Sample records for oxygen demand mass

  1. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  2. Comparison of oxygen transfer parameters and oxygen demands in bioreactors operated at low and high dissolved oxygen levels.

    PubMed

    Mines, Richard O; Callier, Matthew C; Drabek, Benjamin J; Butler, André J

    2017-03-21

    The proper design of aeration systems for bioreactors is critical since it can represent up to 50% of the operational and capital cost at water reclamation facilities. Transferring the actual amount of oxygen needed to meet the oxygen demand of the wastewater requires α- and β-factors, which are used for calculating the actual oxygen transfer rate (AOTR) under process conditions based on the standard oxygen transfer rate (SOTR). The SOTR is measured in tap water at 20°C, 1 atmospheric pressure, and 0 mg L -1 of dissolved oxygen (DO). In this investigation, two 11.4-L bench-scale completely mixed activated process (CMAS) reactors were operated at various solid retention times (SRTs) to ascertain the relationship between the α-factor and SRT, and between the β-factor and SRT. The second goal was to determine if actual oxygen uptake rates (AOURs) are equal to calculated oxygen uptake rates (COURs) based on mass balances. Each reactor was supplied with 0.84 L m -1 of air resulting in SOTRs of 14.3 and 11.5 g O 2 d -1 for Reactor 1 (R-1) and Reactor 2 (R-2), respectively. The estimated theoretical oxygen demands of the synthetic feed to R-1 and R-2 were 6.3 and 21.9 g O 2 d -1 , respectively. R-2 was primarily operated under a dissolved oxygen (DO) limitation and high nitrogen loading to determine if nitrification would be inhibited from a nitrite buildup and if this would impact the α-factor. Nitrite accumulated in R-2 at DO concentrations ranging from 0.50 to 7.35 mg L -1 and at free ammonia (FA) concentrations ranging from 1.34 to 7.19 mg L -1 . Nonsteady-state reaeration tests performed on the effluent from each reactor and on tap water indicated that the α-factor increased as SRT increased. A simple statistical analysis (paired t-test) between AOURs and COURs indicated that there was a statistically significant difference at 0.05 level of significance for both reactors. The ex situ BOD bottle method for estimating AOUR appears to be invalid in

  3. Measurement of biochemical oxygen demand of the leachates.

    PubMed

    Fulazzaky, Mohamad Ali

    2013-06-01

    Biochemical oxygen demand (BOD) of the leachates originally from the different types of landfill sites was studied based on the data measured using the two manometric methods. The measurements of BOD using the dilution method were carried out to assess the typical physicochemical and biological characteristics of the leachates together with some other parameters. The linear regression analysis was used to predict rate constants for biochemical reactions and ultimate BOD values of the different leachates. The rate of a biochemical reaction implicated in microbial biodegradation of pollutants depends on the leachate characteristics, mass of contaminant in the leachate, and nature of the leachate. Character of leachate samples for BOD analysis of using the different methods may differ significantly during the experimental period, resulting in different BOD values. This work intends to verify effect of the different dilutions for the manometric method tests on the BOD concentrations of the leachate samples to contribute to the assessment of reaction rate and microbial consumption of oxygen.

  4. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature.

    PubMed

    Barvitenko, Nadezhda N; Aslam, Muhammad; Filosa, Jessica; Matteucci, Elena; Nikinmaa, Mikko; Pantaleo, Antonella; Saldanha, Carlota; Baskurt, Oguz K

    2013-08-01

    The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed. © 2013 John Wiley & Sons Ltd.

  5. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    USGS Publications Warehouse

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  6. Sediment oxygen demand in the Saddle River and Salem River watersheds, New Jersey, July-August 2008

    USGS Publications Warehouse

    Heckathorn, Heather A.; Gibs, Jacob

    2010-01-01

    Many factors, such as river depth and velocity, biochemical oxygen demand, and algal productivity, as well as sediment oxygen demand, can affect the concentration of dissolved oxygen in the water column. Measurements of sediment oxygen demand, in conjunction with those of other water-column water-quality constituents, are useful for quantifying the mechanisms that affect in-stream dissolved-oxygen concentrations. Sediment-oxygen-demand rates are also needed to develop and calibrate a water-quality model being developed for the Saddle River and Salem River Basins in New Jersey to predict dissolved-oxygen concentrations. This report documents the methods used to measure sediment oxygen demand in the Saddle River and Salem River watersheds along with the rates of sediment oxygen demand that were obtained during this investigation. In July and August 2008, sediment oxygen demand was measured in situ in the Saddle River and Salem River watersheds. In the Saddle River Basin, sediment oxygen demand was measured twice at two sites and once at a third location; in the Salem River Basin, sediment oxygen demand was measured three times at two sites and once at a third location. In situ measurements of sediment oxygen demand in the Saddle River and Salem River watersheds ranged from 0.8 to 1.4 g/m2d (grams per square meter per day) and from 0.6 to 7.1 g/m2d at 20 degrees Celsius, respectively. Except at one site in this study, rates of sediment oxygen demand generally were low. The highest rate of sediment oxygen demand measured during this investigation, 7.1 g/m2d, which occurred at Courses Landing in the Salem River Basin, may be attributable to the consumption of oxygen by a large amount of organic matter (54 grams per kilogram as organic carbon) in the streambed sediments or to potential error during data collection. In general, sediment oxygen demand increased with the concentration of organic carbon in the streambed sediments. Repeated measurements made 6 to 7 days apart

  7. Oxygen-Mass-Flow Calibration Cell

    NASA Technical Reports Server (NTRS)

    Martin, Robert E.

    1996-01-01

    Proposed calibration standard for mass flow rate of oxygen based on conduction of oxygen ions through solid electrolyte membrane made of zirconia and heated to temperature of 1,000 degrees C. Flow of oxygen ions proportional to applied electric current. Unaffected by variations in temperature and pressure, and requires no measurement of volume. Calibration cell based on concept used to calibrate variety of medical and scientific instruments required to operate with precise rates of flow of oxygen.

  8. Sediment oxygen demand in eastern Kansas streams, 2014 and 2015

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.; Graham, Jennifer L.

    2016-08-29

    Dissolved oxygen concentrations in streams are affected by physical, chemical, and biological factors in the water column and streambed, and are an important factor for the survival of aquatic organisms. Sediment oxygen demand (SOD) rates in Kansas streams are not well understood. During 2014 and 2015, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment, measured SOD at eight stream sites in eastern Kansas to quantify SOD rates and variability with respect to season, land use, and bottom-sediment characteristics. Sediment oxygen demand rates (SODT) ranged from 0.01 to 3.15 grams per square meter per day at the ambient temperature of the measurements. The summer mean SOD rate was 3.0-times larger than the late fall mean rate, likely because of increased biological activity at warm water temperatures. Given the substantial amount of variability in SOD rates possible within sites, heterogeneity of substrate type is an important consideration when designing SOD studies and interpreting the results. Sediment oxygen demand in eastern Kansas streams was correlated with land use and streambed-sediment characteristics, though the strength of relations varied seasonally. The small number of study sites precluded a more detailed analysis. The effect of basin land use and streambed sediment characteristics on SOD is currently (2016) not well understood, and there may be many contributing factors including basin influences on water quality that affect biogeochemical cycles and the biological communities supported by the stream.

  9. Controls on biochemical oxygen demand in the upper Klamath River, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Snyder, Dean M.; Rounds, Stewart A.

    2010-01-01

    A series of 30-day biochemical oxygen demand (BOD) experiments were conducted on water column samples from a reach of the upper Klamath River that experiences hypoxia and anoxia in summer. Samples were incubated with added nitrification inhibitor to measure carbonaceous BOD (CBOD), untreated to measure total BOD, which included demand from nitrogenous BOD (NBOD), and coarse-filtered to examine the effect of removing large particulate matter. All BOD data were fit well with a two-group model, so named because it considered contributions from both labile and refractory pools of carbon: BODt = a1(1 − e− a0t) + a2t. Site-average labile first-order decay rates a0 ranged from 0.15 to 0.22/day for CBOD and 0.11 to 0.29/day for BOD. Site-average values of refractory zero-order decay rates a2 ranged from 0.13 to 0.25 mg/L/day for CBOD and 0.01 to 0.45 mg/L/day for BOD; the zero-order CBOD decay rate increased from early- to mid-summer. Values of ultimate CBOD for the labile component a1 ranged from 5.5 to 28.8 mg/L for CBOD, and 7.6 to 30.8 mg/L for BOD. Two upstream sites had higher CBOD compared to those downstream. Maximum measured total BOD5 and BOD30 during the study were 26.5 and 55.4 mg/L; minimums were 4.2 and 13.6 mg/L. For most samples, the oxygen demand from the three components considered here were: labile CBOD > NBOD > refractory CBOD, though the relative importance of refractory CBOD to oxygen demand increased over time. Coarse-filtering reduced CBOD for samples with high particulate carbon and high biovolumes of Aphanizomenon flos-aquae. There was a strong positive correlation between BOD, CBOD, and the labile component of CBOD to particulate C and N, with weaker positive correlation to field pH, field dissolved oxygen, and total N. The refractory component of CBOD was not correlated to particulate matter, instead showing weak but statistically significant correlation to dissolved organic carbon, UV absorbance at 254 nm, and

  10. Effects of dilution on dissolved oxygen depletion and microbial populations in the biochemical oxygen demand determination.

    PubMed

    Seo, Kyo Seong; Chang, Ho Nam; Park, Joong Kon; Choo, Kwang-Ho

    2007-09-01

    The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD(5)), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important with less dilution. BOD(5) increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD(5) increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more accurate BOD measurements, specific guidelines on dilution should be established.

  11. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  12. Aortic stiffness and the balance between cardiac oxygen supply and demand: the Rotterdam Study.

    PubMed

    Guelen, Ilja; Mattace-Raso, Francesco Us; van Popele, Nicole M; Westerhof, Berend E; Hofman, Albert; Witteman, Jacqueline Cm; Bos, Willem Jan W

    2008-06-01

    Aortic stiffness is an independent predictor of cardiovascular morbidity and mortality. We investigated whether aortic stiffness, estimated as aortic pulse wave velocity, is associated with decreased perfusion pressure estimated as the cardiac oxygen supply potential. Aortic stiffness and aortic pressure waves, reconstructed from finger blood pressure waves, were obtained in 2490 older adults within the framework of the Rotterdam Study, a large population-based study. Cardiac oxygen supply and demand were estimated using pulse wave analysis techniques, and related to aortic stiffness by linear regression analyses after adjustment for age, sex, mean arterial pressure and heart rate. Cardiac oxygen demand, estimated as the Systolic Pressure Time Index and the Rate Pressure Product, increased with increasing aortic stiffness [0.27 mmHg s (95% confidence interval: 0.21; 0.34)] and [42.2 mmHg/min (95% confidence interval: 34.1; 50.3)], respectively. Cardiac oxygen supply potential estimated as the Diastolic Pressure Time Index decreased [-0.70 mmHg s (95% confidence interval: -0.86; -0.54)] with aortic stiffening. Accordingly, the supply/demand ratio Diastolic Pressure Time Index/Systolic Pressure Time Index -1.11 (95% confidence interval: -0.14; -0.009) decreased with increasing aortic stiffness. Aortic stiffness is associated with estimates of increased cardiac oxygen demand and a decreased cardiac oxygen supply potential. These results may offer additional explanation for the relation between aortic stiffness and cardiovascular morbidity and mortality.

  13. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements.

    PubMed

    Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W

    2015-06-01

    What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically

  14. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  15. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  16. Biological Oxygen Demand in Soils and Litters

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Smagina, M. V.; Sadovnikova, N. B.

    2018-03-01

    Biological oxygen demand (BOD) in mineral and organic horizons of soddy-podzolic soils in the forest-park belt of Moscow as an indicator of their microbial respiration and potential biodestruction function has been studied. The BOD of soil samples has been estimated with a portable electrochemical analyzer after incubation in closed flasks under optimum hydrothermal conditions. A universal gradation scale of this parameter from very low (<2 g O2/(m3 h)) to extremely high (>140 g O2/(m3 h)) has been proposed for mineral and organic horizons of soil. A physically substantiated model has been developed for the vertical distribution of BOD in the soil, which combines the diffusion transport of oxygen from the atmosphere and its biogenic uptake in the soil by the first-order reaction. An analytical solution of the model in the stationary state has been obtained; from it, the soil oxygen diffusivity and the kinetic constants of O2 uptake have been estimated, and the profile-integrated total BOD value has been calculated (0.4-1.8 g O2/(m2 h)), which is theoretically identical to the potential oxygen flux from the soil surface due to soil respiration. All model parameters reflect the recreation load on the soil cover by the decrease in their values against the control.

  17. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  18. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  19. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  20. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  1. The effect of mayfly (Hexagenia spp.) burrowing activity on sediment oxygen demand in western Lake Erie

    USGS Publications Warehouse

    Edwards, William J.; Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.

    2009-01-01

    Previous studies support the hypothesis that large numbers of infaunal burrow-irrigating organisms in the western basin of Lake Erie may increase significantly the sediment oxygen demand, thus enhancing the rate of hypolimnetic oxygen depletion. We conducted laboratory experiments to quantify burrow oxygen dynamics and increased oxygen demand resulting from burrow irrigation using two different year classes of Hexagenia spp. nymphs from western Lake Erie during summer, 2006. Using oxygen microelectrodes and hot film anemometry, we simultaneously determined oxygen concentrations and burrow water flow velocities. Burrow oxygen depletion rates ranged from 21.7 mg/nymph/mo for 15 mm nymphs at 23 °C to 240.7 mg/nymph/mo for 23 mm nymphs at 13 °C. Sealed microcosm experiments demonstrated that mayflies increase the rate of oxygen depletion by 2-5 times that of controls, depending on size of nymph and water temperature, with colder waters having greater impact. At natural population densities, nymph pumping activity increased total sediment oxygen demand 0.3-2.5 times compared to sediments with no mayflies and accounted for 22-71% of the total sediment oxygen demand. Extrapolating laboratory results to the natural system suggest that Hexagenia spp. populations may exert a significant control on oxygen depletion during intermittent stratification. This finding may help explain some of the fluctuations in Hexagenia spp. population densities in western Lake Erie and suggests that mayflies, by causing their own population collapse irrespective of other environmental conditions, may need longer term averages when used as a bio-indicator of the success of pollution-abatement programs in western Lake Erie and possibly throughout the Great Lakes.

  2. [Relationship between the nitrogen removal and oxygen demand in constructed wetlands].

    PubMed

    He, Lian-sheng; Liu, Hong-liang; Xi, Bei-dou; Zhu, Ying-bo; Wei, Zi-min; Huo, Shou-liang

    2006-06-01

    A simplified model of sequential N transformations and sink was applied to investigate the relationship between the nitrogen removal and oxygen demand to verify the validity of full nitrification-denitrification mechanism in a newly-built multi-stages constructed wetlands. Average net rates of N mineralization ranged from 0.01 to 0.28 g x (m2 x d)(-1), nitrification from 0.50 to 1.54 g x (m2 x d)(-1), denitrification from 0.41 to 1.13 g x (m2 x d)(-1)(3.4% approximately 35.4% of measured N removal in different stage) and plant assimilation from 0.07 to 0.26 g x (m2 x d)(-1) in the five tanks. Nitrification and denitrification occurred concurrently with BOD removal, even in the first stage receiving the higher-strength wastewater. Surprisingly, net areal nitrification rates, was correlated with BOD removal rates positively. Nitrification rates were also correlated linearly with average NH4+-N concentrations in the cascade tanks. The nitrogenous oxygen demand (NOD) required to support full nitrification of ammonia and mineralized Org-N in the wetland was in the upper range of that expected to be able to be supplied through surface and plant-mediated oxygen transfer. Some potential alternative nitrogen removal pathways with reduced overall oxygen requirements that have relevance to constructed wetlands were discussed.

  3. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    USDA-ARS?s Scientific Manuscript database

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  4. Response time of mitochondrial oxygen consumption following stepwise changes in cardiac energy demand.

    PubMed

    van Beek, J H; Westerhof, N

    1990-01-01

    We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.

  5. Supply and demand: How does variation in atmospheric oxygen during development affect insect tracheal and mitochondrial networks?

    PubMed

    VandenBrooks, John M; Gstrein, Gregory; Harmon, Jason; Friedman, Jessica; Olsen, Matthew; Ward, Anna; Parker, Gregory

    2018-04-01

    Atmospheric oxygen is one of the most important atmospheric component for all terrestrial organisms. Variation in atmospheric oxygen has wide ranging effects on animal physiology, development, and evolution. This variation in oxygen has the potential to affect both respiratory systems (the supply side) and mitochondrial networks (the demand side) in animals. Insect respiratory systems supplying oxygen to tissues in the gas phase through blind ended tracheal systems are particularly susceptible to this variation. While the large conducting tracheae have previously been shown to respond developmentally to changes in rearing oxygen, the effect of oxygen on the tracheolar network has been relatively unexplored, especially in adult insects. Similarly, mitochondrial networks that meet energy demand in insects and other animals are dynamic and their enzyme activities have been shown to vary in the presence of oxygen. These two systems together should be under selective pressure to meet the aerobic metabolic requirements of insects. To test this hypothesis, we reared Mito-YFP Drosophila under three different oxygen concentrations hypoxia (12%), normoxia (21%), and hyperoxia (31%) and imaged their tracheolar and mitochondrial networks within their flight muscle using confocal microscopy. In terms of oxygen supply, hypoxia increased mean (mid-length) tracheolar diameters, tracheolar tip diameters, the number of tracheoles per main branch and affected tracheal branching patterns, while the opposite was observed in hyperoxia. In terms of oxygen demand, hypoxia increased mitochondrial investment and mitochondrial to tracheolar volume ratios; while the opposite was observed in hyperoxia. Generally, hypoxia had a stronger effect on both systems than hyperoxia. These results show that insects are capable of developmentally changing investment in both their supply and demand networks to increase overall fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  7. Exploring the oxygen supply and demand framework as a learning tool in undergraduate nursing education.

    PubMed

    Gillespie, Mary; Shackell, Eileen

    2017-11-01

    In nursing education, physiological concepts are typically presented within a body 'systems' framework yet learners are often challenged to apply this knowledge in the holistic and functional manner needed for effective clinical decision-making and safe patient care. A nursing faculty addressed this learning challenge by developing an advanced organizer as a conceptual and integrative learning tool to support learners in diverse learning environments and practice settings. A mixed methods research study was conducted that explored the effectiveness of the Oxygen Supply and Demand Framework as a learning tool in undergraduate nursing education. A pretest/post-test assessment and reflective journal were used to gather data. Findings indicated the Oxygen Supply and Demand Framework guided the development of pattern recognition and thinking processes and supported knowledge development, knowledge application and clinical decision-making. The Oxygen Supply and Demand Framework supports undergraduate students learning to provide safe and effective nursing care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    USGS Publications Warehouse

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    Sediment samples were collected near each chamber and analyzed for percent water, percent sand, and percent organics. The sand content ranged from 0.1 to 6.2 percent and averaged 1.8 percent. The organic content ranged from 1.4 to 9.6 and averaged 5.6 percent. No statistically significant correlations were found between these sediment characteristics and sediment oxygen demand.

  9. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Short-Term Energy Outlook Supplement March 1998)

    EIA Publications

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  10. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  11. A rapid analytical method for predicting the oxygen demand of wastewater.

    PubMed

    Fogelman, Shoshana; Zhao, Huijun; Blumenstein, Michael

    2006-11-01

    In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV-Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190-350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.

  12. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple

  13. Mass Spectrometry for Paper-Based Immunoassays: Toward On-Demand Diagnosis.

    PubMed

    Chen, Suming; Wan, Qiongqiong; Badu-Tawiah, Abraham K

    2016-05-25

    Current analytical methods, either point-of-care or centralized detection, are not able to meet recent demands of patient-friendly testing and increased reliability of results. Here, we describe a two-point separation on-demand diagnostic strategy based on a paper-based mass spectrometry immunoassay platform that adopts stable and cleavable ionic probes as mass reporter; these probes make possible sensitive, interruptible, storable, and restorable on-demand detection. In addition, a new touch paper spray method was developed for on-chip, sensitive, and cost-effective analyte detection. This concept is successfully demonstrated via (i) the detection of Plasmodium falciparum histidine-rich protein 2 antigen and (ii) multiplexed and simultaneous detection of cancer antigen 125 and carcinoembryonic antigen.

  14. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... discretion. (c) If first-aid oxygen equipment is installed, the minimum mass flow of oxygen to each user may... upon an average flow rate of 3 liters per minute per person for whom first-aid oxygen is required. (d...

  15. Oxygen Mass Transport in Stented Coronary Arteries.

    PubMed

    Murphy, Eoin A; Dunne, Adrian S; Martin, David M; Boyle, Fergal J

    2016-02-01

    Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

  16. Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch.

    PubMed

    Lei, Li; Ni, Jinren

    2014-04-15

    A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara

    2009-01-01

    Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).

  18. Exploring Oxidative Reactions in Hemoglobin Variants Using Mass Spectrometry: Lessons for Engineering Oxidatively Stable Oxygen Therapeutics

    PubMed Central

    Strader, Michael Brad

    2017-01-01

    Abstract Significance: Worldwide demand has driven the development of hemoglobin (Hb)-based oxygen carriers (HBOCs) as potential acellular oxygen therapeutics. HBOCs have the potential to provide an oxygen bridge to patients and minimize current problems associated with supply and storage of donated blood. However, to date, safety and efficacy issues have hampered the approval of viable HBOCs in the United States. These previous efforts have underscored the need for a better molecular understanding of toxicity to design safe and oxidatively stable HBOCs. Recent Advances: High-resolution accurate mass (HRAM) mass spectrometry (MS) has recently become a versatile tool in characterizing oxidative post-translational modifications that occur in Hb. When integrated with other analytical techniques, HRAM data have been invaluable in providing mechanistic insight into the extent of oxidative modification by quantifying oxidation in amino acids near the reactive heme or at specific “oxidative hotspots.” Critical Issues: In addition to providing a deeper understanding of Hb oxidative toxicity, HRAM MS studies are currently being used toward developing suitable HBOCs using a “two-prong” strategy that involves (i) understanding the mechanism of Hb toxicity by evaluating mutant Hbs identified in patients with hemoglobinopathies and (ii) utilizing this information toward designing against (or for) these reactions in acellular oxygen therapeutics that will result in oxidatively stable protein. Future Directions: Future HRAM studies are aimed at fully characterizing engineered candidate HBOCs to determine the most oxidatively stable protein while retaining oxygen carrying function in vivo. Antioxid. Redox Signal. 26, 777–793. PMID:27626360

  19. Umbilical cord vitamin D, ionized calcium and myocardial oxygen demand.

    PubMed

    Reeves, Inez; Liang, Willie; Asadi, M Sadegh; Millis, Richard M

    2014-07-01

    Systemic blood vitamin D and total calcium are correlates of birthweight and cardiovascular disease but whether umbilical cord blood vitamin D and ionized calcium are correlates of birthweight and cardiovascular function is not known. This cross-sectional study correlates umbilical cord vitamin D, ionized calcium and birthweight with the heart rate-systolic pressure product (RPP), an indicator of myocardial oxygen demand. Cord blood vitamin D and ionized calcium concentrations were compared for vitamin D normal (≥50 nM, 20 ng/mL) and vitamin D deficiency (<50 nM, 20 ng/mL) in normal weight (≥2500 g) and low birthweight (LBW, <2500 g) newborns. Heart rate and blood pressure were measured during postnatal transition and RPP was computed. RPP was positively correlated with birthweight (r = +0.52, p < 0.001) and with cord ionized calcium level (r = +0.42, p < 0.01) in the normal and LBW newborns. RPP was positively correlated with cord vitamin D level in the LBW newborns (raw r = +0.50, p < 0.05, normalized for birthweight r = +0.73, p < 0.01). Small RPP, an indicator of low myocardial oxygen demand, in LBW newborns appears to correlate with low umbilical cord vitamin D and ionized calcium levels, suggestive of pathological heart development.

  20. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom

  1. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    EPA Science Inventory

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  2. Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida

    USGS Publications Warehouse

    Russo, Thomas N.; McQuivey, Raul S.

    1975-01-01

    A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

  3. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  4. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  5. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures.

    PubMed

    Boes, Kelsey S; Roberts, Michael S; Vinueza, Nelson R

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R 2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R 2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. Graphical Abstract ᅟ.

  6. High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor.

    PubMed

    Pang, Hei-Leung; Kwok, Nga-Yan; Chan, Pak-Ho; Yeung, Chi-Hung; Lo, Waihung; Wong, Kwok-Yin

    2007-06-01

    The use of the conventional 5-day biochemical oxygen demand (BOD5) method in BOD determination is greatly hampered by its time-consuming sampling procedure and its technical difficulty in the handling of a large pool of wastewater samples. Thus, it is highly desirable to develop a fast and high-throughput biosensor for BOD measurements. This paper describes the construction of a microplate-based biosensor consisting of an organically modified silica (ORMOSIL) oxygen sensing film for high-throughput determination of BOD in wastewater. The ORMOSIL oxygen sensing film was prepared by reacting tetramethoxysilane with dimethyldimethoxysilane in the presence of the oxygen-sensitive dye tris(4,7-diphenyl-1,10-phenanthroline)ruthenium-(II) chloride. The silica composite formed a homogeneous, crack-free oxygen sensing film on polystyrene microtiter plates with high stability, and the embedded ruthenium dye interacted with the dissolved oxygen in wastewater according to the Stern-Volmer relation. The bacterium Stenotrophomonas maltophilia was loaded into the ORMOSIL/ PVA composite (deposited on the top of the oxygen sensing film) and used to metabolize the organic compounds in wastewater. This BOD biosensor was found to be able to determine the BOD values of wastewater samples within 20 min by monitoring the dissolved oxygen concentrations. Moreover, the BOD values determined by the BOD biosensor were in good agreement with those obtained by the conventional BOD5 method.

  7. Sources and transport of sediment, nutrients, and oxygen-demanding substances in the Minnesota River basin, 1989-92

    USGS Publications Warehouse

    Payne, G.A.

    1994-01-01

    The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.

  8. Geostatistical modeling of the spatial distribution of sediment oxygen demand within a Coastal Plain blackwater watershed

    PubMed Central

    Todd, M. Jason; Lowrance, R. Richard; Goovaerts, Pierre; Vellidis, George; Pringle, Catherine M.

    2010-01-01

    Blackwater streams are found throughout the Coastal Plain of the southeastern United States and are characterized by a series of instream floodplain swamps that play a critical role in determining the water quality of these systems. Within the state of Georgia, many of these streams are listed in violation of the state’s dissolved oxygen (DO) standard. Previous work has shown that sediment oxygen demand (SOD) is elevated in instream floodplain swamps and due to these areas of intense oxygen demand, these locations play a major role in determining the oxygen balance of the watershed as a whole. This work also showed SOD rates to be positively correlated with the concentration of total organic carbon. This study builds on previous work by using geostatistics and Sequential Gaussian Simulation to investigate the patchiness and distribution of total organic carbon (TOC) at the reach scale. This was achieved by interpolating TOC observations and simulated SOD rates based on a linear regression. Additionally, this study identifies areas within the stream system prone to high SOD at representative 3rd and 5th order locations. Results show that SOD was spatially correlated with the differences in distribution of TOC at both locations and that these differences in distribution are likely a result of the differing hydrologic regime and watershed position. Mapping of floodplain soils at the watershed scale shows that areas of organic sediment are widespread and become more prevalent in higher order streams. DO dynamics within blackwater systems are a complicated mix of natural and anthropogenic influences, but this paper illustrates the importance of instream swamps in enhancing SOD at the watershed scale. Moreover, our study illustrates the influence of instream swamps on oxygen demand while providing support that many of these systems are naturally low in DO. PMID:20938491

  9. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand.

    PubMed

    Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken

    2012-12-01

    Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.

  10. Predicting influent biochemical oxygen demand: Balancing energy demand and risk management.

    PubMed

    Zhu, Jun-Jie; Kang, Lulu; Anderson, Paul R

    2018-01-01

    Ready access to comprehensive influent information can help water reclamation plant (WRP) operators implement better real-time process controls, provide operational reliability and reduce energy consumption. The five-day biochemical oxygen demand (BOD 5 ), a critical parameter for WRP process control, is expensive and difficult to measure using hard-sensors. An alternative approach based on a soft-sensor methodology shows promise, but can be problematic when used to predict high BOD 5 values. Underestimating high BOD 5 concentrations for process control could result in an insufficient amount of aeration, increasing the risk of an effluent violation. To address this issue, we tested a hierarchical hybrid soft-sensor approach involving multiple linear regression, artificial neural networks (ANN), and compromise programming. While this hybrid approach results in a slight decrease in overall prediction accuracy relative to the approach based on ANN only, the underestimation percentage is substantially lower (37% vs. 61%) for predictions of carbonaceous BOD 5 (CBOD 5 ) concentrations higher than the long-term average value. The hybrid approach is also flexible and can be adjusted depending on the relative importance between energy savings and managing the risk of an effluent violation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    NASA Astrophysics Data System (ADS)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  12. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  13. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  14. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Serum Tumor Necrosis Factor-alpha associates with Myocardial Oxygen Demand and Exercise Tolerance in Postmenopausal Women.

    PubMed

    Carter, Stephen J; Bryan, David R; Neumeier, William H; Glasser, Stephen P; Hunter, Gary R

    2018-01-01

    The functional implications of serum tumor necrosis factor-alpha (TNF-α), a marker of oxidative stress, on hemodynamic parameters at rest and during physical exertion are unclear. The aims of this investigation were to examine the independent associations of TNF-α on myocardial oxygen demand at rest and during submaximal exercise, while also evaluating the association of TNF-α on exercise tolerance. Forty, postmenopausal women, provided blood samples and completed a modified-Balke protocol to measure maximal oxygen uptake (VO 2max ). Large artery compliance was measured by pulse contour analyses while rate-pressure product (RPP), an index of myocardial oxygen demand, was measured at rest and during two submaximal workloads (i.e., ≈55% and ≈75% VO 2max ). RPP was calculated by dividing the product of heart rate and systolic blood pressure (via auscultation) by 100. Exercise tolerance corresponded with the cessation of the graded exercise test. During higher-intensity exertion, ≈75% VO 2max , multiple linear regression revealed a positive association ( r = 0.43; p = 0.015) between TNF-α and RPP while adjusting for maximal heart rate, VO 2max , large artery compliance, and percent body fat. Path analyses revealed a significant indirect effect of large artery compliance on exercise tolerance through TNF-α, β = 0.13, CI [0.03, 0.35], indicating greater levels of TNF-α associated with poorer exercise tolerance. These data suggest TNF-α independently associates with myocardial oxygen demand during physical exertion, thus highlighting the utility of higher-intensity efforts to expose important phenomena not apparent at rest. TNF-α also appears to be indirectly associated with the link between large artery compliance and exercise tolerance.

  16. A MEMS approach to determine the biochemical oxygen demand (BOD) of wastewaters

    NASA Astrophysics Data System (ADS)

    Recoules, L.; Migaou, A.; Dollat, X.; Thouand, G.; Gue, A. M.; Boukabache, A.

    2017-07-01

    A MEMS approach to obtain an efficient tool for the evaluation of the biochemical oxygen demand (BOD) of wastewaters is introduced. Its operating principle is based on the measurement of oxygen concentration in water samples containing organic pollutants and specific bacteria. The microsystem has been designed to perform multiple and parallel measurements in a poly-wells microfluidic device. The monitoring of the bacterial activity is ensured by optical sensors incorporated in each well of the fluidic network. By using an optode sensor, it is hereby demonstrated that this approach is efficient to measure organic pollutants by testing different Luria Bertani buffer dilutions. These results also show that it is possible to reduce the duration of measurements from 5 d (BOD5) of the standard approach to few hours, typically 3 h-5 h.

  17. Watershed modeling of dissolved oxygen and biochemical oxygen demand using a hydrological simulation Fortran program.

    PubMed

    Liu, Zhijun; Kieffer, Janna M; Kingery, William L; Huddleston, David H; Hossain, Faisal

    2007-11-01

    Several inland water bodies in the St. Louis Bay watershed have been identified as being potentially impaired due to low level of dissolved oxygen (DO). In order to calculate the total maximum daily loads (TMDL), a standard watershed model supported by U.S. Environmental Protection Agency, Hydrological Simulation Program Fortran (HSPF), was used to simulate water temperature, DO, and bio-chemical oxygen demand (BOD). Both point and non-point sources of BOD were included in watershed modeling. The developed model was calibrated at two time periods: 1978 to 1986 and 2000 to 2001 with simulated DO closely matched the observed data and captured the seasonal variations. The model represented the general trend and average condition of observed BOD. Water temperature and BOD decay are the major factors that affect DO simulation, whereas nutrient processes, including nitrification, denitrification, and phytoplankton cycle, have slight impacts. The calibrated water quality model provides a representative linkage between the sources of BOD and in-stream DO\\BOD concentrations. The developed input parameters in this research could be extended to similar coastal watersheds for TMDL determination and Best Management Practice (BMP) evaluation.

  18. A tandem mass spectrometric method for singlet oxygen measurement.

    PubMed

    Karonen, Maarit; Mattila, Heta; Huang, Ping; Mamedov, Fikret; Styring, Stenbjörn; Tyystjärvi, Esa

    2014-01-01

    Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6-tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra-high-performance liquid chromatographic-tandem mass spectrometric (UHPLC-ESI-MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC-ESI-MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10(-7) molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m(-2 ) s(-1). © 2014 The American Society of Photobiology.

  19. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements

    PubMed Central

    Rong, Nan; Shan, Baoqing; Wang, Chao

    2016-01-01

    A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307

  20. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Zhao, Liang; Sun, Yao; Wang, Jianing; Wei, Hao

    2017-06-01

    This study evaluates the contribution of sediment oxygen demand (SOD) to hypoxia development off the Changjiang Estuary based on SOD measurements from onboard chamber incubations and numerical experiments. Onboard core incubations were conducted for samples collected from four stations in the Yellow Sea (YS) and the East China Sea (ECS) during cruises in June, August and October 2006. The measured SOD ranges widely from 9.1 to 62.5 mmol O2 m-2 d-1 with a mean rate of 22.6 ± 16.4 mmol O2 m-2 d-1, and the maximum occurring in August. The rates in regions experiencing hypoxia vary from 13.5 to 24.0 mmol O2 m-2 d-1 with a mean of 18.9 ± 4.6 mmol O2 m-2 d-1. Additionally, the vertical oxygen flux was calculated from profile measurements at a hypoxic mooring station adjacent to the Changjiang Estuary on September 3rd and 4th, 2006. The oxygen flux across the pycnocline was about 3.1 mmol O2 m-2 d-1, much lower than the SOD, implying that the low oxygen supply associated with stratification promotes the formation and maintenance of hypoxia in bottom waters. The one-dimensional numerical experiments configured for stratified and well-mixed water columns further confirm that stratification is necessary for the development and persistence of hypoxia, while SOD is a major oxygen sink below the pycnocline. Integrated over June to August, the amount of oxygen loss beneath the pycnocline due to SOD is equal to 116%-148%, 80%-142% and 82%-179% of the total net oxygen loss in the southern hypoxic region, northern hypoxic region and the middle shelf, respectively. During June to August when hypoxia develops, SOD in the northern and southern regions has similar magnitude. The Changjiang Diluted Water (CDW) promotes hypoxia formation in both regions, while the oxygen advection caused by the Taiwan Warm Current (TWC) would alleviate hypoxia formation especially for the southern hypoxic region.

  1. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    USGS Publications Warehouse

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  2. Geostatistical Modeling of the Spatial Distribution of Sediment Oxygen Demand Within a Coastal Plain Blackwater Watershed

    USDA-ARS?s Scientific Manuscript database

    Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...

  3. Job demand and cardiovascular disease risk factor in white-collar workers.

    PubMed

    Song, Young Kyu; Lee, Kang Koo; Kim, Hyoung Ryoul; Koo, Jung-Wan

    2010-01-01

    This study was conducted to determine whether job demand played a role as a risk factor of cardiovascular diseases by comparing changes of blood pressure, heart rate and rate pressure product (RPP) showing myocardial oxygen consumption (MVO2) according to levels of job demand. This cross-sectional study divided 177 male white-collar workers without a cardiovascular or metabolic disease according to their job demand and analyzed their body composition and results of graded exercise testing. There was no significant difference in height, body weight, body mass index (BMI), waist to hip ratio (WHR) and body fat percentage according to job demand. Maximal oxygen consumption (VO2max) and anaerobic threshold (AT) also did not show a significant difference. However, systolic blood pressures at the seventh and eighth stages over AT during exercise were significantly different and RPP was found to have a significant difference overall according to the job demand (p<0.05). These results meant that job demand affected systolic pressure in physical activities or at exercise intensity over AT and reduced energy efficiency of myocardium during physical activities. The results suggest that high job demand may be a risk factor of cardiovascular diseases.

  4. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes.

    PubMed

    Ivandini, Tribidasari A; Saepudin, Endang; Wardah, Habibah; Harmesa; Dewangga, Netra; Einaga, Yasuaki

    2012-11-20

    Gold-modified boron doped diamond (BDD) electrodes were examined for the amperometric detection of oxygen as well as a detector for measuring biochemical oxygen demand (BOD) using Rhodotorula mucilaginosa UICC Y-181. An optimum potential of -0.5 V (vs Ag/AgCl) was applied, and the optimum waiting time was observed to be 20 min. A linear calibration curve for oxygen reduction was achieved with a sensitivity of 1.4 μA mg(-1) L oxygen. Furthermore, a linear calibration curve in the glucose concentration range of 0.1-0.5 mM (equivalent to 10-50 mg L(-1) BOD) was obtained with an estimated detection limit of 4 mg L(-1) BOD. Excellent reproducibility of the BOD sensor was shown with an RSD of 0.9%. Moreover, the BOD sensor showed good tolerance against the presence of copper ions up to a maximum concentration of 0.80 μM (equivalent to 50 ppb). The sensor was applied to BOD measurements of the water from a lake at the University of Indonesia in Jakarta, Indonesia, with results comparable to those made using a standard method for BOD measurement.

  5. PROPOSED MODIFICATIONS OF K2-TEMPERATURE RELATION AND LEAST SQUARES ESTIMATES OF BOD (BIOCHEMICAL OXYGEN DEMAND) PARAMETERS

    EPA Science Inventory

    A technique is presented for finding the least squares estimates for the ultimate biochemical oxygen demand (BOD) and rate coefficient for the BOD reaction without resorting to complicated computer algorithms or subjective graphical methods. This may be used in stream water quali...

  6. System Modeling of Lunar Oxygen Production: Mass and Power Requirements

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J.; Freeh, Joshua E.; Linne, Diane L.; Faykus, Eric W.; Gallo, Christopher A.; Green, Robert D.

    2007-01-01

    A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements.

  7. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  8. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    PubMed

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  9. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax)

    PubMed Central

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    Abstract The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  10. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax).

    PubMed

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.

  11. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  12. The Study of Micro-Pressure Inner-Loop Bioreactor Oxygen Mass Transfer Characteristics

    NASA Astrophysics Data System (ADS)

    Wan, L. G.; Lin, Q.; Bian, D. J.; Ren, Q. K.; Xiao, Y. B.; Lu, W. X.

    2018-03-01

    The oxygen mass transfer characteristics in a Micro-Pressure Inner-Loop bioreactor (MPR) were studied by clean water oxygenation experiment, the results show that when the aeration adopt by 0.1, 0.2, 0.4, 0.6 m3·h-1, respectively, the oxygen mass transfer coefficient KLa(20) in the reactor increases with the increase of the aeration. KLa(20) shows a good linear correlation with the aeration. The rate is 0.2128 h·m-3·min-1 and the correlation coefficient R=0.993. However, the trend of EO2 increases first and then decreases with the increase of aeration. When the aeration increased to 0.4 m3·h-1, the EO2 reaches the maximum. If aeration increases constantly, EO2 begin to decrease excessive aeration may lead to an increase in energy waste during reactor operation.

  13. Altitude Above Sea Level and Body Mass Index as Determinants of Oxygen Saturation in Children: The SON@ Study.

    PubMed

    Gochicoa-Rangel, Laura; Pérez-Padilla, José Rogelio; Rodríguez-Moreno, Luis; Montero-Matamoros, Arturo; Ojeda-Luna, Nancy; Martínez-Carbajal, Gema; Hernández-Raygoza, Roberto; Ruiz-Pedraza, Dolores; Fernández-Plata, María Rosario; Torre-Bouscoulet, Luis

    2015-01-01

    Altitude above sea level and body mass index are well-recognized determinants of oxygen saturation in adult populations; however, the contribution of these factors to oxygen saturation in children is less clear. To explore the contribution of altitude above sea level and body mass index to oxygen saturation in children. A multi-center, cross-sectional study conducted in nine cities in Mexico. Parents signed informed consent forms and completed a health status questionnaire. Height, weight, and pulse oximetry were recorded. We studied 2,200 subjects (52% girls) aged 8.7 ± 3.0 years. Mean body mass index, z-body mass index, and oxygen saturation were 18.1 ± 3.6 kg·m-2, 0.58 ± 1.3, and 95.5 ± 2.4%, respectively. By multiple regression analysis, altitude proved to be the main predictor of oxygen saturation, with non-significant contributions of age, gender, and body mass index. According to quantile regression, the median estimate of oxygen saturation was 98.7 minus 1.7% per km of altitude above sea level, and the oxygen saturation fifth percentile 97.4 minus 2.7% per km of altitude. Altitude was the main determinant of oxygen saturation, which on average decreased 1.7% per km of elevation from a percentage of 98.7 at sea level. In contrast with adults, this study in children found no association between oxygen saturation and obesity or age.

  14. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    PubMed

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  15. Manual or automated measuring of antipsychotics' chemical oxygen demand.

    PubMed

    Pereira, Sarah A P; Costa, Susana P F; Cunha, Edite; Passos, Marieta L C; Araújo, André R S T; Saraiva, M Lúcia M F S

    2018-05-15

    Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Utilizing Thermal Mass in Refrigerated Display Cases to Reduce Peak Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Kuruganti, Teja; Nutaro, James J

    The potential to store energy within refrigerated food products presents convenience store and supermarket operators with an opportunity to participate in utility sponsored demand response programs, whereby electricity usage can be shifted or reduced during peak periods. To determine the feasibility of reducing peak demand by shifting the refrigeration load to off-peak times, experimental and analytical analyses were performed. Simulated product, consisting of one-pint containers filled with a 50% ethylene glycol and 50% water solution, were stored in a medium-temperature vertical open refrigerated display case. Product temperature rise as a function of time was determined by turning off the refrigerationmore » to the display case, while product temperature pull-down time was subsequently determined by turning on the refrigeration to the display case. It was found that the thermal mass of the product in a medium-temperature display case was such that during a 2.5 hour period with no refrigeration, the average product temperature increased by 5.5 C. In addition, it took approximately 3.5 hours for the product to recover to its initial temperature after the refrigeration was turned on. Transient heat conduction analyses for one-dimensional objects is in good agreement with the experimental results obtained in this study. From the analysis, it appears that the thermal mass of the stored product in refrigerated display cases is sufficient to allow product temperatures to safely drift for a significant time under reduced refrigeration system operation. Thus, strategies for shifting refrigeration system electrical demand can be developed. The use of an advanced refrigeration system controller that can respond to utility signals can enable demand shifting with minimal impact.« less

  17. Unexpected hypoxia-dependent erythropoietin secretion during experimental conditions not affecting tissue oxygen supply/demand ratio.

    PubMed

    Bozzini, C E; Barceló, A C; Conti, M I; Martínez, M P; Lezón, C E; Bozzini, C; Alippi, R M

    1997-02-01

    Although a great deal of evidence supports the hypothesis that plasma erythropoietin (EPO) levels of mammals are related to the oxygen supply to the tissues relative to their oxygen needs, several observation millitate against its inherent simplicity. This study presents our results obtained from in vivo experiments that suggest that hypoxia-dependent EPO production can be altered by conditions which apparently do not modify the tissue oxygen supply/demand ratio. Hypoxia-dependent EPO production rate (EPO-PR), derived from plasma EPO titers and plasma EPO half-lives, were estimated in both transfused-polycythemic and normocythemic mouse models subjected to different treatments. From calculations of the O2 carrying capacity of blood and body O2 consumption, it was assumed that the tissue supply/demand ratios were similar in both experimental and control mice of the same model at the time of induction of EPO production. The following observations were worth noting: (1) EPO-PRs in transfused polycythemic mice whose erythropoietic rates were stimulated by intermittent exposure to hypobaria (0.5 atm, 18 hr/day x 3 weeks), phenylhydrazine administration (40 mg/kg at weekly intervals x 3 weeks) or repeated rh-EPO injections (1500 U/kg 3 times a week x 3 weeks) before transfusion were more than five times high than in comparabily polycythemic mice whose erythropoietic rates were not stimulated previously; and (2) EPO-PR in response to hypobaric hypoxia was 2.08 times normal in normocythemic mice with cyclophosphamide (100 mg/kg) induced depression of erythropoiesis, and 0.33 times normal in normocythemic mice with rh-EPO (400 U/kg x 2) induced enhancement of erythropoiesis. Although the results obtained in polycythemic mice are difficult to explain, those from normocythemic mice suggest the existence of a feedback mechanism between EPO-responsive cells and EPO-producing cells. Both demonstrate the existence of experimental conditions in which modulation of the hypoxia

  18. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2013-07-01

    A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm-3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm-3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate

  19. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul; Guimaraes, Wladmir B.; Sanders, Curtis L.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  20. A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models

    PubMed Central

    Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K.

    2016-01-01

    The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement. PMID:27219067

  1. A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models.

    PubMed

    Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K

    2016-01-01

    The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement.

  2. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  3. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    NASA Astrophysics Data System (ADS)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  4. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    NASA Astrophysics Data System (ADS)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-07-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  5. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    USGS Publications Warehouse

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  6. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  7. Biological oxygen demand in soils and hydrogel compositions for plant protection of the rhizosphere

    NASA Astrophysics Data System (ADS)

    Valentinovich Smagin, Andrey

    2018-02-01

    Potential biological activity of mineral and organogenic samples from light-textured sod-podzolic soils as well as of hydrogel compositions for protecting the root layer from pathogenic microflora and unfavorable edaphic factors were studied in laboratory conditions by oxygen consumption under the optimal hydrothermic conditions with portable gas analyzers. We have conducted ecological standardization of biological activity and organic matter destruction estimated by biological oxygen demand (BOD) in the widespread sandy soils. The primary outcome was the scale of gradations of biological oxygen uptake in soils with a range of quantities of potential biological activity from “very low” (<2 g·m-3·hour-1) to “extremely high” (>140 g·m-3·hour-1), obtained on the basis of statistical processing of data array 1308 measurements. Acrylic polymer hydrogels had BOD = 0.2-2 g·m-3·hour-1, which corresponded to the periods of their half-lives from 0.2±0.1 to 6.8± 4.5 years, or relatively low resistance to biodestruction. In contrast to the pure gels, hydrogel compositions for rhizosphere based on ionic and colloidal silver showed low biological activity (BOD=0.01-0.2 g·m-3· hour-1) and, accordingly, significant resistance to biodegradation with half-lives from 5 to 70 years and above.

  8. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water

    NASA Astrophysics Data System (ADS)

    Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin

    2018-02-01

    With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.

  9. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  10. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  11. Effects of temperature and oxygen on growth and differentiation of embryos of the ground skink, Scincella lateralis.

    PubMed

    Flewelling, Sarena; Parker, Scott L

    2015-08-01

    Development of reptile embryos is dependent upon adequate oxygen availability to meet embryonic metabolic demand. Metabolic rate of embryos is temperature dependent, with oxygen consumption increasing exponentially as a function of temperature. Because metabolic rate is more temperature sensitive than diffusion, developmental processes are predicted to be oxygen-limited at high temperatures. We tested the hypothesis that the amount of development lizard embryos achieve in the oviduct is dependent upon both temperature and oxygen availability. We evaluated the effect of temperature (23, 33°C) and oxygen concentration (9%, 15%, 21% O2 ) on survival and development of embryos of the oviparous skink Scincella lateralis. We predicted that incubation at 33°C under hypoxic conditions would result in higher embryo mortality due to mismatch between embryo oxygen demand and oxygen supply compared to eggs incubated at 23°C under hypoxic conditions. Embryo mortality was highest at 33°C/9% O2 (86%) compared to 23°C/9% O2 (14%), however, mortality did not differ among any other oxygen-temperature treatment combination. Both temperature and oxygen affected differentiation, but the interaction between temperature and oxygen was not significant. Embryo growth in mass and hatchling mass were affected by oxygen concentration independent of temperature treatment. Differing responses of growth and differentiation to temperature and oxygen treatments suggests that somatic growth may be more sensitive to oxygen availability than differentiation. Results indicate that embryo mortality can occur both via the direct effect of high temperature on cellular function as well as indirectly through thermally induced oxygen diffusion limitation. © 2015 Wiley Periodicals, Inc.

  12. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource.

    PubMed

    Li, Yu-Long; Wang, Jin; Yue, Zheng-Bo; Tao, Wei; Yang, Hai-Bin; Zhou, Yue-Fei; Chen, Tian-Hu

    2017-07-01

    Biological treatment played an important role in the treatment of landfill leachate. In the current study, acid mine drainage (AMD) was used as a source of sulfate to strengthen the anaerobic treatment of landfill leachate. Effects of chemical oxygen demand (COD) and SO 4 2- mass concentration ratio on the decomposition of organic matter, methane production and sulfate reduction were investigated and the microbial community was analyzed using the high throughout methods. Results showed that high removal efficiency of COD, methane production and heavy metal removal was achieved when the initial COD/SO 4 2- ratio (based on mass) was set at 3.0. The relative abundance of anaerobic hydrogen-producing bacteria (Candidatus Cloacamonas) in the experimental group with the addition of AMD was significantly increased compared to the control. Abundance of hydrogenotrophic methanogens of Methanosarcina and Methanomassiliicoccus was increased. Results confirmed that AMD could be used as sulfate resource to strengthen the biological treatment of landfill leachate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. An Experiment to Introduce Mass Transfer Concepts Using a Commercial Hollow Fiber Blood Oxygenator

    ERIC Educational Resources Information Center

    McIver, Keith; Merrill, Thomas; Farrell, Stephanie

    2017-01-01

    A commercial hollow fiber blood oxygenation laboratory experiment was used to introduce lower level engineering students to mass balances in a two-phase system. Using measured values of concentration and flow rate, students calculated the rate of mass transfer from the gas phase and into the liquid phase, and compared the two values to determine…

  14. The influence of body mass and thoracic dimensions on arterial oxygenation in anaesthetized horses and ponies.

    PubMed

    Mansel, Juliet C; Clutton, R Eddie

    2008-09-01

    To examine the relationship between body mass and thoracic dimensions on arterial oxygen tensions (PaO(2)) in anaesthetized horses and ponies positioned in dorsal recumbency. Prospective clinical study. Thirty six client-owned horses and ponies, mean [+/-SD (range)] age 8.1 +/- 4.8 (1.5-20) years and mean body mass 467 +/- 115 (203-656) kg. Before general anaesthesia, food and water were withheld for 12 and 1 hours respectively. Body mass (kg), height at the withers (H), thoracic circumference (C), thoracic depth (length between dorsal spinous process and sternum; D), thoracic width (between point of shoulders; W), and thoracic diagonal length (point of shoulder to last rib; L) were measured. Pre-anaesthetic medication was with intravenous (IV) romifidine (0.1 mg kg(-1)). Anaesthesia was induced with an IV ketamine (2.2 mg kg(-1)) and diazepam (0.05 mg kg(-1)) combination and maintained with halothane in 1:1 oxygen:nitrous oxide (N(2)O) mixture. Animals were positioned in dorsal recumbency and allowed to breathe spontaneously. Nitrous oxide was discontinued after 10 minutes, and arterial blood samples obtained and analysed for gas tensions at 15, 30 and 60 minutes after connection to the anaesthetic breathing circuit. Data were analysed using anova and Pearson's correlation co-efficient. The height per unit body mass (H kg(-1)) and thoracic circumference per unit body mass (C kg(-1)) correlated strongly (r = 0.85, p < 0.001 and r = 0.82, p < 0.001 respectively) with arterial oxygen tensions (PaO(2)) at 15 minutes. There is a strong positive correlation between H kg(-1) and C kg(-1) and PaO(2) after 15 minutes of anaesthesia in halothane-anaesthetized horses positioned in dorsal recumbency. Readily obtained linear measurements (height and thoracic circumference) and body mass may be used to predict the ability of horses to oxygenate during anaesthesia.

  15. Optimal reduction of chemical oxygen demand and NH3-N from landfill leachate using a strongly resistant novel Bacillus salmalaya strain.

    PubMed

    Dadrasnia, Arezoo; Azirun, Mohd Sofian; Ismail, Salmah Binti

    2017-11-28

    When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH. Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH 3 -N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI. Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH 3 -N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.

  16. Atrial supply-demand balance in healthy adult pigs: coronary blood flow, oxygen extraction, and lactate production during acute atrial fibrillation.

    PubMed

    van Bragt, Kelly A; Nasrallah, Hussein M; Kuiper, Marion; Luiken, Joost J; Schotten, Ulrich; Verheule, Sander

    2014-01-01

    Little is known about how atrial oxygen supply responds to increased demand, and under which conditions it falls short (supply-demand mismatch). Here, we have investigated the vasodilator response, oxygen extraction, and lactate production of the left atrium (LA) and left ventricle (LV) in response to atrial pacing and atrial fibrillation (AF). Series A (n = 9 Dutch landrace pigs) was instrumented to measure LA and LV vascular conductance in branches of the circumflex artery. Coronary conductance reserve (CCR) was calculated as the ratio between conductance during adenosine infusion and baseline. Series B (n = 7) was instrumented with sampling catheters in LA and LV veins for determination of blood gases and lactate levels. LA CCR (1.76 ± 0.14) was significantly lower than LV CCR (3.16 ± 0.27, P = 0.002). However, basal oxygen extraction was lower in LA (27 ± 3%) than that in the LV (58 ± 6%, P = 0.0006), indicating a larger extraction reserve in the LA than that in the LV (4.68 ± 0.84 vs. 1.88 ± 0.26, P = 0.01). Atrial pacing caused an increase in LA conductance (Series A) and oxygen extraction (Series B). AF increased LA vascular conductance to 177 ± 14% at 1 min, 168 ± 14 at 5 min, and 164 ± 31% at 10 min of AF (P < 0.05 vs. baseline). Atrial oxygen extraction also increased from 26 ± 3% at baseline to 63 ± 5% (P < 0.01) at 5 min and 60 ± 11% (P < 0.01) at 10 min of AF. Arterio-venous lactate difference increased significantly (P = 0.02) during AF. In healthy pigs, the LA has a lower CCR, but a higher extraction reserve compared with the LV. Although both reserves were recruited during AF, atrial lactate production increased significantly.

  17. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Xiaobin; Liu, Yun

    2011-12-01

    With a growing interest in small 17O-anomaly, there is a pressing need for the precise ratio, ln 17α/ln 18α, for a particular mass-dependent fractionation process (MDFP) (e.g., for an equilibrium isotope exchange reaction). This ratio (also denoted as " θ") can be determined experimentally, however, such efforts suffer from the demand of well-defined process or a set of processes in addition to high precision analytical capabilities. Here, we present a theoretical approach from which high-precision ratios for MDFPs can be obtained. This approach will complement and serve as a benchmark for experimental studies. We use oxygen isotope exchanges in equilibrium processes as an example. We propose that the ratio at equilibrium, θE ≡ ln 17α/ln 18α, can be calculated through the equation below: θa-bE=κa+(κa-κb){ln18βb}/{ln18α} where 18βb is the fractionation factor between a compound "b" and the mono-atomic ideal reference material "O", 18αa-b is the fractionation factor between a and b and it equals to 18βa/ 18βb and κ is a new concept defined in this study as κ ≡ ln 17β/ln 18β. The relationship between θ and κ is similar to that between α and β. The advantages of using κ include the convenience in documenting a large number of θ values for MDFPs and in estimating any θ values using a small data set due to the fact that κ values are similar among O-bearing compounds with similar chemical groups. Frequency scaling factor, anharmonic corrections and clumped isotope effects are found insignificant to the κ value calculation. However, the employment of the rule of geometric mean (RGM) can significantly affect the κ value. There are only small differences in κ values among carbonates and the structural effect is smaller than that of chemical compositions. We provide κ values for most O-bearing compounds, and we argue that κ values for Mg-bearing and S-bearing compounds should be close to their high temperature limitation (i.e., 0.5210 for

  18. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  19. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  20. Mass loss of shuttle space suit orthofabric under simulated ionospheric atomic oxygen bombardment

    NASA Technical Reports Server (NTRS)

    Miller, W. L.

    1985-01-01

    Many polymeric materials used for thermal protection and insulation on spacecraft degrade significantly under prolonged bombardment by ionospheric atomic oxygen. The covering fabric of the multilayered shuttle space suit is composed of a loose weave of GORE-TEX fibers, Nomex and Kevlar-29, which are all polymeric materials. The complete evaluation of suit fabric degradation from ionospheric atomic oxygen is of importance in reevaluating suit lifetime and inspection procedures. The mass loss and visible physical changes of each test sample was determined. Kapton control samples and data from previous asher and flight tests were used to scale the results to reflect ionospheric conditions at about 220 km altitude. It is predicted that the orthofabric loses mass in the ionosphere at a rate of about 66% of the original orthofabric mass/yr. The outer layer of the two-layer orthofabric test samples shows few easily visible signs of degradation, even when observed at 440X. It is concluded that the orthofabric could suffer significant loss of performance after much less than a year of total exposure time, while the degradation might be undetectable in post flight visual examinations of space suits.

  1. A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand

    PubMed Central

    Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin

    2015-01-01

    A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397

  2. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment

    PubMed Central

    Yamashita, Takahiro; Ookawa, Natsuki; Ishida, Mitsuyoshi; Kanamori, Hiroyuki; Sasaki, Harumi; Katayose, Yuichi; Yokoyama, Hiroshi

    2016-01-01

    Biochemical oxygen demand (BOD) is a widely used index of water-quality assessment. Since bioelectrochemical BOD biosensors require anaerobic conditions for anodic reactions, they are not directly used in aerobic environments such as aeration tanks. Normally, the BOD biosensors are closed-type, where the anode is packed inside a closed chamber to avoid exposure to oxygen. In this study, a novel bioelectrochemical open-type biosensor was designed for in-situ monitoring of BOD during intermittent aeration. The open-type anode, without any protection against exposure to oxygen, was directly inserted into an intermittently aerated tank filled with livestock wastewater. Anodic potential was controlled using a potentiostat. Interestingly, this novel biosensor generated similar levels of current under both aerating and non-aerating conditions, and showed a logarithmic correlation (R2 > 0.9) of current with BOD concentrations up to 250 mg/L. Suspended solids in the wastewater attached to and covered the whole anode, presumably leading to the production of anaerobic conditions inside the covered anode via biological oxygen removal. Exoelectrogenic anaerobes (Geobacter spp.) were detected inside the covered anode using the 16S-rRNA gene. This biosensor will have various practical applications, such as the automatic control of aeration intensity and the in-situ monitoring of natural water environments. PMID:27917947

  3. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.

  4. What is the Effect of Case-Based Learning on the Academic Achievement of Students on the Topic of "Biochemical Oxygen Demand?"

    NASA Astrophysics Data System (ADS)

    Günter, Tuğçe; Alpat, Sibel Kılınç

    2017-11-01

    The purpose of this study was to investigate the effect of the case-based learning (CBL) method used in "biochemical oxygen demand (BOD)," which is a topic taught in the environmental chemistry course, at Dokuz Eylul University, on the academic achievement and opinions of students. The research had a quasi-experimental design and the study group consisted of 4th and 5th grade students (N = 18) attending the Chemistry Teaching Program in a university in Izmir. The "Biochemical Oxygen Demand Achievement Test (BODAT)" and the structured interview form were used as data collection tools. The results of BODAT post-test showed the higher increase in the achievement scores of the experimental group may be an indication of the effectiveness of the CBL method in improving academic achievement in the relevant topic. In addition, the experimental and control group students had positive opinions regarding the method, the scenario, and the material. The students found the method, the scenario, and the material to be interesting, understandable/instructional, relatable with everyday life, suitable for the topic, and enhancing active participation.

  5. TRANSIENT BIOGEOCHEMICAL CYCLING AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Through this research, the effects of variable sediment accumulation and oxygen concentration on SOD and soluble chemical fluxes will be quantified. This study will enable correct estimates of “diffuser-induced” SOD to be made that will facilitate appropriate desig...

  6. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    PubMed

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  7. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    PubMed

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  8. Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control.

    PubMed

    Simon, F Xavier; Penru, Ywann; Guastalli, Andrea R; Llorens, Joan; Baig, Sylvie

    2011-07-15

    Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mgO(2)L(-1)) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD(7) obtained from the Mediterranean Sea found to be 2.0±0.3 mgO(2)L(-1) but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Immediate drop on demand technology (I-DOT) coupled with mass spectrometry via an open port sampling interface.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos; Boeltz, Harry

    2017-11-01

    The aim of this work was to demonstrate and evaluate the analytical performance of coupling the immediate drop on demand technology to a mass spectrometer via the recently introduced open port sampling interface and ESI. Methodology & results: A maximum sample analysis throughput of 5 s per sample was demonstrated. Signal reproducibility was 10% or better as demonstrated by the quantitative analysis of propranolol and its stable isotope-labeled internal standard propranolol-d7. The ability of the system to multiply charge and analyze macromolecules was demonstrated using the protein cytochrome c. This immediate drop on demand technology/open port sampling interface/ESI-MS combination allowed for the quantitative analysis of relatively small mass analytes and was used for the identification of macromolecules like proteins.

  10. Biological Productivity from an Oxygen Mass Balance in the subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Giesbrecht, K. E.; Hamme, R. C.

    2008-12-01

    Biological productivity is an important process controlling the export of carbon into the deep ocean and thus influencing the earth's climate. An O2 mass balance of the upper ocean can estimate this export of organic carbon if the physical processes affecting the O2 concentrations are accounted for. This can be accomplished by measuring the dissolved O2/Ar ratio, because their similar physical properties allow us to consider Ar an 'abiotic' O2 analogue. Here we present a two-year data set of O2/N2/Ar ratio measurements collected at Station Papa and along Line P in 2007/08. Line P, situated in the subarctic North Pacific, is a series of oceanographic stations running from the southwest tip of Vancouver Island to Station Papa (50°N, 145°W), one of the oldest deep-ocean time series in existence which is located in the High-Nutrient/Low-Chlorophyll (HNLC) region of the subarctic gyre. Current cruises along Line P run three times per year, typically in February, June and August. The dissolved gas ratios are measured using a stable isotope mass spectrometer and oxygen concentrations by titration. In a simple steady state, we equate biological O2 production to diffusive gas exchange, using the O2/Ar ratio to normalize the physical component of the oxygen signal and calculate the net biological oxygen production. Diffusive gas exchange is calculated using a wind speed parameterization. Preliminary estimates of the net biological production in the mixed layer at Station Papa for 2007 are calculated at 30.9 and 14.0 mmol C m-2 d- 1 for June and August respectively, both exhibiting mixed layer O2/Ar supersaturations. The O2/Ar undersaturation in the mixed layer for February 2007 suggests net respiration at that time. The wind speed parameterization of diffusive gas exchange is the major source of error for this method. We plan to refine our productivity calculation to account for vertical mixing and also by measuring rates of production using a number of different methods

  11. First oxygenated gasoline season shakes out differently than expected

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, C.; Hackworth, J.H.; Shore, J.M.

    1993-10-25

    The U.S.'s first oxygenated gasoline season began Nov. 1, 1992. Refiners and marketers achieved compliance with these new specs with little upset to the gasoline production and distribution system. But although the season went smoothly, it did not shake out exactly as projected. Demand for oxygenated gasoline and, in particular, methyl tertiary butyl ether (MTBE), was lower than expected. Prior to the season, refiners were concerned that oxygenates might be in short supply. No supply shortages developed, however, and prices of both oxygenates and gasoline decreased during the season. The paper discusses gasoline demand, administration of the oxygenated gasoline program,more » spillover, reduced demand, ethanol, oxygenate supply, prices, ethanol tax credit, refinery economics, and the outlook for next season.« less

  12. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  13. Characterization of landfill leachates by molecular size distribution, biodegradability, and inert chemical oxygen demand.

    PubMed

    Amaral, Míriam C S; Ferreira, Cynthia F A; Lange, Liséte Celina; Aquino, Sérgio F

    2009-05-01

    This work presents results from a detailed characterization of landfill leachates of different ages from a landfill in a major Brazilian city. This characterization consists of determining the molecular size distribution and the inert chemical oxygen demand (COD) and the biodegradability of both aerobic and anaerobic processes. Results show that leachate with a high COD concentration leachate has low biodegradability. A significant fraction of the COD is not characterized as protein, carbohydrate, or lipids, which reinforces the hypothesis that the remaining fraction was present in all leachate fractions (less than 1 kDa; between 1 and 10 kDa; between 10 and 100 kDa; and greater than 100 kDa) and is refractory. These results suggest that leachates with such characteristics require treatment systems that use physical-chemical processes as a pre- or post-treatment step to biological processes.

  14. Occupational demand and human rights. Public safety officers and cardiorespiratory fitness.

    PubMed

    Shephard, R J

    1991-08-01

    The issue of discrimination in physically demanding employment, such as police, firefighters, prison guards and military personnel, is contentious. In terms of oxygen transport, the 'action limit' (calling for personnel selection or task redesign) is a steady oxygen consumption of 0.7 L/min, while the maximum permissible limit is 2.1 L/min. Note is taken of the commonly expressed belief that public safety duties are physically demanding, calling for personnel with an aerobic power of at least 3 L/min, or 42 to 45 ml/kg/min. The actual demands of such work can be assessed on small samples by physiological measurements (using heart rate or oxygen consumption meters), but the periods sampled may not be typical of a normal day. A Gestalt can also be formed as to the heaviness of a given job, or a detailed task analysis can be performed; most such analyses of public safety work list distance running and other aerobic activities infrequently. An arbitrary requirement of 'above average fitness' is no longer accepted by courts, but a further approach is to examine the characteristics of those currently meeting the demands of public safety jobs satisfactorily. Young men commonly satisfy the 3 L/min standard, but this is not usually the case for women or older men; in the case of female employees, it also seems unreasonable that they should be expected to satisfy the same standards as men, since a lower body mass reduces the energy cost of most of the tasks that they must perform. A second criterion sometimes applied to physically demanding work (a low vulnerability to heart attacks) is examined critically. It is concluded that the chances that a symptom-free public safety officer will develop a heart attack during a critical solo mission are so low that cardiac risk should not be a condition of employment. Arbitrary age- and sex-related employment criteria are plainly discriminatory, since some women and 65-year-old men have higher levels of physical fitness than the

  15. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems.

    PubMed

    Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen

    2017-05-01

    In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q' air ) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.

  16. Monitoring the variations of the oxygen transfer rate in a full scale membrane bioreactor using daily mass balances.

    PubMed

    Racault, Y; Stricker, A-E; Husson, A; Gillot, S

    2011-01-01

    Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.

  17. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    PubMed

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  18. A Distonic Radical-Ion for Detection of Traces of Adventitious Molecular Oxygen (O2) in Collision Gases Used in Tandem Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Jariwala, Freneil B.; Hibbs, John A.; Weisbecker, Carl S.; Ressler, John; Khade, Rahul L.; Zhang, Yong; Attygalle, Athula B.

    2014-09-01

    We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [•SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases.

  19. Oxygen transfer in a full-depth biological aerated filter.

    PubMed

    Stenstrom, Michael K; Rosso, Diego; Melcer, Henryk; Appleton, Ron; Occiano, Victor; Langworthy, Alan; Wong, Pete

    2008-07-01

    The City of San Diego, California, evaluated the performance capabilities of biological aerated filters (BAFs) at the Point Loma Wastewater Treatment Plant. The City conducted a 1-year pilot-plant evaluation of BAF technology supplied by two BAF manufacturers. This paper reports on the first independent oxygen-transfer test of BAFs at full depth using the offgas method. The tests showed process-water oxygen-transfer efficiencies of 1.6 to 5.8%/m (0.5 to 1.8%/ft) and 3.9 to 7.9%/m (1.2 to 2.4%/ft) for the two different pilot plants, at their nominal design conditions. Mass balances using chemical oxygen demand and dissolved organic carbon corroborated the transfer rates. Rates are higher than expected from fine-pore diffusers for similar process conditions and depths and clean-water conditions for the same column and are mostly attributed to extended bubble retention time resulting from interactions with the media and biofilm.

  20. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    NASA Astrophysics Data System (ADS)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  1. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  2. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  3. Experimental and CFD-PBM Study of Oxygen Mass Transfer Coefficient in Different Impeller Configurations and Operational Conditions of a Two-Phase Partitioning Bioreactor.

    PubMed

    Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh

    2017-02-01

    In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).

  4. Influence of oxygen on alcoholic fermentation by a wine strain of Torulaspora delbrueckii: kinetics and carbon mass balance.

    PubMed

    Brandam, Cédric; Lai, Quoc Phong; Julien-Ortiz, Anne; Taillandier, Patricia

    2013-01-01

    Torulaspora delbrueckii metabolism was assessed in a synthetic culture medium similar to grape must under various conditions: no aeration and three different oxygen feeds, in order to determine the effect of oxygen on metabolism. Carbon and nitrogen mass balances were calculated to quantify metabolic fluxes. The effect of oxygen was to decrease the flux of carbon going into the fermentation pathway in favor of growth. In the absence of aeration, higher amounts of glycerol were produced, probably to maintain the redox balance. The oxygen requirement of this strain was high, since even for the highest air supply oxygen became limiting after 24 h. Nevertheless, this strain developed well in the absence of oxygen and consumed 220 g/L of sugars (glucose/fructose) in 166 h at 20 °C, giving a good ethanol yield (0.50 g/g).

  5. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells (MFCs) are bio-electrochemical devices, where usually the anode (but sometimes the cathode, or both) contains microorganisms able to generate and sustain an electrochemical gradient which is used typically to generate electrical power. In the more studied set-up, the anode contains heterotrophic bacteria in anaerobic conditions, capable to oxidize organic molecules releasing protons and electrons, as well as other by-products. Released protons could reach the cathode (through a membrane or not) whereas electrons travel across an external circuit originating an easily measurable direct current flow. MFCs have been proposed fundamentally as electric power producing devices or more recently as hydrogen producing devices. Here we will review the still incipient development of analytical uses of MFCs or related devices or set-ups, in the light of a non-restrictive MFC definition, as promising tools to asset water quality or other measurable parameters. An introduction to biological based analytical methods, including bioassays and biosensors, as well as MFCs design and operating principles, will also be included. Besides, the use of MFCs as biochemical oxygen demand sensors (perhaps the main analytical application of MFCs) is discussed. In a companion review (Part 2), other new analytical applications are reviewed used for toxicity sensors, metabolic sensors, life detectors, and other proposed applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  7. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  8. The Effects of Oxygen Concentration on Benthic Foraminiferal Growth and Size

    NASA Astrophysics Data System (ADS)

    Ng, B.; Keating-Bitonti, C.; Payne, J.

    2015-12-01

    Many organisms use oxygen through cellular respiration in order to gain energy. For this reason, oxygen has a significant influence on organism size and growth. The amount of oxygen an organism needs depends on its metabolic demand, which is partially a function organism size (i.e., mass). The Santa Monica Basin (SMB) is an oxygen minimum zone located off the southern coast of California that maintains a steep oxygen gradient and is thus an ideal location for conducting research on how oxygen influences organism size. Here we use benthic foraminifera, widespread single-celled protists that produce shells (tests), to study the controls of oxygen on organism size. Because cell mass and cell volume are correlated, we study trends in the log test volume of four abundant species from SMB: Uvigerina peregrina, Bolivina spissa, B. argentea, Loxostomum pseudobeyrichi. These foraminifera make multi-chambered tests, thus we also count the number of chambers per specimen in order to further assess their growth under varying oxygen concentrations. We analyzed the data using quantile regressions to determine trends in not only median values of the log test volume and number of chambers as a function of oxygen concentrations, but also in the 10th, 25th, 75th, and 90th percentiles because oxygen availability often constrains the maximum and minimum size of organisms. Our results show a positive correlation between oxygen concentration and the maximum log test volumes of L. pseudobeyrichi and B. argentea, supporting our hypothesis. However, we observed a negative correlation between oxygen concentration and the maximum percentiles of log test volume in U. peregrina. Nevertheless, U. peregrina still displays a positive correlation between chamber number and oxygen concentrations in line with our hypothesis. The preponderance of trends supporting a direct correlation between log test volume or chamber number and oxygen concentration suggest that oxygen limits the maximum obtainable

  9. Characterization of a novel micro-pressure swirl reactor for removal of chemical oxygen demand and total nitrogen from domestic wastewater at low temperature.

    PubMed

    Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang

    2017-06-01

    A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3  h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.

  10. Surface acoustic wave oxygen pressure sensor

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  11. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO.

  12. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  13. Optimisation of chemical oxygen demand removal from landfill leachate by sonocatalytic degradation in the presence of cupric oxide nanoparticles.

    PubMed

    Amirian, Paria; Bazrafshan, Edris; Payandeh, Abolfazl

    2017-06-01

    Leachate is the liquid formed when waste breaks down in the landfill and water filters through that waste. This liquid is very toxic and can pollute the land, ground water, and water resources. In most countries, it is mandatory for landfills to be protected against leachate. In addition to all other harms to the environment, disposal of raw landfill leachate can be a major source of hazard to closed water bodies. Hence, treatment of landfill leachate is considered an essential step prior to its discharge from source. This article describes the sonocatalytic degradation of chemical oxygen demand in landfill leachate using cupric oxide nanoparticles as sonocatalyst (cupric oxide/ultrasonic) and aims to establish this method as an effective alternative to currently used approaches. An ideal experimental design was carried out based on a central composite design with response surface methodology. The response surface methodology was used to evaluate the effect of process variables including pH values (3, 7, 11), cupric oxide nanoparticles dose (0.02, 0.035, 0.05 g), reaction time (10, 35, 60 minutes), ultrasonic frequency (35, 37, 130 KHz), and their interaction towards the attainment of their optimum conditions. The derived second-order model, including both significant linear and quadratic terms, seemed to be adequate in predicting responses (R 2  = 0.9684 and prediction R 2  = 0.9581). The optimum conditions for the maximum chemical oxygen demand sonocatalytic degradation of 85.82% were found to be pH 6.9, cupric oxide nanoparticles dosage of 0.05 gr L -1 , and the ultrasonic frequency of 130 kHz at a contact time of 10 min.

  14. Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dalhgren, R. A.

    2005-12-01

    Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.

  15. Biological Oxygen Productivity Over The Last Glacial Termination From Triple Oxygen Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Blunier, T.; Bender, M. L.; Hendricks, M. B.

    The atmospheric oxygen isotope signature of O2 is linked to the oxygen signature of seawater through photosynthesis and respiration. Fractionation during these pro- cesses is mass dependent affecting 17O about half as much as 18O. A mass indepen- dent fractionation process takes place during isotope exchange between O2 and CO2 in the stratosphere (Thiemens, 1999; Luz et al., 1999). The magnitude of the mass- independent anomaly in the triple isotope composition of O2 depends on relative rates of biological O2 cycling and photochemical reactions in the stratosphere. Variations of this anomaly thus allows us to estimate changes of mass dependent O2 production by photosynthesis versus mass independent O2-CO2 exchange in the stratosphere. We reconstruct total oxygen productivity for the past from 17O and 18O measure- ments of O2 trapped in ice cores. With a box model we estimate that the total biogenic productivity was only 76-83 % of today for the glacial and was probably still lower than today during the glacial-interglacial transition and the early Holocene. In principle we can calculate the oxygen flux from the ocean biosphere if we know the oxygen flux from the land biosphere. Calculated ocean production is very sensitive to the estimate of land biosphere production. The latter term remains uncertain, however, and we can presently only constrain glacial ocean production to 88 to 140 % of the present value.

  16. OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284

  17. Total haemoglobin mass, but not haemoglobin concentration, is associated with preoperative cardiopulmonary exercise testing-derived oxygen-consumption variables.

    PubMed

    Otto, J M; Plumb, J O M; Wakeham, D; Clissold, E; Loughney, L; Schmidt, W; Montgomery, H E; Grocott, M P W; Richards, T

    2017-05-01

    Cardiopulmonary exercise testing (CPET) measures peak exertional oxygen consumption ( V˙O2peak ) and that at the anaerobic threshold ( V˙O2 at AT, i.e. the point at which anaerobic metabolism contributes substantially to overall metabolism). Lower values are associated with excess postoperative morbidity and mortality. A reduced haemoglobin concentration ([Hb]) results from a reduction in total haemoglobin mass (tHb-mass) or an increase in plasma volume. Thus, tHb-mass might be a more useful measure of oxygen-carrying capacity and might correlate better with CPET-derived fitness measures in preoperative patients than does circulating [Hb]. Before major elective surgery, CPET was performed, and both tHb-mass (optimized carbon monoxide rebreathing method) and circulating [Hb] were determined. In 42 patients (83% male), [Hb] was unrelated to V˙O2 at AT and V˙O2peak ( r =0.02, P =0.89 and r =0.04, P =0.80, respectively) and explained none of the variance in either measure. In contrast, tHb-mass was related to both ( r =0.661, P <0.0001 and r =0.483, P =0.001 for V˙O2 at AT and V˙O2peak , respectively). The tHb-mass explained 44% of variance in V˙O2 at AT ( P <0.0001) and 23% in V˙O2peak ( P =0.001). In contrast to [Hb], tHb-mass is an important determinant of physical fitness before major elective surgery. Further studies should determine whether low tHb-mass is predictive of poor outcome and whether targeted increases in tHb-mass might thus improve outcome. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  19. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  20. Mass-specific respiration of mesozooplankton and its role in the maintenance of an oxygen-deficient ecological barrier (BEDOX) in the upwelling zone off Chile upon presence of a shallow oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Donoso, Katty; Escribano, Ruben

    2014-01-01

    A shallow oxygen minimum zone (OMZ) in the coastal upwelling zone off Chile may vertically confine most zooplankton to a narrow (< 50 m) upper layer. From laboratory experiments, we estimated oxygen consumption of the mesozooplankton community obtained in Bay of Mejillones, northern Chile (23°S) in May 2010, December 2010 and August 2011. Mass-specific respiration rates were in the range of 8.2-24.5 μmol O2 mg dry mass- 1 day- 1, at an average temperature of 12 °C. Estimates of the mesozooplankton biomass in the water column indicated that its aerobic respiration may remove daily a maximum of about 20% of oxygen available at the base of the oxycline. Since previous work indicates that zooplankton aggregate near the base of the oxycline, the impact of aerobic respiration on oxygen content might be even stronger at this depth. Mesozooplankton respiration, along with community respiration by microorganisms near the base of the oxycline and a strongly stratified condition (limiting vertical flux of O2), are suggested as being critical factors causing and maintaining a persistent subsurface oxygen-deficient ecological barrier (BEDOX) in the upwelling zone. This BEDOX layer can have a major role in affecting and regulating zooplankton distribution and their dynamics in the highly productive coastal upwelling zone of the Humboldt Current System.

  1. Estimating Oxygen Needs for Childhood Pneumonia in Developing Country Health Systems: A New Model for Expecting the Unexpected

    PubMed Central

    Bradley, Beverly D.; Howie, Stephen R. C.; Chan, Timothy C. Y.; Cheng, Yu-Ling

    2014-01-01

    Background Planning for the reliable and cost-effective supply of a health service commodity such as medical oxygen requires an understanding of the dynamic need or ‘demand’ for the commodity over time. In developing country health systems, however, collecting longitudinal clinical data for forecasting purposes is very difficult. Furthermore, approaches to estimating demand for supplies based on annual averages can underestimate demand some of the time by missing temporal variability. Methods A discrete event simulation model was developed to estimate variable demand for a health service commodity using the important example of medical oxygen for childhood pneumonia. The model is based on five key factors affecting oxygen demand: annual pneumonia admission rate, hypoxaemia prevalence, degree of seasonality, treatment duration, and oxygen flow rate. These parameters were varied over a wide range of values to generate simulation results for different settings. Total oxygen volume, peak patient load, and hours spent above average-based demand estimates were computed for both low and high seasons. Findings Oxygen demand estimates based on annual average values of demand factors can often severely underestimate actual demand. For scenarios with high hypoxaemia prevalence and degree of seasonality, demand can exceed average levels up to 68% of the time. Even for typical scenarios, demand may exceed three times the average level for several hours per day. Peak patient load is sensitive to hypoxaemia prevalence, whereas time spent at such peak loads is strongly influenced by degree of seasonality. Conclusion A theoretical study is presented whereby a simulation approach to estimating oxygen demand is used to better capture temporal variability compared to standard average-based approaches. This approach provides better grounds for health service planning, including decision-making around technologies for oxygen delivery. Beyond oxygen, this approach is widely

  2. Electrochemical treatment of rice grain-based distillery effluent: chemical oxygen demand and colour removal.

    PubMed

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar

    2014-01-01

    The electrochemical (EC) treatment of rice grain-based distillery wastewater was carried out in a 1.5 dm3 electrolytic batch reactor using aluminium plate electrodes. With the four-plate configurations, a current density (j) of 89.3 A/m2 and pH 8 was found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 93% and 87%, respectively. The chemical dissolution of aluminium was strongly influenced by initial pH (pHi). At higher pHi (pH 9.5) anode consumption decreased while energy consumption increased. At the optimal current density 89.3 A/m2, the aluminium electrode consumption was 16.855 g/dm3 wastewater and energy consumption was 31.4 Wh/dm3 achieving a maximum COD removal of 87%. The settling and filterability characteristics ofelectrochemically treated sludge were also analysed at different pH. It was noted that treated slurry at pHi 9.5 gave best settling characteristic, which decreased with increase in pH. EC-treated effluent at pHi 8 had provided best filterability. Characteristics of scum and residues are also analysed at different pH.

  3. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran.

    PubMed

    Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi

    2017-04-01

    In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  4. Overcoming the Gas-Liquid Mass Transfer of Oxygen by Coupling Photosynthetic Water Oxidation with Biocatalytic Oxyfunctionalization.

    PubMed

    Hoschek, Anna; Bühler, Bruno; Schmid, Andreas

    2017-11-20

    Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, especially for O 2 -dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O 2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O 2 , the chemo- and regioselective hydroxylation of nonanoic acid methyl ester to ω-hydroxynonanoic acid methyl ester was driven by O 2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe 2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O 2 -transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.

    1991-01-01

    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  6. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model.

    PubMed

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli

    2014-01-01

    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.

  7. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  8. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  9. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  10. Elucidating mechanisms for insect body size: partial support for the oxygen-dependent induction of moulting hypothesis.

    PubMed

    Kivelä, Sami M; Viinamäki, Sonja; Keret, Netta; Gotthard, Karl; Hohtola, Esa; Välimäki, Panu

    2018-01-25

    Body size is a key life history trait, and knowledge of its mechanistic basis is crucial in life history biology. Such knowledge is accumulating for holometabolous insects, whose growth is characterised and body size affected by moulting. According to the oxygen-dependent induction of moulting (ODIM) hypothesis, moult is induced at a critical mass at which oxygen demand of growing tissues overrides the supply from the tracheal respiratory system, which principally grows only at moults. Support for the ODIM hypothesis is controversial, partly because of a lack of proper data to explicitly test the hypothesis. The ODIM hypothesis predicts that the critical mass is positively correlated with oxygen partial pressure ( P O 2 ) and negatively with temperature. To resolve the controversy that surrounds the ODIM hypothesis, we rigorously test these predictions by exposing penultimate-instar Orthosia gothica (Lepidoptera: Noctuidae) larvae to temperature and moderate P O 2  manipulations in a factorial experiment. The relative mass increment in the focal instar increased along with increasing P O 2 , as predicted, but there was only weak suggestive evidence of the temperature effect. Probably owing to a high measurement error in the trait, the effect of P O 2  on the critical mass was sex specific; high P O 2  had a positive effect only in females, whereas low P O 2  had a negative effect only in males. Critical mass was independent of temperature. Support for the ODIM hypothesis is partial because of only suggestive evidence of a temperature effect on moulting, but the role of oxygen in moult induction seems unambiguous. The ODIM mechanism thus seems worth considering in body size analyses. © 2018. Published by The Company of Biologists Ltd.

  11. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...,100 cc. with a constant time interval between respirations. (d) If first-aid oxygen equipment is... minute per person for whom first-aid oxygen is required. (e) If portable oxygen equipment is installed...

  12. The effect of the oxygen uptake-power output relationship on the prediction of supramaximal oxygen demands.

    PubMed

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-01-01

    The aim of this study was to investigate the relationship between oxygen uptake (V̇O2) and power output at intensities below and above the lactate threshold (LT) in cyclists; and to determine the reliability of supramaximal power outputs linearly projected from these relationships. Nine male cyclists (mean±standard deviation age: 41±8 years; mass: 77±6 kg, height: 1.79±0.05 m and V̇O2max: 54±7 mL∙kg-1∙min-1) completed two cycling trials each consisting of a step test (10×3 min stages at submaximal incremental intensities) followed by a maximal test to exhaustion. The lines of best fit for V̇O2 and power output were determined for: the entire step test; stages below and above the LT, and from rolling clusters of five consecutive stages. Lines were projected to determine a power output predicted to elicit 110% peak V̇O2. There were strong linear correlations (r≥0.953; P<0.01) between V̇O2 and power output using the three approaches; with the slope, intercept, and projected values of these lines unaffected (P≥0.05) by intensity. The coefficient of variation of the predicted power output at 110% V̇O2max was 6.7% when using all ten submaximal stages. Cyclists exhibit a linear V̇O2 and power output relationship when determined using 3 min stages, which allows for prediction of a supramaximal intensity with acceptable reliability.

  13. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.

    PubMed

    Epstein, Tamir; Xu, Liping; Gillies, Robert J; Gatenby, Robert A

    2014-01-01

    Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism

  14. Water Masses in the Eastern Mediterranean Sea: An Analysis of Measured Isotopic Oxygen

    NASA Astrophysics Data System (ADS)

    de Ruggiero, Paola; Zanchettin, Davide; Bensi, Manuel; Hainbucher, Dagmar; Stenni, Barbara; Pierini, Stefano; Rubino, Angelo

    2018-04-01

    We investigate aspects of the water mass structure of the Adriatic and Ionian basins (Eastern Mediterranean Sea) and their interdecadal variability through statistical analyses focused on δ18Ο measurements carried out in 1985, 1990, and 2011. In particular, the more recent δ18Ο measurements extend throughout the entire water column and constitute, to the best of our knowledge, the largest synoptic dataset encompassing different sub-basins of the Mediterranean Sea. We study the statistical linkages between temperature, salinity, dissolved oxygen and δ18Ο. We find that δ18Ο is largely independent from the other parameters, and it can be used to trace major water masses that are typically found in the basins, including the Adriatic Dense Water, the Levantine Intermediate Water, and the Cretan Intermediate and Dense Waters. Finally, we explore the possibility of using δ18Ο concentration as a proxy for dominant modes of large-scale oceanic variability in the Mediterranean Sea.

  15. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure.

    PubMed

    Saunders, Philo U; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J

    2013-12-01

    Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hb(mass)) resulting in a greater maximal oxygen uptake (VO₂(max)). Not all studies have shown a proportionate increase in VO₂(max) as a result of increased Hb(mass). The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hb(mass) and VO₂(max) testing before and after intervention. For the pooled data, the correlation between per cent change in Hb(mass) and per cent change in VO₂(max) was significant (p<0.0001, r(2)=0.15), with a slope (95% CI) of 0.48 (0.30 to 0.67) intercept free to vary and 0.62 (0.46 to 0.77) when constrained through the origin. When separated, the correlations were significant for the altitude and control groups, with the correlation being stronger for the altitude group (slope of 0.57 to 0.72). With high statistical power, we conclude that altitude training of endurance athletes will result in an increase in VO₂(max) of more than half the magnitude of the increase in Hb(mass), which supports the use of altitude training by athletes. But race performance is not perfectly related to relative VO₂(max), and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance.

  16. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  17. Overheated and Out of Breath: Temperature Regulation of Respiration and Oxygen Supply in Coastal Zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M.; Elliott, D. T.; Pierson, J. J.

    2016-02-01

    Increasing global coastal hypoxia occurs under a large range of temperature and salinity conditions. Temperature directly influences oxygen solubility in seawater as well as the oxygen demand of zooplankton, thus oxygen concentration alone is not sufficient to categorize the biological impact of hypoxia for pelagic organisms. To effectively assess the impacts of hypoxic stress on zooplankton habitat space and production, it is necessary to consider the effects of temperature on both oxygen availability and zooplankton metabolism. Our analysis and modeling evaluate available oxygen (partial pressure and concentration) in the context of ambient temperature conditions and zooplankton oxygen demand. We will present allometric models, accounting for both body size and temperature that predict temperature-dependent oxygen supply and demand in coastal zooplankton. Our goal is to develop generalized, functional relationships that describe and quantify the interactive effects of temperature and low oxygen on coastal zooplankton that can lead to improved size-structured models that serve to predict impacts of increasing coastal hypoxia on pelagic food webs.

  18. Assessment of physiological demand in kitesurfing.

    PubMed

    Vercruyssen, F; Blin, N; L'huillier, D; Brisswalter, J

    2009-01-01

    To evaluate the physiological demands of kitesurfing, ten elite subjects performed an incremental running test on a 400-m track and a 30-min on-water crossing trial during a light crosswind (LW, 12-15 knots). Oxygen uptake (V(O)(2)) was estimated from the heart rate (HR) recorded during the crossing trial using the individual HR-V(O)(2) relationship determined during the incremental test. Blood lactate concentration [La(b)] was measured at rest and 3 min after the exercise completion. Mean HR and estimated V(O)(2) values represented, respectively 80.6 +/- 7.5% of maximal heart rate and 69.8 +/- 11.7% of maximal oxygen uptake for board speeds ranging from 15 to 17 knots. Low values for [La(b)] were observed at the end of crossing trial (2.1 +/- 1.2 mmol l(-1). This first analysis of kitesurfing suggests that the energy demand is mainly sustained by aerobic metabolism during a LW condition.

  19. Progressively heterogeneous mismatch of regional oxygen delivery to consumption during graded coronary stenosis in pig left ventricle.

    PubMed

    Alders, David J C; Groeneveld, A B Johan; Binsl, Thomas W; van Beek, Johannes H G M

    2015-11-15

    In normal hearts, myocardial perfusion is fairly well matched to regional metabolic demand, although both are distributed heterogeneously. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. In the present study, we investigated whether metabolism-perfusion correlation diminishes during coronary stenosis, indicating increasing mismatch of regional oxygen supply to demand. Thirty anesthetized male pigs were studied: controls without coronary stenosis (n = 11); group I, left anterior descending (LAD) coronary stenosis leading to coronary perfusion pressure reduction to 70 mmHg (n = 6); group II, stenosis with perfusion pressure of about 35 mmHg (n = 6); and group III, stenosis with perfusion pressure of 45 mmHg combined with adenosine infusion (n = 7). [2-(13)C]- and [1,2-(13)C]acetate infusion was used to calculate regional O2 consumption from glutamate NMR spectra measured for multiple tissue samples of about 100 mg dry mass in the LAD region. Blood flow was measured with microspheres in the same regions. In control hearts without stenosis, regional oxygen extraction did not correlate with basal blood flow. Average myocardial O2 delivery and consumption decreased during coronary stenosis, but vasodilation with adenosine counteracted this. Regional oxygen extraction was on average decreased during stenosis, suggesting adaptation of metabolism to lower oxygen supply after half an hour of ischemia. Whereas regional O2 delivery correlated with O2 consumption in controls, this relation was progressively lost with graded coronary hypotension but partially reestablished by adenosine infusion. Therefore, coronary stenosis leads to heterogeneous metabolic stress indicated by decreasing regional O2 supply to demand matching in myocardium during partial coronary obstruction. Copyright © 2015 the American Physiological Society.

  20. Technical aspects of oxygen saving devices.

    PubMed

    Brambilla, I; Arlati, S; Chiusa, I; Micallef, E

    1990-01-01

    Oxygen economizing devices have been extensively studied, both at rest and during muscular exercise, in an attempt to increase the autonomy of a portable oxygen apparatus. The aim of this study is threefold: first, to suggest a simple method to verify in a simple way the technical accuracy of a demand flow oxygen delivery device; second, to suggest how we can monitor in a simple way the clinical efficacy of an economizer; and third, to remember that we can utilize an oxygen saving device to give a better protection than nasal prongs against the worsening of HbO2 desaturation induced by exercise.

  1. Comparison of airline passenger oxygen systems.

    PubMed

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  2. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  3. Sediment‐associated organic matter sources and sediment oxygen demand in a Special Area of Conservation (SAC): A case study of the River Axe, UK

    PubMed Central

    Zhang, Y.; McMillan, S.; Dixon, E. R.; Stringfellow, A.; Bateman, S.; Sear, D. A.

    2017-01-01

    Abstract Oxygen demand in river substrates providing important habitats for the early life stages of aquatic ecology, including lithophilous fish, can arise due to the oxidation of sediment‐associated organic matter. Oxygen depletion associated with this component of river biogeochemical cycling, will, in part, depend on the sources of such material. A reconnaissance survey was therefore undertaken to assess the relative contributions from bed sediment‐associated organic matter sources potentially impacting on the River Axe Special Area of Conservation (SAC), in SW England. Source fingerprinting, including Monte Carlo uncertainty analysis, suggested that the relative frequency‐weighted average median source contributions ranged between 19% (uncertainty range 0–82%) and 64% (uncertainty range 0–99%) for farmyard manures or slurries, 4% (uncertainty range 0–49%) and 35% (uncertainty range 0–100%) for damaged road verges, 2% (uncertainty range 0–100%) and 68% (uncertainty range 0–100%) for decaying instream vegetation, and 2% (full uncertainty range 0–15%) and 6% (uncertainty range 0–48%) for human septic waste. A reconnaissance survey of sediment oxygen demand (SOD) along the channel designated as a SAC yielded a mean SOD5 of 4 mg O2 g−1 dry sediment and a corresponding SOD20 of 7 mg O2 g−1 dry sediment, compared with respective ranges of 1–15 and 2–30 mg O2 g−1 dry sediment, measured by the authors for a range of river types across the UK. The findings of the reconnaissance survey were used in an agency (SW region) catchment appraisal exercise for informing targeted management to help protect the SAC. PMID:29527135

  4. Mechanisms of oxygen permeation through plastic films and barrier coatings

    NASA Astrophysics Data System (ADS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µm) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  5. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  6. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand, and...

  7. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand, and...

  8. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand, and...

  9. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand, and...

  10. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment standards for the oxygen... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is... crew on duty. (b) Portable walk-around oxygen units of the continuous flow, diluter-demand, and...

  11. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wu, C.; Wang, B.; Liu, D.; Han, Z.

    2017-07-01

    Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.

  12. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  13. Retinal oxygen distribution and the role of neuroglobin.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.

  14. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Yin, Rongxin; Brown, Carrie

    2009-06-01

    The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones. This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates ? one in Visaliamore » (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.« less

  15. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults.

    PubMed

    Mondal, Himel; Mishra, Snigdha Prava

    2017-06-01

    Maximal oxygen consumption (VO 2max ) is an important measure of cardiorespiratory capacity of an individual at a given degree of fitness and oxygen availability. Risk of cardiovascular diseases increases with increasing degree of obesity and a low level of VO 2max has been established as an independent risk factor for cardiovascular mortality. To determine VO 2max in young adults and to find its correlation with Body Mass Index (BMI), Body Fat% and Fat Free Mass (FFM). Fifty four (male=30, female=24) healthy young adults of age group18-25 years after screening by Physical Activity Readiness Questionnaire (PAR-Q) participated in the study. Height was measured by stadiometer. Weight was measured by digital weighing scale with 0.1 kg sensitivity. Body fat% was measured by Bioelectrical Impedance Analysis (BIA) method. FFM was calculated by subtracting fat mass from the body weight. VO 2max (mL.kg -1 .min -1 ) was obtained by Submaximal Exercise Test (SET) by first two stages of Bruce Protocol with the basis of linear relationship between Heart Rate (HR) and oxygen consumption (VO 2 ). Data were analysed statistically in GraphPad Prism software version 6.01 for windows. VO 2max (mL.kg -1 .min -1 ) of male (43.25±7.25) was significantly (p<0.001) higher than female (31.65±2.10). BMI showed weak negative correlation (r= -0.3232, p=0.0171) with VO 2max but Body Fat% showed strong negative correlation (r= -0.7505, p<0.001) with VO 2max . FFM positively correlated (r=0.3727, p=0.0055) with VO 2max . Increased body fat is associated with decreased level of VO 2max in young adults. Obesity in terms of Fat% is a better parameter than BMI for prediction of low VO 2max .

  16. Study of oxygen/tetraethoxysilane plasmas in a helicon reactor using optical emission spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.

    2000-08-01

    Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.

  17. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  18. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid

    DTIC Science & Technology

    2013-03-01

    Technologies International, LTD for collection and recycling of fluids. Spent fluid, diluted with any water, slush or snow removed from the aircraft or...Resistance Unmated only – some failures Voltage Withstand Testing Unmated only – some failures Plastic Windows Crazing Effect Pass The testing did result...At Joint Base McGuire-Dix-Lakehurst, however, waste PG is currently collected with a vacuum truck and recycled . Factors such as the market demand

  19. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid

    DTIC Science & Technology

    2013-03-04

    Technologies International, LTD for collection and recycling of fluids. Spent fluid, diluted with any water, slush or snow removed from the aircraft or...Resistance Unmated only – some failures Voltage Withstand Testing Unmated only – some failures Plastic Windows Crazing Effect Pass The testing did result...At Joint Base McGuire-Dix-Lakehurst, however, waste PG is currently collected with a vacuum truck and recycled . Factors such as the market demand

  20. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    PubMed

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  1. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    NASA Astrophysics Data System (ADS)

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g-1 at 10 mA g-1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  2. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range

    PubMed Central

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-01-01

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g−1 at 10 mA g−1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134

  3. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.

    PubMed

    Kitaura, Hirokazu; Zhou, Haoshen

    2015-08-21

    There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.

  4. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects.

    PubMed

    Beck, Darren T; Martin, Jeffrey S; Casey, Darren P; Braith, Randy W

    2013-09-01

    Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120-139 mm Hg or diastolic blood pressure (DBP) = 80-89 mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18-35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm(2) and 612±167 dynes s/cm(2) (P < 0.05), respectively. PHRT and PHET reduced carotid-radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral-distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects.

  5. Exercise Training Reduces Peripheral Arterial Stiffness and Myocardial Oxygen Demand in Young Prehypertensive Subjects

    PubMed Central

    2013-01-01

    BACKGROUND Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. METHODS Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120–139mm Hg or diastolic blood pressure (DBP) = 80–89mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18–35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. RESULTS PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm2 and 612±167 dynes s/cm2 (P < 0.05), respectively. PHRT and PHET reduced carotid–radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral–distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. CONCLUSIONS This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects. PMID:23736111

  6. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    PubMed

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-06

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Oxygen in acute and chronic wound healing.

    PubMed

    Schreml, S; Szeimies, R M; Prantl, L; Karrer, S; Landthaler, M; Babilas, P

    2010-08-01

    Oxygen is a prerequisite for successful wound healing due to the increased demand for reparative processes such as cell proliferation, bacterial defence, angiogenesis and collagen synthesis. Even though the role of oxygen in wound healing is not yet completely understood, many experimental and clinical observations have shown wound healing to be impaired under hypoxia. This article provides an overview on the role of oxygen in wound healing and chronic wound pathogenesis, a brief insight into systemic and topical oxygen treatment, and a discussion of the role of wound tissue oximetry. Thus, the aim is to improve the understanding of the role of oxygen in wound healing and to advance our management of wound patients.

  9. Power System Mass Analysis for Hydrogen Reduction Oxygen Production on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2009-01-01

    The production of oxygen from the lunar regolith requires both thermal and electrical power in roughly similar proportions. This unique power requirement is unlike most applications on the lunar surface. To efficiently meet these requirements, both solar PV array and solar concentrator systems were evaluated. The mass of various types of photovoltaic and concentrator based systems were calculated to determine the type of power system that provided the highest specific power. These were compared over a range of oxygen production rates. Also a hybrid type power system was also considered. This system utilized a photovoltaic array to produce the electrical power and a concentrator to provide the thermal power. For a single source system the three systems with the highest specific power were a flexible concentrator/Stirling engine system, a rigid concentrator/Stirling engine system and a tracking triple junction solar array system. These systems had specific power values of 43, 34, and 33 W/kg, respectively. The hybrid power system provided much higher specific power values then the single source systems. The best hybrid combinations were the triple junction solar array with the flexible concentrator and the rigid concentrator. These systems had a specific power of 81 and 68 W/kg, respectively.

  10. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    PubMed

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  11. Environmental Impact of Ionic Liquids: Automated Evaluation of the Chemical Oxygen Demand of Photochemically Degraded Compounds.

    PubMed

    Costa, Susana P F; Pereira, Sarah A P; Pinto, Paula C A G; Araujo, André R T S; Passos, Marieta L C; Saraiva, M Lúcia M F S

    2017-05-19

    A novel automated fluorimetric technique was developed for the assessment of the chemical oxygen demand (COD) of ionic liquids (ILs) and combined with a photodegradation step to promote IL degradation. The method was implemented on a sequential injection analysis (SIA) system and is based on the reduction of cerium(IV) in the presence of irradiated ILs. Compounds incorporating the chloride anion were found to exhibit higher COD values and 1-butyl-3-methylimidazolium chloride ([bmim] + [Cl] - ), 1-butyl-1-methylpyrrolidinium chloride ([bmpyr] + [Cl] - ), and1-hexyl-3-methylimidazolium chloride ([hmim] + [Cl] - ) also exhibited considerable photodegradability, whereas the cholinium cation and methanesulfonate and tetrafluoroborate anions showed resistance to photolysis. The developed methodology proved to be a simple, affordable, and robust method, showing good repeatability under the tested conditions (rsd <3.5 %, n=10). Therefore, it is expected that the developed approach can be used as a screening method for the preliminary evaluation of compounds' potential impact in the aquatic field. Additionally, the photolysis step presents an attractive option to promote degradation of ILs prior to their release into wastewater. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. Copyright © 2016, American Association for the Advancement of Science.

  13. Selecting an oxygen plant for a copper smelter modernization

    NASA Astrophysics Data System (ADS)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  14. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. Copyright © 2016 the American Physiological Society.

  15. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  16. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass.

    PubMed

    Asahara, Ryota; Endo, Kana; Liang, Nan; Matsukawa, Kanji

    2018-05-31

    We have reported using near-infrared spectroscopy that an increase in prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) at the start of cycling exercise has relation to central command, defined as a feedforward signal descending from higher brain centers. The final output of central command evokes the exercise effort-dependent cardiovascular responses. If the prefrontal cortex may output the final signal of central command toward the autonomic nervous system, the prefrontal oxygenation should increase depending on exercise effort. To test the hypothesis, we investigated the effects of exercise intensity and muscle mass on prefrontal oxygenation in 13 subjects. The subjects performed one- or two-legged cycling at various relative intensities for 1 min. The prefrontal Oxy-Hb and cardiovascular variables were simultaneously measured during exercise. The increase in cardiac output and the decrease in total peripheral resistance at the start of one- and two-legged cycling were augmented in proportion to exercise intensity and muscle mass recruitment. The prefrontal Oxy-Hb increased at the start of voluntary cycling, while such increase was not developed during passive cycling. Mental imagery of cycling also increased the prefrontal Oxy-Hb, concomitantly with peripheral muscle vasodilatation. However, the increase in prefrontal Oxy-Hb at the start of voluntary cycling seemed independent of exercise intensity and muscle mass recruitment. It is likely that the increased prefrontal activity at the start of cycling exercise is not representative of the final output signal of central command itself toward the autonomic nervous system but may trigger neuronal activity in the caudal brain responsible for the generation of central command.

  17. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  18. A reagent-free tubular biofilm reactor for on-line determination of biochemical oxygen demand.

    PubMed

    Liu, Changyu; Zhao, Huijun; Gao, Shan; Jia, Jianbo; Zhao, Limin; Yong, Daming; Dong, Shaojun

    2013-07-15

    We reported a reagent-free tubular biofilm reactor (BFR) based analytical system for rapid online biochemical oxygen demand (BOD) determination. The BFR was cultivated using microbial seeds from activated sludge. It only needs tap water to operate and does not require any chemical reagent. The analytical performance of this reagent-free BFR system was found to be equal to or better than the BFR system operated using phosphate buffer saline (PBS) and high purity deionized water. The system can readily achieve a limit of detection of 0.25 mg O2 L(-1), possessing superior reproducibility, and long-term operational and storage stability. More importantly, we confirmed for the first time that the BFR system is capable of tolerating common toxicants found in wastewaters, such as 3,5-dichlorophenol and Zn(II), Cr(VI), Cd(II), Cu(II), Pb(II), Mn(II) and Ni(II), enabling the method to be applied to a wide range of wastewaters. The sloughing and clogging are the important attributes affecting the operational stability, hence, the reliability of most online wastewater monitoring systems, which can be effectively avoided, benefiting from the tubular geometry of the reactor and high flow rate conditions. These advantages, coupled with simplicity in device, convenience in operation and minimal maintenance, make such a reagent-free BFR analytical system promising for practical BOD online determination. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  20. Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals

    NASA Astrophysics Data System (ADS)

    Okabe, Toru H.; Zheng, Chenyi; Taninouchi, Yu-ki

    2018-06-01

    Oxygen removal from metallic Ti is extremely difficult and, currently, there is no commercial process for effectively deoxidizing Ti or its alloys. The oxygen concentration in Ti scraps is normally higher than that in virgin metals such as in Ti sponges produced by the Kroll process. When scraps are remelted with virgin metals for producing primary ingots of Ti or its alloys, the amount of scrap that can be used is limited owing to the accumulation of oxygen impurities. Future demands of an increase in Ti production and of mitigating environmental impacts require that the amount of scrap recycled as a feed material of Ti ingots should also increase. Therefore, it is important to develop methods for removing oxygen directly from Ti scraps. In this study, we evaluated the deoxidation limit for β-Ti using Y or light rare earth metals (La, Ce, Pr, or Nd) as a deoxidant. Thermodynamic considerations suggest that extra-low-oxygen Ti, with an oxygen concentration of 100 mass ppm or less can be obtained using a molten salt equilibrating with rare earth metals. The results presented herein also indicate that methods based on molten salt electrolysis for producing rare earth metals can be utilized for effectively and directly deoxidizing Ti scraps.

  1. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  2. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    PubMed

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for East Fork White River, Bartholomew County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, James G.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)

  4. MTBE, Oxygenates, and Motor Gasoline (Short-Term Energy Outlook Supplement October 1999)

    EIA Publications

    1999-01-01

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  5. Oxygen atom reaction with shuttle materials at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1982-01-01

    Surfaces of materials used in the space shuttle orbiter payload bay and exposed during STS-1 through STS-3 were examined after flight. Paints and polymers, in particular Kapton used on the television camera thermal blanket, showed significant change. Generally, the change was a loss of surface gloss on the polymer with apparent aging on the paint surfaces. The Kapton surfaces showed the greatest change, and postflight analyses showed mass loss of 4.8 percent on STS-2 and 35 percent on STS-3 for most heavily affected surfaces. Strong shadow patterns were evident. The greatest mass loss was measured on surfaces which were exposed to solar radiation in conjunction with exposure in the vehicle velocity vector. A mechanism which involves the interaction of atomic oxygen with organic polymer surfaces is proposed. Atomic oxygen is the major ambient species at low orbital altitudes and presents a flux of 8 x 10 to the 14th power atoms/cu cm sec for reaction. Correlation of the expected mass loss based on ground-based oxygen atom/polymer reaction rates shows lower mass loss of the Kapton than measured. Consideration of solar heating effects on reaction rates as well as the high oxygen atom energy due to the orbiter's orbital velocity brings the predicted and measured mass loss in surprisingly good agreement. Flight sample surface morphology comparison with ground based Kapton/oxygen atom exposures provides additional support for the oxygen interaction mechanism.

  6. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  7. Oxygen requirement of separated hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  8. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    PubMed

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  9. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  10. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    PubMed

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  11. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  12. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  13. The oxygen paradox of neurovascular coupling

    PubMed Central

    Leithner, Christoph; Royl, Georg

    2014-01-01

    The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931

  14. PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL

    EPA Science Inventory

    Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...

  15. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    PubMed

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modelling oxygen transfer using dynamic alpha factors.

    PubMed

    Jiang, Lu-Man; Garrido-Baserba, Manel; Nolasco, Daniel; Al-Omari, Ahmed; DeClippeleir, Haydee; Murthy, Sudhir; Rosso, Diego

    2017-11-01

    Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ultraviolet spectrophotometry as an index parameter for estimating the biochemical oxygen demand of domestic wastewater.

    PubMed

    Nataraja, M; Qin, Y; Seagren, E A

    2006-07-01

    The relationship between ultraviolet absorbance at 280 nm (UV280) and the 5-day Biochemical Oxygen Demand (BOD5) test was evaluated using wastewater samples collected during March - December 1998 from the Fort Meade wastewater treatment plant (Maryland, U.S.A.). Three types of samples were collected: raw influent wastewater, primary effluent, and the effluent from the nitrification settling basin. A regression of BOD5 on UV280 was obtained using half of the data, with the other half of the data used to test application of the equation. The presence of NO3 and NO2, did not interfere with the BOD5/UV relationship. However, the relative fraction of organic compounds that absorb at UV280 and are biodegradable did appear to decrease across the treatment plant, thereby reducing the strength of the association between BOD5 and UV280 further along the treatment train. Interestingly, the exclusion of solids > 1 microm from the BOD5 test did not strengthen the association between BOD5 and UV280. These results suggest that simple UV absorbance measurements may be a useful analytical tool for wastewater treatment personnel, allowing them to quickly monitor for changes in the BOD5 during the treatment process and to quickly estimate the BOD5 when determining what dilutions to use in the standard BOD5 test. However, such relationships are likely to be wastewater and treatment plant specific and variable with time and treatment.

  18. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  19. Physiological Demands of Simulated Off-Road Cycling Competition

    PubMed Central

    Smekal, Gerhard; von Duvillard, Serge P.; Hörmandinger, Maximilian; Moll, Roland; Heller, Mario; Pokan, Rochus; Bacharach, David W.; LeMura, Linda M.; Arciero, Paul

    2015-01-01

    The purpose of the study was to measure the demands of off-road cycling via portable spirometry, leg-power output (PO), heart rate (HR) and blood lactate (BLa) concentration. Twenty-four male competitive cyclists (age: 29±7.2 yrs, height: 1.79 ± 0.05 m, body mass: 70.0 ± 4.9 kg, VO2peak: 64.9 ± 7.5 ml·kg-1·min-1) performed simulated mountain bike competitions (COMP) and laboratory tests (LabT). From LabT, we determined maximal workload and first and second ventilatory thresholds (VT1, VT2). A high-performance athlete (HPA) was used for comparison with three groups of subjects with different sport-specific performance levels. Load profiles of COMP were also investigated during uphill, flat and downhill cycling. During the COMP, athletes achieved a mean oxygen uptake (VO2COMP) of 57.0 ± 6.8 ml·kg-1·min-1 vs. 71.1 ml·kg-1·min-1 for the HPA. The POCOMP was 2.66±0.43 W·kg-1 and 3.52 W·kg-1 for the HPA. POCOMP, VO2COMP and HRCOMP were compared to corresponding variables at the VT2 of LabT. LabT variables correlated with racing time (RTCOMP) and POCOMP (p < 0.01 to <0.001; r-0.59 to -0.80). The VO2peak (LabT) accounted for 65% of variance of a single COMP test. VO2COMP, POCOMP and also endurance variables measured from LabTs were found as important determinants for cross-country performance. The high average VO2COMP indicates that a high aerobic capacity is a prerequisite for successful COMP. Findings derived from respiratory gas measures during COMPs might be useful when designing mountain bike specific training. Key points Cross- country cycling is characterized by high oxygen costs due to the high muscle mass simultaneously working to fulfill the demands of this kind of sports. Heart rate and blood lactate concentration measures are not sensitive enough to assess the energy requirements of COMP. Therefore, respiratory gas and power output measures are helpful to provide new information to physiological profile of cross- country cycling. An excellent

  20. Obesity Decreases Perioperative Tissue Oxygenation

    PubMed Central

    Kabon, Barbara; Nagele, Angelika; Reddy, Dayakar; Eagon, Chris; Fleshman, James W.; Sessler, Daniel I.; Kurz, Andrea

    2005-01-01

    Background: Obesity is an important risk factor for surgical site infections. The incidence of surgical wound infections is directly related to tissue perfusion and oxygenation. Fat tissue mass expands without a concomitant increase in blood flow per cell, which might result in a relative hypoperfusion with decreased tissue oxygenation. Consequently, we tested the hypotheses that perioperative tissue oxygen tension is reduced in obese surgical patients. Furthermore, we compared the effect of supplemental oxygen administration on tissue oxygenation in obese and non-obese patients. Methods: Forty-six patients undergoing major abdominal surgery were assigned to one of two groups according to their body mass index (BMI): BMI < 30 kg/m2 (non-obese) and BMI ≥ 30 kg/m2 (obese). Intraoperative oxygen administration was adjusted to arterial oxygen tensions of ≈150 mmHg and ≈300 mmHg in random order. Anesthesia technique and perioperative fluid management were standardized. Subcutaneous tissue oxygen tension was measured with a polarographic electrode positioned within a subcutaneous tonometer in the lateral upper arm during surgery, in the recovery room, and on the first postoperative day. Postoperative tissue oxygen was also measured adjacent to the wound. Data were compared with unpaired two tailed t-tests and Wilcoxon rank-sum tests; P < 0.05 was considered statistically significant. Results: Intraoperative subcutaneous tissue oxygen tension was significantly less in the obese patients at baseline (36 vs. 57 mmHg, P = 0.002) and with supplemental oxygen administration (47 vs. 76 mmHg, P = 0.014). Immediate postoperative tissue oxygen tension was also significantly less in subcutaneous tissue of the upper arm (43 vs. 54 mmHg, P = 0.011) as well as near the incision (42 vs. 62 mmHg, P = 0.012) in obese patients. In contrast, tissue oxygen tension was comparable in each group on the first postoperative morning. Conclusion: Wound and tissue hypoxia were common in obese

  1. Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland.

    PubMed

    O'Boyle, Shane; McDermott, Georgina; Silke, Joe; Cusack, Caroline

    2016-03-01

    In the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K. mikimotoi cellular carbon content of 329pgCcell -1 (n=20) to calculate the carbonaceous and nitrogenous oxygen demand following bloom collapse. The method was validated against measurements of biochemical oxygen demand and K. mikimotoi cell concentration. The estimated potential oxygen utilisation (POU) was in good agreement with field observations across a range of cell concentrations. The magnitude of POU following bloom collapse, with the exception of three coastal areas, was considered insufficient to cause harm to most marine organisms. This indicates that the widespread occurrence of mortality was primarily due to other factors such as cellular toxicity and/or mucilage production, and not oxygen depletion or related phenomena. In Donegal Bay, Kilkieran Bay and inner Dingle Bay, where cell densities were in the order of 10 6 cellsL -1 , estimated POU was sufficient to cause hypoxia. Of the three areas, Donegal Bay is considered to be the most vulnerable due to its hydrographic characteristics (seasonally stratified, weak residual flow) and hypoxic conditions (2.2mgL -1 O 2 ) were directly observed in the Bay post bloom collapse. Here, depending on the time of bloom collapse, depressed DO levels could persist for weeks and continue to have a potentially chronic impact on the Bay. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mass Fluxes of Ice and Oxygen Across the Entire Lid of Lake Vostok from Observations of Englacial Radiowave Attenuation

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Kintner, P. M. S.; MacGregor, J. A.

    2017-12-01

    Over deep Antarctic subglacial lakes, spatially varying ice thickness and the pressure-dependent melting point of ice result in areas of melting and accretion at the ice-water interface, i.e., the lake lid. These ice mass fluxes drive lake circulation and, because basal Antarctic ice contains air-clathrate, affect the input of oxygen to the lake, with implications for subglacial life. Inferences of melting and accretion from radar-layer tracking and geodesy are limited in spatial coverage and resolution. Here we develop a new method to estimate rates of accretion, melting, and the resulting oxygen input at a lake lid, using airborne radar data over Lake Vostok together with ice-temperature and chemistry data from the Vostok ice core. Because the lake lid is a coherent reflector of known reflectivity (at our radar frequency), we can infer depth-averaged radiowave attenuation in the ice, with spatial resolution 1 km along flight lines. Spatial variation in attenuation depends mostly on variation in ice temperature near the lid, which in turn varies strongly with ice mass flux at the lid. We model ice temperature versus depth with ice mass flux as a parameter, thus linking that flux to (observed) depth-averaged attenuation. The resulting map of melt- and accretion-rates independently reproduces features known from earlier studies, but now covers the entire lid. We find that accretion is dominant when integrated over the lid, with an ice imbalance of 0.05 to 0.07 km3 a-1, which is robust against uncertainties.

  3. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.

    2015-06-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  4. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.

    2016-02-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≍ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm-3 day-1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date

  5. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    DTIC Science & Technology

    2015-04-22

    ceased. Oxygen concentration was continuously measured with a fast laser diode oxygen analyzer (O2CAP, Oxigraf, Inc., Mountain View, CA) throughout the...duration of operation. The output generated from the COGs was analyzed by a gas mass spectrometer (QGA model HAS 301, Hiden Analytical, Livonia, MI...throughout the range of bolus volumes with each device at respiratory rates of 20 and 30 breaths /min with each bolus setting. Data were recorded every

  6. Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.

    PubMed

    Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven

    2016-11-30

    Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.

  7. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  8. Ocean Ridges and Oxygen

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  9. Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater

    NASA Astrophysics Data System (ADS)

    Mai, W.; Zhang, J.-F.; Zhao, X.-M.; Li, Z.; Xu, Z.-W.

    2017-11-01

    Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.

  10. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wildcat Creek, Howard County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)

  11. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  12. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  13. A consistent simulation of oxygen isotope mass-independent fractionation (MIF) in CO and O3 using AC-GCM EMAC

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey; Jöckel, Patrick; Brenninkmeijer, Carl A. M.

    2015-04-01

    We present the most consistent estimate of the atmospheric distribution of oxygen mass-independent fractionation (MIF) of carbon monoxide (Δ17O(CO) = (δ17O(CO)+1)/(δ18O(CO)+1)β-1, β = 0.528, V-SMOW scale) inferred using the ECHAM/MESSy Atmospheric Chemistry (EMAC) model (Jöckel et al., 2010). Although MIF of CO is largely determined by its removal reaction with OH, implementing a comprehensive chemistry scheme and detailed surface emissions in EMAC allows to single out the lesser inputs of MIF due to oxygen from ozone and other atmospheric oxygen reservoirs. The model shows that less than 2% of CO molecules inherit their oxygen atoms from O3 (mostly via ozonolysis reactions) which translates into an additional +0.60o in the average tropospheric Δ17O(CO) value. The remaining non-MIF oxygen (from water and atmospheric O2) outbalances this input by -0.24o respectively. The chemical kinetics of alkene ozonolysis (viz. yield of CO per reacted O3 and O atoms transfer to CO) simulated in EMAC is in good agreement with the laboratory studies of Röckmann et al. (1998a). This also pertains to the inferred (OH) sink-induced effective tropospheric MIF of +(4.3±0.2)o in comparison to +(4.1±0.3)o reckoned by Röckmann et al. (1998b). The explicitly simulated tropospheric Δ17O(O3) value in EMAC averages at +30.4o and has small variation, which is consistent with that expected from the laboratory data. Instead, the most recent observations of ozone tropospheric MIF (Vicars and Savarino, 2014) suggest a value of +25o being the most representative, which renders the simulated MIF input from O3 in CO potentially overestimated by ~20%. The EMAC-simulated δ18O(O3), however, agrees well with observational data, whilst sensitivity studies confirm non-negligible increase in atmospheric δ18O(CO) due to input of O3 oxygen to CO. A pronounced CO enrichment in heavy oxygen is expected in the stratosphere via the reactions of methane and O(1D), provided that the latter inherits

  14. Quadriceps oxygenation during isometric exercise in sailing.

    PubMed

    Vogiatzis, I; Tzineris, D; Athanasopoulos, D; Georgiadou, O; Geladas, N

    2008-01-01

    The aim of the present study was to investigate why blood lactate after prolonged quadriceps contraction during hiking is only marginally increased. Eight sailors performed five 3-min hiking bouts interspersed with 5-s recovery periods. Whole body oxygen uptake, heart rate and lactate were recorded, along with continuous-wave near-infrared spectroscopy measures of quadriceps oxygenation. The time for 50% re-oxygenation was also assessed as an indication of the degree of localized oxygen delivery stress. Hiking elicited a significant (p = 0.001) increase in mean (+/- SD) heart rate (124 +/- 10 beats . min (-1)) which was accompanied by a disproportionately low oxygen uptake (12 +/- 2 ml.kg(-1).min(-1)). Lactate was significantly (p = 0.001) increased throughout hiking manoeuvres, though post-exercise it remained low (3.2 +/- 0.9 mmol.l(-1)). During the hiking bouts mean quadriceps oxygenation was significantly (p = 0.001) reduced compared to baseline (by 33 +/- 5%), indicating an imbalance between muscle oxygen accessibility and oxygen demand. During rest intervals quadriceps oxygenation was partially restored. After the end of the final bout the time for 50 % re-oxygenation was only 8 +/- 2 s, whereas recovery of quadriceps oxygenation and oxygen uptake was completed within 3 min. We conclude that the observed low lactate could be attributed to the small oxygen and energy deficits during hiking as the muscles' oxygen accessibility is presumably partially restored during the brief rest intervals.

  15. Photoelectron resonance capture ionization-aerosol mass spectrometry of the ozonolysis products of oleic acid particles: Direct measure of higher molecular weight oxygenates

    NASA Astrophysics Data System (ADS)

    Zahardis, James; Lafranchi, Brian W.; Petrucci, Giuseppe A.

    2005-04-01

    The heterogeneous reaction of particle-phase 9-octadecenoic acid (oleic acid) and gas-phase ozone in a flow reactor was studied by photoelectron resonance capture ionization (PERCI) mass spectrometry. This soft ionization technique facilitated one of the first simultaneous, direct observations of all four of the major products predicted for this reaction: nonanal, nonanoic acid, 9-oxononanoic acid, and azelaic acid. In addition, a series of higher molecular weight oxygenated compounds were observed directly for the first time. The proposed structures are all cyclic oxygenates and contain the oxygen-oxygen moiety, including secondary ozonides and cyclic geminal diperoxides. Mechanisms for the formation of these products are proposed. The mechanisms are generally 1,3-dipolar cycloadditions that lead to five- and six-member oxygen-containing rings. The mechanisms are shown to involve short-lived Criegee intermediates reacting with aldehydes and other Criegee intermediates. Atmospheric implications of these higher molecular weight compounds are suggested and include enhancing the fatty acid medium's capacity to act as a source of radicals due to the prominence of the peroxide moiety. The low volatility coupled with the high polarity of these compounds may alter particle phase hygroscopicity that can enhance the cloud condensation nuclei properties of these particles.

  16. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  17. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    PubMed Central

    Li, Yongli; Lv, Xiao; Zhou, Jing; Shi, Chenchen; Duan, Ting

    2017-01-01

    ABSTRACT The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2) of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air). No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent. PMID:28396489

  18. Long-period oxygen-rich optical Miras in the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Jura, M.; Yamamoto, A.; Kleinmann, S. G.

    1993-01-01

    The spatial distribution of the oxygen-rich Miras with periods longer than 400 days in the neighborhood of the sun were determined using available survey and the K-band period luminosity relationship. It is found that the exponential scale height of these stars is near 240 pc. There is a marked contrast between the Mira population at about 1 kpc from the Galactic center where there are nearly as many long-period oxygen-rich Miras as intermediate-period oxygen-rich Miras. It is hypothesized that, at about 1 kpc from the Galactic center, the main sequence stars with masses larger than 1 solar mass have higher metallicities than main-sequence stars with the same masses in the solar neighborhood. In the solar neighborhood such main sequence stars become carbon-rich on the AGB and in the region near the Galactic center they become long-period oxygen-rich Miras.

  19. Potential linkage between sediment oxygen demand and pore water chemistry in weir-impounded rivers.

    PubMed

    Lee, Mi-Hee; Jung, Heon-Jae; Kim, Sung-Han; An, Sung-Uk; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin

    2018-04-01

    Due to recent weir construction on four major rivers in South Korea, sediment has accumulated in the river bottom near the weirs, which has in turn raised concerns over the quality of overlying water. In this study, the seasonal and spatial variations of sediment oxygen demand (SOD) and the influencing factors were explored using pore water chemistry for the weir-impounded rivers. Muddy and sandy sediment samples were taken from 24 different sites along the four major rivers in summer and autumn, 2016. The SOD was measured in a laboratory based on 10-hour incubation at in situ temperature. The measured pore water chemistry included the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), inorganic nitrogen (NH 3 -N, NO 3 -N, NO 2 -N), and phosphate phosphorous (PO 4 -P), and the optical properties from UV absorption spectra and fluorescence excitation-emission matrixes coupled with parallel factor analysis (EEM-PARAFAC). Significant differences in SOD values between muddy and sandy sediments were found only in summer (p=0.047). The higher SOD in summer versus autumn (p=0.015) was attributed to seasonal temperature differences. The higher NH 3 -N and the lower NO 3 -N of the pore water samples in summer versus autumn suggested that organic nitrogen decomposition via an ammonification and nitrification process could operate as an important factor for the SOD variations in summer and autumn, respectively. Principal component analysis revealed the mutual contributions of nitrogen-associated processes and the organic composition in pore water to increasing SOD levels. NH 3 -N in sediment pore water alone could be a good predictor for SOD. However, multiple regression analysis using NH 3 -N, fluorescence index and terrestrial humic-like components improved the estimation capability for SOD variations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Test Would Quantify Combustion Oxygen From Different Sources

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.

    1993-01-01

    Proposed isotope-enrichment scheme enables determination of contributions of dual sources of oxygen for combustion. Liquid oxygen or other artificial stream enriched with O(18) to about 1 percent by weight. Combustion products analyzed by mass spectrometer to measure relative abundances of H2O(18) and H2O(16). From relative abundances of water products measured, one computes relative contribution of oxygen extracted from stream compared to other source of oxygen in combustion process. Used to determine contributions of natural oxygen in air and liquid oxygen supplied in separate stream mixed with air or sent directly into combustion chamber.

  1. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    PubMed

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  2. Measurement of systemic oxygen consumption in patients during extracorporeal membrane oxygenation--description of a new method and the first clinical observations.

    PubMed

    Cheypesh, A; Yu, X; Li, J

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides temporary life-saving support for patients with severe cardiac failure, but is associated with significant morbidity and mortality. While ECMO enables oxygen delivery (DO2), little is known about oxygen consumption (VO2), largely due to technical difficulties. We aimed to introduce the adaptation of respiratory mass spectrometry to measure VO2 in patients during ECMO and to use this unique model to determine the pathological dependency of VO2 on DO2 in humans. Respiratory mass spectrometry remains the 'state-of-the-art' method, allowing the highly sensitive and rapid measurement of VO2 in critically ill patients. The principle and design of the respiratory mass spectrometer are described, together with the setting up of this machine with the ECMO oxygenator and the native lungs of the patients. In two patients with severe dilated cardiomyopathy and little cardiac contraction, the decrease in pump flow and, hence, DO2 by 20% was associated with a decrease in VO2 by 5% and 8%, respectively, whereas the increase in pump flow was not associated with any significant change in VO2. The direct measurement of VO2 by respiratory mass spectrometry in ECMO patients provides a unique technique for clinical research on the metabolism and VO2-DO2 relationship in this special group of critically ill patients. Our pilot study is the first to demonstrate a pathological dependency of VO2 on DO2 in humans. Further studies are warranted with this technique to examine the changes and the factors affecting systemic oxygen transport in patients during ECMO.

  3. [Mass-transfer, utilization, and diffusion of oxygen in skeletal muscles of the stenohaline goby Gobius cobitus Pallas under conditions of hypoosmotic medium].

    PubMed

    Soldatov, A A

    2012-01-01

    Effect of hypoosmotic conditions of medium on oxygen regime of skeletal muscles of the stenohalin goby Gobius cobitus Pallas was studied under conditions of experiment. The control fish group was maintained at 12-14 %o, the experimental one - at 4.8-5.6 per thousand. Duration of the experiment - 44-45 days, water temperature - 15 +/- 1 degrees C, photoperiod - 12 day/12 night. It was established that under conditions of external hypoosmia there occurred hydration of the goby skeletal muscles and a decrease of their diffusion capability with respect to oxygen. The latter was accompanied by the tissue P(O2) decrease, which is indicated by low values of P(O2) in the venous blood outflowing from muscles. For the first 14-16 days of adaptation to the hypoosmotic medium there were restricted processes of mass transfer and oxygen utilization, which was associated with a decrease of the voluminous tissue blood flow and the blood oxygen concentration. These changes occurred on the background of the blood plasma hydration and a decrease of the number of circulated erythrocytes, and then they were completely compensated.

  4. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saikat; Wang, Bo; Cao, Ye

    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally,more » the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.« less

  5. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny.

    PubMed

    Jensen, Mark A; Fitzgibbon, Quinn P; Carter, Chris G; Adams, Louise R

    2013-09-01

    Intraspecific analyses of the relationship between metabolic rate and mass have rarely been considered during complete ontogeny. Spiny lobsters are fascinating candidates to examine metabolic changes during ontogeny because their life cycle includes an extended planktonic, nektonic, and benthic life stages. The effect of body mass on metabolic rates, aerobic scope, and ammonia-N excretion of Sagmariasus verreauxi juveniles were examined to determine energetic demands through juvenile development. Mass-independent routine oxygen consumption increased allometrically during juvenile development with a mass scaling exponent of 0.83. The mass scaling exponent of active metabolism (0.81) was reduced compared to standard metabolism (0.91) of juvenile lobsters. The aerobic scope of juvenile lobsters decreased with larger body mass. To examine if the mass scaling exponent varies with ontogeny, we compared our data with previous measurements made with larvae of the same species. Comparison between mass scaling exponents showed they were higher for phyllosoma (0.97) compared to juvenile (0.83) development. Higher scaling exponents for phyllosoma may be attributed to increased growth rates of phyllosoma compared to juveniles, which increase oxygen consumption due to the higher energy cost of growth. The mass scaling exponent for complete ontogeny (0.91) of S. verreauxi was larger than the commonly cited 0.67 (1/3) and 0.75 (3/4) mass scaling exponents, indicating that species-specific differences can be a large factor affecting allometric relationships of animals. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, J.; Dietze, H.; Oschlies, A.

    2016-02-01

    We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.

  7. Demand thrust pumped propulsion with automatic warm gas valving

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  8. Oxygen diffusion: an enzyme-controlled variable parameter.

    PubMed

    Erdmann, Wilhelm; Kunke, Stefan

    2014-01-01

    Previous oxygen microelectrode studies have shown that the oxygen diffusion coefficient (DO₂) increases during extracellular PO₂ decreases, while intracellular PO₂ remained unchanged and thus cell function (spike activity of neurons). Oxygen dependency of complex multicellular organisms requires a stable and adequate oxygen supply to the cells, while toxic concentrations have to be avoided. Oxygen brought to the tissue by convection diffuses through the intercellular and cell membranes, which are potential barriers to diffusion. In gerbil brain cortex, PO₂ and DO₂ were measured by membrane-covered and by bare gold microelectrodes, as were also spike potentials. Moderate respiratory hypoxia was followed by a primary sharp drop of tissue PO₂ that recovered to higher values concomitant with an increase of DO₂. A drop in intracellular PO₂ recovered immediately. Studies on the abdominal ganglion of aplysia californica showed similar results.Heterogeneity is a feature of both normal oxygen supply to tissue and supply due to a wide range of disturbances in oxygen supply. Oxygen diffusion through membranes is variable thereby ensuring adequate intracellular PO₂. Cell-derived glucosamine oxidase seems to regulate the polymerization/depolymerisation ratio of membrane mucopolysaccharides and thus oxygen diffusion.Variability of oxygen diffusion is a decisive parameter for regulating the supply/demand ratio of oxygen supply to the cell; this occurs in highly developed animals as well as in species of a less sophisticated nature. Autoregulation of oxygen diffusion is as important as the distribution/perfusion ratio of the capillary meshwork and as the oxygen extraction ratio in relation to oxygen consumption of the cell. Oxygen diffusion resistance is the cellular protection against luxury oxygen supply (which can result in toxic oxidative species leading to mutagenesis).

  9. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  10. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT

  11. Method for Trace Oxygen Detection

    NASA Technical Reports Server (NTRS)

    Man, Kim Fung (Inventor); Boumsellek, Said (Inventor); Chutjian, Ara (Inventor)

    1997-01-01

    Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.

  12. [How did the earth's oxygen atmosphere originate?].

    PubMed

    Schäfer, G

    2004-09-01

    The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.

  13. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  14. The Effect of Oxygen on Organic Haze Properties

    NASA Astrophysics Data System (ADS)

    Ugelow, Melissa S.; De Haan, David O.; Hörst, Sarah M.; Tolbert, Margaret A.

    2018-05-01

    Atmospheric organic hazes are present on many planetary bodies, possibly including the ancient Earth and exoplanets, and can greatly influence surface and atmospheric properties. Here we examine the physical and optical properties of organic hazes produced with molecular nitrogen, methane, carbon dioxide, and increasing amounts of molecular oxygen, and compare them to hazes produced without added oxygen. As molecular oxygen is included in increasing amounts from 0 to 200 ppmv, the mass loading of haze produced decreases nonlinearly. With 200 ppmv molecular oxygen, the mass loading of particles produced is on the order of the amount of organic aerosol in modern Earth’s atmosphere, suggesting that while not a thick organic haze, haze particles produced with 200 ppmv molecular oxygen could still influence planetary climates. Additionally, the hazes produced with increasing amounts of oxygen become increasingly oxidized and the densities increase. For hazes produced with 0, 2 and 20 ppmv oxygen, the densities were found to be 0.94, 1.03 and 1.12 g cm‑3, respectively. Moreover, the hazes produced with 0, 2, and 20 ppmv oxygen are found to have real refractive indices of n = 1.58 ± 0.04, 1.53 ± 0.03 and 1.67 ± 0.03, respectively, and imaginary refractive indices of k={0.001}-0.001+0.002, 0.002 ± 0.002 and {0.002}-0.002+0.003, respectively. These k values demonstrate that the particles formed with oxygen have no absorption within our experimental error, and could result in a light scattering layer in an oxygen-containing atmosphere.

  15. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  16. Oxygen supply limits the heat tolerance of lizard embryos.

    PubMed

    Smith, Colton; Telemeco, Rory S; Angilletta, Michael J; VandenBrooks, John M

    2015-04-01

    The mechanisms that set the thermal limits to life remain uncertain. Classically, researchers thought that heating kills by disrupting the structures of proteins or membranes, but an alternative hypothesis focuses on the demand for oxygen relative to its supply. We evaluated this alternative hypothesis by comparing the lethal temperature for lizard embryos developing at oxygen concentrations of 10-30%. Embryos exposed to normoxia and hyperoxia survived to higher temperatures than those exposed to hypoxia, suggesting that oxygen limitation sets the thermal maximum. As all animals pass through an embryonic stage where respiratory and cardiovascular systems must develop, oxygen limitation may limit the thermal niches of terrestrial animals as well as aquatic ones. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  18. Physiological demands of downhill mountain biking.

    PubMed

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  19. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  20. Carbon stars with oxygen-rich circumstellar material

    NASA Technical Reports Server (NTRS)

    Jura, Michael; Hawkins, I.

    1991-01-01

    The IUE satellite was used to search for companions to two carbon-rich stars with oxygen-rich circumstellar envelopes, EU And and V778 Cyg. Depending upon the amount of interstellar extinction and distances (probably between 1 and 2 kpc from the Sun) to these two stars, upper limits were placed between approx. 1.5 and 6 solar mass to the mass of any main sequence companions. For the 'near' distance of 1 kpc, it seems unlikely that there are white dwarf companions because the detection would be expected of ultraviolet emission from accretion of red giant wind material onto the white dwarf. A new model is proposed to explain the oxygen-rich envelopes. If these stars have a high nitrogen abundance, the carbon that is in excess of the oxygen may be carried in the circumstellar envelopes in HCN rather than C2H2 which is a likely key seed molecule for the formation of carbon grains. Consequently, carbon particles may not form; instead, oxygen-rich silicate dust may nucleate from the SiO present in the outflow.

  1. Measuring oxygen yields of a thermal conversion/elemental analyzer-isotope ratio mass spectrometer for organic and inorganic materials through injection of CO.

    PubMed

    Yin, Xijie; Chen, Zhigang

    2014-12-01

    The thermal conversion/elemental analyzer-isotope ratio mass spectrometer (TC/EA-IRMS) is widely used to measure the δ(18) O value of various substances. A premise for accurate δ(18) O measurement is that the oxygen in the sample can be converted into carbon monoxide (CO) quantitatively or at least proportionally. Therefore, a precise method to determine the oxygen yield of TC/EA-IRMS measurements is needed. Most studies have used the CO peak area obtained from a known amount of a solid reference material (for example, benzoic acid) to calibrate the oxygen yield of the sample. Although it was assumed that the oxygen yield of the solid reference material is 100%, no direct evidence has been provided. As CO is the analyte gas for δ(18) O measurement by IRMS, in this study, we use a six-port valve to inject CO gas into the TC/EA. The CO is carried to the IRMS by the He carrier gas and the CO peak area is measured by the IRMS. The CO peak area thus obtained from a known amount of the injected CO is used to calibrate the oxygen yield of the sample. The oxygen yields of commonly used organic and inorganic reference materials such as benzoic acid (C6 H5 COOH), silver phosphate (Ag3 PO4 ), calcium carbonate (CaCO3 ) and silicon dioxide (SiO2 ) are investigated at different reactor temperatures and sample sizes. We obtained excellent linear correlation between the peak area for the injected CO and its oxygen atom amount. C6 H5 COOH has the highest oxygen yield, followed by Ag3 PO4 , CaCO3 and SiO2 . The oxygen yields of TC/EA-IRMS are less than 100% for both organic and inorganic substances, but the yields are relatively stable at the specified reactor temperature and for a given quantity of sample. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Re-assessing accumulated oxygen deficit in middle-distance runners.

    PubMed

    Bickham, D; Le Rossignol, P; Gibbons, C; Russell, A P

    2002-12-01

    The purpose of this study was to re-assess the accumulated oxygen deficit (AOD), incorporating recent methodological improvements i.e., 4 min submaximal tests spread above and below the lactate threshold (LT). We Investigated the Influence of the VO2 -speed regression, on the precision of the estimated total energy demand and AOD. utilising different numbers of regression points and including measurement errors. Seven trained middle-distance runners (mean +/- SD age: 25.3 +/- 5.4y, mass: 73.7 +/- 4.3kg. VO2max 64.4 +/- 6.1 mL x kg(-1) x min(-1)) completed a VO2max, LT, 10 x 4 min exercise tests (above and below LT) and high-intensity exhaustive tests. The VO2 -speed regression was developed using 10 submaximal points and a forced y-intercept value. The average precision (measured as the width of 95% confidence Interval) for the estimated total energy demand using this regression was 7.8mL O2 Eq x kg(-1) x min(-1). There was a two-fold decrease in precision of estimated total energy demand with the Inclusion of measurement errors from the metabolic system. The mean AOD value was 43.3 mL O2 Eq x kg(-1) (upper and lower 95% CI 32.1 and 54.5mL o2 Eq x kg(-1) respectively). Converting the 95% CI for estimated total energy demand to AOD or including maximum possible measurement errors amplified the error associated with the estimated total energy demand. No significant difference in AOD variables were found, using 10,4 or 2 regression points with a forced y-intercept. For practical purposes we recommend the use of 4 submaximal values with a y-intercept. Using 95% CIs and calculating error highlighted possible error in estimating AOD. Without accurate data collection, increased variability could decrease the accuracy of the AOD as shown by a 95% CI of the AOD.

  3. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  4. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less

  5. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    DOE PAGES

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; ...

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications.more » The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.« less

  6. ISRU System Model Tool: From Excavation to Oxygen Production

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  7. Plant-mediated Sediment Oxygenation in Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.

    2016-02-01

    Belowground sediment oxygenation by wetland plants is an important mechanism controlling many microbial processes and chemical fluxes in coastal wetlands. Although transport of oxygen via the arenthyma tissue and subsequent oxygen loss across root surfaces is well-documented for Spartina grasses, only few studies have measured the oxygenation of sediment surrounding roots and rhizomes. In this study, the degree of sediment oxygenation in Spartina anglica rhizospheres was assessed in situ using a novel multifiber optode system inserting 100 oxygen sensing fiber optodes directly into the rhizosphere. Two closely located, but morphologically different, S. anglica populations growing in permeable sandy sediment and tidal flat deposit, respectively, were investigated. No oxygen was detected inside the rhizospheres at any depth in either location indicating that plant-mediated sediment oxygenation in S. anglica had a limited impact on the bulk anoxic sediment. This was substantiated by planar optode studies showing that sediment oxygenation was confined to the immediate vicinity of the root tips of adventitious root and root hairs stretching only up to 1.5mm away from the roots surface in permeable sandy sediment and 0.4mm in tidal flat deposit, which had a substantially higher oxygen demand. This contrasts previous studies estimating that more than half of the S. anglica rhizosphere volume may be oxygenated, and thereby suggests a high variability in the degree of sediment oxygenation among different S. anglica populations. Furthermore, there may be a significant difference in the degree of sediment oxygenation among different Spartina species; our recent in situ investigation of oxygen profiles in a Spartina alterniflora-dominated marsh suggested that oxygen leakage here may keep the bulk sediment at low oxygen concentration ranging from 0.5-4μM.

  8. 78 FR 1765 - Requirements for Chemical Oxygen Generators Installed on Transport Category Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... the supplemental oxygen supply can also complicate activating the oxygen flow, since that is generally... oxygen quantity requirements of Sec. 25.1443, Minimum mass flow of supplemental oxygen. E. Related...-0812; Notice No. 13-01] RIN 2120-AK14 Requirements for Chemical Oxygen Generators Installed on...

  9. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function.

    PubMed

    Safaeian, Navid; David, Tim

    2013-10-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging.

  10. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function

    PubMed Central

    Safaeian, Navid; David, Tim

    2013-01-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging. PMID:23921901

  11. High Pressure Oxygen A-Band Spectra

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Sung, Keeyoon; Yu, Shanshan; Lunny, Elizabeth M.; Bui, Thinh Quoc; Okumura, Mitchio; Rupasinghe, Priyanka; Bray, Caitlin; Long, David A.; Hodges, Joseph; Robichaud, David; Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun

    2015-06-01

    Composition measurements from remote sensing platforms require knowledge of air mass to better than the desired precision of the composition. Oxygen spectra allow determination of air mass since the mixing ratio of oxygen is fixed. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for air mass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the state-of-the-art for oxygen spectroscopy. To produce atmospheric pressure A-band cross-sections with this accuracy requires a sophisticated line-shape model (Galatry or Speed-Dependent) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, but an integrated self-consistent model must be developed to ensure accuracy. This presentation will describe the ongoing effort to parameterize these phenomena on a representative data set created from complementary experimental techniques. The techniques include Fourier transform spectroscopy (FTS), photo-acoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). CRDS data allow long-pathlength measurements with absolute intensities, providing lineshape information as well as LM and CIA, however the subtleties of the lineshape are diminished in the saturated line-centers. Conversely, the short paths and large dynamic range of the PAS data allow the full lineshape to be discerned, but with an arbitrary intensity axis. Finally, the FTS data provides intermediate paths and consistency across a broad pressure range. These spectra are all modeled with the Labfit software using first the spectral line database HITRAN, and then model values are adjusted and fitted for better agreement with the data.

  12. Performance and properties of atomic oxygen protective coatings for polymeric materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Lamoreaux, Cynthia

    1992-01-01

    Such large LEO spacecraft as the Space Station Freedom will encounter high atomic oxygen fluences which entail the use of protective coatings for their polymeric structural materials. Such coatings have demonstrated polymer mass losses due to oxidation that are much smaller than those of unprotected materials. Attention is here given to protective and/or electrically conductive coatings of SiO(x), Ge, and indium-tin oxide which have been exposed to atomic oxygen in order to ascertain mass loss, electrical conductivity, and optical property dependence on atomic oxygen exposure.

  13. Selected facial measurements of children for oxygen-mask design.

    DOT National Transportation Integrated Search

    1966-04-01

    Requirements for design of oxygen masks and other equipment for effective protection of children in high-altitude flight necessitate a new facial-measurement series. A program to meet this demand was initiated to : 1.select a basic set of standard me...

  14. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries.

    PubMed

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-19

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  15. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries

    PubMed Central

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-01-01

    With the demand for high-energy-storage devices, the rechargeable metal–oxygen battery has attracted attention recently. Sodium–oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium–oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium–oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium–oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium–oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium–oxygen batteries to achieve high efficiency and rechargeability. PMID:26892931

  16. Crouch severity is a poor predictor of elevated oxygen consumption in cerebral palsy.

    PubMed

    Steele, Katherine M; Shuman, Benjamin R; Schwartz, Michael H

    2017-07-26

    Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18±0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5-20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r 2 =0.13-0.73), these variables were only weakly correlated with oxygen consumption (r 2 =0.02-0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual's energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro.

    PubMed

    Schoknecht, Karl; Berndt, Nikolaus; Rösner, Jörg; Heinemann, Uwe; Dreier, Jens P; Kovács, Richard; Friedman, Alon; Liotta, Agustin

    2017-09-07

    Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABA A antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH₂ ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  18. More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster

    PubMed Central

    Shiehzadegan, Shayan; Le Vinh Thuy, Jacqueline; Szabla, Natalia; Angilletta, Michael J.

    2017-01-01

    High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life. PMID:28542380

  19. More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster.

    PubMed

    Shiehzadegan, Shayan; Le Vinh Thuy, Jacqueline; Szabla, Natalia; Angilletta, Michael J; VandenBrooks, John M

    2017-01-01

    High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life.

  20. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE PAGES

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less

  1. Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Sparks, W. M.; Truran, J. W.

    1985-01-01

    The characteristics of a new class of novae are identified and explained. This class consists of those objects that have been observed to eject material rich in oxygen, neon, magnesium, and aluminum at high velocities. We propose that for this class of novae the outburst is occurring not on a carbon-oxygen white dwarf but on an oxygen-neon-magnesium white dwarf which has evolved from a star which had a main sequence mass of approx. 8 solar masses to approx. 12 solar masses. An outburst was simulated by evolving 1.25 solar mass white dwarfs accreting hydrogen rich material at various rates. The effective enrichment of the envelope by ONeMg material from the core is simulated by enhancing oxygen in the accreted layers. The resulting evolutionary sequences can eject the entire accreted envelope plus core material at high velocities. They can also become super-Eddington at maximum bolometric luminosity. The expected frequency of such events (approx. 1/4) is in good agreement with the observed numbers of these novae.

  2. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  3. [Effectiveness of the HighFO novel oxygen nebulizer for respiratory failure patients with severe hypoxia].

    PubMed

    Takamatsu, Kazufumi; Sakuramoto, Minoru; Inoue, Daiki; Ishitoko, Manabu; Itotani, Ryo; Suzuki, Shinko; Matsumoto, Masataka; Takemura, Masaya; Fukui, Motonari

    2011-04-01

    Optimal oxygen delivery is an essential component of therapy for patients with respiratory failure. Reservoir masks or air entrainment nebulizers have often been used for patients who require highly concentrated oxygen, but these may not actually deliver a sufficient fraction of inspired oxygen if there is a marked increase in the patient's ventilatory demands, or if oxygen flow becomes limited due to high resistance in the nebulizer nozzles. The HighFO nebulizer is a novel air entrainment nebulizer equipped with unique structures which reduce nozzle resistance, and as a result, it is possible to supply a sufficient flow of highly concentrated-oxygen. The purpose of this study was to evaluate the effectiveness and usefulness of the HighFO nebulizer in 10 respiratory failure patients with severe hypoxemia who used a reservoir mask and required more than 10 L/min of oxygen supply. In each case, the reservoir mask was replaced with the HighFO nebulizer, and changes in percutaneous oxygen saturation (SpO2) were monitored using pulse oximetry. Oxygenation improved promptly after the reservoir mask was substituted for the HighFO nebulizer (SpO2 : 83.7% +/- 8.5%-94.2% +/- 3.2%, p = 0.007). This finding suggests that the HighFO nebulizer was reasonably effective in delivering highly concentrated oxygen, sufficient for patient demands. The HighFO nebulizer may be the beginning of a new strategy for oxygen therapy.

  4. The Rate of Oxygen Utilization by Cells

    PubMed Central

    Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.

    2011-01-01

    The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270

  5. Model of Anoxic-Aerobic Wastewater Treatment at Phoenix 91st Avenue Plant

    DTIC Science & Technology

    1993-01-01

    46 6. Storage Model; PCOD Profile 47.................... Accesion For NTS CRAMl 7. Storage Model; Oxygen Consumption Rate...69 iv 27. Compare 4 November and 17 November 1992 Data Sets; PCOD Concentrations; Storage Model .... 70 28. 4 November 1992...demand (SCOD), particulate chemical oxygen demand ( PCOD ), and the oxygen consumption rate in each stage. Mass balance equations were written for ammonia

  6. Development of a model to determine oxygen consumption when crawling

    PubMed Central

    Pollard, J.P.; Heberger, J.R.; Dempsey, P.G.

    2016-01-01

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape. PMID:26997858

  7. [Effect of antihypoxants on the consumption of oxygen in animals with traumatic brain injury].

    PubMed

    Novikov, V E; Ponamareva, N S; Kokhonov, K V

    2008-01-01

    The effect of drugs on the dynamics of oxygen consumption in experimental animals with traumatic brain injury (TBI) has been measured. It is established that the antihypoxants bemithyl, amtizole, trymeen, and ethomersol in a dose of 25 mg/kg decrease the consumption of oxygen and reduced oxygen demands of tissues in the acute posttraumatic period. These phenomena can play a significant role in the mechanism of the protective action of drugs under conditions of TBI.

  8. Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film.

    PubMed

    Zhao, Jinxiu; Li, Xianghong; Cui, Guanwei; Sun, Xuping

    2018-05-11

    Alkaline water splitting offers a simple method for the mass production of hydrogen but suffers from the sluggish kinetics of the anodic oxygen evolution reaction (OER). Here, we report on the development of an Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe-NiCr2O4/NF) as a non-noble-metal OER electrocatalyst with superior catalytic activity at alkaline pH. Such Fe-NiCr2O4/NF demands overpotentials as low as 228 and 318 mV to drive current densities of 20 and 500 mA cm-2, respectively, in 1.0 M KOH. Notably, it also shows strong long-term electrochemical durability with its activity being retained for at least 60 h.

  9. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  10. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  11. Dissolved oxygen and aeration in ictalurid catfish aquaculture

    USDA-ARS?s Scientific Manuscript database

    Feed-based production of ictalurid catfish in ponds is the largest aquaculture sector in the United States. The feed biochemical oxygen demand (FBOD) typically is 1.1-1.2 kg O2/kg feed. Feed also results in a substantial increase of carbon dioxide, ammonia nitrogen, and phosphate to ponds, and this ...

  12. Methodology for the assessment of oxygen as an energy carrier

    NASA Astrophysics Data System (ADS)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  13. Properties of convective oxygen and silicon burning shells in supernova progenitors

    NASA Astrophysics Data System (ADS)

    Collins, Christine; Müller, Bernhard; Heger, Alexander

    2018-01-01

    Recent 3D simulations have suggested that convective seed perturbations from shell burning can play an important role in triggering neutrino-driven supernova explosions. Since isolated simulations cannot determine whether this perturbation-aided mechanism is of general relevance across the progenitor mass range, we here investigate the pertinent properties of convective oxygen and silicon burning shells in a broad range of pre-supernova stellar evolution models. We find that conditions for perturbation-aided explosions are most favourable in the extended oxygen shells of progenitors between about 16 and 26 solar masses, which exhibit large-scale convective overturn with high convective Mach numbers. Although the highest convective Mach numbers of up to 0.3 are reached in the oxygen shells of low-mass progenitors, convection is typically dominated by small-scale modes in these shells, which implies a more modest role of initial perturbations in the explosion mechanism. Convective silicon burning rarely provides the high Mach numbers and large-scale perturbations required for perturbation-aided explosions. We also find that about 40 per cent of progenitors between 16 and 26 solar masses exhibit simultaneous oxygen and neon burning in the same convection zone as a result of a shell merger shortly before collapse.

  14. Post‐mortem oxygen isotope exchange within cultured diatom silica

    PubMed Central

    Sloane, Hilary J.; Rickaby, Rosalind E.M.; Cox, Eileen J.; Leng, Melanie J.

    2017-01-01

    Rationale Potential post‐mortem alteration to the oxygen isotope composition of biogenic silica is critical to the validity of palaeoclimate reconstructions based on oxygen isotope ratios (δ18O values) from sedimentary silica. We calculate the degree of oxygen isotope alteration within freshly cultured diatom biogenic silica in response to heating and storing in the laboratory. Methods The experiments used freshly cultured diatom silica. Silica samples were either stored in water or dried at temperatures between 20 °C and 80 °C. The mass of affected oxygen and the associated silica‐water isotope fractionation during alteration were calculated by conducting parallel experiments using endmember waters with δ18O values of −6.3 to −5.9 ‰ and −36.3 to −35.0 ‰. Dehydroxylation and subsequent oxygen liberation were achieved by stepwise fluorination with BrF5. The 18O/16O ratios were measured using a ThermoFinnigan MAT 253 isotope ratio mass spectrometer. Results Significant alterations in silica δ18O values were observed, most notably an increase in the δ18O values following drying at 40–80 °C. Storage in water for 7 days between 20 and 80 °C also led to significant alteration in δ18O values. Mass balance calculations suggest that the amount of affected oxygen is positively correlated with temperature. The estimated oxygen isotope fractionation during alteration is an inverse function of temperature, consistent with the extrapolation of models for high‐temperature silica‐water oxygen isotope fractionation. Conclusions Routinely used preparatory methods may impart significant alterations to the δ18O values of biogenic silica, particularly when dealing with modern cultured or field‐collected material. The significance of such processes within natural aquatic environments is uncertain; however, there is potential that similar processes also affect sedimentary diatoms, with implications for the interpretation of biogenic silica‐hosted δ18O

  15. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  16. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  17. Oxygen Interaction With Space-Power Materials

    NASA Technical Reports Server (NTRS)

    Eck, Thomas G.; Hoffman, Richard W.

    1996-01-01

    Four investigations were undertaken during the period of this grant: (1 ) oxidation of molybdenum and of niobium-1 % zirconium, (2) preparation of and examination of EOIM-3 samples, (3) sputtering of Teflon by oxygen ion bombardment,and (4) sputtering of Ions from copper and aluminum by oxygen and argon ion bombardment. Investigations (1), (3), and (4) used a low-energy Ion gun to bombard surfaces within an ultra-high vacuum system. Particles ejected from the surfaces were detected by a mass spectrometer.

  18. Oxygen Production on Mars Using Solid Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.

    1997-01-01

    If oxygen for propulsion and life support needs were to be extracted from martian resources, significant savings in launch mass and costs could be attained for both manned and unmanned missions. In addition to reduced cost the ability to produce oxygen from martian resources would decrease the risks associated with long duration stays on the surface of Mars. One method of producing the oxygen from the carbon dioxide rich atmosphere of Mars involves solid oxide electrolysis. A brief summary of the theory of operation will be presented followed by a schematic description of a Mars oxygen production pland and a discussion of its power consumption characteristics.

  19. A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin

    2013-07-01

    The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.

  20. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Sánchez-Menguiano, L.

    2017-07-01

    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r<0.5re) and a flattennig in the outer regions. For lower masses (>109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  1. Isotopic evidence for oxygenated Mesoarchaean shallow oceans

    NASA Astrophysics Data System (ADS)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny

    2018-02-01

    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  2. Design of a lunar oxygen production plant

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  3. Oxygen Issue in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  4. Challenges for mass production of nematodes in submerged culture.

    PubMed

    de la Torre, Mayra

    2003-08-01

    Nematodes of Steinernema and Heterorhabditis genera are used as agents in insect biocontrol programs. They are associated with specific bacteria which are also involved in the mechanism of pathogenicity and which are consumed by nematodes as living food. S. feltiae has various developmental stages in its life cycle, including four juvenile stages, adults and the free living form. During mating, males coil themselves around the female, which is around 1 cm long. Successful commercialization of nematode-bacteria biocontrol products depends on the ability to produce sufficient quantities of these products at competitive prices for a full pest control program. This could be feasible if high cell density submerged cultures are designed and implemented; however, major problems related to nematodes mass production in a bioreactor remain unsolved due to the lack of knowledge about the physiological aspects of the nematode, bacteria and nematode-bacteria association, interaction between the three phases present in the bioreactor (liquid, gas, nematodes-bacteria), possibility of mating under hydrodynamic stress conditions, etc. We have found that the two most important engineering aspects to take into account the mass propagation of nematodes are oxygen transfer rate and hydrodynamics to allow mating and to avoid mechanical damage of juveniles in stage 2. This article focuses on several aspects related to the fermentation system such as kinetics of growth, shear stress, hydrodynamics fields in the bioreactor and oxygen demand. Also, results published by other groups, together with those of our own, will be discussed in relation to the main challenges found during the fermentation process.

  5. Effect of salinity on oxygen consumption in fishes: a review.

    PubMed

    Ern, R; Huong, D T T; Cong, N V; Bayley, M; Wang, T

    2014-04-01

    The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism. © 2014 The Fisheries Society of the British Isles.

  6. Effect of Training Status on Oxygen Consumption in Women After Resistance Exercise.

    PubMed

    Benton, Melissa J; Waggener, Green T; Swan, Pamela D

    2016-03-01

    This study compared acute postexercise oxygen consumption in 11 trained women (age, 46.5 ± 1.6 years; body mass index [BMI], 28.4 ± 1.7 kg·m(-2) and 11 untrained women (age, 46.5 ± 1.5 years; BMI, 27.5 ± 1.5 kg·m(-2)) after resistance exercise (RE). Resistance exercise consisted of 3 sets of 8 exercises (8-12 repetitions at 50-80% 1 repetition maximum). Oxygen consumption (VO2 ml·min(-1)) was measured before and after (0, 20, 40, 60, 90, and 120 minutes) RE. Immediately after cessation of RE (time 0), oxygen consumption increased in both trained and untrained women and remained significantly above baseline through 60 minutes after exercise (p < 0.01). Total oxygen consumption during recovery was 31.3 L in trained women and 27.4 L in untrained women (p = 0.07). In trained women, total oxygen consumption was strongly related to absolute (kg) lean mass (r = 0.88; p < 0.001), relative (kilogram per square meter) lean mass (r = 0.91; p < 0.001), and duration of exercise (r = 0.68; p ≤ 0.05), but in untrained women, only training volume-load was related to total oxygen consumption (r = 0.67; p ≤ 0.05). In trained women, 86% of the variance in oxygen consumption was explained by lean mass and exercise duration, whereas volume-load explained 45% in untrained women. Our findings suggest that, in women, resistance training increases metabolic activity of lean tissue. Postexercise energy costs of RE are determined by the duration of stimulation provided by RE rather than absolute work (volume-load) performed. This phenomenon may be related to type II muscle fibers and increased protein synthesis.

  7. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.

    The Amazon River outgasses nearly an equivalent amount of CO 2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO 2 production since the recognition of a persistent state of CO 2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capablemore » of both decomposing high amounts of organic matter at lower trophic levels, driving CO 2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O 2 (δ 18O-O 2) and O 2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m 3 d -1 at high water and 1.02 ± 0.55 g O m 3 d -1 at low water. This translates to 41 ± 24% of the rate of O 2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than past estimates for the Amazon River mainstem. In conclusion, it is possible that at high water much of this productivity

  8. Intravascular ATP and the regulation of blood flow and oxygen delivery in humans.

    PubMed

    Crecelius, Anne R; Kirby, Brett S; Dinenno, Frank A

    2015-01-01

    Regulation of vascular tone is a complex response that integrates multiple signals that allow for blood flow and oxygen supply to match oxygen demand appropriately. Here, we discuss the potential role of intravascular adenosine triphosphate (ATP) as a primary factor in these responses and put forth the hypothesis that deficient ATP release contributes to impairments in vascular control exhibited in aged and diseased populations.

  9. Use of dissolved oxygen modeling results in the management of river quality

    USGS Publications Warehouse

    Rickert, D.A.

    1984-01-01

    In 1973, the U.S. Geological Survey initiated a study of the Willamette River, Oregon, to determine the major causes of dissolved oxygen (DO) depletion, and whether advanced treatment of municipal wastewaters was needed to achieve the DO standards. The study showed that rates of carbonaceous decay were low (kr = 0.03-0.06/day) and that point-source loadings of carbonaceous biochemical oxygen demand (BOD) accounted for less than one-third of the satisfied oxygen demand. Nitrification of industrially discharged ammonia was the dominant cause of DO depletion. The study led to the calibration and verification of a steady-state DO model which was used to examine selected scenarios of BOD loading, ammonia loading, and flow augmentation. In 1976, the modeling projections for the Willamette River were presented to resource managers. A review in 1981 indicated that the State of Oregon had instituted an effluent standard on the major discharger of ammonia, rescinded an order for all municipal wastewaters to receive advanced secondary treatment by 1980, and more fully acknowledged the need for flow augmentation during summer to attain the DO standards.

  10. A new route of bioaugmentation by allochthonous and autochthonous through biofilm bacteria for soluble chemical oxygen demand removal of old leachate.

    PubMed

    Alijani Ardeshir, Rashid; Rastgar, Sara; Peyravi, Majid; Jahanshahi, Mohsen; Shokuhi Rad, Ali

    2017-10-01

    Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P < .05). In the biofilm form, the aerobic condition and the use of acclimated bacteria from leachate and sewage increased the removal efficiency of SCOD in comparison with other biofilm groups (P < .05). Three species of bacteria, including Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa were identified in the biofilm from leachate and sewage. Bioaugmentation technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.

  11. Sex differences in circulatory oxygen transport parameters of sockeye salmon (Oncorhynchus nerka) on the spawning ground.

    PubMed

    Clark, Timothy Darren; Hinch, S G; Taylor, B D; Frappell, P B; Farrell, A P

    2009-07-01

    Upon reaching sexual maturity, several species of male salmonids possess a relative ventricular mass (rM(V)) that may be up to 90% larger than females. This can increase maximum cardiac stroke volume and power output, which may be beneficial to increasing the oxygen transport capacity of male salmonids during the spawning period. It may be further hypothesized, therefore, that other variables within the circulatory oxygen transport cascade, such as blood oxygen-carrying capacity and heart rate, are similarly enhanced in reproductively mature male salmonids. To test this idea, the present study measured a range of circulatory oxygen transport variables in wild male and female sockeye salmon (Oncorhynchus nerka) during their spawning period, following a 150 km migration from the ocean. The rM(V) of male fish was 13% greater than females. Conversely, the haemoglobin concentration ([Hb]) of female fish was 19% higher than males, indicative of a greater blood oxygen-carrying capacity (138 vs. 116 ml O2 l(-1), respectively). Surgically implanted physiological data loggers revealed a similar range in heart rate for both sexes on the spawning ground (20-80 beats min(-1) at 10 degrees C), with a tendency for male fish to spend a greater percentage of time (64%) than females (49%) at heart rates above 50 beats min(-1). Male fish on average consumed significantly more oxygen than females during a 13-h respirometry period. However, routine oxygen consumption rates (.)MO2 ranged between 1.5 and 8.5 mg min(-1) kg(-1) for both sexes, which implies that males did not inherently possess markedly higher routine aerobic energy demands, and suggests that the higher [Hb] of female fish may compensate for the smaller rM(V). These findings reject the hypothesis that all aspects of the circulatory oxygen transport cascade are inherently superior in male sockeye salmon. Instead, it is suggested that any differences in (.)MO2 between sexually mature male and female sockeye salmon can likely

  12. Immobilizing of catalyst using Bayah's natural zeolite to reduce the chemical oxygen demand (COD) and total organic carbon (TOC)

    NASA Astrophysics Data System (ADS)

    Jayanudin, Kustiningsih, Indar; Sari, Denni Kartika

    2017-05-01

    Indonesia is rich of natural minerals, many of which had not been widely used. One potential natural mineral is zeolite from Bayah Banten that can be used to support catalyst in the process of waste degradation. The purpose of this research is to characterize the Bayah's zeolite and to figure out the effectiveness of the zeolite as supporting agent to the Fe catalyst in the process of phenol degradation, with the main purposes are to reduce the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). This research consists of three steps, activation of natural zeolite using 1M, 2M, and 3M NaOH solution, impregnation process with 0.025M, 0.05 M and 0.075M Fe(NO3)3.9H2O solution, and calcination at 500°C. Bayah's natural zeolite was characterize using Brauner-Emmet-Teller (BET) for its pore area, X-ray Fluorescence (XRF) for analyzing zeolite's component before and after activation process and after impregnation process, and Scanning Electron Microscope (SEM) for analyzing zeolite's morphology. The result showed that the highest pore area was 9Å, Fe metal from Fe(NO3)3.9H2O 0,075 M solution remained in zeolite pore was 7,73%, the reduction of COD and TOC was yielded at H2O2: phenol ratio of 1 : 6.

  13. FRET excited ratiometric oxygen sensing in living tissue

    PubMed Central

    Ingram, Justin M.; Zhang, Chunfeng; Xu, Jian; Schiff, Steven J.

    2013-01-01

    Dynamic analysis of oxygen (O2) has been limited by the lack of a real-time, quantitative, and biocompatible sensor. To address these demands, we designed a ratiometric optode matrix consisting of the phosphorescence quenching dye platinum (II) octaethylporphine ketone (PtOEPK) and nanocystal quantum dots (NQDs), which when embedded within an inert polymer matrix allows long-term pre-designed excitation through fluorescence resonance energy transfer (FRET). Depositing this matrix on various glass substrates allowed the development of a series of optical sensors able to measure interstitial oxygen concentration [O2] with several hundred millisecond temporal resolution in varying biological microdomains of active brain tissue. PMID:23333398

  14. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Lee, T.M.; Kay, A.R.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less

  15. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The changes in histopathology and mass in hyperbaric oxygen-treated auricular cartilage grafts in a rabbit model.

    PubMed

    Bilici, Suat; Yiğit, Özgür; Dönmez, Zehra; Huq, Gülben Erdem; Aktaş, Şamil

    2015-04-01

    The aim of the study is to investigate the histopathologic and cartilage mass changes in hyperbaric oxygen (HBO)-treated auricular cartilage grafts either crushed or fascia wrapped in a rabbit model. This is a prospective, controlled experimental study. Sixteen rabbits were randomly allocated into control (n = 8) and treatment groups (n = 8). Each group was further grouped as crushed cartilage (n = 4) and fascia wrapped crushed cartilage (n = 4). The eight rabbits in the treatment group had HBO once daily for 10 days as total of 10 sessions. The mass of cartilage, cartilage edge layout, structural layout, staining disorders of the chondroid matrix, necrosis, calcification besides bone metaplasia, chronic inflammation in the surrounding tissues, fibrosis, and increased vascularity were evaluated in the hematoxylin and eosin (H&E)-stained sections. Fibrosis in the surrounding tissue and cartilage matrix was evaluated with Masson's trichrome stain. The toluidine blue staining was used to evaluate loss of metachromasia in matrix. The prevalence of glial fibrillary acidic protein (GFAP) staining in chondrocytes was also evaluated. Although the remaining amount of cartilage mass after implantation does not show a significant difference between the control and the study group (p = 0.322, p <0.05).The difference between control and study group in terms of positive staining with GFAP was statistically significant (p = 0.01, p <0.05). Necrosis and loss of matrix metachromasia were significantly low in the study group compared with control group (p = 0.001, p = 0.006, p <0.05). HBO therapy did not have significant effect on the mass of rabbit auricular cartilage graft. HBO therapy significantly reduced loss of metachromasia, necrosis, and GFAP staining in the auricular cartilage grafts of the animal model. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Left Ventricular Wall Stress-Mass-Heart Rate Product and Cardiovascular Events in Treated Hypertensive Patients: LIFE Study.

    PubMed

    Devereux, Richard B; Bang, Casper N; Roman, Mary J; Palmieri, Vittorio; Boman, Kurt; Gerdts, Eva; Nieminen, Markku S; Papademetriou, Vasilios; Wachtell, Kristian; Hille, Darcy A; Dahlöf, Björn

    2015-11-01

    In the Losartan Intervention for End Point Reduction in Hypertension (LIFE) study, 4.8 years' losartan- versus atenolol-based antihypertensive treatment reduced left ventricular hypertrophy and cardiovascular end points, including cardiovascular death and stroke. However, there was no difference in myocardial infarction (MI), possibly related to greater reduction in myocardial oxygen demand by atenolol-based treatment. Myocardial oxygen demand was assessed indirectly by the left ventricular mass×wall stress×heart rate (triple product) in 905 LIFE participants. The triple product was included as time-varying covariate in Cox models assessing predictors of the LIFE primary composite end point (cardiovascular death, MI, or stroke), its individual components, and all-cause mortality. At baseline, the triple product in both treatment groups was, compared with normal adults, elevated in 70% of patients. During randomized treatment, the triple product was reduced more by atenolol, with prevalences of elevated triple product of 39% versus 51% on losartan (both P≤0.001). In Cox regression analyses adjusting for age, smoking, diabetes mellitus, and prior stroke, MI, and heart failure, 1 SD lower triple product was associated with 23% (95% confidence interval 13%-32%) fewer composite end points, 31% (18%-41%) less cardiovascular mortality, 30% (15%-41%) lower MI, and 22% (11%-33%) lower all-cause mortality (all P≤0.001), without association with stroke (P=0.34). Although losartan-based therapy reduced ventricular mass more, greater heart rate reduction with atenolol resulted in larger reduction of the triple product. Lower triple product during antihypertensive treatment was strongly, independently associated with lower rates of the LIFE primary composite end point, cardiovascular death, and MI, but not stroke. © 2015 American Heart Association, Inc.

  19. Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing

    2018-02-01

    The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.

  20. Assessment of oxygen supplementation during air travel.

    PubMed Central

    Cramer, D.; Ward, S.; Geddes, D.

    1996-01-01

    BACKGROUND: The aim of this study was to simulate an in flight environment at sea level with a fractional inspired concentration of oxygen (FiO2) of 0.15 to determine how much supplemental oxygen was needed to restore a subject's oxygen saturation (SaO2) to 90% or to the level previously attained when breathing room air (FiO2 of 0.21). METHODS: Three groups were selected with normal, obstructive, and restrictive lung function. Using a sealed body plethysmograph an environment with an FiO2 of 0.15 was created and mass spectrometry was used to monitor the FiO2. Supplemental oxygen was administered to the patient by nasal cannulae. SaO2 was continuously monitored and recorded at an FiO2 of 0.21, 0.15, and 0.15 + supplemental oxygen. RESULTS: When given 2 l/m of supplemental oxygen all patients in the 15% environment returned to a similar SaO2 value as that obtained using the 21% oxygen environment. One patient with airways obstruction needed 3 l/m of supplemental oxygen to raise his SaO2 above 90%. CONCLUSIONS: This technique, which simulates an aircraft environment, enables an accurate assessment to be made of supplemental oxygen requirements. PMID:8711658

  1. International Space Station United States Oxygen Generator Development Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Mason, Richard K.

    2000-01-01

    A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.

  2. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    PubMed

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  3. Autonomous oxygen production for a Mars return vehicle

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Richter, R.; Dowler, W. L.; Hanson, J. A.; Uphoff, C. W.

    1982-01-01

    The way in which a chemical processor that uses the Martian atmosphere as its only feedstock, thereby reducing the mass that must be launched from earth, can help to return a surface sample from Mars from a single Space Shuttle launch is described. Richter's (1981) study on both the theoretical and experimental aspects of oxygen separation using yttria-stabilized zirconia membranes is cited. Here, separation is accomplished by applying a voltage across the membrane which results in the selective conduction of oxygen ions from one side to the other. It is noted that by using thermal dissociation of the carbon dioxide in the Martian atmosphere to produce oxygen (and carbon monoxide), these zirconia electrolytic cells can be employed to separate oxygen from the atmospheric stream. Descriptions are also given of atmospheric filtration, atmospheric compression, and waste heat recovery, and of the oxygen precooler and oxygen compressor.

  4. Oxygen and energy availability interact to determine flight performance in the Glanville fritillary butterfly.

    PubMed

    Fountain, Toby; Melvin, Richard G; Ikonen, Suvi; Ruokolainen, Annukka; Woestmann, Luisa; Hietakangas, Ville; Hanski, Ilkka

    2016-05-15

    Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance. © 2016. Published by The Company of Biologists Ltd.

  5. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  6. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    PubMed

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hybrid Oxygen System

    DTIC Science & Technology

    1992-10-01

    8 6 Summary Specs--Backup/Peak Shaving Mission Scenarios ..... 10 7 Boil-Off Replenishment (1 2-hr missions...11 8 Hybrid Oxygen Component Sizing ................................. 23 9 Mass Fraction Concentration of Condensibles..................... 25 10 ...lOIb 4" 11" 75% 18 B. 100 watt $350,000 20 wks 10 lb 100 C. 370 watt $500,000 24 wks 10 lb 370 Sulzer Bros. Turboexpander TGL-22-11/B2 $80,000 8 mos 90

  8. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    PubMed Central

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  9. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago.

    PubMed

    Luo, Genming; Ono, Shuhei; Beukes, Nicolas J; Wang, David T; Xie, Shucheng; Summons, Roger E

    2016-05-01

    Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.

  10. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A quantification of the physiological demands of the army emergency responder in the Australian army.

    PubMed

    Tofari, Paul J; Laing Treloar, Alison K; Silk, Aaron J

    2013-05-01

    The Australian Defence Force is reviewing the physical demands of all employment categories in the Australian Army to establish valid and legally defensible assessments. The current assessments, performed in physical training attire, are not specific to job demands. Moreover, the fitness standards decrease based on age and are lower for females, and as job requirements are constant, these assessments are counterintuitive. With regard to the Army Emergency Responder employment category, tasks of physical demand in the present study were selected through consultation with subject-matter experts. Participants consisted of 10 qualified Army Emergency Responder soldiers and three noncareer firefighters under instruction. Real-life firefighting scenarios were witnessed by researchers and helped form task simulations allowing measurement of heart rate and oxygen consumption. Peak oxygen consumption ranged from 21.8 ± 3.8 to 40.0 ± 3.4 mL kg(-1) min(-1) during cutting activities and a search and rescue task, respectively, representing values similar to or higher than the current entry standards. Manual handling tasks were also assessed, with the heaviest measured being two soldiers lifting a 37.7-kg Utility Trunk to 150 cm. The findings provide a quantitative assessment of the physiological demands of Army Emergency Responders, and highlight the need for change in current fitness assessments. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  12. The effect of equalizing landing task demands on sex differences in lower extremity energy absorption.

    PubMed

    Montgomery, Melissa M; Shultz, Sandra J; Schmitz, Randy J

    2014-08-01

    Less lean mass and strength may result in greater relative task demands on females compared to males when landing from a standardized height and could explain sex differences in energy absorption strategies. We compared the magnitude of sex differences in energy absorption when task demands were equalized relative to the amount of lower extremity lean mass available to dissipate kinetic energy upon landing. Male-female pairs (n=35) were assessed for lower extremity lean mass with dual-energy X-ray absorptiometry. Relative task demands were calculated when landing from a standardized height. Based on the difference in lower extremity lean mass within each pair, task demands were equalized by increasing the drop height for males. Joint energetics were measured while landing from the two heights. Multivariate repeated measures ANOVAs compared the magnitude of sex differences in joint energetics between conditions. The multivariate test for absolute energy absorption was significant (P<0.01). The magnitude of sex difference in energy absorption was greater at the hip and knee (both P<0.01), but not the ankle (P=0.43) during the equalized condition compared to the standardized and exaggerated conditions (all P<0.01). There was no difference in the magnitude of sex differences between equalized, standardized and exaggerated conditions for relative energy absorption (P=0.18). Equalizing task demands increased the difference in absolute hip and knee energy absorption between sexes, but had no effect on relative joint contributions to total energy absorption. Sex differences in energy absorption are likely influenced by factors other than differences in relative task demands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  14. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    PubMed

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673oxygen partial pressure of 900 mbar. No evidence is found for fast diffusion along grain boundaries. Rather, the analysis indicates that grain boundaries hinder oxygen transport.

  15. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    PubMed

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  16. Mass balance in the monitoring of pollutants in tidal rivers of the Guanabara Bay, Rio de Janeiro, Brazil.

    PubMed

    da Silveira, Raquel Pinhão; Rodrigues, Ana Paula de Castro; Santelli, Ricardo Erthal; Cordeiro, Renato Campello; Bidone, Edison Dausacker

    2011-10-01

    This study addressed the identification and monitoring of pollution sources of terrestrial origin in rivers (domestic sewage and industrial effluents) and critical fluvial segments in highly polluted environments under tidal influence (mixing marine and continental sources) from Guanabara Bay Basin, Rio de Janeiro, Brazil. The mass balance of contaminants was determined in conditions of continuous flow (low tide) during dry season (lower dilution capability). The results allowed the evaluation of the potential of contaminant mass generation by the different river segments and the estimation of their natural and anthropogenic components. The water quality of Iguaçú and Sarapuí Rivers were evaluated for metals and biochemical oxygen demand. The method gave an excellent response, including the possibility of sources identification and contaminated river segments ranking. The approach also offers fast execution and data interpretation, being highly efficient.

  17. Thermospheric Mass Density Specification: Synthesis of Observations and Models

    DTIC Science & Technology

    2013-10-21

    Simulation Experiments (OSSEs) of the column-integrated ratio of atomic oxygen and molecular nitrogen. Note that OSSEs assimilate, for a given...realistic observing system, synthetically generated observational data often sampled from model simulation results, in place of actually observed values...and molecular oxygen mass mixing ratio). Note that in the TIEGCM the molecular nitrogen mass mixing ratio is specified so that the sum of mixing

  18. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    NASA Astrophysics Data System (ADS)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  19. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    USGS Publications Warehouse

    McLaughlin, K.; Kendall, C.; Silva, S.R.; Young, M.; Paytan, A.

    2006-01-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (?? 18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the ?? 18Op in the bay is primarily controlled by mixing of water masses with different ??18Op signatures. The ??18Op values range from 11.4??? at the Sacramento River to 20.1??? at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that ??18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems. Copyright 2006 by the American Geophysical Union.

  20. A high flux source of swift oxygen atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    A source of swift oxygen atoms is described which has several unique features. A high current ion beam is produced by a microwave discharge, accelerated to 10 keV and the mass selected by a modified Du Pont 21-110 mass spectrometer. The O(+) beam exciting the mass spectrometer is focused into a rectangular shape with an energy spread of less than 1 eV. The next section of the machine decelerates the ion beam into a counterpropagating electron beam in order to minimize space charge effects. After deceleration, the ion beam intersects at 90 deg, a neutral oxygen atom beam, which via resonant charge exchange produces a mixture of O(+) and O. Any remaining O(+) are swept out of the beam by an electric field and differentially pumped away while the desired O beam, collimated by slits, impinges on the target. In situ monitoring of the target surface is done by X-ray photoelectron or Auger spectroscopy. Faraday cups provide flux measurements in the ion sections while the neutral flux is determined by a special torsion balance or by a quadrupole mass spectrometer specially adapted for swift atoms. While the vacuum from the source through the mass spectrometer is maintained by diffusion pumps, the rest of the machine is UHV.

  1. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  2. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  3. The Oxygen Isotopic Composition of the Sun

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.

    2010-12-01

    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  4. Sub-ppb Oxygen Contaminant Detection in Semi-Conductor Processing

    NASA Technical Reports Server (NTRS)

    Man, K. F.

    1995-01-01

    Gaseous contaminants such as oxygen, water vapor, nitrogen and hydrocarbons are often present in the processing environment in semiconductor device fabrication and in containerless materials processing. The contaminants arise as a result of outgassing from hot surfaces or they may be part of the impurities in commercial ultra-high purity gases. Among these gaseous contaminants, oxygen is the most reactive and, therefore, has the most adverse effects on the end product. There has been an intense effort at the Jet Propulsion Laboratory to develop different types of oxygen sorbents to reduce oxygen concentration in a microgravity processing environment to sub-ppb (parts-per-billion) levels. Higher concentrations can lead to rapid surface oxide formation, hence reducing the quality of semiconductor devices. If the concentration of oxygen in a processing chamber at 1000oC is in the ppb level, it will only take approximately 10 seconds for an oxide layer to form on the surface of a sample. The interaction of oxygen with the water surface can lead to the formation of localized defects in semi-conductor devices, hence decreasing the manufacturing yield. For example, efficient production of 64 Mb RAM chips requires contaminations below ppb levels. This paper describes a technique for measuring trace quantities of oxygen contaminants by recording the monoatomic negative ions, O-, using mass spectrometry. The O- formation from the e--O2 interaction utilizes the electron dissociative attachment method that is greatly enhanced at the resonant energy (6.8 eV). The device combines a small gridded electron ionizer with a compact mass spectrometer. The concentrations of oxygen have been measured using the method of standard additions by diluting O2 in N2. The lowest detection limit obtained was 1.2 kHz (O- count rate) at a concentration of 10-10, corresponding to 0.1 ppb.

  5. A spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote Saccharomyces cerevisiae.

    PubMed

    Nakamura, Hideaki; Kobayashi, Shun; Hirata, Yu; Suzuki, Kyota; Mogi, Yotaro; Karube, Isao

    2007-10-15

    A method to determine the spectrophotometric biochemical oxygen demand (BOD(sp)) was studied with high sensitivity and reproducibility by employing 2,6-dichlorophenolindophenol (DCIP) as a redox color indicator, the yeast Saccharomyces cerevisiae, and a temperature-controlling system providing a three-consecutive-stir unit. The absorbance of DCIP decreased due to the metabolism of organic substances in aqueous samples by S. cerevisiae. Under optimum conditions, a calibration curve for glucose glutamic acid concentration between 1.1 and 22mg O(2) L(-1) (r=0.988, six points, n=3) was obtained when the incubation mixture was incubated for 10min at 30 degrees C. The reproducibility of the optical responses in the calibration curve was 1.77% (average of relative standard deviations; RSD(av)). Subsequently, the characterization of this method was studied. The optical responses to pure organic substances and the influence of chloride ions, artificial seawater, and heavy metal ions on the sensor response were investigated before use with real samples. Measurements of real samples using river water were performed and compared with those obtained using the BOD(5) method. Finally, stable responses were obtained for 36 days when the yeast cell suspension was stored at 4 degrees C (response reduction, 89%; RSD(av) value for 9 testing days, 8.4%).

  6. Influence of oxygen content of the certain types of biodiesels on particulate oxidative potential.

    PubMed

    Hedayat, F; Stevanovic, S; Milic, A; Miljevic, B; Nabi, M N; Zare, A; Bottle, S E; Brown, R J; Ristovski, Z D

    2016-03-01

    Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.

    PubMed

    Li, Xiyao; Peng, Yongzhen; He, Yuelan; Wang, Shuying; Guo, Siyu; Li, Lukai

    2017-03-01

    Anaerobic treatment is the most widely used method of waste activated sludge (WAS) stabilization. Using a semi-continuous stirring tank with condensed WAS, we investigated effects of decreasing the solid retention time (SRT) from 32days to 6.4days on sludge reduction, soluble chemical oxygen demand (SCOD) release and dehydration capability, along with anaerobic digestion operated at medium temperature (MT-AD) or anaerobic digestion operated at room temperature (RT-AD). Results showed that effects of temperature on SCOD release were greater at SRT of 32d and 6.4d. When SRT was less than 8d, total solids (TS), volatile solids (VS) and capillary suction time (CST) did not change significantly. CST was lowest at SRT of 10.7days, indicating best condition for sludge dehydration. Principal component analysis (PCA) showed that the most optimum SRT was higher than 10.7d both in MT-AD or RT-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Partitioning of Oxygen During Core Formation on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Gessmann, C. K.; Frost, D. J.

    2003-12-01

    Core formation on Earth and Mars involved the physical separation of Fe-Ni metal alloy from silicate, most likely in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they do not account for large differences between the compositions of the mantles of Earth ( ˜8 wt% FeO) and Mars ( ˜18 wt% FeO) or the much smaller mass fraction of the Martian core. Here we explain these differences using new experimental results on the solubility of oxygen in liquid Fe-Ni alloy, which we have determined at 5-23 GPa, 2100-2700 K and variable oxygen fugacities using a multianvil apparatus. Oxygen solubility increases with increasing temperature and oxygen fugacity and decreases with increasing pressure. Thus, along a high temperature adiabat (e.g. after formation of a deep magma ocean on Earth), oxygen solubility is high at depths up to about 2000 km but decreases strongly at greater depths where the effect of high pressure dominates. For modeling oxygen partitioning during core formation, we assume that Earth and Mars both accreted from oxidized chondritic material with a silicate fraction initially containing around 18 wt% FeO. In a terrestrial magma ocean, 1200-2000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean, due to the high solubility of oxygen in the segregating metal, leaving the mantle with its present FeO content of ˜8 wt%. Lower temperatures of a Martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remained unchanged at about 18 wt%. The mass fractions of segregated metal are consistent with the mass fraction of the Martian core being small relative to that of the Earth. FeO extracted from the Earth's magma ocean by segregating core-forming liquid may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D'' layer and the light element budget of the core.

  9. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  10. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for West Fork Blue River, Washington County, Indiana

    USGS Publications Warehouse

    Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.

    1979-01-01

    A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)

  11. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus).

    PubMed

    Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin

    2016-12-01

    The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sidestream superoxygenation for wastewater treatment: Oxygen transfer in clean water and mixed liquor.

    PubMed

    Barreto, Carlos M; Ochoa, Ivania M; Garcia, Hector A; Hooijmans, Christine M; Livingston, Dennis; Herrera, Aridai; Brdjanovic, Damir

    2018-08-01

    The performance of a pilot-scale superoxygenation system was evaluated in clean water and mixed liquor. A mass balance was applied over the pilot-scale system to determine the overall oxygen mass transfer rate coefficient (K L a, h -1 ), the standard oxygen transfer rate (SOTR, kg O 2 d -1 ), and the standard oxygen transfer efficiency (SOTE, %). Additionally, the alpha factor (α) was determined at a mixed liquor suspend solids (MLSS) concentration of approximately 5 g L -1 . SOTEs of nearly 100% were obtained in clean water and mixed liquor. The results showed that at higher oxygen flowrates, higher transfer rates could be achieved; this however, at expenses of the transfer efficiency. As expected, lower transfer efficiencies were observed in mixed liquor compared to clean water. Alpha factors varied between 0.6 and 1.0. However, values of approximately 1.0 can be obtained in all cases by fine tuning the oxygen flowrate delivered to the system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Elucidating anionic oxygen activity in lithium-rich layered oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jing; Sun, Meiling; Qiao, Ruimin

    Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less

  14. Elucidating anionic oxygen activity in lithium-rich layered oxides

    DOE PAGES

    Xu, Jing; Sun, Meiling; Qiao, Ruimin; ...

    2018-03-05

    Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less

  15. Anemone bleaching increases the metabolic demands of symbiont anemonefish.

    PubMed

    Norin, Tommy; Mills, Suzanne C; Crespel, Amélie; Cortese, Daphne; Killen, Shaun S; Beldade, Ricardo

    2018-04-11

    Increased ocean temperatures are causing mass bleaching of anemones and corals in the tropics worldwide. While such heat-induced loss of algal symbionts (zooxanthellae) directly affects anemones and corals physiologically, this damage may also cascade on to other animal symbionts. Metabolic rate is an integrative physiological trait shown to relate to various aspects of organismal performance, behaviour and locomotor capacity, and also shows plasticity during exposure to acute and chronic stressors. As climate warming is expected to affect the physiology, behaviour and life history of animals, including ectotherms such as fish, we measured if residing in bleached versus unbleached sea anemones ( Heteractis magnifica ) affected the standard (i.e. baseline) metabolic rate and behaviour (activity) of juvenile orange-fin anemonefish ( Amphiprion chrysopterus ) . Metabolic rate was estimated from rates of oxygen uptake [Formula: see text], and the standard metabolic rate [Formula: see text] of anemonefish from bleached anemones was significantly higher by 8.2% compared with that of fish residing in unbleached anemones, possibly due to increased stress levels. Activity levels did not differ between fish from bleached and unbleached anemones. As [Formula: see text] reflects the minimum cost of living, the increased metabolic demands may contribute to the negative impacts of bleaching on important anemonefish life history and fitness traits observed previously (e.g. reduced spawning frequency and lower fecundity). © 2018 The Author(s).

  16. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago

    PubMed Central

    Luo, Genming; Ono, Shuhei; Beukes, Nicolas J.; Wang, David T.; Xie, Shucheng; Summons, Roger E.

    2016-01-01

    Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth’s biogeochemical cycles. Although “whiffs” of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly—within 1 to 10 million years—and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, “Snowball Earth” glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions. PMID:27386544

  17. Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L

    2011-09-08

    Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.

  18. Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).

    PubMed

    Lannig, Gisela; Cherkasov, Anton S; Pörtner, Hans-O; Bock, Christian; Sokolova, Inna M

    2008-04-01

    Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can have detrimental effects on oysters (Crassostrea virginica). During acute warming from 20 to 28 degrees C (4 degrees C/48 h) standard metabolic rate (SMR) rose in control and cadmium-exposed (50 microg Cd2+/l) animals, with a consistently higher SMR in Cd-exposed oysters. Additionally, Cd-exposed oysters showed a stronger temperature-dependent decrease in hemolymph oxygen partial pressures. This observation indicates that the effect of temperature on aerobic metabolism was exacerbated due to the additional Cd stress. The oxygen delivery systems could not provide enough oxygen to cover Cd-induced elevated metabolic demands at high temperatures. Interestingly, cardiac performance (measured as the heart rate and hemolymph supply to tissues) rose to a similar extent in control and Cd-exposed oysters with warming indicating that cardiac output was unable to compensate for elevated energy demand in Cd-exposed oysters. Together with the literature data on metal-induced reduction of ventilatory capacity, these findings suggest that synergistic effects of elevated temperatures and cadmium exposure led to oxygen limitation by impaired performance in oxygen supply through ventilation and circulation. Overall, cadmium exposure resulted in progressive hypoxemia in oysters at high temperatures, suggesting that the thermal tolerance window is narrowed in marine ectotherms inhabiting polluted areas compared with pristine environments.

  19. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  20. Faster heart rate and muscular oxygen uptake kinetics in type 2 diabetes patients following endurance training.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Brinkmann, Christian; Baum, Klaus; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2016-11-01

    Cardiorespiratory kinetics were analyzed in type 2 diabetes patients before and after a 12-week endurance exercise-training intervention. It was hypothesized that muscular oxygen uptake and heart rate (HR) kinetics would be faster after the training intervention and that this would be detectable using a standardized work rate protocol with pseudo-random binary sequences. The cardiorespiratory kinetics of 13 male sedentary, middle-aged, overweight type 2 diabetes patients (age, 60 ± 8 years; body mass index, 33 ± 4 kg·m -2 ) were tested before and after the 12-week exercise intervention. Subjects performed endurance training 3 times a week on nonconsecutive days. Pseudo-random binary sequences exercise protocols in combination with time series analysis were used to estimate kinetics. Greater maxima in cross-correlation functions (CCF max ) represent faster kinetics of the respective parameter. CCF max of muscular oxygen uptake (pre-training: 0.31 ± 0.03; post-training: 0.37 ± 0.1, P = 0.024) and CCF max of HR (pre-training: 0.25 ± 0.04; post-training: 0.29 ± 0.06, P = 0.007) as well as peak oxygen uptake (pre-training: 24.4 ± 4.7 mL·kg -1 ·min -1 ; post-training: 29.3 ± 6.5 mL·kg -1 ·min -1 , P = 0.004) increased significantly over the course of the exercise intervention. In conclusion, kinetic responses to changing work rates in the moderate-intensity range are similar to metabolic demands occurring in everyday habitual activities. Moderate endurance training accelerated the kinetic responses of HR and muscular oxygen uptake. Furthermore, the applicability of the used method to detect these accelerations was demonstrated.

  1. Can oxygen set thermal limits in an insect and drive gigantism?

    PubMed

    Verberk, Wilco C E P; Bilton, David T

    2011-01-01

    Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.

  2. Would Current International Space Station (ISS) Recycling Life Support Systems Save Mass on a Mars Transit?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    The oxygen and water are recycled on the International Space Station (ISS) to save the cost of launching their mass into orbit. Usually recycling systems are justified by showing that their launch mass would be much lower than the mass of the oxygen or water they produce. Short missions such as Apollo or space shuttle directly provide stored oxygen and water, since the needed total mass of oxygen and water is much less than that of there cycling equipment. Ten year or longer missions such as the ISS or a future moon base easily save mass by recycling while short missions of days or weeks do not. Mars transit and long Mars surface missions have an intermediate duration, typically one to one and a half years. Some of the current ISS recycling systems would save mass if used on a Mars transit but others would not.

  3. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  4. Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics.

    PubMed

    Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb)=oxygenated-Hb+deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1-3 days following exercise. The torque integral during ECC was greater (P<0.05) than that during CON by approximately 30%, and the decrease in TOI was smaller (P<0.05) by approximately 50% during ECC than CON. Increases in tHb during the relaxation phases were smaller (P<0.05) by approximately 100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater (P<0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1-3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased (P<0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

  5. Quantitative analysis of oxygen content in copper oxide films using ultra microbalance

    NASA Astrophysics Data System (ADS)

    Shu, Yonghua; Wang, Lianhong; Liu, Chong; Fan, Jing

    2014-12-01

    Copper oxide films were prepared on quartz substrates through electron beam physical vapor deposition in a vacuum chamber, and the films were observed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The oxygen content of the films were analyzed using an ultra microbalance. Results indicated that when the substrate was heated to 600°C and the oxygen flow rate was 5 sccm, the film was composed of 47% Cu and 53% Cu2O (mass percent), and the oxidation ratio of copper was 25%. After the deposition process at the same condition, i.e. the substrate at temperature of 600°C and blowed by oxygen flowrate of 5 sccm, then in-stu annealed at 600°C in low oxygen pressure of 10 Pa for 30 minutes, the film composition became 22% Cu2O and 78% CuO (mass percent), and the oxidation ratio of copper greatly increased to about 88%.

  6. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  7. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    DOE PAGES

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; ...

    2016-02-24

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, we developed a method to imprint a periodic micropattern of oxygen on the surface of GDP and used it to fabricate a flat sample for empirical testing.

  8. 11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome.

    PubMed

    O'Reilly, Michael W; Kempegowda, Punith; Jenkinson, Carl; Taylor, Angela E; Quanson, Jonathan L; Storbeck, Karl-Heinz; Arlt, Wiebke

    2017-03-01

    Androgen excess is a defining feature of polycystic ovary syndrome (PCOS), but the exact origin of hyperandrogenemia remains a matter of debate. Recent studies have highlighted the importance of the 11-oxygenated C19 steroid pathway to androgen metabolism in humans. In this study, we analyzed the contribution of 11-oxygenated androgens to androgen excess in women with PCOS. One hundred fourteen women with PCOS and 49 healthy control subjects underwent measurement of serum androgens by liquid chromatography-tandem mass spectrometry. Twenty-four-hour urinary androgen excretion was analyzed by gas chromatography-mass spectrometry. Fasting plasma insulin and glucose were measured for homeostatic model assessment of insulin resistance. Baseline demographic data, including body mass index, were recorded. As expected, serum concentrations of the classic androgens testosterone (P < 0.001), androstenedione (P < 0.001), and dehydroepiandrosterone (P < 0.01) were significantly increased in PCOS. Mirroring this, serum 11-oxygenated androgens 11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone, and 11-ketotestosterone were significantly higher in PCOS than in control subjects, as was the urinary 11-oxygenated androgen metabolite 11β-hydroxyandrosterone. The proportionate contribution of 11-oxygenated to total serum androgens was significantly higher in patients with PCOS compared with control subjects [53.0% (interquartile range, 48.7 to 60.3) vs 44.0% (interquartile range, 32.9 to 54.9); P < 0.0001]. Obese (n = 51) and nonobese (n = 63) patients with PCOS had significantly increased 11-oxygenated androgens. Serum 11β-hydroxyandrostenedione and 11-ketoandrostenedione correlated significantly with markers of insulin resistance. We show that 11-oxygenated androgens represent the majority of circulating androgens in women with PCOS, with close correlation to markers of metabolic risk.

  9. Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie

    USGS Publications Warehouse

    Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.; Edwards, William J.

    2015-01-01

    Previous studies have indicated that burrow-irrigating infauna can increase sediment oxygen demand (SOD) and impact hypolimnetic oxygen in stratified lakes. We conducted laboratory microcosm experiments and computer simulations with larvae of the burrowing benthic midge Chironomus plumosus to quantify burrow oxygen uptake rates and subsequent contribution to sediment oxygen demand in central Lake Erie. Burrow oxygen uptake and water flow velocities through burrows were measured using oxygen microelectrodes and hot film anemometry, respectively. Burrow oxygen consumption averaged 2.66 × 10− 10 (SE = ± 7.82 × 10− 11) mol O2/burrow/s at 24 °C and 9.64 × 10− 10 (SE = ± 4.86 × 10− 10) mol O2/burrow/s at 15 °C. In sealed microcosm experiments, larvae increased SOD 500% at 24 °C (density = 1508/m2) and 375% at 15 °C (density = 864/m2). To further evaluate effects of densities of C. plumosus burrows on SOD we developed a 3-D transport reaction model of the process. Using experimental data and chironomid abundance data in faunal surveys in 2009 and 2010, we estimated that bioirrigation by a population of 140 larvae/m2 could account for between 2.54 × 10− 11 mol/L/s (model results) and 5.58 × 10− 11 mol/L/s (experimental results) of the average 4.22 × 10− 11 mol/L/s oxygen depletion rate between 1970 and 2003, which could have accounted for 60–132% of the oxygen decline. At present, it appears that the population density of this species may be an important factor in development of hypoxic or anoxic conditions in central Lake Erie.

  10. Mass-Producible 2D-MoS2-Impregnated Screen-Printed Electrodes That Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction.

    PubMed

    Rowley-Neale, Samuel J; Smith, Graham C; Banks, Craig E

    2017-07-12

    Two-dimensional molybdenum disulfide (2D-MoS 2 ) screen-printed electrodes (2D-MoS 2 -SPEs) have been designed, fabricated, and evaluated toward the electrochemical oxygen reduction reaction (ORR) within acidic aqueous media. A screen-printable ink has been developed that allows for the tailoring of the 2D-MoS 2 content/mass used in the fabrication of the 2D-MoS 2 -SPEs, which critically affects the observed ORR performance. In comparison to the graphite SPEs (G-SPEs), the 2D-MoS 2 -SPEs are shown to exhibit an electrocatalytic behavior toward the ORR which is found, critically, to be reliant upon the percentage mass incorporation of 2D-MoS 2 in the 2D-MoS 2 -SPEs; a greater percentage mass of 2D-MoS 2 incorporated into the 2D-MoS 2 -SPEs results in a significantly less electronegative ORR onset potential and a greater signal output (current density). Using optimally fabricated 2D-MoS 2 -SPEs, an ORR onset and a peak current of approximately +0.16 V [vs saturated calomel electrode (SCE)] and -1.62 mA cm -2 , respectively, are observed, which exceeds the -0.53 V (vs SCE) and -635 μA cm -2 performance of unmodified G-SPEs, indicating an electrocatalytic response toward the ORR utilizing the 2D-MoS 2 -SPEs. An investigation of the underlying electrochemical reaction mechanism of the ORR within acidic aqueous solutions reveals that the reaction proceeds via a direct four-electron process for all of the 2D-MoS 2 -SPE variants studied herein, where oxygen is electrochemically favorably reduced to water. The fabricated 2D-MoS 2 -SPEs are found to exhibit no degradation in the observed achievable current over the course of 1000 repeat scans. The production of such inks and the resultant mass-producible 2D-MoS 2 -SPEs mitigates the need to modify post hoc an electrode via the drop-casting technique that has been previously shown to result in a loss of achievable current over the course of 1000 repeat scans. The 2D-MoS 2 -SPEs designed, fabricated, and tested herein could

  11. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  12. Paratransit and Transit Integration Areawide Demand Responsive Transportation System - Program Analysis

    DOT National Transportation Integrated Search

    1977-04-01

    The Urban Mass Transportation Administration carries out research and developmet on Areawide Demand Responsive Transportation (AWDRT) systems as part of the Bus and Paratransit Technoloy activities. AWDRT systems are basically the interation of flexi...

  13. Influence of the liquid-phase mass transfer on the performance of a packed-bed bioreactor for wastewater treatment.

    PubMed

    Sarti, A; Vieira, L G; Foresti, E; Zaiat, M

    2001-07-01

    This paper reports on the influence of the liquid-phase mass transfer on the performance of a horizontal-flow, anaerobic, immobilized-biomass (HAIB) reactor treating low-strength wastewater. The HAIB reactor was subjected to liquid superficial velocities (vs) ranging from 10 to 50 cm h(-1), corresponding to hydraulic detention time (theta h) of 10-2 h. The best performance was achieved at an overall theta h of 3.3 h due to the interdependence of biochemical reactions and mass transfer mechanisms for process optimization. The HAIB reactor was provided with four intermediate sampling ports, and the values of v(s) were fixed to permit sampling at different ports corresponding to thetah of 2 h as vs increased. The chemical oxygen demand removal (COD) efficiencies increased from 68% to 82% with the increase of v(s) from 10 to 50 cm h(-1). It could be concluded that the performance of the HAIB reactor was improved significantly by increasing vs, thus decreasing the liquid-phase mass transfer resistance.

  14. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs

    PubMed Central

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate. PMID:23720633

  15. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    PubMed

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  16. Oxygen concentration affects upper thermal tolerance in a terrestrial vertebrate.

    PubMed

    Shea, Tanner K; DuBois, P Mason; Claunch, Natalie M; Murphey, Nicolette E; Rucker, Kiley A; Brewster, Robert A; Taylor, Emily N

    2016-09-01

    We tested the oxygen limitation hypothesis, which states that animals decline in performance and reach the upper limits of their thermal tolerance when the metabolic demand for oxygen at high temperatures exceeds the circulatory system's ability to supply adequate oxygen, in air-breathing lizards exposed to air with different oxygen concentrations. Lizards exposed to hypoxic air (6% O2) gaped, panted, and lost their righting response at significantly lower temperatures than lizards exposed to normoxic (21% O2) or hyperoxic (35% O2) air. A greater proportion of lizards in the hyperoxic treatment were able to withstand body temperatures above 44°C than in the normoxic treatment. We also found that female lizards had a higher panting threshold than male lizards, while sex had no effect on gaping threshold and loss of righting response. Body size affected the temperature at which lizards lost the righting response, with larger lizards losing the response at lower temperatures than smaller lizards when exposed to hypoxic conditions. These data suggest that oxygen limitation plays a mechanistic role in the thermal tolerance of lizards. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  18. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport

    PubMed Central

    Elliott, S

    2008-01-01

    Oxygen is essential for life, and the body has developed an exquisite method to collect oxygen in the lungs and transport it to the tissues. Hb contained within red blood cells (RBCs), is the key oxygen-carrying component in blood, and levels of RBCs are tightly controlled according to demand for oxygen. The availability of oxygen plays a critical role in athletic performance, and agents that enhance oxygen delivery to tissues increase aerobic power. Early methods to increase oxygen delivery included training at altitude, and later, transfusion of packed RBCs. A breakthrough in understanding how RBC formation is controlled included the discovery of erythropoietin (Epo) and cloning of the EPO gene. Cloning of the EPO gene was followed by commercial development of recombinant human Epo (rHuEpo). Legitimate use of this and other agents that affect oxygen delivery is important in the treatment of anaemia (low Hb levels) in patients with chronic kidney disease or in cancer patients with chemotherapy-induced anaemia. However, competitive sports was affected by illicit use of rHuEpo to enhance performance. Testing methods for these agents resulted in a cat-and-mouse game, with testing labs attempting to detect the use of a drug or blood product to improve athletic performance (doping) and certain athletes developing methods to use the agents without being detected. This article examines the current methods to enhance aerobic performance and the methods to detect illicit use. PMID:18362898

  19. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    NASA Technical Reports Server (NTRS)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  20. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  1. SIMS study of oxygen diffusion in monoclinic HfO2

    NASA Astrophysics Data System (ADS)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  2. Costs and benefits of lunar oxygen: Engineering, operations, and economics

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Woodcock, Gordon R.

    Oxygen is the most commonly discussed lunar resource. It will certainly not be the easiest to retrieve, but oxygen's fundamental place in propulsion and life support guarantees it continued attention as a prime candidate for early in situ resource utilization (ISRU). The findings are reviewed of recent investigation, sponsored by NASA-Ames, into the kinds of technologies, equipment, and scenarios (the engineering and operations costs) that will be required even to initiate lunar oxygen production. The infrastructure necessary to surround and support a viable oxygen-processing operation is explained. Selected details are used to illustrate the depth of technology challenges, extent of operations burdens, and complexity of decision linkages. Basic assumptions, and resulting timelines and mass manifests, are listed. These findings are combined with state-of-the-art knowledge of lunar and Mars propulsion options in simple economic input/output and internal-rate-of-return models, to compare production costs with performance benefits. Implications for three realistic scales of exploration architecture - expeditionary, aggressive science, and industrialization/settlement - are discussed. Conclusions are reached regarding the contextual conditions within which production of lunar oxygen (LLOX) is a reasonable activity. LLOX appears less useful for Mars missions than previously hoped. Its economical use in low Earth orbit hinges on production of lunar hydrogen as well. LLOX shows promise for lunar ascent/descent use, but that depends strongly on the plant mass required.

  3. Costs and benefits of lunar oxygen: Engineering, operations, and economics

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Woodcock, Gordon R.

    1991-01-01

    Oxygen is the most commonly discussed lunar resource. It will certainly not be the easiest to retrieve, but oxygen's fundamental place in propulsion and life support guarantees it continued attention as a prime candidate for early in situ resource utilization (ISRU). The findings are reviewed of recent investigation, sponsored by NASA-Ames, into the kinds of technologies, equipment, and scenarios (the engineering and operations costs) that will be required even to initiate lunar oxygen production. The infrastructure necessary to surround and support a viable oxygen-processing operation is explained. Selected details are used to illustrate the depth of technology challenges, extent of operations burdens, and complexity of decision linkages. Basic assumptions, and resulting timelines and mass manifests, are listed. These findings are combined with state-of-the-art knowledge of lunar and Mars propulsion options in simple economic input/output and internal-rate-of-return models, to compare production costs with performance benefits. Implications for three realistic scales of exploration architecture - expeditionary, aggressive science, and industrialization/settlement - are discussed. Conclusions are reached regarding the contextual conditions within which production of lunar oxygen (LLOX) is a reasonable activity. LLOX appears less useful for Mars missions than previously hoped. Its economical use in low Earth orbit hinges on production of lunar hydrogen as well. LLOX shows promise for lunar ascent/descent use, but that depends strongly on the plant mass required.

  4. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    PubMed Central

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  5. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    PubMed

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  6. Oxygen sensing in intestinal mucosal inflammation.

    PubMed

    Flück, Katharina; Fandrey, Joachim

    2016-01-01

    Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.

  7. Ventilation and oxygen uptake during escape from a civil aircraft.

    PubMed

    Ross, J A; Watt, S J; Henderson, G D; Vant, J H

    1990-01-01

    To help develop a specification for equipment providing personal respiratory protection in the event of aircraft fire a study was carried out to quantify ventilation and oxygen consumption during escape from a Trident aircraft. Data were gathered using the P.K. Morgan 'Oxylog' apparatus after its response time to rapid changes in inspired to expired oxygen concentration difference was assessed using a bench test. The 'Oxylog' had a lag time of 30-32 s and a 5-95% response typified by a half time of 20 s. The data gathered were corrected in the light of these findings. Fourteen male subjects aged 17-38 years were studied under two conditions. Four mass evacuations each involving 40 people; a total of nine subjects escaping from the front rank over eight seats being monitored. Six evacuations each involving only two people escaping from the rear of the cabin; a total of 11 subjects escaping over 14 seats being monitored. Escape was made over the seat backs, down an escape chute to a position 12 m from the base of the chute. Resting minute ventilation (mean 16.7 1 STPD) and oxygen consumption (mean 0.41 min-1 STPD) were similar before both evacuations. There were no significant differences between the two conditions either during, or up to 180 s after escape. Ventilation and oxygen consumption were greatest in the recovery period. The highest oxygen consumption seen was 2.08 l min-1 and maximum minute ventilation was 641. Mean total oxygen consumption for the escape and a 150 s recovery period was 2.41 l (s.d. 0.64, max. 3.11) for the mass evacuation and 2.97 l (s.d. 0.68, max. 4.09) for the two person evacuation. The mean total amount of gas inhaled during the same time period was 89.3 l (s.d. 25.6, max. 121.3) for the mass evacuation and 99.01 (s.d. 26.2, max. 137.3) for the other. These was no correlation between ventilation or oxygen consumption and either escape time, body weight, height or age.

  8. Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?

    PubMed Central

    Verberk, Wilco C. E. P.; Bilton, David T.

    2011-01-01

    Background Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Methodology/Principal Findings Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. Conclusions/Significance These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods. PMID:21818347

  9. Numerical study of oxygen transport in a carotid bifurcation

    NASA Astrophysics Data System (ADS)

    Tada, Shigeru

    2010-07-01

    This study investigates the oxygen mass transport in the region around the human carotid bifurcation, particularly addressing the effects of bifurcation geometry and pulsatile blood flow on the oxygen transport between the blood flow and artery wall tissue, coupled with the metabolic oxygen consumption and oxygen diffusion in the artery wall tissue. The temporal variations and spatial distributions of the oxygen tension are predicted quantitatively using a geometric model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that the flow separation at the outside wall of the sinus of the internal carotid artery (ICA) can markedly alter the flow pattern, oxygen tension and the oxygen wall flux. Results also clarify that the flow unsteadiness has a secondary effect on the oxygen tension inside the wall. The non-dimensional oxygen flux, the Sherwood number Sh, at the outside wall of the ICA sinus, takes markedly lower values of about 45 than at other sites because the rates of oxygen transport by the convective flow are reduced at the outside wall of the ICA sinus. The transverse distributions of the oxygen tension inside the artery wall show parabolic profiles having minima in the middle of the wall thickness, with the lowest value of 35 mmHg. These predicted distributions of the oxygen tension inside the wall closely resemble those obtained from experiments. The results demonstrate that hypoxic zones appear inside the artery walls at locations where atherosclerotic lesions are prone to develop.

  10. Manganese oxide particles as cytoprotective, oxygen generating agents.

    PubMed

    Tootoonchi, Mohammad Hossein; Hashempour, Mazdak; Blackwelder, Patricia L; Fraker, Christopher A

    2017-09-01

    Cell culture and cellular transplant therapies are adversely affected by oxidative species and radicals. Herein, we present the production of bioactive manganese oxide nanoparticles for the purpose of radical scavenging and cytoprotection. Manganese comprises the core active structure of somatic enzymes that perform the same function, in vivo. Formulated nanoparticles were characterized structurally and surveyed for maximal activity (superoxide scavenging, hydrogen peroxide scavenging with resultant oxygen generation) and minimal cytotoxicity (48-h direct exposure to titrated manganese oxide concentrations). Cytoprotective capacity was tested using cell exposure to hydrogen peroxide in the presence or absence of the nanoparticles. Several ideal compounds were manufactured and utilized that showed complete disproportionation of superoxide produced by the xanthine/xanthine oxidase reaction. Further, the nanoparticles showed catalase-like activity by completely converting hydrogen peroxide into the corresponding concentration of oxygen. Finally, the particles protected cells (murine β-cell insulinoma) against insult from hydrogen peroxide exposure. Based on these observed properties, these particles could be utilized to combat oxidative stress and inflammatory response in a variety of cell therapy applications. Maintaining viability once cells have been removed from their physiological niche, e.g. culture and transplant, demands proper control of critical variables such as oxygenation and removal of harmful substances e.g. reactive oxygen species. Limited catalysts can transform reactive oxygen species into molecular oxygen and, thereby, have the potential to maintain cell viability and function. Among these are manganese oxide particles which are the subject of this study. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. 11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome

    PubMed Central

    O’Reilly, Michael W.; Kempegowda, Punith; Jenkinson, Carl; Taylor, Angela E.; Quanson, Jonathan L.; Storbeck, Karl-Heinz

    2017-01-01

    Context: Androgen excess is a defining feature of polycystic ovary syndrome (PCOS), but the exact origin of hyperandrogenemia remains a matter of debate. Recent studies have highlighted the importance of the 11-oxygenated C19 steroid pathway to androgen metabolism in humans. In this study, we analyzed the contribution of 11-oxygenated androgens to androgen excess in women with PCOS. Methods: One hundred fourteen women with PCOS and 49 healthy control subjects underwent measurement of serum androgens by liquid chromatography-tandem mass spectrometry. Twenty-four–hour urinary androgen excretion was analyzed by gas chromatography-mass spectrometry. Fasting plasma insulin and glucose were measured for homeostatic model assessment of insulin resistance. Baseline demographic data, including body mass index, were recorded. Results: As expected, serum concentrations of the classic androgens testosterone (P < 0.001), androstenedione (P < 0.001), and dehydroepiandrosterone (P < 0.01) were significantly increased in PCOS. Mirroring this, serum 11-oxygenated androgens 11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone, and 11-ketotestosterone were significantly higher in PCOS than in control subjects, as was the urinary 11-oxygenated androgen metabolite 11β-hydroxyandrosterone. The proportionate contribution of 11-oxygenated to total serum androgens was significantly higher in patients with PCOS compared with control subjects [53.0% (interquartile range, 48.7 to 60.3) vs 44.0% (interquartile range, 32.9 to 54.9); P < 0.0001]. Obese (n = 51) and nonobese (n = 63) patients with PCOS had significantly increased 11-oxygenated androgens. Serum 11β-hydroxyandrostenedione and 11-ketoandrostenedione correlated significantly with markers of insulin resistance. Conclusions: We show that 11-oxygenated androgens represent the majority of circulating androgens in women with PCOS, with close correlation to markers of metabolic risk. PMID:27901631

  12. Oxygen cost during exercise in simulated subgravity environments

    NASA Technical Reports Server (NTRS)

    Fox, E. L.; Bartels, R. L.; Chaloupka, E. C.; Klinzing, J. E.; Hoche, J.

    1975-01-01

    Oxygen cost (VO2) and heart rate (HR) were determined during treadmill walking in simulated subgravity environments. The long axis of the subject's body was suspended parallel to the floor in a slow rotation room with feet aligned on the surface of a treadmill mounted 90 deg on the wall. Without rotation, the subjects were virtually weightless against the treadmill; with centrifugation, environments of 0.25, 0.5 and 1 G were simulated. Oxygen cost (open circuit) and HR (ECG) were measured during the 5th minute of walking at 3.2, 4.7 and 6.1 km/h. Similar measurements were also determined during walking at 1/2-G using the inclined plane technique. Oxygen cost per unit mass and HR were significantly reduced in all subgravity environments. However, net oxygen cost per unit weight carried and, therefore, mechanical efficiency was found to be independent of gravity. This supports the idea that the most probable cause for the decreased oxygen cost with reduced gravity is less body weight carried.

  13. Tracing the oxygen triple isotopic composition of tropospheric molecular oxygen in biogenic apatite - a new tool for palaeoclimatology

    NASA Astrophysics Data System (ADS)

    Pack, A.; Süssenberger, A.; Gehler, A.; Wotzlaw, J.

    2009-04-01

    It has been demonstrated that tropospheric molecular oxygen posses a significant isotope anomaly [1, 2 and refs. therein]. Relative to the rocks- and minerals-defined terrestrial fractionation line (TFL), tropospheric O2 has an anomaly of -0.35‰ [2]. Because almost all oxygen on Earth is contained in rocks, we suggest that the rocks- and minerals-defined TFL [3] should be used as reference when reporting isotope anomalies with ∆17O = δ'17OSMOW - βTFL δ'18OSMOW. We have developed a new technique for the determination of δ17O and δ18O of silicates by means of laser fluorination GC-CF-irmMS. We have determined βTFL to 0.5247 (N > 100), which is identical to the value reported by other laboratories and techniques [2, 3]. The uncertainty in ∆17O is ±0.03 (1σ) for a single analysis. It was suggested that ∆17O of tropospheric O2 can be used as proxy for the global bioactivity rate [GBR, 1] as well as for past atmospheric CO2 concentrations [4]. Past ∆17O of tropospheric O2 can be determined by analyzing O2 trapped in ice [1, 5] or by analyzing sulfates from terrestrial sulphide oxidation [4]. Disadvantage of ice core data is the limitation in time back <1 Myrs. The sulfate approach is used to trace ∆17O of air O2 back to Proterozoic times. Disadvantage of this technique is the uncertainty in the proportion of oxygen from O2 and oxygen from ambient water during oxidation of the sulphides. We suggest that oxygen from tooth and bone phosphate can be used as proxy for the ∆17O of air O2. Mass balance calculations [e.g. 6] suggest that a considerable portion of oxygen in biogenic apatite sources from respired air O2. We have analyzed tooth (enamel, dentine) and bone material by means of direct fluorination for their δ17O and δ18O. We have chosen material of mammals of different body mass (Mb) from Northern Germany (except Indian Elephant). The ∆17O of apatite varies between -0.16‰ for a wood mouse (Apodemus sylvaticus) and +0.04‰ for a wild boar

  14. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  15. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  16. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    A pulsed high flux source of nearly monoenergetic atomic oxygen was designed, built, and successfully demonstrated. Molecular oxygen at several atmospheres pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. An 18 J pulsed CO2 TEA laser is focused to intensities greater than 10(9) W/sq cm in the nozzle throat to generate a laser-induced breakdown. The resulting plasma is heated in excess of 20,000 K by a laser supported detonation wave, and then rapidly expands and cools. Nozzle geometry confines the expansion to provide rapid electron-ion recombination into atomic oxygen. Average O atom beam velocities from 5 to 13 km/s were measured at estimated fluxes to 10(18) atoms per pulse. Preliminary materials testing has produced the same surface oxygen enrichment in polyethylene samples as obtained on the STS-8 mission. Scanning electron microscope examinations of irradiated polymer surfaces reveal an erosion morphology similar to that obtained in low Earth orbit, with an estimated mass removal rate of approx. 10(-24) cu cm/atom. The characteristics of the O atom source and the results of some preliminary materials testing studies are reviewed.

  17. Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals.

    PubMed

    Komaszylo Née Siedlecka, Joanna; Kania, Magdalena; Masnyk, Marek; Cmoch, Piotr; Lozinska, Iwona; Czarnocki, Zbigniew; Skorupinska-Tudek, Karolina; Danikiewicz, Witold; Swiezewska, Ewa

    2016-02-01

    Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents--reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI-MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI-MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.

  18. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Oxidation State of Vanadium in Spinel-Melt Pairs; 44) Testing the Magma Ocean Hypothesis Using Metal-Silicate Partitioning of Te, Se and S; 45) Solubility of Oxygen in Liquid Iron at High Pressure and Consequences for the Early Differentiation of Earth and Mars Metallic Liquid Segregation in Planetesimals; 46) Oxygen Fugacity of Lunar Basalts and the Lunar Mantle. Range of fo2 and the Effectiveness of Oxybarometers; 47) Thermodynamic Study of Dissociation Processes of Molecular Oxygen in Vapor over Oxide Compounds; 48) Oxygen Profile of a Thermo-Haliophilic Community in the Badwater Salt Flat; 49) Oxygen Barometry Using Synchrotron MicroXANES of Vanadium; 50) Mass-Independent Isotopic Fractionation of Sulfur from Sulfides in the Huronian Supergroup, Canada; 51) Mass Independent Isotopes and Applications to Planetary Atmospheres; 52) Electrical Conductivity, Oxygen Fugacity, and Mantle Materials; 53) Crustal Evolution and Maturation on Earth: Oxygen Isotope Evidence; 54) The Oxygen Isotope Composition of the Moon: Implications for Planet Formation; 55) Oxygen Isotope Composition of Eucrites and Implications for the Formation of Crust on the HED Parent Body; and 56) The Role of Water in Determining the Oxygen Isotopic Composition of Planets.

  19. ELEMENT MASSES IN THE CRAB NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  20. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.

    PubMed

    Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard

    2017-10-01

    Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2  = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    PubMed Central

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293

  2. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    PubMed

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  3. Coupling of anodic oxidation and adsorption by granular activated carbon for chemical oxygen demand removal from 4,4'-diaminostilbene-2,2'-disulfonic acid wastewater.

    PubMed

    Wang, Lizhang; Zhao, Yuemin

    2010-01-01

    Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.

  4. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    PubMed

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  5. Fast Responding Oxygen Sensor For Respiratorial Analysis

    NASA Astrophysics Data System (ADS)

    Karpf, Hellfried H.; Kroneis, H. W.; Marsoner, Hermann J.; Metzler, H.; Gravenstein, N.

    1990-02-01

    Breath-by-breath monitoring of the partial pressure of oxygen is the main interest for the development of a fast responding optical oxygen sensor. Monitoring the P02 finds its main interest in critical care, in artificial respiration, in breath by breath determination of respiratorial coefficients and in pulmonarial examinations. The requirements arising from these and similar applications are high precision, high long term stability, and time constants in the range of less than 0.1 sec. In order to cope with these requirements, we investigated different possibilities of fast P02-measurements by means of optical sensors based on fluorescence quenching. The experimental set up is simple: a rigid transparent layer is coated with a thin layer of an hydrophobic polymer which has a high permeability for oxygen. The oxygen sensitive indicator material is embedded into this polymer. An experimental set up showed time constants of 30 milliseconds. The lifetime is in the range of several months. Testing of our test equipment by an independent working group resulted in surprisingly good correlation with data obtained by mass spectroscopy.

  6. LEO P: HOW MANY METALS CAN A VERY LOW MASS, ISOLATED GALAXY RETAIN?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew

    Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. Thismore » is considerably lower than the 20%–25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation.« less

  7. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    PubMed

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification.

  8. Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

    PubMed

    Pörtner, Hans O; Knust, Rainer

    2007-01-05

    A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.

  9. Surface control of epitaxial manganite films via oxygen pressure

    DOE PAGES

    Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; ...

    2015-03-11

    The trend to reduce device dimensions demands increasing attention to atomic-scale details of structure of thin films as well as to pathways to control it. We found that this is of special importance in the systems with multiple competing interactions. We have used in situ scanning tunneling microscopy to image surfaces of La 5/8Ca 3/8MnO 3 films grown by pulsed laser deposition. The atomically resolved imaging was combined with in situ angle-resolved X-ray photoelectron spectroscopy. We find a strong effect of the background oxygen pressure during deposition on structural and chemical features of the film surface. Deposition at 50 mTorrmore » of O 2 leads to mixed-terminated film surfaces, with B-site (MnO 2) termination being structurally imperfect at the atomic scale. Moreover, a relatively small reduction of the oxygen pressure to 20 mTorr results in a dramatic change of the surface structure leading to a nearly perfectly ordered B-site terminated surface with only a small fraction of A-site (La,Ca)O termination. This is accompanied, however, by surface roughening at a mesoscopic length scale. The results suggest that oxygen has a strong link to the adatom mobility during growth. The effect of the oxygen pressure on dopant surface segregation is also pronounced: Ca surface segregation is decreased with oxygen pressure reduction.« less

  10. Interferometric study on the mass transfer in cryogenic distillation under magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.

    2017-12-01

    Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.

  11. Thermal design of a Mars oxygen production plant

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Iyer, Venkatesh A.

    1991-01-01

    The optimal design of the thermal components of a system that uses carbon dioxide from the Martian atmosphere to produce oxygen for spacecraft propulsion and/or life support is discussed. The gases are pressurized, heated and passed through an electrochemical cell. Carbon dioxide is reduced to carbon monoxide and oxygen due to thermal dissociation and electrocatalysis. The oxygen thus formed is separated from the gas mixture by the electrochemical cell. The objective of the design is to optimize both the overall mass and the power consumption of the system. The analysis shows that at electrochemical cell efficiencies of about 50 percent and lower, the optimal system would require unspent carbon dioxide in the exhaust gases to be separated and recycled. Various methods of efficiently compressing the intake gases to system pressures of 0.1 MPa are investigated. The total power requirement for oxygen production rates of 1, 5, and 10 kg/day at various cell efficiencies are presented.

  12. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, T; Xu, L; Gillies, R

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation ofmore » pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a

  13. Electrochemical Technology for Oxygen Removal and Measurement in the CELSS Test Facility, Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Covington, Al (Technical Monitor)

    1994-01-01

    The Life Support Flight Program is evaluating regenerative technologies, including those that utilize higher plants, as a means to reduce resupply over long duration space missions. Constructed to assist in the evaluation process is the CELSS Test Facility Engineering Development Unit (CTF-EDU) an environmentally closed (less than 1% mass and thermal leakage) technology test bed. This ground based fully functional prototype is currently configured to support crop growth, utilizing the power, volume and mass resources allocated for two space station racks. Sub-system technologies were selected considering their impact on available resources, their ability to minimize integration issues, and their degree of modularity. Gas specific mass handling is a key sub-system technology for both biological and physical/chemical life support technologies. The CTF-EDU requires such a system to accommodate non-linear oxygen production from crops, by enabling the control system to change and sustain partial pressure set points in the growth volume. Electrochemical cells are one of the technologies that were examined for oxygen handling in the CTF-EDU. They have been additionally considered to meet other regenerative life support functions, such as oxygen generation, the production of potable water from composite waste streams, and for having the potential to integrate life support functions with those of propulsion and energy storage. An oxygen removal system based on an electrochemical cell was chosen for the EDU due to it's low power, volume and mass requirements (10W, 0.000027 cu m, 4.5 kg) and because of the minimal number of integration considerations. Unlike it's competitors, the system doesn't require post treatments of its byproducts, or heat and power intensive regenerations, that also mandate system redundancy or cycling. The EDUs oxygen removal system only requires two resources, which are already essential to controlled plant growth: electricity and water. Additionally

  14. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption.

    PubMed

    Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2018-02-01

    To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O 2 /min/100 g or 6.0 ± 1.9 mL O 2 /min/100 g, respectively. vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Topical oxygen as an adjunct to wound healing: a clinical case series.

    PubMed

    Kalliainen, Loree K.; Gordillo, Gayle M.; Schlanger, Richard; Sen, Chandan K.

    2003-01-01

    BACKGROUND: Disrupted vasculature and high energy-demand to support processing and regeneration of wounded tissue are typical characteristics of a wound site. Oxygen delivery is a critical element for the healing of wounds. Clinical experience with adjunctive hyperbaric oxygen therapy in the treatment of chronic wounds have shown that wound hyperoxia increases wound granulation tissue formation and accelerates wound contraction and secondary closure. Nevertheless, the physiologic basis for this modality remains largely unknown. Also, systemic hyperbaric oxygen therapy is associated with risks related to oxygen toxicity. Topical oxygen therapy represents a less explored modality in wound care. The advantages of topical oxygen therapy include low cost, lack of systemic oxygen toxicity, and the ability to receive treatment at home, making the benefits of oxygen therapy available to a much larger population of patients. MATERIALS AND METHODS: Over 9 months, seven surgeons treated 58 wounds in 32 patients with topical oxygen with follow-up ranging from 1 to 8 months. The data presented herein is a retrospective analysis of the results we have achieved using topical oxygen on complex wounds. RESULTS: Thirty-eight wounds in 15 patients healed while on topical oxygen. An additional five wounds in five patients had preoperative oxygen therapy; all wounds initially healed postoperatively. In two patients, wounds recurred post-healing. In ten wounds, topical oxygen had no effect; and two of those patients went on to require limb amputation. There were no complications attributable to topical oxygen. Three patients died during therapy and one died in the first postoperative month from underlying medical problems. Two patients were lost to follow-up. CONCLUSIONS: In this case series, topical oxygen had no detrimental effects on wounds and showed beneficial indications in promoting wound healing.

  16. The Metabolic Demands of Kayaking: A Review

    PubMed Central

    Michael, Jacob S.; Rooney, Kieron B.; Smith, Richard

    2008-01-01

    pointsFlat water kayaking is characterised by exceptional demands on upper body performance.When examining the oxygen consumption, it is notable that although a high value is attainable, they are not quite as high as other sporting events such as road cycling, rowing or running where lower body is dominant.Elite kayakers demonstrate superior aerobic and anaerobic quantities and have reported maximal oxygen consumptions of around 58 ml·kg-1·min-1 (4.7 L·min-1) and lactate values of around 12 mM during laboratory and on water testing. PMID:24150127

  17. On the radial oxygen distribution in the Galactic disc - II. Effects of local streams

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu N.; Tkachenko, R. V.

    2018-06-01

    We analyse the idea that the local dips (˜1 kpc along the Galactic radius) observed in oxygen abundance are associated with the infall of intergalactic low-abundant gas (˜0.2 Z⊙) on to the Galactic disc during the last ˜100 Myr. We term such infall events local streams. The derived masses of the falling gas (of the order of several times 108 M⊙) are close to the observed ones (e.g. in the Magellanic Stream). Such local streams do not change the mean mass of oxygen ejected per core-collapse supernova (CC SN) event, so that our previous inference on probable upper initial masses for progenitors of CC SNe remains valid.

  18. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation.

    PubMed

    Causin, Paola; Guidoboni, Giovanna; Malgaroli, Francesca; Sacco, Riccardo; Harris, Alon

    2016-06-01

    The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen ([Formula: see text]) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, [Formula: see text] is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the [Formula: see text] distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the [Formula: see text] profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the [Formula: see text] tension at the level of the retinal ganglion cells; and (3) arterial [Formula: see text

  19. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect.

    PubMed

    Verberk, W C E P; Sommer, U; Davidson, R L; Viant, M R

    2013-10-01

    Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress.

  20. Evaluation of I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone as proxy for redox conditions in the ambient water masses

    NASA Astrophysics Data System (ADS)

    Glock, N.; Liebetrau, V.; Eisenhauer, A.

    2014-12-01

    Tropical oxygen minimum zones (OMZs) are most important areas of oxygen depletion in today´s oceans and nutrient cycling in these regions has a large socio-economic impact because they account for about 17% of the global commercial fish catches(1). Possibly increasing magnitude and area of oxygen depletion in these regions, might endanger rich pelagic fish habitats in the future threatening the global marine food supply. By the use of a quantitative redox proxy in OMZs, reconstruction of the temporal variation in OMZ extension eventually providing information about past and future changes in oxygenation and the anthropogenic role in the recent trend of expanding OMZs(2). Recent work has shown that iodine/calcium (I/Ca) ratios in marine carbonates are a promising proxy for ambient oxygen concentration(3). Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ to bottom water oxygen concentrations ([O2]BW) and evaluates foraminiferal I/Ca ratios as a possible redox proxy for the ambient water masses. Our results show that all species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans this trend is not significant. The highest significance has been found for Uvigerina striata (I/Ca = 0.032(±0.004).[O2]BW + 0.29(±0.03), R² = 0.61, F = 75, P < 0.0001). Although I/Ca ratios in benthic foraminifera appear to be a robust redox proxy there are some methodical issues which have to be considered. These "pitfalls" include: (i) the volatility of iodine in acidic solutions, (ii) a species dependency of the I/Ca-[O2]BW relationship which is either related to a strong vital effect or toa species dependency on the calcification depth within sediment, and (iii) the inter-test variability of I/Ca between different specimens from the same species and habitat. (1): FAO FishStat: Fisheries and aquaculture software. In: FAO

  1. Determination of O₂ Mass Transport at the Pt | PFSA Ionomer Interface under Reduced Relative Humidity.

    PubMed

    Novitski, David; Holdcroft, Steven

    2015-12-16

    Oxygen mass transport resistance through the ionomer component in the cathode catalyst layer is considered to contribute overpotential losses in polymer electrolyte membrane fuel cells. Whereas it is known that water uptake, water transport, and proton conductivity are reduced upon reducing relative humidity, the effect on oxygen mass transport remains unknown. We report a two-electrode approach to determine mass transport coefficients for the oxygen reduction reaction in air at the Pt/perfluorosulfonic acid ionomer membrane interface between 90 and 30% RH at 70 °C using a Pt microdisk in a solid state electrochemical cell. Potential-step chronoamperometry was performed at specific mass-transport limiting potentials to allow for the elucidation of the oxygen diffusion coefficient (D(bO2)) and oxygen concentration (c(bO2)). In our efforts, novel approaches in data acquisition, as well as analysis, were examined because of the dynamic nature of the membrane under lowered hydration conditions. Linear regression analysis reveals a decrease in oxygen permeability (D(bO2c(bO2)) by a factor of 1.7 and 3.4 from 90 to 30% RH for Nafion 211 membrane and membranes cast from Nafion DE2020 ionomer solutions, respectively. Additionally, nonlinear curve fitting by way of the Shoup-Szabo equation is employed to analyze the entire current transient during potential step controlled ORR. We also report on the presence of an RH dependence of our previously reported time-dependency measurements for O2 mass transport coefficients.

  2. Increasing the demand for childhood vaccination in developing countries: a systematic review

    PubMed Central

    2009-01-01

    Background Attempts to maintain or increase vaccination coverage almost all focus on supply side interventions: improving availability and delivery of vaccines. The effectiveness and cost-effectiveness of efforts to increase demand is uncertain. Methods We performed a systematic review of studies that provided quantitative estimates of the impact of demand side interventions on uptake of routine childhood vaccination. We retrieved studies published up to Sept 2008. Results The initial search retrieved 468 potentially eligible studies, including four systematic reviews and eight original studies of the impact of interventions to increase demand for vaccination. We identified only two randomised controlled trials. Interventions with an impact on vaccination uptake included knowledge translation (KT) (mass media, village resource rooms and community discussions) and non-KT initiatives (incentives, economic empowerment, household visits by extension workers). Most claimed to increase vaccine coverage by 20 to 30%. Estimates of the cost per vaccinated child varied considerably with several in the range of $10-20 per vaccinated child. Conclusion Most studies reviewed here represented a low level of evidence. Mass media campaigns may be effective, but the impact depends on access to media and may be costly if run at a local level. The persistence of positive effects has not been investigated. The economics of demand side interventions have not been adequately assessed, but available data suggest that some may be very cost-effective. PMID:19828063

  3. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters.

    PubMed

    Healy, M G; Rodgers, M; Mulqueen, J

    2007-06-01

    A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.

  4. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  5. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  6. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence

    PubMed Central

    Verberk, Wilco C.E.P.; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S.

    2016-01-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  7. [Long-term oxygen therapy (LTOT)--what should physicians, homecare-providers and health insurance companies know?].

    PubMed

    Koehler, U; Hildebrandt, O; Jerrentrup, L; Koehler, K-I; Kianinejad, P; Sohrabi, K; Schäfer, H; Kenn, K

    2014-03-01

    Long-term oxygen treatment (LTOT) has been demonstrated to improve prognosis in patients with chronic respiratory insufficiency. In terms of pathogenesis, improved oxygenation, reduction of pulmonary artery pressure as well as reduction of respiratory work are important. Since there are considerable differences between the LTOT systems, individually tailored therapy is needed. In particular, the mobility aspects of the patients must be taken into consideration. It is important to distinguish between stationary/mobile devices with a liquid oxygen system and stationary/mobile devices with oxygen concentrator. Oxygen titration should be performed in relation to rest and activity phases (e. g. 6 minute walk test) as well as in relation to the sleep phase. Employing devices with demand-controlled valves should be critically examined. This can be undertaken only under physician orders and requires continuous monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Latter, William B.; Black, John H.; Bally, John; Hacking, Perry

    1987-01-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting 'carbon' stars shows no variation with Galactocentric radius, while the evolved 'oxygen' star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars.

  9. Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.

    2016-01-01

    ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.

  10. Use of a micro programmable logic controller for oxygen monitoring and control in multiple tanks of a recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    In intensive recirculating aquaculture systems the use of supplemental oxygen, specifically pure liquid oxygen, increases the mass of fish that can be supported and eliminates oxygen as a major limiting factor to a system’s carrying capacity. The use of pure oxygen in a recirculating aquaculture sys...

  11. Decoupling of reaction time-related default mode network activity with cognitive demand.

    PubMed

    Barber, Anita D; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2017-06-01

    Reaction Time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in task positive regions. Few studies have focused on whether opposing RT-related suppression of task activity also occurs. The current study used two Go/No-go tasks with different cognitive demands to examine regions that showed greater BOLD suppression for longer RT trials. These RT-related suppression effects occurred within the DMN and were task-specific, localizing to separate regions for the two tasks. In the task requiring working memory, RT-related de-coupling of the DMN occurred. This was reflected by opposing RT-BOLD effects for different DMN regions, as well as by reduced positive RT-related Psycho-Physiological Interaction (PPI) connectivity within the DMN and a lack of negative RT-related PPI connectivity between DMN and task positive regions. The results suggest that RT-related DMN suppression is task-specific. RT-related de-coupling of the DMN with more complex task demands may contribute to lapses of attention and performance decrements that occur during cognitively-demanding tasks.

  12. Spectroscopic Determination of Trace Contaminants in High Purity Oxygen

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.

    2011-01-01

    Oxygen used for extravehicular activities (EVA) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. Measurement of oxygen purity above 99.5% is problematic, and currently only complex instruments such as gas chromatographs or mass spectrometers are used for these determinations. Because liquid oxygen boil-off from the space shuttle will no longer be available to supply oxygen for EVA use, other concepts are being developed to produce and validate high purity oxygen from cabin air aboard the International Space Station. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen was developed at White Sands Test Facility. This instrument uses a glow discharge in reduced pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants and may lend itself to a device capable of on-orbit verification of oxygen purity. System design and optimized measurement parameters are presented.

  13. Strategies for Improved Hospital Response to Mass Casualty Incidents.

    PubMed

    TariVerdi, Mersedeh; Miller-Hooks, Elise; Kirsch, Thomas

    2018-03-19

    Mass casualty incidents are a concern in many urban areas. A community's ability to cope with such events depends on the capacities and capabilities of its hospitals for handling a sudden surge in demand of patients with resource-intensive and specialized medical needs. This paper uses a whole-hospital simulation model to replicate medical staff, resources, and space for the purpose of investigating hospital responsiveness to mass casualty incidents. It provides details of probable demand patterns of different mass casualty incident types in terms of patient categories and arrival patterns, and accounts for related transient system behavior over the response period. Using the layout of a typical urban hospital, it investigates a hospital's capacity and capability to handle mass casualty incidents of various sizes with various characteristics, and assesses the effectiveness of designed demand management and capacity-expansion strategies. Average performance improvements gained through capacity-expansion strategies are quantified and best response actions are identified. Capacity-expansion strategies were found to have superadditive benefits when combined. In fact, an acceptable service level could be achieved by implementing only 2 to 3 of the 9 studied enhancement strategies. (Disaster Med Public Health Preparedness. 2018;page 1 of 13).

  14. Oxygen isotope corrections for online δ34S analysis

    USGS Publications Warehouse

    Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.

    2002-01-01

    Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.

  15. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found betweenmore » the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.« less

  16. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made...

  17. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    PubMed

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  18. Attentional demands and postural recovery: the effects of aging.

    PubMed

    Brown, L A; Shumway-Cook, A; Woollacott, M H

    1999-04-01

    Cognitive demands associated with balance and locomotion may contribute to the incidence of falling among older adults. This study addressed issues related to the effects of aging on the attentional demands of recovering from an external disturbance to balance. This research also investigated whether performing a secondary cognitive task differentially affects postural recovery in young versus older adults. Fifteen young and 10 healthy older adults were exposed to a series of balance disturbances. Attentional demands were assessed using a dual task paradigm where postural recovery served as the primary task, and counting backwards served as a concurrent secondary cognitive task. The effect of the counting task was assessed by comparing kinematic variables related to feet-in-place and stepping recovery strategies. Recovering upright stance was found to be attentionally demanding in both age groups. The type of recovery strategy did not influence attentional demands in young adults; however, a hierarchy of increasing attentional demands between the ankle strategy and compensatory stepping was apparent among older adults. In addition, stepping appears to be more attentionally demanding for older adults than for younger adults. Counting backwards did not affect the type of strategy used; however, it did affect the kinematics of stepping. For both age groups, steps occurred when the center of mass was located in a more central location within the base of support when the secondary task was added. The ability to recover a stable posture following an external perturbation is more attentionally demanding for older adults than for younger adults. This would suggest that for some older adults, an increased risk for loss of balance and falls may result if sufficient attentional resources are not allocated to the task of postural recovery.

  19. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  20. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  1. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  2. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  3. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  4. Modelling Ecosystem Dynamics of the Oxygen Minimum Zones in the Angola Gyre and the Northern Benguela Upwelling System.

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Eggert, A.

    2016-02-01

    The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by

  5. Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Grose, Katie E.; McDonagh, Elaine L.; Heywood, Karen J.; Frew, Russell D.; Dennis, Paul F.

    1999-09-01

    Measurements of the ratio of stable isotopes of oxygen (18O and 16O) from samples collected on World Ocean Circulation Experiment sections SR1b (eastern Drake Passage) and A11 (Punta Arenas to Cape Town) are used, together with hydrographic data, to deduce information about the formation and variability of South Atlantic and Southern Ocean water masses. The Drake Passage surface waters south of the Polar Front (PF) are isotopically light (δ18O around -0.4‰) owing to the influence of meteoric waters. The salinity and δ18O of the A11 surface waters yield an apparent freshwater end-member which is much isotopically lighter than the local precipitation, thus advection of these waters from farther south dominates over local effects in determining the surface water properties. The Drake Passage section shows unusual proximity of the two main fronts of the Antarctic Circumpolar Current (the PF and Subantarctic Front (SAF)), and we observe cold, fresh, and isotopically light water derived from the temperature-minimum Winter Water at the SAF. This water is of the correct density to freshen the intermediate water north of the SAF and thus play a role in the formation of the comparatively fresh Antarctic Intermediate Water (AAIW) of the South Atlantic. This confirms the role of Antarctic water in forming the South Atlantic variety of AAIW. Across the A11 section the oxygen isotope and salinity data at the AAIW core show very similar traces, with waters in the Malvinas Current loop showing lowest values of both. At the eastern boundary of the South Atlantic, the input of Red Sea Water from east of South Africa is observed via the presence of anomalously isotopically heavy AAIW. We deduce potentially significant temporal variability in the isotopic composition of Weddell Sea Deep Water (WSDW) by comparing the Drake Passage data to earlier data covering the outflow of the Weddell Sea. The A11 data show WSDW consistent with such variability, indicating that its effects could

  6. Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change.

    PubMed

    Petrovskii, Sergei; Sekerci, Yadigar; Venturino, Ezio

    2017-07-07

    It is estimated that more than a half of the total atmospheric oxygen is produced in the oceans due to the photosynthetic activity of phytoplankton. Any significant decrease in the net oxygen production by phytoplankton is therefore likely to result in the depletion of atmospheric oxygen and in a global mass mortality of animals and humans. In its turn, the rate of oxygen production is known to depend on water temperature and hence can be affected by the global warming. We address this problem theoretically by considering a model of a coupled plankton-oxygen dynamics where the rate of oxygen production slowly changes with time to account for the ocean warming. We show that, when the temperature rises sufficiently high, a regime shift happens: the sustainable oxygen production becomes impossible and the system's dynamics leads to fast oxygen depletion and plankton extinction. We also consider a scenario when, after a certain period of increase, the temperature is set on a new higher yet apparently safe value, i.e. before the oxygen depletion disaster happens. We show that in this case the system dynamics may exhibit a long-term quasi-sustainable dynamics that can still result in an ecological disaster (oxygen depletion and mass extinctions) but only after a considerable period of time. Finally, we discuss the early warning signals of the approaching regime shift resulting in the disaster. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption

    PubMed Central

    Faußer, Anna C.; Dušek, Jiří; Čížková, Hana; Kazda, Marian

    2016-01-01

    Wetland plants actively provide oxygen for aerobic processes in submerged tissues and the rhizosphere. The novel concomitant assessment of diurnal dynamics of oxygen and carbon dioxide concentrations under field conditions tests the whole-system interactions in plant-internal gas exchange and regulation. Oxygen concentrations ([O2]) were monitored in-situ in central culm and rhizome pith cavities of common reed (Phragmites australis) using optical oxygen sensors. The corresponding carbon dioxide concentrations ([CO2]) were assessed via gas samples from the culms. Highly dynamic diurnal courses of [O2] were recorded, which started at 6.5–13 % in the morning, increased rapidly up to 22 % during midday and declined exponentially during the night. Internal [CO2] were high in the morning (1.55–17.5 %) and decreased (0.04–0.94 %) during the rapid increase of [O2] in the culms. The observed negative correlations between [O2] and [CO2] particularly describe the below ground relationship between plant-mediated oxygen supply and oxygen use by respiration and biogeochemical processes in the rhizosphere. Furthermore, the nocturnal declining slopes of [O2] in culms and rhizomes indicated a down-regulation of the demand for oxygen in the complete below ground plant-associated system. These findings emphasize the need for measurements of plant-internal gas exchange processes under field conditions because it considers the complex interactions in the oxic-anoxic interface. PMID:27207278

  8. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    PubMed

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  10. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells.

    PubMed

    Sambandam, Satheesh; Parrondo, Javier; Ramani, Vijay

    2013-09-28

    The oxygen permeability of perfluorinated and hydrocarbon polymer electrolyte membranes (PEMs; Nafion®, SPEEK and SPSU), which are used as electrolytes and electrode ionomers in polymer electrolyte fuel cells (PEFCs), was estimated using chronoamperometry using a modified fuel cell set-up. A thin, cylindrical microelectrode was embedded into the PEM and used as the working electrode. The PEM was sandwiched between 2 gas diffusion electrodes, one of which was catalyzed and served as the counter and pseudo-reference electrode. Independently, from fuel cell experiments, the oxygen transport resistance arising due to transport through the ionomer film covering the catalyst active sites was estimated at the limiting current and decoupled from the overall mass transport resistance. The in situ oxygen permeability measured at 80 °C and 75% RH of perfluorinated ionomers such as Nafion® (3.85 × 10(12) mol cm(-1) s(-1)) was observed to be an order of magnitude higher than that of hydrocarbon-based PEMs such as SPEEK (0.27 × 10(12) mol cm(-1) s(-1)) and SPSU (0.15 × 10(12) mol cm(-1) s(-1)). The obtained oxygen transport (through ionomer film) resistance values (Nafion® - 1.6 s cm(-1), SPEEK - 2.2 s cm(-1) and SPSU - 3.0 s cm(-1); at 80 °C and 75% RH) correlated well with the measured oxygen permeabilities in these ion-containing polymers.

  11. Oceanic oxygenation events in the anoxic Ediacaran ocean.

    PubMed

    Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W

    2016-09-01

    The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis. © 2016 John Wiley & Sons Ltd.

  12. Study of acetic acid production by immobilized acetobacter cells: oxygen transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghommidh, C.; Navarro, J.M.; Durand, G.

    1982-03-01

    The immobilization of living Acetobacter cells by adsorption onto a large-surface-area ceramic support was studied in a pulsed flow reactor. The high oxygen transfer capability of the reactor enabled acetic acid production rates up to 10.4 g/L/h to be achieved. Using a simple mathematical model incorporating both internal and external mass transfer coefficients, it was shown that oxygen transfer in the microbial film controls the reactor productivity. (Refs. 10).

  13. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, M.; Altwegg, K.; Dishoeck, E. F. van

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained bymore » the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.« less

  14. Oxygen Generator System Mars In-Situ Propellant Production Precursor Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, M.; Baird, R. S.

    1999-01-01

    The 2001 Lander to Mars will carry the first ever ISRU payload to Mars. This payload, the Mars In-situ Propellant production Precursor (MIP), will demonstrate a variety of technologies that will be required for future ISRU Mars indigenous material processing plant designs. One of those technologies is that of extracting oxygen from the predominantly carbon dioxide atmosphere of Mars, a prerequisite for future sample return and human missions to Mars. The Oxygen Generator Subsystem (OGS) portion of the MIP will demonstrate this and is the focus of this paper. The primary objective of the OGS is to demonstrate the production of oxygen from Mars atmospheric gases. Secondary objectives are to measure the performance and reliability of oxygen generation hardware in actual mission environments over an extended time. Major constraints on the OGS design came from several sources. The Lander provides power to the system from solar power that is harnessed by photovoltaic arrays. This limited OGS to daytime only operations (six to eight hours) and a maximum power of 15W. The reliance on solar power necessitated thermal cycling of the OGS between Mars ambient and OGS operating temperatures. The Lander also limited the total mass of the MIP payload to 7.5 kg with a correspondingly small volume, and the OGS was one of six experiments in the MIP. Mass and volume were to be minimized. Another constraint was cost. Mission funding, as always, was tight. Cost was to be minimized. In short the OGS design had to be low power (<15 Watts), low mass (1 kg), low volume, low cost, and be capable of cyclical operations for an extended stay on Mars. After extensive research, a zirconia based solid oxide electrolyzer design was selected.

  15. Oxygen Generator System Mars In-Situ Propellant Production Precursor Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, M.; Baird, R. S.

    1999-01-01

    The 2001 Lander to Mars will carry the first ever In situ Resource Utilization (ISRU) payload to Mars. This payload, the Mars In-situ Propellant production Precursor (MIP), will demonstrate a variety of technologies that will be required for future ISRU Mars indigenous material processing plant designs. One of those technologies is that of extracting oxygen from the predominantly carbon dioxide atmosphere of Mars, a prerequisite for future sample return and human missions to Mars. The Oxygen Generator Subsystem (OGS) portion of the MIP will demonstrate this and is the focus of this paper. The primary objective of the OGS is to demonstrate the production of oxygen from Mars atmospheric gases. Secondary objectives are to measure the performance and reliability of oxygen generation hardware in actual mission environments over an extended time. Major constraints on the OGS design came from several sources. The Lander provides power to the system from solar power that is harnessed by photovoltaic arrays. This limited OGS to daytime only operations (six to eight hours) and a maximum power of 15W. The reliance on solar power necessitated thermal cycling of the OGS between Mars ambient and OGS operating temperatures. The Lander also limited the total mass of the MIP payload to 7.5 kg with a correspondingly small volume, and the OGS was one of six experiments in the MIP Mass and volume were to be minimized. Another constraint was cost. Mission funding, as always, was tight. Cost was to be minimized. In short the OGS design had to be low power (<15 Watts), low mass (1 kg), low volume, low cost, and be capable of cyclical operations for an extended stay on Mars. After extensive research, a zirconia based solid oxide electrolyzer design was selected.

  16. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: a pilot study.

    PubMed

    Drigny, Joffrey; Gremeaux, Vincent; Dupuy, Olivier; Gayda, Mathieu; Bherer, Louis; Juneau, Martin; Nigam, Anil

    2014-11-01

    To assess the effect of a 4-month high-intensity interval training programme on cognitive functioning, cerebral oxygenation, central haemodynamic and cardiometabolic parameters and aerobic capacity in obese patients. Cognitive functioning, cerebral oxygenation, central haemodynamic, cardiometabolic and exercise para-meters were measured before and after a 4-month high-intensity interval training programme in 6 obese patients (mean age 49 years (standard deviation 8), fat mass percentage 31 ± 7%). Body composition (body mass, total and trunk fat mass, waist circumference) and fasting insulin were improved after the programme (p < 0.05). V. O2 and power output at ventilatory threshold and peak power output were improved after the programme (p < 0.05). Cognitive functioning, including short-term and verbal memory, attention and processing speed, was significantly improved after training (p < 0.05). Cerebral oxygen extraction was also improved after training (p < 0.05). These preliminary results indicate that a 4-month high-intensity interval training programme in obese patients improved both cognitive functioning and cere-bral oxygen extraction, in association with improved exercise capacity and body composition.

  17. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    USGS Publications Warehouse

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by

  18. Modeling the Trajectory of Analgesic Demand Over Time After Total Knee Arthroplasty Using the Latent Curve Analysis.

    PubMed

    Lo, Po-Han; Tsou, Mei-Yung; Chang, Kuang-Yi

    2015-09-01

    Patient-controlled epidural analgesia (PCEA) is commonly used for pain relief after total knee arthroplasty (TKA). This study aimed to model the trajectory of analgesic demand over time after TKA and explore its influential factors using latent curve analysis. Data were retrospectively collected from 916 patients receiving unilateral or bilateral TKA and postoperative PCEA. PCEA demands during 12-hour intervals for 48 hours were directly retrieved from infusion pumps. Potentially influential factors of PCEA demand, including age, height, weight, body mass index, sex, and infusion pump settings, were also collected. A latent curve analysis with 2 latent variables, the intercept (baseline) and slope (trend), was applied to model the changes in PCEA demand over time. The effects of influential factors on these 2 latent variables were estimated to examine how these factors interacted with time to alter the trajectory of PCEA demand over time. On average, the difference in analgesic demand between the first and second 12-hour intervals was only 15% of that between the first and third 12-hour intervals. No significant difference in PCEA demand was noted between the third and fourth 12-hour intervals. Aging tended to decrease the baseline PCEA demand but body mass index and infusion rate were positively correlated with the baseline. Only sex significantly affected the trend parameter and male individuals tended to have a smoother decreasing trend of analgesic demands over time. Patients receiving bilateral procedures did not consume more analgesics than their unilateral counterparts. Goodness of fit analysis indicated acceptable model fit to the observed data. Latent curve analysis provided valuable information about how analgesic demand after TKA changed over time and how patient characteristics affected its trajectory.

  19. The role of hemoglobin oxygen affinity in oxygen transport at high altitude.

    PubMed

    Winslow, Robert M

    2007-09-30

    Hemoglobin is involved in the regulation of O(2) transport in two ways: a long-term adjustment in red cell mass is mediated by erythropoietin (EPO), a response to renal oxgyenation. Short-term, rapid-response adjustments are mediated by ventilation, cardiac output, hemoglobin oxygen affinity (P50), barriers to O(2) diffusion, and the control of local microvascular tissue perfusion. The distribution of O(2) between dissolved (PO2) and hemoglobin-bound (saturation) is the familiar oxygen equilibrium curve, whose position is noted as P50. Human hemoglobin is not genetically adapted for function at high altitude. However, more specialized species native to high altitudes (guinea pig and bar-headed goose, for example) seem to have a lower P50 than their sea level counterparts, an adaptation that presumably promotes O(2) uptake from a hypoxic environment. Humans, native to very high altitude either in the Andes or Himalayan mountains, also can increase O(2) affinity, not because of a fundamental difference in hemoglobin structure or function, but because of extreme hyperventilation and alkalosis.

  20. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Bin; Liang, Yan-Chun; Shao, Xu; Liu, Xiao-Wei; Zhao, Gang; Hammer, Francois; Zhang, Yong; Flores, Hector; Ruan, Gui-Ping; Zhou, Li

    2014-07-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t2, the electron temperature in the low ionization region, estimated from t3, that in the high ionization region, is compared using three analysis relations between t2 - t3. These show obvious differences, which result in some different ionic oxygen abundances. The results of t3, t2, O++/H+ and O+/H+ derived by using methods from IRAF and literature are also compared. The ionic abundances O++/H+ are higher than O+/H+ for most cases. The different oxygen abundances derived from Te and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R23. The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews & Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 106 Msolar to 1011 Msolar.

  1. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake.

    PubMed

    Guo, Wei; Yang, Feng; Li, Yanping; Wang, Shengrui

    2017-12-15

    Dissolved organic carbon (DOC) can be used an alternative index of water quality instead of chemical oxygen demand (COD) to reflect the organic pollution in water. The monitoring data of water quality in a long-term (1990-2013) from Dianchi Lake confirmed the increase trend of COD concentration in the lake since 2007. The similarities and differences in the DOC components between the lake and its sources and the contribution from allochthonous and autochthonous DOC to the total DOC in this lake were determined to elucidate the reason of COD increase based on C/N atomic ratios, stable isotope abundance of carbon and nitrogen, UV-visible spectroscopy, three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. The terrigenous organic matter showed humic-like fluorescence, and the autochthonous organic matter showed tryptophan-like components. Agricultural runoff (9.5%), leaf litter (7.5%) and urban runoff (13.2%) were the main sources of DOC in the lake. Sewage tail was a major source of organic materials, 3DEEM for the indicates that sewage tail DOC composition did not change markedly over the biodegradation period, indicating that sewage tail contains a high load of DOC that is resistant to further biodegradation and subsequently accumulates in the lake. The change of land use in the catchment and the increase of sewage tail load into the lake are the key factors for the increase in COD concentration in Dianchi Lake. Thus, the lake should be protected by controlling the pollution from the urban nonpoint sources and refractory composition in point sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    PubMed

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor

    DOE PAGES

    Jarvis, Mark W.; Olstad, Jessica; Parent, Yves; ...

    2018-01-02

    We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less

  4. Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Mark W.; Olstad, Jessica; Parent, Yves

    We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less

  5. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.

    PubMed

    Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg

    2004-05-20

    In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.

  6. Oxygenation impairment after total arch replacement with a stented elephant trunk for type-A dissection.

    PubMed

    Shen, Yuwen; Liu, Chuanzhen; Fang, Changcun; Xi, Jie; Wu, Shuming; Pang, Xinyan; Song, Guangmin

    2018-06-01

    To study the risk factors of oxygenation impairment in patients with type-A acute aortic dissection who underwent total arch replacement with a stented elephant trunk. In this study, 169 consecutive patients were enrolled who were diagnosed with type-A acute aortic dissection and underwent a total arch replacement procedure at the Qilu Hospital of Shandong University between January 2015 and February 2017. Postoperative oxygenation impairment was defined as arterial oxygen partial pressure/inspired oxygen fraction ≤ 200 with positive end expiratory pressure ≥ 5 cm H 2 O that occurred within 72 hours of surgery. Perioperative clinical characteristics of all patients were collected and univariable analyses were performed. Risk factors associated with oxygenation impairment identified by univariable analyses were included in the multivariable regression analysis. The incidence of postoperative oxygenation impairment was 48.5%. Postoperative oxygenation impairment was associated with prolonged mechanical ventilation time, intensive care unit stay, and hospital stay. Multivariable regression analysis demonstrated that body mass index (odds ratio [OR], 1.204; 95% confidence interval [CI], 1.065-1.361; P = .003), preoperative oxygenation impairment (OR, 9.768; 95% CI, 4.159-22.941; P < .001), preoperative homocysteine (OR, 1.080; 95% CI, 1.006-1.158; P = .032), circulatory arrest time (OR, 1.123; 95% CI, 1.044-1.207; P = .002), and plasma transfusion (OR, 1.002; 95% CI, 1.001-1.003; P = .002) were significantly associated with postoperative oxygenation impairment. Postoperative oxygenation impairment is a common complication of surgery for type-A acute aortic dissection. Body mass index, preoperative oxygenation impairment, preoperative homocysteine, circulatory arrest time, and plasma transfusion were independent risk factors for oxygenation impairment after a total arch replacement procedure. Copyright © 2018 The American Association for Thoracic

  7. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-04-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  8. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-07-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  9. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    DOE R&D Accomplishments Database

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  10. Prediction of Maximal Oxygen Uptake by Six-Minute Walk Test and Body Mass Index in Healthy Boys.

    PubMed

    Jalili, Majid; Nazem, Farzad; Sazvar, Akbar; Ranjbar, Kamal

    2018-05-14

    To develop an equation to predict maximal oxygen uptake (VO2max) based on the 6-minute walk test (6MWT) and body composition in healthy boys. Direct VO2max, 6-minute walk distance, and anthropometric characteristics were measured in 349 healthy boys (12.49 ± 2.72 years). Multiple regression analysis was used to generate VO2max prediction equations. Cross-validation of the VO2max prediction equations was assessed with predicted residual sum of squares statistics. Pearson correlation was used to assess the correlation between measured and predicted VO2max. Objectively measured VO2max had a significant correlation with demographic and 6MWT characteristics (R = 0.11-0.723, P < .01). Multiple regression analysis revealed the following VO2max prediction equation: VO2max (mL/kg/min) = 12.701 + (0.06 × 6-minute walk distance m ) - (0.732 × body mass index kg/m2 ) (R 2 = 0.79, standard error of the estimate [SEE] = 2.91 mL/kg/min, %SEE = 6.9%). There was strong correlation between measured and predicted VO2max (r = 0.875, P < .001). Cross-validation revealed minimal shrinkage (R 2 p = 0.78 and predicted residual sum of squares SEE = 2.99 mL/kg/min). This study provides a relatively accurate and convenient VO2max prediction equation based on the 6MWT and body mass index in healthy boys. This model can be used for evaluation of cardiorespiratory fitness of boys in different settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Leo P: How Many Metals Can a Very Low Mass, Isolated Galaxy Retain?

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew; Cannon, John M.; Salzer, John J.; Rhode, Katherine L.; Adams, Elizabeth A. K.; Berg, Danielle; Giovanelli, Riccardo; Haynes, Martha P.

    2015-12-01

    Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. This is considerably lower than the 20%-25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  12. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR).

    PubMed

    Cao, Yongfeng; Zhang, Chaosheng; Rong, Hongwei; Zheng, Guilin; Zhao, Limin

    2017-01-01

    The effect of dissolved oxygen concentration (DO) on simultaneous nitrification and denitrification was studied in a moving bed sequencing batch reactor (MBSBR) by microelectrode measurements and by real-time PCR. In this system, the biofilm grew on polyurethane foam carriers used to treat municipal sewage at five DO concentrations (1.5, 2.5, 3.5, 4.5 and 5.5 mg/L). The results indicated that the MBSBR exhibited good removal of chemical oxygen demand (92.43%) and nitrogen (83.73%) when DO concentration was 2.5 mg/L. Increasing the oxygen concentration in the reactor was inhibitory to denitrification. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.2 to 2.6 mm when the DO concentration (from 1.5 mg/L to 5.5 mg/L) in the system increased. Oxygen diffusion was not significantly limited by the boundary layer surrounding the carrier and had the largest slope when DO concentration was 2.5 mg/L. The real-time PCR analysis indicated that the amount of the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria increased slowly as DO concentration increased. The proportions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as a percentage of the total bacteria, were low with average values of 0.063% and 0.67%, respectively. When the DO concentration was 2.5 mg/L, oxygen diffusion was optimal and ensured the optimal bacterial community structure and activity; under these conditions, the MBSBR was efficient for total inorganic nitrogen removal. Changing the DO concentration could alter the aerobic zone and the bacterial community structure in the biofilm, directly influencing the simultaneous nitrification and denitrification activity in MBSBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    PubMed

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  14. On the radial oxygen distribution in the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu. N.; Tkachenko, R. V.

    2018-01-01

    The binned oxygen distribution, derived using new Cepheid observations, demonstrates wriggling radial pattern with different gradients in various ranges of Galactic radius, in particular a plateau distribution within 7 ≲ r ≲ 9 kpc (for the solar distance r⊙ = 7.9 kpc) where the mean Galactic abundance is about 0.2 dex higher than the solar one. Our modelling of oxygen synthesis in the Galactic disc is based on the refine theory that takes into account the combined effect of corotation resonance and turbulent diffusion on the disc enrichment. The theory fits to observations best of all if the time-scale (t_f=-f/\\dot{f}) of gas infall rate f(r, t) (where r and t are the Galactocentric radius and time, respectively) on to the disc is tf ∼ 2-3 Gyr whereas the fit is the worst if tf ∼ 6 Gyr (the last means that the high rate of gas infall at present epoch ∼1.5 M⊙ yr-1 does not satisfy the observed oxygen radial distribution). For inside-out scenario, further studies are necessary. Using the derived mean masses of newly synthesized oxygen ejected per core-collapsed supernova and theoretical oxygen yields, we compute the initial upper masses, mU, of stars that can explode as core-collapsed supernovae. Our estimates show that if tf ∼ 2 Gyr in the framework of rotating stars, their mU are no more than 24 M⊙, but if tf ∼ 3 Gyr in model of rotating stars or in the case of non-rotating star mU can be as high as 40-50 M⊙ like Wolf-Rayet stars that are considered as candidates for Types Ib/c supernovae.

  15. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    NASA Astrophysics Data System (ADS)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  16. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by themore » slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.« less

  17. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  18. Molecular rotational line profiles from oxygen-rich red giant winds

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.

    1994-01-01

    We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.

  19. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt

    USGS Publications Warehouse

    Gerlach, T.M.

    1993-01-01

    challenges the common assumption that volcanic gases are released from lava in a state of chemical equilibrium and then continue equilibrating homogeneously with falling temperature until reaction rates are unable to keep pace with cooling. No evidence is found, moreover, that certain gas species are kinetically more responsive and able to equilibrate down to lower temperatures than those of the last gas/lava oxygen exchange. Homogeneous reaction rates in the gas phase are apparently slow compared to the time it took for the gases to move from the last site of gas/lava equilibration to the site of collection. An earlier set of data for higher temperature CO2-rich Type I volcanic gases, which come from sustained summit lava lake eruptions supplied by magma that experienced substantially shorter periods of crustal storage, shows fO2 buffering by oxygen transfer up to 1185??C. Oxygen fugacity measurements in drill holes into ponded lava flows suggest that buffering by oxygen transfer may control the fO2 of residual gases down to several hundred degrees below the solidus in the early stages of cooling. Although the details of the fO2 buffering mechanisms for oxygen transfer are unknown, the fact that fO2 buffering is effective from molten to subsolidus conditions suggests that the reaction mechanisms must change with cooling as the reactants change from predominantly melt, to melt plus crystals, to glass plus crystals. Mass balance calculations suggest that redox reactions between the gas and ferrous/ferric iron in the lava are plausible mechanisms for the oxygen transfer and that the fO2 of the gases is buffered by sliding ferrous/ferric equilibria in the erupting lavas. Contrary to expectations based on models predicting the oxidation of basalt by H2 and CO escape during crustal storage, CO2-rich Type I gases and CO2-poor Type II gases have identical oxygen fugacities despite greatly different crustal storage and degassing histories. Volcanic gas data give a tightly co

  20. Removal of chemical oxygen demand, nitrogen, and heavy metals using a sequenced anaerobic-aerobic treatment of landfill leachates at 10-30 degrees C.

    PubMed

    Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu

    2003-01-01

    As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  1. Facile Method to Study Catalytic Oxygen Evolution Using a Dissolved Oxygen Optical Probe: An Undergraduate Chemistry Laboratory to Appreciate Artificial Photosynthesis

    ERIC Educational Resources Information Center

    Renderos, Genesis; Aquino, Tawanda; Gutierrez, Kristian; Badiei, Yosra M.

    2017-01-01

    Artificial photosynthesis (AP) is a synthetic chemical process that replicates natural photosynthesis to mass produce hydrogen as a clean fuel from sunlight-driven water splitting (2H[subscript 2]O [right arrow] O[subscript 2] + H[subscript 2]). In both natural and artificial photosynthesis, an oxygen-evolving catalyst (OEC) is needed to catalyze…

  2. Low Oxygen and Ocean Acidification on the Vancouver Island Shelf

    NASA Astrophysics Data System (ADS)

    Bianucci, L.; Denman, K.

    2008-12-01

    In the recent years hypoxic events have been observed along the west coast of North America (off Oregon and California). Although a common cause of coastal hypoxia is usually anthropogenic eutrophication, in these upwelling regions the advection of oxygen-depleted waters from offshore is a key mechanism. Moreover, the high productivity typical of these margins generates a large flux of sinking particular organic matter. The remineralization of this matter below the euphotic zone produces an elevated consumption of oxygen. When concentrations become lower than certain threshold, hypoxia leads to a major change in the ecosystem and the affected areas are called 'dead zones'. Furthermore, the two processes that drive oxygen levels down (physical upwelling and biological demand) also increase dissolved inorganic carbon in the shelf, which leads to a pH reduction. Ocean acidification and hypoxia can severely affect ecosystems, and the links between these phenomena have not been explored. This presentation will discuss a model study of the carbon and oxygen coupling on the Vancouver Island shelf, with focus on the connection between acidification and hypoxia. Moreover, the role of biology versus physics will be investigated. This region comprises the northern end of the wind-driven upwelling margin off western North America, where low oxygen events have not been extensively studied. However, the proximity to an Oxygen Minimum Zone offshore and the observed decline of oxygen in the Northeast Pacific turns this shelf into a potential candidate to suffer from low-oxygen events. The model used is the Regional Ocean Modeling System (ROMS) in a quasi-2D configuration of the shelf (across-shore section with uniform properties alongshore). The biogeochemical model has carbon, oxygen, and nitrogen as state variables, and includes cycling of dissolved organic matter. Carbon and oxygen cycles are coupled through ecosystem processes such as photosynthesis and remineralization, while

  3. A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos

    NASA Astrophysics Data System (ADS)

    Greig, S. M.; Sear, D. A.; Carling, P. A.

    2007-01-01

    Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process-based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses.Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface-subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright

  4. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Amine, Rachid; Lau, Kah Chun

    2017-05-26

    The discharge and charge mechanisms of rechargeable Li-O-2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied currentmore » exceeds the exchange current for the oxygen reduction reaction in a Li-O-2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O-2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O-2 cell.« less

  5. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  6. Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores

    NASA Astrophysics Data System (ADS)

    Guo, D.; Keating-Bitonti, C.; Payne, J.

    2014-12-01

    Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.

  7. Space Shuttle Upgrade Liquid Oxygen Tank Thermal Stratification

    NASA Technical Reports Server (NTRS)

    Tunc, Gokturk; Wagner, Howard; Bayazitoglu, Yildiz

    2001-01-01

    In 1997, NASA initiated a study of a liquid oxygen and ethanol orbital maneuvering and reaction control system for space shuttle upgrades as well as other reusable launch vehicle applications. The pressure-fed system uses sub-cooled liquid oxygen at 2413.2 KPa (350 psia) stored passively using insulation. Thermal stratification builds up while the space shuttle is docked at the international space station. The venting from the space shuttle's liquid oxygen tank is not desired during this 96-hr time period. Once the shuttle undocks from the space station there could be a pressure collapse in the liquid oxygen tank caused by fluid mixing due to the thruster fU"ings . The thermal stratification and resulting pressure rise in the tank were examined by a computational fluid dynamic model. Since the heat transfer from the pressurant gas to the liquid will result in a decrease in tank pressure the final pressure after the 96 hours will be significantly less when the tank is pressurized with ambient temperature helium. Therefore, using helium at ambient temperature to pressurize the tank is preferred to pressurizing the tank with helium at the liquid oxygen temperature. The higher helium temperature will also result in less mass of helium to pressurize the tank.

  8. Resolving moral distress when caring for patients who smoke while using home oxygen therapy.

    PubMed

    Kayser, John W; Nault, Diane; Ostiguy, Gaston

    2012-04-01

    More than 1 million people in the United States use home oxygen therapy and its demand is growing. However, there are dangers associated with its use, such as burns and home fires, and smoking is the most common cause of these incidents. As a result, home healthcare nurses feel intense emotional distress when caring for patients who smoke while using home oxygen therapy. This distress arises from the nurse's competing sense of moral duties toward these patients. The purpose of this article is to describe this distress, then to propose a 3-step process of taking concrete actions to resolve the distress.

  9. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    NASA Astrophysics Data System (ADS)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  10. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  11. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  12. Tissue Oxygenation in Obese and Non-obese Patients During Laparoscopy

    PubMed Central

    Fleischmann, Edith; Kurz, Andrea; Niedermayr, Monika; Schebesta, Karl; Kimberger, Oliver; Prager, Gerhard; Sessler, Daniel I.; Kabon, Barbara

    2005-01-01

    Background: Wound infection risk is inversely related to subcutaneous oxygenation, which is reduced in obese patients and may be reduced even more during laparoscopic procedures. Methods: We evaluated subcutaneous tissue oxygenation (PsqO2) in 20 patients with a body mass index (BMI) ≥40 kg·m–2 (obese) and 15 patients with BMI <30 kg·m-2 (non-obese) undergoing laparoscopic surgery with standardised anaesthesia technique and fluid administration. Arterial oxygen tension was maintained near 150 mmHg. PsqO2 was measured from a surrogate wound on the upper arm. Data were analyzed with unpaired two-tailed t or Wilcoxon rank-sum tests; P < 0.05 was statistically significant. Data are given as mean (SD). Results: An FIO2 of 51% (13%) was required in obese patients to reach an arterial oxygen tension of 150 mmHg; however, an FIO2 of only 40% (7%) was required to reach the same oxygen tension in non-obese patients (P=0.007). PsqO2 was significantly less in obese patients: 41 (10) vs. 57 (15) mmHg (P<0.001). Conclusion: Obesity reduces the amount of inspired oxygen required to obtain a given arterial partial pressure and tissue oxygenation. Both factors probably contribute to high infection risk in obese patients. PMID:15978153

  13. Does cerebral oxygen delivery limit incremental exercise performance?

    PubMed Central

    Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.

    2011-01-01

    Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244

  14. Influence of dissolved oxygen convection on well sampling

    USGS Publications Warehouse

    Vroblesky, D.A.; Casey, C.C.; Lowery, M.A.

    2007-01-01

    Convective transport of dissolved oxygen (D.O.) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of D.O. to maintain oxygenated conditions in a well screened in an anaerobic aquifer was diminished as ground water exchange through the well screen increased and as oxygen demand increased. Transport of D.O. to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes such as iron, other redox indicators, and microbiological data. A comparison of passive sampling to low-flow sampling in a well undergoing convection, however, showed general agreement of volatile organic compound concentrations. During low-flow sampling, the pumped water may be a mixture of convecting water from within the well casing and aquifer water moving inward through the screen. This mixing of water during low-flow sampling can substantially increase equilibration times, can cause false stabilization of indicator parameters, can give false indications of the redox state, and can provide microbiological data that are not representative of the aquifer conditions. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple, inexpensive baffle systems. ?? 2007 National Ground Water Association.

  15. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  16. [Role of hemoglobin affinity to oxygen in adaptation to hypoxemia].

    PubMed

    Kwasiborski, Przemysław Jerzy; Kowalczyk, Paweł; Zieliński, Jakub; Przybylski, Jacek; Cwetsch, Andrzej

    2010-04-01

    states showed that acidosis and increased tissue oxygen demand lead to a broadened arterial blood pO2 range, in which the high-affinity hemoglobin is more efficient. Contrary to the widely held view that the only response to hypoxemia is a decrease in haemoglobin oxygen affinity, it was shown that under extreme hypoxemic conditions, an increased haemoglobin oxygen affinity improves the oxygenation of tissues. It was also shown that the dominance of hemoglobin with a high oxygen affinity rapidly exceeds hemoglobin with low oxygen affinity in the case of acidosis with its accompanying high tissue oxygen extraction. In cases of extreme disruptions of the acid-base equilibrium, the dominance of high-oxygen-affinity hemoglobin spans over the entire possible range of pO2 in arterial blood.

  17. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less

  18. Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark

    2014-03-01

    In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.

  19. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  20. Simulation study of pO2 distribution in induced tumour masses and normal tissues within a microcirculation environment.

    PubMed

    Li, Mao; Li, Yan; Wen, Peng Paul

    2014-01-01

    The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.