted some known candidate biomarkers, together with a number of metabolites which had never previously been considered as possible biomarkers for wine micro-oxygenation. Various pigments and tannins were identified among the known candidate biomarkers. Additional new information was obtained suggesting a correlation between oxygen doses and metal contents and changes in the concentration of primary metabolites such as arginine, proline, tryptophan and raffinose, and secondary metabolites such as succinic acid and xanthine. Based on these findings, new hypotheses regarding the formation and reactivity of wine pigment during micro-oxygenation have been proposed. This experiment highlights the feasibility of using unbiased, untargeted metabolomic fingerprinting to improve our understanding of wine chemistry. PMID:22662221

  9. Oxygen potential of (U 0.88Pu 0.12)O 2±x and (U 0.7Pu 0.3)O 2±x at high temperatures of 1673-1873 K

    NASA Astrophysics Data System (ADS)

    Kato, M.; Takeuchi, K.; Uchida, T.; Sunaoshi, T.; Konashi, K.

    2011-07-01

    The oxygen potential of (U 0.88Pu 0.12)O 2±x (-0.0119 < x < 0.0408) and (U 0.7Pu 0.3)O 2±x (-0.0363 < x < 0.0288) was measured at high temperatures of 1673-1873 K using gas equilibrium method with thermo gravimeter. The measured data were analyzed by a defect chemistry model. Expressions were derived to represent the oxygen potential based on defect chemistry as functions of temperature and oxygen-to-metal ratio. The thermodynamic data, ΔG, ΔH and ΔS, at stoichiometric composition were obtained. The expressions can be used for in situ determination of the oxygen-to-metal ratio by the gas-equilibration method. The calculation results were consistent with measured data. It was estimated that addition of 1 wt.% Pu content increased oxygen potential of uranium and plutonium mixed oxide by 2-5 kJ/mol.

  10. Compositions comprising enhanced graphene oxide structures and related methods

    DOEpatents

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  11. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  12. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    PubMed

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  13. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  14. Effect of attrition milling on the reaction sintering of silicon nitride

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Yeh, H. C.

    1978-01-01

    Silicon powder was ground in a steel attrition mill under nitrogen. Air exposed powder was compacted, prefired in helium, and reaction sintered in nitrogen-4 v/o hydrogen. For longer grinding times, oxygen content, surface area and compactability of the powder increased; and both alpha/beta ratio and degreee of nitridation during sintering increased. Iron content remained constant.

  15. Effect of attrition milling on the reaction sintering of silicon nitride

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Yeh, H. C.

    1978-01-01

    Silicon powder was ground in a steel attrition mill under nitrogen. Air-exposed powder was compacted, prefired in helium, and reaction-sintered in nitrogen-4 v/o hydrogen. For longer grinding times, oxygen content, surface area and compactability of the powder increased; and both alpha/beta ratio and degree of nitridation during sintering increased. Iron content remained constant.

  16. Oxygen isotope effect in disordered underdoped and overdoped La 2-xSr xCu 1-yZn yO 4 superconductors

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Islam, R. S.

    2011-04-01

    The effect of oxygen isotopic substitution on the superconducting transition temperature has been studied for heavily underdoped and overdoped La 2-xSr xCu 1-yZn yO 4 compounds with different Zn contents in the CuO 2 plane. The effect of Zn on the isotope coefficient, α, was significantly more pronounced in the case of the underdoped ( x = 0.09) compounds compared to the overdoped ( x = 0.22) ones. The variation of α with disorder content can be described quite well within a model based solely on Cooper pair-breaking in the case of the underdoped compounds. This model fails to describe the behavior of α( y) for the overdoped samples, even though Zn still suppresses T c very effectively at this hole (Sr) content, indicating that the Zn induced pair-breaking is still very much at play. We discuss the implications of these findings in details by considering the Zn induced magnetism, stripe correlations, and possible changes in the superconducting order parameter as hole content in the CuO 2 plane, p (≡ x), is varied.

  17. Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.

    PubMed

    Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun

    2016-01-01

    Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.

  18. Blood gas analysis and cooximetry in retired racing Greyhounds

    PubMed Central

    Zaldivar-Lopez, Sara; Chisnell, Hope K.; Guillermo Couto, C.; Westendorf-Stingle, Nicole; Marin, Liliana M.; Iazbik, Maria C.; Cooper, Edward S.; Wellman, Maxey L.; Muir, William W.

    2013-01-01

    Objective The purposes of this study were to evaluate the oxygen affinity of hemoglobin (Hb) in healthy retired racing Greyhounds via cooximetry, and to establish reference intervals for blood gases and cooximetry in this breed. Design Prospective clinical study. Setting University Teaching Hospital. Animals Fifty-seven Greyhounds and 30 non-Greyhound dogs. Interventions Venous blood samples were collected from the jugular vein and placed into heparinized tubes. The samples were analyzed within 30 minutes of collection using a blood gas analyzer equipped with a cooximeter. Measurements and Main Results Greyhounds had significantly higher pH, PO2, oxygen saturation, oxyhemoglobin, total Hb, oxygen content, and oxygen capacity and significantly lower deoxyhemoglobin and P50 when compared with non-Greyhound dogs. Conclusion These findings support the fact that this breed is able to carry a higher concentration of total oxygen in the blood. As reported previously, this breed also has lower P50 and, therefore, high oxygen affinity. In light of recent findings suggesting that in certain tissues a high affinity for oxygen is beneficial, this adaptation may be of benefit during strenuous exercise. PMID:21288290

  19. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  20. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua

    2017-01-01

    Dendritic nanostructures are capturing increasing attentions in electrocatalysis owing to their unique structural features and low density. Herein, we report for the first time bromide ions mediated synthesis of low-Pt-content PdCuPt ternary nanodendrites via galvanic replacement reaction between Pt precursor and PdCu template in aqueous solution. The experimental results show that the ternary PdCuPt nanodendrites present enhanced electrocatalytic performance for oxygen reduction reaction in acid solution compared with commercial Pt/C as well as some state-of-the-art catalysts. In details, the mass activity of the PdCuPt catalyst with optimized composition is 1.73 A/mgPt at 0.85 V vs RHE, which is 14 timesmore » higher than that of commercial Pt/C catalyst. Moreover, the long-term stability test demonstrates its better durability in acid solution. After 5k cycles, there is still 70% electrochemical surface area maintained. This method provides an efficient way to synthesize trimetallic alloys with controllable composition and specific structure for oxygen reduction reaction.« less

  1. Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2.

    PubMed

    Won, Da Hye; Choi, Chang Hyuck; Chung, Jaehoon; Chung, Min Wook; Kim, Eun-Hee; Woo, Seong Ihl

    2015-09-21

    Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1)  cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High temperature volatility and oxidation measurements of titanium and silicon containing ceramic materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynhgiao N.

    Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study first evaluates several hot-pressed Ti-containing compositions at high temperatures as a function of oxidation resistance. This study will also evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400°C--1200°C in water containing environments to determine the volatile hydoxyl species using the transpiration method. The water content ranged from 0-76 mole % and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation at all three temperatures: TiO 2 (s) + H2O (g) = TiO(OH)2 (g).

  3. Predicting adsorption isotherms for aqueous organic micropollutants from activated carbon and pollutant properties.

    PubMed

    Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U

    2005-05-01

    A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.

  4. Zur Biologie des Planktons des Königshafens (Nordsylter Wattenmeer)

    NASA Astrophysics Data System (ADS)

    Martens, P.

    1982-06-01

    From May 1979 on, the following parameters were measured at a station in the inlet of Königshafen near List (Island of Sylt): temperature, salinity, mesozooplankton (>76 µm), chlorophyll-a, seston dry weight, oxygen and phytoplankton-nutrients (NH4-N, NO2-N, NO3-N, PO4-P, SiO3-Si). A multiple regression analysis showed the interrelationships between the parameters measured. Tidal influences on zooplankton and seston dry weight could be observed. At low tide, the amount of zooplankton (not counting the harpacticoid copepods) declines and the number of harpacticoid copepods rises as does the seston dry weight too. The chlorophyll-a content is a function of the phytoplankton-nutrients. An increase in chlorophyll-a leads to a decrease in nitrogen and silicate concentrations. Phosphate, due possibly to a sewage inlet into the Königshafen, is not a limiting factor. The availability of nutrients is influenced by temperature, salinity and the tidal cycle. The amount of oxygen is dependent on water temperature and seston dry weight. High water temperatures and a high seston content lead to a decrease in oxygen concentrations.

  5. Water-quality parameters and benthic algal communities at selected streams in Minnesota, August 2000 - Study design, methods and data

    USGS Publications Warehouse

    Lee, K.E.

    2002-01-01

    This report describes the study design, sampling methods, and summarizes the physical, chemical, and benthic algal data for a component of the multiagency study that was designed to document diurnal water-quality measurements (specific conductance, pH, water temperature, and dissolved oxygen), benthic algal community composition and chlorophyll-a content, and primary productivity at 12 stream sites on 6 streams in Minnesota during August 2000. Specific conductance, pH, water temperature, dissolved oxygen concentrations and percent dissolved oxygen saturation measurements were made with submersible data recorders at 30 minute intervals for a period of 3-6 days during August 2000. Benthic algae collected from wood and rock substrate were identified and enumerated. Biovolume (volume of algal cells per unit area), density (number of cells per unit area), and chlorophyll-a content from benthic algae were determined. These data can be used as part of the multiagency study to develop an understanding of the relations among nutrient concentrations, algal abundance, algal community composition, and primary production and respiration processes in rivers of differing ecoregions in Minnesota.

  6. Evaluation of phases in Pu-C-O and (U, Pu)-C-O systems by X-ray diffractometry and chemical analysis

    NASA Astrophysics Data System (ADS)

    Jain, G. C.; Ganguly, C.

    1993-12-01

    Preparation and characterisation of the carbides of uranium, plutonium and mixed uranium and plutonium form a part of advanced fuel development programs for fast breeder reactors. In the present study, the compositions of the phases of Pu-C-O and (U.Pu)-C-O systems have been determined by chemical analysis and lattice parameter measurement. The carbide samples have been prepared by vacuum carbothermic synthesis of tabletted oxide-graphite powder mixture. Dependence of stoichiometry of Pu 2C 3 phase on the oxygen content of Pu(C,O) phase in Pu(C,O) + Pu 2C 3 phase mixture has been evaluated. Stoichiometry and oxygen solubility of (U 0.3Pu 0.7)(C,O) phase in multiple phase mixture have been determined. Segregation of plutonium in (U,Pu) 2C 3 phase of (U,Pu)(C,O) + (U,Pu) 2C 3 phase mixture and its dependence on the oxygen content of (U,Pu)(C,O) phase have also been determined from the measurement of the lattice parameter of (U,Pu) 2C 3 phase.

  7. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    PubMed

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  8. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  9. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE PAGES

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; ...

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  10. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se; Kindblom, Jon; Bernhardt, Peter

    2014-04-15

    Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods:more » Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D{sub 99}, necrotic fractions ranging from 0% to 97%, and a maximal D{sub 99} increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D{sub 99} strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D{sub 99}. Conclusions: Our present analysis of necrotic formation and the impact of tumor oxygenation on D{sub 99} demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies.« less

  11. Total hydrocarbon content (THC) testing in liquid oxygen (LOX) systems

    NASA Astrophysics Data System (ADS)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2015-12-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  12. Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    NASA Technical Reports Server (NTRS)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2016-01-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  13. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  14. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  15. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, Xianghong; Johnson, William L.; Peker, Atakan

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  16. Normalization of oxygen and hydrogen isotope data

    USGS Publications Warehouse

    Coplen, T.B.

    1988-01-01

    To resolve confusion due to expression of isotopic data from different laboratories on non-corresponding scales, oxygen isotope analyses of all substances can be expressed relative to VSMOW or VPDB (Vienna Peedee belemnite) on scales normalized such that the ??18O of SLAP is -55.5% relative to VSMOW. H3+ contribution in hydrogen isotope ratio analysis can be easily determined using two gaseous reference samples that differ greatly in deuterium content. ?? 1988.

  17. The Effect of Heat Treatment on the chemical and color change of Black Locust (Robinia Pseudoacacia) wood flour

    Treesearch

    Yao Chen; Yongming Fan; Jianmin Gao; Nicole M. Stark

    2012-01-01

    The aim of this study was to investigate the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120°C in either oxygen or nitrogen atmosphere. The pH values and...

  18. Instability growth seeded by oxygen in CH shells on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haan, S. W., E-mail: haan1@llnl.gov; Johnson, M. A.; Stadermann, M.

    Fusion targets imploded on the National Ignition Facility are subject to hydrodynamic instabilities. These have generally been assumed to be seeded primarily by surface roughness, as existing work had suggested that internal inhomogeneity was small enough not to contribute significantly. New simulations presented here examine this in more detail, and consider modulations in internal oxygen content in CH plastic ablators. The oxygen is configured in a way motivated by measurement of oxygen in the shells. We find that plausible oxygen nonuniformity, motivated by target characterization experiments, seeds instability growth that is 3–5× bigger than expected from surface roughness. Pertinent existingmore » capsule characterization is discussed, which suggests the presence of internal modulations that could be oxygen at levels large enough to be the dominant seed for hydrodynamic instability growth. Oxygen-seeded growth is smaller for implosions driven by high-foot pulse shapes, consistent with the performance improvement seen with these pulse shapes. Growth is somewhat smaller for planned future pulse shapes that were optimized to minimize growth of surface ripples. A possible modified specification for oxygen modulations is discussed, which is about 1/5 of the current requirement.« less

  19. Mid-depth sedimentary oxygenation variation in the western Pacific since the last glacial period: geochemical evidence from the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Zou, J. J.; Shi, X.; Zhu, A.

    2017-12-01

    In this study, we investigate a suite of sediment geochemical proxies (total organic carbon and carbonate contents, carbon to nitrogen ratio, aluminum and redox-sensitive elements) to reconstruct the history of sedimentary oxygenation in the northern Okinawa Trough (OT) over the last 50 thousand years (ka). Our data support the presence of oxygen-deficient deep waters during the late deglacial and Preboreal phases (15‒9.5 ka), but oxygenated water column during the Heinrich Stadial 1 (HS1) and the Last Glacial Maximum (LGM). In contrast, increased sedimentary oxygenations are evident during the late glacial period and since 8.5 ka. Fluctuations of sedimentary oxygenation were widespread and apparently coherent over the entire North Pacific basin, reflecting broad effects of North Pacific Intermediate Water (NPIW) ventilation and export productivity. Intensified Kuroshio, however, improved the sedimentary oxygenation since 8.5 ka. We found the correspondence between changes in deglacial sedimentary oxygenation in the OT and Atlantic Meridional Overturning Circulation through the NPIW ventilation. The mechanism behind Atlantic-Pacific ventilation seesaw seems to be attributed to the perturbation of sea ice formation in high latitude North Pacific through atmospheric teleconnection.

  20. Automated Static Culture System Cell Module Mixing Protocol and Computational Fluid Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,

    2004-01-01

    This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.

  1. Transcutaneous oxygen tension monitoring in critically ill patients receiving packed red blood cells.

    PubMed

    Schlager, Oliver; Gschwandtner, Michael E; Willfort-Ehringer, Andrea; Kurz, Martin; Mueller, Markus; Koppensteiner, Renate; Heinz, Gottfried

    2014-12-01

    Whether transfusions of packed red blood cells (PRBCs) affect tissue oxygenation in stable critically ill patients is still matter of discussion. The microvascular capacity for tissue oxygenation can be determined noninvasively by measuring transcutaneous oxygen tension (tcpO2). The aim of this study was to assess tissue oxygenation by measuring tcpO2 in stable critically ill patients receiving PRBC transfusions. Nineteen stable critically ill patients, who received 2 units of PRBC, were prospectively included into this pilot study. Transcutaneous oxygen tension was measured continuously during PRBC transfusions using Clark's electrodes. In addition, whole blood viscosity and global hemodynamics were determined. Reliable measurement signals during continuous tcpO2 monitoring were observed in 17 of 19 included patients. Transcutaneous oxygen tension was related to the global oxygen consumption (r=-0.78; P=.003), the arterio-venous oxygen content difference (r=-0.65; P=.005), and the extraction rate (r=-0.71; P=.02). The transfusion-induced increase of the hemoglobin concentration was paralleled by an increase of the whole blood viscosity (P<.001). Microvascular tissue oxygenation by means of tcpO2 was not affected by PRBC transfusions (P=.46). Packed red blood cell transfusions resulted in an increase of global oxygen delivery (P=.02) and central venous oxygen saturation (P=.01), whereas oxygen consumption remained unchanged (P=.72). In stable critically ill patients, microvascular tissue oxygenation can be continuously monitored by Clark's tcpO2 electrodes. According to continuous tcpO2 measurements, the microvascular tissue oxygenation is not affected by PRBC transfusions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Inventory Control.

    ERIC Educational Resources Information Center

    Rich, Joe, Ed.

    1990-01-01

    Described are the design, construction, and uses of two pieces of laboratory equipment. Included are a multipurpose meter, "Calo-pH Meter," and a device for collecting water samples for determining dissolved oxygen content. (CW)

  3. The preparation and characterization of La doped TiO 2 nanoparticles and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liqiang, Jing; Xiaojun, Sun; Baifu, Xin; Baiqi, Wang; Weimin, Cai; Honggang, Fu

    2004-10-01

    In this paper, pure and La doped TiO2 nanoparticles with different La content were prepared by a sol-gel process using Ti (OC4H9)4 as raw material, and also were characterized by XRD, TG-DTA, TEM, XPS, DRS and Photoluminescence (PL) spectra. We mainly investigated the effects of calcining temperature and La content on the properties and the photocatalytic activity for degrading phenol of as-prepared TiO2 samples, and also discussed the relationships between PL spectra and photocatalytic activity as well as the mechanisms of La doping on TiO2 phase transformation. The results showed that La3+ did not enter into the crystal lattices of TiO2 and was uniformly dispersed onto TiO2 as the form of La2O3 particles with small size, which possibly made La dopant have a great inhibition on TiO2 phase transformation; La dopant did not give rise to a new PL signal, but it could improve the intensity of PL spectra with a appropriate La content, which was possibly attributed to the increase in the content of surface oxygen vacancies and defects after doping La; La doped TiO2 nanoparticles calcined at 600°C exhibited higher photocatalytic activity, indicating that 600°C was an appropriate calcination temperature. The order of photocatalytic activity of La doped TiO2 samples with different La content was as following: 1>1.5>3>0.5>5>0 mol%, which was the same as the order of their PL intensity, namely, the stronger the PL intensity, the higher the photocatalytic activity, demonstrating that there were certain relationships between PL spectra and photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions.

  4. The response of virally infected insect cells to dissolved oxygen concentration: recombinant protein production and oxidative damage.

    PubMed

    Saarinen, Mark A; Murhammer, David W

    2003-01-05

    The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells. Copyright 2002 Wiley Periodicals, Inc.

  5. Paramagnetic defects in electron-irradiated yttria-stabilized zirconia: Effect of yttria content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Jean-Marc; Beuneu, Francois; Morrison-Smith, Sarah E.

    2011-12-20

    We have studied the effect of the yttria content on the paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+) or YSZ. Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. The paramagnetic centre production was studied by X-band EPR spectroscopy. The same paramagnetic centres were identified for both chemical compositions, namely two electron centres, i.e. i) F+-type centres (involving singly ionized oxygen vacancies), and ii) so-called T centres (Zr3+ in a trigonal symmetry site), and hole-centres. A strong effect is observed on the production of hole-centres which are stronglymore » enhanced when doubling the yttria content. However, no striking effect is found on the electron centres (except the enhancement of an extra line associated to the F+-type centres). It is concluded that hole-centres are produced by inelastic interactions, whereas F+-type centres are produced by elastic collisions with no effect of the yttria content on the defect production rate. In the latter case, the threshold displacement energy (Ed) of oxygen is estimated from the electron-energy dependence of the F+-type centre production rate, with no significant effect of the yttria content on Ed. An Ed value larger than 120 eV is found. Accordingly, classical molecular dynamics (MD) simulations with a Buckingham-type potential show that Ed values for Y and O are likely to be in excess of 200 eV. It is concluded that F+-type centres might be actually oxygen divacancies (F2+-type centres). Due to the difficulty in displacing O or Y atoms, the radiation-induced defects may alternatively be a result of Zr atom displacements for Ed = 80 ± 1 eV with subsequent defect re-arrangement.« less

  6. Eclipta yellow vein virus enhances chlorophyll destruction, singlet oxygen production and alters endogenous redox status in Andrographis paniculata.

    PubMed

    Khan, Asifa; Luqman, Suaib; Masood, Nusrat; Singh, Dhananjay Kumar; Saeed, Sana Tabanda; Samad, Abdul

    2016-07-01

    The infection of Eclipta yellow vein virus [EcYVV-IN, Accession No. KC476655], recently reported for the first time, on Andrographis paniculata was studied for redox-mediated alteration mechanism in infected plants. A. paniculata, an important medicinal plant, is used in traditional Indian, Chinese and modern system of medicine. Andrographolide, one of the foremost components of this plant, is known for its varied pharmacological properties. Our investigation provides insight into the effect of virus-induced changes in the singlet oxygen quenching due to the alteration in pigment content (chlorophyll and carotenoids) as well as activation of plant secondary metabolism along with defense activation leading to changes in enzymatic and non-enzymatic redox status. Due to infection, a reduction in carotenoid content was observed which leads to reduced quenching of singlet oxygen. An increased level of enzymatic (SOD and APX) and non-enzymatic antioxidant (DPPH, FRAP, RP, NO, TAC and TP) activities were also observed in virus-infected plants with a positive correlation (>0.9). However, CAT activity was diminished which could be either due to its proteolytic degradation or inactivation by superoxide anions (O(2-.)), NO or peroxynitrite radicals. A significant (p < 0.05) increase in total phenolic content was observed in the infected plants while no considerable difference was seen in the total flavonoid content. Our results highlighted the alteration in redox status caused by virus-induced biotic stress on the plants and could be useful for understanding the after effects of viral infection This study could also be helpful in developing biomimetic methods for improving the production of secondary metabolites of pharmaceutical importance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Influence of the environmental factors on the intensity of the oxygen, ammonium, and phosphate metabolism in the agar-containing seaweed Ahnfeltia tobuchiensis (Ahnfeltiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Cherbadgy, I. I.; Sabitova, L. I.

    2011-02-01

    A complex study of the influence of various environmental factors on the rate of the oxygen (MO 2), ammonium (MNH 4), and phosphate (MPO 4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of Kunashir Island. The following environmental factors have been included into the investigation: the photosynthetically active radiation (PAR); the ammonium (NH4); the phosphate (PO4); and the tissue content of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl). The population of agar-containing seaweed A. tobuchiensis forms a layer with a thickness up to 0.5 m, which occupies about 23.3 km2; the population's biomass is equal to 125000 tons. The quantitative assessment of the organic matter production and nutrient consumption during the oxygen metabolism (MO 2) has been carried out for the whole population. It has been shown that the daily rate depends on the PAR intensity, the seawater concentrations of PO4 and NH4, and the tissue content of N and P ( r 2 = 0.78, p < 0.001). The daily NH4 consumption averages 0.21 μmol/(gDW h) and depends on the NH4 and O2 concentrations in the seawater and on the C and Chl a content in the algal tissues ( r 2 = 0.64, p < 0.001). The daily PO4 consumption averages 0.01 μmol/(gDW h) and depends on the NH4 concentration in the seawater and on the P content in the algal tissues ( r 2 = 0.40, p < 0.001).

  8. Gases and water isotopes in a geochemical section across the Larderello, Italy, geothermal field

    USGS Publications Warehouse

    Truesdell, A.H.; Nehring, N.L.

    1978-01-01

    Steam samples from six wells (Colombaia, Pineta, Larderello 57, Larderello 155, Gabbro 6, and Gabbro 1) in a south to north section across the Larderello geothermal field have been analyzed for inorganic and hydrocarbon gases and for oxygen-18 and deuterium of steam. The wells generally decrease in depth and increase in age toward the south. The steam samples are generally characterized by (1) Total gas contents increasing south to north from 0.003 to 0.05 mole fraction; (2) Constant CO2 (95??2 percent); near constant H2S (1.6??0.8), N2 (1.2??0.8), H2 (2??1), CH4 (1.2??1), and no O2 in the dry gas; (3) Presence of numerous, straight chain and branched C2 to C6 hydrocarbons plus benzene in amounts independent of CH4 contents with highest concentrations in the deeper wells; (4) Oxygen-18 contents of steam increasing south to north from -5.0??? to -0.4??? with little change in deuterium (-42??2???). These observations are interpreted as showing: (1) Decreasing gas contents with amount of production because the proportion of steam boiled from liquid water increases with production; (2) Synthesis of CH4 from H2 and CO2 with CO2 and H2 produced by thermal metamorphism and rock-water reactions; (3) Extraction of C2 to C6 hydrocarbons from rock organic matter; (4) Either oxygen isotope exchange followed by distillation of steam from the north toward the south (2 plates at ???220??C) or mixture of deeper more-exchange waters from the north with shallow, less-exchanged recharging waters from the south. ?? 1978 Birkha??user Verlag.

  9. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds.

    PubMed

    Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel

    2007-01-01

    Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.

  10. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka).

    PubMed

    Steinhausen, M F; Sandblom, E; Eliason, E J; Verhille, C; Farrell, A P

    2008-12-01

    The mechanism underlying the decrease in aerobic scope in fish at warm temperatures is not fully understood and is the focus of this research. Our study examined oxygen uptake and delivery in resting, swimming and recovering sockeye salmon while water temperature was acutely increased from 15 degrees C to 24 degrees C in 2 degrees C h(-1) increments. Fish swam at a constant speed during the temperature change. By simultaneously measuring oxygen consumption (M(O(2))), cardiac output (Q) and the blood oxygen status of arterial and venous blood, we were able to determine where in the oxygen cascade a limitation appeared when fish stopped sustained swimming as temperature increased. High temperature fatigue of swimming sockeye salmon was not a result of a failure of either oxygen delivery to the gills or oxygen diffusion at the gills because oxygen partial pressure (P(O(2))) and oxygen content (C(O(2))) in arterial blood did not decrease with increasing temperature, as would be predicted for such limitations. Instead, arterial oxygen delivery (Ta(O(2))) was initially hampered due to a failure to adequately increase Q with increasing temperature. Subsequently, lactate appeared in the blood and venous P(O(2)) remained constant.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, Debtanu; Daza, Yolanda A.; Yung, Matthew M.

    Density functional theory (DFT) based investigation of two parameters of prime interest -- oxygen vacancy and surface terminations along (100) and (110) planes -- has been conducted for La (1-x)Sr xFe(1-y)Co yO (3-more » $$\\delta$$) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO 2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO 2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO 2 adsorption strength. Finally, the theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.« less

  12. In Situ Wetland Restoration Demonstration

    DTIC Science & Technology

    2016-06-01

    conditions may differ from subaqueous sediment beds (e.g., moisture content, oxidation-reduction potential, temperature , dissolved oxygen ) and as such...13 3.1.1 Determine Remediation Effectiveness ...20 3.1.6 Cost Effectiveness

  13. Eco-Chem

    ERIC Educational Resources Information Center

    Campbell, J. A.

    1976-01-01

    Presents questions and answers pertaining to yeast fermentation, oxygen content of the air, nutritional requirements of hot water bacteria, the hydrolysis of acetyl coenzyme A, and the stratified distribution of life in the Black Sea. (MLH)

  14. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The involvement of sulphur metabolism

    PubMed Central

    Neuberger, Albert; Sandy, John D.; Tait, George H.

    1973-01-01

    1. The `initial' 5-aminolaevulinate synthetase activity, that is the activity observed immediately after cell disruption, in extracts prepared from unharvested semianaerobically grown Rhodopseudomonas spheroides, was twice that observed under the same assay conditions in extracts prepared from harvested cells. 2. The effect of oxygenation of a culture on the `maximum' aminolaevulinate synthetase activity, that is the activity observed 1h after disruption of harvested cells, is markedly influenced by the contents of the growth medium. Oxygenation of organisms for 1h in the medium in which they have grown produces an 80–90% decrease in maximum activity, whereas similar treatment of organisms resuspended in fresh medium produces less than a 40% decrease. 3. This protective effect of fresh medium is absolutely dependent on the presence of sulphate. When cells are suspended in sulphate-deficient fresh medium, the maximum activity falls by 65–75% even without oxygenation. A high maximum activity is regenerated when sulphate is resupplied. 4. When organisms are oxygenated in the medium in which they have grown, the cellular contents of GSH+GSSG and cysteine+cystine fall very markedly and homolanthionine is formed. Both the fall in aminolaevulinate synthetase activity and the changes in sulphur metabolism are largely prevented by the addition of compounds which stimulate synthesis of cysteine de novo or inhibit the conversion of cysteine S into homocysteine S. 5. The maximum aminolaevulinate synthetase activity was directly proportional to the GSH+GSSG content of all cell preparations. In glutathione-depleted extracts the `low'-activity enzyme could be re-activated in vitro by the addition of GSH, GSSG, cysteine or cystine, whereas in extracts with a high glutathione content the `high'-activity enzyme was unaffected by these sulphur compounds. 6. The activation of low-activity enzyme with exogenous sulphur compounds was prevented by excluding air or by adding NADH. Studies with purified enzyme indicate that sulphur compounds do not interact directly with the enzyme, but that their effect is mediated by a number of other endogenous factors. PMID:4544404

  15. Potential Energy Surfaces and Dynamics of High Energy Species

    DTIC Science & Technology

    2009-04-13

    explored include ionic liquids and a range of high-nitrogen content and nitrogen-oxygen content species. Polyhedral oligomeric silisesquioxanes are...Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Several papers on ionic liquids have been published or submitted as a result of this...in energetic ionic liquids . These are variously substituted triazolium, tertazolium, and pentazolium cations. The heats of formation of all species

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  17. MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Biaohua; He, Xiaobo; Yin, Fengxiang

    A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-xmore » and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.« less

  18. The redox state of the mantle during and just after core formation.

    PubMed

    Frost, D J; Mann, U; Asahara, Y; Rubie, D C

    2008-11-28

    Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the mantle that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe2O3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.

  19. Evolution of Structural and Electrical Properties of Oxygen-Deficient VO2 under Low Temperature Heating Process.

    PubMed

    Zhang, Jiasong; Zhao, Zhengjing; Li, Jingbo; Jin, Haibo; Rehman, Fida; Chen, Pengwan; Jiang, Yijie; Chen, Chunxu; Cao, Maosheng; Zhao, Yongjie

    2017-08-16

    Structural stability and functional performances of vanadium dioxide (VO 2 ) are strongly influenced by oxygen vacancies. However, the mechanism of metal-insulator transition (MIT) influenced by defects is still under debate. Here, we study the evolution of structure and electrical property of oxygen-deficient VO 2 by a low temperature annealing process (LTP) based on a truss-structured VO 2 nanonet. The oxygenation process of the oxygen-deficient VO 2 is greatly prolonged, which enables us to probe the gradual change of properties of the oxygen-deficient VO 2 . A continuous lattice reduction is observed during LTP. No recrystallization and structural collapse of the VO 2 nanonet can be found after LTP. The valence-band X-ray photoelectron spectroscopy (XPS) measurements indicate that the oxygen deficiency strongly affects the energy level of the valence band edge. Correspondingly, the resistance changes of the VO 2 films from 1 to 4.5 orders of magnitude are achieved by LTP. The effect of oxygen vacancy on the electric field driven MIT is investigated. The threshold value of voltage triggering the MIT decreases with increasing the oxygen vacancy concentration. This work demonstrates a novel and effective way to control the content of oxygen vacancies in VO 2 and the obvious impact of oxygen vacancy on MIT, facilitating further research on the role of oxygen vacancy in structure and MIT of VO 2 , which is important for the deep understanding of MIT and exploiting innovative functional application of VO 2 .

  20. [Development of Sediment Micro-Interface Under Physical and Chironomus plumosus Combination Disturbance].

    PubMed

    Wang, Ren; Li, Da-peng; Huang, Yong; Liu, Yan-jian; Chen, Jun

    2015-11-01

    Synergistic effect of physical and Chironomus plumosus combination disturbance on the characteristics of the micro-environment and micro-interface was investigated by the Rhizon samplers and Unisense micro sensor system. The results showed that the oxygen penetration depth (OPD), total oxygen exchange (TOE), water content and total microbial activity increased under the combination disturbance and bioturbation and were kept at the higher level, compared with the control. These parameters increased with the physical intensity under combination disturbance. However, the content of Fe2+ decreased under the combination disturbance and bioturbation and the decrease was more obvious than that in the control. The changes of the Fe2+, the water content and the total microbial activity were large at 0-4 cm depth in the sediments. Therefore, the area might be the active area for the transformation of internal sedimentary phosphorus forms. The curve fitting was used for the OPD, TOE, the content of Fe2+, the water content and the total microbial activity with the physical intensity under combination disturbance. It was observed that the second-order polynomial equation was suitable for the curve fitting. In addition, jump type synergistic effect was presented in the above mentioned parameters under combination disturbance when the physical intensity was higher than 34 r x min(-1). The remodeling on the sediment micro-interface and micro-environment might be the main inducing mechanism for the transformation of internal phosphorus.

  1. Variability of dissolved oxygen over the last millennium and the 21st century in CESM

    NASA Astrophysics Data System (ADS)

    Hameau, Angélique; Joos, Fortunat; Mignot, Juliette; Keller, Kathrin

    2017-04-01

    The earth system models simulate a depletion of the oxygen content in the ocean under global warming conditions (Cocco et al. 2012, Frölicher et al. 2009). The response to external forcing and mechanism underlying this evolution are not completely understood. Physical and biogeochemical processes are involved and tangled up to each other leading to a decrease of the global mean concentration of O2 in the ocean with the increase of the ocean temperature. This result is supported by experimental and observational studies in Atlantic and Pacific oceans (Stramma et al. 2008, Brandt et al. 2010). Here, we study the evolution of dissolved oxygen in a climate simulation of the Community Earth System Model (CESM) covering the last millennium and the 21st century. This long period allows us to identify the natural variability of the climate in this system, and therefore analyse the time of emergence (ToE) of the anthropogenic signal under the RCP8.5 scenario. Based on Keller et al. 2014, the time of emergence is defined as the point in time when the trend signal reaches twice the standard deviation of the signal during the preindustrial period (1000 years). The ToE of oxygen and of temperature present an offset. We show that the anthropogenic emissions are seen in a first hand by the oxygen and only then by the temperature. We also look at the OMZ response. The oxygen minimum zones result from a combination of weak ventilation and sustained respiration by the microorgamisms. With a global decrease of the oceanic oxygen content, the OMZ may therefore expand impacting the environment of marine species. But this statement is questioned by Deutsch et al 2014, who relates the variations of Pacific OMZ to the variations of the tropical Walker circulation. The CESM climate model predicts an expansion of the oxygen low zones and the emergence of new ones over the last century. Magnitude and timescales of these responses will be discussed and compared to natural variability.

  2. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2016-01-01

    temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 221: 427-431, 1971. 33. Brouns I, De Proost I, Pintelon I, Timmermans JP...lactic acid production (Fig. 8). The lack of effect is not unexpected because the increase in arterial O2 content by oxygen ventilation is limited to the...triggering the bronchospasm; 2) whether this effect is heightened by acute airway inflammation; and 3) the temperature thresholds of thermal stress in

  3. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    DTIC Science & Technology

    2012-06-01

    dry room with controlled moisture content. Composite 3 films on nickel foam were used as working cathodes along with lithium metal as anode and the...cathode formulation [6,7,8,9,10], efficient oxygen reduction catalysts [11,12], electrolyte compositions [13,14], effect of moisture [15], etc...specimens. Structure and purity of these materials were performed by powder X-ray diffraction (XRD) on a Rigaku D/MAX-2250 diffractometer fitted with CuKα

  4. A large format in operando wound cell for analysing the structural dynamics of lithium insertion materials

    NASA Astrophysics Data System (ADS)

    Brant, William R.; Roberts, Matthew; Gustafsson, Torbjörn; Biendicho, Jordi Jacas; Hull, Stephen; Ehrenberg, Helmut; Edström, Kristina; Schmid, Siegbert

    2016-12-01

    This paper presents a large wound cell for in operando neutron diffraction (ND) from which high quality diffraction patterns are collected every 15 min while maintaining conventional electrochemical performance. Under in operando data collection conditions the oxygen atomic displacement parameters (ADPs) and cell parameters were extracted for Li0.18Sr0.66Ti0.5Nb0.5O3. Analysis of diffraction data collected under in situ conditions revealed that the lithium is located on the (0.5 0.5 0) site, corresponding to the 3c Wyckoff position in the cubic perovskite unit cell, after the cell is discharged to 1 V. When the cell is discharged under potentiostatic conditions the quantity of lithium on this site increases, indicating a potential position where lithium becomes pinned in the thermodynamically stable phase. During this potentiostatic step the oxygen ADPs reduce significantly. On discharge, however, the oxygen ADPs were observed to increase gradually as more lithium is inserted into the structure. Finally, the rate of unit cell expansion changed by ∼44% once the lithium content approached ∼0.17 Li per formula unit. A link between lithium content and degree of mobility, disorder of the oxygen positions and changing rate of unit cell expansion at various stages during lithium insertion and extraction is thus presented.

  5. Hydrogenation and interesterification effects on the oxidative stability and melting point of soybean oil.

    PubMed

    Daniels, Roger L; Kim, Hyun Jung; Min, David B

    2006-08-09

    Soybean oil with an iodine value of 136 was hydrogenated to have iodine values of 126 and 117. The soybean oils with iodine values of 136, 126, and 117 were randomly interesterified using sodium methoxide. The oxidative stabilities of the hydrogenated and/or interesterified soybean oils were evaluated by measuring the headspace oxygen content by gas chromatography, and the induction time was measured using Rancimat. The melting points of the oils were evaluated by differential scanning calorimetry. Duncan's multiple range test of the headspace oxygen and induction time showed that hydrogenation increased the headspace oxygen content and induction time at alpha = 0.05. Interesterification decreased the headspace oxygen and the induction time for the soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. Hydrogenation increased the melting points as the iodine value decreased from 136 and 126 to 117 at alpha = 0.05. The random interesterification increased the melting points of soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. The combined effects of hydrogenation and interesterification increased the oxidative stability of soybean oil at alpha = 0.05 and the melting point at alpha = 0.01. The optimum combination of hydrogenation and random interesterification can improve the oxidative stability and increase the melting point to expand the application of soybean oil in foods.

  6. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    USGS Publications Warehouse

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  7. Desulfurization kinetics of molten copper by gas bubbling

    NASA Astrophysics Data System (ADS)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  8. Engineering amorphous-crystalline interfaces in TiO2-x/TiO2-y-based bilayer structures for enhanced resistive switching and synaptic properties

    NASA Astrophysics Data System (ADS)

    Bousoulas, P.; Asenov, P.; Karageorgiou, I.; Sakellaropoulos, D.; Stathopoulos, S.; Tsoukalas, D.

    2016-10-01

    The operating principle of resistive random access memories (RRAMs) relies on the distribution of ionic species and their influence on the electron transport. Taking into account that formation and annihilation of conducting filaments (CFs) is the driving mechanism for the switching effect, it is very important to control the regions where these filaments will evolve. Thus, homolayers of titanium oxide with different oxygen contents were fabricated in order to tune the local electrical and thermal properties of the CFs and narrow down the potential percolation paths. We show that the oxygen content in the top layer of the TiO2-x/TiO2-y bilayer memristors can directly influence the morphology of the layers which affect the diffusion barrier and consequently the diffusivity and drift velocity of oxygen vacancies, yielding in important enhancement of switching characteristics, in terms of spatial uniformity (σ/μ < 0.2), enlarged switching ratio (˜104), and synaptic learning. In order to address the experimental data, a physical model was applied, divulging the crucial role of temperature, electric potential and oxygen vacancy density on the switching effect and offering physical insights to the SET/RESET transitions and the analog switching. The forming free nature of all the devices in conjunction with the self-rectifying behavior, should also be regarded as important assets towards RRAM device optimization.

  9. PCDD/F catalysis by metal chlorides and oxides.

    PubMed

    Zhang, Mengmei; Yang, Jie; Buekens, Alfons; Olie, Kees; Li, Xiaodong

    2016-09-01

    Model fly ash (MFA) samples were composed of silica, sodium chloride, and activated carbon, and doped with metal (0.1 wt% Cu, Cr, Ni, Zn and Cd) chloride or oxide. Each sample was de novo tested at 350 °C for 1 h, in a flow of gas (N2, N2 + 10% O2, +21% O2 or +10% H2) to investigate the effect of metal catalyst and gas composition on PCDD/F formation. Total PCDD/F yield rises rapidly with oxygen content, while the addition of hydrogen inhibits the formation and chlorination of PCDD/F. The amount of PCDD on average rises linearly with the oxygen concentration, while that of PCDF follows a reaction order of about 1/2; thus the PCDF to PCDD ratio drops when more oxygen becomes available. Some samples do not follow this trend. Chlorides are much more active than oxides, yet there are marked differences between individual metals. Principal component analysis (PCA) was applied to study the signatures from all samples, showing their unique specificity and diversity. Each catalyst shows a different signature within its individual homologue groups, demonstrating that these signatures are not thermodynamically controlled. Average congener patterns do not vary considerably with oxygen content changing from oxidising (air) to reducing (nitrogen, hydrogen). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Micro-XANES Measurements on Experimental Spinels and the Oxidation State of Vanadium in Spinel-Melt Pairs

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.R.; Newville, M.

    2004-01-01

    Spinel can be a significant host phase for V as well as other transition metals such as Ni and Co. However, vanadium has multiple oxidation states V(2+), V(3+), V(4+) or V(5+) at oxygen fugacities relevant to natural systems. We do know that D(V) spinel/melt is correlated with V and TiO2 content and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(4+) will be stable across the range of natural oxygen fugacities in nature. In order to gain a better understanding of D(V) spinel/melt we have equilibrated spinel-melt pairs at controlled oxygen fugacities, between HM to NNO, where V is present in the spinel at natural levels (approx. 300 ppm V). These spinel-melt pairs were analyzed using micro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with spinel compositional data (Ti, V content) and oxygen fugacity, to unravel the effects of these variables on D(V) spinel/melt.

  11. The S factor--a new derived hemodynamic oxygenation parameter--a useful tool for simplified mathematical modeling of global problems of oxygen transport.

    PubMed

    Farrell, K; Wasser, T

    1997-01-01

    We describe a new derived hemodynamic oxygenation parameter, the S factor (S). The factor is based on oxygen delivery and oxygen consumption and can range from -3 to 1. It allows simplified mathematical modeling of clinical problems of oxygen transport and can be applied to many clinical situations. A new hemodynamic oxygenation parameter, the S factor (S), is introduced as an aid to mathematical modeling. It is defined as follows: [formula: see text] (DO2 = oxygen delivery, VO2 = oxygen consumption) S can theoretically vary from -3 (DO2 = VO2) to +1 (VO2 = 0). When DO2/VO2 = 4 (ie. OER = 0.25), S = 0. An S < 0 implies utilization of reserve oxygen transport capacity. An S > 0 implies increased oxygen delivery in relation to oxygen consumption (ie. "shunted oxygen delivery"). By algebraic manipulation and substitution of the components of DO2 into Equation 1: DO2 = Q x Ca x 10 DO2 = Q [(Hb)(Sat)(1.36) + PaO2(.0031)] 10 (2) the following equations can be derived: [formula: see text] [formula: see text] Ca - Cv (Ca = arterial content, Cv = venous content) can be determined by substituting components of oxygen consumption: VO2 = Q (Ca - Cv) x 10 (5) into equation 1 and solving for Ca - Cv. [formula: see text] Equation 6 can be simplified to: [formula: see text] A previously defined relationship between mixed venous PO2 (PvO2) and DO2/VO2 (where calculated P50 is 26.6 +/- 1.0) can be used to modify S in a clinically relevant manner. PvO2 = 5.44D O2/VO2 + 18.16 (8) The relationship between S and PvO2 can be defined by substituting Equation 4 into Equation 1 and solving for PvO2 PvO2 = [21.76/(1-S)] + 18.16 (9) As an example, at a PvO2 of 28 torr (anaerobic threshold), S = -1.2. The relationship between PvO2 and S is shown in Figure 1. S, which can also be defined as 1-4(VO2/DO2) or 1-4(OER), is a useful tool for mathematical modeling of global problems of oxygen transport because the previously derived equations with the S value allow the components of oxygen transport to be interrelated in a clinically relevant manner. Additional advantages of using S in mathematical modeling are: 1. Conceptually it 'fits' in that in regards to the sign (+ or -), as a -S implies utilization of reserve oxygen transport capacity and a +S implies wasted or excess oxygen delivery (shunted). 2. These concepts are easily quantified using the S factor. 3. It 'spreads out' the difference between values for parameters (OER or S) integrating components of oxygen transport, ie. in the 'normal state' regarding oxygen transport, OER = 0.25 and S = 0. At the anaerobic threshold (PvO2 = 28 torr), OER = 0.55 and S = -1.2. Thus, the change in OER from 'normal state' to anaerobic threshold is 0.3 (0.55-0.25) and the change in S is 1.2. This represents a four-fold increase. Four examples of mathematical modeling of global problems of oxygen transport using the S factor are described below.

  12. Seasonal and interannual variability of dissolved oxygen around the Balearic Islands from hydrographic data

    NASA Astrophysics Data System (ADS)

    Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.

    2014-10-01

    Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.

  13. Effect of Ladle Usage on Cleanliness of Bearing Steel

    NASA Astrophysics Data System (ADS)

    Chi, Yunguang; Deng, Zhiyin; Zhu, Miaoyong

    2018-02-01

    To investigate the effects of ladle usage on the inclusions and total oxygen contents of bearing steel, MgO refractory rods with different glazes were used to simulate different ladle usages. The results show that the effects of different ladle usages on the cleanliness of the steel differ from each other. The total oxygen content of steel increases with the decreasing glaze basicity. Ladle glaze having a lower basicity has a more negative impact on the cleanliness of steel in the subsequent production. Inclusions can be generated by the flush-off of ladle glaze, and the initial glaze is important in the evolution of inclusions in the subsequent heats. To avoid the negative effect of ladle usage and to improve the steel cleanliness as much as possible, specialized ladles were suggested for producing high-quality steel grades.

  14. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  15. Development of lithium diffused radiation resistant solar cells, part 2

    NASA Technical Reports Server (NTRS)

    Payne, P. R.; Somberg, H.

    1971-01-01

    The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.

  16. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Differences between vacuum degassing and ultrasound degassing.

    PubMed

    Yanagida, Hirotaka

    2008-04-01

    The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.

  17. Understanding the Origins of Higher Capacities at Faster Rates in Lithium-Excess Li xNi 2–4x/3Sb x/3O 2

    DOE PAGES

    Twu, Nancy; Metzger, Michael; Balasubramanian, Mahalingam; ...

    2017-02-08

    Here, the lithium-excess Li xNi 2-4x/3Sb x/3O 2 (LNSO) materials were previously shown to demonstrate higher capacities and improved cyclability with increasing lithium content. While the performance trend is promising, observed capacities are much lower than theoretical capacities, pointing to a need for further understanding of active redox processes in these materials. In this work, we study the electrochemical behavior of the LNSO materials as a function of lithium content and at slow and fast rates. Surprisingly, Li 1.15Ni 0.47Sb 0.38O 2 (LNSO-15) exhibits higher discharge capacities at faster rates and traverses distinct voltage curves at slow and fast rates.more » To understand these two peculiarities, we characterize the redox activity of nickel, antimony, and oxygen at different rates. While experiments confirm some nickel redox activity and oxygen loss, these two mechanisms cannot account for all observed capacity. We propose that the balance of the observed capacity may be due reversible oxygen redox and that the rate-dependent voltage curve features may derive from irreversible nickel migration occurring on slow charge. As future high energy density cathodes are likely to contain both lithium excess and high nickel content, both of these findings have important implications for the development of novel high capacity cathode materials.« less

  18. Influence of compost covers on the efficiency of biowaste composting process.

    PubMed

    Marešová, Karolina; Kollárová, Mária

    2010-12-01

    The temperature of matured compost is an indicator of feedstock quality and also a good feedback informing about the suitability of an applied technological procedure. Two independent experiments using the technology of windrow composting at open area were conducted with the final goal to evaluate the effect of compost pile covering (in comparison with uncovered piles) on the course of composting process - behaviour of temperature over time and oxygen content. Two types of sheets were used - Top Tex permeable sheet and impermeable polyethylene sheet. The experiment I (summer months) aimed at comparison of efficiency between the Top Tex sheet cover and the uncovered compost piles, while experiment II (autumn months) compared treatments using the Top Tex sheet and polyethylene sheet by contrast. Within the experiment I the composts consisted of cattle slurry and fresh grass matter at a ratio of 1:1, in case of experiment II consisted of pig/cattle manure, fresh grass matter and chipped material at a ratio of about 1:2:1. The obtained data showed no significant differences among the cover treatments according to ANOVA. The only exception was oxygen content in pile 4 (experiment II) under Top Tex sheet, where a markedly higher oxygen content than under polyethylene sheet was measured during the whole composting period. It was the only case where statistical analysis proved a significant difference; the p-value was 0.0002. Copyright © 2010. Published by Elsevier Ltd.

  19. Insights into the origin of low- δ18O basaltic magmas in Hawaii revealed from in situ measurements of oxygen isotope compositions of olivines

    NASA Astrophysics Data System (ADS)

    Wang, Zhengrong; Eiler, John M.

    2008-05-01

    In situ measurements of oxygen isotope and elemental compositions of olivines from subaerial Mauna Kea lavas reveal that their δ18O values correlate positively with their forsterite contents, consistent with addition of one or more low- δ18O components into magmas from which they grew over the course of their crystallization-differentiation histories. This result supports previous suggestions that low- δ18O components to Mauna Kea lavas are contaminants derived from hydrothermally-altered rocks in the volcanic edifice or lithosphere, rather than components of the underlying mantle sources of these lavas. The slope of the correlation between δ18O values and forsterite contents of olivines is steeper for subaerial Mauna Kea lavas than for submarine Mauna Kea lavas, and olivines from Mauna Loa lavas exhibit negligible changes in δ18O values over a similar range of forsterite contents. Models of assimilation-fractional crystallization (AFC) processes can explain our observations if the δ18O values of crustal contaminants decrease sharply at the submarine-subaerial transition in Mauna Kea volcano, and if Mauna Loa lavas are either uncontaminated or contaminated only by rocks that have δ18O values similar to that of primary Mauna Loa magmas. We suggest that the differences in oxygen isotope systematics among Mauna Loa, submarine Mauna Kea and subaerial Mauna Kea lavas principally reflect the sources and amounts of water available to hydrothermal systems in the volcanic edifice.

  20. Climate change hampers endangered species through intensified moisture-related plant stresses

    NASA Astrophysics Data System (ADS)

    (Ruud) Bartholomeus, R. P.; (Flip) Witte, J. P. M.; (Peter) van Bodegom, P. M.; (Jos) van Dam, J. C.; (Rien) Aerts, R.

    2010-05-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. The first physiological process inhibited at high soil moisture contents is plant root respiration, i.e. oxygen consumption in the roots, which responds to increased temperatures. High soil moisture contents hamper oxygen transport from the atmosphere, through the soil - where part of the oxygen additionally disappears by soil microbial oxygen consumption - and to the root cells. Reduced respiration negatively affects the energy supply to plant metabolism. Plant transpiration, which responds to increased temperatures and atmospheric CO2-concentrations, is the first physiological process that will be inhibited by low soil moisture contents, negatively affecting both photosynthesis and cooling. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.

Top