Science.gov

Sample records for oxygen demand mass

  1. In situ global method for measurement of oxygen demand and mass transfer

    SciTech Connect

    Klasson, K.T.; Lundbaeck, K.M.O.; Clausen, E.C.; Gaddy, J.L.

    1997-05-01

    Two aerobic microorganisms, Saccharomycopsis lipolytica and Brevibacterium lactofermentum, have been used in a study of mass transfer and oxygen uptake from a global perspective using a closed gas system. Oxygen concentrations in the gas and liquid were followed using oxygen electrodes, and the results allowed for easy calculation of in situ oxygen transport. The cell yields on oxygen for S. lipolytica and B. lactofermentum were 1.01 and 1.53 g/g respectively. The mass transfer coefficient was estimated as 10 h{sup {minus}1} at 500 rpm for both fermentations. The advantages with this method are noticeable since the use of model systems may be avoided, and the in situ measurements of oxygen demand assure reliable data for scale-up.

  2. Measurement and modeling of oxygen content in a demand constant mass ratio injection rebreather.

    PubMed

    Frånberg, Oskar; Gennser, Mikael

    2015-01-01

    Mechanical semi-closed rebreathers do not need oxygen sensors for their functions, thereby reducing the complexity of the system. However, testing and modeling are necessary in order to determine operational limits as well as the decompression obligation and to avoid hyperoxia and hypoxia. Two models for predicting the oxygen fraction in a demand constant mass ratio injection (DCMRI) rebreather for underwater use were compiled and compared. The model validity was tested with an IS-MIX, Interspiro AB rebreather using a metabolic simulator connected to a breathing machine inside a water-filled pressure chamber. The testing schedule ranged from 0.5-liter (L) to 3-liter tidal volumes, breathing frequencies from five to 25 breaths/minute and oxygen consumptions from 0.5 L/minute to 4 L/minute. Tests were carried out at surface and pressure profiles ranging to 920 kPa(a) (81 meters of sea water, 266 feet of sea water). The root mean squared error (RMSE) of the single-compartment model was 2.4 percent-units of oxygen for the surface test with the 30% dosage setting but was otherwise below 1% unit. For the multicompartment model the RMSE was below 1% unit of oxygen for all tests. It is believed that these models will aid divers in operational settings and may constitute a helpful tool when developing semi-closed rebreathing apparatuses.

  3. Measurement and modeling of oxygen content in a demand constant mass ratio injection rebreather.

    PubMed

    Frånberg, Oskar; Gennser, Mikael

    2015-01-01

    Mechanical semi-closed rebreathers do not need oxygen sensors for their functions, thereby reducing the complexity of the system. However, testing and modeling are necessary in order to determine operational limits as well as the decompression obligation and to avoid hyperoxia and hypoxia. Two models for predicting the oxygen fraction in a demand constant mass ratio injection (DCMRI) rebreather for underwater use were compiled and compared. The model validity was tested with an IS-MIX, Interspiro AB rebreather using a metabolic simulator connected to a breathing machine inside a water-filled pressure chamber. The testing schedule ranged from 0.5-liter (L) to 3-liter tidal volumes, breathing frequencies from five to 25 breaths/minute and oxygen consumptions from 0.5 L/minute to 4 L/minute. Tests were carried out at surface and pressure profiles ranging to 920 kPa(a) (81 meters of sea water, 266 feet of sea water). The root mean squared error (RMSE) of the single-compartment model was 2.4 percent-units of oxygen for the surface test with the 30% dosage setting but was otherwise below 1% unit. For the multicompartment model the RMSE was below 1% unit of oxygen for all tests. It is believed that these models will aid divers in operational settings and may constitute a helpful tool when developing semi-closed rebreathing apparatuses. PMID:26742257

  4. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite

  5. Downscaling the chemical oxygen demand test.

    PubMed

    Carbajal-Palacios, Patricia; Balderas-Hernandez, Patricia; Ibanez, Jorge G; Roa-Morales, Gabriela

    2014-01-01

    The usefulness of the standard chemical oxygen demand (COD) test for water characterization is offset to some extent by its requirement for highly toxic or expensive Cr, Ag, and Hg species. In addition, oxidation of the target samples by chromate requires a 2-3 h heating step. We have downscaled this method to obtain a reduction of up to ca. 80% in the use and generation of toxic residues and a time reduction of up to ca. 67%. This also translates into considerable energy savings by reducing the time required for heating as well as costly labour time. Such reductions can be especially important for analytical laboratories with heavy loads of COD analyses. Numerical results obtained with the standard COD method for laboratory KHP samples (potassium hydrogen phthalate) show an average relative error of 1.41% vs. an average of 2.14% obtained with the downsized or small-scale version. The average % standard deviation when using the former is 2.16% vs. 3.24% obtained with the latter. When analysing municipal wastewater samples, the relative error is smaller for the proposed small-scale method than for the standard method (0.05 vs. 0.58, respectively), and the % std. dev. is 1.25% vs. 1.06%. The results obtained with various industrial wastewaters show good agreement with those obtained using the standard method. Chloride ions do not interfere at concentrations below 2000 mg Nacl/L. This highly encouraging proof-of-concept offers a potentially alternative greener approach to COD analysis. PMID:24701932

  6. Potential oxygen demand of sediments from Lake Erie

    USGS Publications Warehouse

    Schloesser, D.W.; Stickel, R.G.; Bridgeman, T.B.

    2005-01-01

    Dreissenid mussels (Dreissena polymorpha and D. bugensis) biodeposit large quantities of filtered materials (i.e., feces and pseudofeces) directly on bottom substrates. These biodeposits have the potential to increase oxygen demand in sediments and overlying waters and thus contribute to hypolimnetic anoxia in Lake Erie. We hypothesized that higher potential oxygen demand of sediments would occur in areas near shore than in offshore hypolimnetic waters as a result of biodeposits carried by currents from littoral water where mussels, available foods, and biodeposits may be most abundant. To address this hypothesis, we measured potential oxygen demand (mg O2/L/120 h incubation) at six sites near shore and six sites offshore monthly June to September 2002 and August 2003. In addition, we compared, in post priori hypothesis, seven sites with and five sites without dreissenid mussels. Contrary to our hypotheses, potential oxygen demand was not significantly higher in bottles containing nearshore sediments than offshore sediments. Similarly, potential oxygen demand was not significantly higher at sites with dreissenid mussels than at sites without mussels. Data are consistent with pre-dreissenid studies which show oxygen demand and percent ash-free dry weights of sediments were higher offshore than near shore and ash-free dry weight of sediments decreased June to September. Therefore, the present study provides no evidence that dreissenid mussels have contributed directly-via biodeposition-to increased anoxia observed in Lake Erie in the mid to late 1990s.

  7. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  8. Chemical Oxygen Demand. Training Module 5.107.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with standard method procedures for determining the Chemical Oxygen Demand (COD) of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers analytical procedures,…

  9. [Microbial biosensors for detection of biological oxygen demand (a review)].

    PubMed

    Ponamoreva, O N; Arliapov, V A; Alferov, V A; Reshetilov, A N

    2011-01-01

    The review briefs recent advances in application of biosensors for determining biological oxygen demand (BOD) in water. Special attention is focused on the principles of operation of microbial BOD sensors; the information about biorecognition elements in such systems and the methods used for immobilization of biological components in film biosensors is summarized. Characteristics of some BOD sensor models are considered in detail.

  10. Sediment oxygen demand in eastern Kansas streams, 2014 and 2015

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.; Graham, Jennifer L.

    2016-08-29

    Dissolved oxygen concentrations in streams are affected by physical, chemical, and biological factors in the water column and streambed, and are an important factor for the survival of aquatic organisms. Sediment oxygen demand (SOD) rates in Kansas streams are not well understood. During 2014 and 2015, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment, measured SOD at eight stream sites in eastern Kansas to quantify SOD rates and variability with respect to season, land use, and bottom-sediment characteristics. Sediment oxygen demand rates (SODT) ranged from 0.01 to 3.15 grams per square meter per day at the ambient temperature of the measurements. The summer mean SOD rate was 3.0-times larger than the late fall mean rate, likely because of increased biological activity at warm water temperatures. Given the substantial amount of variability in SOD rates possible within sites, heterogeneity of substrate type is an important consideration when designing SOD studies and interpreting the results. Sediment oxygen demand in eastern Kansas streams was correlated with land use and streambed-sediment characteristics, though the strength of relations varied seasonally. The small number of study sites precluded a more detailed analysis. The effect of basin land use and streambed sediment characteristics on SOD is currently (2016) not well understood, and there may be many contributing factors including basin influences on water quality that affect biogeochemical cycles and the biological communities supported by the stream.

  11. Glucagon increases hepatic oxygen supply-demand ratio in pigs

    SciTech Connect

    Gelman, S.; Dillard, E.; Parks, D.A.

    1987-05-01

    The present study was performed on eight young pigs to test the hypothesis that glucagon increases hepatic oxygen supply to a greater extent than hepatic oxygen uptake, providing a better hepatic oxygen supply-demand relationship. The experiments were performed under pentobarbital sodium anesthesia and controlled ventilation. Splanchnic blood flow was studied using radioactive microspheres. Glucagon was administered in doses of 1 and 5 ..mu..g x kg/sup -1/ x min/sup -1/. During glucagon infusion, hepatic arterial blood flow substantially increased, splenic and pancreatic blood flows increased moderately, while stomach and intestinal blood flows, as well as portal blood flow did not change significantly. Shunting of both 9- and 15-..mu..m spheres through preportal tissues did not change significantly. Oxygen content in arterial or portal venous blood did not change significantly, while it increased in hepatic venous blood by 30%. There were no differences in the effects between the doses of glucagon administered. There was no correlation found between changes in hepatic oxygen supply and cardiac output or blood pressure. The changes observed during glucagon administration resulted in an increase in oxygen delivery to the liver and hepatic oxygen supply-uptake ratio.

  12. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    USGS Publications Warehouse

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    Sediment samples were collected near each chamber and analyzed for percent water, percent sand, and percent organics. The sand content ranged from 0.1 to 6.2 percent and averaged 1.8 percent. The organic content ranged from 1.4 to 9.6 and averaged 5.6 percent. No statistically significant correlations were found between these sediment characteristics and sediment oxygen demand.

  13. Oxygen supplies during a mass casualty situation.

    PubMed

    Ritz, Ray H; Previtera, Joseph E

    2008-02-01

    Mass casualty and pandemic events pose a substantial challenge to the resources available in our current health care system. The ability to provide adequate oxygen therapy is one of the systems that could be out-stripped in certain conditions. Natural disasters can disrupt manufacturing or delivery, and pandemic events can increase consumption beyond the available supply. Patients may require manual resuscitation, basic oxygen therapy, or positive-pressure ventilation during these scenarios. Available sources of oxygen include bulk liquid oxygen systems, compressed gas cylinders, portable liquid oxygen (LOX) systems, and oxygen concentrators. The last two are available in a variety of configurations, which include personal and home systems that are suitable for individual patients, and larger systems that can provide oxygen to multiple patients or entire institutions. Bulk oxygen systems are robust and are probably sustainable during periods of high consumption, but are at risk if manufacturing or delivery is disrupted. Compressed gas cylinders offer support during temporary periods of need but are not a solution for extended periods of therapy. Personal oxygen concentrators and LOX systems are limited in their application during mass casualty scenarios. Large-capacity oxygen concentrators and LOX systems may effectively provide support to alternative care sites or larger institutions. They may also be appropriate selections for governmental emergency-response scenarios. Careful consideration of the strengths and limitations of each of these options can reduce the impact of a mass casualty event. PMID:18218152

  14. Biochemical oxygen demand sensor using Serratia marcescens LSY 4.

    PubMed

    Kim, M N; Kwon, H S

    1999-01-01

    A microbial biochemical oxygen demand (BOD) sensor consisting of Serratia marcescens LSY 4 and an oxygen electrode was prepared for estimation of the biochemical oxygen demand. The response of the BOD sensor was insensitive to pH in the range of pH 6.0-8.0, and the baseline drift of the signal was nearly absent even in unbuffered aqueous solution. Because heavy metal ions were precipitated from the phosphate buffer solution, unbuffered solution was used to investigate the effect of the concentration of heavy metal ions on the sensor response. Contrary to previous studies, not only Cu2+ and Ag+ but also Cd2+ and Zn2+ significantly decreased the response of the BOD sensor in unbuffered solution. Graft polymerization of sodium styrene sulfonate on the surface of the porous teflon membrane was carried out to absorb the heavy metal ions permeating through the membrane. Tolerance against Zn2+ was induced for S. marcescens LSY 4 to make the cells less sensitive to the presence of heavy metal ions. The membrane modification and the Zn2+ tolerance induction showed some positive effects in such a way that they reduced the inhibitory effects of Zn2+ and Cd2+ on the sensitivity of the BOD sensor. However, they had no effect on the protection of the cells against the interference of Cu2+ and Ag+ on the performance of the sensor.

  15. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    PubMed Central

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  16. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively.

  17. Methods for assessing biochemical oxygen demand (BOD): a review.

    PubMed

    Jouanneau, S; Recoules, L; Durand, M J; Boukabache, A; Picot, V; Primault, Y; Lakel, A; Sengelin, M; Barillon, B; Thouand, G

    2014-02-01

    The Biochemical Oxygen Demand (BOD) is one of the most widely used criteria for water quality assessment. It provides information about the ready biodegradable fraction of the organic load in water. However, this analytical method is time-consuming (generally 5 days, BOD5), and the results may vary according to the laboratory (20%), primarily due to fluctuations in the microbial diversity of the inoculum used. Work performed during the two last decades has resulted in several technologies that are less time-consuming and more reliable. This review is devoted to the analysis of the technical features of the principal methods described in the literature in order to compare their performances (measuring window, reliability, robustness) and to identify the pros and the cons of each method.

  18. Immobilised activated sludge based biosensor for biochemical oxygen demand measurement.

    PubMed

    Liu, J; Björnsson, L; Mattiasson, B

    2000-02-01

    A biochemical oxygen demand (BOD) sensor, based on an immobilised mixed culture of microorganisms in combination with a dissolved oxygen electrode, has been developed for the purpose of on-line monitoring of the biological treatment process for waste and wastewater. The sensor was designed for easy replacement of the biomembrane, thereby making it suitable for short-term use. The drawbacks of activated sludge based sensor, such as short sensor lifetime, were thereby circumvented. The sensor BOD measurements were carried out in the kinetic mode using a flow injection system, resulting in 25 s for one measurement followed by 4-8 min recovery time. Based on the results of normalised sensor responses, the OECD synthetic wastewater was considered to be a more suitable calibration solution in comparison with the GGA solution. Good agreement was achieved between the results of the sensor BOD measurement and those obtained from BOD5 analysis of a wastewater sample from a food-processing factory. Reproducibility of responses using one sensor was below +/- 5.6%, standard deviation. Reproducibility of responses using different sensors was within acceptable bias limits, viz. +/- 15% standard deviation.

  19. Adaptations in skeletal muscle capillarity following changes in oxygen supply and changes in oxygen demands.

    PubMed

    Snyder, G K; Farrelly, C; Coelho, J R

    1992-01-01

    The effects of changes in oxygen supply and oxygen demands on fiber cross-sectional areas, capillary densities and capillary to fiber ratios were determined in three skeletal muscles of rat. The muscles examined were the vastus lateralis, soleus, and diaphragm. Reduced oxygen supply was produced by subjecting rats to ambient hypoxia, and increased oxygen demands were produced by subjecting rats to low ambient temperatures or treatment with thyroxin. Capillaries were visualized by injecting fluorescent dyes into the circulation. Muscles were quick frozen at resting lengths to preserve normal fiber geometry and were subsequently sectioned on a cryostat. All of the muscles sampled from animals in the experimental groups had elevated capillary densities. However, capillary to fiber ratios were not increased significantly in any muscle, for any experimental condition. Thus, all of the observed differences in capillarity were due to changes in the intrinsic rate of muscle fiber growth. Further, the relations of capillary density and capillary to fiber ratio to fiber area were the same as those obtained during normal maturation, suggesting that capillary growth is closely linked to the intrinsic rate of fiber growth.

  20. Oxygen Mass Transport in Stented Coronary Arteries.

    PubMed

    Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J

    2016-02-01

    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

  1. Biochemical oxygen demand measurement by mediator method in flow system.

    PubMed

    Liu, Ling; Bai, Lu; Yu, Dengbin; Zhai, Junfeng; Dong, Shaojun

    2015-06-01

    Using mediator as electron acceptor for biochemical oxygen demand (BOD) measurement was developed in the last decade (BODMed). However, until now, no BOD(Med) in a flow system has been reported. This work for the first time describes a flow system of BOD(Med) method (BOD(Med)-FS) by using potassium ferricyanide as mediator and carbon fiber felt as substrate material for microbial immobilization. The system can determine the BOD value within 30 min and possesses a wider analytical linear range for measuring glucose-glutamic acid (GGA) standard solution from 2 up to 200 mg L(-1) without the need of dilution. The analytical performance of the BOD(Med)-FS is comparable or better than that of the previously reported BOD(Med) method, especially its superior long-term stability up to 2 months under continuous operation. Moreover, the BOD(Med)-FS has same determination accuracy with the conventional BOD5 method by measuring real samples from a local wastewater treatment plant (WWTP).

  2. Biochemical oxygen demand and algae: Fractionation of phytoplankton and nonphytoplankton respiration in a large river

    SciTech Connect

    Cohen, R.R.H. )

    1990-04-01

    Mass balance equations for dissolved oxygen in streams are formulated to account for, among other variables, algal respiration (R), and biochemical oxygen demand (BOD). The oxygen consumption measured in primary productivity-respiration analyses is not R but is total community oxygen consumption (TCOC), and BOD measurements are complicated by undefined algal components. Ultimate BOD was found to be 0.24 mg of O{sub 2} consumed per {mu}g chlorophyll a and carbonaceous BOD was 0.20 per {mu}g chlorophyll a in excess of background BOD. The results were similar for live and dead algae. Phytoplankton respiration was fractionated from nonphytoplankton oxygen consumption (NPOC) by the regression of respiration against chlorophyll a to obtain a y intercept of zero chlorophyll. The intercepts, NPOC, closely matched O{sub 2} consumption measured when phytoplankton biomass was very low. Phytoplankton respiration, calculated as the residual of the difference between TCOC and NPOC,ranged from 0.2 to 1.5 (mean = 0.88) mg O{sub 2} per mg chlorophyll a per hour, close to the literature value of 1 (in cultures). Depth-integrated (DI) phytoplankton respiration was 1/4 to 1/3 of DI gross primary productivity and 1-3% of maximum primary productivity. The separation of phytoplankton R and NPOC permitted the demonstration that R probably is not a simple function of productivity.

  3. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  4. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    USGS Publications Warehouse

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  5. Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara

    2009-01-01

    Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).

  6. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  7. Biochemical oxygen demand. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning biochemical oxygen demand (BOD) in sewage, industrial waste treatment, runoff, and limnology. The effects of salinity on BOD, aerobic, and anaerobic waste treatment processes are described. The use of algae and water hyacinths in wastewater treatment is explored, along with the water quality and biological oxygen demand of specific bodies of water. (Contains 250 citations and includes a subject term index and title list.)

  8. A simplified headspace biochemical oxygen demand test protocol based on oxygen measurements using a fiber optic probe.

    PubMed

    Min, Booki; Kohler, David; Logan, Bruce E

    2004-01-01

    Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can

  9. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  10. High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds

    SciTech Connect

    Zitomer, D.H.; Shrout, J.D.

    2000-02-01

    Many industrial wastewaters have both high organic pollution and sulfate (SO{sub 4}{sup {minus}2}) concentrations. Although biological conversion of organics to methane may be an economical chemical oxygen demand (COD) removal option, significant inhibition of methane production results from reduction of SO{sub 4}{sup {minus}2} to hydrogen sulfide (H{sub 2}S), which is inhibitory to methanogenic microorganisms. Therefore, sulfate-containing wastewater is often not amenable to conventional anaerobic treatment. Recently, limited aeration of recycle flow to hybrid and baffled reactors has been used to treat this wastewater and has been shown to reduce aqueous H{sub 2}S concentrations by causing production of uninhibitory sulfur (S{degree}) and thiosulfate (S{sub 2}O{sub 3}{sup {minus}2}) as well as gas stripping volatile H{sub 2}S. In this study, directly aerated methanogenic fluidized bed reactors (FBRs) achieved increased methane production compared to strictly anaerobic FBRs treating high-sulfate wastewater. Oxygen transfer satisfying up to 28% of the COD load resulted in maximum specific oxygen utilization rates of 0.20 mg oxygen/g volatile solids{center{underscore}dot}min, with significant, concomitant methane production. Under typically inhibitory SO{sub 4}{sup {minus}2} loading, higher aeration caused increased effluent SO{sub 4}{sup {minus}2}, increased H{sub 2}S mass in the offgas, and lower reactor H{sub 2}S concentration. As a result, COD removal increased from 25% for a strictly anaerobic FBR to 87% for an aerated FBR. In addition, aerated systems required significantly less alkalinity supplementation to maintain a pH value of 7, ostensibly because of stripping of acidic carbon dioxide. The potential pH increase associated with aeration also shifts sulfide speciation to less toxic disulfide. Direct, limited aeration of methanogenic FBRs is described as a method for increased COD removal when treating high-COD, high-sulfate wastewater.

  11. Sediment oxygen demand in a constructed lake in south-eastern Australia.

    PubMed

    Wallace, Todd A; Ganf, George G; Brookes, Justin D

    2016-10-01

    The occurrence of hypoxia and anoxia in aquatic environments is increasing, driven by changes in land use and alteration of flow regimes. Periods of low oxygen impact biodiversity and water quality for both recreational and consumptive users. We use the Torrens Lake as a case study to assess pelagic, benthic and resuspended sediment oxygen demand, and the release of sediment bound phosphorus to determine the relative role of internal and external loading on water quality in a lake within a heavily urbanised landscape. Our results indicate temporal shifts in the dominant oxygen demanding process in the lake. During periods of no-inflow, sediment oxygen demand is the dominant process; during periods of inflow resulting from wet weather conditions, pelagic rather than sediment derived oxygen demand becomes the governing process. The inlet end of the lake is a depositional zone for stormwater borne sediments. Resuspended sediments at the inlet end of the lake exert a higher oxygen demand than those from the outlet, and represent a larger pool of potentially mobile phosphorus compared to sediments at the outlet end of the lake. However, external rather than internal loading appears to be the dominant driver of water quality in this lake.

  12. Sediment oxygen demand in a constructed lake in south-eastern Australia.

    PubMed

    Wallace, Todd A; Ganf, George G; Brookes, Justin D

    2016-10-01

    The occurrence of hypoxia and anoxia in aquatic environments is increasing, driven by changes in land use and alteration of flow regimes. Periods of low oxygen impact biodiversity and water quality for both recreational and consumptive users. We use the Torrens Lake as a case study to assess pelagic, benthic and resuspended sediment oxygen demand, and the release of sediment bound phosphorus to determine the relative role of internal and external loading on water quality in a lake within a heavily urbanised landscape. Our results indicate temporal shifts in the dominant oxygen demanding process in the lake. During periods of no-inflow, sediment oxygen demand is the dominant process; during periods of inflow resulting from wet weather conditions, pelagic rather than sediment derived oxygen demand becomes the governing process. The inlet end of the lake is a depositional zone for stormwater borne sediments. Resuspended sediments at the inlet end of the lake exert a higher oxygen demand than those from the outlet, and represent a larger pool of potentially mobile phosphorus compared to sediments at the outlet end of the lake. However, external rather than internal loading appears to be the dominant driver of water quality in this lake. PMID:27420167

  13. The effect of mayfly (Hexagenia spp.) burrowing activity on sediment oxygen demand in western Lake Erie

    USGS Publications Warehouse

    Edwards, William J.; Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.

    2009-01-01

    Previous studies support the hypothesis that large numbers of infaunal burrow-irrigating organisms in the western basin of Lake Erie may increase significantly the sediment oxygen demand, thus enhancing the rate of hypolimnetic oxygen depletion. We conducted laboratory experiments to quantify burrow oxygen dynamics and increased oxygen demand resulting from burrow irrigation using two different year classes of Hexagenia spp. nymphs from western Lake Erie during summer, 2006. Using oxygen microelectrodes and hot film anemometry, we simultaneously determined oxygen concentrations and burrow water flow velocities. Burrow oxygen depletion rates ranged from 21.7 mg/nymph/mo for 15 mm nymphs at 23 °C to 240.7 mg/nymph/mo for 23 mm nymphs at 13 °C. Sealed microcosm experiments demonstrated that mayflies increase the rate of oxygen depletion by 2-5 times that of controls, depending on size of nymph and water temperature, with colder waters having greater impact. At natural population densities, nymph pumping activity increased total sediment oxygen demand 0.3-2.5 times compared to sediments with no mayflies and accounted for 22-71% of the total sediment oxygen demand. Extrapolating laboratory results to the natural system suggest that Hexagenia spp. populations may exert a significant control on oxygen depletion during intermittent stratification. This finding may help explain some of the fluctuations in Hexagenia spp. population densities in western Lake Erie and suggests that mayflies, by causing their own population collapse irrespective of other environmental conditions, may need longer term averages when used as a bio-indicator of the success of pollution-abatement programs in western Lake Erie and possibly throughout the Great Lakes.

  14. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed.

  15. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. PMID:25704155

  16. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates.

    PubMed

    Gregg, Ak; Hatay, M; Haas, Af; Robinett, Nl; Barott, K; Vermeij, Mja; Marhaver, Kl; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community.

  17. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates.

    PubMed

    Gregg, Ak; Hatay, M; Haas, Af; Robinett, Nl; Barott, K; Vermeij, Mja; Marhaver, Kl; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  18. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates

    PubMed Central

    Hatay, M; Haas, AF; Robinett, NL; Barott, K; Vermeij, MJA; Marhaver, KL; Meirelles, P; Thompson, F; Rohwer, F

    2013-01-01

    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community. PMID:23882444

  19. The diluter-demand oxygen system used during the international Himalayan expedition to Mount Everest.

    NASA Technical Reports Server (NTRS)

    Blume, F. D.; Pace, N.

    1972-01-01

    The diluter-demand regulators are designed in such a way that as the individual inspires he simultaneously draws ambient air and pure oxygen from a tank into his mask. The size of the ambient air orifice is made directly proportional to the barometric pressure by use of a passive aneroid valve. As altitude increases the ambient air orifice is automatically made smaller and the individual inspires a greater proportion of oxygen.

  20. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    SciTech Connect

    Xu, Peng; Zagreus, Leah

    2009-05-01

    The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limiting in a heavy mass and a light mass building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsiveness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kWh) of the shed capacity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effectiveness of night pre-cooling under hot weather conditions has not been tested. Further work is required to quantify and demonstrate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate pre-cooling strategies, and estimate the benefits to the customer and the utility.

  1. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  2. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.

    1985-01-01

    As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

  3. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  4. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell.

    PubMed

    Kim, Byung Hong; Chang, In Seop; Gil, Geun Cheol; Park, Hyung Soo; Kim, Hyung Joo

    2003-04-01

    A microbial fuel cell type of biosensor was used to determine the biochemical oxygen demand (BOD) of wastewater. The biosensor gave a good correlation between the BOD value and the coulomb produced. The BOD sensor has been operated for over 5 years in a stable manner without any servicing. This is much longer that that of previously reported BOD biosensors.

  5. Geostatistical Modeling of the Spatial Distribution of Sediment Oxygen Demand Within a Coastal Plain Blackwater Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...

  6. A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt.

    PubMed

    Stirling, J R; Zakynthinaki, M S; Saltin, B

    2005-09-01

    We present a new model of the underlying dynamics of the oxygen uptake VO2(v,t) kinetics for various exercise intensities. This model is in the form of a set of nonlinear coupled vector fields for the VO2(v,t) and v, the derivative of the exercise intensity with respect to time. We also present a new and novel means for calculating the oxygen demand, D(v,t), and hence also the oxygen deficit and debt, given the time series of the VO2(v,t). This enables us to give better predictions for these values especially for when exercising at or close to maximal exercise intensities. Our model also allows us to predict the oxygen uptake time series given the time series for the exercise intensity as well as to investigate the oxygen uptake response to nonlinear exercise intensities. Neither of these features is possible using the currently used three-phase model. We also present a review of both the underlying physiology and the three-phase model. This includes for the first time a complete set of the analytical solutions of the three-phase model for the oxygen deficit and debt. PMID:15998492

  7. Oxygen in egg masses: interactive effects of temperature, age, and egg-mass morphology on oxygen supply to embryos.

    PubMed

    Moran, Amy L; Woods, H Arthur

    2007-02-01

    Embryos of many marine invertebrates are encased in gelatinous masses for part or all of development. Because gel and intervening embryos retard oxygen flux, such a life-history mode profoundly affects partial pressures of metabolic gases surrounding embryos. However, little is known about relationships between egg-mass structure and the opportunities and constraints imposed on structure by metabolic gas transport. We examined the effects of four factors (temperature, embryo age, embryo density and egg-mass size) on the metabolism of egg masses using both natural egg masses of a nudibranch and artificial egg masses made from sand dollar embryos and low-melting point agarose. Both temperature and embryo age strongly affected metabolic rates of nudibranch embryos. For embryos of a given age (stage), rates of oxygen consumption roughly doubled between 12 and 21 degrees C; from early cleavage to the veliger stage, consumption rose two- to fourfold, depending on temperature. Oxygen profiles in egg masses showed that advanced embryonic age, and to a lesser extent high temperature, both led to steeper oxygen gradients into egg masses. Egg masses containing advanced embryos at 21 degrees C had very low central oxygen levels. Small-diameter artificial masses (2 mm diameter) had virtually no internal oxygen gradients regardless of embryo density or temperature, while medium (4 mm) and large diameter (10 mm) artificial masses had oxygen profiles that depended strongly and interactively on embryo density and temperature. Together, our data on natural and artificial egg masses suggest that (i) multiple factors have strong effects on metabolic rate; (ii) rates of oxygen transport are relatively invariant with temperature in simple, artificial systems but may vary more strongly with temperature in natural egg masses; and (iii) the four factors--temperature, embryo age, embryo density and egg-mass size--interact in important ways bearing on egg mass design. A simple mathematical

  8. Oxygen in egg masses: interactive effects of temperature, age, and egg-mass morphology on oxygen supply to embryos.

    PubMed

    Moran, Amy L; Woods, H Arthur

    2007-02-01

    Embryos of many marine invertebrates are encased in gelatinous masses for part or all of development. Because gel and intervening embryos retard oxygen flux, such a life-history mode profoundly affects partial pressures of metabolic gases surrounding embryos. However, little is known about relationships between egg-mass structure and the opportunities and constraints imposed on structure by metabolic gas transport. We examined the effects of four factors (temperature, embryo age, embryo density and egg-mass size) on the metabolism of egg masses using both natural egg masses of a nudibranch and artificial egg masses made from sand dollar embryos and low-melting point agarose. Both temperature and embryo age strongly affected metabolic rates of nudibranch embryos. For embryos of a given age (stage), rates of oxygen consumption roughly doubled between 12 and 21 degrees C; from early cleavage to the veliger stage, consumption rose two- to fourfold, depending on temperature. Oxygen profiles in egg masses showed that advanced embryonic age, and to a lesser extent high temperature, both led to steeper oxygen gradients into egg masses. Egg masses containing advanced embryos at 21 degrees C had very low central oxygen levels. Small-diameter artificial masses (2 mm diameter) had virtually no internal oxygen gradients regardless of embryo density or temperature, while medium (4 mm) and large diameter (10 mm) artificial masses had oxygen profiles that depended strongly and interactively on embryo density and temperature. Together, our data on natural and artificial egg masses suggest that (i) multiple factors have strong effects on metabolic rate; (ii) rates of oxygen transport are relatively invariant with temperature in simple, artificial systems but may vary more strongly with temperature in natural egg masses; and (iii) the four factors--temperature, embryo age, embryo density and egg-mass size--interact in important ways bearing on egg mass design. A simple mathematical

  9. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  10. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart

  11. Multi-scale analysis of oxygen demand trends in an urbanizing Oregon watershed, USA.

    PubMed

    Boeder, Mike; Chang, Heejun

    2008-06-01

    Human alteration of the landscape has an extensive influence on the biogeochemical processes that drive oxygen cycling in streams. We estimated trends from the mid-1990s to 2003, using the seasonal Mann-Kendall's test, for percent saturation dissolved oxygen (DO), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and ammonia-nitrogen (NH(3)-N) for 12 sites in the Rock Creek watershed, northwest Oregon, USA. In order to understand the influence of landscape change, scale, and stormwater runoff management on dissolved oxygen trends, we calculated land cover change through aerial photo interpretation at full-basin, local (near sample point) basin, and 100m stream buffer scales, for the years 1994 and 2000. Significant (p < or = 0.05) trends occurred in DO (increasing at five sites), COD (decreasing at seven sites), TKN (decreasing at five sites, increasing at one site), and NH(3)-N (decreasing at one site, increasing at one site). Significant land cover change occurred in agricultural land cover (-8% for the entire basin area) and residential land cover (+10% for the entire basin area) (p < or = 0.05). Correlation results indicated that: (1) forest cover negatively influenced COD at the full basin scale and positively influences NH(3)-N at local scales, (2) residential land cover influenced oxygen demand variables at local scales, (3) agricultural land cover did not influence oxygen demand, (4) local topography negatively influenced TKN and NH(3)-N, and (5) stormwater runoff management infrastructure correlated positively with COD at the local scale. This study indicates that landscape factors influencing DO conditions for the study streams act at multiple scales, suggesting that better knowledge of scale-process interactions can guide watershed managers' decision making in order to maintain improving water quality conditions. PMID:18201815

  12. Temperature effects on tubificid worms and their relation to sediment oxygen demand.

    PubMed

    Otubu, John E; Hunter, Joseph V; Francisco, Kelly L; Uchrin, Christopher G

    2006-01-01

    Sediment samples were collected from the Dead River in New Jersey and tested in the laboratory under two temperature conditions, 4 degrees C and 20 degrees C. The study was conducted to determine the effect of worm density on the sediment oxygen demand (SOD) rate and if temperature affects the ability for tubificid worms to deplete dissolved oxygen (DO) from the overlying stream water. The study showed that the DO concentration was affected by tubificid worm density and that higher temperature increased the metabolic activity of the worms. PMID:16835114

  13. Rate of Biochemical oxygen demand during formation of hypoxia in Amur Bay, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Tishchenko, P. P.; Tishchenko, P. Ya.; Zvalinskii, V. I.; Semkin, P. Yu.

    2014-12-01

    In May 2011, a Water Quality Monitor (WQM) hydrological station was maintained in the hypoxia area of Amur Bay one meter above the bottom, at the depth of 19 m. The temperature, electric conductivity, pressure, and content of dissolved oxygen were registered every four hours for more than three months. On the basis of these data, it was found that the period of hypoxia at the observation point lasted 93 days and a model of calculation of the rate of biochemical oxygen demand and the velocity of ventilation of the bottom waters is suggested.

  14. The impact of chlorine disinfection on biochemical oxygen demand levels in chemically enhanced primary treatment effluent.

    PubMed

    Dai, Ji; Jiang, Feng; Shang, Chii; Chau, Kwok-ming; Tse, Yuet-kar; Lee, Chi-fai; Chen, Guang-Hao; Fang, Jingyun; Zhai, Liming

    2013-01-01

    The response trends of biochemical oxygen demand (BOD) and organic strength after the chlorination/dechlorination process were explored through a 2-year, 5-month chemically enhanced primary treatment (CEPT) effluent onsite monitoring program and a 2-month laboratory-scale study. The monitoring results showed that better instantaneous mixing at the chlorine injection point reduced the effect of chlorination/dechlorination on the 5-day BOD levels. The laboratory study results demonstrated that chlorination did not change the particle size distribution, dissolved organic carbon, or chemical oxygen demand of the organic content of the effluent. Nevertheless, chlorination/dechlorination strongly affected the BOD measurement when nitrification was inhibited by changing bioactivity/biodegradation rates. PMID:23863431

  15. Rates and technologies for mass-market demand response

    SciTech Connect

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-07-21

    Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

  16. Myocardial Ischemia: Lack of Coronary Blood Flow or Myocardial Oxygen Supply/Demand Imbalance?

    PubMed

    Heusch, Gerd

    2016-07-01

    Regional myocardial blood flow and contractile function in ischemic myocardium are well matched, and there is no evidence for an oxygen supply/demand imbalance. Thus, myocardial ischemia is lack of coronary blood flow with electric, functional, metabolic, and structural consequences for the myocardium. All therapeutic interventions must aim to improve blood flow to ischemic myocardium as much and as quickly as possible. PMID:27390331

  17. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  18. Oxygen Demand of Fresh and Stored Sulfide Solutions and Sulfide-Rich Constructed Wetland Effluent.

    PubMed

    Chan, Carolyn; Farahbakhsh, Khosrow

    2015-08-01

    This study investigated the contribution of hydrogen sulfide to biological oxygen demand (BOD5) and chemical oxygen demand (COD) in wastewater effluents, and documented the effect of storage times and conditions on the BOD5 and COD of pH-adjusted sodium sulfide solutions as well as graywater wetland effluent. Initial COD measurements of sulfide solutions were 84-89% of the theoretical oxygen demand (ThOD), 1.996 mg O2/mg S, whereas unseeded BOD5 measurements were 55-77%. For sulfide solutions, all storage conditions led to declines of >15% (COD, BOD5), and >31% (sulfide). For wetland effluent, storage without headspace was effective in reducing COD losses (3.7%), compared to storage with headspace (17%), and affected changes in turbidity, UVA-254 and pH. The results suggest that storage times and conditions should be controlled and reported when reporting BOD5 and COD of sulfide-rich samples. Wetland models representing sulfate reduction as a method of COD removal may need to be reconsidered. PMID:26237688

  19. Oxygen demand during mineralization of aquatic macrophytes from an oxbow lake.

    PubMed

    Bianchini Jr, I; Cunha-Santino, M B; Peret, A M

    2008-02-01

    This study presents a kinetic model of oxygen consumption during aerobic decomposition of detritus from seven species of aquatic macrophytes: Cabomba furcata, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Oxycaryum cubense and Utricularia breviscapa. The aquatic macrophytes were collected from Oleo Lagoon situated in the Mogi-Guaçu river floodplain (SP, Brazil). Mineralization experiments were performed using the closed bottles method. Incubations made with lake water and macrophytes detritus (500 mL and 200 mg.L(-1) (DM), respectively) were maintained during 45 to 80 days at 20 degrees C under aerobic conditions and darkness. Carbon content of leachates from aquatic macrophytes detritus and dissolved oxygen concentrations were analyzed. From the results we concluded that: i) the decomposition constants differ among macrophytes; these differences being dependent primarily on molecular and elemental composition of detritus and ii) in the short term, most of the oxygen demand seems to depend upon the demineralization of the dissolved carbon fraction. PMID:18470379

  20. A tandem mass spectrometric method for singlet oxygen measurement.

    PubMed

    Karonen, Maarit; Mattila, Heta; Huang, Ping; Mamedov, Fikret; Styring, Stenbjörn; Tyystjärvi, Esa

    2014-01-01

    Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6-tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra-high-performance liquid chromatographic-tandem mass spectrometric (UHPLC-ESI-MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC-ESI-MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10(-7) molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m(-2 ) s(-1). PMID:24849296

  1. Rates and technologies for mass-market demand response

    SciTech Connect

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-07-21

    Demand response programs are often quickly and poorlycrafted in reaction to an energy crisis and disappear once the crisissubsides, ensuring that the electricity system will be unprepared whenthe next crisis hits. In this paper, we propose to eliminate theevent-driven nature of demand response programs by considering demandresponsiveness a component of the utility obligation to serve. As such,demand response can be required as a condition of service, and theoffering of demand response rates becomes a requirement of utilities asan element of customer service. Using this foundation, we explore thecosts and benefits of a smart thermostat-based demand response systemcapable of two types of programs: (1) a mandatory, system-operatorcontrolled, contingency program, and (2) a voluntary, customercontrolled, bill management program with rate-based incentives. Anydemand response program based on this system could consist of either orboth of these components. Ideally, these programs would be bundled,providing automatic load management through customer-programmed priceresponse, plus up to 10 GW of emergency load shedding capability inCalifornia. Finally, we discuss options for and barriers toimplementation of such a program in California.

  2. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  3. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds. PMID:17193303

  4. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand.

    PubMed

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G

    2013-01-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of "on demand" reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently "on demand".

  5. Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater.

    PubMed

    Velling, Siiri; Mashirin, Alexey; Hellat, Karin; Tenno, Toomas

    2011-01-01

    A biochemical oxygen demand (BOD) biosensor for effective and expeditious BOD(7) estimations was constructed and the non-steady phase of the output signal was extensively studied. The modelling approach introduced allows response curve reconstruction and a curve fitting procedure of good quality, resulting in parameters indicating the relationship between response and organic substrate concentration and stability properties of the BOD biosensor. Also, the immobilization matrixes of different thicknesses were characterized to determine their suitability for bio-sensing measurements in non-stationary conditions, as well as for the determination of the mechanical durability of the BOD biosensor in time. The non-steady response of the experimental output of the BOD biosensor was fitted according to the developed model that enables to determine the stability of the biosensor output and dependency on biodegradable organic substrate concentration. The calibration range of the studied BOD biosensor in OECD synthetic wastewater was 15-110 mg O(2) L(-1). Repeatability tests showed relative standard deviation (RSD) values of 2.8% and 5.8% for the parameter τ(d), characterizing the transient output of the amperometric oxygen sensor in time, and τ(s), describing the dependency of the transient response of the BOD biosensor on organic substrate concentration, respectively. BOD biosensor experiments for the evaluation of the biochemical oxygen demand of easily degradable and refractory municipal wastewater showed good concurrence with traditional BOD(7) analysis.

  6. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds.

  7. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  8. Negative thermal ion mass spectrometry of oxygen in phosphates

    NASA Astrophysics Data System (ADS)

    Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-06-01

    A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.

  9. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand

    NASA Astrophysics Data System (ADS)

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G.

    2012-12-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of ``on demand'' reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently ``on demand''.Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that

  10. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  11. System Modeling of Lunar Oxygen Production: Mass and Power Requirements

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J.; Freeh, Joshua E.; Linne, Diane L.; Faykus, Eric W.; Gallo, Christopher A.; Green, Robert D.

    2007-01-01

    A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements.

  12. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.

    PubMed

    Higashino, Makoto; Stefan, Heinz G

    2005-09-01

    Dead organic material accumulated on the bed of a lake, reservoir or wetland often provides the substrate for substantial microbial activity as well as chemical processes that withdraw dissolved oxygen (DO) from the water column. A model to estimate the actual DO profile and the "sedimentary oxygen demand (SOD)" must specify the rate of microbial or chemical activity in the sediment as well as the diffusive supply of DO from the water column through the diffusive boundary layer into the sediment. Most previous experimental and field studies have considered this problem with the assumptions that the diffusive boundary layer is (a) turbulent and (b) fully developed. These assumptions require that (a) the flow velocity above the sediment bed is fast enough to produce turbulent mixing in the boundary layer, and (b) the sediment bed is long. In this paper a model for laminar flow and SOD over a sediment bed of finite length is presented and the results are compared with those for turbulent flow. Laminar flow near a sediment bed is encountered in quiescent water bodies such as lakes, reservoirs, river backwaters, wetlands and ponds under calm wind conditions. The diffusive oxygen transfer through the laminar diffusive boundary layer above the sediment surface can restrict the microbial or chemical oxygen uptake inside the sediment significantly. The developing laminar diffusive boundary layer above the sediment/water interface is modeled based on the analogy with heat transfer, and DO uptake inside the sediment is modeled by Michaelis-Menten microbial growth kinetics. The model predicts that the rate of SOD at the beginning of the reactive sediment bed is solely dependent on microbial density in the sediment regardless of flow velocity and type. The rate of SOD, and the DO penetration depth into the sediment decrease in stream-wise direction over the length of the sediment bed, as the diffusive boundary layer above the sediment/water interface thickens. With increasing

  13. Reduction of chemical oxygen demand of industrial wastes using subcritical water oxidation

    SciTech Connect

    Lin, J.C.; Chang, C.J. )

    1992-10-01

    If wastes have strong toxicity, high organic content, and a deep hue, they are difficult to handle in the waste disposal. It is very practical that waste of this kind is treated by Subcritical Water Oxidation (SWO). In our work, caprolactum (CPL) waste, purged from a petrochemical plant, and dyeing waste, purged from a textile plant, were individually treated by a semi-batch SWO process. Within a one-hour treatment, Chemical Oxygen Demand (COD) reduction reached 89% for CPL waste (6.90 MPa, 260[degree]C) and 95% for dyeing waste (6.90 MPa, 240[degree]C). There is also a great improvement in hue, especially for the dyeing waste. When CPL wastewater was treated by the SWO process using a chromium metal powder as a catalyst, COD reduction improved further under the same operating conditions. A kinetic model was used to illustrate the oxidation mechanism and the effectiveness of the catalyst. The oxygen concentration in the effluent showed that oxygen consumption corresponded to COD reduction. With the monitoring of concentrations of total soluble chromium in the effluent, a suitable reaction period could be found in order to meet the standard of the Environmental Protection Agency (EPA). 12 refs., 11 figs., 2 tabs.

  14. Yeast-based Biochemical Oxygen Demand Sensors Using Gold-modified Boron-doped Diamond Electrodes.

    PubMed

    Ivandini, Tribidasari A; Harmesa; Saepudin, Endang; Einaga, Yasuaki

    2015-01-01

    A gold nanoparticle modified boron-doped diamond electrode was developed as a transducer for biochemical oxygen demand (BOD) measurements. Rhodotorula mucilaginosa UICC Y-181 was immobilized in a sodium alginate matrix, and used as a biosensing agent. Cyclic voltammetry was applied to study the oxygen reduction reaction at the electrode, while amperometry was employed to detect oxygen, which was not consumed by the microorganisms. The optimum waiting time of 25 min was observed using 1-mm thickness of yeast film. A comparison against the system with free yeast cells shows less sensitivity of the current responses with a linear dynamic range (R(2) = 0.99) of from 0.10 mM to 0.90 mM glucose (equivalent to 10 - 90 mg/L BOD) with an estimated limit of detection of 1.90 mg/L BOD. However, a better stability of the current responses could be achieved with an RSD of 3.35%. Moreover, less influence from the presence of copper ions was observed. The results indicate that the yeast-immobilized BOD sensors is more suitable to be applied in a real condition.

  15. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant. PMID:25026585

  16. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  17. Lightning and Mass Independent Oxygen Isotopic Fractionation in Nebular Silicates

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Lightning has long been postulated as the agent of Chondru|e formation in the solar nebula, but it may have an additional role to play as well. Lightning bolts of almost any scale will both vaporize dust and liberate oxygen atoms that will then interact with both nebular gases as well as the refractory silicate vapor as it re-condenses. Such processes should result in the addition of the heavy oxygen isotopes to the growing silicate grains while the light oxygen-16 becomes part of the gas phase water. This process will proceed to some extent throughout the history of any turbulent nebula and will result in the gradual increase of O-16 in the gas phase and in a much larger relative increase in the O-17 and O-18 content of the nebular dust. Laboratory experiments have demonstrated the production of such "heavy oxygen enriched", non-mass-dependently-fractionated dust grains in a high voltage discharge in a hydrogen rich gas containing small quantities of silane, pentacarbonyl iron and oxygen.

  18. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors.

    PubMed

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-02-01

    Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m(3)/h. Using Darcy's equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7-2.88-fold. PMID:24268917

  19. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax)

    PubMed Central

    Ozolina, Karlina; Shiels, Holly A.; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  20. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax).

    PubMed

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  1. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    SciTech Connect

    Kasinski, Slawomir Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  2. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  3. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand.

    PubMed

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-08-19

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5-7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5-1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method.

  4. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  5. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor.

    PubMed

    Chang, In Seop; Jang, Jae Kyung; Gil, Geun Cheol; Kim, Mia; Kim, Hyung Joo; Cho, Byung Won; Kim, Byung Hong

    2004-01-15

    A mediator-less microbial fuel cell (MFC) was used as a biochemical oxygen demand (BOD) sensor in an amperometric mode for real-time wastewater monitoring. At a hydraulic retention time of 1.05 h, BOD values of up to 100 mg/l were measured based on a linear relationship, while higher BOD values were measured using a lower feeding rate. About 60 min was required to reach a new steady-state current after the MFCs had been fed with different strength artificial wastewaters (Aws). The current generated from the MFCs fed with AW with a BOD of 100 mg/l was compared to determine the repeatability, and the difference was less than 10%. When the MFC was starved, the original current value was regained with a varying recovery time depending on the length of the starvation. During starvation, the MFC generated a background level current, probably due to an endogenous metabolism.

  6. Spatial Autocorrelation Analysis of Chinese Inter-Provincial Industrial Chemical Oxygen Demand Discharge

    PubMed Central

    Zhao, Xiaofeng; Huang, Xianjin; Liu, Yibo

    2012-01-01

    A spatial autocorrelation analysis method is adopted to process the spatial dynamic change of industrial Chemical Oxygen Demand (COD) discharge in China over the past 15 years. Studies show that amount and intensity of industrial COD discharges are on a decrease, and the tendency is more remarkable for discharge intensity. There are large differences between inter-provincial discharge amount and intensity, and with different spatial differentiation features. Global spatial autocorrelation analysis reveals that Global Moran’s I of discharge amount and intensity is on the decrease. In space, there is an evolution from an agglomeration pattern to a discretization pattern. Local spatial autocorrelation analysis shows that the agglomeration area of industrial COD discharge amount and intensity varies greatly in space with time. Stringent environmental regulations and increased funding for environmental protections are the crucial factors to cut down industrial COD discharge amount and intensity. PMID:22829788

  7. Inverse calculation of biochemical oxygen demand models based on time domain for the tidal Foshan River.

    PubMed

    Er, Li; Xiangying, Zeng

    2014-01-01

    To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models. PMID:25026574

  8. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    PubMed

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads.

  9. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions.

    PubMed

    Oh, Jin Hwan; Park, Jaeyoung; Ellis, Timothy G

    2015-02-01

    The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90% even at high loading rates up to 7.3 kg COD/m(3)/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g COD(removed) was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads. PMID:25164570

  10. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  11. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands.

    PubMed

    Lim, P E; Tay, M G; Mak, K Y; Mohamed, N

    2003-01-01

    The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Zn

  12. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    PubMed

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD.

  13. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    PubMed

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD. PMID:21645736

  14. Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand.

    PubMed

    Chee, Gab-Joo; Nomura, Yoko; Ikebukuro, Kazunori; Karube, Isao

    2005-07-15

    The photocatalytic biosensor of flow system using semiconductor TiO2 was developed to evaluate biochemical oxygen demand (BOD) levels in river water. Photocatalysis of sample was carried out in a photoreactor with TiO2 and a 6W black-light blue fluorescent tube as light source. Sample from a photoreactor outlet was measured by an oxygen electrode with a biofilm. The sensor response of photocatalytic biosensor was between 5 and 10 min depending on concentration of biochemical in the samples. At BOD of 1 mgl-1, the sensor response increased 1.33-fold in comparison with that without photocatalysis. The degradation of tannic acid and humic acid with photocatalysis were 51.8 and 38.4%, respectively. Gum arabic and linear alkylbenzene sulfonate (LAS) were degraded a little, but gave the responses of more than double to the sensor. Free radicals yielded by photocatalysis in a photoreactor did not affect the sensor response because their lifetime is extremely short. Fairly good correlation (r=0.983) between the sensor method and the conventional method was obtained for test samples. This biosensor using photocatalytic pretreatment improved the sensitivity.

  15. Biofilm reactor based real-time analysis of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Jia, Jianbo; Dong, Shaojun

    2013-04-15

    We reported a biofilm reactor (BFR) based analytical system for real-time biochemical oxygen demand (BOD) monitoring. It does not need a blank solution and other chemical reagents to operate. The initial dissolved oxygen (DO) in sample solution was measured as blank, while DO in the BFR effluent was measured as response. The DO difference obtained before and after the sample solution flowed through the BFR was regarded as an indicator of real-time BOD. The analytical performance of this reagent-free BFR system was equal to the previous BFR system operated using phosphate buffer saline (PBS) and high purity deionized water in reproducibility, accuracy and long-term stability. Besides, this method embraces many notable advantages, such as no secondary pollution. Additionally, the sample solutions are free from temperature controlling and air-saturation before injection. Significantly, this is a real-time BOD analysis method. This method was successfully carried out in a simulated emergency, and the obtained results agreed well with conventional BOD₅. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD real-time warning. PMID:23228491

  16. Protozoan biomass relation to nutrient and chemical oxygen demand removal in activated sludge mixed liquor.

    PubMed

    Akpor, Oghenerobor B; Momba, Maggy N B; Okonkwo, Jonathan O

    2008-08-01

    The relationship between biomass concentration to nutrient and chemical oxygen demand (COD) removal in mixed liquor supplemented with sodium acetate was investigated, using three protozoan isolates and three different initial biomass concentrations (10(1), 10(2) and 10(3) cells/mL). The study was carried out in a shaking flask environment at a shaking speed of 100 rpm for 96 h at 25 degrees C. Aliquot samples were taken periodically for the determination of phosphate, nitrate, COD and dissolved oxygen, using standard methods. The results revealed remarkable phosphate removal of 82-95% at biomass concentration of 10(3)cells/mL. A high nitrate removal of over 87% was observed at all initial biomass concentration in mixed liquor. There was an observed COD increase of over 50% in mixed liquor in at the end of 96-h incubation and this was irrespective of initial biomass concentration used for inoculation. The study shows the trend in nutrient and COD removal at different biomass concentrations of the test isolates in mixed liquor.

  17. Temperature-oxygen interactions in Antarctic nudibranch egg masses.

    PubMed

    Woods, H Arthur; Moran, Amy L

    2008-03-01

    The Southern Ocean is one of the coldest, most stable marine environments on Earth and represents a unique environment for investigating metabolic consequences of low temperature. Here we test predictions of a new diffusion-reaction model of O(2) distributions in egg masses, using egg masses of the Antarctic nudibranch mollusk, Tritonia challengeriana. When warmed from -1.5 degrees to +1.5 degrees C, embryos of T. challengeriana showed large increases in O(2) consumption (Q(10) values of 9.6-30.0). Oxygen electrode measurements in intact masses showed, however, that O(2) levels were high throughout and virtually unaffected by temperature. The model suggested that both effects stemmed from very low metabolic densities in egg masses. Detailed morphological measurements of egg masses of T. challengeriana and a temperate congener, T. diomedea, revealed large differences in structure that may be related to O(2) availability. Egg masses of T. challengeriana were approximately twice as thick. However, the most dramatic effects were observed in embryos: embryos of T. challengeriana were >32 times larger (by volume) than embryos of T. diomedea. Antarctic embryos also were contained singly in large egg capsules ( approximately 500 mum diameter). Consequently, Antarctic embryos occurred at much lower densities, with very low metabolic densities. PMID:18281343

  18. Influence of pluronic F68 on oxygen mass transfer.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2013-01-01

    Pluronic F68 is one of the most used shear protecting additives in cell culture cultivations. It is well known from literature that such surface-active surfactants lower the surface tension at the gas-liquid interface, which influences the mass transfer. In this study, the effect of Pluronic F68 on oxygen mass transfer in aqueous solutions was examined. Therefore, the gassing in/gassing out method and bubble size measurements were used. At low concentrations of 0.02 g/L, a 50% reduction on mass transfer was observed for all tested spargers and working conditions. An explanation of the observed effects by means of Higbie's penetration or Dankwerts surface renewal theory was applied. It could be demonstrated that the suppressed movement of the bubble surface layer is the main cause for the significant drop down of the kL a-values. For Pluronic F68 concentrations above 0.1 g/L, it was observed that it comes to changes in bubble appearance and bubble size strongly dependent on the sparger type. By using the bubble size measurement data, it could be shown that only small changes in mass transfer coefficient (kL ) take place above the critical micelle concentration. Further changes on overall mass transfer at higher Pluronic F68 concentrations are mainly based on increasing of gas holdup and, more importantly, by increasing of the surface area available for mass transfer.

  19. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements

    PubMed Central

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  20. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.

    PubMed

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-02-19

    A study coupling sedimentcore incubation and microelectrode measurement was performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19-1.41 g/(m²·d) with an average of 0.62 g/(m²·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15-1.38 g/(m²·d) with an average of 0.51 g/(m²·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R² = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water.

  1. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  2. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  3. Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Ay, Murat; Kisi, Ozgur

    2014-04-01

    This paper proposes integration of k-means clustering and multi-layer perceptron (k-means-MLP) methods in modelling chemical oxygen demand (COD) concentration. This proposed method was tested by using daily measured water suspended solids, pH, temperature, discharge and COD concentration data of upstream of the municipal wastewater treatment plant system in Adapazari province of Turkey. Performance of the k-means-MLP method was compared with multi-linear regression, multi-layer perceptron, radial-based neural network, generalized regression neural network, and two different adaptive neuro-fuzzy inference system techniques (subtractive clustering and grid partition). Root mean square error, mean absolute error, mean absolute relative error and determination coefficient statistics were employed for the evaluation accuracy of each model. It was found that the k-means-MLP performed better than the other techniques in estimating COD. Moreover, the k-means clustering combined with the MLP could be used as a tool in modelling daily COD concentration.

  4. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent.

    PubMed

    Huddleston, G M; Gillespie, W B; Rodgers, J H

    2000-02-01

    This study evaluated the effectiveness of constructed wetlands for tertiary treatment of a petroleum refinery effluent. Specific performance objectives were to decrease 5-day biochemical oxygen demand (BOD(5)) and ammonia by at least 50% and to reduce toxicity associated with this effluent. Two bench-scale wetlands (replicates) were constructed in a greenhouse to provide tertiary treatment of effluent samples shipped from the refinery to the study site. Integrated wetland features included Typha latifolia Linnaeus planted in low organic (0.2%), sandy sediment, 48-h nominal hydraulic retention time, and 15-cm overlying water depth. Targeted constituents and aqueous toxicity were monitored in wetland inflows and outflows for 3 months. Following a 2 to 3-week stabilization period, effective and consistent removal of BOD(5) and ammonia (as NH(3)-N) from the effluent was observed. Average BOD(5) removal was 80%, while NH(3)-N decreased by an average of 95%. Survival of Pimephales promelas Rafinesque and Ceriodaphnia dubia Richard (7-day, static, renewal exposures) increased by more than 50% and 20%, respectively. Reproduction of C. dubia increased from zero in undiluted wetland inflow to 50% of controls in undiluted wetland outflow. This study demonstrated the potential for constructed wetlands to decrease BOD(5), ammonia, and toxicity in this refinery effluent.

  5. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. PMID:24856922

  6. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand.

    PubMed

    Casey, Darren P; Joyner, Michael J

    2012-12-15

    Hypoxia can have profound influences on the circulation. In humans, acute exposure to moderate hypoxia has been demonstrated to result in vasodilatation in the coronary, cerebral, splanchnic and skeletal muscle vascular beds. The combination of submaximal exercise and hypoxia produces a 'compensatory' vasodilatation and augmented blood flow in contracting skeletal muscles relative to the same level of exercise under normoxic conditions. This augmented vasodilatation exceeds that predicted by a simple sum of the individual dilator responses to hypoxia alone and normoxic exercise. Additionally, this enhanced hypoxic exercise hyperaemia is proportional to the hypoxia-induced fall in arterial oxygen (O(2)) content, thus preserving muscle O(2) delivery and ensuring it is matched to demand. Several vasodilator pathways have been proposed and examined as likely regulators of skeletal muscle blood flow in response to changes in arterial O(2) content. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the compensatory vasodilatation observed during hypoxic exercise in humans. Along these lines, this review will highlight the interactions between various local metabolic and endothelial derived substances that influence vascular tone during hypoxic exercise.

  7. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  8. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  9. WO₃/W nanopores sensor for chemical oxygen demand (COD) determination under visible light.

    PubMed

    Li, Xuejin; Bai, Jing; Liu, Qiang; Li, Jianyong; Zhou, Baoxue

    2014-06-17

    A sensor of a WO3 nanopores electrode combined with a thin layer reactor was proposed to develop a Chemical Oxygen Demand (COD) determination method and solve the problem that the COD values are inaccurately determined by the standard method. The visible spectrum, e.g., 420 nm, could be used as light source in the sensor we developed, which represents a breakthrough by limiting of UV light source in the photoelectrocatalysis process. The operation conditions were optimized in this work, and the results showed that taking NaNO3 solution at the concentration of 2.5 mol·L(-1) as electrolyte under the light intensity of 214 μW·cm(-2) and applied bias of 2.5 V, the proposed method is accurate and well reproducible, even in a wide range of pH values. Furthermore, the COD values obtained by the WO3 sensor were fitted well with the theoretical COD value in the range of 3-60 mg·L(-1) with a limit value of 1 mg·L(-1), which reveals that the proposed sensor may be a practical device for monitoring and controlling surface water quality as well as slightly polluted water.

  10. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film.

    PubMed

    Wang, Jinqi; Wu, Can; Wu, Kangbing; Cheng, Qin; Zhou, Yikai

    2012-07-29

    Cobalt oxide sensing film was in situ prepared on glassy carbon electrode surface via constant potential oxidation. Controlling at 0.8 V in NaOH solution, the high-valence cobalt catalytically oxidized the reduced compounds, decreasing its surface amount and current signal. The current decline was used as the response signal of chemical oxygen demand (COD) because COD represents the summation of reduced compounds in water. The surface morphology and electrocatalytic activity of cobalt oxide were readily tuned by variation of deposition potential, time, medium and Co(2+) concentration. As confirmed from the atomic force microscopy measurements, the cobalt oxide film, that prepared at 1.3 V for 40 s in pH 4.6 acetate buffer containing 10 mM Co(NO(3))(2), possesses large surface roughness and numerous three-dimensional structures. Electrochemical tests indicated that the prepared cobalt oxide exhibited high electrocatalytic activity to the reduced compounds, accompanied with strong COD signal enhancement. As a result, a novel electrochemical sensor with high sensitivity, rapid response and operational simplicity was developed for COD. The detection limit was as low as 1.1 mg L(-1). The analytical application was studied using a large number of lake water samples, and the accuracy was tested by standard method.

  11. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters.

    PubMed

    Zhang, Shanqing; Li, Lihong; Zhao, Huijun

    2009-10-15

    A photoelectrochemical probe for rapid determination of chemical oxygen demand (COD) is developed using a nanostructured mixed-phase TiO2 photoanode, namely PeCOD probe. A UV-LED light source and a USB mircroelectrochemical station are powered and controlled by a laptop computer, which makes the probe portable for onsite COD analyses. The photoelectrochemical measurement of COD was optimized in terms of light intensity, applied bias, and pH. Under the optimized conditions, the net steady state currents originated from the oxidation of organic compounds were found to be directly proportional to COD concentrations. A practical detection limit of 0.2 ppm COD and a linear range of 0-120 ppm COD were achieved. The analytical method using the portable PeCOD probe has the advantages of being rapid, low cost, robust, user-friendly, and environmental friendly. It has been successfully applied to determine the COD values of the synthetic samples consisting of potassium hydrogen phthalate, D-glucose, glutamic acid, glutaric acid, succinic acid, and malonic acid, and real samples from various industries, such as bakery, oil and grease manufacturer, poultry, hotel, fine food factory, and fresh food producer, commercial bread manufacturer. Excellent agreement between the proposed method and the conventional COD method (dichromate) was achieved. PMID:19921898

  12. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications.

  13. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement.

    PubMed

    Liu, Changyu; Ma, Chao; Yu, Dengbin; Jia, Jianbo; Liu, Ling; Zhang, Bailin; Dong, Shaojun

    2011-01-15

    To improve the practicability of rapid biochemical oxygen demand (BOD) method, we proposed a stable BOD sensor based on immobilizing multi-species BODseed for wastewater monitoring in the flow system. The activation time of the biofilm was greatly shortened for the biofilm prepared by BODseed in the organic-inorganic hybrid material. Some influence factors such as temperature, pH, and concentration of phosphate buffer solution (PBS) were investigated in detail in which high tolerance to environment was validated for the BOD sensor permitted a wide pH and PBS concentration ranges. The minimum detectable BOD was around 0.5 mg/l BOD under the optimized 1.0 mg/ml BODseed immobilized concentration. The as-prepared BOD sensor exhibited excellent stability and reproducibility for different samples. Furthermore, the as-prepared BOD biosensor displayed a notable advantage in indiscriminate biodegradation to different organic compounds and their mixture, similar to the character of conventional BOD(5) results. The results of the BOD sensor method are well agreed with those obtained from conventional BOD(5) method for wastewater samples. The proposed rapid BOD sensor method should be promising in practical application of wastewater monitoring.

  14. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers.

    PubMed

    Chee, Gab-Joo

    2013-12-15

    Five microorganisms were used to construct a biosensor for the evaluation of low biochemical oxygen demand (BOD) in rivers. Characterization and comparison of BOD biosensors were performed using two standard solutions: glucose and glutamic acid (GGA) and artificial wastewater (AWW). Pseudomonas putida SG10 demonstrated the best response when using AWW. Trichosporon cutaneum IFO10466, however, had an extremely poor response. When evaluating the biosensor response to each component of AWW, all of the microorganisms except T. cutaneum displayed the highest response to tannic acid. In a comparison of the two standard solutions for all the microorganisms, the biosensor responses of GGA were approximately three times higher than those of AWW were. In the BOD determination of environmental samples, the biosensor BOD values evaluated using AWW were slightly lower or equivalent to BOD5 values, whereas the biosensor BOD values evaluated using GGA were considerably lower. These results suggest that GGA is suitable for the detection of high BOD in industrial wastewaters and factory effluents, while AWW is suitable for the detection of low BOD in rivers.

  15. Rapid determination of the chemical oxygen demand of water using a thermal biosensor.

    PubMed

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-06-06

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  16. Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor.

    PubMed

    Kim, Mia; Hyun, Moon Sik; Gadd, Geoffrey M; Kim, Gwang Tae; Lee, Sang-Joon; Kim, Hyung Joo

    2009-04-01

    A membrane-electrode assembly (MEA) was applied to a microbial fuel cell (MFC) type biological oxygen demand (BOD) sensor and the performance of the sensor was assessed. To establish the optimal conditions for MEA fabrication, platinum-catalysed carbon cloth cathodic electrodes were assembled with cation exchange membranes under various temperatures and pressures. By analysing coulombs from the MFCs, it could be determined that the optimal hot-pressing conditions were 120 degrees C and 150 kg cm(-2) for 30 s. When the MEA fabricated under optimal conditions and an air cathode were utilized for the construction of the MFC type BOD sensor, coulombs increased to 4.65 C from 0.52 C and power increased to 69,080 mW m(-3) from 880 mW m(-3) (at a BOD concentration of 200 mg L(-1)), respectively, compared with the conventional MFC lacking a MEA. The increased power improved the performance of the MFC type BOD sensor: sensitivity increased from 1.2 x 10(-3) to 1.8 x 10(-2) C per mg L(-1) of BOD, with good linearity (r2 = 0.97) and over 97% repeatability. We conclude that the MEA can be successfully applied to MFCs to make them highly sensitive BOD sensors.

  17. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  18. Tamoxifen reduces fat mass by boosting reactive oxygen species.

    PubMed

    Liu, L; Zou, P; Zheng, L; Linarelli, L E; Amarell, S; Passaro, A; Liu, D; Cheng, Z

    2015-01-01

    As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4-5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study. PMID:25569103

  19. Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida

    USGS Publications Warehouse

    Russo, Thomas N.; McQuivey, Raul S.

    1975-01-01

    A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

  20. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  1. ENHANCED EXTERNAL COUNTERPULSATION REDUCES INDICES OF CENTRAL BLOOD PRESSURE AND MYOCARDIAL OXYGEN DEMAND IN PATIENTS WITH LEFT VENTRICULAR DYSFUNCTION

    PubMed Central

    Beck, Darren T.; Casey, Darren P.; Martin, Jeffrey S.; Sardina, Paloma D.; Braith, Randy W.

    2015-01-01

    Enhanced external counterpulsation (EECP) therapy decreases angina episodes and improves quality of life in patients with left ventricular dysfunction (LVD). However, the underlying mechanisms relative to the benefits of EECP therapy in patients with LVD have not been fully elucidated. The purpose of this study was to investigate the effects of EECP on indices of central hemodynamics, aortic pressure wave reflection characteristics and estimates of LV load and myocardial oxygen demand in patients with LVD. Patients with chronic stable angina and left ventricular ejection fraction (LVEF) <40%, but > 30%, were randomized to either an EECP (LVEF=35.1±4.6%; n=10) or sham-EECP (LVEF=34.3±4.2%; n=7) group. Pulse wave analysis (PWA) of the central aortic pressure waveform (AoPW) and LV function were evaluated by applanation tonometry before and after 35 1-hr sessions of EECP or Sham EECP. EECP therapy was effective in reducing indices of left ventricular wasted energy (LVEw) and myocardial oxygen demand (TTI) by 25% and 19%, respectively. In addition, indices of coronary perfusion pressure (DTI) and subendocardial perfusion (SEVR) were increased by 9% and 30% after EECP, respectively. Our data indicate that EECP may be useful as adjuvant therapy for improving functional classification in heart failure patients through reductions in central blood pressure, aortic pulse pressure, wasted left ventricular energy, and myocardial oxygen demand which suggests improvements in ventricular-vascular interactions. PMID:25676084

  2. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    SciTech Connect

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  3. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    PubMed

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(®). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(®), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  4. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Colman, Albert; Olack, Gerard; Waniek, Joanna J.; Hodell, David

    2015-06-01

    Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 δ18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (δ18O: -0.1 to 0.5‰; δD: -1 to 4‰) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0

  5. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  6. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  7. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  8. A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models

    PubMed Central

    Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K.

    2016-01-01

    The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement. PMID:27219067

  9. Impact of the renewable oxygenate standard for reformulated gasoline on ethanol demand, energy use, and greenhouse gas emissions

    SciTech Connect

    Stork, K.C.; Singh, M.K.

    1995-04-01

    To assure a place for renewable oxygenates in the national reformulated gasoline (RFG) program, the US Environmental Protection Agency has promulgated the renewable oxygenate standard (ROS) for RFG. It is assumed that ethanol derived from corn will be the only broadly available renewable oxygenate during Phase I of the RFG program. This report analyzes the impact that the ROS could have on the supply of ethanol, its transported volume, and its displacement from existing markets. It also considers the energy and crude oil consumption and greenhouse gas (GHG) emissions that could result from the production and use of various RFGs that could meet the ROS requirements. The report concludes that on the basis of current and projected near-term ethanol capacity, if ethanol is the only available renewable oxygenate used to meet the requirements of the ROS, diversion of ethanol from existing use as a fuel is likely to be necessary. Year-round use of ethanol and ETBE would eliminate the need for diversion by reducing winter demand for ethanol. On an RFG-program-wide basis, using ethanol and ETBE to satisfy the ROS can be expected to slightly reduce fossil energy use, increase crude oil use, and have essentially no effect on GHG emissions or total energy use relative to using RFG oxygenated only with MTBE.

  10. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.

    PubMed

    Fan, Chihhao; Wang, Wei-Shen

    2008-10-01

    Water-quality modeling has been used as a support tool for water-resources management. The Streeter-Phelps (SP) equation is one often-used algorithm in river water-quality simulation because of its simplicity and ease in use. To characterize the river dissolved oxygen (DO) sag profile, it only considers that the first-order biological oxygen demand (BOD) degradation and atmospheric reaeration are the sink and source in a river, respectively. In the river water-quality calculation, the assumption may not always provide satisfactory simulation due to an inappropriate description of BOD degradation. In the study, various patterns of BOD degradation were combined with the oxygen reaeration to simulate the DO sag profile in a river. Different BOD degradation patterns used include the first-order decay, mixed second-order decay, and oxygen-inhibition decay. The results shows that the oxygen-inhibition SP equation calculates higher BOD and DO concentration, while the mixed second SP equation calculates the least among the three tested models. In river-water calculation of Keelung River, the SP and oxygen-inhibition SP equations calculate similar BOD and DO concentrations, and the mixed second SP equation calculates the least BOD and DO concentration. The pollution loading of BOD and atmospheric reaeration constant are the two important factors that have significant impacts on aqueous DO concentration. In the field application, it is suggested that the mixed second SP equation be employed in water-quality simulation when the monitoring data exhibits a faster trend in BOD decay. The oxygen-inhibition SP equation may calculate the water quality more accurately when BOD decay is slower.

  11. Utilizing Thermal Mass in Refrigerated Display Cases to Reduce Peak Demand

    SciTech Connect

    Fricke, Brian A; Kuruganti, Teja; Nutaro, James J; Fugate, David L; Sanyal, Jibonananda

    2016-01-01

    The potential to store energy within refrigerated food products presents convenience store and supermarket operators with an opportunity to participate in utility sponsored demand response programs, whereby electricity usage can be shifted or reduced during peak periods. To determine the feasibility of reducing peak demand by shifting the refrigeration load to off-peak times, experimental and analytical analyses were performed. Simulated product, consisting of one-pint containers filled with a 50% ethylene glycol and 50% water solution, were stored in a medium-temperature vertical open refrigerated display case. Product temperature rise as a function of time was determined by turning off the refrigeration to the display case, while product temperature pull-down time was subsequently determined by turning on the refrigeration to the display case. It was found that the thermal mass of the product in a medium-temperature display case was such that during a 2.5 hour period with no refrigeration, the average product temperature increased by 5.5 C. In addition, it took approximately 3.5 hours for the product to recover to its initial temperature after the refrigeration was turned on. Transient heat conduction analyses for one-dimensional objects is in good agreement with the experimental results obtained in this study. From the analysis, it appears that the thermal mass of the stored product in refrigerated display cases is sufficient to allow product temperatures to safely drift for a significant time under reduced refrigeration system operation. Thus, strategies for shifting refrigeration system electrical demand can be developed. The use of an advanced refrigeration system controller that can respond to utility signals can enable demand shifting with minimal impact.

  12. Using electrochemistry - total internal refection imaging ellipsometry to monitor biochemical oxygen demand on the surface tethered polyelectrolyte modified electrode

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Meng; Lv, Bei'er; Chen, YanYan; Ma, Hongwei; Jin, Gang

    2015-03-01

    Our previous work has proposed an electrochemistry - total internal reflection imaging ellipsometry (EC-TIRIE) technique to observe the dissolved oxygen (DO) reduction on Clark electrode since high interface sensitivity makes TIRIE a useful tool to study redox reactions on the electrode surface. To amplify the optical signal noise ratio (OSNR), a surface tethered weak polyelectrolyte, carboxylated poly(oligo(ethylene glycol) methacrylate-random- 2-hydroxyethylmethacrylate) (abbreviated as carboxylated poly(OEGMA-r-HEMA)), has been introduced on the electrode surface. Since Clark electrode is widely used in biochemical oxygen demand (BOD) detection, we use this technique to measure BOD in the sample. The dynamic range of the system is from 0 ˜ 25 mg/L. Two samples have been measured. Compared with the conventional method, the deviation of both optical and electrical signals are less than 10%.

  13. Effect of weaning on oxygen consumption and cardiovascular function. A comparison of continuous flow and demand valve systems.

    PubMed

    Ip Yam, P C; Appadurai, I R; Kox, W J

    1994-05-01

    This study compared the continuous positive airways pressure mode of the demand valve system of the Engstrom Erica ventilator with a custom-made continuous flow continuous positive airways pressure system in terms of the oxygen cost of breathing during weaning from mechanical ventilation. Ten consecutive patients in our intensive care unit, with thermodilution pulmonary artery flotation catheters in situ, were studied. Measurements were carried out under steady-state conditions, initially when breathing spontaneously with continuous positive airways pressure via the Erica and then when transition to the continuous flow system was achieved. There were no significant differences between the two methods of providing continuous positive airways pressure in terms of the measured and derived physiological variables studied, with the exception of oxygen consumption. Oxygen consumption with the continuous flow system was significantly less than with the Erica (142.8 (SEM 31.4) ml.min-1.m-2 compared with 165.8 (SEM 30.5) ml.min-1.m-2, p < 0.05). This difference reflects the reduced oxygen cost of breathing when the custom-made continuous flow system was used during weaning.

  14. MICREDOX--development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent.

    PubMed

    Pasco, Neil; Baronian, Keith; Jeffries, Cy; Webber, Judith; Hay, Joanne

    2004-10-15

    Biochemical oxygen demand (BOD) is an international regulatory environmental index for monitoring organic pollutants in wastewater and the current legislated standard test for BOD monitoring requires 5 days to complete (BOD5 test). We are developing a rapid microbial technique, MICREDOX, for measuring BOD by eliminating oxygen and, instead, quantifying an equivalent biochemical co-substrate demand, the co-substrate being a redox mediator. Elevated concentrations of Proteus vulgaris, either as free cells or immobilised in Lentikat disks, were incubated with an excess of redox mediator (potassium hexacyanoferrate(III)) and organic substrate for 1h at 37 degrees C without oxygen. The addition of substrate increased the catabolic activity of the microorganisms and the accumulation of reduced mediator, which was subsequently re-oxidised at a working electrode generating a current quantifiable by a coulometric transducer. The recorded currents were converted to their BOD5 equivalent with the only assumption being a fixed conversion of substrate and known stoichiometry. Measurements are reported both for the BOD5 calibration standard solution (150 mg l(-1) glucose, 150 mg l(-1) glutamic acid) and for filtered effluent sampled from a wastewater treatment plant. The inclusion of a highly soluble mediator in place of oxygen facilitated a high ferricyanide concentration in the incubation, which in turn permitted increased concentrations of microorganisms to be used. This substantially reduced the incubation time, from 5 days to 1h, for the biological oxidation of substrates equivalent to those observed using the standard BOD5 test. Stoichiometric conversion efficiencies for the oxidation of the standard substrate by P. vulgaris were typically 60% for free cells and 35-50% for immobilised cells.

  15. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  16. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    SciTech Connect

    Xu, Peng; Yin, Rongxin; Brown, Carrie; Kim, DongEun

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

  17. The oxygen transfer rate influences the molecular mass of the alginate produced by Azotobacter vinelandii.

    PubMed

    Díaz-Barrera, A; Peña, C; Galindo, E

    2007-09-01

    The influence of oxygen transfer rate (OTR) on the molecular mass of alginate was studied. In batch cultures without dissolved oxygen tension (DOT) control and at different agitation rates, the DOT was nearly zero and the OTR was constant during biomass growth, hence the cultures were oxygen-limited. The OTR reached different maximum levels (OTR(max)) and enabled to establish various relative respiration rates. Overall, the findings showed that OTR influences alginate molecular mass. The mean molecular mass (MMM) of the alginate increased as OTR(max) decreased. The molecular mass obtained at 3.0 mmol l(-1) h(-1) was 7.0 times higher (1,560 kDa) than at 9.0 mmol l(-1) h(-1) (220 kDa). An increase in molecular mass can be a bacterial response to adverse nutritional conditions such as oxygen limitation.

  18. High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods.

    PubMed

    Retes-Pruneda, Jose Luis; Davila-Vazquez, Gustavo; Medina-Ramírez, Iliana; Chavez-Vela, Norma Angelica; Lozano-Alvarez, Juan Antonio; Alatriste-Mondragon, Felipe; Jauregui-Rincon, Juan

    2014-08-01

    The goal of this research is to find a more effective treatment for tequila vinasses (TVs) with potential industrial application in order to comply with the Mexican environmental regulations. TVs are characterized by their high content of solids, high values of biochemical oxygen demand (BODs), chemical oxygen demand (COD), low pH and intense colour; thus, disposal of untreated TVs severely impacts the environment. Physicochemical and biological treatments, and a combination of both, were probed on the remediation of TVs. The use of alginate for the physicochemical treatment of TVs reduced BOD5 and COD values by 70.6% and 14.2%, respectively. Twenty white-rot fungi (WRF) strains were tested in TV-based solid media. Pleurotus ostreatus 7992 and Trametes trogii 8154 were selected due to their ability to grow on TV-based solid media. Ligninolytic enzymes' production was observed in liquid cultures of both fungi. Using the selected WRF for TVs' bioremediation, both COD and BOD5 were reduced by 88.7% and 89.7%, respectively. Applying sequential physicochemical and biological treatments, BOD5 and COD were reduced by 91.6% and 93.1%, respectively. Results showed that alginate and selected WRF have potential for the industrial treatment of TVs.

  19. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  20. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  1. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kawasaki, Masaya; Okuhara, Koji

    In this paper, we try to model for ‘Naiji System’ which is a unique corporation between a maker and suppliers in Japan. We propose Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information, which is called ‘Naiji’. This model is formulated as a nonlinear stochastic programming problem which minimizes the sum of production cost and inventory holding cost subject to the set of probabilistic constraint and some linear production constraints. We propose the new upper bound SOn (ρmin) to estimate the unfulfilled-order-rate more strictly. The procedure to find a good solution is developed by solving the linear programming problem repeatedly on the basic solution strategy that is ‘relaxation’. A computational load to obtain a solution by the proposed indicator is shown to be very small. Finally, an availability of the procedure is shown.

  2. Control of voluntary feed intake in fish: a role for dietary oxygen demand in Nile tilapia (Oreochromis niloticus) fed diets with different macronutrient profiles.

    PubMed

    Saravanan, S; Geurden, I; Figueiredo-Silva, A C; Kaushik, S J; Haidar, M N; Verreth, J A J; Schrama, J W

    2012-10-28

    It has been hypothesised that, at non-limiting water oxygen conditions, voluntary feed intake (FI) in fish is limited by the maximal physiological capacity of oxygen use (i.e. an 'oxystatic control of FI in fish'). This implies that fish will adjust FI when fed diets differing in oxygen demand, resulting in identical oxygen consumption. Therefore, FI, digestible energy (DE) intake, energy balance and oxygen consumption were monitored at non-limiting water oxygen conditions in Nile tilapia fed diets with contrasting macronutrient composition. Diets were formulated in a 2 × 2 factorial design in order to create contrasts in oxygen demand: two ratios of digestible protein (DP):DE ('high' v. 'low'); and a contrast in the type of non-protein energy source ('starch' v. 'fat'). Triplicate groups of tilapia were fed each diet twice daily to satiation for 48 d. FI (g DM/kg(0·8) per d) was significantly lower (9·5%) in tilapia fed the starch diets relative to the fat diets. The DP:DE ratio affected DE intakes (P < 0·05), being 11% lower with 'high' than with 'low' DP:DE ratio diets, which was in line with the 11·9% higher oxygen demand of these diets. Indeed, DE intakes of fish showed an inverse linear relationship with dietary oxygen demand (DOD; R 2 0·81, P < 0·001). As hypothesised ('oxystatic' theory), oxygen consumption of fish was identical among three out of the four diets. Altogether, these results demonstrate the involvement of metabolic oxygen use and DOD in the control of FI in tilapia.

  3. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cc. with a constant time interval between respirations. (b) If demand equipment is installed for use..., BTPS, and with a tidal volume of 700 cc. with a constant time interval between respirations. (2) At...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment...

  4. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... cc. with a constant time interval between respirations. (b) If demand equipment is installed for use..., BTPS, and with a tidal volume of 700 cc. with a constant time interval between respirations. (2) At...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment...

  5. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cc. with a constant time interval between respirations. (b) If demand equipment is installed for use..., BTPS, and with a tidal volume of 700 cc. with a constant time interval between respirations. (2) At...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment...

  6. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cc. with a constant time interval between respirations. (b) If demand equipment is installed for use..., BTPS, and with a tidal volume of 700 cc. with a constant time interval between respirations. (2) At...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment...

  7. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cc. with a constant time interval between respirations. (b) If demand equipment is installed for use..., BTPS, and with a tidal volume of 700 cc. with a constant time interval between respirations. (2) At...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment...

  8. Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor.

    PubMed

    Tang, Bing; Qiu, Bing; Huang, Shaosong; Yang, Kanghua; Bin, Liying; Fu, Fenglian; Yang, Huiwen

    2015-04-01

    This work investigated the DO distribution and the factors influencing the mass transfer of DO in a multi-habitat membrane bioreactor. Through the continuous measurements of an on-line automatic system, the timely DO values at different zones in the bioreactor were obtained, which gave a detailed description to the distribution of oxygen within the bioreactor. The results indicated that the growth of biomass had an important influence on the distribution of oxygen. As the extension of operational time, the volumetric oxygen mass transfer coefficient (kLa) was generally decreased. With the difference in DO values, a complex environment combining anoxic and oxic state was produced within a single bioreactor, which provided a fundamental guarantee for the total removal of TN. Aeration rate, the concentration and apparent viscosity of MLSS have different influences on kLa, but adjusting the viscosity is a feasible method to improve the mass transfer of oxygen in the bioreactor.

  9. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater.

    PubMed

    Erable, Benjamin; Etcheverry, Luc; Bergel, Alain

    2011-03-01

    The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a "short-circuited" microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment.

  10. Efficiency of some soil bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions.

    PubMed

    Erguven, G O; Yildirim, N

    2016-01-01

    This study searches the efficiency of certain soil bacteria on chemical oxygen demand (COD) reduction of synthetic chlorsulfuron solutions under agitated culture conditions. It also aims to determine the turbidity of liquid culture medium with chlorsulfuron during bacterial incubation for 120 hours. As a result the highest and lowest COD removal efficiency of bacteria was determined for Bacillus simplex as 94% and for Micrococcus luteus as 70%, respectively at the end of the 96th hour. It was found that COD removal efficiency showed certain differences depend on the bacterial species. It was also observed that B. simplex had the highest COD removal efficiency and it was a suitable bacterium species for bioremediation of a chlorsulfuron contaminated soils. PMID:27262810

  11. Oxygen profiles in egg masses predicted from a diffusion-reaction model.

    PubMed

    Woods, H Arthur; Moran, Amy L

    2008-03-01

    We developed a novel diffusion-reaction model to describe spatial and temporal changes in oxygen concentrations in gelatinous egg masses containing live, respiring embryos. We used the model in two ways. First, we constructed artificial egg masses of known metabolic density using embryos of the Antarctic sea urchin Sterechnius neumayeri, measured radial oxygen profiles at two temperatures, and compared our measurements to simulated radial oxygen profiles generated by the model. We parameterized the model by measuring the radius of the artificial masses, metabolic densities (=embryo metabolic rate x embryo density) and oxygen diffusion coefficients at both ambient (-1.5 degrees C) or slightly warmer (+1.5-2 degrees C) temperatures. Simulated and measured radial oxygen profiles were similar, indicating that the model captured the major biological features determining oxygen distributions. Second, we used the model to analyze sources of error in step-change experiments for determining oxygen diffusion coefficients (D), and to determine the suitability of simpler, analytical equations for estimating D. Our analysis indicated that embryo metabolism can lead to large (several-fold) overestimates of D if the analytical equation is fitted to step-down-traces of central oxygen concentration (i.e. external oxygen concentration stepped from some high value to zero). However, good estimates of D were obtained from step-up-traces. We used these findings to estimate D in egg masses of three species of nudibranch molluscs: two Antarctic species (Tritonia challengeriana and Tritoniella belli; -1.5 and +2 degrees C) and one temperate Pacific species (Tritonia diomedea; 12 and 22 degrees C). D for all three species was approximately 8 x 10(-6) cm(2) s(-1), and there was no detectable effect of temperature on estimated D. For the Antarctic species, D in egg masses was 70-90% of its value in seawater of similar temperature. PMID:18281342

  12. Comparison of atomic oxygen measurements by incoherent scatter and satellite-borne mass spectrometer techniques

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Alcayde, D.

    1974-01-01

    Atomic oxygen densities determined by the incoherent scatter technique are compared to densities deduced from satellite-borne mass spectrometer measurements and are found to agree within experimental error. The diurnal variations inferred from the incoherent scatter measurements do show, however, some departure from diurnal variations found by modeling the mass spectrometer results. Some implications of these departures are briefly discussed.

  13. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tidal volume of 700cc with a constant time interval between respirations. (ii) At cabin pressure... time interval between respirations. (2) For each flight crewmember, the minimum mass flow may not be... constant time interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied...

  14. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tidal volume of 700cc with a constant time interval between respirations. (ii) At cabin pressure... time interval between respirations. (2) For each flight crewmember, the minimum mass flow may not be... constant time interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied...

  15. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cc. with a constant time interval between respirations. (ii) At cabin pressure altitudes above 18,500... between respirations. (2) For each flight crewmember, the minimum mass flow may not be less than the flow... interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied for each user...

  16. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cc. with a constant time interval between respirations. (ii) At cabin pressure altitudes above 18,500... between respirations. (2) For each flight crewmember, the minimum mass flow may not be less than the flow... interval between respirations. (3) The minimum mass flow of supplemental oxygen supplied for each user...

  17. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. PMID:27233761

  18. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases.

  19. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Núñez-Delgado, A; López-Periago, E; Quiroga-Lago, F; Díaz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC.

  20. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-01-01

    Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation.

  1. Rapid field estimation of biochemical oxygen demand in a subtropical eutrophic urban lake with chlorophyll a fluorescence.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-01-01

    Development of a technique for rapid field estimation of biochemical oxygen demand (BOD) is necessary for cost-effective monitoring and management of urban lakes. While several studies reported the usefulness of laboratory tryptophan-like fluorescence technique in predicting 5-day BOD (BOD₅) of wastewater and leachates, little is known about the predictability of field chlorophyll fluorescence measurements for BOD of urban lake waters that are constantly exposed to the mixture of chemical compounds. This study was conducted to develop a numeric relationship between chlorophyll a fluorescence and BOD for a eutrophic urban lake that is widely representative of lake water conditions in the subtropical southern USA. From October 2012 to September 2013, in situ measurements at the studied lake were made every 2 weeks on chlorophyll a fluorescence and other water quality parameters including water temperature, pH, dissolved oxygen, and specific conductivity. Water samples were taken for 5-day BOD and 10-day BOD (BOD₁₀) analysis with and without incubation. The results showed a clear seasonal trend of both BOD measurements being high during the summer and low during the winter. There was a linear, positive relationship between chlorophyll a fluorescence and BOD, and the relationship appeared to be stronger with the 10-day BOD (r(2) = 0.83) than with the 5-day BOD (r(2) = 0.76). BOD dropped each day with declining chlorophyll a fluorescence, suggesting that die-off of phytoplankton has been the main consumption of oxygen in the studied lake. Ambient conditions such as rainfall and water temperature may have partially affected BOD variation. PMID:25446719

  2. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom

  3. Mass-independent oxygen isotopic partitioning during gas-phase SiO2 formation.

    PubMed

    Chakraborty, Subrata; Yanchulova, Petia; Thiemens, Mark H

    2013-10-25

    Meteorites contain a wide range of oxygen isotopic compositions that are interpreted as heterogeneity in solar nebula. The anomalous oxygen isotopic compositions of refractory mineral phases may reflect a chemical fractionation process in the nebula, but there are no experiments to demonstrate this isotope effect during particle formation through gas-phase reactions. We report experimental results of gas-to-particle conversion during oxidation of silicon monoxide that define a mass-independent line (slope one) in oxygen three-isotope space of (18)O/(16)O versus (17)O/(16)O. This mass-independent chemical reaction is a potentially initiating step in nebular meteorite formation, which would be capable of producing silicate reservoirs with anomalous oxygen isotopic compositions. PMID:24159043

  4. Secondary ion mass spectroscopy determination of oxygen diffusion coefficient in heavily Sb doped Si

    NASA Astrophysics Data System (ADS)

    Pagani, M.

    1990-10-01

    The diffusion coefficient of oxygen in heavily antimony doped Czochralski Si was measured in the temperature range 950-1100 °C by using secondary ion mass spectroscopy (SIMS). The diffusion coefficient, obtained from SIMS oxygen concentration profiles in samples submitted to out diffusion, shows no dependence on antimony concentration. The combined data give an activation energy of 2.68 eV, which is in good agreement with published results.

  5. Mass Customization Production Planning System by Advance Demand Information Based on Unfulfilled-order-rate II

    NASA Astrophysics Data System (ADS)

    Ueno, Nobuyuki; Kadomoto, Kiyotaka; Okuhara, Koji

    In the previous paper, we proposed Mass Customization Production Planning & Management System (MCPS) based on unfulfilled-order-rate by using Advance Demand Information which is called ‘Naiji System’ as an unique corporation between a maker and suppliers in Japan, and 3 indicators to estimate the unfulfilled-order-rate. Applying these indicators to the model, we investigated the behavior of unfulfilled-order-rate at the final period in the planning horizon. In this paper, we propose a new model for purchasing, and investigate the unfulfilled-order-rate at each period and the impact to the total inventory. We find that the total inventories become 5.9%-20.0% decreases by using SOn rather than by using SOn(0). And we enhance a base-stock policy to a new one with multi-period. We prove that the MCPS model for purchasing by using SOn(0) is equivalent to the base-stock policy with multi-period under the specified condition. Under this condition, the proposed model by using SOn decreases inventories more than the base-stock policy with multi-period.

  6. Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft.

    PubMed

    Zheng, Tinghui; Wen, Jun; Jiang, Wentao; Deng, Xiaoyan; Fan, Yubo

    2014-04-01

    Local oxygen lack in arterial walls (hypoxia) plays a very important role in the initiation, progression and development of intimal hyperplasia (IH) and thrombosis. Aiming to find out whether a helical-type artery bypass graft (ABG) is hypoxia beneficial, a numerical study was carried out to compare oxygen transport between a helical-type ABG and a conventional-type ABG. The dimensionless mass transfer coefficient (Sherwood number) was introduced to evaluate the oxygen mass transfer distribution and detailed oxygen wall flux was computed. The results show that the intrinsic geometry of a helical-type ABG resulted in improved hypoxia and the oxygen-depleted fluid located proximally to the occluded section as compared with that of a conventional-type ABG. However, benefits aside, distinct double low regions (low wall shear stress (WSS) and hypoxia) which might be most prone to IH and more localised and thicker boundary layer of oxygen-depleted fluid were observed at the helical-type ABG. This may explain why the helical flow plays a detrimental role at some locations in the human body. In addition, it was observed that although low WSS region was always accompanied with low oxygen supply, the oxygen transport rate did not adjust simultaneously with flow. The change in oxygen distribution usually lagged behind the flow change. A physiological WSS region may be associated with hypoxia condition. This study captured the qualitative trend of oxygen distribution in ABGs and the effect of helical geometry on reducing hypoxia, which is useful in the structural design of swirling flow vascular devices.

  7. ORIGINS OF NON-MASS-DEPENDENT FRACTIONATION OF EXTRA-TERRESTRIAL OXYGEN

    SciTech Connect

    Barcena, Homar; Connolly, Harold C.

    2012-08-01

    The distribution of oxygen isotopes in meteorites and within the earliest solids that formed in the solar system hints that the precursors of these materials must have undergone a mass-independent process. The mass-independent process is specifically one that fractionates {sup 16}O from {sup 17}O and {sup 18}O. This chemical signature is indicative of non-equilibrium processing, which bear resemblance to some unusual terrestrial phenomenon such as fractionation of ozone in the upper Earth atmosphere. That the mass-independent fractionation of oxygen isotopes is preserved within petrological records presents planetary scientists interesting clues to the events that may have occurred during the formation of the solar system. Currently, there are several hypotheses on the origins of the oxygen isotope distribution within primitive planetary materials, which include both thermal and photochemical models. We present a new model based on a physico-chemical hypothesis for the origin of non-mass-dependent O-isotope distribution in oxygen-bearing extra-terrestrial materials, which originated from the disproportionation of CO in dark molecular clouds to create CO{sub 2} reservoirs. The disproportionation created a reservoir of heavy oxygen isotopes and could have occurred throughout the evolution of the disk. The CO{sub 2} was a carrier of the isotope anomaly in the solar nebula and we propose that non-steady-state mixing of these reservoirs with the early rock-forming materials during their formation corresponds with the birth and evolution of the solar system.

  8. The production of low mass carbon stars - Carbon-rich dredge up or oxygen-rich mass loss?

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.; Pesce, J. E.; Macgregor, K. M.

    1989-01-01

    Conventional theory explains the origin of carbon stars as due to dredge up of carbon enriched material from the stellar core during helium flash events late in the life of solar mass AGB stars. This relatively efficient process, however, seems to produce a larger C/O ratio than observed (Lambert et al., 1987). A secondary effect which could contribute to the appearance of carbon stars, is the selective removal of oxygen from the atmosphere by radiative force expulsion of oxygen-rich dust grains. Calculations for this scenario are presented, which evaluate the degree of momentum coupling between the grains and gas under the thermodynamical conditions of AGB star atmospheres.

  9. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater. PMID:27533873

  10. A miniature photoelectrochemical sensor based on organic electrochemical transistor for sensitive determination of chemical oxygen demand in wastewaters.

    PubMed

    Liao, Jianjun; Lin, Shiwei; Zeng, Min; Yang, Yue

    2016-05-01

    A three-electrode configuration is often required in the conventional photoelectrochemical measurements. Nevertheless, one common drawback is the reference electrode and the counter electrode used in the measurements, which has been proved to be an impediment for the miniaturization. In this study, a simple, cost-effective and miniature photoelectrochemical sensor based on high sensitive organic electrochemical transistor (OECT) is developed and used for the determination of chemical oxygen demand (COD) in wastewaters. The devices show detection limit down to 0.01 mg/L COD, which is two orders of magnitude better than that of the conventional photoelectrochemical method. The excellent sensing performance can be contributed to the novel sensing mechanism of OECT devices. That is, the devices are sensitive to the potential changes induced by the photoelectrochemical reaction on TiO2 nanotube arrays gate electrodes. Real sample analyses are also carried out. The results demonstrate that the measured COD values using the OECT devices and the standard dichromate methods are in a good agreement. Since the proposed sensor is constructed on a miniature transistor, it is expected that the device shows a promising application on the integrated COD monitoring platform.

  11. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. PMID:26789200

  12. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-01-01

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD. PMID:26729113

  13. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    PubMed

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  14. Removal of chemical oxygen demand and dissolved nutrients by a sunken lawn infiltration system during intermittent storm events.

    PubMed

    Hou, Lizhu; Yang, Huan; Li, Ming

    2014-01-01

    Urban surface water runoff typically contains high but varying amounts of organic matter and nutrients that require removal before reuse. Infiltration systems such as sunken lawns can improve water quality. However, there is currently insufficient information describing the treatment efficiency of lawn-based infiltration systems. In this study, novel sunken lawn infiltration systems (SLISs) were designed and their pollutant removal effectiveness was assessed. The results revealed that SLISs with Poa pratensis and Lolium perenne effectively removed most chemical oxygen demand (CODCr) and dissolved nutrients. Average CODCr, total nitrogen (TN), ammonium-nitrogen (NH4(+)-N) and total phosphorus (TP) concentrations were reduced by 78.93, 66.64, 71.86 and 75.83%, respectively, and the corresponding effluent concentrations met the standard for urban miscellaneous water consumption in China. The NH4(+)-N in the synthetic runoff was shown to be removed by adsorption during the stormwater dosing and nitrification during subsequent dry days, as well as through uptake by plants. Phosphorus was mainly removed by adsorption and chemical precipitation. The NH4(+)-N and phosphorus Langmuir isotherm model fitted the clay loam soil adsorption process better than the Freundlich model. Overall, these results indicate that an SLIS provides an alternative means of removing runoff pollutants owing to its efficiency, easy operation and maintenance. PMID:24473312

  15. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor.

    PubMed

    Hsieh, Min-Chi; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) have attracted considerable attention as potential biosensors. A MFC biosensor for rapid measurement of biochemical oxygen demand (BOD) has been recently studied. However, a standardized bacterial mixture inoculated in the MFC biosensor for BOD measurement is unavailable. Thus, the commercial application of a MFC biosensor is limited. In this study, a mediator-less MFC biosensor inoculated with known mixed cultures to quickly determine BOD concentration was tested. Optimal external resistance, operating temperature and measurement time for the MFC biosensor were determined to be 5000 omega, 35 degrees C and 12h, respectively. A good relationship between BOD concentration and voltage output, high reproducibility and long-term stability for the MFC biosensor was observed. The newly developed MFC biosensor was inoculated with a mixture of six bacterial strains (Thermincola carboxydiphila, Pseudomonas aeruginosa, Ochrobactrum intermedium, Shewanella frigidimarina, Citrobacter freundii and Clostridium acetobutylicum) capable of degrading complex organic compounds and surviving toxic conditions. The described MFC biosensor was able to successfully measure BOD concentrations below 240 mg L(-1) in real wastewater samples. PMID:25145173

  16. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor

    PubMed Central

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-01-01

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN− in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD. PMID:26729113

  17. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater.

  18. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  19. An optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system

    NASA Astrophysics Data System (ADS)

    Xin, Lingling; Wang, Xudong; Guo, Guangmei; Wang, Xiaoru; Chen, Xi

    2007-09-01

    An on-line roboticized apparatus, including an optical biosensing film with an automatic flow sampling system, has been developed for biochemical oxygen demand (BOD) determination of seawater. The sensing film employed in the apparatus consisted of an organically modified silicate (ORMOSIL) film embedded with tri(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) perchlorate. Three species of microorganism cultivated from seawater were immobilized in an ORMOSIL-polyvinyl alcohol matrix. Possible factors affecting BOD determination were studied, including sampling frequency, temperature, pH and sodium chloride concentration. Based on measurements of the linear fluctuant coefficients and the reproducibility of its response to seawater, the BOD apparatus showed the advantages of high veracity and short response time. Generally, the linear fluctuant coefficient (R2) in the BOD range 0.2-40 mg l-1 was 0.9945 when using a glucose/glutamate (GGA) BOD standard solution. A reproducible response for the BOD sensing film of within ±2.8% could be obtained in the 2 mg l-1 GGA solution. The BOD apparatus was applied to the BOD determination of seawater, and the values estimated by this biosensing apparatus correlated well with those determined by the conventional 5 day BOD (BOD5) test.

  20. Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measurements in dairy wastewater.

    PubMed

    Kibena, Elo; Raud, Merlin; Jõgi, Eerik; Kikas, Timo

    2013-04-01

    Although the long incubation time of biochemical oxygen demand (BOD7) measurements has been addressed by the use of microbial biosensors, the resulting sensor-BOD values gained from the measurements with specific industrial wastewaters still underestimates the BOD value of such samples. This research aims to provide fast and more accurate BOD measurements in the dairy wastewater samples. Unlike municipal wastewater, wastewater from the dairy industry contains many substrates that are not easily accessible to a majority of microorganisms. Therefore, a bacterial culture, Microbacterium phyllosphaerae, isolated from dairy wastewater was used to construct a semi-specific microbial biosensor. A universal microbial biosensor based on Pseudomonas fluorescens, which has a wide substrate spectrum but is nonspecific to dairy wastewater, was used as a comparison. BOD biosensors were calibrated with OECD synthetic wastewater, and experiments with different synthetic and actual wastewater samples were carried out. Results show that the semi-specific M. phyllosphaerae-based microbial biosensor is more sensitive towards wastewaters that contain milk derivates and butter whey than the P. fluorescens-based biosensor. Although the M. phyllosphaerae biosensor underestimates the BOD7 value of actual dairy wastewaters by 25-32%, this bacterial culture is more suitable for BOD monitoring in dairy wastewater than P. fluorescens, which underestimated the same samples by 46-61%.

  1. Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor.

    PubMed

    Hsieh, Min-Chi; Chung, Ying-Chien

    2014-01-01

    Microbial fuel cells (MFCs) have attracted considerable attention as potential biosensors. A MFC biosensor for rapid measurement of biochemical oxygen demand (BOD) has been recently studied. However, a standardized bacterial mixture inoculated in the MFC biosensor for BOD measurement is unavailable. Thus, the commercial application of a MFC biosensor is limited. In this study, a mediator-less MFC biosensor inoculated with known mixed cultures to quickly determine BOD concentration was tested. Optimal external resistance, operating temperature and measurement time for the MFC biosensor were determined to be 5000 omega, 35 degrees C and 12h, respectively. A good relationship between BOD concentration and voltage output, high reproducibility and long-term stability for the MFC biosensor was observed. The newly developed MFC biosensor was inoculated with a mixture of six bacterial strains (Thermincola carboxydiphila, Pseudomonas aeruginosa, Ochrobactrum intermedium, Shewanella frigidimarina, Citrobacter freundii and Clostridium acetobutylicum) capable of degrading complex organic compounds and surviving toxic conditions. The described MFC biosensor was able to successfully measure BOD concentrations below 240 mg L(-1) in real wastewater samples.

  2. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  3. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30 °C at pH 6.0 using 20 g/L dose in 120 min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20 g/L dose, also in 120 min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate.

  4. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent.

  5. A repair algorithm for radial basis function neural network and its application to chemical oxygen demand modeling.

    PubMed

    Qiao, Jun-Fei; Han, Hong-Gui

    2010-02-01

    This paper presents a repair algorithm for the design of a Radial Basis Function (RBF) neural network. The proposed repair RBF (RRBF) algorithm starts from a single prototype randomly initialized in the feature space. The algorithm has two main phases: an architecture learning phase and a parameter adjustment phase. The architecture learning phase uses a repair strategy based on a sensitivity analysis (SA) of the network's output to judge when and where hidden nodes should be added to the network. New nodes are added to repair the architecture when the prototype does not meet the requirements. The parameter adjustment phase uses an adjustment strategy where the capabilities of the network are improved by modifying all the weights. The algorithm is applied to two application areas: approximating a non-linear function, and modeling the key parameter, chemical oxygen demand (COD) used in the waste water treatment process. The results of simulation show that the algorithm provides an efficient solution to both problems. PMID:20180254

  6. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  7. Full evolution of low-mass white dwarfs with helium and oxygen cores

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Chen, X.; Han, Z.

    2007-12-01

    We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and 0.4481Msolar. In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and 0.4481Msolar. A metallicity of Z = 0.02 is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass-radius relations for helium and oxygen cores.

  8. A novel design for anaerobic chemical oxygen demand and nitrogen removal from leachate in a semiaerobic landfill.

    PubMed

    Kim, Youngkyu; Yang, GoSu

    2002-10-01

    The removal capacity of carbon and nitrogen from an artificial leachate was evaluated by using laboratory-scale columns, and a design was proposed to remove nitrogen more efficiently from a semiaerobic landfill. Five columns (i.e., two artificial municipal waste columns under anaerobic and semiaerobic conditions, an artificial construction waste column under semiaerobic conditions, and two crushed stone columns under anaerobic and semiaerobic conditions) were used. The influent load rates of organics [g chemical oxygen demand (COD)/m3 x day], NH4+, NO3- and aeration conditions for the columns were varied, and the removal capacities of the columns for COD, NH4+-N, and NO3--N were measured. Among the packed column materials, crushed stone was shown to be most effective in removing COD, NH4+ N, and NO3--N from artificial leachate. Average removal rates of crushed column under the semiaerobic condition (column D) for COD and NH4+-N were estimated at about 150 g COD/m3 x day and 20 g COD/m3 x day, while those of crushed column under anaerobic condition (column E) for COD and NO3--N at about 400 and 150 g COD/m3 x day, respectively. It also was found that denitrification and nitrification reactions in column D occurred at the same time, and the ratio of denitrification to nitrification was estimated to be about 80%. Therefore, an anaerobic structure, which could be attached to the bottom of a main pipe in a semiaerobic landfill, is suggested to remove nitrogen and organic substances more effectively. PMID:12418726

  9. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    PubMed

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed. PMID:23200506

  10. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-01-01

    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic Proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year and while the overall concentrations of DOC were several times higher in the southern two catchments, annual loading of DOC was on the same order for all three catchments, due to differences in discharge. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume älv was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply will be more stable throughout the year, and potentially have a lower bioavailability.

  11. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-06-01

    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply to the Baltic Sea from boreal rivers will be more stable throughout the year, and potentially have a lower bioavailability.

  12. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    PubMed

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed.

  13. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Mehrnia, Momammad Reza; Neghab, Masoud; Mohammad, Kazem; Nikpey, Ahmad; Pourmand, Mohammad Reza

    2013-01-07

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor.

  14. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Mehrnia, Momammad Reza; Neghab, Masoud; Mohammad, Kazem; Nikpey, Ahmad; Pourmand, Mohammad Reza

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  15. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  16. A novel isotope analysis of oxygen in uranium oxides: comparison of secondary ion mass spectrometry, glow discharge mass spectrometry and thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pajo, L.; Tamborini, G.; Rasmussen, G.; Mayer, K.; Koch, L.

    2001-05-01

    The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n( 18O)/ n( 16O) measurements methods. Traditionally, n( 18O)/ n( 16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO +), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n( 18O)/ n( 16O) ratio in nuclear forensics science, the samples were solid, pure UO 2 or U 3O 8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n( 18O)/ n( 16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n( 18O)/ n( 16O) ratio of UO 2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.

  17. Oxygen Isotope Signatures of Water Masses and Planktonic Carbonate Shells of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venancio, I. M.; Belem, A. L.; Albuquerque, A.; Azevedo, A. G.; Barbosa, C. F.; Capilla, R.; Water Hunters

    2011-12-01

    The continental shelf of southeastern Brazil around Cabo Frio is an important region connecting the Campos and Santos basin, two main oil producing areas, characterized by the occurrence of three main water masses: the (1) warm surface Tropical Water (TW) with temperature ranging between 24-28°C and salinities higher then 36.8, carried by the Brazil Current; overlaying (2) the cooler South Atlantic Central Water (SACW) with temperatures below 18°C; and (3) Coastal Water (CW) which results from mixing of shelf waters with continental drainage showing low salinity values (<34). Eddy-induced and wind-driven upwelling zones can be found during specific meteorological and oceanographic conditions, when SACW can be found at the surface and TW far away from the coast. Oxygen isotopic ratio (δ18O) can be used as a proxy when the transfer rate between water and planktonic carbonate shells can be coupled to these oceanographic conditions. In this study water samples from different water masses and conditions as well as living species of planktonic foraminifera and pteropods were collected using plankton tows for analyses of oxygen isotope composition. We established ranges of oxygen isotope ratio values together with hydrographic data for the different water masses present in the region. First range between 1.0 and 0.75 was characterized as TW; second range with values below 0.75 and higher than 0.6 showed CW and mixing zones; and values below 0.6 indicated the SACW. These ranges are related to those found in literature and well correlated to the oceanographic conditions found in the region. Isotope records of both foraminifera and pteropods shells showed distinct patterns for the different water masses where they were sampled, due to inter-specific oxygen isotope transfer function. This study demonstrates the use of combined water and planktonic carbonate shells oxygen isotope analysis for generating more reliable paleo-oceanographic proxies to use in marine sediment

  18. Oxygen mass transfer and scale-up studies in baffled roller bioreactors.

    PubMed

    Nikakhtari, H; Song, W; Nemati, M; Hill, G A

    2014-02-01

    Oxygen mass transfer was studied in conventional, bead mill and baffled roller bioreactors. Using central composite rotational design, impacts of size, rotation speed and working volume on the oxygen mass transfer were evaluated. Baffled roller bioreactor outperformed its conventional and bead mill counterparts, with the highest k(L)a obtained in these configurations being 0.58, 0.19, 0.41 min(-1), respectively. Performances of the bead mill and baffled roller bioreactor were only comparable when a high bead loading (40%) was applied. Regardless of configuration increase in rotation speed and decrease in working volume improved the oxygen mass transfer rate. Increase in size led to enhanced mass transfer and higher k(L)a in baffled roller bioreactor (0.49 min(-1) for 2.2 L and 1.31 min(-1) for 55 L bioreactors). Finally, the experimentally determined k(L)a in the baffled roller bioreactors of different sizes fit reasonably well to an empirical correlation describing the k(L)a in terms of dimensionless numbers.

  19. Effects of salinity and body mass on oxygen consumption and ammonia excretion of mudskipper Boleophthalmus pectinirostris

    NASA Astrophysics Data System (ADS)

    Cao, Fujun; Wang, Hui

    2015-01-01

    We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate ( R O) and ammonia excretion rate ( R N) ( P<0.01). The interactive effects between salinity and body mass on R O and R N were insignificant ( P>0.05) and highly significant ( P<0.01), respectively. R O and R N of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between R O and body mass was represented by R O = aW b ( R 2=0.956, P<0.01). The relationship between R N and the body mass of B. pectinirostris was represented by R N = cW d ( R 2=0.966, P<0.01). The R O/ R N (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy source within the salinity range 12-32. R O and R N were significantly higher at 27 than at other salinity levels. Our results suggest that the optimum salinity level for B. pectinirostris is 27.

  20. Effects of salinity and body mass on oxygen consumption and ammonia excretion of mudskipper Boleophthalmus pectinirostris

    NASA Astrophysics Data System (ADS)

    Cao, Fujun; Wang, Hui

    2014-09-01

    We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (R O) and ammonia excretion rate (R N) (P<0.01). The interactive effects between salinity and body mass on R O and R N were insignificant (P>0.05) and highly significant (P<0.01), respectively. R O and R N of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between R O and body mass was represented by R O=aW b (R 2=0.956, P<0.01). The relationship between R N and the body mass of B. pectinirostris was represented by R N=cW d (R 2=0.966, P<0.01). The R O/R N (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy source within the salinity range 12-32. R O and R N were significantly higher at 27 than at other salinity levels. Our results suggest that the optimum salinity level for B. pectinirostris is 27.

  1. An atomistic vision of the Mass Action Law: Prediction of carbon/oxygen defects in silicon

    SciTech Connect

    Brenet, G.; Timerkaeva, D.; Caliste, D.; Pochet, P.; Sgourou, E. N.; Londos, C. A.

    2015-09-28

    We introduce an atomistic description of the kinetic Mass Action Law to predict concentrations of defects and complexes. We demonstrate in this paper that this approach accurately predicts carbon/oxygen related defect concentrations in silicon upon annealing. The model requires binding and migration energies of the impurities and complexes, here obtained from density functional theory (DFT) calculations. Vacancy-oxygen complex kinetics are studied as a model system during both isochronal and isothermal annealing. Results are in good agreement with experimental data, confirming the success of the methodology. More importantly, it gives access to the sequence of chain reactions by which oxygen and carbon related complexes are created in silicon. Beside the case of silicon, the understanding of such intricate reactions is a key to develop point defect engineering strategies to control defects and thus semiconductors properties.

  2. Influence of chemical oxygen demand/total Kjeldahl nitrogen ratio and sludge age on nitrification of nitrogenous wastewater.

    PubMed

    Sharma, R; Gupta, S K

    2004-01-01

    Four laboratory-scale biological nitrification units (influent total Kjeldahl nitrogen [TKN] = 1002 to 1062 mg/L) were operated at chemical oxygen demand (COD)/TKN ratios of approximately 0.5, 1.0,15, and 2.0 and at three different sludge ages of 30, 20, and 10 days to study the influence of COD/TKN, sludge age, COD loading, and TKN loading on nitrification and nitrifiers. Percent nitrification was found to increase with decreases in COD/TKN and increases in sludge age. The average nitrifier concentration increased from 460 mg/L at a COD/TKN of 2.22 and a sludge age of 10 days to 706 mg/L at a COD/TKN of 0.676 and a sludge age of 30 days. The nitrifier fraction was found to be higher at a lower COD/TKN and lower at a higher COD/TKN. The nitrifier fraction increased with the decrease in sludge age and COD loadings and the increase in TKN loadings. The effect of sludge age on the nitrifier fraction was amplified at a COD/ TKN of approximately 0.5 rather than at approximately 2.0. The nitrification rate (kilograms TKN oxidized per kilograms nitrifiers per day) was shown to be dependent on COD/TKN and sludge age. The activity performed by Nitrobacter was affected at all COD/TKN ratios studied as well as at a sludge age of 10 days. This was manifested by the accumulation of high levels of nitrite-nitrogen in the nitrified effluent. The presence of heterotrophs did not affect nitrification rates and the growth of nitrifiers, which were found to be beneficial. High sludge age and COD loadings resulted in a higher sludge volume index of more than 200 mL/g mixed liquor suspended solids. Microscopic examination showed filamentous structure of sludge under these conditions. It is concluded from the investigations that a sludge age of 30 days and a COD/TKN of approximately 1.0 are optimal to yield maximum nitrification and nitrifier growth rates for treating high-strength nitrogenous wastewater.

  3. Effect of spent cotton stalks on color removal and chemical oxygen demand lowering in olive oil mill wastewater by white rot fungi.

    PubMed

    Kahraman, S; Yeşilada, O

    1999-01-01

    Wastewater from olive oil mill was decolorized (and its chemical oxygen demand reduced in static cultivation) using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus sajor-caju. The effect of cotton stalk on decolorizing and COD removing capability was demonstrated. P. chrysosporium (in 20% medium with cotton stalk) reduced the COD by 48% and color by 58%, F. trogii (in 30% medium with cotton stalk)) by 51 and 55%, respectively.

  4. Long-term atmospheric oxygen decrease an underestimated factor forcing the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Weidlich, O.; Kiessling, W.; Flügel, E.

    2003-04-01

    The Permian mass extinction encompasses the end-Guadalupian (Middle Permian) and the end-Lopingian (Late Permian) events, which sum up to the most severe Phanerozoic crisis. Berner (2002) evaluated popular hypotheses explaining the Permian mass extinction and suggested a synergistic combination of causes, notably various short-term perturbations of the carbon cycle and its far-reaching reorganization with a shift of the depo-center from the land to the sea. While massive volcanic eruptions, oceanic CO2-poisoning or anoxia, a bolide impact, and methane release have been considered as abrupt killing mechanisms, there has been little interest in how atmospheric oxygen variations affected the metazoan diversities. Differing from contemporary values of 21%, atmospheric oxygen reached maximum concentrations of about 35% during the late Carboniferous, gradually dropped to minimum concentrations possibly as low as 15% by the end of Permian, and increased during the Triassic to modelled values of about 18% (Berner &Canfield 1989). The possible links of these secular fluctuations to macroevolutionary processes are underexplored, but the stratigraphic coincidence of reconstructed atmospheric oxygen concentrations and biospheric perturbations suggest that this relation may be stronger than admitted. Although feedback mechanisms between decreasing atmospheric oxygen content and metazoan evolution have been ruled out, modern oxygen minimum zone inhabitants, directly respond to oxygen deficiency with opportunistic faunas. We analysed 30 million years Middle Permian to Middle Triassic reef distribution, reef carbonate production as well as reef builder extinction/recovery patterns and compared the results with the modeled atmospheric oxygen concentrations and the extinction data from terrestrial and deep-marine ecosystems. We propose that (i) the Permian double reef crisis resulted from long-term atmospheric O2 depletion in conjunction with abrupt killing mechanisms and that (ii

  5. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch.

    PubMed

    Lei, Li; Ni, Jinren

    2014-04-15

    A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation.

  6. Mass loss of shuttle space suit orthofabric under simulated ionospheric atomic oxygen bombardment

    NASA Technical Reports Server (NTRS)

    Miller, W. L.

    1985-01-01

    Many polymeric materials used for thermal protection and insulation on spacecraft degrade significantly under prolonged bombardment by ionospheric atomic oxygen. The covering fabric of the multilayered shuttle space suit is composed of a loose weave of GORE-TEX fibers, Nomex and Kevlar-29, which are all polymeric materials. The complete evaluation of suit fabric degradation from ionospheric atomic oxygen is of importance in reevaluating suit lifetime and inspection procedures. The mass loss and visible physical changes of each test sample was determined. Kapton control samples and data from previous asher and flight tests were used to scale the results to reflect ionospheric conditions at about 220 km altitude. It is predicted that the orthofabric loses mass in the ionosphere at a rate of about 66% of the original orthofabric mass/yr. The outer layer of the two-layer orthofabric test samples shows few easily visible signs of degradation, even when observed at 440X. It is concluded that the orthofabric could suffer significant loss of performance after much less than a year of total exposure time, while the degradation might be undetectable in post flight visual examinations of space suits.

  7. Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates

    PubMed Central

    Miller, Martin F.; Franchi, Ian A.; Thiemens, Mark H.; Jackson, Teresa L.; Brack, André; Kurat, Gero; Pillinger, Colin T.

    2002-01-01

    Nearly all chemical processes fractionate 17O and 18O in a mass-dependent way relative to 16O, a major exception being the formation of ozone from diatomic oxygen in the presence of UV radiation or electrical discharge. Investigation of oxygen three-isotope behavior during thermal decomposition of naturally occurring carbonates of calcium and magnesium in vacuo has revealed that, surprisingly, anomalous isotopic compositions are also generated during this process. High-precision measurements of the attendant three-isotope fractionation line, and consequently the magnitude of the isotopic anomaly (Δ17O), demonstrate that the slope of the line is independent of the nature of the carbonate but is controlled by empirical factors relating to the decomposition procedure. For a slope identical to that describing terrestrial silicates and waters (0.5247 ± 0.0007 at the 95% confidence level), solid oxides formed during carbonate pyrolysis fit a parallel line offset by −0.241 ± 0.042‰. The corresponding CO2 is characterized by a positive offset of half this magnitude, confirming the mass-independent nature of the fractionation. Slow, protracted thermolysis produces a fractionation line of shallower slope (0.5198 ± 0.0007). These findings of a 17O anomaly being generated from a solid, and solely by thermal means, provide a further challenge to current understanding of the nature of mass-independent isotopic fractionation. PMID:12167677

  8. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase.

    PubMed

    Amaral, Priscilla F F; Freire, Mara G; Rocha-Leão, Maria Helena M; Marrucho, Isabel M; Coutinho, João A P; Coelho, Maria Alice Z

    2008-02-15

    Oxygenation is an important parameter involved in the design and operation of mixing-sparging bioreactors and it can be analyzed by means of the oxygen mass transfer coefficient (k(L)a). The operational conditions of a stirred, submerged aerated 2-L bioreactor have been optimized by studying the influence of a second liquid phase with higher oxygen affinity (perfluorodecalin or olive oil) in the k(L)a. Using k(L)a measurements, the influence of the following parameters on the oxygen transfer rate was evaluated: the volume of working medium, the type of impellers and their position, the organic phase concentration, the aqueous phase composition, and the concentration of inactive biomass. This study shows that the best experimental conditions were achieved with a perfluorodecalin volume fraction of 0.20, mixing using two Rushton turbines with six vertical blades and in the presence of YPD medium as the aqueous phase, with a k(L)a value of 64.6 h(-1). The addition of 20% of perfluorodecalin in these conditions provided a k(L)a enhancement of 25% when pure water was the aqueous phase and a 230% enhancement when YPD medium was used in comparison to their respective controls (no perfluorodecalin). Furthermore it is shown that the presence of olive oil as a second liquid phase is not beneficial to the oxygen transfer rate enhancement, leading to a decrease in the k(L)a values for all the concentrations studied. It was also observed that the magnitude of the enhancement of the k(L)a values by perfluorodecalin depends on the biomass concentration present. PMID:17787007

  9. Non-mass-dependent oxygen isotope effect observed in water vapor from Alert, Canada

    NASA Astrophysics Data System (ADS)

    Lin, Ying

    Twenty-seven precipitation samples from Chicago, IL and northwest part of Indiana were collected from 2003 to 2005. Twenty-five water vapor samples were collected at Alert, Canada (82° 30'N, 62° 19'W) from 2002 to 2005 by Lin Huang and her co-workers. Seven ice core samples from Dasuopu glacier, Chinese Himalayas (28° 23' N, 85° 43'W) were drilled by Lonnie G. Thompson and prepared by Mary E. Davis. Sample of Standard Light Antarctic Precipitation (SLAP) is available in the laboratory. Water samples were reacted with bromine pentafluoride to produce oxygen, which were then purified through molecular sieve and measured by Delta E gas source mass spectrometer. A lambda(MDF) = 0.529 +/- 0.003 (2sigma) for water is determined from measurement of local precipitation samples. No significant oxygen isotopic anomaly is found in SLAP and in ice core samples from Dasuopu glacier, Chinese Himalayas. Delta17O(CLP), oxygen isotopic anomaly relative to Chicago local precipitation, of -0.009‰ to 0.167‰ with a mean of 0.076‰ and a 2sigma standard error of 0.016‰ is observed in water vapor from Alert, Canada. About half of these Delta17O(CLP) data exhibit statistically significant excesses. Stacked seasonal trend of Delta17O(CLP) observed at Alert, Canada points to a maximum in late spring when the intrusion of stratospheric air is at its maximum and the height of Arctic tropopause is the lowest. However, no significant oxygen isotopic anomalies are found in ice core samples from Dasuopu and in SLAP. The positive excesses in Delta17O(CLP) seen in tropospheric water vapor at Alert, Canada could be explained by the transfer of positive oxygen isotopic anomalies through O3 → NOx → HOx → H2O chain in the stratosphere, and the subsequent mixing of this anomalous stratospheric water with tropospheric water vapor at Alert, Canada where the tropopause is low and where downward mixing of stratospheric air with tropospheric air takes place. The positive oxygen isotopic

  10. Adjustments of the oxygen diffusing capacity to energetic demands during the development of the quail (Coturnix coturnix japonica).

    PubMed

    Canals, M; Martinez, B B; Figueroa, D; Sabat, P

    2011-07-01

    One of the hypotheses that attempt to explain physiological limitations of energy budgets is the symmorphosis hypothesis, which proposes that if matching structures to functional needs were combined with the strict economy of energy and materials, the result would be an optimal organ design for the specific function it serves. Evidence in favor of symmorphosis in adults is as abundant as evidence against it, but the plasticity of some morphological traits may be dependent on the ontogenetic stage at which acclimation acts. Thus, here we studied the adjustment of structure and function in lungs at different stages of development in the quail Coturnix coturnix japonica under two thermal regimes. Our main results show that i) resting metabolic rate, maximum thermogenic oxygen consumption and oxygen diffusion capacity did not exhibit developmental plasticity for two thermal environments; and ii) oxygen diffusion capacity fully adjusted to resting metabolic rate and maximum oxygen consumption during development. C. coturnix has a low safety factor close to 1 which is consistent with the symmorphosis hypothesis.

  11. Renal Doppler Resistive Index as a Marker of Oxygen Supply and Demand Mismatch in Postoperative Cardiac Surgery Patients

    PubMed Central

    Corradi, Francesco; Brusasco, Claudia; Paparo, Francesco; Manca, Tullio; Santori, Gregorio; Benassi, Filippo; Molardi, Alberto; Gallingani, Alan; Ramelli, Andrea; Gherli, Tiziano; Vezzani, Antonella

    2015-01-01

    Background and Objective. Renal Doppler resistive index (RDRI) is a noninvasive index considered to reflect renal vascular perfusion. The aim of this study was to identify the independent hemodynamic determinants of RDRI in mechanically ventilated patients after cardiac surgery. Methods. RDRI was determined in 61 patients by color and pulse Doppler ultrasonography of the interlobar renal arteries. Intermittent thermodilution cardiac output measurements were obtained and blood samples taken from the tip of pulmonary artery catheter to measure hemodynamics and mixed venous oxygen saturation (SvO2). Results. By univariate analysis, RDRI was significantly correlated with SvO2, oxygen extraction ratio, left ventricular stroke work index, and cardiac index, but not heart rate, central venous pressure, mean artery pressure, pulmonary capillary wedge pressure, systemic vascular resistance index, oxygen delivery index, oxygen consumption index, arterial lactate concentration, and age. However, by multivariate analysis RDRI was significantly correlated with SvO2 only. Conclusions. The present data suggests that, in mechanically ventilated patients after cardiac surgery, RDRI increases proportionally to the decrease in SvO2, thus reflecting an early vascular response to tissue hypoxia. PMID:26605339

  12. The red cell mass-arterial oxygen relationship in normal man

    PubMed Central

    Weil, John V.; Jamieson, Gail; Brown, Donald W.; Grover, Robert F.

    1968-01-01

    The normal relationship between red cell mass measured, with 51chromium-labeled red cells, and arterial oxygen saturation (SaO2) over the range from 97.3 to 83.4% was examined by studying 73 normal men residing at sea level and altitudes of 1600 and 3100 m. A simple, linear relationship between SaO2 and red cell mass was found over the entire range (r = - 0.7524, P < 0.001). In contrast, a correlation between red cell mass and arterial O2 tension was found only over the lower half of the range of O2 tensions where SaO2 was also decreased (r = - 0.7731, P < 0.005). This suggested that O2 saturation rather than tension is the more important determinant of the erythropoietic response to chronic hypoxia. If this response is regulated by tissue O2 tension, then it will be influenced by O2 transport, which, in turn, is a function of blood flow and arterial O2 content, and hence SaO2. In nine patients with chronic obstructive airway disease the relationship between red cell mass and SaO2 was also determined and was found to be steeper than in the normal subjects (P < 0.05). Images PMID:5658592

  13. Mass-Independent Fractionation of Oxygen Isotope in Earth Wind: First Principle Calculations for Photodissociation

    NASA Astrophysics Data System (ADS)

    Yamada, A.; Nanbu, S.; Kasai, Y.; Ozima, M.

    2009-12-01

    Mass-independently fractionated oxygen isotope were reported on metal particles extracted from Apollo lunar soils [1, 2], but these origins are still unknown. Since the substantial fraction of Earth-escaping O+ flux (Earth Wind, EW hereafter), comparable to the amount of the anomalous oxygen implanted on the metal particles, could reach the lunar surface [3], Ozima et al. [4] suggested that EW may be responsible to the anomalous oxygen. The purpose is to test this EW hypothesiss, we study oxygen isotopic ratios of O+ at the upper atmosphere. From quantum chemical calculations of photo-dissociation of O2, we show the results in mass-independent isotopic fractionation of oxygen, thereby in conformity with the EW hypothesis. First principles reaction dynamics simulations were performed to compute the photolysis rate for the B3Σu- ← X3Σg- electronic transition, for Schumann-Runge band. With the assumption of the Born-Oppenheimer approximation, we performed the wave-packet dynamics for the nuclei-motion in the potential energy curves determined by the first step calculation. Quantum chemical program package [5] was used for the first step calculation, and the quantum dynamics was carried out by our own program package. Assuming the quantum yield of the corresponding photolysis is unity, the photo-absorption cross section can be correlated with the photolysis rate. Therefore, following the time dependent approach, the autocorrelation function (A(t) = <φ(0)|φ(t)>) was numerically computed by the second step calculation. Finally, the theoretical spectrum as a function of wavelength of excitation light was estimated by the Fourier transform of the autocorrelation function A(t) [6]. Calculated absorption cross sections for C16O showed similar wavelength dependence with experiment [7], although the absolute magnitude was yet to be calibrated for a quantitative comparison. Assuming Boltzmann distribution at 1200 K, we estimated enrichment factors defined as σι(λ)/σ16

  14. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C15 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  15. Improving the simultaneous removal of chemical oxygen demand and terephthalic acid in a cross-flow aerobic sludge reactor by using response surface methodology.

    PubMed

    Hu, Dong-Xue; Tian, Yu; Chen, Zhao-Bo; Ge, Hui; Cui, Yu-Bo; Ran, Chun-Qiu

    2015-01-01

    Central composite design and response surface methodology (RSM) were implemented to optimize the operational parameters for a cross-flow aerobic sludge reactor (CFASR) in remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH and sludge loading rate (SLR), on chemical oxygen demand (COD) and terephthalic acid (TA) removal rates were evaluated. For HRT of 15.3-19.8 hours, pH of 7.2-8.1 and SLR of 0.4-0.6 kg chemical oxygen demand (COD) per kg mixed liquor suspended solids per day, COD and TA removal rates of the CFASR exceeded 85% and 90%, respectively. The check experiment revealed that the effluent from the optimized CFASR was stable below the limitation of 100 mg COD/L and the TA concentration decreased by 6.0% compared to the usual CFASR. The results verified that the RSM was useful for optimizing the operation parameters of the CFASR in remedying MPDW.

  16. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  17. Capacity of a newly isolated fungus Pleurotus eryngii from Tunceli, Ovacik for chemical oxygen demand reduction and biodecolorization of Azo-Dye Congo Red.

    PubMed

    Yildirim, N; Gonen, U

    2015-06-07

    Biodecolorization of Congo red dye in both agar—plate and agitated liquid culture mediums by newly isolated white rot fungus Pleurotus eryngii has been studied. This fungus isolated from Tunceli—Ovacik province of Turkey. We have also examined the chemical oxygen demand reduction after decolorization under agitated liquid culture medium. For agar plate screening the decolorization capacity of P. eryngii, growth and decolorization halos were determined on saboroud dextrose agar (SDA) plates containing 0.05, 0.1, 0.5, 1 and 2 g/l of Congo red. P. eryngii showed certain decolorization capacities and was able to decolorize all studied concentrations of Congo red, but not to the same extent. Our results indicated that the new isolate P. eryngii had maximum decolorization (87% at 100 mg/l initial dye concentration) and chemical oxygen demand reduction (82% at 25 mg/l initial dye concentration) activities after 7 days under agitated submerged culture conditions. This new isolate could be an effective bioremediation tool for treatment of Congo red containing textile wastewater.

  18. Water masses along the OVIDE 2010 section as identified by oxygen and hydrogen stable isotope values

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Thierry, Virginie

    2016-04-01

    The OVIDE transect between the western Iberian Peninsula and the southern tip of Greenland is one of the hydrographic sections in the North Atlantic that is measured regularly to identify changes in water mass formation and transport and thus to evaluate the state of the Atlantic Meridional Overturning Circulation (Mercier et al., 2015; García-Ibáñez et al., 2015; both in Progr. in Oceanography). During the OVIDE 2010 campaign seawater samples covering the complete water column were collected on the section between Portugal and the Reykjanes ridge for stable isotope analyses. Oxygen (δ18O) and hydrogen (δD) stable isotope values were measured simultaneously by cavity ring-down laser spectroscopy using a L1102-i Picarro water isotope analyser at the Godwin Laboratory for Paleoclimate Research (Univ. Cambridge, UK). Within the upper water column the stable isotope values clearly mark the positions of the Portugal Current (40.3°N 11°W), the North Atlantic Drift (46.2°N 19.4°W) and of the subarctic front (51°N 23.5°W). Up to Station 36 (47.7°N 20.6°W) an upper (around 600 m) and lower (around 1000 m) branch of the Mediterranean Outflow water (MOW) can clearly be distinguished by high oxygen (0.5-0.7‰) and hydrogen (3-5‰) values. At Station 28 (42.3°N 15.1°W) strong MOW influence is also indicated between 1400 and 1600 m. In the west European Basin, lower oxygen isotope values reveal the presence of Labrador Sea Water (LSW) below the MOW (down to 2200 m). Close to and west of the subarctic front this water mass shallows and occupies the complete interval between 1000 and 2000 m water depth. In the Iceland basin, two additional levels with lower oxygen isotope values are observed. The deeper level (2200-3500 m) marks Iceland Scotland Overflow Water (ISOW) that based on its distinct isotopic signature (δ18O ≤ 0.25‰) can be traced as far east as 18.5°W (down to at least 3500 m). Close to the Reykjanes ridge both, the ISOW and LSW, are also

  19. Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques.

    PubMed

    Jimenez, Mélanie; Dietrich, Nicolas; Grace, John R; Hébrard, Gilles

    2014-07-01

    Powerful techniques, based on the Planar Laser Induced Fluorescence (PLIF) technique, are deployed to locally visualize and quantify the impact of surfactants in wastewaters on hydrodynamics and oxygen mass transfer. Bubble diameter, aspect ratio, rise velocity, contamination angle, as well as flux, flux density, liquid side mass transfer and diffusion coefficients of transferred oxygen are determined based on these techniques applied in the wake of rising bubbles of diameter 1 mm and through planar gas/liquid interfaces. The initial experiments were performed in demineralized water containing small amounts of surfactant. Different concentrations of surfactant were added to finally reach the Critical Micelle Concentration (CMC). Bubbles have classically been found to be more spherical with a reduced rise velocity in the presence of surfactants up to the CMC. Above the CMC, these hydrodynamic characteristics were found to be almost constant, although the oxygen mass transfer decreased due to the presence of surfactants. Experimental results were markedly lower than predicted by the well-known Frössling equation with rigid surfaces. This is believed to be caused by a barrier of surfactants hindering the oxygen mass transfer at the interface. Similar hindrance of oxygen mass transfer applies to waters from sewage plants (filtered raw water and treated water), making accurate design of aeration tanks difficult.

  20. The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry.

    PubMed

    Barth, Johannes; Bergner, Sonja Verena; Jaeger, Daniel; Niehues, Anna; Schulze, Stefan; Scholz, Martin; Fufezan, Christian

    2014-04-01

    Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redox(II) was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O₂ and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.

  1. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  2. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    NASA Astrophysics Data System (ADS)

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David N.; Strebel, Christian E.; Friebel, Daniel; Deiana, Davide; Malacrida, Paolo; Nierhoff, Anders; Bodin, Anders; Wise, Anna M.; Nielsen, Jane H.; Hansen, Thomas W.; Nilsson, Anders; Stephens, Ifan E. L.; Chorkendorff, Ib

    2014-08-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt-1 at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over elemental platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.

  3. Power System Mass Analysis for Hydrogen Reduction Oxygen Production on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2009-01-01

    The production of oxygen from the lunar regolith requires both thermal and electrical power in roughly similar proportions. This unique power requirement is unlike most applications on the lunar surface. To efficiently meet these requirements, both solar PV array and solar concentrator systems were evaluated. The mass of various types of photovoltaic and concentrator based systems were calculated to determine the type of power system that provided the highest specific power. These were compared over a range of oxygen production rates. Also a hybrid type power system was also considered. This system utilized a photovoltaic array to produce the electrical power and a concentrator to provide the thermal power. For a single source system the three systems with the highest specific power were a flexible concentrator/Stirling engine system, a rigid concentrator/Stirling engine system and a tracking triple junction solar array system. These systems had specific power values of 43, 34, and 33 W/kg, respectively. The hybrid power system provided much higher specific power values then the single source systems. The best hybrid combinations were the triple junction solar array with the flexible concentrator and the rigid concentrator. These systems had a specific power of 81 and 68 W/kg, respectively.

  4. Maternal Hypoxia Decreases Capillary Supply and Increases Metabolic Inefficiency Leading to Divergence in Myocardial Oxygen Supply and Demand

    PubMed Central

    Hauton, David; Al-Shammari, Abdullah; Gaffney, Eamonn A.; Egginton, Stuart

    2015-01-01

    Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve

  5. Effect of mass transfer on the oxygen reduction reaction catalyzed by platinum dendrimer encapsulated nanoparticles.

    PubMed

    Dumitrescu, Ioana; Crooks, Richard M

    2012-07-17

    Here we report on the effect of the mass transfer rate (k(t)) on the oxygen reduction reaction (ORR) catalyzed by Pt dendrimer-encapsulated nanoparticles (DENs) comprised of 147 and 55 atoms (Pt(147) and Pt(55)). The experiments were carried out using a dual-electrode microelectrochemical device, which enables the study of the ORR under high k(t) conditions with simultaneous detection of H(2)O(2). At low k(t) (0.02 to 0.12 cm s(-1)) the effective number of electrons involved in ORR, n(eff), is 3.7 for Pt(147) and 3.4 for Pt(55). As k(t) is increased, the mass-transfer-limited current for the ORR becomes significantly lower than the value predicted by the Levich equation for a 4-electron process regardless of catalyst size. However, the percentage of H(2)O(2) detected remains constant, such that n(eff) barely changes over the entire k(t) range explored (0.02 cm s(-1)). This suggests that mass transfer does not affect n(eff), which has implications for the mechanism of the ORR on Pt nanoparticles. Interestingly, there is a significant difference in n(eff) for the two sizes of Pt DENs (n(eff) = 3.7 and 3.5 for Pt(147) and Pt(55), respectively) that cannot be assigned to mass transfer effects and that we therefore attribute to a particle size effect.

  6. The confines of triple oxygen isotope exponents in elemental and complex mass-dependent processes

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.

    2015-12-01

    Small differences in triple isotope relationships, or Δ17O in the case of oxygen, have been increasingly used to study a range of problems including hydrological cycles, stratosphere-troposphere exchange, biogeochemical pathways and fluxes, and the Moon's origin in the geochemical and cosmochemical communities. A Δ17O value depends on the triple isotope exponent θ of involved reaction steps. However, the probabilistic distribution of the intrinsic and apparent θ values has not been examined for elemental processes and for processes that are out of equilibrium or bearing reservoir-transport complexities. A lack of knowledge on the confines of θ may hamper our understanding of the subtle differences among mass-dependent processes and may result in mischaracterization of a set of mass-dependent processes as being in violation of mass-dependent rules. Here we advocate a reductionist approach and explore θ confines starting from kinetic isotope effects (KIEs) within the framework of transition state theory (TST). The advantage of our KIE approach is that any elemental or composite, equilibrium or non-equilibrium process can be reduced to a set of KIEs with corresponding θKIE. We establish that the KIE between a reactant and a transition state (TS) is intrinsic. Given a range of KIEs known for Earth processes involving oxygen, we use a Monte Carlo calculation method and a range of oxygen-bonded molecular masses to obtain a distribution of θKIE values and subsequently that of θeq. Next, complexities are examined by looking into expected effects due to reaction progress, unbalanced fluxes, and reference frame. Finally, compounded reservoir-transport effects are examined using two simple processes - Rayleigh Distillation (RD) and Fractional Distillation (FD). Our results show that the apparent θ values between two species or two states of the same evolving species have much broader confines than the commonly used "canonical" confines of 0.51-0.53, particularly

  7. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  8. An oxygenation event occurred in deep shelf settings immediately after the end-Permian mass extinction in South China

    NASA Astrophysics Data System (ADS)

    He, Lei; Wang, Yongbiao; Woods, Adam; Li, Guoshan; Yang, Hao; Liao, Wei

    2013-02-01

    Widespread oceanic anoxia has been consistently considered as a main characteristic of the oceanic environment after the end-Permian mass extinction. However, newly obtained pyrite framboid data suggest otherwise from a deep shelf setting (Changtanhe section) of northwestern Hunan province in South China. Our results reveal that an oxygenation event occurred immediately after the end-Permian mass extinction in this section, where the redox conditions of bottom water changed from lower dysoxic to upper dysoxic during the Permian-Triassic (P/Tr) transition. The oxygenation event likely resulted from mixing of deep dysoxic bottom waters with shallow, oxygenated waters triggered by enhanced upwelling and seawater circulation as well as the large regression during the P/Tr transition. These may also be the cause of the partial remission of dysoxic conditions immediately after the end-Permian mass extinction in other deep shelf settings, especially in South China.

  9. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2014-03-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vaporization with an Aerodyne high-resolution soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vaporizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial fullerene-enriched soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x < 6) were found to dominate the Cxn+ distribution. For fullerene soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x ≫ 6 were present, with significant contributions from multiply charged ions (n > 1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1 5 were present. When such signals were present, C1+ / C3+ was close to 1. When absent, C1+ / C3+ was < 0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake and heterogeneous chemistry. If atmospherically stable, these oxidized species may be useful for distinguishing

  10. Gill morphometrics of the thresher sharks (Genus Alopias): Correlation of gill dimensions with aerobic demand and environmental oxygen.

    PubMed

    Wootton, Thomas P; Sepulveda, Chugey A; Wegner, Nicholas C

    2015-05-01

    Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water-blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm-water epi-pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water-blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well-oxygenated habitat relative to the two other Alopias species. In fast-swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia-dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills.

  11. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    NASA Astrophysics Data System (ADS)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  12. Effects of chemical oxygen demand (COD)/N ratios on pollutants removal in the subsurface wastewater infiltration systems with/without intermittent aeration.

    PubMed

    Song, Siyu; Pan, Jing; Wu, Shiwei; Guo, Yijing; Yu, Jingxiao; Shan, Qingchi

    2016-01-01

    The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4(+)-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.

  13. Treatment of a slaughterhouse wastewater: effect of internal recycle rate on chemical oxygen demand, total Kjeldahl nitrogen and total phosphorus removal.

    PubMed

    Fongsatitkul, P; Wareham, D G; Elefsiniotis, P; Charoensuk, P

    2011-12-01

    This study investigated the ability of an anaerobic/anoxic/oxic (A2/O) system to treat a slaughterhouse wastewater. The system employed two identical continuous-flow reactors (101 total liquid volume each) running in parallel with the main operational variable, being the internal recycle (IR) rate. The chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) performance was evaluated as the IR flowrate was increased from a Q of 151d(-1) to 4Q at a system hydraulic retention time of 16 h and a solids retention time of 10 d. The COD:TKN and COD:TP ratios were 8.2:1 and 54:1, which supported both nitrogen and phosphorus removal. For all IR multiples of Q, the COD removal was in excess of 90%. The TKN removal showed a modest improvement (a 4-5% increase, depending on the dissolved oxygen (DO)) as the IR doubled from Q to 2Q, but no further increase was observed at the 4Q IR rate. The TP removal reached its optimum (around 85%-89% (again depending on the DO)) at the 2Q rate.

  14. Seasonal variation in biological oxygen demand levels in the main stem of the Fraser River, British Columbia and an agriculturally impacted tributary

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Fraser, H.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Voss, B. M.; Marcotte, D.; Fanslau, J.; Epp, A.; Bennett, M.; Hanson-Carson, J.; Luymes, R.

    2012-12-01

    The Fraser River basin is one of British Columbia's most diverse and valuable ecosystems. Water levels and temperatures along the Fraser are seasonally variable, with high flow during the spring freshet and low flow during winter months. In the Fraser River, dissolved oxygen (DO) concentrations impact many aquatic species. Biological oxygen demand (BOD) measures the amount of oxygen consumed by bacteria during the decomposition of organic matter and is an indicator of water quality in freshwater environments. We compared BOD, DO, and pH during winter (November 2011) and summer (July 2012) in the main stem of the Fraser River at Fort Langley and a tributary in an agricultural area of the Fraser Valley, Nathan Creek. In November the BOD of the main stem of the Fraser River was 2.36 mg/L, pH 7.26, and DO 9.13 mg/L. BOD and DO of Nathan Creek was not significantly lower at 1.68 mg/L and DO 8.28 mg/L, however, the pH was significantly lower (p=0.001) at 6.75. In July, the Fraser River had significantly higher BOD levels than in winter at 4.43 mg/L, but no significant change in pH and DO. Nathan Creek BOD was significantly higher than it was in winter and higher than the main stem at 7.34 mg/L, with no significant change in pH and DO. There were strong seasonal differences in BOD in the Fraser River and Nathan Creek, with the highest levels seen in July. The higher BOD seen in Nathan Creek in July may be an indication of agricultural impact. Although all BOD values fell in the range of 1-8 mg/L and are considered to be relatively unpolluted.

  15. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT

  16. Effects of dieting and exercise on lean body mass, oxygen uptake, and strength.

    PubMed

    Pavlou, K N; Steffee, W P; Lerman, R H; Burrows, B A

    1985-08-01

    The effects of exercise on lean body mass (LBM), fat mass (FM), maximal oxygen uptake (VO2max), and quadriceps (QD) strength were studied in 72 male, mildly obese (X = 38% fat) subjects (X age, 43.5 yr) randomly assigned to one of eight treatments arranged in a 2 X 4 factorial plan with exercise (EX) and non-exercise (NE) and four diets as the two factors. Exercise consisted of a 3 d/wk, 8-wk aerobics program (70-85% maximum heart rate) accompanied by a calisthenics program. LBM was determined by whole body potassium (40K), FM by subtracting LBM from total body weight, VO2max using the Wilmore-Costill method, and QD strength with the Cybex II system. Weight loss of the combined EX (11.8 +/- 0.6 kg) (X +/- SE) and NE (9.2 +/- 0.3 kg) groups was not statistically different. LBM of the EX group was unchanged (from 63.1 +/- 1.9 to 62.5 +/- 2.1 kg), whereas in the NE group it was reduced from 62.6 +/- 1.1 to 59.3 +/- 1.2 kg (P less than 0.001) accounting for 36% of total weight loss. FM loss was greater for the EX group (11.2 +/- 1.5 kg) when compared to the NE (5.2 +/- 1.6 kg) group (P less than 0.001). The EX group exhibited an increase in VO2max from 2.9 +/- 0.3 to 3.4 +/- 0.2 1 X min-1 (P less than 0.001), whereas the NE group was unchanged (3.0 +/- 0.3 to 2.9 +/- 0.4 1 X min-1 (NS].(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading.

    PubMed

    Morikawa, Daichi; Nojiri, Hidetoshi; Saita, Yoshitomo; Kobayashi, Keiji; Watanabe, Kenji; Ozawa, Yusuke; Koike, Masato; Asou, Yoshinori; Takaku, Tomoiku; Kaneko, Kazuo; Shimizu, Takahiko

    2013-11-01

    Oxidative stress contributes to the pathogenesis of age-related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)-deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low-turnover bone loss and impaired collagen cross-linking (Nojiri et al. J Bone Miner Res. 2011;26:2682-94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail-suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.

  18. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  19. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-01

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate.

  20. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  1. The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García-Benito, R.; Vílchez, J. M.; Sánchez, S. F.; Kehrig, C.; Husemann, B.; Duarte Puertas, S.; Iglesias-Páramo, J.; Galbany, L.; Mollá, M.; Walcher, C. J.; Ascasíbar, Y.; González Delgado, R. M.; Marino, R. A.; Masegosa, J.; Pérez, E.; Rosales-Ortega, F. F.; Sánchez-Blázquez, P.; Bland-Hawthorn, J.; Bomans, D.; López-Sánchez, Á. R.; Ziegler, B.; Califa Collaboration

    2016-10-01

    Context. The study of the integrated properties of star-forming galaxies is central to understand their formation and evolution. Some of these properties are extensive and therefore their analysis require totally covering and spatially resolved observations. Among these properties, metallicity can be defined in spiral discs by means of integral field spectroscopy (IFS) of individual H ii regions. The simultaneous analysis of the abundances of primary elements, as oxygen, and secondary, as nitrogen, also provides clues about the star formation history and the processes that shape the build-up of spiral discs. Aims: Our main aim is to analyse simultaneously O/H and N/O abundance ratios in H ii regions in different radial positions of the discs in a large sample of spiral galaxies to obtain the slopes and the characteristic abundance ratios that can be related to their integrated properties. Methods: We analysed the optical spectra of individual selected H ii regions extracted from a sample of 350 spiral galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine Hii-Chi-mistry, which, according to Pérez-Montero (2014, MNRAS, 441, 2663), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [N ii] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. Results: The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10% for O/H and 4% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, however, to

  2. Oxygen Isotope Mass-Balance Constraints on Pliocene Sea Level and East Antarctic Ice Sheet Stability

    NASA Astrophysics Data System (ADS)

    Winnick, M. J.; Caves, J. K.

    2015-12-01

    The mid-Pliocene Warm Period (MPWP, 3.3-2.9 Ma), with reconstructed atmospheric pCO2 of 350-450 ppm, represents a potential analogue for climate change in the near future. Current highly cited estimates place MPWP maximum global mean sea level (GMSL) at 21 ± 10 m above modern, requiring total loss of the Greenland (GIS) and marine West Antarctic Ice Sheets (WAIS) and a substantial loss of the East Antarctic Ice Sheet (EAIS), with only a concurrent 2-3 ºC rise in global temperature. Many estimates of Pliocene GMSL are based on the partitioning of oxygen isotope records from benthic foraminifera (δ18Ob) into changes in deep-sea temperatures and terrestrial ice sheets. These isotopic budgets are underpinned by the assumption that the δ18O of Antarctic ice (δ18Oi) was the same in the Pliocene as it is today, and while the sensitivity of δ18Ob to changing meltwater δ18O has been previously considered, these analyses neglect conservation of 18O/16O in the ocean-ice system. Using well-calibrated δ18O-temperature relationships for Antarctic precipitation along with estimates of Pliocene Antarctic surface temperatures, we argue that the δ18Oi of the Pliocene Antarctic ice sheet was at minimum 1‰-4‰ higher than present. Assuming conservation of 18O/16O in the ocean-ice system, this requires lower Pliocene seawater δ18O (δ18Osw) without a corresponding change in ice sheet mass. This effect alone accounts for 5%-20% of the δ18Ob difference between the MPWP interglacials and the modern. With this amended isotope budget, we suggest that Pliocene GMSL was likely 9-13.5 m and very likely 5-17 m above modern, which suggests the EAIS is less sensitive to radiative forcing than previously inferred from the geologic record.

  3. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure

    PubMed Central

    Saunders, Philo U; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J

    2013-01-01

    Background Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hbmass) resulting in a greater maximal oxygen uptake (). Not all studies have shown a proportionate increase in as a result of increased Hbmass. The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. Methods 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hbmass and testing before and after intervention. Results For the pooled data, the correlation between per cent change in Hbmass and per cent change in was significant (p<0.0001, r2=0.15), with a slope (95% CI) of 0.48 (0.30 to 0.67) intercept free to vary and 0.62 (0.46 to 0.77) when constrained through the origin. When separated, the correlations were significant for the altitude and control groups, with the correlation being stronger for the altitude group (slope of 0.57 to 0.72). Conclusions With high statistical power, we conclude that altitude training of endurance athletes will result in an increase in of more than half the magnitude of the increase in Hbmass, which supports the use of altitude training by athletes. But race performance is not perfectly related to relative , and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance. PMID:24282203

  4. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide.

    PubMed

    Grubb, Peter J; Bellingham, Peter J; Kohyama, Takashi S; Piper, Frida I; Valido, Alfredo

    2013-08-01

    For tropical lowland rain forests, Denslow (1987) hypothesized that in areas with large-scale disturbances tree species with a high demand for light make up a larger proportion of the flora; results of tests have been inconsistent. There has been no test for warm temperate rain forests (WTRFs), but they offer a promising testing ground because they differ widely in the extent of disturbance. WTRF is dominated by microphylls sensu Raunkiaer and has a simpler structure and range of physiognomy than tropical or subtropical rain forests. It occurs in six parts of the world: eastern Asia, New Zealand, Chile, South Africa, SE Australia and the Azores. On the Azores it has been mostly destroyed, so we studied instead the subtropical montane rain forest (STMRF) on the Canary Islands which also represents a relict of the kind of WTRF that once stretched across southern Eurasia. We sought to find whether in these six regions the proportion of tree species needing canopy gaps for establishment reflects the frequency and/or extent of canopy disturbance by wind, landslide, volcanic eruptions (lava flow and ash fall), flood or fire. We used standard floras and ecological accounts to draw up lists of core tree species commonly reaching 5 m height. We excluded species which are very rare, very localized in distribution, or confined to special habitats, e.g. coastal forests or rocky sites. We used published accounts and our own experience to classify species into three groups: (1) needing canopy gaps for establishment; (2) needing either light shade throughout or a canopy gap relatively soon (a few months or years) after establishment; and (3) variously more shade-tolerant. Group 1 species were divided according the kind of canopy opening needed: tree-fall gap, landslide, lava flow, flood or fire. Only some of the significant differences in proportion of Group 1 species were consistent with differences in the extent of disturbance; even in some of those cases other factors seem

  5. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide.

    PubMed

    Grubb, Peter J; Bellingham, Peter J; Kohyama, Takashi S; Piper, Frida I; Valido, Alfredo

    2013-08-01

    For tropical lowland rain forests, Denslow (1987) hypothesized that in areas with large-scale disturbances tree species with a high demand for light make up a larger proportion of the flora; results of tests have been inconsistent. There has been no test for warm temperate rain forests (WTRFs), but they offer a promising testing ground because they differ widely in the extent of disturbance. WTRF is dominated by microphylls sensu Raunkiaer and has a simpler structure and range of physiognomy than tropical or subtropical rain forests. It occurs in six parts of the world: eastern Asia, New Zealand, Chile, South Africa, SE Australia and the Azores. On the Azores it has been mostly destroyed, so we studied instead the subtropical montane rain forest (STMRF) on the Canary Islands which also represents a relict of the kind of WTRF that once stretched across southern Eurasia. We sought to find whether in these six regions the proportion of tree species needing canopy gaps for establishment reflects the frequency and/or extent of canopy disturbance by wind, landslide, volcanic eruptions (lava flow and ash fall), flood or fire. We used standard floras and ecological accounts to draw up lists of core tree species commonly reaching 5 m height. We excluded species which are very rare, very localized in distribution, or confined to special habitats, e.g. coastal forests or rocky sites. We used published accounts and our own experience to classify species into three groups: (1) needing canopy gaps for establishment; (2) needing either light shade throughout or a canopy gap relatively soon (a few months or years) after establishment; and (3) variously more shade-tolerant. Group 1 species were divided according the kind of canopy opening needed: tree-fall gap, landslide, lava flow, flood or fire. Only some of the significant differences in proportion of Group 1 species were consistent with differences in the extent of disturbance; even in some of those cases other factors seem

  6. A pilot scale trickling filter with pebble gravel as media and its performance to remove chemical oxygen demand from synthetic brewery wastewater*

    PubMed Central

    Habte Lemji, Haimanot; Eckstädt, Hartmut

    2013-01-01

    Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of the trickling filter were generated under different experimental conditions. The trickling filter had an average efficiency of (86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2∙d). Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3∙d). An average COD removal efficiency of (85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2∙d). The results lead to a design organic load of 1.5 kg COD/(m3∙d) to reach an effluent COD in the range of 50–120 mg/L. As can be concluded from the results of this study, organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter. PMID:24101209

  7. Ozonation of sludge-press liquors: Determination of carbonyl compounds by the PFBOA method and the effect on the chemical oxygen demand

    SciTech Connect

    Boyle, L.L.; McCullough, N.H.; Poppelen, P. van

    1996-12-31

    The European Community Urban Waste Water Treatment Directive, May 1991, requires water service companies to provide sufficient wastewater treatment to meet a new limit set for the Chemical Oxygen Demand (COD) in final effluent and new legislation has placed limits on the levels of COD that can be discharged from wastewater treatment works using secondary treatment processes. The current permitted upper level for COD in the final effluent is 125 mg per litre. Ozone is a strong oxidant and disinfectant and in contrast to chlorine, does not produce chlorinated by-products from its reaction with natural organic matter in water. In spite of the successful use of ozone for the treatment of potable waters since the early part of the century very few studies have been undertaken into possible chemical by-products which might arise from ozonation. Since the amount of ozone applied is always lower than that required to oxidize all the organic matter to carbon dioxide and water, a number of semi-oxidation products such as aromatic, phenolic and aliphatic carboxylic acids, aldehydes and ketones can be expected to be formed. The ozonation of sludge-press liquors and the resultant effect on COD was investigated. The concentration of carbonyl compounds was analyzed using O-(pentafluorobenzyl) hydroxylamine (PFBOA) as a derivatising agent in Gas Chromatographic (GC) determination.

  8. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed. PMID:26320879

  9. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.

    PubMed

    Wijesekara, S S R M D H R; Basnayake, B F A; Vithanage, Meththika

    2014-01-01

    The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI's potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g(-1)) and Zn (28.38 mg g(-1)). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

  10. The removal of chemical oxygen demand from primary-treated domestic wastewater in subsurface-flow reed beds using different substrates.

    PubMed

    Manios, T; Stentiford, E I; Millner, P

    2003-01-01

    Subsurface-flow experimental reed beds were designed and built based on a combination of two design methodologies. Four different growing media were used with a combination of topsoil, gravel, river sand, and mature wastewater biosolids compost to determine the best substrate for chemical oxygen demand removal. Eight units were constructed, two for each material. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary-treated domestic wastewater was continuously fed to the beds for more than 6 months. The best performance was achieved by the gravel reed beds, with an average removal rate higher than 50%. Soil-based beds containing topsoil and sand only managed to attain removals of approximately 10%. The reed beds containing compost in their substrate produced the worst treatment, mainly because of leaching of organic substances from the compost. Primarily as a result of channel flow, all beds showed significant deviation from the designed retention time. There was no significant difference in the performance of planted and unplanted reed beds.

  11. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control.

  12. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system.

    PubMed

    Jang, J D; Barford, J P; Lindawati; Renneberg, R

    2004-03-15

    A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.

  13. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  14. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.

    1991-01-01

    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  15. Monitoring the variations of the oxygen transfer rate in a full scale membrane bioreactor using daily mass balances.

    PubMed

    Racault, Y; Stricker, A-E; Husson, A; Gillot, S

    2011-01-01

    Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed. PMID:22049761

  16. Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH

    PubMed

    Rockmann; Brenninkmeijer; Saueressig; Bergamaschi; Crowley; Fischer; Crutzen

    1998-07-24

    Atmospheric carbon monoxide (CO) exhibits mass-independent fractionation in the oxygen isotopes. An 17O excess up to 7.5 per mil was observed in summer at high northern latitudes. The major source of this puzzling fractionation in this important trace gas is its dominant atmospheric removal reaction, CO + OH --> CO2 + H, in which the surviving CO gains excess 17O. The occurrence of mass-independent fractionation in the reaction of CO with OH raises fundamental questions about kinetic processes. At the same time the effect is a useful marker for the degree to which CO in the atmosphere has been reacting with OH.

  17. Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH

    PubMed

    Rockmann; Brenninkmeijer; Saueressig; Bergamaschi; Crowley; Fischer; Crutzen

    1998-07-24

    Atmospheric carbon monoxide (CO) exhibits mass-independent fractionation in the oxygen isotopes. An 17O excess up to 7.5 per mil was observed in summer at high northern latitudes. The major source of this puzzling fractionation in this important trace gas is its dominant atmospheric removal reaction, CO + OH --> CO2 + H, in which the surviving CO gains excess 17O. The occurrence of mass-independent fractionation in the reaction of CO with OH raises fundamental questions about kinetic processes. At the same time the effect is a useful marker for the degree to which CO in the atmosphere has been reacting with OH. PMID:9677193

  18. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  19. Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs.

    PubMed

    Roussel, Damien; Salin, Karine; Dumet, Adeline; Romestaing, Caroline; Rey, Benjamin; Voituron, Yann

    2015-10-01

    Body size is a central biological parameter affecting most biological processes (especially energetics) and the mitochondrion is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frog (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen because of their differences in adult body mass. We found that mitochondrial coupling efficiency was markedly increased with animal size, which led to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared with the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher reactive oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower levels of radical oxygen species than those from the smaller frogs. Collectively, the data show that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms.

  20. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    PubMed

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring.

  1. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters.

    PubMed

    Rastogi, Shikha; Kumar, Anil; Mehra, N K; Makhijani, S D; Manoharan, A; Gangal, V; Kumar, Rita

    2003-01-01

    The rapid determination of waste-water quality of waste-water treatment plants in terms of pollutional strength, i.e. biochemical oxygen demand (BOD) is difficult or even impossible using the chemical determination method. The present study reports the determination of BOD within minutes using microbial BOD sensors, as compared to the 5-day determination using the conventional method. Multiple criteria establish the basis for the development of a BOD biosensor useful for rapid and reliable BOD estimation in industrial waste-waters. Of these, preparation of a suitable novel immobilized microbial membrane used in conjunction with an apt transducer is discussed. As a result, a microbial biosensor based on a formulated, synergistic, pre-tested microbial consortium has been developed for the measurement of BOD load of various industrial waste-waters. The sensor showed maximum response in terms of current difference, when a cell concentration of 2.25 x 10(10) CFU, harvested in their log phase of growth were utilized for microbial membrane construction. The sensor showed a stability of 180 days when the prepared membranes were stored at a temperature of 4 degrees C in 50 mM phosphate buffer of pH 6.8. The reusability of the immobilized membranes was up to 200 cycles without appreciable loss of their response characteristics. A linear relationship between the current change and a glucose-glutamic acid (GAA) concentration up to 60 mg l(-1) was observed (r=0.999). The lower detection limit was 1.0 mg l(-1) BOD. The sensor response was reproducible within +/-5% of the mean in a series of ten samples having 44 mg l(-1) BOD using standard a GGA solution. When used for the BOD estimation of industrial waste-waters, a relatively good agreement was found between the two methods, i.e. 5-day BOD and that measured by the developed microbial sensor. PMID:12445441

  2. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    PubMed

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  3. Fraction of carbon-free body mass as oxygen is a constant body composition ratio in men.

    PubMed

    Wang, Z; Deurenberg, P; Wang, W; Pierson, R N; Heymsfield, S B

    1998-06-01

    Although elements are the foundation of the human body, information concerning the atomic level of body composition is still limited. The aim of this study was to explore potentially constant relationships among elements found in vivo. Based on the known stoichiometries of relevant chemical components, a theoretical model was derived, suggesting the existence of a relatively constant ratio of total body oxygen to carbon-free body mass (TBO/CFM) in men. Eight elements (C, H, N, Ca, P, K, Na and Cl ) were measured in 22 healthy male subjects by using in vivo neutron activation-40K whole-body counting, and TBO was calculated as the difference between body mass and the sum of the eight measured elements. TBO (in kg) was significantly correlated with CFM (in kg): TBO = 0.829 x CFM - 1.8; r = 0.998, P < 0.001, standard error of estimate = 0.4 kg. The ratio of TBO to CFM was relatively constant, mean +/- SD at 0. 800 +/- 0.009 with a CV of 1.1%. Oxygen and carbon are the two most abundant elements in the human body. The discovery of a constant relationship between oxygen and carbon is not only helpful for understanding the atomic level of body composition, but also provides the possibility of estimating the content of specific elements in vivo.

  4. Validating a behavioral economic approach to assess food demand: effects of body mass index, dietary restraint, and impulsivity.

    PubMed

    Reslan, Summar; Saules, Karen K; Greenwald, Mark K

    2012-10-01

    Behavioral economic theory is a useful framework for analyzing factors influencing choice, but the majority of human behavioral economic research has focused on drug choice. The behavioral economic choice paradigm may also be valuable for understanding food-maintained behavior. Our primary objective was two-fold: (1) Validate a human laboratory model of food-appetitive behavior, and (2) Assess the contribution of individual level factors that may differentially impact food choice behavior. Two studies were conducted. In Study 1, female subjects (N=17) participated in two consecutive food choice experimental sessions, whereas in Study 2, female subjects (N=21) participated in one concurrent food choice experimental session. During consecutive choice sessions (Study 1), demand for the more palatable food (i.e., high-sugar/high-fat) was more inelastic than the less palatable (i.e., low-sugar/low-fat) option. During concurrent choice sessions, demand for the more palatable food (i.e., high-sugar/high-fat) was more inelastic for restrained vs. unrestrained eaters, and for those who were overweight vs. normal weight. Demand for both palatable and less palatable choices was more elastic for high-impulsive vs. low-impulsive subjects. These findings suggest that the behavioral economic framework can be used successfully to develop a human laboratory model of food-appetitive behavior. PMID:22659562

  5. Validating a behavioral economic approach to assess food demand: effects of body mass index, dietary restraint, and impulsivity.

    PubMed

    Reslan, Summar; Saules, Karen K; Greenwald, Mark K

    2012-10-01

    Behavioral economic theory is a useful framework for analyzing factors influencing choice, but the majority of human behavioral economic research has focused on drug choice. The behavioral economic choice paradigm may also be valuable for understanding food-maintained behavior. Our primary objective was two-fold: (1) Validate a human laboratory model of food-appetitive behavior, and (2) Assess the contribution of individual level factors that may differentially impact food choice behavior. Two studies were conducted. In Study 1, female subjects (N=17) participated in two consecutive food choice experimental sessions, whereas in Study 2, female subjects (N=21) participated in one concurrent food choice experimental session. During consecutive choice sessions (Study 1), demand for the more palatable food (i.e., high-sugar/high-fat) was more inelastic than the less palatable (i.e., low-sugar/low-fat) option. During concurrent choice sessions, demand for the more palatable food (i.e., high-sugar/high-fat) was more inelastic for restrained vs. unrestrained eaters, and for those who were overweight vs. normal weight. Demand for both palatable and less palatable choices was more elastic for high-impulsive vs. low-impulsive subjects. These findings suggest that the behavioral economic framework can be used successfully to develop a human laboratory model of food-appetitive behavior.

  6. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  7. One-dimensional Photochemical Model Calculations of Mass-independent Fractionation of Oxygen Isotopes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lyons, J.

    2002-12-01

    For oxygen-containing atmospheric molecules, anomalous fractionation in the three isotopes of oxygen derives primarily from reactions involving ozone or ozone photodissociation products. Recently, a simple box-model was presented which demonstrated the transfer of mass-independent fractionation (MIF) in ozone to other short-lived radical species (Lyons 2001). Depending on the details of the reaction pathways for a specific species, some portion of the MIF signature of ozone is transferred to that species, and is superimposed on the mass-dependent fractionations affecting that species. The box-model results included large anomalous fractionations in NO, NO2, and ClO, and in stratospheric OH and HO2. Here, I extend the box-model calculations to a 1-D photochemical model with vertical eddy transport. This allows longer-lived species such as CO, CO2 and HNO3 to be included. The 1-D model employed is a modification of a 1-D model from Jim Kasting (Penn. State Univ.) and extends from 0 to 64 km. Preliminary results from the 1-D model will be presented, and will include recent experimental results concerning the NO + O3 reaction mechanism (Savarino et al., pers. comm.). Several of these species, and the nitrogen oxides in particular, are key molecules in bigeochemical cycling.

  8. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass.

    PubMed

    Yamamoto, Hironori; Yamamoto, Tamiji; Mito, Yugo; Asaoka, Satoshi

    2016-06-15

    Granulated coal ash (GCA), which is a by-product of coal thermal electric power stations, effectively decreases phosphate and hydrogen sulfide (H2S) concentrations in the pore water of coastal marine sediments. In this study, we developed a pelagic-benthic coupled ecosystem model to evaluate the effectiveness of GCA for diminishing the oxygen-deficient water mass formed in coastal bottom water of Hiroshima Bay in Japan. Numerical experiments revealed the application of GCA was effective for reducing the oxygen-deficient water masses, showing alleviation of the DO depletion in summer increased by 0.4-3mgl(-1). The effect of H2S adsorption onto the GCA lasted for 5.25years in the case in which GCA was mixed with the sediment in a volume ratio of 1:1. The application of this new GCA-based environmental restoration technique could also make a substantial contribution to form a recycling-oriented society. PMID:27143344

  9. The Dynamic Response of Marine Life to Extreme Temperature and Low Oxygen Events Following the End-Permian Mass Extinction.

    NASA Astrophysics Data System (ADS)

    Pietsch, C.; Bottjer, D. J.

    2014-12-01

    The end-Permian mass extinction was the most devastating taxonomic and ecological crisis in the history of life on Earth. The recovery lasted 5 My making it the longest in geologic history, although the cause of the delay is still heavily debated. We find that additional environmental changes during the recovery interval reset the attempts that marine communities made toward ecological complexity, resulting in the overall appearance of a stagnant recovery. The extinction mechanisms during the end-Permian include extreme temperature change and low oxygen environments resulting from the volcanic emission of carbon dioxide and other toxic gasses to the atmosphere. The biotic response to ancient environmental change is a direct analog for the ecological impacts of modern anthropogenic climate change. We applied an ecological recovery rubric to benthic, sea floor dwelling, communities throughout the Early Triassic recovery in two major ocean basins. Newly collected bulk fossil data from the Moenkopi and Thaynes Formations from the Southwest US and the Werfen Formation in Italy were analyzed along with literature data. In Italy, directly following the extinction, low oxygen environments prevented an ecological rebound. Once low oxygen conditions receded, 600 kyr after the extinction, taxonomic diversity, fossil body size, and trace fossil complexity rebounded. A little more than 1 My into the Early Triassic, an extreme temperature event resulted in a reset of community complexity in both Italy and the Southwest US. The body size of gastropods and the repopulation of echinoderms were significantly inhibited as was trace fossil complexity. Low oxygen conditions that developed in the last ~2My of the Early Triassic limited diversity and body size in the Southwest United States. The stagnant recovery is re-interpreted as dynamic resets and rapid rebounds driven by environmental perturbations throughout the Early Triassic.

  10. Apparatus and method for hydrogen and oxygen mass spectrometry of the terrestrial magnetosphere

    DOEpatents

    Funsten, Herbert O.; Dors, Eric E.; Harper, Ronnie W.; Reisenfeld, Daniel B.

    2007-05-15

    A detector element for mass spectrometry of a flux of heavy and light ions, that includes: a first detector to detect light ions that transit through a foil operatively placed in front of the first detector, and a second detector that detects the flux of heavy and light ions.

  11. Effect of live weight gain of steers during winter grazing: II. Visceral organ mass, cellularity, and oxygen consumption.

    PubMed

    Hersom, M J; Krehbiel, C R; Horn, G W

    2004-01-01

    Two experiments were conducted to examine the effect of BW gain during winter grazing on mass, cellularity, and oxygen consumption of splanchnic tissues before and after the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range supplemented with 0.91 kg/d of a 41% CP supplement (NR). At the end of winter grazing, four steers were selected randomly from each treatment for initial slaughter to measure organ mass, cellularity, and oxygen consumption. All remaining steers were placed into a feedlot and fed to the same backfat end point (1.27 cm). Six steers were selected randomly from each treatment for final organ mass, cellularity, and oxygen consumption. Initial empty BW (EBW) was greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both Exp. 1 and 2 (355 > 263 > 207 +/- 6.5 kg and 337 > 274 > 205 +/- 8.7 kg, respectively). For both experiments, the initial total gastrointestinal tract (GIT; g/kg of EBW) proportional weight was greater (P < 0.05) in NR steers than in LGW, and LGW steers had greater (P < 0.05) initial GIT proportional weight than HGW steers. Proportional weight of total splanchnic tissues (TST; g/kg of EBW) did not differ (P < 0.19) among treatments. Initial duodenal RNA concentration and RNA:protein were greater (P < 0.02) in LGW than in HGW steers, and NR steers were intermediate. Initial in vitro liver O2 consumption was greater (P < 0.09) in HGW and LGW than in NR steers (34.5 > 16.9 mL/min), whereas initial small intestinal oxygen consumption was greater (P < 0.01) in LGW than in HGW and NR steers (12.1 > 5.2 mL/min). Ruminal papillae oxygen consumption did not differ (P < 0.55) among treatments. The rate of decrease of GIT (g x g EBW(-1) x d(-1)) during finishing was greater in NR

  12. A Review of Stature, Body Mass and Maximal Oxygen Uptake Profiles of U17, U20 and First Division Players in Brazilian Soccer

    PubMed Central

    Da Silva, Cristiano Diniz; Bloomfield, Jonathan; Marins, João Carlos Bouzas

    2008-01-01

    Investigations in the physiological demands of soccer have identified that a significant percentage of energy production in match performance is provided through the aerobic pathways. It is therefore important to assess maximal oxygen uptake (VO2Max) of players in order to evaluate their aerobic fitness status and optimize their physical conditioning. However, it is also important to consider the variation of (VO2Max) profiles for soccer players, with differences having been identified in terms of playing position as well as playing style. This paper reviews the academic literature between 1996 and 2006 and reports on the methodologies employed and the values obtained for stature, body mass and (VO2Max) profiles of soccer players of different positions in professional Brazilian clubs at U-17, U-20 and First Division levels. Indirect measurements accounted for the majority of tests conducted at U-17 (70%) and U-20 (84.6%) levels whereas at First Division level almost half of the (VO2Max) evaluations were performed by direct measurements (47.8%). The mean (VO2Max) profiles obtained for outfield players in U-17 was 56.95 ± 3.60 ml·kg-1·min-1, 58.13 ± 3.21 ml·kg-1·min-1 for U-20 players and 56.58 ± 5.03 ml·kg-1·min-1 for First Division players. In Brazil, the U-20 players appear to have highest VO2Max values, however the profiles reported for all outfield positions in U-17 and First Division levels are often lower than those reported for the same category of players from other countries. This may be a reflection of the style of play used in Brazilian soccer. This is further emphasized by the fact that the playing position with the highest VO2Max values was the external defenders whereas most findings from studies performed in European soccer indicate that midfielders require the highest VO2Max values. Key pointsPhysical and physiological differences exist between Brazilian soccer and European soccer.Players in Brazil appear to be shorter in stature, similar in

  13. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass

    PubMed Central

    Calbet, José A L; Rådegran, Göran; Boushel, Robert; Saltin, Bengt

    2009-01-01

    Peak aerobic power in humans () is markedly affected by inspired O2 tension (). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak in hypoxia: arterial O2 partial pressure () or O2 content ()? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee) muscle mass in normoxia, acute hypoxia (AH) () and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on in AH and abolished completely the effect of hypoxia on after altitude acclimatization. Acclimatization improved Bike peak exercise from 34 ± 1 in AH to 45 ± 1 mmHg in CH (P < 0.05) and Knee from 38 ± 1 to 55 ± 2 mmHg (P < 0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in . Altitude acclimatization restored fully peak systemic and leg O2 delivery in CH (2.69 ± 0.27 and 1.28 ± 0.11 l min−1, respectively) to sea level values (2.65 ± 0.15 and 1.16 ± 0.11 l min−1, respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also in spite of a of 55 mmHg. Reducing the size of the active muscle mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the

  14. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass.

    PubMed

    Calbet, José A L; Rådegran, Göran; Boushel, Robert; Saltin, Bengt

    2009-01-15

    Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude

  15. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  16. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    NASA Astrophysics Data System (ADS)

    Savarino, J.; Vicars, W. C.; Legrand, M.; Preunkert, S.; Jourdain, B.; Frey, M. M.; Kukui, A.; Caillon, N.; Gil Roca, J.

    2015-09-01

    Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric investigations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic plateau) during the austral summer of 2011/12. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate in the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3-) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this east Antarctic region.

  17. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    NASA Astrophysics Data System (ADS)

    Savarino, Joël; Vicars, William C.; Legrand, Michel; Preunkert, Suzanne; Jourdain, Bruno; Frey, Markus M.; Kukui, Alexandre; Caillon, Nicolas; Gil Roca, Jaime

    2016-03-01

    Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx). The unique and distinctive 17O excess (Δ17O = δ17O - 0.52 × δ18O) of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial-interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau) during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc.) and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21-22 ± 3) ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3-) values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.

  18. The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García-Benito, R.; Vílchez, J. M.; Sánchez, S. F.; Kehrig, C.; CALIFA Collaboration

    2016-06-01

    We analysed the optical spectra of individual emission-line regions extracted from a sample of 350 spiral galaxies of the CALIFA survey. We selected the star-forming HII regions and calculated total O/H abundances and N/O ratios using the semi-empirical routine HII-Chi-mistry. We performed linear fittings to the abundances as a function of the de-projected galactocentric distances and we studied the statistical properties of the slopes and the characteristic values at the effective radius as a function of other integrated properties. Although galaxies present a wide variety of spatial chemical distributions both for O/H and N/O, a characteristic value at the effective radius can be obtained that tightly correlates with stellar mass. No other dependences are found with other integrated properties such as SFR, morphology or presence of a bar.

  19. On the Interpretation of Oxygenated Organic Aerosols (and their Subtypes) Arising from Factor Analysis of Aerosol Mass Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Zhang, Q.; Canagaratna, M. R.; Ulbrich, I. M.; Ng, N. L.; Aiken, A. C.; Decarlo, P. F.; Kroll, J.; Mohr, C.; Allan, J. D.; Worsnop, D. R.

    2008-12-01

    Zhang et al. (ES&T 2005; ACP 2005) first performed factor analysis (FA) of Aerodyne Aerosol Mass Spectrometer (AMS) complete organic aerosol (OA) mass spectra. This study showed that an oxygenated organic aerosol (OOA) factor accounted for 2/3 of the OA mass at an urban site in Pittsburgh and strongly linked OOA to secondary organic aerosols (SOA). Many subsequent studies and the application of more powerful solution algorithms such as Positive Matrix Factorization (PMF) to the same FA problem have demonstrated the importance of OOA at most locations (e.g. Volkamer et al., GRL, 2006; Zhang et al., GRL, 2007; Lanz et al., ACP, 2007 and ES&T, 2008; Ulbrich et al., ACPD, 2008). Multiple studies have also identified several subtypes of OOA (e.g. OOA-1 and OOA-2). This type of analysis offers new insights because it provides some chemical resolution on the total OA mass with high time and size resolution, and bypasses the limitations of techniques that only analyze tracers and which may favor more reduced species. However the chemical resolution is limited and careful interpretation of the FA output is required, including the use of database spectra, time series of external tracers, tracer ratios, back-trajectory analyses, size- distribution analyses, etc. This presentation will address the interpretation of total OOA and its subfactors across a large range of locations in urban, suburban, rural, remote, and forested areas, and will compare with the results of other source apportionment techniques. Based on data from multiple datasets we conclude that (1) anthropogenic SOA in and downwind of urban areas is an important source of OOA; (2) motor vehicles, meat cooking, and trash burning are unlikely to be sources of primary OOA; (3) SOA from biogenic and biomass burning precursors are also clear sources of OOA; (4) primary biomass burning OA (P-BBOA) typically shows significant differences with ambient OOA factors; (5) heterogeneous oxidation of urban POA may give rise to

  20. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-01

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H2O and CO2 were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 106 spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  1. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    SciTech Connect

    Zhao Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-09

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H{sub 2}O and CO{sub 2} were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 10{sup 6} spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  2. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  3. Review of current Southern California edison load management programs and proposal for a new market-driven, mass-market, demand-response program

    SciTech Connect

    Weller, G.H.

    2002-01-01

    Utility load management programs, including direct load control and interruptible load programs, constitute a large installed base of controllable loads that are employed by utilities as system reliability resources. In response to energy supply shortfalls expected during the summer of 2001, the California Public Utilities Commission in spring 2001 authorized new utility load management programs as well as revisions to existing programs. This report provides an independent review of the designs of these new programs for a large utility (Southern California Edison) and suggests possible improvements to enhance the price responsiveness of the customer actions influenced by these programs. The report also proposes a new program to elicit a mass-market demand response to utility price signals.

  4. A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen - The role of molecular symmetry in isotope chemistry

    NASA Technical Reports Server (NTRS)

    Heidenreich, J. E., III; Thiemens, M. H.

    1986-01-01

    It was previously reported that the reaction products from the synthesis of ozone in an electric discharge through molecular oxygen display a nonmass-dependent (NoMaDic) oxygen isotope effect. In this paper, a detailed characterization of the isotope effect, including the effect of molecular oxygen pressure, and the presence of a chemically inert third body (helium), is reported. The NoMaDic effect is due to an isotopically selective stabilization of the O3 formation reaction intermediate, possibly resulting from the ability of the different isotopomers to exhibit different molecular symmetries.

  5. Mass-specific respiration of mesozooplankton and its role in the maintenance of an oxygen-deficient ecological barrier (BEDOX) in the upwelling zone off Chile upon presence of a shallow oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Donoso, Katty; Escribano, Ruben

    2014-01-01

    A shallow oxygen minimum zone (OMZ) in the coastal upwelling zone off Chile may vertically confine most zooplankton to a narrow (< 50 m) upper layer. From laboratory experiments, we estimated oxygen consumption of the mesozooplankton community obtained in Bay of Mejillones, northern Chile (23°S) in May 2010, December 2010 and August 2011. Mass-specific respiration rates were in the range of 8.2-24.5 μmol O2 mg dry mass- 1 day- 1, at an average temperature of 12 °C. Estimates of the mesozooplankton biomass in the water column indicated that its aerobic respiration may remove daily a maximum of about 20% of oxygen available at the base of the oxycline. Since previous work indicates that zooplankton aggregate near the base of the oxycline, the impact of aerobic respiration on oxygen content might be even stronger at this depth. Mesozooplankton respiration, along with community respiration by microorganisms near the base of the oxycline and a strongly stratified condition (limiting vertical flux of O2), are suggested as being critical factors causing and maintaining a persistent subsurface oxygen-deficient ecological barrier (BEDOX) in the upwelling zone. This BEDOX layer can have a major role in affecting and regulating zooplankton distribution and their dynamics in the highly productive coastal upwelling zone of the Humboldt Current System.

  6. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.

  7. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. PMID:24485395

  8. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas

    SciTech Connect

    Grebmeier, J.M. ); Cooper, L.W.; DeNiro, M.J. )

    1990-07-01

    Oxygen isotopic composition of bottom seawater and tunicate cellulose were used as short-term and long-term indicators, respectively, of water-mass characteristics in the northern Bering and Chukchi Seas. Oxygen isotopic composition of northeastern Bering Sea waters is influenced by Yukon River inflows of {sup 18}O-depleted continental water mixing with relatively {sup 18}O-enriched waters contributed by the Anadyr Current. Tunicate cellulose sampled under Alaska coastal water is more depleted in {sup 18}O than that collected under Bering shelf and Anadyr waters, which reflects the oxygen isotopic composition of these waters. Tunicate cellulose collected under the mixed Bering shelf water displays intermediate {delta} {sup 18}O values. Oxygen isotopic analyses of bottom seawater were used to determine the spatial location and influence of continental and coastal-derived precipitation and of sea-ice formation on water-mass structure on the continental shelf of the northern Bering and Chukchi Seas. Results indicate that the oxygen isotopic composition of tunicate cellulose, averaged over multiple seasons, may serve as a long-term biochemical indicator of water-mass patterns in ice-covered polar regions where continuous sampling is impractical.

  9. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T.

    PubMed

    Atkinson, Ian C; Thulborn, Keith R

    2010-06-01

    The reduction of molecular oxygen to water is the final step of oxidative phosphorylation that couples adenosine triphosphate production to the reoxidation of reducing equivalents formed during the oxidation of glucose to carbon dioxide. This coupling makes the cerebral metabolic rate of oxygen consumption (CMRO(2)) an excellent reflection of the metabolic health of the brain. A multi-nuclear magnetic resonance (MR) imaging based method for CMRO(2) mapping is proposed. Oxygen consumption is determined by applying a new three-phase metabolic model for water generation and clearance to the changing 17-oxygen ((17)O) labeled water MR signal measured using quantitative (17)O MR imaging during inhalation of (17)O-enriched oxygen gas. These CMRO(2) data are corrected for the regional brain tissue mass computed from quantitative 23-sodium MR imaging of endogenous tissue sodium ions to derive quantitative results of oxygen consumption in micromoles O(2)/g tissue/minute that agree with literature results reported from positron emission tomography. The proposed technique is demonstrated in the human brain using a 9.4 T MR scanner optimized for human brain imaging.

  10. An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography-mass spectrometry.

    PubMed

    O'Connell, Steven G; Haigh, Theodore; Wilson, Glenn; Anderson, Kim A

    2013-11-01

    We developed two independent approaches for separation and quantitation of 24 oxygenated polycyclic aromatic hydrocarbons (OPAHs) using both liquid chromatography-atmospheric pressure chemical ionization/mass spectrometry (LC-APCI/MS) and gas chromatography-electron impact/mass spectrometry (GC-EI/MS). Building on previous OPAH research, we examined laboratory stability of OPAHs, improved existing method parameters, and compared quantification strategies using standard addition and an internal standard on an environmental sample. Of 24 OPAHs targeted in this research, 19 compounds are shared between methods, with 3 uniquely quantitated by GC-EI/MS and 2 by LC-APCI/MS. Using calibration standards, all GC-EI/MS OPAHs were within 15 % of the true value and had less than 15 % relative standard deviations (RSDs) for interday variability. Similarly, all LC-APCI/MS OPAHs were within 20 % of the true value and had less than 15 % RSDs for interday variability. Instrument limits of detection ranged from 0.18 to 36 ng mL(-1) on the GC-EI/MS and 2.6 to 26 ng mL(-1) on the LC-APCI/MS. Four standard reference materials were analyzed with each method, and we report some compounds not previously published in these materials, such as perinaphthenone and xanthone. Finally, an environmental passive sampling extract from Portland Harbor Superfund, OR was analyzed by each method using both internal standard and standard addition to compensate for potential matrix effects. Internal standard quantitation resulted in increased precision with similar accuracy to standard addition for most OPAHs using 2-fluoro-fluorenone-(13)C as an internal standard. Overall, this work improves upon OPAH analytical methods and provides some considerations and strategies for OPAHs as focus continues to expand on this emerging chemical class.

  11. Ventilatory accommodation of oxygen demand and respiratory water loss in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus).

    PubMed

    Dawson, T J; Munn, A J; Blaney, C E; Krockenberger, A; Maloney, S K

    2000-01-01

    We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.

  12. Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Koga, Seizi

    2013-08-01

    The largest mass extinction of animals and plants in both the ocean and on land occurred in the late Permian (252 Ma), largely coinciding with the largest flood basalt volcanism event in Siberia and an oceanic anoxic/euxinic event. We investigated the impacts of a massive release of methane (CH4) from the Siberian igneous province and the ocean and/or hydrogen sulfide (H2S) from the euxinic ocean on oxygen and ozone using photochemical model calculations. Our calculations indicated that an approximate of 14% decrease in atmospheric O2 levels would have occurred in the case of a large combined CH4 and H2S flux to the atmosphere, whereas an approximate of 8 to 10% decrease would have occurred from the CH4 flux and oxidation of all H2S in the ocean. The slight decrease in atmospheric O2 levels may have contributed to the extinction event. We demonstrate for the first time that a massive release of CH4 from the Siberian igneous province and a coincident massive release of CH4 and H2S did not cause ozone collapse. A collapse of stratospheric ozone leading to an increase in UV is not supported by the maximum model input levels for CH4 and H2S. These conclusions on O2 and O3 are correspondent to every H2S release percentages from the ocean to the atmosphere.

  13. Isotope ratio mass spectrometric method for the on-line determination of oxygen-18 in organic matter.

    PubMed

    Koziet, J

    1997-01-01

    A method for the on-line determination of oxygen-18, at a naturally occurring level, in organic material is presented. After pyrolysis of the samples to form carbon monoxide, which is performed at 1300 degrees C in a vitreous carbon tube, the pyrolysis products are transported by a stream of helium gas. Using an open split, a small part of the effluent is transferred to the ion source of an isotope ratio mass spectrometer. The ratio is obtained from a measurement of the ion current intensities at m/z 30 and 28 (12C18O and 12C16O). The method was tested with the secondary water standard GISP (Greenland Ice Sheet Precipitation) and the carbonate standard NBS 19. The values obtained were -24.8/1000 and 27.3/1000 vs. VSMOW (Vienna Standard Mean Ocean Water) (LAEA reference values are -24.8/1000 and 28.7/1000 vs. VSMOW). The potential of the method was demonstrated by measuring the 18O content of samples of beet and cane sucrose and also samples of vanillin extracted from vanilla pods or of synthetic origin.

  14. The non-mass-dependent oxygen isotope effect in the electrodissociation of carbon dioxide - A step toward understanding NoMaD chemistry. [fractionations in meteorites

    NASA Technical Reports Server (NTRS)

    Heidenreich, J. E., III; Thiemens, M. H.

    1985-01-01

    A non-mass dependent (NoMaD) oxygen isotope effect is demonstrated in the dissociation of CO2 similar to that observed in the electrosynthesis of ozone. The molecular oxygen produced carries the signature of two separate isotopic fractionation processes; a mass-dependent fractionation probably due to CO2 + O isotopic exchange, and a secondary NoMaD fractionation (delta O-17 = 0.97 + or - 0.09 delta O-18, with the O2 depleted in O-17 and O-18). It is suggested that the effect is due to either the formation or relaxation of ozone in an excited electronic state. This represents the latest advance in the understanding of chemical NoMaD effects which may be essential to the explanation of non-mass-dependent fractionations observed in meteorites.

  15. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  16. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  17. Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster : evidence for roles of plasticity and evolution.

    PubMed

    Klok, C J; Hubb, A J; Harrison, J F

    2009-12-01

    Greater oxygen availability has been hypothesized to be important in allowing the evolution of larger invertebrates during the Earth's history, and across aquatic environments. We tested for evolutionary and developmental responses of adult body size of Drosophila melanogaster to hypoxia and hyperoxia. Individually reared flies were smaller in hypoxia, but hyperoxia had no effect. In each of three oxygen treatments (hypoxia, normoxia or hyperoxia) we reared three replicate lines of flies for seven generations, followed by four generations in normoxia. In hypoxia, responses were due primarily to developmental plasticity, as average body size fell in one generation and returned to control values after one to two generations of normoxia. In hyperoxia, flies evolved larger body sizes. Maximal fly mass was reached during the first generation of return from hyperoxia to normoxia. Our results suggest that higher oxygen levels could cause invertebrate species to evolve larger average sizes, rather than simply permitting evolution of giant species.

  18. Oxygen safety

    MedlinePlus

    COPD - oxygen safety; Chronic obstructive pulmonary disease - oxygen safety; Chronic obstructive airways disease - oxygen safety; Emphysema - oxygen safety; Heart failure - oxygen-safety; Palliative care - oxygen safety; ...

  19. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  20. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds. PMID:26898203

  1. A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level.

    PubMed

    Malherbe, Julien; Penen, Florent; Isaure, Marie-Pierre; Frank, Julia; Hause, Gerd; Dobritzsch, Dirk; Gontier, Etienne; Horréard, François; Hillion, François; Schaumlöffel, Dirk

    2016-07-19

    An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana. PMID:27291826

  2. Demanding Satisfaction

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    It was the kind of crisis most universities dread. In November 2006, a group of minority student leaders at Indiana University-Purdue University Indianapolis (IUPUI) threatened to sue the university if administrators did not heed demands that included providing more funding for multicultural student groups. This article discusses how this threat…

  3. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  4. Modeling ozone mass transfer in reclaimed wastewater.

    PubMed

    Jiang, Pan; Chen, Hsiao-Ting; Babcock, Roger W; Stenstrom, Michael K

    2009-01-01

    Ozone mass transfer in reclaimed water was evaluated at pilot scale to determine mass-transfer characteristics and reaction kinetics and to assess the use of oxygen as a surrogate to measure this process. Tests were conducted in a 40-L/min pilot plant over a 3-year period. Nonsteady-state mass-transfer analyses for both oxygen and ozone were performed for superficial gas flow rates ranging from 0.13m/min to 0.40m/min. The psi factor, which is the ratio of volumetric mass-transfer coefficients of ozone to oxygen, was determined. The decrease in oxygen transfer rate caused by contaminants in reclaimed water was only 10 to 15% compared to tap water. A simple mathematical model was developed to describe transfer rate and steady state ozone concentration. Ozone decay was modeled accurately as a pseudo first-order reaction between ozone and ozone-demanding materials.

  5. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation of [COD] in influent endured by the UASB reactor was decreasing. The ratios of [COD] and [PCP] in influent could affect removal efficiency of PCP and COD, the concentration of total volatile fatty acids (VFA) in effluent, biogas quantity and methane content in biogas. [PCP] in influent was linearly or semi-logarithmically correlated to [COD] in effluent when [COD] in influent was 5750+/-250 mg L(-1), and so was the relationship between [COD] in influent and [PCP] in effluent when [PCP] in influent was 100.4 or 151.6 mg L(-1), less than the maximum permissible [PCP]. The sources of seeded sludge, the way of sludge acclimation and the characteristics of anaerobic sludge could all affect the UASB reactor capacity treating PCP. When [PCP] were less than 180.8 mg L(-1) for Reactor I and 151.6 mg L(-1) for Reactor II, the variation of [PCP] in influent had little effect on the UASB reactor volume gas production rate and substrate gas production rate. And [VFA] and pH value in effluent were affected a little. Volume biogas production rate and substrate biogas production rate of the UASB reactor were only affected by [COD] and loading rate in influent. But when [PCP] was more than 151.6 mg L(-1) for Reactor II, the biogas production fell quickly and was over 3 days later. [VFA] in effluent from Reactor II increased up to 2198.1 mg L(-1) quickly and the pH value fell to less than 7. Reactor II could not run normally. The component of VFA accumulated quickly was mainly acetate (above 50%). With [PCP] increased from 7.9 to 180.8 mg L(-1) gradually in influent, the methane content in biogas from Reactor II decreased from 70% to 60%, but the reactor could still run normally. Then as for Reactor II, the content of methane have fallen from 75% to 45% or so quickly. And Reactor II could not run steadily. So the conclusion could be drown that too high [PCP] in influent for UASB reactor mainly inhibited the activity of methane-producing bacteria cultures utilizing the acetate.

  6. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  7. Uv-Vis, Infrared, and Mass Spectroscopy of Electron Irradiated Frozen Oxygen and Carbon Dioxide Mixtures with Water

    NASA Astrophysics Data System (ADS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10-17 cm2 molecule-1 was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally "red" UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  8. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater.

    PubMed

    Wu, Yi-Ju; Whang, Liang-Ming; Chang, Ming-Yu; Fukushima, Toshikazu; Lee, Ya-Chin; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Yang, Charn-Yi; Fu, Ryan; Tsai, Tsair-Yuan

    2013-08-01

    This study investigated impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand (COD) on nitrification performance in one full-scale membrane bioreactor (MBR) treating monoethanolamine (MEA)/dimethyl sulfoxide (DMSO)-containing thin film transistor liquid crystal display (TFT-LCD) wastewater. Poor nitrification was observed under high organic loading and high colloidal COD conditions, suggesting that high F/M ratio and colloidal COD situations should be avoided to minimize their negative impacts on nitrification. According to the nonmetric multidimensional scaling (NMS) statistical analyses on terminal restriction fragment length polymorphism (T-RFLP) results of ammonia monooxygenase (amoA) gene, the occurrence of Nitrosomonas oligotropha-like ammonia oxidizing bacteria (AOB) was positively related to successful nitrification in the MBR systems, while Nitrosomonas europaea-like AOB was positively linked to nitrification rate, which can be attributed to the high influent total nitrogen condition. Furthermore, Nitrobacter- and Nitrospira-like nitrite oxidizing bacteria (NOB) were both abundant in the MBR systems, but the continuously low nitrite environment is likely to promote the growth of Nitrospira-like NOB.

  9. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  10. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected.

  11. Evaluation of I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone as proxy for redox conditions in the ambient water masses

    NASA Astrophysics Data System (ADS)

    Glock, N.; Liebetrau, V.; Eisenhauer, A.

    2014-12-01

    Tropical oxygen minimum zones (OMZs) are most important areas of oxygen depletion in today´s oceans and nutrient cycling in these regions has a large socio-economic impact because they account for about 17% of the global commercial fish catches(1). Possibly increasing magnitude and area of oxygen depletion in these regions, might endanger rich pelagic fish habitats in the future threatening the global marine food supply. By the use of a quantitative redox proxy in OMZs, reconstruction of the temporal variation in OMZ extension eventually providing information about past and future changes in oxygenation and the anthropogenic role in the recent trend of expanding OMZs(2). Recent work has shown that iodine/calcium (I/Ca) ratios in marine carbonates are a promising proxy for ambient oxygen concentration(3). Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ to bottom water oxygen concentrations ([O2]BW) and evaluates foraminiferal I/Ca ratios as a possible redox proxy for the ambient water masses. Our results show that all species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans this trend is not significant. The highest significance has been found for Uvigerina striata (I/Ca = 0.032(±0.004).[O2]BW + 0.29(±0.03), R² = 0.61, F = 75, P < 0.0001). Although I/Ca ratios in benthic foraminifera appear to be a robust redox proxy there are some methodical issues which have to be considered. These "pitfalls" include: (i) the volatility of iodine in acidic solutions, (ii) a species dependency of the I/Ca-[O2]BW relationship which is either related to a strong vital effect or toa species dependency on the calcification depth within sediment, and (iii) the inter-test variability of I/Ca between different specimens from the same species and habitat. (1): FAO FishStat: Fisheries and aquaculture software. In: FAO

  12. Continuous-flow Mass Production of Silicon Nanowires via Substrate-Enhanced Metal-Catalyzed Electroless Etching of Silicon with Dissolved Oxygen as an Oxidant

    NASA Astrophysics Data System (ADS)

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-01

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  13. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  14. Mass independent oxygen and sulfur isotopic compositions of environmental sulfate and nitrate. A new probe of atmospheric, hydrospheric and geological processes

    NASA Astrophysics Data System (ADS)

    Thiemens, M.; Michalski, G.; Romero, A.; McCabe, J.

    2003-04-01

    Aerosol sulfate is well known to exert a significant influence on the Earth’s atmosphere and surface. They mediate climate in its capacity as a cloud condensation nuclei (CCN) and as a visible light scattering agent. These particles are respirable, with severe cardiovascular disease consequences. Removal by wet and dry depositions is well known to cause surficial damage to biota, biodiversity, and structures. Despite decades of high precision global concentration measurements, single isotope ratio measurements (d18O, d34S) and high quality modeling efforts, there remain unresolved issues with respect to resolution of relative oxidative processes (homogenous vs. heterogeneous), transformation mechanisms, and identification of sources, proximal and distal. Mass independent oxygen isotopic compositions have added new insights un attainable by other techniques. These observations ideally complement other measurements in an effort to improve parameters used in modeling aerosols and climate. Recent sulfur mass independent compositions have potentially added a new means to recognize upper atmospheric photolytic processes. Aerosol nitrate is estimated to nearly double in the next half century, with potentially severe consequences which include soil acidification, loss of biodiversity, eutrophication of coastal and freshwaters, and, human cardiovascular disease. Loss of fresh water lake clarity, e.g. Lake Tahoe is also believed to occur due to increased nitrogen levels. As in the case of atmospheric sulfate, mass independent oxygen isotopic signatures have been observed in nitrate. The D17O is one of the largest mass independent isotopic signatures observed in any environmental species with the exception of ozone. These measurements have demonstrated the ability to provide new insight into the nitrogen cycle, including atmospheric, hydrospheric and geologic processes.

  15. Brain Oxygenation Monitoring.

    PubMed

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  16. Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry.

    PubMed

    Wang, Wu; Kourtchev, Ivan; Graham, Bim; Cafmeyer, Jan; Maenhaut, Willy; Claeys, Magda

    2005-01-01

    In the present study, we have tentatively identified the structures of three oxygenated derivatives of isoprene in Amazonian rain forest aerosols as the C(5) alkene triols, 2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene. The formation of these oxygenated derivatives of isoprene can be explained by acid-catalyzed ring opening of epoxydiol derivatives of isoprene, namely, 1,2-epoxy-2-methyl-3,4-dihydroxybutane and 1,2-dihydroxy-2-methyl-3,4-epoxybutane. The structural proposals of the C(5) alkene triols were based on chemical derivatization reactions and detailed interpretation of electron and chemical ionization mass spectral data, including data obtained from first-order mass spectra, deuterium labeling of the trimethylsilyl methyl groups, and MS(2) ion trap experiments. The characterization of 2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene in forest aerosols is important from an atmospheric chemistry viewpoint in that these compounds hint at the formation of intermediate isomeric epoxydiol derivatives of isoprene and as such provide mechanistic insights into the formation of the previously reported 2-methyltetrols through photooxidation of isoprene.

  17. Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.

    1987-01-01

    Sulfur and oxygen fluxes were quantified in the seasonally varying anoxic marine sedimentary system of Cape Lookout Bight, N.C., U.S.A. Over the three year study period, 1981-1983, the mean annual sulfate reduction rate was determined to be 18.2 ?? 1.6 moles ?? m-2 ?? y-1. This value, added to the estimate of the detrital sulfur input of 1.2 ?? 4.4 gave a total sulfur input of 19.4 ?? 4.7 moles ?? m-2 ?? y-1. The sulfide flux to the sediment-water interface, measured in anaerobic benthic chambers was 4.6 ?? 0.5 moles ?? m-2 ?? y-1, and represented 37% of the annual oxygen uptake rate of 25.2 ?? 2.8 moles ?? m-2 ?? y-1. The sulfide burial rate, determined to be 15.5 ?? 3.1 moles ?? m-2 ?? y-1, was within 5% of the value predicted by summing the fluxes at the sediment-water interface. The C S weight ratio of sediment below the depth of diagenetic reaction was determined to be 2.75. The sulfide retention rate in these rapidly accumulating sediments (10 cm/yr) was 77 ?? 19%. Comparison of this result with previous studies shows that rapid sediment accumulation and the lack of bioturbation control this unusually high degree of sulfide retention. ?? 1987.

  18. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Takahama, S.; Liu, S.; Hawkins, L. N.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2009-04-01

    masses. Organosulfate groups were found in GAM and SAM, accounting for 1% and 3% of OM, respectively. Two thirds of the OM and oxygen-to-carbon (O/C) measured could be attributed to oil and wood combustion sources on the basis of mild or strong correlations to coemitted, nonvolatile trace metals, with the remaining one third being associated with atmospherically processed organic aerosol. The cloud condensation nuclei (CCN) fraction (normalized by total condensation nuclei) had weak correlations to the alcohol and amine group fractions and mild correlation with O/C, also varying inversely with alkane group fraction. The chemical components that influenced f(RH) were sulfate, organic, and nitrate fraction, but this contrast is consistent with the size-distribution dependence of CCN counters and nephelometers.

  19. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  20. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    PubMed

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  1. High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose.

    PubMed

    Woodley, Ewan J; Loader, Neil J; McCarroll, Danny; Young, Giles H F; Robertson, Iain; Heaton, Timothy H E; Gagen, Mary H; Warham, Joseph O

    2012-01-30

    Stable isotope analysis of cellulose is an increasingly important aspect of ecological and palaeoenvironmental research. Since these techniques are very costly, any methodological development which can provide simultaneous measurement of stable carbon and oxygen isotope ratios in cellulose deserves further exploration. A large number (3074) of tree-ring α-cellulose samples are used to compare the stable carbon isotope ratios (δ(13)C) produced by high-temperature (1400°C) pyrolysis/gas chromatography (GC)/isotope ratio mass spectrometry (IRMS) with those produced by combustion GC/IRMS. Although the two data sets are very strongly correlated, the pyrolysis results display reduced variance and are strongly biased towards the mean. The low carbon isotope ratios of tree-ring cellulose during the last century, reflecting anthropogenic disturbance of atmospheric carbon dioxide, are thus overestimated. The likely explanation is that a proportion of the oxygen atoms are bonding with residual carbon in the reaction chamber to form carbon monoxide. The 'pyrolysis adjustment', proposed here, is based on combusting a stratified sub-sample of the pyrolysis results, across the full range of carbon isotope ratios, and using the paired results to define a regression equation that can be used to adjust all the pyrolysis measurements. In this study, subsamples of 30 combustion measurements produced adjusted chronologies statistically indistinguishable from those produced by combusting every sample. This methodology allows simultaneous measurement of the stable isotopes of carbon and oxygen using high-temperature pyrolysis, reducing the amount of sample required and the analytical costs of measuring them separately.

  2. A model-free method for mass spectrometer response correction. [for oxygen consumption and cardiac output calculation

    NASA Technical Reports Server (NTRS)

    Shykoff, Barbara E.; Swanson, Harvey T.

    1987-01-01

    A new method for correction of mass spectrometer output signals is described. Response-time distortion is reduced independently of any model of mass spectrometer behavior. The delay of the system is found first from the cross-correlation function of a step change and its response. A two-sided time-domain digital correction filter (deconvolution filter) is generated next from the same step response data using a regression procedure. Other data are corrected using the filter and delay. The mean squared error between a step response and a step is reduced considerably more after the use of a deconvolution filter than after the application of a second-order model correction. O2 consumption and CO2 production values calculated from data corrupted by a simulated dynamic process return to near the uncorrupted values after correction. Although a clean step response or the ensemble average of several responses contaminated with noise is needed for the generation of the filter, random noise of magnitude not above 0.5 percent added to the response to be corrected does not impair the correction severely.

  3. A consistent simulation of oxygen isotope mass-independent fractionation (MIF) in CO and O3 using AC-GCM EMAC

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey; Jöckel, Patrick; Brenninkmeijer, Carl A. M.

    2015-04-01

    We present the most consistent estimate of the atmospheric distribution of oxygen mass-independent fractionation (MIF) of carbon monoxide (Δ17O(CO) = (δ17O(CO)+1)/(δ18O(CO)+1)β-1, β = 0.528, V-SMOW scale) inferred using the ECHAM/MESSy Atmospheric Chemistry (EMAC) model (Jöckel et al., 2010). Although MIF of CO is largely determined by its removal reaction with OH, implementing a comprehensive chemistry scheme and detailed surface emissions in EMAC allows to single out the lesser inputs of MIF due to oxygen from ozone and other atmospheric oxygen reservoirs. The model shows that less than 2% of CO molecules inherit their oxygen atoms from O3 (mostly via ozonolysis reactions) which translates into an additional +0.60o in the average tropospheric Δ17O(CO) value. The remaining non-MIF oxygen (from water and atmospheric O2) outbalances this input by -0.24o respectively. The chemical kinetics of alkene ozonolysis (viz. yield of CO per reacted O3 and O atoms transfer to CO) simulated in EMAC is in good agreement with the laboratory studies of Röckmann et al. (1998a). This also pertains to the inferred (OH) sink-induced effective tropospheric MIF of +(4.3±0.2)o in comparison to +(4.1±0.3)o reckoned by Röckmann et al. (1998b). The explicitly simulated tropospheric Δ17O(O3) value in EMAC averages at +30.4o and has small variation, which is consistent with that expected from the laboratory data. Instead, the most recent observations of ozone tropospheric MIF (Vicars and Savarino, 2014) suggest a value of +25o being the most representative, which renders the simulated MIF input from O3 in CO potentially overestimated by ~20%. The EMAC-simulated δ18O(O3), however, agrees well with observational data, whilst sensitivity studies confirm non-negligible increase in atmospheric δ18O(CO) due to input of O3 oxygen to CO. A pronounced CO enrichment in heavy oxygen is expected in the stratosphere via the reactions of methane and O(1D), provided that the latter inherits

  4. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the

  5. Relations between BMI, body mass and height, and sports competence among participants of the 2010 Winter Olympic Games: does sport metabolic demand differentiate?

    PubMed

    Stanula, Arkadiusz; Roczniok, Robert; Gabryś, Tomasz; Szmatlan-Gabryś, Urszula; Maszczyk, Adam; Pietraszewski, Przemysław

    2013-12-01

    This study characterizes the athletes participating in the 2010 Winter Olympic Games in terms of body height, body mass and BMI. The studied sample consisted of athletes in the top 20 places of each of 14 sports disciplines (1460 cases). Data on the athletes' age, height, body mass, and sports specialization were obtained from the Olympic Games' official website and from the International Ski Federation. The sampled athletes were grouped according to the predominant type of energy metabolism during competition. The anaerobic-glycolytic disciplines, such as cross-country sprint, figure skating, short track, and speed skating (500, 1000 and 1500 m), were found to have the youngest female athletes: 25.0 yr. (SD = 4.7). In the endurance sports (aerobic and aerobic-anaerobic), the female athletes were the oldest, being respectively 28.6 yr. (SD = 4.9) and 28.1 yr. (SD = 4.5) old. In the speed disciplines (anaerobic-alactic), the female athletes were the tallest (M = 172 cm; SD = 8.3). The male athletes in the anaerobic-alactic sports were the tallest (M = 181.8 cm, SD = 6.7) and those in the anaerobic-glycolytic sports were the shortest (M = 179.2 cm, SD = 6.7). The large differences in body mass among the groups of athletes, which appear to be related to the predominant type of metabolism during competition, show that this parameter is partly correlated with the level of sports competence, but only in disciplines where the athletes need larger muscle mass. The largest average values of BMI were found for males and females in the anaerobic-alactic group.

  6. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  7. Effect of operation conditions of the drop-on-demand aerosol generator on aerosol characteristics: Pseudo-cinematographic and plasma mass spectrometric studies

    NASA Astrophysics Data System (ADS)

    Orlandini v. Niessen, Jan O.; Krone, Karin M.; Bings, Nicolas H.

    2014-02-01

    The recently presented drop-on-demand (DOD) aerosol generator overcomes some of the drawbacks of pneumatic nebulization, as its aerosol is no longer generated by gas-liquid interaction. In the current study, an advanced imaging technique is presented, based on a CCD camera equipped with magnifying telecentric optics to allow for fast, automated and precise aerosol characterization as well as fundamental studies on the droplet generation processes by means of pseudo-cinematography. The DOD aerosol generator is thoroughly characterized regarding its droplet size distribution, which shows few distinct populations rather than a continuous distribution. Other important figures, such as the Sauter diameter (D3,2) of 22 μm and the span of 0.4 were also determined. Additionally, the influence of the electrical operation conditions of the dosing device on the aerosol generation process is described. The number and volume of the generated droplets were found to be very reproducible and user-variable, e.g. from 17 to 27 μm (D3,2), within a span of 0.07-0.89. The performances of different setups of the DOD as liquid sample introduction system in ICP-MS are correlated to the respective achievable aerosol characteristics and are also compared to the performance of a state-of-the-art μ-flow nebulizer (EnyaMist). The DOD system allowed for improved sensitivity, but slightly elevated signal noise and overall comparable limits of detection. The results are critically discussed and future directions are outlined.

  8. Mass-independent fractionation of oxygen isotopes during H2O2 formation by gas-phase discharge from water vapour

    NASA Astrophysics Data System (ADS)

    Velivetskaya, Tatiana A.; Ignatiev, Alexander V.; Budnitskiy, Sergey Y.; Yakovenko, Victoria V.; Vysotskiy, Sergey V.

    2016-11-01

    Hydrogen peroxide is an important atmospheric component involved in various gas-phase and aqueous-phase transformation processes in the Earth's atmosphere. A study of mass-independent 17O anomalies in H2O2 can provide additional insights into the chemistry of the modern atmosphere and, possibly, of the ancient atmosphere. Here, we report the results of laboratory experiments to study the fractionation of three oxygen isotopes (16O, 17O, and 18O) during H2O2 formation from products of water vapour dissociation. The experiments were carried out by passing an electrical discharge through a gaseous mixture of helium and water at atmospheric pressure. The effect of the presence of O2 in the gas mixture on the isotopic composition of H2O2 was also investigated. All of the experiments showed that H2O2 produced under two different conditions (with or without O2 added in the gas mixtures) was mass-independently fractionated (MIF). We found a positive MIF signal (∼1.4‰) in the no-O2 added experiments, and this signal increased to ∼2.5‰ once O2 was added (1.6% mixing ratio). We suggest that if O2 concentrations are very low, the hydroxyl radical recombination reaction is the dominant pathway for H2O2 formation and is the source of MIF in H2O2. Although H2O2 formation via a hydroxyl radical recombination process is limited in the modern atmosphere, it would be possible in the Archean atmosphere when O2 was a trace constituent, and H2O2 would be mass-independently fractionated. The anomalous 17O excess, which was observed in H2O2 produced by spark discharge experiments, may provide useful information about the radical chemistry of the ancient atmosphere and the role of H2O2 in maintaining and controlling the atmospheric composition.

  9. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    NASA Astrophysics Data System (ADS)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  10. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  11. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Marengo, M.; Sloan, G. C.

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and

  12. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells.

    PubMed

    Rodd, Annabelle L; Ververis, Katherine; Sayakkarage, Dheeshana; Khan, Abdul W; Rafehi, Haloom; Ziemann, Mark; Loveridge, Shanon J; Lazarus, Ross; Kerr, Caroline; Lockett, Trevor; El-Osta, Assam; Karagiannis, Tom C; Bennett, Louise E

    2015-08-01

    Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with γ radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species. PMID:26114728

  13. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells.

    PubMed

    Rodd, Annabelle L; Ververis, Katherine; Sayakkarage, Dheeshana; Khan, Abdul W; Rafehi, Haloom; Ziemann, Mark; Loveridge, Shanon J; Lazarus, Ross; Kerr, Caroline; Lockett, Trevor; El-Osta, Assam; Karagiannis, Tom C; Bennett, Louise E

    2015-08-01

    Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with γ radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species.

  14. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb ... in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  15. Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic 'absolute' carbon and oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan

    2008-03-01

    Mass-spectrometric stable isotope measurements of CO 2 use molecular ion currents at mass-to-charge ratios m/ z 44, 45 and 46 to derive the elemental isotope ratios n( 13C)/ n( 12C) and n( 18O)/ n( 16O), abbreviated 13C/ 12C and 18O/ 16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ' 17O correction'. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/ 12C ( 13R), 17O/ 16O ( 17R) and 18O/ 16O ( 18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO 2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H 3PO 4 at 25 °C (VPDB-CO 2). I find 17R/10-6=382.7-2.1+1.7, 18RVSMOW/10 -6 = 2005.20 ± 0.45, 13R/10-6= 11124 ± 45, 17R/10-6=391.1-2.1+1.7 and 18R/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences ( δ values). This reveals that only ratios of isotope ratios (namely, 17R/ 13R and 13R17R/ 18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/ 12C difference, but not for 18O/ 16O. Even though inter-laboratory differences can be corrected for by a common 'ratio assumption set' and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/ 16O and 18O/ 16O isotope ratios. For highest accuracy in the 13C/ 12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that

  16. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  17. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Astrophysics Data System (ADS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-11-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  18. Effects of body size on the oxygen sensitivity of dragonfly flight.

    PubMed

    Henry, Joanna Randyl; Harrison, Jon Fewell

    2014-10-01

    One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels constrain insect body sizes because oxygen delivery is more challenging in larger insects. This study tested this hypothesis in dragonflies by measuring the oxygen sensitivity of flight metabolic rates and behavior during hovering for 11 species of dragonflies that ranged in mass by an order of magnitude. We measured flight times and flight metabolic rates in seven oxygen concentrations ranging from 30% to 2.5% to assess the sensitivity of their flight to atmospheric oxygen. We also assessed the oxygen sensitivity of flight in low-density air (nitrogen replaced with helium) in order to increase the metabolic demands of hovering flight. Lowered atmospheric densities did induce higher flight metabolic rates. Flight behavior was more sensitive to decreasing oxygen levels than flight metabolic rate. The oxygen sensitivity of flight metabolic rates and behaviors were not correlated with body size, indicating that larger insects are able to maintain an oxygen supply-to-demand balance even during flight.

  19. The effect of solar flares, coronal mass ejections, and co-rotating interaction regions on the Venusian 557.7 nm oxygen green line

    NASA Astrophysics Data System (ADS)

    Gray, Candace L.; Chanover, Nancy; Slanger, Tom; Molaverdikhani, Karan; Peter, Kerstin; Häusler, Bernd; Tellmann, Silvia; Pätzold, Martin; Witasse, Olivier; Blelly, Pierre-Louis; Collinson, Glyn

    2015-11-01

    The Venusian 557.7nm OI (1S - 1D) (oxygen green line) nightglow emission is known to be highly temporally variable. The reason for this variability is unknown. We propose that the emission is due to electron precipitation from intense solar storms. For my dissertation, I observed the Venusian green line after solar flares, coronal mass ejections (CMEs), and co-rotating interaction regions from December 2010 to April 2015 using the high resolution Astrophysical Research Consortium Echelle Spectrograph on the Apache Point Observatory 3.5-m telescope. Combining these observation with all other published observations, we find that the strongest detections occur after CME impacts and we conclude electron precipitation is required to produce green line emission. We do not detect emission from the 630.0nm OI (1D - 3P) oxygen red line for any observation.In an effort to determine the emitting altitude, thereby constraining the possible emission processes responsible for green line emission, and quantify the electron energy and flux entering the Venusian nightside, we conducted analyses of space-based observations of the Venusian nightglow and ionosphere collected by the Venus Express (VEX) spacecraft. We were unable to detect the green line but confirmed that electron energy and flux increases after CME impacts.In order to determine the effect of storm condition electron precipitation on the Venusian green line, we modeled the Venusian ionosphere using the TRANSCAR model (a 1-D magnetohydrodynamic ionospheric model that simulates auroral emission from electron precipitation) by applying observed electron energies and fluxes. We found that electron energy plays a primary role in producing increased green line emission in the Venusian ionosphere.Based on observation and modeling results, we conclude that the Venusian green line is an auroral-type emission that occurs after solar storms with the largest intensities observed after CMEs. Post-CME electron fluxes and energies

  20. Physical demands during folk dancing.

    PubMed

    Wigaeus, E; Kilbom, A

    1980-01-01

    This investigation was undertaken to evaluate the aerobic demands during one of the most popular and demanding Swedish folk dances the "hambo". Six men and six women, ranging in age from 22 to 32, participated. Their physical work capacity was investigated on a bicycle ergometer and a treadmill, using two to three submaximal and one maximal loads. All subjects were moderately well-trained and their average maximal oxygen uptake on the treadmill were 2.5 and 3.7 l/min (42.8 and 53.2 ml/kg . min-1) for women and men, respectively. When dancing the "hambo" the heart rate was telemetered, and the Douglas bag technique was used for measurements of pulmonary ventilation and oxygen uptake. The physical demand during "hambo" dancing was high in all subjects. Oxygen uptake was 38.5 and 37.3 ml/kg . min-1 and heart rate 179 and 172 in women and men, respectively. Women used 90% and men 70% of their maximal aerobic power obtained on the treadmill. The pulmonary ventilation and respiratory quotient of the female subjects were lower when dancing as compared to running, possibly because of voluntary restriction of the movements of the thoracic cage. Some popular Scandinavian folk dances are performed at a speed and with an activity pattern resembling the "hambo", while others are performed at a slower pace. The exercise intensity used in "hambo" is more than sufficient to induce training effects in the average individual provided that the dancing is performed at the frequency and for length of time usually recommended for physical training. For older or less fit people dances with a slow pace can be used for training purposes.

  1. Demand Response Analysis Tool

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  2. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  3. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  4. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  5. Enumeration of non-labile oxygen atoms in dissolved organic matter by use of ¹⁶O/ ¹⁸O exchange and Fourier transform ion-cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Kononikhin, Alexey; Zherebker, Alexander; Popov, Igor; Perminova, Irina; Nikolaev, Eugene

    2014-10-01

    We report a simple approach for enumeration of non-labile oxygen atoms in individual molecules of dissolved organic matter (DOM), using acid-catalyzed (16)O/(18)O exchange and ultrahigh-resolution Fourier-transform ion-cyclotron-resonance mass spectrometry (FTICR-MS). We found that by dissolving DOM in H2 (18)O at 95 °C for 20 days it is possible to replace all oxygen atoms of DOM molecules (excluding oxygen from ether groups) with (18)O. The number of exchanges in each molecule can be determined using high-resolution FTICR. Using the proposed method we identified the number of non-labile oxygen atoms in 231 molecules composing DOM. Also, using a previously developed hydrogen-deuterium (H/D)-exchange approach we identified the number of labile hydrogen atoms in 450 individual molecular formulas. In addition, we observed that several backbone hydrogen atoms can be exchanged for deuterium under acidic conditions. The method can be used for structural and chemical characterization of individual DOM molecules, comparing different DOM samples, and investigation of biological pathways of DOM in the environment.

  6. Application of dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen.

    PubMed

    Boczkaj, Grzegorz; Makoś, Patrycja; Przyjazny, Andrzej

    2016-07-01

    We present a new procedure for the determination of oxygenated volatile organic compounds in samples of postoxidative effluents from the production of petroleum bitumens using dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry. The eight extraction parameters were optimized for 43 oxygenated volatile organic compounds. The detection limits obtained ranged from 0.07 to 0.82 μg/mL for most of the analytes, the precision was good (relative standard deviation below 2.91% at the 5 μg/mL level and 4.75% at the limit of quantification), the recoveries for the majority of compounds varied from 70.6 to 118.9%, and the linear range was wide, which demonstrates the usefulness of the procedure. The developed procedure was used for the determination of oxygenated volatile organic compounds in samples of raw postoxidative effluents and in effluents after chemical treatment. In total, 23 compounds at concentration levels from 0.37 to 32.95 μg/mL were identified in real samples. The same samples were also analyzed in the SCAN mode, which resulted in four more phenol derivatives being identified and tentatively determined. The studies demonstrated the need for monitoring volatile organic compounds content in effluents following various treatments due to the formation of secondary oxygenated volatile organic compounds.

  7. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard

    2015-06-01

    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (<10 Ma) large-volume dacitic ignimbrites from the southern portion of the Central Andes have distinctly more radiogenic Sr and heavier O isotopes and thus contrast with older dacitic ignimbrites in northernmost Chile and southern Peru. Results of assimilation and fractional crystallization (AFC) models show that the largest chemical changes occur in the lower crust where magmas acquire a base-level geochemical signature that is later modified by middle to upper crustal AFC. Using geospatial analysis, we estimated the volume of these ignimbrite deposits throughout the Central Andes during the Neogene and examined the spatiotemporal pattern of so-called ignimbrite flare-ups. We observe a N-S migration of maximum ages of the onset of large-volume "ignimbrite pulses" through time: Major pulses occurred at 19-24 Ma (e.g. Oxaya, Nazca Group), 13-14 Ma (e.g. Huaylillas and Altos de Pica ignimbrites) and <10 Ma (Altiplano and Puna ignimbrites). Such "flare-ups" represent magmatic production rates of 25 to >70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1

  8. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  9. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  10. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator. PMID:23271827

  11. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator.

  12. Oxygen foreshock of Mars

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  13. The Effects of Oxygen Concentration on Benthic Foraminiferal Growth and Size

    NASA Astrophysics Data System (ADS)

    Ng, B.; Keating-Bitonti, C.; Payne, J.

    2015-12-01

    Many organisms use oxygen through cellular respiration in order to gain energy. For this reason, oxygen has a significant influence on organism size and growth. The amount of oxygen an organism needs depends on its metabolic demand, which is partially a function organism size (i.e., mass). The Santa Monica Basin (SMB) is an oxygen minimum zone located off the southern coast of California that maintains a steep oxygen gradient and is thus an ideal location for conducting research on how oxygen influences organism size. Here we use benthic foraminifera, widespread single-celled protists that produce shells (tests), to study the controls of oxygen on organism size. Because cell mass and cell volume are correlated, we study trends in the log test volume of four abundant species from SMB: Uvigerina peregrina, Bolivina spissa, B. argentea, Loxostomum pseudobeyrichi. These foraminifera make multi-chambered tests, thus we also count the number of chambers per specimen in order to further assess their growth under varying oxygen concentrations. We analyzed the data using quantile regressions to determine trends in not only median values of the log test volume and number of chambers as a function of oxygen concentrations, but also in the 10th, 25th, 75th, and 90th percentiles because oxygen availability often constrains the maximum and minimum size of organisms. Our results show a positive correlation between oxygen concentration and the maximum log test volumes of L. pseudobeyrichi and B. argentea, supporting our hypothesis. However, we observed a negative correlation between oxygen concentration and the maximum percentiles of log test volume in U. peregrina. Nevertheless, U. peregrina still displays a positive correlation between chamber number and oxygen concentrations in line with our hypothesis. The preponderance of trends supporting a direct correlation between log test volume or chamber number and oxygen concentration suggest that oxygen limits the maximum obtainable

  14. Physiological demands of competitive basketball.

    PubMed

    Narazaki, K; Berg, K; Stergiou, N; Chen, B

    2009-06-01

    The aim of this study was to assess physiological demands of competitive basketball by measuring oxygen consumption (VO2) and other variables during practice games. Each of 12 players (20.4 +/- 1.1 years) was monitored in a 20-min practice game, which was conducted in the same way as actual games with the presence of referees and coaches. VO2 was measured by a portable system during the game and blood lactate concentration (LA) was measured in brief breaks. Subjects were also videotaped for time-motion analysis. Female and male players demonstrated respective VO2 of 33.4 +/- 4.0 and 36.9 +/- 2.6 mL/kg/min and LA of 3.2 +/- 0.9 and 4.2 +/- 1.3 mmol/L in the practice games (P>0.05). They spent 34.1% of play time running and jumping, 56.8% walking, and 9.0% standing. Pre-obtained VO(2max) was correlated to VO(2) during play (r=0.673) and to percent of duration for running and jumping (r=0.935 and 0.962 for females and males, respectively). This study demonstrated a greater oxygen uptake for competitive basketball than that estimated based on a previous compendium. The correlation between aerobic capacity and activity level suggests the potential benefit of aerobic conditioning in basketball.

  15. Latin American demand

    SciTech Connect

    1994-12-01

    From Mexico to Argentina, independent power companies are finding great demand for their services in Latin America. But while legal and economic conditions are increasingly favorable, political and financial uncertainties make power development challenging.

  16. Impact of Energy Demands

    ERIC Educational Resources Information Center

    Cambel, Ali B.

    1970-01-01

    The types of pollutants associated with the process of power production are identified. A nine-point proposal is presented on the ways the increase in power demands might be achieved with the minimum threat to the environment. (PR)

  17. Supply and Demand

    MedlinePlus

    ... a good breastfeeding rhythm with your baby. In reality, the efficient supply-and-demand rhythm of normal ... is one reason it’s a good idea to alternate which breast you use to begin nursing. A ...

  18. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  19. Oxygen transfer in membrane bioreactors treating synthetic greywater.

    PubMed

    Henkel, Jochen; Lemac, Mladen; Wagner, Martin; Cornel, Peter

    2009-04-01

    Mass transfer coefficients (k(L)a) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar alpha-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT).

  20. Lesson on Demand. Lesson Plan.

    ERIC Educational Resources Information Center

    Weaver, Sue

    This lesson plan helps students understand the role consumer demand plays in the market system, i.e., how interactions in the marketplace help determine pricing. Students will participate in an activity that demonstrates the concepts of demand, demand schedule, demand curve, and the law of demand. The lesson plan provides student objectives;…

  1. Travel Demand Modeling

    SciTech Connect

    Southworth, Frank; Garrow, Dr. Laurie

    2011-01-01

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  2. Demand Response Dispatch Tool

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  3. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply.

  4. Outgassing of oxygen from polycarbonate.

    PubMed

    Moon, Sung In; Monson, L; Extrand, C W

    2009-07-01

    A manometric permeation apparatus was used to study the "outgassing" or desorption of oxygen from polycarbonate (PC). A PC film was placed in the apparatus. Both sides were exposed to oxygen until the film was saturated. To simulate inert gas purging of a closed container or "microenvironment", oxygen was pumped from one side of the apparatus to reduce the concentration on that side to nearly zero. Oxygen concentrations on the freshly purged side rose quickly at first but then slowed. Eventually, a steady state was established and oxygen concentrations increased linearly with time. Mass-transport coefficients (permeation, diffusion, and solubility coefficients) were also estimated and then used to successfully predict the postpurge rise of the oxygen concentration.

  5. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  6. Distribution of Childrearing Demands.

    ERIC Educational Resources Information Center

    Zimmerman, Judith D.; And Others

    The tools of economic analysis were applied to demographic data in order to develop a social indicator measuring the extent of inequality in the distribution of childrearing responsibility in households from 1940 to 1980. With data drawn from the Current Population Survey of the Bureau of the Census, a "demand intensity" measure was developed.…

  7. Demanding Divestment from Sudan

    ERIC Educational Resources Information Center

    Asquith, Christina

    2006-01-01

    Bowing to student demands to "stop supporting genocide," the University of California regents voted earlier this year to divest millions of dollars from companies working in the war-torn African nation of Sudan, the first major public university in the nation to take such action. Since student protests on the subject began at Harvard University in…

  8. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning.

    PubMed

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu

    2013-03-01

    The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF), which could be influenced by a variety of factors such as fuel properties, stove type, fire management and even methods used in measurements. The impacts of these factors are complicated and often interact with each other. Controlled burning experiments were conducted to investigate the influences of fuel mass load, air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) from indoor corn straw burning in a cooking stove. The results showed that the EFs of PM (EF(PM)), organic carbon (EFoc) and elemental carbon (EF(EC)) were independent of the fuel mass load. The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances. PM from the indoor corn straw burning was dominated by fine PM with diameter less than 2.1 microm, contributing 86.4% +/- 3.9% of the total. The size distribution of PM was influenced by the burning rate and air supply conditions. On average, EF(PM), EF(OC) and EF(EC) for corn straw burned in a residential cooking stove were (3.84 +/- 1.02), (0.846 +/- 0.895) and (0.391 +/- 0.350) g/kg, respectively. EF(PM), EF(OC) and EF(EC) were found to be positively correlated with each other (p < 0.05), but they were not significantly correlated with the EF of co-emitted CO, suggesting that special attention should be paid to the use of CO as a surrogate for other incomplete combustion pollutants.

  9. The influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning

    PubMed Central

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bing; Wang, Rong; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu

    2014-01-01

    The uncertainty in emission estimation is strongly associated with the variation in emission factor which could be influenced by a variety of factors, like fuel property, stove type, fire management and even methods used in measurements. The impacts of these factors were usually complicated and often interacted with each other. In the present study, controlled burning experiments were conducted to investigate the influence of fuel mass load, air supply and burning rate on the emission of carbonaceous particulate matter (PM) from indoor corn straw burning. Their impacts on PM size distribution were also studied. The results showed that EFs of PM (EFPM), organic carbon (EFOC) and element carbon (EFEC) was independent of the fuel mass load. The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances. PM from the indoor corn straw burning was dominated by fine PM, and PM with diameter less than 2.1 μm contributed about 86.4±3.9% of the total. The size distribution of PM was also influenced by the burning rate and changed air supply conditions. On average, EFPM, EFOC and EFEC for corn straw burned in a residential cooking stove were 3.84±1.02, 0.846±0.895 and 0.391±0.350 g/kg, respectively. EFPM, EFOC and EFEC were found to be positively correlated with each other, but they were not significantly correlated with EF of co-emitted CO, suggesting a special attention should be paid to the use of CO acting as a surrogate for other incomplete pollutants. PMID:23923424

  10. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  11. Occupational demand and human rights. Public safety officers and cardiorespiratory fitness.

    PubMed

    Shephard, R J

    1991-08-01

    The issue of discrimination in physically demanding employment, such as police, firefighters, prison guards and military personnel, is contentious. In terms of oxygen transport, the 'action limit' (calling for personnel selection or task redesign) is a steady oxygen consumption of 0.7 L/min, while the maximum permissible limit is 2.1 L/min. Note is taken of the commonly expressed belief that public safety duties are physically demanding, calling for personnel with an aerobic power of at least 3 L/min, or 42 to 45 ml/kg/min. The actual demands of such work can be assessed on small samples by physiological measurements (using heart rate or oxygen consumption meters), but the periods sampled may not be typical of a normal day. A Gestalt can also be formed as to the heaviness of a given job, or a detailed task analysis can be performed; most such analyses of public safety work list distance running and other aerobic activities infrequently. An arbitrary requirement of 'above average fitness' is no longer accepted by courts, but a further approach is to examine the characteristics of those currently meeting the demands of public safety jobs satisfactorily. Young men commonly satisfy the 3 L/min standard, but this is not usually the case for women or older men; in the case of female employees, it also seems unreasonable that they should be expected to satisfy the same standards as men, since a lower body mass reduces the energy cost of most of the tasks that they must perform. A second criterion sometimes applied to physically demanding work (a low vulnerability to heart attacks) is examined critically. It is concluded that the chances that a symptom-free public safety officer will develop a heart attack during a critical solo mission are so low that cardiac risk should not be a condition of employment. Arbitrary age- and sex-related employment criteria are plainly discriminatory, since some women and 65-year-old men have higher levels of physical fitness than the

  12. Evaluation of watershed-derived mass loads to prioritize TMDL decision-making.

    PubMed

    Gulati, S; Stubblefield, A A; Hanlon, J S; Spier, C L; Camarillo, M K; Stringfellow, W T

    2016-01-01

    A total maximum daily load (TMDL) for oxygen demanding substances is being implemented in the San Joaquin River (SJR) in California (USA) due to frequently occurring low dissolved oxygen conditions. The SJR is a eutrophic river, heavily impacted by agriculture. A mass balance was developed to identify the sources of oxygen-demanding substances and nutrients to the river with the objective of providing a scientific basis for management actions needed to meet TMDL requirements. Data were collected for flow and water quality and mass loads calculated for sites within the main stem of the SJR, river inputs (tributaries), and diversions in the study area. Using a quadrant analysis, tributary flows and loads are ranked to identify targets for water quality improvement efforts. Additionally, all mass loads were summed (inputs minus diversions) and compared with observed loads at the downstream limit of the study area. The mass balance analysis identifies major contributors of mass loads and mass balance closure is assessed for each constituent. These analysis methods inform the TMDL process which includes a load allocation, and is useful for determining locations for implementation of improvement projects needed to improve the health of the river. PMID:26877050

  13. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  14. Enhancement of oxygen mass transfer and gas holdup using palm oil in stirred tank bioreactors with xanthan solutions as simulated viscous fermentation broths.

    PubMed

    Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S

    2013-01-01

    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  15. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  16. Method for Trace Oxygen Detection

    NASA Technical Reports Server (NTRS)

    Man, Kim Fung (Inventor); Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)

    1997-01-01

    Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.

  17. Technical aspects of oxygen saving devices.

    PubMed

    Brambilla, I; Arlati, S; Chiusa, I; Micallef, E

    1990-01-01

    Oxygen economizing devices have been extensively studied, both at rest and during muscular exercise, in an attempt to increase the autonomy of a portable oxygen apparatus. The aim of this study is threefold: first, to suggest a simple method to verify in a simple way the technical accuracy of a demand flow oxygen delivery device; second, to suggest how we can monitor in a simple way the clinical efficacy of an economizer; and third, to remember that we can utilize an oxygen saving device to give a better protection than nasal prongs against the worsening of HbO2 desaturation induced by exercise. PMID:2117198

  18. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  19. Dividends with Demand Response

    SciTech Connect

    Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

    2003-10-31

    To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

  20. Physiological demands of downhill mountain biking.

    PubMed

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  1. Options for home oxygen therapy equipment: storage and metering of oxygen in the home.

    PubMed

    McCoy, Robert W

    2013-01-01

    Home oxygen therapy equipment options have increased over the past several decades, in response to innovations in technology, economic pressure from third-party payers, and patient demands. The delivery of oxygen in the home has evolved from packaged gas systems containing 99% United States Pharmacopeia oxygen provided by continuous-flow delivery to intermittent-flow delivery, with oxygen concentrators delivering < 99% oxygen purity. The majority of published papers indicating the value of long-term oxygen therapy have been based on continuous-flow delivery of 99% United States Pharmacopeia oxygen. The lack of research on new home oxygen therapy devices requires more clinical involvement from physician and respiratory therapist to evaluate the performance of oxygen devices used in the home to ensure the patient is provided adequate oxygenation at all activity levels. New standards of care are required to address the need to have consistent titration of long-term oxygen therapy to meet the patient's home needs at all activity levels. Consistent labeling of metering devices on home oxygen equipment will need to be developed by professional medical societies to be implemented by standards organizations that direct industrial manufacturers. Home oxygen therapy will need professionally trained respiratory therapists reimbursed for skills and service to ensure that patients receive optimal benefits from home oxygen equipment to improve patient outcomes and prevent complications and associated costs.

  2. A novel redox-active metalloporphyrin reduces reactive oxygen species and inflammatory markers but does not improve marginal mass engraftment in a murine donation after circulatory death islet transplantation model.

    PubMed

    Bruni, Antonio; Pepper, Andrew R; Gala-Lopez, Boris; Pawlick, Rena; Abualhassan, Nasser; Crapo, James D; Piganelli, Jon D; Shapiro, A M James

    2016-07-01

    Islet transplantation is a highly effective treatment for stabilizing glycemic control for select patients with type-1 diabetes. Despite improvements to clinical transplantation, single-donor transplant success has been hard to achieve routinely, necessitating increasing demands on viable organ availability. Donation after circulatory death (DCD) may be an alternative option to increase organ availability however, these organs tend to be more compromised. The use of metalloporphyrin anti-inflammatory and antioxidant (MnP) compounds previously demonstrated improved in vivo islet function in preclinical islet transplantation. However, the administration of MnP (BMX-001) in a DCD islet isolation and transplantation model has yet to be established. In this study, murine donors were subjected to a 15-min warm ischemic (WI) period prior to isolation and culture with or without MnP. Subsequent to one-hour culture, islets were assessed for in vitro viability and in vivo function. A 15-minute WI period significantly reduced islet yield, regardless of MnP-treatment relative to yields from standard isolation. MnP-treated islets did not improve islet viability compared to DCD islets alone. MnP-treatment did significantly reduce the presence of extracellular reactive oxygen species (ROS) (p < 0 .05). Marginal, syngeneic islets (200 islets) transplanted under the renal capsule exhibited similar in vivo outcomes regardless of WI or MnP-treatment. DCD islet grafts harvested 7 d post-transplant exhibited sustained TNF-α and IL-10, while MnP-treated islet-bearing grafts demonstrated reduced IL-10 levels. Taken together, 15-minute WI in murine islet isolation significantly impairs islet yield. DCD islets do indeed demonstrate in vivo function, though MnP therapy was unable to improve viability and engraftment outcomes. PMID:27220256

  3. Demand Response Quick Assessment Tool

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  4. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  5. New demands on desalter operations

    SciTech Connect

    Witzig, W.L.

    1987-01-01

    Increased demands for improved desalter performance focus primarily on salt content and BS and W (basic sediment and water) content of the desalted crude. Recent demands target removal of other inorganic impurities which deactivate catalysts and contaminate finish products. The specific demand or performance need is usually apparent and easily quantified. This paper focuses on methods to achieve these demands through process optimization, chemical treatment, and employing an integrated process approach to desalting.

  6. Physical demands in worklife.

    PubMed

    Astrand, I

    1988-01-01

    Industrial occupations which are physically strenuous in the traditional sense of the word have decreased in number. They have partly been replaced by "light," repetitive, monotonous work tasks performed in a sitting position. The number of heavy work tasks within the service sector has increased. Specialization has been intensified. The individual's capacity for strenuous work is still of importance to successful work performance. Many studies show that an optional choice of work pace in physically demanding occupational work results in an adaptation of pace or intensity until the worker is utilizing 40-50% of her or his capacity. When the work rate is constrained, the relative strain of the individual varies inversely with the physical work capacity. The frequency of musculoskeletal disorders has concurrently increased with the implementation of industrial mechanization. New, wise, ergonomic moves are needed to stop this development.

  7. In situ calcium mapping in the mouse retina via time-of-flight secondary ion mass spectrometry: modulation of retinal angiogenesis by calcium ion in development and oxygen-induced retinopathy.

    PubMed

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Dong Hun; Lee, Tae Geol; Moon, Dae Won; Kim, Kyu-Won

    2008-10-01

    Pathological angiogenesis in the eye is the most common cause of blindness in all age groups. In physiological and pathological cellular processes including angiogenesis, ion homeostasis is greatly affected. This study is to investigate the role of calcium ion in physiological and pathological angiogenesis in the retina, which is based on the results of ion mapping by time-of-flight secondary ion mass spectrometry (TOF-SIMS). We provided that calcium distribution is the most accordant to change with physiological vessel formation of development in the retina and pathological angiogenesis of oxygen-induced retinopathy (OIR), which is supported by ion mapping in retinal tissue using TOF-SIMS. In addition to anti-proliferative and anti-angiogenic activity of the calcium inhibitor on endothelial cells, retinal neovascularization of OIR was effectively inhibited by the calcium inhibitor. Calcium ion could play a crucial role in physiological and pathological angiogenesis in the retina. Moreover, TOF-SIMS could be a good method to simultaneously evaluate the changes of variable ions of the retina in biological processes.

  8. Long-term corrosion of austenitic steels in flowing LBE at 400 °C and 10-7 mass% dissolved oxygen in comparison with 450 and 550 °C

    NASA Astrophysics Data System (ADS)

    Tsisar, Valentyn; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2016-01-01

    Long-term corrosion tests for up to ˜13,194 h on 1.4970 (15-15 Ti), 316L and 1.4571 austenitic steels were carried out at 400 °C in flowing LBE (2 m/s) with 10-7 mass% dissolved oxygen. The steels show general slight oxidation (Cr-based oxide film) along with local, pit-type solution-based corrosion attack. The incubation time for pit-type attack is ˜4500 h. After ˜13,194 h, the maximum pit depth observed was ˜14, 23 and 57 μm for 1.4970, 316L and 1.4571, respectively, that corresponds to local corrosion rates of ˜6, 10 and 26 μm/year. At 450 °C and 550 °C, the corrosion rates are ranged in between ˜120-220 μm/year and ˜500-3000 μm/year, respectively. Corrosion appearances and mechanisms are discussed.

  9. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  10. PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL

    EPA Science Inventory

    Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...

  11. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  12. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  13. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  14. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  15. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand,...

  16. Physiological demands of a simulated BMX competition.

    PubMed

    Louis, J; Billaut, F; Bernad, T; Vettoretti, F; Hausswirth, C; Brisswalter, J

    2013-06-01

    The aim of this study was to investigate the physiological demands of Supercross BMX in elite athletes. Firstly athletes underwent an incremental cycling test to determine maximal oxygen uptake (VO2max) and power at ventilatory thresholds. In a second phase, athletes performed alone a simulated competition, consisting of 6 cycling races separated by 30 min of passive recovery on an actual BMX track. Oxygen uptake, blood lactate, anion gap and base excess (BE) were measured. Results indicated that a simulated BMX performed by elite athletes induces a high solicitation of both aerobic (mean peak VO2 (VO2peak): 94.3±1.2% VO2max) and anaerobic glycolysis (mean blood lactate: 14.5±4. 5 mmol x L(-1) during every race. Furthermore, the repetition of the 6 cycling races separated by 30 min of recovery led to a significant impairment of the acid-base balance from the third to the sixth race (mean decrease in BE: -18.8±7.5%, p<0.05). A significant relationship was found between the decrease in BE and VO2peak (r = - 0.73, p<0.05), indicating that VO2peak could explain for 54% of the variation in BMX performance. These results suggest that both oxygen-dependent and -independent fuel substrate pathways are important determinants of BMX performance. PMID:23143703

  17. A new approach to characterize biodegradation of organics by molecular mass distribution in landfill leachate.

    PubMed

    Ha, Dong Yun; Cho, Soon Haing; Kim, Young Kwon; Leung, Solomon W

    2008-08-01

    This study provides biodegradability of organics in leachate according to their molecular mass distributions (<0.5, 0.5 to 1, 1 to 3, 10, and >10 KDa). Organics with molecular mass values lower than 0.5 KDa were the predominant species in the raw leachate filtrate, and the aerated lagoon process was very effective in treating these highly biodegradable organics; the Fenton's oxidation process was very effective in treating not-so-biodegradable organics with molecular mass values higher than 0.5 KDa, but a portion of these organics were converted into organics <0.5 KDa after Fenton's oxidation. An oxygen uptake measurement using a respirometer was more sensitive than a conventional biochemical oxygen demand measurement to evaluate bioactivities, especially when bioactivities were low.

  18. An integrated communications demand model

    NASA Astrophysics Data System (ADS)

    Doubleday, C. F.

    1980-11-01

    A computer model of communications demand is being developed to permit dynamic simulations of the long-term evolution of demand for communications media in the U.K. to be made under alternative assumptions about social, economic and technological trends in British Telecom's business environment. The context and objectives of the project and the potential uses of the model are reviewed, and four key concepts in the demand for communications media, around which the model is being structured are discussed: (1) the generation of communications demand; (2) substitution between media; (3) technological convergence; and (4) competition. Two outline perspectives on the model itself are given.

  19. Simultaneous determination of methyl tert.-butyl ether and its degradation products, other gasoline oxygenates and benzene, toluene, ethylbenzene and xylenes in Catalonian groundwater by purge-and-trap-gas chromatography-mass spectrometry.

    PubMed

    Rosell, Mònica; Lacorte, Sílvia; Ginebreda, Antoni; Barceló, Damià

    2003-05-01

    In Catalonia (northeast Spain), a monitoring program was carried out to determine methyl tert.-butyl ether (MTBE), its main degradation products, tert.-butyl alcohol (TBA), tert.-butyl formate (TBF), and other gasoline additives, the oxygenate dialkyl ethers ethyl tert.-butyl ether, tert.-amyl methyl ether and diisopropyl ether and the aromatic compounds benzene, toluene, ethylbenzene and xylene (BTEX) in 21 groundwater wells that were located near different gasoline point sources (a gasoline spill and underground storage tank leakage). Purge-and-trap coupled to gas chromatography-mass spectrometry was optimised for the simultaneous determination of the above mentioned compounds and enabled to detect concentrations at ng/l or sub-microg/l concentrations. Special attention was given to the determination of polar MTBE degradation products, TBA and TBF, since not much data on method performance and environmental levels are given on these compounds in groundwater. All samples analysed contained MTBE at levels between 0.3 and 70 microg/l. Seven contaminated hot spots were identified with levels up to US Environmental Protection Agency drinking water advisory (20-40 microg/l) and a maximum concentration of 670 microg/l (doubling the Danish suggested toxicity level of 350 microg/l). Samples with high levels of MTBE contained 0.1-60 microg/l of TBA, indicating (but not proving) in situ degradation of parent compound. In all cases, BTEX was at low concentrations or not detected showing less solubility and persistence than MTBE. This fact confirms the suitability of MTBE as a tracer or indicator of long-term gasoline contamination than the historically used BTEX.

  20. Physiological Demands of Flat Horse Racing Jockeys.

    PubMed

    Cullen, SarahJane; OʼLoughlin, Gillian; McGoldrick, Adrian; Smyth, Barry; May, Gregory; Warrington, Giles D

    2015-11-01

    The physiological demands of jockeys during competition remain largely unknown, thereby creating challenges when attempting to prescribe sport-specific nutrition and training guidelines. The purpose of this study was to evaluate the physiological demands and energy requirements of jockeys during flat racing. Oxygen uptake (V[Combining Dot Above]O2) and heart rate (HR) were assessed in 18 male trainee jockeys during a race simulation trial on a mechanical horse racing simulator for the typical time duration to cover a common flat race distance of 1,400 m. In addition, 8 male apprentice jockeys participated in a competitive race, over distances ranging from 1,200 to 1,600 m, during which HR and respiratory rate (RR) were assessed. All participants performed a maximal incremental cycle ergometer test. During the simulated race, peak V[Combining Dot Above]O2 was 42.74 ± 5.6 ml·kg·min (75 ± 11% of V[Combining Dot Above]O2peak) and below the mean ventilatory threshold (81 ± 5% of V[Combining Dot Above]O2peak) reported in the maximal incremental cycle test. Peak HR was 161 ± 16 b·min (86 ± 7% of HRpeak). Energy expenditure was estimated as 92.5 ± 18.8 kJ with an associated value of 9.4 metabolic equivalents. During the competitive race trial, peak HR reached 189 ± 5 b·min (103 ± 4% of HRpeak) and peak RR was 50 ± 7 breaths per minute. Results suggest that horse racing is a physically demanding sport, requiring jockeys to perform close to their physiological limit to be successful. These findings may provide a useful insight when developing sport-specific nutrition and training strategies to optimally equip and prepare jockeys physically for the physiological demands of horse racing. PMID:25932980

  1. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts

  2. Harnessing the power of demand

    SciTech Connect

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  3. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    ERIC Educational Resources Information Center

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO…

  4. Automated Demand Response and Commissioning

    SciTech Connect

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  5. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G.; Allamandola, L. J. (Principal Investigator)

    1989-01-01

    We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc

  6. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants.

    PubMed

    Schutte, W A; Tielens, A G

    1989-08-01

    We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc

  7. Oxygen requirements of the earliest animals

    NASA Astrophysics Data System (ADS)

    Mills, Daniel B.; Ward, Lewis M.; Jones, CarriAyne; Sweeten, Brittany; Forth, Michael; Treusch, Alexander H.; Canfield, Donald E.

    2014-03-01

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth.

  8. Oxygen requirements of the earliest animals

    PubMed Central

    Mills, Daniel B.; Ward, Lewis M.; Jones, CarriAyne; Sweeten, Brittany; Forth, Michael; Treusch, Alexander H.; Canfield, Donald E.

    2014-01-01

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth’s surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850–542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635–542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5–4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth. PMID:24550467

  9. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  10. Living with Oxygen Therapy

    MedlinePlus

    ... page from the NHLBI on Twitter. Living With Oxygen Therapy Oxygen therapy helps many people function better and be ... chronic obstructive pulmonary disease) Although you may need oxygen therapy continuously or for long periods, it doesn' ...

  11. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. PMID:27034367

  12. A white dwarf with an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  13. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  14. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO. PMID:27393195

  15. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO.

  16. [How did the earth's oxygen atmosphere originate?].

    PubMed

    Schäfer, G

    2004-09-01

    The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.

  17. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  18. Physiological Demands of Simulated Off-Road Cycling Competition

    PubMed Central

    Smekal, Gerhard; von Duvillard, Serge P.; Hörmandinger, Maximilian; Moll, Roland; Heller, Mario; Pokan, Rochus; Bacharach, David W.; LeMura, Linda M.; Arciero, Paul

    2015-01-01

    The purpose of the study was to measure the demands of off-road cycling via portable spirometry, leg-power output (PO), heart rate (HR) and blood lactate (BLa) concentration. Twenty-four male competitive cyclists (age: 29±7.2 yrs, height: 1.79 ± 0.05 m, body mass: 70.0 ± 4.9 kg, VO2peak: 64.9 ± 7.5 ml·kg-1·min-1) performed simulated mountain bike competitions (COMP) and laboratory tests (LabT). From LabT, we determined maximal workload and first and second ventilatory thresholds (VT1, VT2). A high-performance athlete (HPA) was used for comparison with three groups of subjects with different sport-specific performance levels. Load profiles of COMP were also investigated during uphill, flat and downhill cycling. During the COMP, athletes achieved a mean oxygen uptake (VO2COMP) of 57.0 ± 6.8 ml·kg-1·min-1 vs. 71.1 ml·kg-1·min-1 for the HPA. The POCOMP was 2.66±0.43 W·kg-1 and 3.52 W·kg-1 for the HPA. POCOMP, VO2COMP and HRCOMP were compared to corresponding variables at the VT2 of LabT. LabT variables correlated with racing time (RTCOMP) and POCOMP (p < 0.01 to <0.001; r-0.59 to -0.80). The VO2peak (LabT) accounted for 65% of variance of a single COMP test. VO2COMP, POCOMP and also endurance variables measured from LabTs were found as important determinants for cross-country performance. The high average VO2COMP indicates that a high aerobic capacity is a prerequisite for successful COMP. Findings derived from respiratory gas measures during COMPs might be useful when designing mountain bike specific training. Key points Cross- country cycling is characterized by high oxygen costs due to the high muscle mass simultaneously working to fulfill the demands of this kind of sports. Heart rate and blood lactate concentration measures are not sensitive enough to assess the energy requirements of COMP. Therefore, respiratory gas and power output measures are helpful to provide new information to physiological profile of cross- country cycling. An excellent

  19. Physiological Demands of Simulated Off-Road Cycling Competition.

    PubMed

    Smekal, Gerhard; von Duvillard, Serge P; Hörmandinger, Maximilian; Moll, Roland; Heller, Mario; Pokan, Rochus; Bacharach, David W; LeMura, Linda M; Arciero, Paul

    2015-12-01

    The purpose of the study was to measure the demands of off-road cycling via portable spirometry, leg-power output (PO), heart rate (HR) and blood lactate (BLa) concentration. Twenty-four male competitive cyclists (age: 29±7.2 yrs, height: 1.79 ± 0.05 m, body mass: 70.0 ± 4.9 kg, VO2peak: 64.9 ± 7.5 ml·kg(-1)·min(-1)) performed simulated mountain bike competitions (COMP) and laboratory tests (LabT). From LabT, we determined maximal workload and first and second ventilatory thresholds (VT1, VT2). A high-performance athlete (HPA) was used for comparison with three groups of subjects with different sport-specific performance levels. Load profiles of COMP were also investigated during uphill, flat and downhill cycling. During the COMP, athletes achieved a mean oxygen uptake (VO2COMP) of 57.0 ± 6.8 ml·kg(-1)·min(-1) vs. 71.1 ml·kg(-1)·min(-1) for the HPA. The POCOMP was 2.66±0.43 W·kg(-1) and 3.52 W·kg(-1) for the HPA. POCOMP, VO2COMP and HRCOMP were compared to corresponding variables at the VT2 of LabT. LabT variables correlated with racing time (RTCOMP) and POCOMP (p < 0.01 to <0.001; r-0.59 to -0.80). The VO2peak (LabT) accounted for 65% of variance of a single COMP test. VO2COMP, POCOMP and also endurance variables measured from LabTs were found as important determinants for cross-country performance. The high average VO2COMP indicates that a high aerobic capacity is a prerequisite for successful COMP. Findings derived from respiratory gas measures during COMPs might be useful when designing mountain bike specific training. Key pointsCross- country cycling is characterized by high oxygen costs due to the high muscle mass simultaneously working to fulfill the demands of this kind of sports.Heart rate and blood lactate concentration measures are not sensitive enough to assess the energy requirements of COMP. Therefore, respiratory gas and power output measures are helpful to provide new information to physiological profile of cross- country cycling

  20. Saving Electricity and Demand Response

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Nobuyuki

    A lot of people lost their lives in the tremendous earthquake in Tohoku region on March 11. A large capacity of electric power plants in TEPCO area was also damaged and large scale power shortage in this summer is predicted. In this situation, electricity customers are making great effort to save electricity to avoid planned outage. Customers take actions not only by their selves but also by some customers' cooperative movements. All actions taken actually are based on responses to request form the government or voluntary decision. On the other hand, demand response based on a financial stimulus is not observed as an actual behavior. Saving electricity by this demand response only discussed in the newspapers. In this commentary, the events regarding electricity-saving measure after this disaster are described and the discussions on demand response, especially a raise in power rate, are put into shapes in the context of this electricity supply-demand gap.

  1. Residential Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  2. Industrial Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. Demand Response Spinning Reserve Demonstration

    SciTech Connect

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  4. Estimating carbon fluxes in a Posidonia oceanica system: Paradox of the bacterial carbon demand

    NASA Astrophysics Data System (ADS)

    Velimirov, B.; Lejeune, P.; Kirschner, A.; Jousseaume, M.; Abadie, A.; Pête, D.; Dauby, P.; Richir, J.; Gobert, S.

    2016-03-01

    A mass balance ecosystemic approach, based on bacterial carbon demands and primary production data, was used to investigate if the bacterial community (freewater bacterioplankton and benthic bacteria of the oxygenated sediment layer) could be sustained by the main primary producers (Posidonia oceanica and its epiphytes, adjacent macroalgae and phytoplankton communities; hereafter called the P. oceanica system) of a non-eutrophic Mediterranean bay. Unexpectedly, the findings of this study differed from previous works that used benthic incubation chamber and O2 optode methods. In this study, data were grouped in two categories, corresponding to two time periods, according to the seawater temperature regime (<18 °C or >18 °C): from May to October and from November to April. Between May and October, the produced benthic macrophyte tissues could not provide the carbon required by the bacteria of the oxygenated sediment layer, showing that the balance production of the investigated bay was clearly heterotrophic (i.e. negative) during this time period. In contrast, between November and April, benthic bacteria respiration nearly equated to carbon production. When integrating the open water carbon dynamics above the meadow in the model, a negative carbon balance was still observed between May and October, while a slight carbon excess was noticed between November and April. In the light of these findings, the carbon balance being negative on an annual basis, alternative carbon sources are required for the maintenance of the bacterial carbon production.

  5. Workload demand in police officers during mountain bike patrols.

    PubMed

    Takken, T; Ribbink, A; Heneweer, H; Moolenaar, H; Wittink, H

    2009-02-01

    To the authors' knowledge this is the first paper that has used the training impulse (TRIMP) 'methodology' to calculate workload demand. It is believed that this is a promising method to calculate workload in a range of professions in order to understand the relationship between work demands and aerobic fitness. The aim of this study was to assess workload demand in police officers from the Utrecht police department in the Netherlands, during patrol by mountain bike. Maximum oxygen intake, maximum heart rate (HRmax), ventilatory threshold (VT)1 and VT2 were determined with a maximal exercise test on a bicycle ergometer. Heart rates were registered throughout three shifts in 20 subjects using a heart rate monitor. Exercise intensity was divided into three phases: phase I (between 40% of HRmax and VT1); phase II (between VT and the respiratory compensation point (RCP)); and phase III (>RCP). The total TRIMP score was obtained by summating the results of the three phases. Average daily workload demands of 355 TRIMPs per day and 1777 TRIMPs per week were measured. Workload demand approached and in some cases exceeded the upper limit of 2000 TRIMPs per week threshold level for physiological stress demands in professional male cyclists.

  6. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  7. Test Would Quantify Combustion Oxygen From Different Sources

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.

    1993-01-01

    Proposed isotope-enrichment scheme enables determination of contributions of dual sources of oxygen for combustion. Liquid oxygen or other artificial stream enriched with O(18) to about 1 percent by weight. Combustion products analyzed by mass spectrometer to measure relative abundances of H2O(18) and H2O(16). From relative abundances of water products measured, one computes relative contribution of oxygen extracted from stream compared to other source of oxygen in combustion process. Used to determine contributions of natural oxygen in air and liquid oxygen supplied in separate stream mixed with air or sent directly into combustion chamber.

  8. Measuring Traces Of Oxygen By Resonant Electron Attachment

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Boumsellek, Said; Chutjian, Ara

    1995-01-01

    Method of detecting trace amounts of oxygen based on dissociative attachment of electrons to oxygen molecules followed by measurement of resulting flux of negative oxygen ions in mass spectrometer. High sensitivity achieved in method by exploiting resonance in dissociative attachment of electrons to oxygen molecules: electron-attachment cross section rises to high peak at incident electron kinetic energy of 6.2 eV. Relative concentrations below 1 ppb detected. Devised to increase sensitivity of detection of oxygen in processing chambers in which oxygen regarded as contaminant; for example, chambers used in making semiconductor devices and in growing high-purity crystals.

  9. Oxygen Sensing and Homeostasis.

    PubMed

    Prabhakar, Nanduri R; Semenza, Gregg L

    2015-09-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology.

  10. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  11. Energy supply and demand in California

    NASA Technical Reports Server (NTRS)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  12. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  13. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.

    2015-06-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  14. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  15. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  16. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  17. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  18. Mass Separation by Metamaterials.

    PubMed

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-25

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  19. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    NASA Astrophysics Data System (ADS)

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g-1 at 10 mA g-1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  20. Oxygen recoil implant from SiO{sub 2} layers into single-crystalline silicon

    SciTech Connect

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-06-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF{sub 2} implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. {copyright} 2001 American Institute of Physics.

  1. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    PubMed Central

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g−1 at 10 mA g−1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  2. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.

    PubMed

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-21

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  3. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.

    PubMed

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  4. Fundamental Travel Demand Model Example

    NASA Technical Reports Server (NTRS)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  5. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  6. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  7. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  8. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model.

    PubMed

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli

    2014-01-01

    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.

  9. Automated Holographic Mass Production

    NASA Astrophysics Data System (ADS)

    Brown, Simon J. S.

    1986-08-01

    Just over two years ago a small group of holography enthusiasts formed a company with the aim of developing a machine that could mass produce holograms. Two of their members had been involved in running a retail business, and when they introduced holograms to their list of items for sale they found demand outstripped supply.

  10. Do large predatory fish track ocean oxygenation?

    PubMed

    Dahl, Tais W; Hammarlund, Emma U

    2011-01-01

    The Devonian appearance of 1-10 meter long armored fish (placoderms) coincides with geochemical evidence recording a transition into fully oxygenated oceans.1 A comparison of extant fish shows that the large individuals are less tolerant to hypoxia than their smaller cousins. This leads us to hypothesize that Early Paleozoic O(2) saturation levels were too low to support >1 meter size marine, predatory fish. According to a simple model, both oxygen uptake and oxygen demand scale positively with size, but the demand exceeds supply for the largest fish with an active, predatory life style. Therefore, the largest individuals may lead us to a lower limit on oceanic O(2) concentrations. Our presented model suggests 2-10 meter long predators require >30-50% PAL while smaller fish would survive at <25% PAL. This is consistent with the hypothesis that low atmospheric oxygen pressure acted as an evolutionary barrier for fish to grow much above ∼1 meter before the Devonian oxygenation.

  11. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  12. EIA projections of coal supply and demand

    SciTech Connect

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  13. The Universal Oxygen Connector.

    PubMed

    Lauer, Mark A; Gombkoto, Rebecca L M

    2006-02-01

    The purpose of this article is to describe the benefits of using the Universal Oxygen Connector. Until now, an oxygen hose was only able to connect to a 22-mm fitting, such as those found on humidifiers used in the recovery room, and oxygen tubing was only able to connect to a Christmas tree type adapter. The Universal Oxygen Connector, manufactured and sold by International Medical, Inc (Burnsville, Minn), was developed to allow the practitioner to attach either a 22-mm oxygen hose, oxygen tubing, or a 15-mm oxygen adapter to the same connector. Patients benefit from the administration of supplemental oxygen in the perioperative period. Supplemental oxygen has been shown to decrease postoperative hypoxemia, infection, and in some cases, nausea and vomiting. As such, oxygen should be administered during transport from the operating room to the recovery room, in the recovery room, and at times during transport to the patient room and in the patient room. Oxygen also should be administered whenever a patient receiving oxygen is transported. Use of the Universal Oxygen Connector decreases material waste, decreases hospital costs, saves time and effort and, most importantly, promotes patient safety by providing a versatile system for oxygen delivery.

  14. The Rate of Oxygen Utilization by Cells

    PubMed Central

    Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.

    2011-01-01

    The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270

  15. Modeling impact of storage zones on stream dissolved oxygen

    USGS Publications Warehouse

    Chapra, S.C.; Runkel, R.L.

    1999-01-01

    The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.

  16. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  18. Oxygen isotopic anomalies in Allende inclusion HAL

    NASA Astrophysics Data System (ADS)

    Lee, T.; Mayeda, T. K.; Clayton, R. N.

    1980-07-01

    An oxygen isotopic study which demonstrates the Allende inclusion HAL is a FUN object is discussed; the hibonite core, black inner rim and fine-grained outer rim have beem sampled. The oxygen in HAL is found to be heterogeneous, the rim samples having oxygen compositions similar to that of melilites and alteration products in other Allende inclusions including the FUN inclusion EK1-4-1, while the oxygen in the hibonite core shows the most extreme deviation from the AD line so far observed. The oxygen in HAL hibonite, in ED1-4-1 spinel and in spinels of usual Allende inclusions form an approximate linear array with a slope close to 1/2. With regard to the fractionation process, it is noted that the fractionation per amu for various elements does not correlate inversely with mass and that fractionation is elementally selective, probably according to volatility.

  19. Oxygen consumption by a coral reef sponge.

    PubMed

    Hadas, Eran; Ilan, Micha; Shpigel, Muki

    2008-07-01

    Oxygen consumption of the Red Sea coral reef sponge Negombata magnifica was measured using both incubation and steady-state methods. The latter method was found to be the more reliable because sponge activity remained stable over time. Oxygen consumption rate was measured during three levels of sponge activity: full activity, reduced activity and basal activity (starved). It was found that the active oxygen consumption rate of N. magnifica averaged 37.3+/-4.6 nmol O2 min(-1) g(-1) wet mass, which is within the upper range reported for other tropical marine sponges. Fully active N. magnifica individuals consumed an average of 41.8+/-3.2 nmol O2 min(-1) g(-1) wet mass. The mean basal respiration rate was 20.2+/-1.2 nmol O2 min(-1) g(-1) wet mass, which is 51.6+/-2.5% of the active respiration rate. Therefore, the oxygen used for water pumping was calculated to be at most 10.6+/-1.8 nmol O2 min(-1) g(-1) wet mass, which is 25.1+/-3.6% of the total respiration. Combined oxygen used for maintenance and water pumping activity was calculated to be 30.8 nmol O2 min(-1) g(-1) wet mass, which is approximately 74% of the sponge's total oxygen requirement. The remaining oxygen is directed to other physiological activities, mainly the energy requirement of growth. These findings suggest that only a relatively minor amount of energy is potentially available for growth, and thus might be a factor in controlling the growth rate of N. magnifica in oligotrophic coral reefs.

  20. Projecting Electricity Demand in 2050

    SciTech Connect

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  1. Employer Demands from Business Graduates

    ERIC Educational Resources Information Center

    McMurray, Stephen; Dutton, Matthew; McQuaid, Ronald; Richard, Alec

    2016-01-01

    Purpose: The purpose of this paper is to report on research carried out with employers to determine demand for business and management skills in the Scottish workforce. Design/methodology/approach: The research used a questionnaire in which employers were interviewed (either telephone or face to face), completed themselves and returned by e-mail,…

  2. Managed care demands flexibility, creativity.

    PubMed

    1996-05-01

    The definition of hospice care is changing as home care providers come under managed care regulations. Hospice care for AIDS patients is demanding, requiring extra time from home care providers. The managed care cost-cutting measures require creativitity and patience. The Visiting Nurses and Hospice of San Francisco (VNH) has held seminars to help providers adapt to managed care.

  3. Smart Buildings and Demand Response

    NASA Astrophysics Data System (ADS)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish

    2011-11-01

    Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

  4. Managed care demands flexibility, creativity.

    PubMed

    1996-05-01

    The definition of hospice care is changing as home care providers come under managed care regulations. Hospice care for AIDS patients is demanding, requiring extra time from home care providers. The managed care cost-cutting measures require creativitity and patience. The Visiting Nurses and Hospice of San Francisco (VNH) has held seminars to help providers adapt to managed care. PMID:11363252

  5. Faculty Demand in Higher Education

    ERIC Educational Resources Information Center

    Rosenthal, Danielle

    2007-01-01

    The objective of this study is to identify the factors that shift the demand curve for faculty at not-for-profit private institutions. It is unique in that to the author's knowledge no other study has directly addressed the question of how the positive correlation between average faculty salaries and faculty-student ratios can be reconciled with…

  6. Commercial Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  7. Mechanical demands of kettlebell swing exercise.

    PubMed

    Lake, Jason P; Lauder, Mike A

    2012-12-01

    The aims of this study were to establish mechanical demands of kettlebell swing exercise and provide context by comparing them to mechanical demands of back squat and jump squat exercise. Sixteen men performed 2 sets of 10 swings with 16, 24, and 32 kg, 2 back squats with 20, 40, 60, and 80% 1-repetition maximum (1RM), and 2 jump squats with 0, 20, 40, and 60% 1RM. Sagittal plane motion and ground reaction forces (GRFs) were recorded during swing performance, and GRFs were recorded during back and jump squat performances. Net impulse, and peak and mean propulsion phase force and power applied to the center of mass (CM) were obtained from GRF data and kettlebell displacement and velocity from motion data. The results of repeated measures analysis of variance showed that all swing CM measures were maximized during the 32-kg condition but that velocity of the kettlebell was maximized during the 16-kg condition; displacement was consistent across different loads. Peak and mean force tended to be greater during back and jump squat performances, but swing peak and mean power were greater than back squat power and largely comparable with jump squat power. However, the highest net impulse was recorded during swing exercise with 32 kg (276.1 ± 45.3 N·s vs. 60% 1RM back squat: 182.8 ± 43.1 N·s, and 40% jump squat: 231.3 ± 47.1 N·s). These findings indicate a large mechanical demand during swing exercise that could make swing exercise a useful addition to strength and conditioning programs that aim to develop the ability to rapidly apply force.

  8. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  9. The alchemy of demand response: turning demand into supply

    SciTech Connect

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  10. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  11. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  12. Home Oxygen Therapy

    MedlinePlus

    ... important advantage of liquid oxygen is you can transfer some of the liquid oxygen into a smaller, ... from gas stoves, candles, lighted fireplaces, or other heat sources. Don't use any flammable products like ...

  13. Biogeochemistry: Oxygen burrowed away

    NASA Astrophysics Data System (ADS)

    Meysman, Filip J. R.

    2014-09-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  14. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?

    PubMed

    Hoefnagel, K Natan; Verberk, Wilco C E P

    2015-12-01

    Temperature is an important environmental factor that influences key traits like body size, growth rate and maturity. Ectotherms reared under high temperatures usually show faster growth, but reach a smaller final size, a phenomenon known as the temperature-size rule (TSR). Oxygen may become a limiting resource at high temperatures, when demand for oxygen is high, especially in water as oxygen uptake is far more challenging under water than in air. Therefore, in aquatic ectotherms, the TSR might very well be mediated by temperature effects on oxygen availability and oxygen demand. To distinguish between the direct effects of temperature and oxygen mediated effects, growth rate and final size were measured in the aquatic ectotherm Asellus aquaticus (Linnaeus, 1758) reared under different temperature and oxygen conditions in a factorial design. Growth could be best described by a modified Von Bertalanffy growth function. Both temperature and oxygen affected age at maturity and growth. Growth responses to temperature were dependent on oxygen conditions (interactive effect of temperature and oxygen). Only under hypoxic conditions, when oxygen was most limiting, did we find a classic TSR. Moreover, when comparing treatments differing in temperature, but where the balance between oxygen demand and supply was similar, high temperature increased both growth rate and final size. Thus effects of oxygen may resolve the life-history puzzle of the TSR in aquatic ectotherms.

  15. The physiological demands of Gaelic football.

    PubMed

    Florida-James, G; Reilly, T

    1995-03-01

    Match-lay demands of Gaelic football and fitness profiles were assessed at club competitive level. English Gaelic football club championship players (n = 11) were assessed for anthropometry, leg strength and time to exhaustion on a treadmill run. A similar test battery was administered to a reference group of University competitive soccer players (n = 12). Heart rate was recorded during match-play using radio telemetry and blood lactate concentrations were determined at half-time and after full-time. No differences (p > 0.05) were observed between the Gaelic and soccer players in: body mass (70.7 +/- 10.3 vs 76.6 +/- 10.3 kg); height (176 +/- 5.9 vs 177.7 +/- 6.4 cm); leg to trunk ratio (0.53 +/- 0.01 vs 0.54 +/- 0.03); adiposity (12.2 +/- 2.1 vs 13.5 +/- 3.2% body fat); mean somatotype (2.8 - 4.3-2.0 vs 2.4-4.2-2.4); leg strength measures; and performance on the treadmill. The percentage muscle mass values were lower for the Gaelic players compared to the soccer players (41.9 +/- 5.4 vs 47.3 +/- 5.2%; p > 0.005). For the Gaelic and soccer players, respectively, mean heart rate recorded during each half of match-play were (157 +/- 10 and 158 +/- 12 beats/min) and (164 +/- 10 and 157 +/- 11 beats/min), whilst blood lactates measured at the end of each half, were (4.3 +/- 1 and 3.4 +/- 1.6 mmol/l) and (4.4 +/- 1.2 and 4.5 +/- 2.1 mmol/l). Gaelic footballers at English club championship level seem to exhibit similar fitness profiles, and are subject to broadly similar physiological demands as University-level competitive soccer players.

  16. Timeline: Cellular Oxygen Sensing.

    PubMed

    Szewczak, Lara

    2016-09-22

    Since the 1950s, researchers have recognized that red blood cell numbers expand or contract as needed, according to the amount of available oxygen. The later discoveries that erythropoietin and VEGF levels adapt to oxygen levels launched a new field aimed at understanding how cells sense and respond to normal- and low-oxygen environments. The 2016 Albert Lasker Basic Medical Research Award recognizes key discoveries about this global oxygen sensing pathway and its impacts on pathogenesis, including cancer and inflammation. PMID:27662095

  17. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  18. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  19. Advertising increases demand for vasectomy.

    PubMed

    Mehta, M; Mckenzie, M

    1996-01-01

    The recent evaluation of a 2-year no-scalpel vasectomy (NSV) training program providing on-site, hands-on training for physicians working in 43 publicly funded health centers in 17 states found that demand for vasectomy in low-income and minority communities in the US increased following the implementation of innovative advertising strategies. The program also provided sites with surgical instruments, training materials, a press kit, and some help with public information activities. Participating clinics used a range of formal and informal advertising strategies, including radio and printed advertisements, to inform potential clients about vasectomy services. Many interested clients presented to clinics to undergo vasectomy once they had been made aware of the service and its availability. Several providers even stated that advertising caused the demand for vasectomy to exceed their capacity to provide services. The provision of low- or no-cost procedures helped to attract new clients. PMID:12321999

  20. Advertising media and cigarette demand.

    PubMed

    Goel, Rajeev K

    2011-01-01

    Using state-level panel data for the USA spanning three decades, this research estimates the demand for cigarettes. The main contribution lies in studying the effects of cigarette advertising disaggregated across five qualitatively different groups. Results show cigarette demand to be near unit elastic, the income effects to be generally insignificant and border price effects and habit effects to be significant. Regarding advertising effects, aggregate cigarette advertising has a negative effect on smoking. Important differences across advertising media emerge when cigarette advertising is disaggregated. The effects of public entertainment and Internet cigarette advertising are stronger than those of other media. Anti-smoking messages accompanying print cigarette advertising seem relatively more effective. Implications for smoking control policy are discussed.

  1. Alcohol demand and risk preference.

    PubMed

    Dave, Dhaval; Saffer, Henry

    2008-12-01

    Both economists and psychologists have studied the concept of risk preference. Economists categorize individuals as more or less risk-tolerant based on the marginal utility of income. Psychologists categorize individuals' propensity towards risk based on harm avoidance, novelty seeking and reward dependence traits. The two concepts of risk are related, although the instruments used for empirical measurement are quite different. Psychologists have found risk preference to be an important determinant of alcohol consumption; however economists have not included risk preference in studies of alcohol demand. This is the first study to examine the effect of risk preference on alcohol consumption in the context of a demand function. The specifications employ multiple waves from the Panel Study of Income Dynamics (PSID) and the Health and Retirement Study (HRS), which permit the estimation of age-specific models based on nationally representative samples. Both of these data sets include a unique and consistent survey instrument designed to directly measure risk preference in accordance with the economist's definition. This study estimates the direct impact of risk preference on alcohol demand and also explores how risk preference affects the price elasticity of demand. The empirical results indicate that risk preference has a significant negative effect on alcohol consumption, with the prevalence and consumption among risk-tolerant individuals being 6-8% higher. Furthermore, the tax elasticity is similar across both risk-averse and risk-tolerant individuals. This suggests that tax policies are as equally effective in deterring alcohol consumption among those who have a higher versus a lower propensity for alcohol use. PMID:19956353

  2. Energy demand and population change.

    PubMed

    Allen, E L; Edmonds, J A

    1981-09-01

    During the post World War 2 years energy consumption has grown 136% while population grew about 51%; per capita consumption of energy expanded, therefore, about 60%. For a given population size, demographic changes mean an increase in energy needs; for instance the larger the group of retirement age people, the smaller their energy needs than are those for a younger group. Estimates indicate that by the year 2000 the energy impact will be toward higher per capita consumption with 60% of the population in the 19-61 age group of workers. Rising female labor force participation will increase the working group even more; it has also been found that income and energy grow at a proportional rate. The authors predict that gasoline consumption within the US will continue to rise with availability considering the larger number of female drivers and higher per capita incomes. The flow of illegal aliens (750,000/year) will have a major impact on income and will use greater amounts of energy than can be expected. A demographic change which will lower energy demands will be the slowdown of the rate of household formation caused by the falling number of young adults. The response of energy demand to price changes is small and slow but incomes play a larger role as does the number of personal automobiles and social changes affecting household formation. Households, commercial space, transportation, and industry are part of every demand analysis and population projections play a major role in determining these factors.

  3. Oxygen defects in phosphorene.

    PubMed

    Ziletti, A; Carvalho, A; Campbell, D K; Coker, D F; Castro Neto, A H

    2015-01-30

    Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation involving reactive dangling oxygen atoms and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene.

  4. Geological constraints on the origin of oxygenic photosynthesis.

    PubMed

    Farquhar, James; Zerkle, Aubrey L; Bekker, Andrey

    2011-01-01

    This article examines the geological evidence for the rise of atmospheric oxygen and the origin of oxygenic photosynthesis. The evidence for the rise of atmospheric oxygen places a minimum time constraint before which oxygenic photosynthesis must have developed, and was subsequently established as the primary control on the atmospheric oxygen level. The geological evidence places the global rise of atmospheric oxygen, termed the Great Oxidation Event (GOE), between ~2.45 and ~2.32 Ga, and it is captured within the Duitschland Formation, which shows a transition from mass-independent to mass-dependent sulfur isotope fractionation. The rise of atmospheric oxygen during this interval is closely associated with a number of environmental changes, such as glaciations and intense continental weathering, and led to dramatic changes in the oxidation state of the ocean and the seawater inventory of transition elements. There are other features of the geologic record predating the GOE by as much as 200-300 million years, perhaps extending as far back as the Mesoarchean-Neoarchean boundary at 2.8 Ga, that suggest the presence of low level, transient or local, oxygenation. If verified, these features would not only imply an earlier origin for oxygenic photosynthesis, but also require a mechanism to decouple oxygen production from oxidation of Earth's surface environments. Most hypotheses for the GOE suggest that oxygen production by oxygenic photosynthesis is a precondition for the rise of oxygen, but that a synchronous change in atmospheric oxygen level is not required by the onset of this oxygen source. The potential lag-time in the response of Earth surface environments is related to the way that oxygen sinks, such as reduced Fe and sulfur compounds, respond to oxygen production. Changes in oxygen level imply an imbalance in the sources and sinks for oxygen. Changes in the cycling of oxygen have occurred at various times before and after the GOE, and do not appear to

  5. Geological constraints on the origin of oxygenic photosynthesis.

    PubMed

    Farquhar, James; Zerkle, Aubrey L; Bekker, Andrey

    2011-01-01

    This article examines the geological evidence for the rise of atmospheric oxygen and the origin of oxygenic photosynthesis. The evidence for the rise of atmospheric oxygen places a minimum time constraint before which oxygenic photosynthesis must have developed, and was subsequently established as the primary control on the atmospheric oxygen level. The geological evidence places the global rise of atmospheric oxygen, termed the Great Oxidation Event (GOE), between ~2.45 and ~2.32 Ga, and it is captured within the Duitschland Formation, which shows a transition from mass-independent to mass-dependent sulfur isotope fractionation. The rise of atmospheric oxygen during this interval is closely associated with a number of environmental changes, such as glaciations and intense continental weathering, and led to dramatic changes in the oxidation state of the ocean and the seawater inventory of transition elements. There are other features of the geologic record predating the GOE by as much as 200-300 million years, perhaps extending as far back as the Mesoarchean-Neoarchean boundary at 2.8 Ga, that suggest the presence of low level, transient or local, oxygenation. If verified, these features would not only imply an earlier origin for oxygenic photosynthesis, but also require a mechanism to decouple oxygen production from oxidation of Earth's surface environments. Most hypotheses for the GOE suggest that oxygen production by oxygenic photosynthesis is a precondition for the rise of oxygen, but that a synchronous change in atmospheric oxygen level is not required by the onset of this oxygen source. The potential lag-time in the response of Earth surface environments is related to the way that oxygen sinks, such as reduced Fe and sulfur compounds, respond to oxygen production. Changes in oxygen level imply an imbalance in the sources and sinks for oxygen. Changes in the cycling of oxygen have occurred at various times before and after the GOE, and do not appear to

  6. Tissue oxygen tension monitoring of organ perfusion: rationale, methodologies, and literature review.

    PubMed

    De Santis, V; Singer, M

    2015-09-01

    Tissue oxygen tension is the partial pressure of oxygen within the interstitial space of an organ bed. As it represents the balance between local oxygen delivery and consumption at any given time, it offers a ready monitoring capability to assess the adequacy of tissue perfusion relative to local demands. This review covers the various methodologies used to measure tissue oxygen tension, describes the underlying physiological and pathophysiological principles, and summarizes human and laboratory data published to date.

  7. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Oxidation State of Vanadium in Spinel-Melt Pairs; 44) Testing the Magma Ocean Hypothesis Using Metal-Silicate Partitioning of Te, Se and S; 45) Solubility of Oxygen in Liquid Iron at High Pressure and Consequences for the Early Differentiation of Earth and Mars Metallic Liquid Segregation in Planetesimals; 46) Oxygen Fugacity of Lunar Basalts and the Lunar Mantle. Range of fo2 and the Effectiveness of Oxybarometers; 47) Thermodynamic Study of Dissociation Processes of Molecular Oxygen in Vapor over Oxide Compounds; 48) Oxygen Profile of a Thermo-Haliophilic Community in the Badwater Salt Flat; 49) Oxygen Barometry Using Synchrotron MicroXANES of Vanadium; 50) Mass-Independent Isotopic Fractionation of Sulfur from Sulfides in the Huronian Supergroup, Canada; 51) Mass Independent Isotopes and Applications to Planetary Atmospheres; 52) Electrical Conductivity, Oxygen Fugacity, and Mantle Materials; 53) Crustal Evolution and Maturation on Earth: Oxygen Isotope Evidence; 54) The Oxygen Isotope Composition of the Moon: Implications for Planet Formation; 55) Oxygen Isotope Composition of Eucrites and Implications for the Formation of Crust on the HED Parent Body; and 56) The Role of Water in Determining the Oxygen Isotopic Composition of Planets.

  8. Oxygen pressure measurement using singlet oxygen emission

    SciTech Connect

    Khalil, Gamal E.; Chang, Alvin; Gouterman, Martin; Callis, James B.; Dalton, Larry R.; Turro, Nicholas J.; Jockusch, Steffen

    2005-05-15

    Pressure sensitive paint (PSP) provides a visualization of two-dimensional pressure distributions on airfoil and model automobile surfaces. One type of PSP utilizes platinum tetra(pentafluorophenyl)porphine (PtTFPP) dissolved in a fluoro-polymer film. Since the intense 650 nm triplet emission of PtTFPP is quenched by ground state oxygen, it is possible to measure two-dimensional oxygen concentration from the 650 nm emission intensity using a Stern-Volmer-type relationship. This article reports an alternative luminescence method to measure oxygen concentration based on the porphyrin-sensitized 1270 nm singlet oxygen emission, which can be imaged with an InGaAs near infrared camera. This direct measurement of oxygen emission complements and further validates the oxygen measurement based on PtTFPP phosphorescence quenching. Initial success at obtaining a negative correlation between the 650 nm PtTFPP emission and the 1270 nm O{sub 2} emission in solution led us to additional two-dimensional film studies using surfaces coated with PtTFPP, MgTFPP, and H{sub 2}TFPP in polymers in a pressure and temperature controlled chamber.

  9. Oxygen pressure measurement using singlet oxygen emission

    NASA Astrophysics Data System (ADS)

    Khalil, Gamal E.; Chang, Alvin; Gouterman, Martin; Callis, James B.; Dalton, Larry R.; Turro, Nicholas J.; Jockusch, Steffen

    2005-05-01

    Pressure sensitive paint (PSP) provides a visualization of two-dimensional pressure distributions on airfoil and model automobile surfaces. One type of PSP utilizes platinum tetra(pentafluorophenyl)porphine (PtTFPP) dissolved in a fluoro-polymer film. Since the intense 650nm triplet emission of PtTFPP is quenched by ground state oxygen, it is possible to measure two-dimensional oxygen concentration from the 650nm emission intensity using a Stern-Volmer-type relationship. This article reports an alternative luminescence method to measure oxygen concentration based on the porphyrin-sensitized 1270nm singlet oxygen emission, which can be imaged with an InGaAs near infrared camera. This direct measurement of oxygen emission complements and further validates the oxygen measurement based on PtTFPP phosphorescence quenching. Initial success at obtaining a negative correlation between the 650nm PtTFPP emission and the 1270nm O2 emission in solution led us to additional two-dimensional film studies using surfaces coated with PtTFPP, MgTFPP, and H2TFPP in polymers in a pressure and temperature controlled chamber.

  10. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  11. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  12. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... only (gaseous or liquid tanks). (iii) Oxygen generating portable equipment only. (iv) Stationary oxygen... stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents; or (ii) Rents stationary oxygen equipment that requires delivery of gaseous or liquid oxygen contents after the period...

  13. Measurement of Atomic-Oxygen Flux Distribution

    NASA Astrophysics Data System (ADS)

    Hisashiba, Takuya; Kuroda, Kazutaka; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu

    Since material surfaces on the outside of spacecraft are exposed directly to the space environment, material having high tolerance to atomic oxygen, ultraviolet rays and radiation are preferred for long time spacecraft operation. In order to examine the influence of atomic oxygen (AO) on space grade materials, an atomic oxygen simulation chamber was developed. A system was developed that generates AO using a laser detonation method. A CO2 gas laser (5 J) irradiates the oxygen gas in a vacuum chamber (2 MPa) to dissociate the molecular oxygen into atomic. The velocity of AO can be controlled based on the timing between the laser and the gas pulse valve that injects oxygen gas into the chamber. The AO velocity generated by this system is measured using a QMASS (Quadruple Mass Spectrometer) and found to be 8 km/s. It was necessary to measure the AO flux distribution in the chamber at the location where the material samples are exposed to AO. The AO flux distribution was evaluated by measuring the mass gain on a QCM (QuartzCrystal Microbalance) coated with a silver film upon exposure to the AO.

  14. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A

    PubMed Central

    Jouhten, Paula; Rintala, Eija; Huuskonen, Anne; Tamminen, Anu; Toivari, Mervi; Wiebe, Marilyn; Ruohonen, Laura; Penttilä, Merja; Maaheimo, Hannu

    2008-01-01

    Background The yeast Saccharomyces cerevisiae is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of S. cerevisiae but understanding of the oxygen dependence of intracellular flux distributions is still scarce. Results Metabolic flux distributions of S. cerevisiae CEN.PK113-1A growing in glucose-limited chemostat cultures at a dilution rate of 0.1 h-1 with 20.9%, 2.8%, 1.0%, 0.5% or 0.0% O2 in the inlet gas were quantified by 13C-MFA. Metabolic flux ratios from fractional [U-13C]glucose labelling experiments were used to solve the underdetermined MFA system of central carbon metabolism of S. cerevisiae. While ethanol production was observed already in 2.8% oxygen, only minor differences in the flux distribution were observed, compared to fully aerobic conditions. However, in 1.0% and 0.5% oxygen the respiratory rate was severely restricted, resulting in progressively reduced fluxes through the TCA cycle and the direction of major fluxes to the fermentative pathway. A redistribution of fluxes was observed in all branching points of central carbon metabolism. Yet only when oxygen provision was reduced to 0.5%, was the biomass yield exceeded by the yields of ethanol and CO2. Respirative ATP generation provided 59% of the ATP demand in fully aerobic conditions and still a substantial 25% in 0.5% oxygenation. An extensive redistribution of fluxes was observed in anaerobic conditions compared to all the aerobic conditions. Positive correlation between the transcriptional levels of metabolic enzymes and the corresponding fluxes in the different oxygenation conditions was found only in the respirative pathway. Conclusion 13C-constrained MFA enabled quantitative determination of intracellular fluxes in conditions of

  15. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  16. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  17. Integrated turbomachine oxygen plant

    DOEpatents

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  18. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  19. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  20. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.