Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M
2015-11-01
A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this reduction does not result in clinical signs and disease can progress unrecognized for an extended period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).
Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael
2012-08-01
This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier GmbH. All rights reserved.
Saure, Eirunn Waatevik; Bakke, Per Sigvald; Lind Eagan, Tomas Mikal; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew
2016-01-01
Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007-2008. Emphysema was assessed as percent of low-attenuation areas<-950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was -0.32 (-0.04-(-0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia.
Integrative Conductance of Oxygen During Exercise at Altitude.
Calbet, José A L; Lundby, Carsten; Boushel, Robert
2016-01-01
In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.
Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E
2017-01-01
Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
Wan, Hao; Mao, Ya; Liu, Zixuan; Bai, Qingyou; Peng, Zhe; Bao, Jingjing; Wu, Gang; Liu, Yang; Wang, Deyu; Xie, Jingying
2017-04-10
As the first step during discharge, the mass transfer of oxygen should play a crucial role in Li-air batteries to tailor the growth of discharge products, however, not enough attention has been paid to this issue. Herein, we introduce an oxygen-enriching cosolvent, 1,2-(1,1,2,2-tetrafluoroethoxy) ethane (FE1), into the electrolyte, and investigate its influence on the discharge performance. The incorporation of this novel cosolvent consistently enhances the oxygen solubility of the electrolyte, and improves the oxygen diffusivity following a volcano-shape trend peaking at 50 % FE1. It is interesting that the discharge capacities obtained with the investigated electrolytes share the similar volcano trends as the oxygen transport under 50 mA g carbon -1 and higher current densities. The improved oxygen diffusion could benefit the volumetric utilization of the air cathode, especially at the separator side, probably owing to the fast oxygen transport to moderate its concentration gradient. Our results demonstrate the importance of oxygen provision, which easily becomes the capacity-determining factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin
2012-09-01
The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kanner, R E; Crapo, R O
1986-04-01
The effects of alveolar oxygen tension (PAO2) on the single-breath carbon monoxide diffusing capacity (DLCO) were quantified and a factor was derived to accommodate for differences in PAO2 over commonly encountered altitudes and/or varying concentrations of oxygen in the test gas mixture (FIO2) We performed duplicate measurements of DLCO in 7 normal subjects with 6 different oxygen fractions (0.176, 0.196, 0.211, 0.22, 0.25, and 0.27). The PAO2 for each test was measured as the PO2 in the alveolar gas sample bag. DLCO varied inversely with PAO2 and changed by 0.35% for each mmHg change in PAO2 (r = -0.62, p less than 0.001). At an FIO2 of 0.25, PAO2 varied between subjects and was highly correlated with each subject's residual volume to total lung capacity ratio (r = -0.84, p less than 0.001). We suggest that laboratories can adjust the measured DLCO when PAO2 is not congruent to 120 mmHg by the following formula: DLCO (corrected = DLCO (measured) x [1.0 + 0.0035 (PAO2 - 120)].
Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K
2017-02-20
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.
Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.
2017-01-01
Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-07-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-01-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944
Qiu, Bao; Zhang, Minghao; Wu, Lijun; ...
2016-07-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high asmore » 301 mAh g –1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g –1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.« less
Fox, Henrik; Koerber, Britta; Bitter, Thomas; Horstkotte, Dieter; Oldenburg, Olaf
2017-09-01
Central sleep apnea (CSA) and Cheyne-Stokes respiration (CSR) are highly prevalent in heart failure (HF) and are linked to increased mortality. Impaired pulmonary diffusion capacity [DLCO] and [KCO]) have been suggested to play a key role in CSA-CSR pathophysiology. This study investigated the relationship between HF, CSR, DLCO and KCO in well-characterized HF patients. This prospective study included HF patients with CSR, all patients underwent full overnight polysomnography (PSG) and lung function testing. A total of 100 patients were included (age 70.7±9.7years, 95% male, body mass index 28.9±5.3kg/m 2 , left ventricular ejection fraction 33.5±7.7%, New York Heart Association class III 65%. DLCO and oxygenation were significantly correlated with hypoxemic burden (p<0.05). Mean oxygen saturation, oxygen desaturation, C-reactive protein level and pH were significantly associated with CSA-CSR severity (p<0.05). The finding that lung diffusion capacity is significantly associated with hypoxemic burden in HF patients with CSA-CSR highlights the important of lung function in HF patients. Copyright © 2017. Published by Elsevier B.V.
Thermal properties of nonstoichiometry uranium dioxide
NASA Astrophysics Data System (ADS)
Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.
2016-04-01
In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.
Brutsaert, Tom
Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.
Song, Huanqiao; Luo, Mingsheng; Wang, Aimei
2017-01-25
Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV 3 O 8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g -1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g -1 , respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g -1 . The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V 4+ ) and the attendant oxygen vacancies into LiV 3 O 8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV 3 O 8 without detectable V 4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.
Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude.
Faoro, Vitalie; Huez, Sandrine; Vanderpool, Rebecca; Groepenhoff, Herman; de Bisschop, Claire; Martinot, Jean-Benot; Lamotte, Michel; Pavelescu, Adriana; Guénard, Hervé; Naeije, Robert
2014-04-01
Tibetans have been reported to present with a unique phenotypic adaptation to high altitude characterized by higher resting ventilation and arterial oxygen saturation, no excessive polycythemia, and lower pulmonary arterial pressures (Ppa) compared with other high-altitude populations. How this affects exercise capacity is not exactly known. We measured aerobic exercise capacity during an incremental cardiopulmonary exercise test, lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) at rest, and mean Ppa (mPpa) and cardiac output by echocardiography at rest and at exercise in 13 Sherpas and in 13 acclimatized lowlander controls at the altitude of 5,050 m in Nepal. In Sherpas vs. lowlanders, arterial oxygen saturation was 86 ± 1 vs. 83 ± 2% (mean ± SE; P = nonsignificant), mPpa at rest 19 ± 1 vs. 23 ± 1 mmHg (P < 0.05), DL(CO) corrected for hemoglobin 61 ± 4 vs. 37 ± 2 ml · min(-1) · mmHg(-1) (P < 0.001), DL(NO) 226 ± 18 vs. 153 ± 9 ml · min(-1) · mmHg(-1) (P < 0.001), maximum oxygen uptake 32 ± 3 vs. 28 ± 1 ml · kg(-1) · min(-1) (P = nonsignificant), and ventilatory equivalent for carbon dioxide at anaerobic threshold 40 ± 2 vs. 48 ± 2 (P < 0.001). Maximum oxygen uptake was correlated directly to DL(CO) and inversely to the slope of mPpa-cardiac index relationships in both Sherpas and acclimatized lowlanders. We conclude that Sherpas compared with acclimatized lowlanders have an unremarkable aerobic exercise capacity, but with less pronounced pulmonary hypertension, lower ventilatory responses, and higher lung diffusing capacity.
NASA Astrophysics Data System (ADS)
Bailey, R.; Sun, Y.
2018-04-01
In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.
Study on low intensity aeration oxygenation model and optimization for shallow water
NASA Astrophysics Data System (ADS)
Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi
2018-02-01
Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.
Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells
NASA Astrophysics Data System (ADS)
Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.
2016-05-01
Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0. Electronic supplementary information (ESI) available: Physical characterization, Fig. S1-S4 electrochemical experiments Fig. S5-S11. See DOI: 10.1039/c6nr01245k
Ekambaram, Padmini; Narayanan, Meenakshi; Parasuraman, Parimala
2017-02-15
The brain requires constant oxygen supply to perform its biological functions essential for survival. Because of low oxygen capacity and poor oxygen diffusibility of water, many fish species have evolved various adaptive mechanisms to cope with depleted oxygen. Endothelial cells (EC) are the primary components responsible for controlled environment of brain. Brain homeostasis largely depends on integrity of the EC. To elucidate their adaptive strategy, EC were isolated from the fish brain of Kovalam-control site and Ennore estuary-test/field hypoxic site and were subjected to low oxygen tension in laboratory. Cell viability, 4-hydroxynonenal (4HNE) and total antioxidant capacity (TAC) were analyzed to ascertain stress. Hypoxic insult, cytoprotective role of HSPs and apoptotic effect were analyzed by assessing hypoxia-inducible-factor-α (HIF1α), heat-shock-protein-70 (HSP70), heme-oxygenase 1 (HO-1), and apoptosis signal regulating kinase-1 (ASK1). This study evidenced that HSP70 and HO-1 are the key stress proteins, confer high tolerance to decreased oxygen tension mediated stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Balaish, Moran; Ein-Eli, Yair
2018-03-01
Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.
Pulmonary function in men after oxygen breathing at 3.0 ATA for 3.5 h
NASA Technical Reports Server (NTRS)
Clark, J. M.; Jackson, R. M.; Lambertsen, C. J.; Gelfand, R.; Hiller, W. D. B.; Unger, M.
1991-01-01
A complete description of pulmonary measurements obtained after continuous O2 exposure of 13 healthy men at 3.0 ATA for 3.5 h is presented. Measurements included flow-volume loops, spirometry, and airway resistance(n = 12); CO diffusing capacity (n = 11); closing volumes (n= 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). The average difference in maximum mid expiratory flows at 50 percent vital capacity on air and HeO2 was found to be significantly reduced postexposure by 18 percent. Raw and CO diffusing capacity were not changed postexposure. It is concluded that the relatively large change in forced expiratory flow at 25-75 percent of vital capacity compared with the mean forced expiratory volume in 1 s, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow.
NASA Astrophysics Data System (ADS)
Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun
2018-06-01
In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.
Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W
2017-05-10
Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high-capacity, high-performance air cathodes in Li-O 2 batteries of practical significance.
Graphene-based battery electrodes having continuous flow paths
Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu
2014-05-24
Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.
Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L
2015-11-01
What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2) = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)
NASA Astrophysics Data System (ADS)
Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa
2014-10-01
Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.
Pan, Long; Nishimura, Yuki; Takaesu, Hideki; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka
2017-11-01
The capacity of activated carbon particles with median diameters (D50s) of >∼1 μm for adsorption of hydrophobic micropollutants such as 2-methylisolborneol (MIB) increases with decreasing particle size because the pollutants are adsorbed mostly on the exterior (shell) of the particles owing to the limited diffusion penetration depth. However, particles with D50s of <1 μm have not been thoroughly investigated. Here, we prepared particles with D50s of ∼30 μm-∼140 nm and evaluated their adsorption capacities for MIB and several other environmentally relevant adsorbates. The adsorption capacities for low-molecular-weight adsorbates, including MIB, deceased with decreasing particle size for D50s of less than a few micrometers, whereas adsorption capacities increased with decreasing particle size for larger particles. The oxygen content of the particles increased substantially with decreasing particle size for D50s of less than a few micrometers, and oxygen content was negatively correlated with adsorption capacity. The decrease in adsorption capacity with decreasing particle size for the smaller particles was due to particle oxidation during the micromilling procedure used to decrease D50 to ∼140 nm. When oxidation was partially inhibited, the MIB adsorption capacity decrease was attenuated. For high-molecular-weight adsorbates, adsorption capacity increased with decreasing particle size over the entire range of tested particle sizes, even though particle oxygen content increased with decreasing particle size. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pulmonary changes in liver transplant candidates with hepatitis C cirrhosis.
Al-Moamary, M S; Gorka, T; Al-Traif, I H; Al-Jahdali, H H; Al-Shimemeri, A A; Al-Kanway, B; Abdulkareeem, A A; Abdulkareeem, A A
2001-12-01
Several studies have shown that pulmonary abnormalities are common in patients with end-stage liver disease. However, most of these studies were conducted on patients with heterogeneous etiologies. Therefore, we studied these changes in a homogenous group of hepatitis C cirrhotic patients who were potential candidates for liver transplantation. The charts of 81 patients from King Fahad National Guard Hospital, Riyadh, Kingdom of Saudi Arabia with hepatitis C cirrhosis who were evaluated for liver transplantation were reviewed. The following data was retrieved: echocardiography with micro-bubble study, arterial blood gases, and pulmonary function tests of 81 candidates and reviewed over 3 years from 1994 to 1997. The mean age was 53 (+/-9) years with male to female ratio of 1.4:1. Echocardiographic micro-bubble study, revealed 4 of 62 (7%) had an intrapulmonary shunt. Arterial blood gases results were pH of 7.44 (+/-0.4), partial arterial tension of carbon dioxide of 33 mm Hg (+/-4), partial arterial tension of oxygen of 84 mm Hg (+/-12), and alveolar-arterial gradient of 30 mm Hg (+/-10). Eleven percent had obstructive airway disease, 17% had restrictive lung impairment, and 43% had reduced diffusion capacity. Seventy five percent of patients with reduced diffusion capacity had normal lung volumes. Various pulmonary function test abnormalities did not lead to significant differences in arterial blood gases. Pulmonary changes were frequent in liver transplant candidates with hepatitis C virus cirrhosis with reduced diffusion capacity being the most. Apart from the effect of hepatopulmonary syndrome on arterial oxygenation, other pulmonary abnormalities were not significantly different.
Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.
2016-01-01
Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927
Simultaneous measurement of pulmonary diffusing capacity for carbon monoxide and nitric oxide.
Yamaguchi, Kazuhiro; Tsuji, Takao; Aoshiba, Kazutetsu; Nakamura, Hiroyuki
2018-03-01
In Europe and America, the newly-developed, simultaneous measurement of diffusing capacity for CO (D LCO ) and NO (D LNO ) has replaced the classic D LCO measurement for detecting the pathophysiological abnormalities in the acinar regions. However, simultaneous measurement of D LCO and D LNO is currently not used by Japanese physicians. To encourage the use of D LNO in Japan, the authors reviewed aspects of simultaneously-estimated D LCO and D LNO from previously published manuscripts. The simultaneous D LCO -D LNO technique identifies the alveolocapillary membrane-related diffusing capacity (membrane component, D M ) and the blood volume in pulmonary microcirculation (V C ); V C is the principal factor constituting the blood component of diffusing capacity (D B ,D B =θ·V C where θ is the specific gas conductance for CO or NO in the blood). As the association velocity of NO with hemoglobin (Hb) is fast and the affinity of NO with Hb is high in comparison with those of CO, θ NO can be taken as an invariable simply determined by diffusion limitation inside the erythrocyte. This means that θ NO is independent of the partial pressure of oxygen (PO 2 ). However, θ CO involves the limitations by diffusion and chemical reaction elicited by the erythrocyte, resulting in θ CO to be a PO 2 -dependent variable. Furthermore, D LCO is determined primarily by D B (∼77%), while D LNO is determined equally by D M (∼55%) and D B (∼45%). This suggests that D LCO is more sensitive for detecting microvascular diseases, while D LNO can equally identify alveolocapillary membrane and microcirculatory abnormalities. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo
2018-05-01
Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.
da Cruz, André Luis; Fernandes, Marisa Narciso
2016-12-01
The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O 2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O 2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.
Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen
2017-02-01
In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kalubarme, Ramchandra S.; Jadhav, Harsharaj S.; Ngo, Duc Tung; Park, Ga-Eun; Fisher, John G.; Choi, Yun-Il; Ryu, Won-Hee; Park, Chan-Jin
2015-01-01
An effective integrated design with a free standing and carbon-free architecture of spinel MnCo2O4 oxide prepared using facile and cost effective hydrothermal method as the oxygen electrode for the Li–O2 battery, is introduced to avoid the parasitic reactions of carbon and binder with discharge products and reaction intermediates, respectively. The highly porous structure of the electrode allows the electrolyte and oxygen to diffuse effectively into the catalytically active sites and hence improve the cell performance. The amorphous Li2O2 will then precipitate and decompose on the surface of free-standing catalyst nanorods. Electrochemical examination demonstrates that the free-standing electrode without carbon support gives the highest specific capacity and the minimum capacity fading among the rechargeable Li–O2 batteries tested. The Li-O2 cell has demonstrated a cyclability of 119 cycles while maintaining a moderate specific capacity of 1000 mAh g−1. Furthermore, the synergistic effect of the fast kinetics of electron transport provided by the free-standing structure and the high electro-catalytic activity of the spinel oxide enables excellent performance of the oxygen electrode for Li-O2 cells. PMID:26292965
Zhao, Yunlong; Xu, Lin; Mai, Liqiang; Han, Chunhua; An, Qinyou; Xu, Xu; Liu, Xue; Zhang, Qingjie
2012-01-01
Lithium-air batteries have captured worldwide attention due to their highest energy density among the chemical batteries. To provide continuous oxygen channels, here, we synthesized hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 (LSCO) nanowires. We tested the intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity in both aqueous electrolytes and nonaqueous electrolytes via rotating disk electrode (RDE) measurements and demonstrated that the hierarchical mesoporous LSCO nanowires are high-performance catalysts for the ORR with low peak-up potential and high limiting diffusion current. Furthermore, we fabricated Li-air batteries on the basis of hierarchical mesoporous LSCO nanowires and nonaqueous electrolytes, which exhibited ultrahigh capacity, ca. over 11,000 mAh⋅g –1, one order of magnitude higher than that of LSCO nanoparticles. Besides, the possible reaction mechanism is proposed to explain the catalytic activity of the LSCO mesoporous nanowire. PMID:23150570
Effects of water immersion to the neck on pulmonary circulation and tissue volume in man
NASA Technical Reports Server (NTRS)
Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.
1976-01-01
A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.
Estépar, Raúl San José; Kinney, Gregory L.; Black-Shinn, Jennifer L.; Bowler, Russell P.; Kindlmann, Gordon L.; Ross, James C.; Kikinis, Ron; Han, MeiLan K.; Come, Carolyn E.; Diaz, Alejandro A.; Cho, Michael H.; Hersh, Craig P.; Schroeder, Joyce D.; Reilly, John J.; Lynch, David A.; Crapo, James D.; Wells, J. Michael; Dransfield, Mark T.; Hokanson, John E.
2013-01-01
Rationale: Angiographic investigation suggests that pulmonary vascular remodeling in smokers is characterized by distal pruning of the blood vessels. Objectives: Using volumetric computed tomography scans of the chest we sought to quantitatively evaluate this process and assess its clinical associations. Methods: Pulmonary vessels were automatically identified, segmented, and measured. Total blood vessel volume (TBV) and the aggregate vessel volume for vessels less than 5 mm2 (BV5) were calculated for all lobes. The lobe-specific BV5 measures were normalized to the TBV of that lobe and the nonvascular tissue volume (BV5/TissueV) to calculate lobe-specific BV5/TBV and BV5/TissueV ratios. Densitometric measures of emphysema were obtained using a Hounsfield unit threshold of −950 (%LAA-950). Measures of chronic obstructive pulmonary disease severity included single breath measures of diffusing capacity of carbon monoxide, oxygen saturation, the 6-minute-walk distance, St George’s Respiratory Questionnaire total score (SGRQ), and the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index. Measurements and Main Results: The %LAA-950 was inversely related to all calculated vascular ratios. In multivariate models including age, sex, and %LAA-950, lobe-specific measurements of BV5/TBV were directly related to resting oxygen saturation and inversely associated with both the SGRQ and BODE scores. In similar multivariate adjustment lobe-specific BV5/TissueV ratios were inversely related to resting oxygen saturation, diffusing capacity of carbon monoxide, 6-minute-walk distance, and directly related to the SGRQ and BODE. Conclusions: Smoking-related chronic obstructive pulmonary disease is characterized by distal pruning of the small blood vessels (<5 mm2) and loss of tissue in excess of the vasculature. The magnitude of these changes predicts the clinical severity of disease. PMID:23656466
NASA Astrophysics Data System (ADS)
Reed, John; van der Ven, Anton; Ceder, Gerbrand
2001-03-01
The viability of rechargeable lithium batteries in many applications hinges on finding electrode materials with high capacity, excellent chemical and phase stability, and low cost. LiCoO_2, the intercalation oxide currently used is too expensive and unsafe for large-scale batteries. Manganese oxides are a possible low cost alternative, but spinel LiMn_2O _4, the common form of the material, has too low a capacity and some stability problems. Recently, layered LiMnO _2, isostructural to LiCoO _2, has been synthesized. After a few battery cycles this material irreversibly transforms to a spinel structure, with loss of battery capacity. In this work we use Density Functional Theory to investigate why LiMnO2 transforms so rapidly to spinel but LiCoO 2 does not, even though both are known to be thermodynamically unstable towards this transformation. We find that the difference between the two compound is due to remarkably rapid diffusion of Mn ^3+. Diffusion of Mn^3+ occurs by disproportionation into Mn ^2+ an Mn ^4+ which gives the system a remarkable flexibility in its hybridization with the oxygen ions, even at the saddle point for diffusion. This knowledge has now been used to suggest compositional modifications of LiMnO 2 which slow down or even prevent the transformation to a spinel.
do Prado, Danilo Marcelo Leite; Rocco, Enéas Antônio
2017-01-01
Heart failure with preserved ejection fraction (HFpEF) is defined as an inability of the ventricles to optimally accept blood from atria with blunted end- diastolic volume response by limiting the stroke volume and cardiac output. The HEpEF prevalence is higher in elderly and women and may be associated to hypertension, diabetes mellitus and atrial fibrillation. Severe exercise intolerance, manifested by dyspnea and fatigue during physical effort is the important chronic symptom in HFpEF patients, in which is the major determinant of their reduced quality of life. In this sense, several studies demonstrated reduced aerobic capacity in terms of lower peak oxygen consumption (peak VO 2 ) in patients with HFpEF. In addition, the lower aerobic capacity observed in HFpEF may be due to impaired both convective and diffusive O 2 transport (i.e. reduced cardiac output and arteriovenous oxygen difference, respectively).Exercise training program can help restore physiological function in order to increase aerobic capacity and improve the quality of life in HFpEF patients. Therefore, the primary purpose of this chapter was to clarify the physiological mechanisms associated with reduced aerobic capacity in HFpEF patients. Secondly, special focus was devoted to show how aerobic exercise training can improve aerobic capacity and quality of life in HFpEF patients.
Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen
2014-02-01
In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up. © 2013 Wiley Periodicals, Inc.
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
NASA Technical Reports Server (NTRS)
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.
2017-11-17
A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Berntsen, Sveinung; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Nafstad, Per; Wu, Tianyi; Bjertness, Espen
2014-01-01
Abstract Bianba, Sveinung Bernsten, Lars Bo Andersen, Hein Stegum, Ouzhuluobu, Per Nafstad, Tianyi Wu, and Espen Bjertness. Exercise capacity and selected physiological factors by ancestry and residential altitude—Cross-sectional studies of 9–10-year-old children in Tibet. High Alt Med Biol. 15:162–169, 2014.—Aim: Several physiological compensatory mechanisms have enabled Tibetans to live and work at high altitude, including increased ventilation and pulmonary diffusion capacity, both of which serve to increase oxygen transport in the blood. The aim of the present study was to compare exercise capacity (maximal power output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and during maximal exercise, resting hemoglobin concentration, and forced vital capacity) in groups of native Tibetan children living at different residential altitudes (3700 vs. 4300 m above sea level) and across ancestry (native Tibetan vs. Han Chinese children living at the same altitude of 3700 m). Methods: A total of 430 9–10-year-old native Tibetan children from Tingri (4300 m) and 406 native Tibetan- and 406 Han Chinese immigrants (77% lowland-born and 33% highland-born) from Lhasa (3700 m) participated in two cross-sectional studies. The maximal power output (Wmax) was assessed using an ergometer cycle. Results: Lhasa Tibetan children had a 20% higher maximal power output (watts/kg) than Tingri Tibetan and 4% higher than Lhasa Han Chinese. Maximal heart rate, arterial oxygen saturation at rest, lung volume, and arterial oxygen saturation were significantly associated with exercise capacity at a given altitude, but could not fully account for the differences in exercise capacity observed between ancestry groups or altitudes. Conclusions: The superior exercise capacity in native Tibetans vs. Han Chinese may reflect a better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3700 m demonstrated a better exercise capacity than residents at a higher altitude of 4300 m when measured at their respective residential altitudes. Such altitude- or ancestry-related difference could not be fully attributed to the physiological factors measured. PMID:24836751
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
Oxygen diffusion: an enzyme-controlled variable parameter.
Erdmann, Wilhelm; Kunke, Stefan
2014-01-01
Previous oxygen microelectrode studies have shown that the oxygen diffusion coefficient (DO₂) increases during extracellular PO₂ decreases, while intracellular PO₂ remained unchanged and thus cell function (spike activity of neurons). Oxygen dependency of complex multicellular organisms requires a stable and adequate oxygen supply to the cells, while toxic concentrations have to be avoided. Oxygen brought to the tissue by convection diffuses through the intercellular and cell membranes, which are potential barriers to diffusion. In gerbil brain cortex, PO₂ and DO₂ were measured by membrane-covered and by bare gold microelectrodes, as were also spike potentials. Moderate respiratory hypoxia was followed by a primary sharp drop of tissue PO₂ that recovered to higher values concomitant with an increase of DO₂. A drop in intracellular PO₂ recovered immediately. Studies on the abdominal ganglion of aplysia californica showed similar results.Heterogeneity is a feature of both normal oxygen supply to tissue and supply due to a wide range of disturbances in oxygen supply. Oxygen diffusion through membranes is variable thereby ensuring adequate intracellular PO₂. Cell-derived glucosamine oxidase seems to regulate the polymerization/depolymerisation ratio of membrane mucopolysaccharides and thus oxygen diffusion.Variability of oxygen diffusion is a decisive parameter for regulating the supply/demand ratio of oxygen supply to the cell; this occurs in highly developed animals as well as in species of a less sophisticated nature. Autoregulation of oxygen diffusion is as important as the distribution/perfusion ratio of the capillary meshwork and as the oxygen extraction ratio in relation to oxygen consumption of the cell. Oxygen diffusion resistance is the cellular protection against luxury oxygen supply (which can result in toxic oxidative species leading to mutagenesis).
NASA Astrophysics Data System (ADS)
Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei
2015-09-01
A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.
Yu, Wei; Wang, Huwei; Qin, Lei; Hu, Junyang; Liu, Liang; Li, Baohua; Zhai, Dengyun; Kang, Feiyu
2018-05-23
Understanding the electrochemical property of superoxides in alkali metal oxygen batteries is critical for the design of a stable oxygen battery with high capacity and long cycle performance. In this work, a KO 2 -decorated binder-free cathode is fabricated by a simple and efficient electrochemical strategy. KO 2 nanoparticles are uniformly coated on the carbon nanotube film (CNT-f) through a controllable discharge process in the K-O 2 battery, and the KO 2 -decorated CNT-f is innovatively introduced into the Li-O 2 battery as the O 2 diffusion electrode. The Li-O 2 battery based on the KO 2 -decorated CNT-f cathode can deliver enhanced discharge capacity, reduced charge overpotential, and more stable cycle performance compared with the battery in the absence of KO 2 . In situ formed KO 2 particles on the surface of CNT-f cathode assist to form Li 2 O 2 nanosheets in the Li-O 2 battery, which contributes to the improvement of discharge capacity and cycle life. Interestingly, the analysis of KO 2 -decorated CNT-f cathodes, after discharge and cycle tests, reveals that the electrochemically synthesized KO 2 seems not a conventional electrocatalyst but a partially dissolvable and decomposable promoter in Li-O 2 batteries.
Are there sex differences in the capillary blood volume and diffusing capacity response to exercise?
Bouwsema, Melissa M; Tedjasaputra, Vincent; Stickland, Michael K
2017-03-01
Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (Dl CO ) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower Dl CO , Dl CO relative to cardiac output (Dl CO /Q̇), Dm, Vc, and pulmonary transit time, secondary to lower Vc at peak exercise. Sixteen women (112 ± 12% predicted relative V̇o 2peak ) and sixteen men (118 ± 22% predicted relative V̇o 2peak ) were matched for height and weight. Hemoglobin-corrected diffusing capacity (Dl CO ), Vc, and Dm were determined via the multiple-[Formula: see text] Dl CO technique at rest and during incremental exercise up to 90% of V̇o 2peak Both groups increased Dl CO , Vc, and Dm with exercise intensity, but women had 20% lower Dl CO ( P < 0.001), 18% lower Vc ( P = 0.002), and 22% lower Dm ( P < 0.001) compared with men across all workloads, and neither group exhibited a plateau in Vc. When expressed relative to alveolar volume (Va), the between-sex difference was eliminated. The drop in Dl CO /Q̇ was proportionally less in women than men, and mean pulmonary transit time did not drop below 0.3 s in either group. Women demonstrate consistently lower Dl CO , Vc, and Dm compared with height-matched men during exercise; however, these differences disappear with correction for lung size. These results suggest that after differences in lung volume are accounted for there is no intrinsic sex difference in the Dl CO , Vc, or Dm response to exercise. NEW & NOTEWORTHY Women demonstrate lower diffusing capacity-to-cardiac output ratio (Dl CO /Q̇), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) compared with height-matched men during exercise. However, these differences disappear after correction for lung size. The drop in Dl CO /Q̇ was proportionally less in women, and pulmonary transit time did not drop below 0.3 s in either group. After differences in lung volume are accounted for, there is no intrinsic sex difference in Dl CO , Vc, or Dm response to exercise. Copyright © 2017 the American Physiological Society.
Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans
2011-01-01
The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim
1993-01-01
The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.
Ade, C J; Broxterman, R M; Moore, A D; Barstow, T J
2017-04-01
We have previously predicted that the decrease in maximal oxygen uptake (V̇o 2max ) that accompanies time in microgravity reflects decrements in both convective and diffusive O 2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O 2 transport (Q̇o 2 ) and O 2 diffusing capacity (Do 2 ) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o 2max , maximal cardiac output (Q̇ Tmax ), and differences in arterial and venous O 2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o 2 and Do 2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o 2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇ Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o 2 (-11.4 ± 10.5%, P = 0.02). Do 2 significantly decreased from pre- to postflight by -27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o 2max were significantly correlated with changes in Do 2 ( R 2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O 2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O 2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O 2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions. Copyright © 2017 the American Physiological Society.
Chemical gating of epitaxial graphene through ultrathin oxide layers.
Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano
2015-08-07
We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.
Oxygen delivery using engineered microparticles
Seekell, Raymond P.; Lock, Andrew T.; Peng, Yifeng; Cole, Alexis R.; Perry, Dorothy A.; Kheir, John N.; Polizzotti, Brian D.
2016-01-01
A continuous supply of oxygen to tissues is vital to life and interruptions in its delivery are poorly tolerated. The treatment of low-blood oxygen tensions requires restoration of functional airways and lungs. Unfortunately, severe oxygen deprivation carries a high mortality rate and can make otherwise-survivable illnesses unsurvivable. Thus, an effective and rapid treatment for hypoxemia would be revolutionary. The i.v. injection of oxygen bubbles has recently emerged as a potential strategy to rapidly raise arterial oxygen tensions. In this report, we describe the fabrication of a polymer-based intravascular oxygen delivery agent. Polymer hollow microparticles (PHMs) are thin-walled, hollow polymer microcapsules with tunable nanoporous shells. We show that PHMs are easily charged with oxygen gas and that they release their oxygen payload only when exposed to desaturated blood. We demonstrate that oxygen release from PHMs is diffusion-controlled, that they deliver approximately five times more oxygen gas than human red blood cells (per gram), and that they are safe and effective when injected in vivo. Finally, we show that PHMs can be stored at room temperature under dry ambient conditions for at least 2 mo without any effect on particle size distribution or gas carrying capacity. PMID:27791101
da Cruz, André Luis; Pedretti, Ana Carolina Elias; Fernandes, Marisa Narciso
2009-05-01
The stomach of Pterygoplichthys anisitsi has a thin, translucent wall and a simple squamous epithelium with an underlying dense capillary network. In the cardiac and pyloric regions, most cells have short microvilli distributed throughout the cell surface and their edges are characterized by short, densely packed microvilli. The mucosal layer of the stomach has two types of pavement epithelial cells that are similar to those in the aerial respiratory organs. Type 1 pavement epithelial cells, resembling the Type I pneumocyte in mammal lungs, are flat, with a large nucleus, and extend a thin sheet of cytoplasm on the underlying capillary. Type 2 cells, resembling the Type II pneumocyte, possess numerous mitochondria, a well-developed Golgi complex, rough endoplasmic reticulum, and numerous lamellar bodies in different stages of maturation. The gastric glands, distributed throughout the mucosal layer, also have several cells with many lamellar bodies. The total volume (air + tissue), tissue, and air capacity of the stomach when inflated, increase along with body mass. The surface-to-tissue-volume ratio of stomach varies from 108 cm(-1) in the smallest fish (0.084 kg) to 59 cm(-1) in the largest fish (0.60 kg). The total stomach surface area shows a low correlation to body mass. Nevertheless, the body-mass-specific surface area varied from 281.40 cm(2) kg(-1) in the smallest fish to 68.08 cm(2) kg(-1) in the largest fish, indicating a negative correlation to body mass (b = -0.76). The arithmetic mean barrier thickness between air and blood was 1.52 +/- 0.07 microm, whereas the harmonic mean thickness (tau(h)) of the diffusion barrier ranged from 0.40 to 0.74 microm. The anatomical diffusion factor (ADF = cm(2) microm(-1) kg(-1)) and the morphological O(2) diffusion capacity (D(morphol)O(2) = cm(3) min(-1) mmHg(-1) kg(-1)) are higher in the smallest specimen and lower in the largest one. In conclusion, the structure and morphometric data of P. anisitsi stomach indicate that this organ is adapted for oxygen uptake from air. (c) 2008 Wiley-Liss, Inc.
Zavorsky, Gerald S; Hsia, Connie C W; Hughes, J Michael B; Borland, Colin D R; Guénard, Hervé; van der Lee, Ivo; Steenbruggen, Irene; Naeije, Robert; Cao, Jiguo; Dinh-Xuan, Anh Tuan
2017-02-01
Diffusing capacity of the lung for nitric oxide ( D LNO ), otherwise known as the transfer factor, was first measured in 1983. This document standardises the technique and application of single-breath D LNO This panel agrees that 1) pulmonary function systems should allow for mixing and measurement of both nitric oxide (NO) and carbon monoxide (CO) gases directly from an inspiratory reservoir just before use, with expired concentrations measured from an alveolar "collection" or continuously sampled via rapid gas analysers; 2) breath-hold time should be 10 s with chemiluminescence NO analysers, or 4-6 s to accommodate the smaller detection range of the NO electrochemical cell; 3) inspired NO and oxygen concentrations should be 40-60 ppm and close to 21%, respectively; 4) the alveolar oxygen tension ( P AO 2 ) should be measured by sampling the expired gas; 5) a finite specific conductance in the blood for NO (θNO) should be assumed as 4.5 mL·min -1 ·mmHg -1 ·mL -1 of blood; 6) the equation for 1/θCO should be (0.0062· P AO 2 +1.16)·(ideal haemoglobin/measured haemoglobin) based on breath-holding P AO 2 and adjusted to an average haemoglobin concentration (male 14.6 g·dL -1 , female 13.4 g·dL -1 ); 7) a membrane diffusing capacity ratio ( D MNO / D MCO ) should be 1.97, based on tissue diffusivity. Copyright ©ERS 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia
NASA Technical Reports Server (NTRS)
Roslev, Peter; King, Gary M.
1996-01-01
The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic bacteria and thus on methane oxidation potential per se.
Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.
Budhiraja, Vikas; Hellums, J David
2002-09-01
The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.
Bouwer, S T; Hoofd, L; Kreuzer, F
2001-02-16
The purpose of this study was to verify the concept of non-equilibrium facilitated oxygen diffusion. This work succeeds our previous study, where facilitated oxygen diffusion by hemoglobin was measured at conditions of chemical equilibrium, and which yielded diffusion coefficients of hemoglobin and of oxygen. In the present work chemical non-equilibrium was induced using very thin diffusion layers. As a result, facilitation was decreased as predicted by theory. Thus, this work presents the first experimental demonstration of non-equilibrium facilitated oxygen diffusion. In addition, association and dissociation rate parameters of the reaction between oxygen and bovine and human hemoglobin were calculated and the effect of the homotropic and heterotropic interactions on each rate parameter was demonstrated. The results indicate that the homotropic interaction--which leads to increasing oxygen affinity with increasing oxygenation--is predominantly due to an increase in the association rate. The heterotropic interaction--which leads to decreasing oxygen affinity by anionic ligands--appears to be effected in two ways. Cl- increases the dissociation rate. In contrast, 2,3-diphosphoglycerate decreases the association rate.
Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation
NASA Astrophysics Data System (ADS)
Günay, Seçkin D.
2016-11-01
In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
Kohfahl, Claus; Graupner, Torsten; Fetzer, Christian; Pekdeger, Asaf
2010-11-01
This article reports fibre-optic oxygen measurements on a reactive mine waste heap located in the polymetallic sulphide mine district of Freiberg in south-eastern Germany. The heaped material consists of sulphide-bearing tailings from a processing plant of a lead-zinc mine. Mine waste material was deposited in the water phase after separation of mining ores in a flotation process. The tailing impoundment is partly covered with coarse sand and topsoil. Oxygen profiles were monitored during one year at eleven locations showing different physical and mineralogical compositions. At each location a borehole was drilled where the optic sensors were installed at 2-5 different depths. After installation the oxygen profiles were monitored seven times during one year from 2006-2007 and three to five oxygen profiles at each location were obtained. Oxygen measurements were accompanied by physical, chemical and mineralogical data of the tailing material. Additionally, a detailed mineralogical profile was analysed at a location representative for the central part of the heap, where the cemented layers show lateral continuity. Results showed that cemented layers have a significant influence on natural attenuation of the toxic As and Pb species owing to their capacity of water retention. The measured oxygen profiles are controlled by the zone of active pyrite weathering as well as by the higher water content in the cemented layers which reduces gaseous atmospheric oxygen supply. In contrast, gypsum bearing hardpans detected at three other locations have no detectable influence on oxygen profiles. Furthermore, the grain size distribution was proved to have a major effect on oxygen diffusivity due to its control on the water saturation. Temporal changes of the oxygen profiles were only observed at locations with coarse sediment material indicating also an important advective part of gas flux. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu
2015-06-01
Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.
Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.
1996-01-01
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.
Desorption of oxygen from YBa2Cu3O6+x films studied by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bock, A.; Kürsten, R.; Brühl, M.; Dieckmann, N.; Merkt, U.
1996-08-01
Phonons of laser-deposited YBa2Cu3O6+x films on MgO(100) substrates are investigated in a Raman setup as a function of laser power density. Investigations of YBa2Cu3O7 films allow us to study oxygen out-diffusion, where the onset of out-diffusion is indicated by the appearance of disorder-induced modes in the Raman spectra. At a pressure of 5×10-6 mbar the temperature threshold of the out-diffusion is (490+/-15) K. With increasing oxygen pressure the observed temperature thresholds rise only moderately in contrast to the behavior expected from the pox-T phase diagram of YBa2Cu3O6+x. Even at 1 bar oxygen partial pressure out-diffusion is observed and tetragonal sites with x=0 develop. These observations can be explained by photon-stimulated desorption of oxygen. Investigations of YBa2Cu3O6 films allow us to study oxygen in-diffusion. In 1 bar oxygen we observe competing oxygen fluxes due to thermally activated diffusion and photon-stimulated desorption. From these measurements we determine an upper bound of the thermal activation energy of the oxygen in-diffusion into YBa2Cu3O6 films of (0.19+/-0.01) eV.
Ab initio identification of the Li-rich phase in LiFePO4.
Zeng, Hua; Gu, Yue; Teng, Gaofeng; Liu, Yimeng; Zheng, Jiaxin; Pan, Feng
2018-06-27
A recent discovery of anionic redox activity in Li-rich layered compounds opens a new direction for the design of high-capacity cathode materials for lithium-ion batteries. Here using extensive ab initio calculations, the thermodynamic existence of the Li-rich phase in LiFePO4 to form Li1+xFe1-xPO4 with x not exceeding 12.5% has been proved. Anionic redox activity and structural stability during delithiation are further investigated. Interestingly, it is found that Li1+xFe1-xPO4 cannot be delithiated completely and thus cannot achieve extra capacity by anionic redox activity, because the local oxygen-ion redox will cause the fracture of the rigid framework formed by phosphate tetrahedral polyanions. Although an extra capacity cannot be realized, the excess Li-ions at Fe sites can enhance the Li-ion diffusivity along the adjacent [010] channel and contribute to the shift from 1D to 2D/3D diffusion. This study provides a fresh perspective on olivine-type LiFePO4 and offers some important clues on designing Li-rich cathode materials with high energy density.
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P
2015-11-01
To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.
SIMS study of oxygen diffusion in monoclinic HfO2
NASA Astrophysics Data System (ADS)
Mueller, Michael P.; De Souza, Roger A.
2018-01-01
The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .
Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds
NASA Astrophysics Data System (ADS)
Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J.
2001-04-01
The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals-and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere-and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30°N to 30°S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2-C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
Morosin, Marco; Vignati, Carlo; Novi, Angela; Salvioni, Elisabetta; Veglia, Fabrizio; Alimento, Marina; Merli, Guido; Sciomer, Susanna; Sinagra, Gianfranco; Agostoni, Piergiuseppe
2016-11-01
In chronic heart failure (HF), the alveolar-capillary membrane undergoes a remodeling process that negatively affects gas exchange. In case of alveolar-capillary gas diffusion impairment, arterial desaturation (SaO 2 ) is rarely observed in HF patients. At play are 3 factors: overall pulmonary diffusing capacity (assessed as lung diffusion for CO, DLCO), global O 2 consumption (VO 2 ) and alveolar (A) to arterial (a) pO 2 gradient (AaDO 2 ). In 100 consecutive stable HF patients, DLCO, resting respiratory gases and arterial blood gases were measured to determine VO 2, paO 2 , pAO 2 and AaDO 2 . DLCO was poorly but significantly related to AaDO 2 . The correlation improved after correcting AaDO 2 for VO 2 (p<0.001, r=0.49). Both VO 2 and AaDO 2 were independently associated with DLCO (p<0.001). Patients with reduced DLCO showed no differences as regards paO 2 and pAO 2 . AaDO 2 /VO 2 showed a higher gradient in patients with lower DLCO. AaDO 2 increase and VO 2 reduction allow preventing low SaO 2 in HF patients with reduced DLCO. Accordingly, we suggest considering AaDO 2 and VO 2 combined and reporting AaDO 2 /VO 2 . Copyright © 2016 Elsevier B.V. All rights reserved.
Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.
1996-08-06
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Yuan, Fenglin; Zhang, Yanwen; Weber, William J.
2015-05-19
In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less
Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.
Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun
2018-04-23
Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Astrophysics Data System (ADS)
Good, Brian
2015-03-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the diffusion of oxygen and water vapor through these coatings is undesirable if high temperature corrosion is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated oxygen diffusion in Ytterbium Disilicate. Oxygen vacancy site energies and diffusion barrier energies are computed using Density Functional Theory. We find that many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small in the pure material, with the result that the material is unlikely to exhibit significant oxygen permeability.
Schuldes, Matthew; Riley, Jeffrey B.; Francis, Stephen G.; Clingan, Sean
2016-01-01
Abstract: Gaseous microemboli (GME) are an abnormal physiological occurrence during cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Several studies have correlated negative sequelae with exposure to increased amounts of GME. Hypobaric oxygenation is effective at eliminating GME in hollow-fiber microporous membrane oxygenators. However, hollow-fiber diffusion membrane oxygenators, which are commonly used for ECMO, have yet to be validated. The purpose of this study was to determine if hypobaric oxygenation, compared against normobaric oxygenation, can reduce introduced GME when used on diffusion membrane oxygenators. Comparison of a sealed Quadrox-iD with hypobaric sweep gas (.67 atm) vs. an unmodified Quadrox-iD with normal atmospheric sweep gas (1 atm) in terms of GME transmission during continuous air introduction (50 mL/min) in a recirculating in vitro circuit, over a range of flow rates (3.5, 5 L/min) and crystalloid prime temperatures (37°C, 28°C, and 18°C). GME were measured using three EDAC Doppler probes positioned pre-oxygenator, post-oxygenator, and at the arterial cannula. Hypobaric oxygenation vs. normobaric oxygenation significantly reduced hollow-fiber diffusion membrane oxygenator GME transmission at all combination of pump flows and temperatures. There was further significant reduction in GME count between the oxygenator outlet and at the arterial cannula. Hypobaric oxygenation used on hollow-fiber diffusion membrane oxygenators can further reduce GME compared to normobaric oxygenation. This technique may be a safe approach to eliminate GME during ECMO. PMID:27729706
Sillau, A H
1985-01-01
Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729
Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.
Gantzer, Paul A; Bryant, Lee D; Little, John C
2009-04-01
Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.
NASA Technical Reports Server (NTRS)
Ade, Carl J.; Moore, A. D.
2014-01-01
Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.
Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.
Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing
2018-01-01
The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.
De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred
2008-04-21
The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673
Raman, Abhinav S; Li, Huiyong; Chiew, Y C
2018-01-07
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.
NASA Astrophysics Data System (ADS)
Raman, Abhinav S.; Li, Huiyong; Chiew, Y. C.
2018-01-01
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.
Walls, Justin; Maskrey, Michael; Wood-Baker, Richard; Stedman, Wade
2002-06-01
Arterial haemoglobin saturation during exercise in healthy young women [eight subjects mean (SEM) age 20.8 (1.8) years] was measured to confirm the theory that young women experience exercise-induced arterial hypoxaemia (EIAH) at a lower relative percentage of maximal oxygen uptake (VO(2max)) than has been documented in their male counterparts. To determine if flow limitation [the percentage of the tidal volume ( V(T)) that met or exceeded the boundary established by multiple maximal expiratory manoeuvres] and/or post-exercise lung diffusing capacity are linked to EIAH in women, and to investigate the influence of exercise intensity and duration on post-exercise carbon monoxide lung diffusing capacity ( D(L, CO)), these parameters were measured during and after three exercise tests (incremental test until exhaustion, 5 km run and 5 km run with sprint). All subjects experienced physiologically significant EIAH (a fall of more than 3% in oxygen saturation of arterial blood from levels at rest) and seven subjects experienced flow limitation during the VO(2max) protocol [mean (SD) 12.2 (8.8)% of V(T)]. Even though there was no significant relationship between aerobic capacity and the degree of flow limitation ( r=0.33, P>0.05), the flow limitation was related to absolute ventilation in the subjects studied ( r=0.82, P<0.05). There was no significant relationship between decrements in post exercise D(L, CO) and EIAH ( r=0.05, P>0.05), however there was a strong correlation between the extent of flow limitation (% of V(T)) and EIAH ( r=0.71). Significant decreases in D(L, CO) lasted for up to 16 h after each of the exercise tests ( P<0.05) and lasted for a further 8 h after the maximal test ( P<0.05). Exercise intensity was the main contributing factor to the observed decreases in post-exercise D(L, CO) with the percentage of VO(2max) attained during the various tests being significantly related to the fall in D(L, CO) for 1, 2, 3, 16 and 24 h after exercise ( P<0.05). As the appearance of flow limitation closely coincided with the appearance of EIAH, the results from the present study suggest that flow limitation is a contributing factor to EIAH in women although the exact mechanism remains unclear.
Shan, Xizheng; Liu, Jinming; Luo, Yanrong; Xu, Xiaowen; Han, Zhiqing; Li, Hailing
2015-01-01
Objective The nutritional status of chronic obstructive pulmonary disease (COPD) patients is associated with their exercise capacity. In the present study, we have explored the relationship between nutritional risk and exercise capacity in severe male COPD patients. Methods A total of 58 severe COPD male patients were enrolled in this study. The patients were assigned to no nutritional risk group (n=33) and nutritional risk group (n=25) according to the Nutritional Risk Screening (NRS, 2002) criteria. Blood gas analysis, conventional pulmonary function testing, and cardiopulmonary exercise testing were performed on all the patients. Results Results showed that the weight and BMI of the patients in the nutritional risk group were significantly lower than in the no nutritional risk group (P<0.05). The pulmonary diffusing capacity for carbon monoxide of the no nutritional risk group was significantly higher than that of the nutritional risk group (P<0.05). Besides, the peak VO2 (peak oxygen uptake), peak O2 pulse (peak oxygen pulse), and peak load of the nutritional risk group were significantly lower than those of the no nutritional risk group (P<0.05) and there were significantly negative correlations between the NRS score and peak VO2, peak O2 pulse, or peak load (r<0, P<0.05). Conclusion The association between exercise capacity and nutritional risk based on NRS 2002 in severe COPD male patients is supported by these results of this study. PMID:26150712
Molecular dynamics analysis of diffusion of uranium and oxygen ions in uranium dioxide
NASA Astrophysics Data System (ADS)
Arima, T.; Yoshida, K.; Idemitsu, K.; Inagaki, Y.; Sato, I.
2010-03-01
Diffusion behaviours of oxygen and uranium were evaluated for bulk and grain-boundaries of uranium dioxide using the molecular dynamics (MD) simulation. It elucidated that oxygen behaved like liquid in superionic state at high temperatures and migrated on sub-lattice sites accompanying formation of lattice defects such as Frenkel defects at middle temperatures. Formation energies of Frenkel and Shottky defects were compared to literature data, and migration energies of oxygen and uranium were estimated by introducing vacancies into the supercell. For grain-boundaries (GB) modelled by the coincidence-site lattice theory, MD calculations showed that GB energy and diffusivities of oxygen and uranium increased with the misorientation angle. By analysing GB structures such as pair-correlation functions, it also showed that the disordered phase was observed for uranium as well as oxygen in GBs especially for a large misorientation angle such as S5 GB. Hence, GB diffusion was much larger than bulk diffusion for oxygen and uranium.
Piirilä, Päivi; Laiho, Mia; Mustonen, Pirjo; Graner, Marit; Piilonen, Anneli; Raade, Merja; Sarna, Seppo; Harjola, Veli-Pekka; Sovijärvi, Anssi
2011-01-01
Acute pulmonary embolism (PE) often decreases pulmonary diffusing capacity for carbon monoxide (DL,CO), but data on the mechanisms involved are inconsistent. We wanted to investigate whether reduction in diffusing capacity of alveolo-capillary membrane (DM) and pulmonary capillary blood volume (Vc) is associated with the extent of PE or the presence and severity of right ventricular dysfunction (RVD) induced by PE and how the possible changes are corrected after 7-month follow-up. Forty-seven patients with acute non-massive PE in spiral computed tomography (CT) were included. The extent of PE was assessed by scoring mass of embolism. DL,CO, Vc, DM and alveolar volume (VA) were measured by using a single breath method with carbon monoxide and oxygen both at the acute phase and 7 months later. RVD was evaluated with transthoracic echocardiography and electrocardiogram. Fifteen healthy subjects were included as controls. DL,CO, DL, CO/VA, DM, vital capacity (VC) and VA were significantly lower in the patients with acute PE than in healthy controls (P<0·001). DM/Vc relation was significantly lower in patients with RVD than in healthy controls (P = 0·004). DM correlated inversely with central mass of embolism (r = −0·312; P = 0·047) whereas Vc did not. DM, DL,CO, VC and VA improved significantly within 7 months. In all patients (P = 0·001, P = 0·001) and persistent RVD (P = 0·020, P = 0·012), DM and DL,CO remained significantly lower than in healthy controls in the follow-up. DM was inversely related to central mass of embolism. Reduction in DM mainly explains the sustained decrease in DL,CO in PE after 7 months despite modern treatment of PE. PMID:21143754
Supra-plasma expanders: the future of treating blood loss and anemia without red cell transfusions?
Tsai, Amy G; Vázquez, Beatriz Y Salazar; Hofmann, Axel; Acharya, Seetharama A; Intaglietta, Marcos
2015-01-01
Oxygen delivery capacity during profoundly anemic conditions depends on blood's oxygen-carrying capacity and cardiac output. Oxygen-carrying blood substitutes and blood transfusion augment oxygen-carrying capacity, but both have given rise to safety concerns, and their efficacy remains unresolved. Anemia decreases oxygen-carrying capacity and blood viscosity. Present studies show that correcting the decrease of blood viscosity by increasing plasma viscosity with newly developed plasma expanders significantly improves tissue perfusion. These new plasma expanders promote tissue perfusion, increasing oxygen delivery capacity without increasing blood oxygen-carrying capacity, thus treating the effects of anemia while avoiding the transfusion of blood.
Study of Oxygen Diffusion in Reduced LiNbO3 Crystals
NASA Astrophysics Data System (ADS)
Yatsenko, A. V.; Pritulenko, A. S.; Yagupov, S. V.; Sugak, D. Yu.; Sol'skii, I. M.
2018-03-01
Using the method of impedance spectroscopy and optical density measurements, the diffusion of oxygen in single crystals of lithium niobate of the congruent composition after the reductive thermochemical processing is studied. The parameters describing the diffusion of oxygen in the temperature range 493-693 K are established.
Modelling oxygen self-diffusion in UO 2 under pressure
Cooper, Michael William D.; Grimes, R. W.; Fitzpatrick, M. E.; ...
2015-10-22
Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO 2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO 2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.
Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics
Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...
2015-03-05
In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less
Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher
2016-04-28
This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.
Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films
Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan
2017-01-01
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849
Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.
Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan
2017-05-03
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longeville, Stéphane; Stingaciu, Laura-Roxana
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; ...
2017-02-15
Li–air or Li–oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li–air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stabilitymore » of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li–air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. Furthermore, these results showcase the impact of electrolyte composition on transport in metal–air batteries and provide guiding principles and simulation-based tools for future electrolyte design.« less
The hematocrit paradox--how does blood doping really work?
Böning, D; Maassen, N; Pries, A
2011-04-01
The wide-spread assumption that doping with erythropoietin or blood transfusion is only effective by increasing arterial blood O2 content because of rising hematocrit is not self-evident. "Natural blood dopers" (horses, dogs) increase both hematocrit and circulating blood volume during exercise by releasing stored erythrocytes from the spleen. Improvement of aerobic performance by augmenting hemoglobin concentration may be expected until the optimal hematocrit is reached; above this value maximal cardiac output declines due to the steep increase of blood viscosity. Therefore an enlarged blood oxygen content might only be useful if the normal hematocrit of man during exercise is suboptimal. However, recent studies suggest that cardiac power rises after erythropoietin allowing an unchanged cardiac output in spite of increased viscosity. Other factors underlying improved performance after blood doping might be: augmented diffusion capacity for oxygen in lungs and tissues, increased percentage of young red cells with good functional properties (after erythropoietin), increased buffer capacity, increase of blood volume, vasoconstriction, reduced damage by radicals, mood improvement by cerebral effects of erythropoietin. Also the importance of placebo is unknown since double-blind studies are rare. It is suggested that blood doping has multifactorial effects not restricted to the increase in arterial oxygen content. © Georg Thieme Verlag KG Stuttgart · New York.
Role of Anemia in Home Oxygen Therapy in Chronic Obstructive Pulmonary Disease Patients.
Copur, Ahmet Sinan; Fulambarker, Ashok; Molnar, Janos; Nadeem, Rashid; McCormack, Charles; Ganesh, Aarthi; Kheir, Fayez; Hamon, Sara
2015-01-01
Anemia is a known comorbidity found in chronic obstructive pulmonary disease (COPD) patients. Hypoxemia is common and basically due to ventilation/perfusion (V/Q) mismatch in COPD. Anemia, by decreasing arterial oxygen content, may be a contributing factor for decreased delivery of oxygen to tissues. The objective of this study is to determine if anemia is a factor in qualifying COPD patients for home oxygen therapy. The study was designed as a retrospective, cross-sectional, observational chart review. Patients who were referred for home oxygen therapy evaluation were selected from the computerized patient record system. Demographic data, oxygen saturation at rest and during exercise, pulmonary function test results, hemoglobin level, medications, reason for anemia, comorbid diseases, and smoking status were recorded. The χ tests, independent sample t tests, and logistic regression were used for statistical analysis. Only 356 of total 478 patient referrals had a diagnosis of COPD over a 2-year period. Although 39 of them were excluded, 317 patients were included in the study. The overall rate of anemia was 38% in all COPD patients. Anemia was found significantly more frequent in COPD patients on home oxygen therapy (46%) than those not on home oxygen therapy (18.5%) (P < 0.0001). Mean saturation of peripheral oxygen values were significantly lower in anemic COPD patients both at rest and during exercise (P < 0.0001). Also, in COPD patients, age, Global Initiative for Chronic Obstructive Lung Disease class, smoking status, hemoglobin level, hematocrit, percent of forced expiratory volume in first second, forced expiratory volume in first second/forced vital capacity, residual volume/total lung volume, percent of carbon monoxide diffusion capacity were significantly different between home oxygen therapy and those not on home oxygen therapy (P < 0.05). Multivariate logistic regression showed that anemia remained a strong predictor for long-term oxygen therapy use in COPD patients after adjusting for other significant parameters. Anemic COPD patients are more hypoxic especially during exercise than those who are not anemic. We conclude that anemia is a contributing factor in qualifying COPD patients for home oxygen therapy.
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.
2003-01-01
Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.
Thoracoscopic laser pneumoplasty in the treatment of diffuse bullous emphysema.
Wakabayashi, A
1995-10-01
Thoracoscopic laser pneumoplasty in the treatment of diffuse bullous emphysema by means of a contact neodymium:yttrium-aluminum garnet laser was evaluated by a retrospective analysis of the first consecutive 500 procedures in 443 patients. The indication for thoracoscopic laser pneumoplasty was intractable dyspnea. Advanced age (mean age, 67 years), high oxygen dependency (70%), steroid use (46%), and markedly diminished physical capacity (2% bedridden and 27% wheelchair-bound) were noted. Thoracoscopic laser pneumoplasty was carried out under general anesthesia and one-lung ventilation. Type 3 bullae (381 procedures) were contracted by contact neodymium:yttrium-aluminum garnet laser and type 4 bullae (199 procedures) excised. The operative mortality rate was 4.8%. Subjective improvement was reported by 87% of the patients. Follow-up functional evaluation was available in 229 patients, which showed highly significant improvement. A comparison of preoperative and postoperative functional tests between type 3 and 4 bullae patients showed no significant difference, except the latter had higher decrease in airway resistance, residual volume, and total lung capacity. Thoracoscopic laser pneumoplasty is an effective treatment for both type 3 and 4 bullous emphysema with an acceptable risk.
Singh, Savita; Soni, Ritu; Singh, K P; Tandon, O P
2012-01-01
Prana is the energy, when the self-energizing force embraces the body with extension and expansion and control, it is pranayama. It may affect the milieu at the bronchioles and the alveoli particularly at the alveolo-capillary membrane to facilitate diffusion and transport of gases. It may also increase oxygenation at tissue level. Aim of our study is to compare pulmonary functions and diffusion capacity in patients of bronchial asthma before and after yogic intervention of 2 months. Sixty stable asthmatic-patients were randomized into two groups i.e group 1 (Yoga training group) and group 2 (control group). Each group included thirty patients. Lung functions were recorded on all patients at baseline, and then after two months. Group 1 subjects showed a statistically significant improvement (P<0.001) in Transfer factor of the lung for carbon monoxide (TLCO), forced vital capacity (FVC), forced expiratory volume in 1st sec (FEV1), peak expiratory flow rate (PEFR), maximum voluntary ventilation (MVV) and slow vital capacity (SVC) after yoga practice. Quality of life also increased significantly. It was concluded that pranayama & yoga breathing and stretching postures are used to increase respiratory stamina, relax the chest muscles, expand the lungs, raise energy levels, and calm the body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakulin, A. V., E-mail: bakulin@ispms.tsc.ru; Kulkova, S. E.; Hu, Q. M.
2015-02-15
The oxygen sorption on the low-index (001), (100), and (110) surfaces of a γ-TiAl alloy is studied by the pseudopotential method with the generalized gradient approximation for the exchange-correlation functional. The most preferred sites for oxygen sorption in the bulk and on the surface of the alloy are determined. The titanium-rich octahedral site is shown to be preferred for oxygen sorption in the bulk material. The effect of the oxygen concentration on the atomic and electronic structures of the stoichiometric TiAl(100) surface is studied. It is shown that, at the first stage of oxidation, oxygen prefers to form bonds withmore » titanium. The energy barriers for oxygen diffusion on the stoichiometric (100) surface and in the bulk of the material are calculated. The energy barriers are shown to depend substantially on the local environments of oxygen and to increase during diffusion from titanium-rich sites. The most possible mechanism of oxygen diffusion from the (100) surface to the bulk of the material is oxygen migration through tetrahedral sites.« less
Oxygen diffusion in Gd-doped mixed oxides
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2017-10-23
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Oxygen diffusion in Gd-doped mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
Cuticular gas exchange by Antarctic sea spiders.
Lane, Steven J; Moran, Amy L; Shishido, Caitlin M; Tobalske, Bret W; Woods, H Arthur
2018-04-25
Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or sea spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas exchange. Here, we examined alternative paths of gas exchange in sea spiders: (1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, (2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or (3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of sea spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas exchange and structural support, in which the cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas exchange. © 2018. Published by The Company of Biologists Ltd.
Bifunctional catalytic electrode
NASA Technical Reports Server (NTRS)
Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)
2005-01-01
The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2016-10-31
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m).
Droma, T; McCullough, R G; McCullough, R E; Zhuang, J G; Cymerman, A; Sun, S F; Sutton, J R; Moore, L G
1991-11-01
Larger chest dimensions and lung volumes have been reported for Andean high-altitude natives compared with sea-level residents and implicated in raising lung diffusing capacity. Studies conducted in Nepal suggested that lifelong Himalayan residents did not have enlarged chest dimensions. To determine if high-altitude Himalayans (Tibetans) had larger lung volumes than acclimatized newcomers (Han "Chinese"), we studied 38 Tibetan and 43 Han residents of Lhasa, Tibet Autonomous Region, China (elevation 3,658 m) matched for age, height, weight, and smoking history. The Tibetan compared with the Han subjects had a larger total lung capacity [6.80 +/- 0.19 (mean +/- SEM) vs 6.24 +/- 0.18 l BTPS, P less than 0.05], vital capacity (5.00 +/- 0.08 vs 4.51 +/- 0.10 1 BTPS, P less than 0.05), and tended to have a greater residual volume (1.86 +/- 0.12 vs 1.56 +/- 0.09 1 BTPS, P less than 0.06). Chest circumference was greater in the Tibetan than the Han subjects (85 +/- 1 vs 82 +/- 1 cm, P less than 0.05) and correlated with vital capacity in each group as well as in the two groups combined (r = 0.69, P less than 0.05). Han who had migrated to high altitude as children (less than or equal to 5 years old, n = 6) compared to Han adult migrants (greater than or equal to 18 years old, n = 26) were shorter but had similar lung volumes and capacities when normalized for body size. The Tibetans' vital capacity and total lung capacity in relation to body size were similar to values reported previously for lifelong residents of high altitude in South and North America. Thus, Tibetans, like North and South American high-altitude residents, have larger lung volumes. This may be important for raising lung diffusing capacity and preserving arterial oxygen saturation during exercise.
Harrison, Jon F; Waters, James S; Biddulph, Taylor A; Kovacevic, Aleksandra; Klok, C Jaco; Socha, John J
2018-04-01
While it is clear that the insect tracheal system can respond in a compensatory manner to both hypoxia and hyperoxia, there is substantial variation in how different parts of the system respond. However, the response of tracheal structures, from the tracheoles to the largest tracheal trunks, have not been studied within one species. In this study, we examined the effect of larval/pupal rearing in hypoxia, normoxia, and hyperoxia (10, 21 or 40kPa oxygen) on body size and the tracheal supply to the flight muscles of Drosophila melanogaster, using synchrotron radiation micro-computed tomography (SR-µCT) to assess flight muscle volumes and the major tracheal trunks, and confocal microscopy to assess the tracheoles. Hypoxic rearing decreased thorax length whereas hyperoxic-rearing decreased flight muscle volumes, suggestive of negative effects of both extremes. Tomography at the broad organismal scale revealed no evidence for enlargement of the major tracheae in response to lower rearing oxygen levels, although tracheal size scaled with muscle volume. However, using confocal imaging, we found a strong inverse relationship between tracheole density within the flight muscles and rearing oxygen level, and shorter tracheolar branch lengths in hypoxic-reared animals. Although prior studies of larger tracheae in other insects indicate that axial diffusing capacity should be constant with sequential generations of branching, this pattern was not found in the fine tracheolar networks, perhaps due to the increasing importance of radial diffusion in this regime. Overall, D. melanogaster responded to rearing oxygen level with compensatory morphological changes in the small tracheae and tracheoles, but retained stability in most of the other structural components of the tracheal supply to the flight muscles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of side lying on lung function in older individuals.
Manning, F; Dean, E; Ross, J; Abboud, R T
1999-05-01
Body positioning exerts a strong effect on pulmonary function, but its effect on other components of the oxygen transport pathway are less well understood, especially the effects of side-lying positions. This study investigated the interrelationships between side-lying positions and indexes of lung function such as spirometry, alveolar diffusing capacity, and inhomogeneity of ventilation in older individuals. Nineteen nonsmoking subjects (mean age=62.8 years, SD=6.8, range=50-74) with no history of cardiac or pulmonary disease were tested over 2 sessions. The test positions were sitting and left side lying in one session and sitting and right side lying in the other session. In each of the positions, forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), single-breath pulmonary diffusing capacity (DLCO/VA), and the slope of phase III (DN2%/L) of the single-breath nitrogen washout test to determine inhomogeneity of ventilation were measured. Compared with measurements obtained in the sitting position, FVC and FEV1 were decreased equally in the side-lying positions, but no change was observed in DLCO/VA or DN2%/L. Side-lying positions resulted in decreases in FVC and FEV1, which is consistent with the well-documented effects of the supine position. These findings further support the need for prescriptive rather than routine body positioning of patients with risks of cardiopulmonary compromise and the need to use upright positions in which lung volumes and capacities are maximized.
NASA Astrophysics Data System (ADS)
Trinchero, P.; Löfgren, M.; Bosbach, D.; Deissmann, G.; Ebrahimi, H.; Gylling, B.; Molinero, J.; Puigdomenech, I.; Selroos, J. O.; Sidborn, M.; Svensson, U.
2017-12-01
The matrix of crystalline rocks is typically constituted by mineral grains with characteristic sizes that vary from mm-scale (or less) up to cm-scale. These mineral grains are separated and intersected by micro-fractures, which build the so-called inter-granular space. Here, we present a generic model of the crystalline rock matrix, which is built upon a micro-Discrete Fracture Network (micro-DFN). To mimic the multiscale nature of grains and inter-granular space, different sets of micro-fractures are employed, each having a different length interval and intensity. The occurrence of these fracture sets is described by Poisson distributions, while the fracture aperture in these sets defines the porosity of the rock matrix. The proposed micro-DFN model is tested and calibrated against experimental observations from Forsmark (Sweden) and the resulting system is used to carry out numerical experiments aimed at assessing the redox buffering capacity of the heterogeneous crystalline rock matrix against the infiltration of glacial oxygenated melt-water. The chemically reactive mineral considered in this study is biotite, whose distribution is simulated with a single stochastic realization that honors the average abundance and grain size observed in mineralogical studies of Forsmark. The exposed surface area of biotite grains, which provide a source of ferrous ions that are in turn oxidized by the dissolved oxygen, is related to the underlying micro-DFN. The results of the mechanistic reactive transport simulations are compared to an existing analytical solution based on the assumption of homogeneity. This evaluation shows that the matrix indeed behaves as a composite system, with most of the oxygen being consumed in "highly reactive pathways" and a non negligible part of the oxygen diffuses deeper into the matrix. Sensitivity analyses to diffusivity show that this effect is more pronounced at high Damköhler numbers (diffusion limited regime) while at lower Damköhler numbers the solution approaches that predicted by the homogeneous model.
A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium-Oxygen Batteries.
Kundu, Dipan; Black, Robert; Adams, Brian; Nazar, Linda F
2015-12-23
Owing to its high theoretical specific energy, the Li-oxygen battery is one of the fundamentally most promising energy storage systems, but also one of the most challenging. Poor rechargeability, involving the oxidation of insoluble and insulating lithium peroxide (Li2O2), has remained the "Achilles' heel" of this electrochemical energy storage system. We report here on a new redox mediator tris[4-(diethylamino)phenyl]amine (TDPA), that-at 3.1 V-exhibits the lowest and closest potential redox couple compared to the equilibrium voltage of the Li-oxygen cell of those reported to date, with a second couple also at a low potential of 3.5 V. We show it is a soluble "catalyst" capable of lowering the Li2O2 charging potential by >0.8 V without requiring direct electrical contact of the peroxide and that it also facilitates high discharge capacities. Its chemical and electrochemical stability, fast diffusion kinetics, and two dynamic redox potentials represent a significant advance in oxygen-evolution catalysis. It enables Li-O2 cells that can be recharged more than 100 cycles with average round-trip efficiencies >80%, opening a new avenue for practical Li-oxygen batteries.
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Diffusion limitations of the lung - comparison of different measurement methods.
Preisser, A M; Seeber, M; Harth, V
2015-01-01
Pulmonary fibrosis leads to a decrease of oxygen diffusion, in particular during exercise. Bronchial obstruction also could decrease the partial pressure of oxygen (P(a)O(2)). In this study we investigated the validity of blood gas content, especially P(a)O(2) and P(a)O(2) affected by hyperventilation (P(a)O(2corr)) and alveolo-arterial oxygen gradient (P(A-a)O(2)) in comparison with the CO diffusion capacity (DLCO) in different lung diseases. A total of 250 subjects were studied (52.3 ± 12.5 year; F/M 40/210), among which there were 162 subjects with different lung disorders and 88 healthy controls. Pearson's correlation coefficients (r) of DLCO with P(a)O(2), P(a)O(2corr), and PA-aO(2) were analyzed in each group. The results show that the diagnostic power of P(A-a)O(2) against P(a)O(2corr) was equivalent, especially during exercise (r = -0.89 and -0.92, respectively). DLCO showed only weak correlations with P(a)O(2corr) and P(A-a)O(2) (r = 0.17 and -0.19, respectively). In conclusion, DLCO shows a better match with blood gas content during exercise than at rest during which it is routinely tested. Thus, the exercise test is advisable. The P(A-a)O(2) takes into account the level of ventilation, which makes it correlate better with DLCO rather than with blood gas content. The most significant problems in clinical evaluation of blood gas parameters during exercise are the insufficiently defined limits of normal-to-pathological range.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
NASA Technical Reports Server (NTRS)
Good, Brian S.
2011-01-01
Yttria-stabilized zirconia s high oxygen diffusivity and corresponding high ionic conductivity, and its structural stability over a broad range of temperatures, have made the material of interest for use in a number of applications, for example, as solid electrolytes in fuel cells. At low concentrations, the stabilizing yttria also serves to increase the oxygen diffusivity through the presence of corresponding oxygen vacancies, needed to maintain charge neutrality. At higher yttria concentration, however, diffusivity is impeded by the larger number of relatively high energy migration barriers associated with yttrium cations. In addition, there is evidence that oxygen vacancies preferentially occupy nearest-neighbor sites around either dopant or Zr cations, further affecting vacancy diffusion. We present the results of ab initio calculations that indicate that it is energetically favorable for oxygen vacancies to occupy nearest-neighbor sites adjacent to Y ions, and that the presence of vacancies near either species of cation lowers the migration barriers. Kinetic Monte Carlo results from simulations incorporating this effect are presented and compared with results from simulations in which the effect is not present.
NASA Astrophysics Data System (ADS)
Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.
2016-04-01
Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.
Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment
NASA Astrophysics Data System (ADS)
Grübl, Daniel; Bessler, Wolfgang G.
2015-11-01
Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).
McClatchey, P. Mason; Wu, Fan; Olfert, I. Mark; Ellis, Christopher G.; Goldman, Daniel; Reusch, Jane E. B.
2018-01-01
Metabolic syndrome (MS) in obese Zucker rats (OZR) is associated with impaired skeletal muscle performance and blunted hyperemia. Studies suggest that reduced O2 diffusion capacity is required to explain compromised muscle performance and that heterogeneous microvascular perfusion distribution is critical. We modeled tissue oxygenation during muscle contraction in control and OZR skeletal muscle using physiologically realistic relationships. Using a network model of Krogh cylinders with increasing perfusion asymmetry and increased plasma skimming, we predict increased perfusion heterogeneity and decreased muscle oxygenation in OZR, with partial recovery following therapy. Notably, increasing O2 delivery had less impact on VO2 than equivalent decreases in O2 delivery, providing a mechanism for previous empirical work associating perfusion heterogeneity and impaired O2 extraction. We demonstrate that increased skeletal muscle perfusion asymmetry is a defining characteristic of MS and must be considered to effectively model and understand blood-tissue O2 exchange in this model of human disease. PMID:28168652
NASA Astrophysics Data System (ADS)
Le, Hang T. T.; Kalubarme, Ramchandra S.; Ngo, Duc Tung; Jang, Seong-Yong; Jung, Kyu-Nam; Shin, Kyoung-Hee; Park, Chan-Jin
2015-01-01
Aluminium doped lithium lanthanum titanate (A-LLTO) powders with various excess Li2O content are synthesized using a simple citrate gel method. The obtained A-LLTO powders show an agglomerated form, composed of nano-sized particles of 20-50 nm. The morphology and conductivity of the A-LLTO ceramics are largely affected by the content of excess Li2O. The highest total ionic conductivity of 3.17 × 10-4 S cm-1 is achieved for the A-LLTO sample containing 20% excess Li2O, exhibiting a vacancy content of 6%, and a total activation energy of 0.358 eV. The A-LLTO can act as a membrane to protect lithium metal from oxygen and other contaminants diffused through the oxygen electrode part. The Li-O2 cell employing the A-LLTO solid electrolyte shows a good cycle life of longer than 100 discharge-charge cycles, under the constant capacity mode of 300 mAh g-1.
Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Panico, Anna Maria; Cardile, Venera; Crascì, Lucia; Carducci, Federica; Graziano, Adriana Carol Eleonora; Cortesi, Rita; Puglia, Carmelo
2017-02-01
Crocin, a potent antioxidant obtained from saffron, shows anticancer activity in in vivo models. Unfortunately unfavorable physicochemical features compromise its use in topical therapy. The present study describes the preparation and characterization of nanostructured lipid dispersions as drug delivery systems for topical administration of crocin and the evaluation of antioxidant and antiproliferative effects of crocin once encapsulated into nanostructured lipid dispersions. Nanostructured lipid dispersions based on monoolein in mixture with sodium cholate and sodium caseinate have been characterized by cryo-TEM and PCS. Crocin permeation was evaluated in vitro by Franz cells, while the oxygen radical absorbance capacity assay was used to evaluate the antioxidant activity. Furthermore, the antiproliferative activity was tested in vitro by the MTT test using a human melanoma cell line. The emulsification of monoolein with sodium cholate and sodium caseinate led to dispersions of cubosomes, hexasomes, sponge systems and vesicles, depending on the employed emulsifiers. Permeation and shelf life studies demonstrated that nanostructured lipid dispersions enabled to control both rate of crocin diffusion through the skin and crocin degradation. The oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of crocin while the MTT test showed an increase of crocin cytotoxic effect after incorporation in nanostructured lipid dispersions. This work has highlighted that nanostructured lipid dispersions can protect the labile molecule crocin from degradation, control its skin diffusion and prolong antioxidant activity, therefore suggesting the suitability of nanostructured lipid dispersions for crocin topical administration. Copyright © 2016 Elsevier B.V. All rights reserved.
Blanco, Isabel; Villaquirán, Claudio; Valera, José Luis; Molina-Molina, María; Xaubet, Antoni; Rodríguez-Roisin, Robert; Barberà, Joan A; Roca, Josep
2010-03-01
The six-minute walk test (6MWT) is widely used in evaluating diffuse interstitial lung disease (ILD) and pulmonary hypertension (PH). However, their physiological determining factors have not been well defined. To evaluate the physiological changes that occur in ILD and PH during the 6MWT, and compare them with the cardiopulmonary exercise test (CPET). Thirteen patients with ILD and 14 with PH were studied using the 6MWT and CPET on an ergometer cycle. The respiratory variables were recorded by means of telemetry during the 6MWT. Oxygen consumption (VO(2)), respiratory and heart rate reached a plateau from minute 3 of the 6MWT in both diseases. The VO(2) did not differ from the peak value in the CPET (14+/-2 and 15+/-2 ml/kg/min, respectively, in ILD; 16+/-6 and 16+/-6 ml/kg/min, in PH). The arterial oxygen saturation decreased in both diseases, although it was more marked in ILD (-12+/-5%, p<0,01). The ventilatory equivalent for CO(2) (V(E)/VCO(2)) in PH during the 6MWT was strongly associated with functional class (FC) (85+/-14 in FC III-IV, 44+/-6 in FC I-II; p<0,001). The 6MWT in ILD and PH behaves like a maximal effort test, with similar VO(2) to the CPET, demonstrating a limit in oxygen transport capacity. Monitoring using telemetry during the 6MWT may be useful for the clinical evaluation of patients with ILD or PH. Copyright 2009 SEPAR. Published by Elsevier Espana. All rights reserved.
Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick
2018-01-01
Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer's disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15–0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12–0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given. PMID:29755365
Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick
2018-01-01
Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer's disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15-0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12-0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given.
Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd
2017-01-01
Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.
Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios
2008-01-01
Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.
NASA Astrophysics Data System (ADS)
Gulsoy, Gokce; Was, Gary S.
2015-04-01
Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.
Coffman, Kirsten E; Carlson, Alex R; Miller, Andrew D; Johnson, Bruce D; Taylor, Bryan J
2017-06-01
Aging is associated with deterioration in the structure and function of the pulmonary circulation. We characterized the lung diffusing capacity for carbon monoxide (DL CO ), alveolar-capillary membrane conductance (Dm CO ), and pulmonary-capillary blood volume (Vc) response to discontinuous incremental exercise at 25, 50, 75, and 90% of peak work (W peak ) in four groups: 1 ) Young [27 ± 3 yr, maximal oxygen consumption (V̇o 2max ): 110 ± 18% age predicted]; 2) Young Highly Fit (27 ± 3 yr, V̇o 2max : 147 ± 8% age predicted); 3 ) Old (69 ± 5 yr, V̇o 2max : 116 ± 13% age predicted); and 4 ) Old Highly Fit (65 ± 5 yr, V̇o 2max : 162 ± 18% age predicted). At rest and at 90% W peak , DL CO , Dm CO , and Vc were decreased with age. At 90% W peak , DL CO , Dm CO , and Vc were greater in Old Highly Fit vs. Old adults. The slope of the DL CO -cardiac output (Q̇) relationship from rest to end exercise at 90% W peak was not different between Young, Young Highly Fit, Old, and Old Highly Fit (1.35 vs. 1.44 vs. 1.10 vs. 1.35 ml CO ·mmHg -1 ·liter blood -1 , P = 0.388), with no evidence of a plateau in this relationship during exercise; this was also true for Dm CO -Q̇ and Vc-Q̇. V̇o 2max was positively correlated with 1 ) DL CO , Dm CO , and Vc at rest; and 2 ) the rest to end exercise change in DL CO , Dm CO , and Vc. In conclusion, these data suggest that despite the age-associated deterioration in the structure and function of the pulmonary circulation, expansion of the pulmonary capillary network does not become limited during exercise in healthy individuals regardless of age or cardiorespiratory fitness level. NEW & NOTEWORTHY Healthy aging is a crucial area of research. This article details how differences in age and cardiorespiratory fitness level affect lung diffusing capacity, particularly during high-intensity exercise. We conclude that highly fit older adults do not experience a limit in lung diffusing capacity during high-intensity exercise. Interestingly, however, we found that highly fit older individuals demonstrate greater values of lung diffusing capacity during high-intensity exercise than their less fit age-matched counterparts. Copyright © 2017 the American Physiological Society.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion. An EBC system typically includes a bond coat located between the EBC and the component surface. Bond coat materials are generally chosen for properties other than low oxygen diffusivity, but low oxygen diffusivity is nevertheless a desirable characteristic, as the bond coat could provide some additional component protection, particularly in the case where cracks in the coating system provide a direct path from the environment to the bond coat interface. We have therefore performed similar kMC simulations of oxygen diffusion in this material.
Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone
NASA Astrophysics Data System (ADS)
Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim
2017-04-01
Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline. Journal of Geophysical Research 118. Hahn, J., Brandt, P., Greatbatch, R., Krahmann, G., Körtzinger, A., 2014. Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone. Climate Dynamics 43, 2999-3024.
NASA Astrophysics Data System (ADS)
Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.
2012-10-01
Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.
Pischedda, L; Poggiale, J C; Cuny, P; Gilbert, F
2008-06-01
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.
Can oxygen set thermal limits in an insect and drive gigantism?
Verberk, Wilco C E P; Bilton, David T
2011-01-01
Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.
Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?
Verberk, Wilco C. E. P.; Bilton, David T.
2011-01-01
Background Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Methodology/Principal Findings Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. Conclusions/Significance These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods. PMID:21818347
Bouwer, S T; Hoofd, L; Kreuzer, F
1997-03-07
Diffusion coefficients of oxygen (DO2) and hemoglobin (DHb) were obtained from measuring the oxygen flux through thin layers of hemoglobin solutions at 20 degrees C. The liquid layers were supported by a membrane and not soaked in any filter material. Oxygen fluxes were measured from the changes in oxygen partial pressure in the gas phases at both sides of the layer. A mathematical treatment is presented for correct evaluation of the measurements. Measurements were done for bovine and for human hemoglobin. Hemoglobin concentrations (CHb) were between 11 and 42 g/dl, which covers the concentrations in the erythrocyte. Both DO2 and DHb could be fitted to the empirical equation D = D0(1-CHb/C1)10-CHb/C2. The following parameters were obtained: DO = 1.80 x 10(-9) m2/s, C1 = 100 g/dl, C2 = 119 g/dl, for oxygen and D0 = 7.00 x 10(-11) m2/s, C1 = 46 g/dl, C2 = 128 g/dl, for hemoglobin. No difference between the diffusion coefficients of bovine or human hemoglobin was found. The diffusion coefficients of hemoglobin were higher than most values reported in the literature, probably because in this study the mobility of hemoglobin was not hindered by surrounding filter material.
Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu
2014-04-22
Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.
Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations
Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...
2016-04-01
Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less
New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery.
Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Reiter, Jakub; Tsiouvaras, Nikolaos; Passerini, Stefano; Hassoun, Jusef
2018-03-02
Cathode configurations reported herein are alternative to the most diffused ones for application in lithium-oxygen batteries, using an ionic liquid-based electrolyte. The electrodes employ high surface area conductive carbon as the reaction host, and polytetrafluoroethylene as the binding agent to enhance the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) reversibility. Roll-pressed, self-standing electrodes (SSEs) and thinner, spray deposited electrodes (SDEs) are characterized in lithium-oxygen cells using an ionic liquid (IL) based electrolyte formed by mixing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI). The electrochemical results reveal reversible reactions for both electrode configurations, but improved electrochemical performance for the self-standing electrodes in lithium-oxygen cells. These electrodes show charge/discharge polarizations at 60 °C limited to 0.4 V, with capacity up to 1 mAh cm -2 and energy efficiency of about 88 %, while the spray deposited electrodes reveal, under the same conditions, a polarization of 0.6 V and energy efficiency of 80 %. The roll pressed electrode combined with the DEMETFSI-LiTFSI electrolyte and a composite Li x Sn-C alloy anode forms a full Li-ion oxygen cell showing extremely limited polarization, and remarkable energy efficiency. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Small Airway Dysfunction and Abnormal Exercise Responses
Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin
2016-01-01
Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987
Duke, Joseph W; Elliott, Jonathan E; Laurie, Steven S; Beasley, Kara M; Mangum, Tyler S; Hawn, Jerold A; Gladstone, Igor M; Lovering, Andrew T
2014-09-01
Adults with a history of very preterm birth (<32 wk gestational age; PRET) have reduced lung function and significantly lower lung diffusion capacity for carbon monoxide (DLCO) relative to individuals born at term (CONT). Low DLCO may predispose PRET to diffusion limitation during exercise, particularly while breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET (n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT (n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency. Copyright © 2014 the American Physiological Society.
Mathematical Modeling of Ni/H2 and Li-Ion Batteries
NASA Technical Reports Server (NTRS)
Weidner, John W.; White, Ralph E.; Dougal, Roger A.
2001-01-01
The modelling effort outlined in this viewgraph presentation encompasses the following topics: 1) Electrochemical Deposition of Nickel Hydroxide; 2) Deposition rates of thin films; 3) Impregnation of porous electrodes; 4) Experimental Characterization of Nickel Hydroxide; 5) Diffusion coefficients of protons; 6) Self-discharge rates (i.e., oxygen-evolution kinetics); 7) Hysteresis between charge and discharge; 8) Capacity loss on cycling; 9) Experimental Verification of the Ni/H2 Battery Model; 10) Mathematical Modeling Li-Ion Batteries; 11) Experimental Verification of the Li-Ion Battery Model; 11) Integrated Power System Models for Satellites; and 12) Experimental Verification of Integrated-Systems Model.
Heise, H M; Lampen, P; Stücker, M
2003-11-01
The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.
About the Role of the Bottleneck/Cork Interface on Oxygen Transfer.
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Paulin, Christian; Simon, Jean-Marc; Gougeon, Régis D; Bellat, Jean-Pierre
2016-09-07
The transfer of oxygen through a corked bottleneck was investigated using a manometric technique. First, the effect of cork compression on oxygen transfer was evaluated without considering the glass/cork interface. No significant effect of cork compression (at 23% strain, corresponding to the compression level of cork in a bottleneck for still wines) was noticeable on the effective diffusion coefficient of oxygen. The mean value of the effective diffusion coefficient is equal to 10(-8) m(2) s(-1), with a statistical distribution ranging from 10(-10) to 10(-7) m(2) s(-1), which is of the same order of magnitude as for the non-compressed cork. Then, oxygen transfer through cork compressed in a glass bottleneck was determined to assess the effect of the glass/cork interface. In the particular case of a gradient-imposed diffusion of oxygen through our model corked bottleneck system (dry cork without surface treatment; 200 and ∼0 hPa of oxygen on both sides of the sample), the mean effective diffusion coefficient is of 5 × 10(-7) m(2) s(-1), thus revealing the possible importance of the role of the glass/stopper interface in the oxygen transfer.
Piirilä, Päivi; Laiho, Mia; Mustonen, Pirjo; Graner, Marit; Piilonen, Anneli; Raade, Merja; Sarna, Seppo; Harjola, Veli-Pekka; Sovijärvi, Anssi
2011-05-01
Acute pulmonary embolism (PE) often decreases pulmonary diffusing capacity for carbon monoxide (DL,CO), but data on the mechanisms involved are inconsistent. We wanted to investigate whether reduction in diffusing capacity of alveolo-capillary membrane (DM) and pulmonary capillary blood volume (Vc) is associated with the extent of PE or the presence and severity of right ventricular dysfunction (RVD) induced by PE and how the possible changes are corrected after 7-month follow-up. Forty-seven patients with acute non-massive PE in spiral computed tomography (CT) were included. The extent of PE was assessed by scoring mass of embolism. DL,CO, Vc, DM and alveolar volume (VA) were measured by using a single breath method with carbon monoxide and oxygen both at the acute phase and 7 months later. RVD was evaluated with transthoracic echocardiography and electrocardiogram. Fifteen healthy subjects were included as controls. DL,CO, DL, CO/VA, DM, vital capacity (VC) and VA were significantly lower in the patients with acute PE than in healthy controls (P < 0.001). DM/Vc relation was significantly lower in patients with RVD than in healthy controls (P = 0.004). DM correlated inversely with central mass of embolism (r = -0.312; P = 0.047) whereas Vc did not. DM, DL,CO, VC and VA improved significantly within 7 months. In all patients (P = 0.001, P = 0.001) and persistent RVD (P = 0.020, P = 0.012), DM and DL,CO remained significantly lower than in healthy controls in the follow-up. DM was inversely related to central mass of embolism. Reduction in DM mainly explains the sustained decrease in DL,CO in PE after 7 months despite modern treatment of PE. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Titanium aluminide intermetallic alloys with improved wear resistance
Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.
2014-07-08
The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.
Reference values for pulmonary diffusing capacity for adult native Finns.
Kainu, Annette; Toikka, Jyri; Vanninen, Esko; Timonen, Kirsi L
2017-04-01
Measurement standards for pulmonary diffusing capacity were updated in 2005 by the ATS/ERS Task Force. However, in Finland reference values published in 1982 by Viljanen et al. have been used to date. The main aim of this study was to produce updated reference models for single-breath diffusing capacity for carbon monoxide for Finnish adults. Single-breath diffusing capacity for carbon monoxide was measured in 631 healthy non-smoking volunteers (41.5% male). Reference values for diffusing capacity (DLCO), alveolar volume (VA), diffusing capacity per unit of lung volume (DLCO/VA), and lung volumes were calculated using a linear regression model. Previously used Finnish reference values were found to produce too low predicted values, with mean predicted DLCO 111.0 and 104.4%, and DLCO/VA of 103.5 and 102.7% in males and females, respectively. With the European Coalition for Steel and Coal (ECSC) reference values there was a significant sex difference in DLCO/VA with mean predicted 105.4% in males and 92.8% in females (p < .001). New reference values for DLCO, DLCO/VA, VA, vital capacity (VC), inspiratory vital capacity (IVC), and inspiratory capacity (IC) are suggested for clinical use to replace technically outdated reference values for clinical applications.
Oxygen gradients in the microcirculation.
Pittman, R N
2011-07-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.
Oxygen Gradients in the Microcirculation
Pittman, Roland N.
2010-01-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
2018-01-17
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.
Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan
2015-01-01
Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.
Que, Lan-Fang; Yu, Fu-Da; Wang, Zhen-Bo; Gu, Da-Ming
2018-04-01
It is challenging for flexible solid-state hybrid capacitors to achieve high-energy-high-power densities in both Li-ion and Na-ion systems, and the kinetics discrepancy between the sluggish faradaic anode and the rapid capacitive cathode is the most critical issue needs to be addressed. To improve Li-ion/Na-ion diffusion kinetics, flexible oxygen-deficient TiO 2- x /CNT composite film with ultrafast electron/ion transport network is constructed as self-supported and light-weight anode for a quasi-solid-state hybrid capacitor. It is found that the designed porous yolk-shell structure endows large surface area and provides short diffusion length, the oxygen-deficient composite film can improve electrical conductivity, and enhance ion diffusion kinetic by introducing intercalation pseudocapacitance, therefore resulting in advance electrochemical properties. It exhibits high capacity, excellent rate performance, and long cycle life when utilized as self-supported anodes for Li-ion and Na-ion batteries. When assembled with activated carbon/carbon nanotube (AC/CNT) flexible cathode, using ion conducting gel polymer as the electrolyte, high energy densities of 104 and 109 Wh kg -1 are achieved at 250 W kg -1 in quasi-solid-state Li-ion and Na-ion capacitors (LICs and SICs), respectively. Still, energy densities of 32 and 36 Wh kg -1 can be maintained at high power densities of 5000 W kg -1 in LICs and SICs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngala, V.T.; Page, C.L.; Parrott, L.J.
1995-05-01
Steady-state diffusion of dissolved oxygen and chloride ions in hydrated OPC and OPC/30%PFA pastes, hydrated for 2 weeks at 20 C and 10 weeks at 38 C, was studied at water/binder (w/s) ratios 0.4, 0.5, 0.6 and 0.7. Total porosity and a simple measure of capillary porosity, the volume fractions of the water lost in specimens from a saturated surface dry condition to a near-constant weight at 90.7% relative humidity, were also determined. The diffusion rate of chloride ions diminished markedly, to very low values, as the capillary porosity approached zero. For a given w/s ratio or capillary porosity themore » chloride ion diffusion coefficient for OPC/30%PFA pastes was about one order of magnitude smaller than that to OPC pastes. The rate of diffusion of dissolved oxygen also diminished as the capillary porosity reduced but it was still significant as the capillary porosity approached zero. For a given capillary porosity the oxygen diffusion coefficient for OPC/30%PFA pastes was about 30% smaller than that for OPC pastes. The results support the view that chloride ion diffusion in pastes of low capillary porosity is retarded by the surface charge of the hydrated cement gel. In contrast, the hydrated cement gel is much more permeable to the similarly-sized, neutral oxygen molecule.« less
Colom, Adai; Galgoczy, Roland; Almendros, Isaac; Xaubet, Antonio; Farré, Ramon; Alcaraz, Jordi
2014-08-01
Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies. © 2013 Wiley Periodicals, Inc.
Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide
NASA Astrophysics Data System (ADS)
Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.
2017-10-01
In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.
Kinetic Monte Carlo Simulations of Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian
2017-01-01
Ceramic Matrix Components (CMC) components for use in turbine engines offer a number of advantages compared with current practice. However, such components are subject to degradation through a variety of mechanisms. In particular, in the hot environment inside a turbine in operation a considerable amount of water vapor is present, and this can lead to corrosion and recession. Environmental Barrier Coating (EBC) systems that limit the amount of oxygen and water reaching the component are required to reduce this degradation and extend component life. A number of silicate-based materials are under consideration for use in such coating systems, including Yttterbium and Yttrium di- and monosilicates. In this work, we present results of kinetic Monte Carlo computer simulations of oxygen diffusion in Yttrium disilicate, and compare with previous work on Yttterbium disilicate. Coatings may also exhibit cracking, and the cracks can provide a direct path for oxygen to reach the component. There is typically a bond coat between the coating and component surface, but the bond coat material is generally chosen for properties other than low oxygen diffusivity. Nevertheless, the degree to which the bond coat can inhibit oxygen diffusion is of interest, as it may form the final defense against oxygen impingement on the component. We have therefore performed similar simulations of oxygen diffusion through HfSiO4, a proposed bond coat material.
Oxygen self-diffusion in diopside with application to cooling rate determinations
NASA Astrophysics Data System (ADS)
Farver, John R.
1989-04-01
The kinetics of oxygen self-diffusion in a natural diopside have been measured over the temperature range 700-1250°C. Experiments were run under hydrothermal conditions using 18O-enriched water. Profiles of 18O/( 16O+ 18O) versus depth into the crystal were obtained using an ion microprobe. At 1000 bars (100 MPa) confining pressure, the Arrhenius relation for diffusion parallel to the c crystallographic direction yields a pre-exponential factor ( D0) = 1.5 × 10 -6 cm 2/s and an activation energy ( Q) = 54 ± 5 kcal/g-atom O (226 kJ/g-atom O) over the temperature range of the experiments. Diffusion coefficients parallel to the c crystallographic direction are ≈ 100 times greater than perpendicular to c. The oxygen self-diffusion coefficient obtained for diopside is ≈ 1000 times less than that for diffusion in feldspars, and ≈ 100 times less than that for quartz at 800°C, transport parallel to the c axis. Closure temperatures calculated for oxygen diffusional exchange in natural diopside are significantly higher than for quartz or feldspars. Measurable oxygen isotope exchange in diopside by diffusion would require geological settings with very high temperatures maintained for very long durations. The oxygen diffusional exchange kinetics in diopside presented in this paper find important applications in studies of meteoric hydrothermal circulation systems and the time-temperature history of high-grade regionally metamorphosed terrains. Examples considered include the Outer Unlayered Gabbro, Cuillins Gabbro Complex, Isle of Skye, Scotland, and the granulite-grade Turpentine Hill Metamorphics near Einasleigh, Queensland, Australia.
Oxygen depletion speeds and simplifies diffusion in HeLa cells.
Edwald, Elin; Stone, Matthew B; Gray, Erin M; Wu, Jing; Veatch, Sarah L
2014-10-21
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
[Comparative study of respiratory exchanging surfaces in birds and mammals].
Jammes, Y
1975-01-01
Anatomical studies of the respiratory apparatus of birds show evidences for a gas exchanging tubular system (parabronchi and air capillaries); these exchanging structures are entirely dissociated from the ventilatory drive acting on the air sacs. A "cross-current" gas exchanging system (perpendicular disposition of air and blood capillaries) allow a good wash-out of carbon dioxide (PaCO2 lower than PECO2). The great efficiency of this lung is allowed by its very large diffusive surface (ASa) and by the high values of lung specific oxygen diffusing capacity (DO2/ASa) and of O2 extraction coefficient in inspired air. The ventilatory pattern of birds is characterized by a greater tidal volume and a smaller respiratory frequency than in mammals of same weight. Respiratory centers of birds receive afferences from lung stretch receptors, CO2-sensitive lung receptors and arterial chemoreceptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilot, P.; Bonnefoy, F.; Marcuccilli, F.
1993-10-01
Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o]more » increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.« less
Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives
Lundby, Carsten; Sander, Mikael; van Hall, Gerrit; Saltin, Bengt; Calbet, José A L
2006-01-01
The tight relation between arterial oxygen content and maximum oxygen uptake () within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O2 extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O2 extraction at maximal exercise was 90.0 ± 1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O2 extraction was 83.2 ± 2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min−1 mmHg−1) 55.2 ± 3.7 (SL), 48.0 ± 1.7 (W2), 37.8 ± 0.4 (W8) and 27.7 ± 1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg at altitude using either the leg blood flow or the O2 conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O2 conductance. PMID:16581864
Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.
Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linghui; Xu, Zhichuan J
2015-12-07
An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31 nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al-O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxygen chemical diffusion in hypo-stoichiometric MOX
NASA Astrophysics Data System (ADS)
Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki
2009-06-01
Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.
Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T
2008-06-01
Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.
NASA Technical Reports Server (NTRS)
Tower, L. K.
1973-01-01
The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.
Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ
NASA Astrophysics Data System (ADS)
Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.
2018-06-01
Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.
Myocardial oxygen delivery after experimental hemorrhagic shock.
Archie, J P; Mertz, W R
1978-01-01
The two components of myocardial oxygen delivery, coronary blood flow to capillaries and diffusion from capillaries to mitochondria, were studied in six dogs, (1) prior to shock, (2) after three hours of hemorrhage shock at a mean systemic arterial pressure of 40 torr, (3) after reinfusion of shed blood, and (4) during the irreversible late posttransfusion stage. There was a maldistribution of left ventricular coronary flow during late shock consistent with subendocardial ischemia. Cardiac performance was significantly impaired after resuscitation and all dogs became irreversible. Total and regional left ventricular coronary blood flow and myocardial oxygen delivery to capillaries were significantly greater than preshock values in (3) but not different from preshock values in (4). However, the myocardial oxygen diffusion area to distance ratio was significantly lower than preshock values in (3), and slightly lower in (4). These data suggest that myocardial oxygen diffusion may be impaired in the early post transfusion period, (3). Accordingly, the probable etiology of left ventricular dysfunction and possibly irreversibility after resuscitation from hemorrhagic shock is subendocardial ischemia during shock with either post-resuscitation impairment of myocardial oxygen diffusion, or in cellular oxygen utilization, or both. PMID:629622
Jaworski, Jacek; Redlarski, Grzegorz
2014-08-01
This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis
Gildea, T.J.; Bell, C. William
1980-01-01
The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung compliance studies, small airways dysfunction studies and dead space to tidal volume ratios. Output includes tabular results of normal vs. observed values, clinical impressions and commentary and, where indicated, a diagnostic impression. A number of pulmonary physiological and state variables are entered or sampled (A to D) with periodic status reports generated for the test supervisor. Among the various physiological variables sampled are respiratory frequency, minute ventilation, oxygen consumption, carbon dioxide production, and arterial oxygen saturation.
Strain effects on oxygen vacancy energetics in KTaO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
Strain effects on oxygen vacancy energetics in KTaO 3
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...
2017-02-07
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
NASA Astrophysics Data System (ADS)
Bhatia, Pramod; Singh, Ravinder
2017-06-01
Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.
Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.
Bucci, Enrico
2009-06-01
Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.
Constraints on oxygen fugacity within metal capsules
NASA Astrophysics Data System (ADS)
Faul, Ulrich H.; Cline, Christopher J., II; Berry, Andrew; Jackson, Ian; Garapić, Gordana
2018-06-01
Experiments were conducted with olivine encapsulated or wrapped in five different metals (Pt, Ni, Ni_{70}Fe_{30}, Fe, and Re) to determine the oxygen fugacity in the interior of large capsules used for deformation and seismic property experiments. Temperature (1200°C), pressure (300 MPa), and duration (24 h) were chosen to represent the most common conditions in these experiments. The oxygen fugacity was determined by analysing the Fe content of initially pure Pt particles that were mixed with the olivine powder prior to the experiments. Oxygen fugacities in the more oxidizing metal containers are substantially below their respective metal-oxide buffers, with the fO_2 of sol-gel olivine in Ni about 2.5 orders of magnitude below Ni-NiO. Analysis of olivine and metal blebs reveals three different length-, and hence diffusive time scales: (1) Fe loss to the capsule over ˜ 100 μ m, (2) fO_2 gradients at the sample-capsule interface up to 2 mm into the sample, and (3) constant interior fO_2 values with an ordering corresponding to the capsule material. The inferred diffusive processes are: Fe diffusion in olivine with a diffusivity ˜ 10^{-14} m^2/s, diffusion possibly of oxygen along grain boundaries with a diffusivity ˜ 10^{-12} m^2/s, and diffusion possibly involving pre-existing defects with a diffusivity ˜ 10^{-10} m^2/s. The latter, fast adjustment to changing fO_2 may consist of a rearrangement of pre-existing defects, representing a metastable equilibrium, analogous to decoration of pre-existing defects by hydrogen. Full adjustment to the external fO_2 requires atomic diffusion.
Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.
2015-01-01
This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.
Berezhkovskii, Alexander M; Shvartsman, Stanislav Y
2016-05-28
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navickas, Edvinas; Chen, Yan; Lu, Qiyang
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films
2017-01-01
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...
2017-10-05
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
Synthesis and characterization of different MnO2 morphologies for lithium-air batteries
NASA Astrophysics Data System (ADS)
Choi, Hyun-A.; Jang, Hyuk; Hwang, Hyein; Choi, Mincheol; Lim, Dongwook; Shim, Sang Eun; Baeck, Sung-Hyeon
2014-09-01
Manganese dioxide (MnO2) was synthesized in the forms of nanorods, nanoparticles, and mesoporous structures and the characteristics of these materials were investigated. Crystallinities were studied by x-ray diffraction and morphologies by scanning and transmission electron microscopy. Average pore sizes and specific surface areas were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. Samples were also studied by cyclic voltammetry using 1M aqueous KOH solution saturated with either O2 or N2 as electrolytes to investigate their ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) activities. Of the samples produced, mesoporous MnO2 exhibited the highest ORR and OER catalytic activities. Mesoporous MnO2 supported on a gas diffusion layer was also used as a catalyst on the air electrode (cathode) of a lithium-air battery in organic electrolyte. The charge-discharge behavior of mesoporous MnO2 was investigated at a current density 0.2 mAcm-2 in a pure oxygen environment. Mesoporous MnO2 electrodes showed stable cycleability up to 65 cycles at a cell capacity of 700 mAhg-1.
Unilateral lung transplantation for pulmonary fibrosis.
1986-05-01
Improvements in immunosuppression and surgical techniques have made unilateral lung transplantation feasible in selected patients with end-stage interstitial lung disease. We report two cases of successful unilateral lung transplantation for end-stage respiratory failure due to pulmonary fibrosis. The patients, both oxygen-dependent, had progressive disease refractory to all treatment, with an anticipated life expectancy of less than one year on the basis of the rate of progression of the disease. Both patients were discharged six weeks after transplantation and returned to normal life. They are alive and well at 26 months and 14 months after the procedure. Pulmonary-function studies have shown substantial improvement in their lung volumes and diffusing capacities. For both patients, arterial oxygen tension is now normal and there is no arterial oxygen desaturation with exercise. This experience shows that unilateral lung transplantation, for selected patients with end-stage interstitial lung disease, provides a good functional result. Moreover, it avoids the necessity for cardiac transplantation, as required by the combined heart-lung procedure, and permits the use of the donor heart for another recipient.
Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.
Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz
2018-05-23
Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.
Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Wagner, P D; Ge, R L
2015-07-15
Tibetans living at high altitude have adapted genetically such that many display a low erythropoietic response, resulting in near sea-level haemoglobin (Hb) concentration. We hypothesized that absence of the erythropoietic response would be associated with greater exercise capacity compared to those with high [Hb] as a result of beneficial changes in oxygen transport. We measured, in 21 Tibetan males with [Hb] ranging from 15.2 g dl(-1) to 22.9 g dl(-1) (9.4 mmol l(-1) to 14.2 mmol l(-1) ), [Hb], ventilation, volumes of O2 and CO2 utilized at peak exercise (V̇O2 and V̇CO2), heart rate, cardiac output and arterial blood gas variables at peak exercise on a cycle ergometer at ∼4200 m. Lung and muscle O2 diffusional conductances were computed from these measurements. [Hb] was related (negatively) to V̇O2 kg(-1) (r = -0.45, P< 0.05), cardiac output kg(-1) (QT kg(-1) , r = -0.54, P < 0.02), and O2 diffusion capacity in muscle (DM kg(-1) , r = -0.44, P<0.05), but was unrelated to ventilation, arterial partial pressure of O2 (PaO2) or pulmonary diffusing capacity. Using multiple linear regression, variance in peak V̇O2 kg(-1) was primarily attributed to QT, DM, and PCO2 (R(2) = 0.88). However, variance in pulmonary gas exchange played essentially no role in determining peak V̇O2. These results (1) show higher exercise capacity in Tibetans without the erythropoietic response, supported mostly by cardiac and muscle O2 transport capacity and ventilation rather than pulmonary adaptations, and (2) support the emerging hypothesis that the polycythaemia of altitude, normally a beneficial response to low cellular PO2, may become maladaptive if excessively elevated under chronic hypoxia. The cause and effect relationships among [Hb], QT, DM, and PCO2 remain to be elucidated. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Phase separated membrane bioreactor: Results from model system studies
NASA Astrophysics Data System (ADS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
NASA Astrophysics Data System (ADS)
Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan
2014-07-01
A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.
Phase separated membrane bioreactor - Results from model system studies
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.
Model system studies with a phase separated membrane bioreactor
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.
2017-07-01
Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.
The high-temperature heat capacity of the (Th,U)O 2 and (U,Pu)O 2 solid solutions
Valu, S. O.; Benes, O.; Manara, D.; ...
2016-11-09
The enthalpy increment data for the (Th,U)O 2 and (U,Pu)O 2 solid solutions are reviewed and complemented with new experimental data (400–1773 K) and many-body potential model simulations. The results of the review show that from room temperature up to about 2000 K the enthalpy data are in agreement with the additivity rule (Neumann-Kopp) in the whole composition range. Above 2000 K the effect of Oxygen Frenkel Pair (OFP) formation leads to an excess enthalpy (heat capacity) that is modeled using the enthalpy and entropy of OFP formation from the end-members. Here, a good agreement with existing experimental work ismore » observed, and a reasonable agreement with the results of the many-body potential model, which indicate the presence of the diffuse Bredig (superionic) transition that is not found in the experimental enthalpy increment data.« less
NASA Astrophysics Data System (ADS)
Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.
2015-12-01
The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedane, T.; Di Maio, L.; Scarfato, P.
The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Vitaly; Sushko, Maria L.; Schreiber, Daniel K.
A density-functional-theory modeling study of atomic oxygen/sulfur adsorption and diffusion at pristine and doped Ni(111) and (110) surfaces is presented. We find that oxygen and sulfur feature comparable adsorption energies over the same surface sites, however, the surface diffusion of sulfur is characterized by an activation barrier about one half that of oxygen. Calculations with different alloying elements at Ni surfaces show that Cr strongly enhances surface binding of both species in comparison to Al. These results in combination with previous modeling studies help explain the observed differences in selective grain boundary oxidation mechanisms of Ni-Cr and Ni-Al alloys.
Experimental determination of oxygen diffusion in liquid iron at high pressure
NASA Astrophysics Data System (ADS)
Posner, Esther S.; Rubie, David C.; Frost, Daniel J.; Steinle-Neumann, Gerd
2017-04-01
Oxygen diffusion experiments in liquid iron have been performed at 3-18 GPa and 1975-2643 K using a multi-anvil apparatus. Diffusion couples consisted of a pure iron rod and a sintered disk of Fe0.85O0.15 placed end-to-end in a vertical orientation. Images and chemical spot analyses were acquired along the full length of the quenched sample on lines perpendicular to the diffusion interface. Exsolution features that formed during quenching consist mostly of spherical oxide blobs of at least two size populations, as well as feathery dendritic textures in more oxygen-rich regions near the top of the samples. Diffusion during heating (i.e. prior to reaching the peak annealing temperature, Tf) is treated numerically to refine Arrhenian parameters from simultaneous least-squares fits to several concentration profiles obtained from experiments at constant pressure and variable Tf. Diffusion coefficients range from ∼ 6 ×10-9 to ∼ 2 ×10-8 m2s-1 over the P-T range of the study, with activation enthalpies of less than 100 kJ mol-1. We find a very weak effect of pressure on oxygen diffusion with an activation volume of 0.1 ± 0.1 cm3mol-1, in agreement with computational studies performed above 100 GPa. Arrhenian extrapolation of diffusion coefficients for oxygen to P-T conditions of the Earth's outer core yields faster average diffusion rates (∼ 3 ×10-8 m2s-1) than for Si or Fe in silicon-rich liquid iron alloys or pure liquid iron (∼ 5 ×10-9 m2s-1) reported previously. Oxygen diffusion data are used to constrain the maximum size of descending liquid metal droplets in a magma ocean that is required for chemical equilibration to be achieved. Our results indicate that if the Earth's core composition is representative of equilibrium chemical exchange with a silicate magma ocean, then it could only have been accomplished by large-scale break-up of impactor cores to liquid iron droplet sizes no larger than a few tens of centimeters.
Dehne, Nathalie; Brüne, Bernhard
2014-01-10
Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses. Mitochondria are at the center of a hypoxia sensing and responding relay system. Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy. Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.
Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre
2014-09-17
The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.
Terada, Akihiko; Lackner, Susanne; Tsuneda, Satoshi; Smets, Barth F
2007-05-01
A multi-population biofilm model for completely autotrophic nitrogen removal was developed and implemented in the simulation program AQUASIM to corroborate the concept of a redox-stratification controlled biofilm (ReSCoBi). The model considers both counter- and co-diffusion biofilm geometries. In the counter-diffusion biofilm, oxygen is supplied through a gas-permeable membrane that supports the biofilm while ammonia (NH(4)(+)) is supplied from the bulk liquid. On the contrary, in the co-diffusion biofilm, both oxygen and NH(4)(+) are supplied from the bulk liquid. Results of the model revealed a clear stratification of microbial activities in both of the biofilms, the resulting chemical profiles, and the obvious effect of the relative surface loadings of oxygen and NH(4)(+) (J(O(2))/J(NH(4)(+))) on the reactor performances. Steady-state biofilm thickness had a significant but different effect on T-N removal for co- and counter-diffusion biofilms: the removal efficiency in the counter-diffusion biofilm geometry was superior to that in the co-diffusion counterpart, within the range of 450-1,400 microm; however, the efficiency deteriorated with a further increase in biofilm thickness, probably because of diffusion limitation of NH(4)(+). Under conditions of oxygen excess (J(O(2))/J(NH(4)(+)) > 3.98), almost all NH(4)(+) was consumed by aerobic ammonia oxidation in the co-diffusion biofilm, leading to poor performance, while in the counter-diffusion biofilm, T-N removal efficiency was maintained because of the physical location of anaerobic ammonium oxidizers near the bulk liquid. These results clearly reveal that counter-diffusion biofilms have a wider application range for autotrophic T-N removal than co-diffusion biofilms. (c) 2006 Wiley Periodicals, Inc.
Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation
NASA Astrophysics Data System (ADS)
Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.
2017-06-01
Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.
Dynamics of oxygen species on reduced TiO2 (110) rutile
NASA Astrophysics Data System (ADS)
Wang, Yun; Pillay, Devina; Hwang, Gyeong S.
2004-11-01
Using density functional theory calculations, we have investigated the adsorption and diffusion of oxygen species on the reduced TiO2(110) surface. We have found that molecular O2 strongly binds not only to O vacancies, but also to Ti(5c) neighbors, due to delocalization of unpaired electrons arising from removal of neutral bridging oxygen. Our results show that molecular O2 can jump across an oxygen vacancy and diffuse along a Ti(5c) row with moderate barriers. On the other hand, atomic O diffusion along a Ti(5c) row is rather unlikely at low temperatures (<300K) , because of the relatively higher probability of O-O formation from interaction with an adjacent bridging O(2c) atom. Based on our calculation results, we discuss the diffusion and healing of O vacancies associated with O2 adsorption.
Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue
2017-02-28
The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.
NASA Technical Reports Server (NTRS)
Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David
2010-01-01
Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.
Lung Function in Pregnancy in Langerhans Cell Histiocytosis.
Radzikowska, Elżbieta; Wiatr, Elżbieta; Franczuk, Monika; Bestry, Iwona; Roszkowski-Śliż, Kazimierz
2018-01-01
Pulmonary Langerhans cell histiocytosis (LCH) is a rare disease, affecting usually young people. The course of the disease is variable. In some pulmonary LCH patients a severe lung destruction and progression in spite of chemotherapy is observed, but in others just a cessation of smoking induces a regression of the disease. In the present study we seek to determine the influence of pregnancy on pulmonary function in LCH patients, an unchartered area of research. We addressed the issue by investigating eight pregnant women out of the 45 women hospitalized with the diagnosis of pulmonary LCH in the period from 2000 to 2015. For five of the eight pregnant women it was the second gestation. The median follow-up period was 120 months (range 72-175 months). Ten healthy children were born by a C-section. Two spontaneous miscarriages in the seventh week of gestation, and one tubal ectopic pregnancy were recorded. We found that pregnancy did not significantly influence pulmonary function assessed by the following indices: forced expiratory volume in 1 s (FEV1), lung vital capacity (VC), total lung capacity (TLC), residual volume (RV), diffusing capacity of the lungs for carbon monoxide (DLCO), and the distance and arterial oxygen saturation in 6-min walk test. Only one patient in the third trimester of pregnancy experienced bilateral pneumothorax, with persistent air leak. In all patients, delivery and postpartum period were uneventful. We conclude that pregnancy in pulmonary LCH patients is safe and not associated with deterioration of pulmonary function or blood oxygenation.
Outlet diffusers to increase culvert capacity.
DOT National Transportation Integrated Search
2016-06-01
Aging infrastructure and changing weather patterns present the need to increase the capacity of existing highway culverts. This research approaches this challenge through the use of diffuser outlet systems to increase pipe capacity and reduce outlet ...
A modelling approach for the heterogeneous oxidation of elastomers
NASA Astrophysics Data System (ADS)
Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.
2017-09-01
The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick's law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre
2012-04-04
This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.
Wyman's equation and oxygen flux through the red cell.
McCabe, Michael; Maguire, David J
2007-01-01
Wyman's equation of 1966 describes the facilitation of flux of a reversibly bound substrate such as oxygen, consequent on the translational diffusion of the binding protein (the carrier). While Wyman's equation, or some modification of it such as that by Murray 2, may provide a realistic description of the flux of oxygen through a dilute solution of haemoglobin (see also Wittenburg), it is unlikely to be the complete explanation, nor even the basis, for oxygen transport through the intact red cell. The mature erythrocyte contains approximately 350 g/l haemoglobin, and while this suggests that only 35% of the available water volume is actually occupied by the protein, the remaining 65% is unavailable for protein translational diffusion due to the mutual exclusion of the haemoglobin molecules. For this reason we have examined other possible mechanisms whereby haemoglobin may facilitate the translational diffusion of oxygen within the erythrocyte. Possible alternatives include rotational diffusion by the haemoglobins, intracellular shuffling of haemoglobins due to shape changes by the erythrocyte, and haemoglobin rotations and oxygen exchange consequent on the charge change which accompanies substration and desubstration of the haemoglobin molecule. Finally the dipole interactions are shown to generate significant intermolecular attractions between adjacent haemoglobins.
Pulsation-limited oxygen diffusion in the tumour microenvironment
NASA Astrophysics Data System (ADS)
Milotti, Edoardo; Stella, Sabrina; Chignola, Roberto
2017-01-01
Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation. We find that the low-frequency oscillations play an important role in the establishment of tumour hypoxia. The oscillations interact with consumption to inhibit oxygen diffusion in the microenvironment. This suggests that alpha-blockers-a class of drugs used to treat hypertension and stress disorders, and known to lower or even abolish low-frequency oscillations of arterial blood flow -may act as adjuvant drugs in the radiotherapy of solid tumours by enhancing the oxygen effect.
The lung in paracoccidioidomycosis: new insights into old problems
Costa, Andre Nathan; Benard, Gil; Albuquerque, Andre Luis Pereira; Fujita, Carmem Lucia; Magri, Adriana Satie Kono; Salge, João Marcos; Shikanai-Yasuda, Maria Aparecida; Carvalho, Carlos Roberto Ribeiro
2013-01-01
OBJECTIVES: Chronic paracoccidioidomycosis can diffusely affect the lungs. Even after antifungal therapy, patients may present with residual respiratory abnormalities due to fungus-induced lung fibrosis. METHODS: A cross-sectional analysis of 50 consecutive inactive, chronic paracoccidioidomycosis patients was performed using high resolution computed tomography, pulmonary function tests, ergospirometry, the six-minute walk test and health-related quality of life questionnaires. RESULTS: Radiological abnormalities were present in 98% of cases, the most frequent of which were architectural distortion (90%), reticulate and septal thickening (88%), centrilobular and paraseptal emphysema (84%) and parenchymal bands (74%). Patients typically presented with a mild obstructive disorder and a mild reduction in diffusion capacity with preserved exercise capacity, including VO2max and six-minute walking distance. Patient evaluation with the Saint-George Respiratory Questionnaire showed low impairment in the health-related quality of life, and the Medical Research Council questionnaire indicated a low dyspnea index. There were, however, patients with significant oxygen desaturation upon exercise that was associated with respiratory distress compared with the non-desaturated patients. The initial counterimmunoelectrophoresis of these patients was higher and lung emphysema was more prominent; however, there were no differences in the interstitial fibrotic tomographic abnormalities, tobacco exposure, functional responses, exercise capacity or quality of life. CONCLUSIONS: Inactive, chronic paracoccidioidomycosis patients show persistent and disseminated radiological abnormalities by high resolution computed tomography, short impairments in pulmonary function and low impacts on aerobic capacity and quality of life. However, there was a subset of individuals whose functional impairment was more severe. These patients present with higher initial serology and more severe emphysema, stressing the importance of adequate treatment associated with tobacco exposure cessation. PMID:23778339
Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.
Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François
2015-10-01
Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
NASA Astrophysics Data System (ADS)
Navessin, Titichai
2005-07-01
This work investigated the effect of ion exchange capacity (IEC) of polymer electrolyte membranes (PEM) on the PEM fuel cell cathode catalyst layer. A series of radiation grafted ethylene tetrafluoroethylene-g-polystyrene sulfonic acid (ETFE-g-PSSA) membranes was used to provide a systematic variation of IEC. A method to fabricate gas diffusion electrodes (GDEs) was adapted and custom-made GDEs with known compositions were prepared. Oxygen electrochemistry, mass transport properties, water absorption behaviour and proton conductivity were studied in relation to the IEC. Electrochemical characterization including cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry were employed. The agglomerate model for cathodes was adapted and used to extract mass transport parameters from experimental results. Prior to investigation in fuel cell systems, studies were performed in a half-fuel cell, which simplified complicating parameters associated with fuel cell operation. It was found that membranes with higher IEC resulted in a higher active surface area of electrode. In contrast, they exhibited lower oxygen reduction performance. The extracted effective diffusion coefficient of oxygen and O2 solubility in the catalyst layer was used to estimate the extent of flooding, which revealed that ˜67--70% of void space was filled with water. The membrane's IEC regulates the extent of flooding of the cathode, which in turn affects its electrochemical characteristics. The investigation under operating fuel cell conditions revealed an increase in fuel cell performance with increasing IEC---a contradicting trend to that found for the half-fuel cell. This is explained by the interplay of electroosmotic flux and hydraulic counterflux in the membrane which affects water management in the membrane electrode assembly (MEA). The influence was most significant in the cathode catalyst layer, where it affects mass transport and electrochemical characteristics. It was found that the higher IEC facilitated better water management in MEAs. Comparing results obtained with half fuel cell and fuel cell systems revealed insights into the state of hydration and effective use of Pt in the catalyst layer. The two types of measurements provide a convenient approach to study the interplay of different mechanisms of water flux in the membrane.
Cooper, Michael William D.; Fitzpatrick, M. E.; Tsoukalas, L. H.; ...
2016-06-06
ThO 2 is a candidate material for use in nuclear fuel applications and as such it is important to investigate its materials properties over a range of temperatures and pressures. In the present study molecular dynamics calculations are used to calculate elastic and expansivity data. These are used in the framework of a thermodynamic model, the cBΩ model, to calculate the oxygen self-diffusion coefficient in ThO 2 over a range of pressures (–10–10 GPa) and temperatures (300–1900 K). As a result, increasing the hydrostatic pressure leads to a significant reduction in oxygen self-diffusion. Conversely, negative hydrostatic pressure significantly enhances oxygenmore » self-diffusion.« less
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J
2014-02-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions
Markov, Dmitry A.; Lillie, Elizabeth M.; Garbett, Shawn P.; McCawley, Lisa J.
2013-01-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results show that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a three-day storage in air, but remained significant for up to three weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60% smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a three-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585
NASA Astrophysics Data System (ADS)
Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi
2017-04-01
Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.
Regmi, Chola K.; Bhandari, Yuba R.; Gerstman, Bernard S.; Chapagain, Prem P.
2013-01-01
The development of fluorescent proteins (FPs) has revolutionized cell biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for tagging and tracking cellular processes in vivo. Determining oxygen diffusion pathways in FPs can be important for improving photostability and for understanding maturation of the chromophore. We use molecular dynamics (MD) calculations to investigate the diffusion of molecular oxygen in one of the most useful monomeric RFPs, mCherry. We describe a pathway that allows oxygen molecules to enter from the solvent and travel through the protein barrel to the chromophore. We calculate the free-energy of an oxygen molecule at points along the path. The pathway contains several oxygen hosting pockets, which are identified by the amino acid residues that form the pocket. We also investigate an RFP variant known to be significantly less photostable than mCherry and find much easier oxygen access in this variant. The results provide a better understanding of the mechanism of molecular oxygen access into the fully folded mCherry protein barrel and provide insight into the photobleaching process in these proteins. PMID:23363049
Measurement of thermal diffusivity of depleted uranium metal microspheres
NASA Astrophysics Data System (ADS)
Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.
2014-03-01
The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.
Determination of oxygen diffusion kinetics during thin film ruthenium oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.
2015-08-07
In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.
Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI
NASA Astrophysics Data System (ADS)
Chang, Yulin V.; Conradi, Mark S.
2006-08-01
We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.
NASA Astrophysics Data System (ADS)
Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.
2013-02-01
The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.
Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I
2011-08-01
Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.
Hyakutake, Toru; Kishimoto, Takumi
2017-12-01
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
NASA Astrophysics Data System (ADS)
Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk
2015-11-01
We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.
The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing
Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less
Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing; ...
2017-05-20
Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less
NASA Astrophysics Data System (ADS)
Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.
2012-04-01
Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen penetrating less than 5 mm into the seafloor. In total oxygen uptake by the seafloor, the fraction of the diffusive flux, which comprises microbial consumption plus re-oxidation of reduced compounds, increased with declining oxygen concentrations. Measurements and modeling of penetration depths and fluxes of the electron acceptors nitrate, iron- and manganese oxides, sulfate suggest that as long as oxygen is available in the oxic and the hypoxic zones of the Crimean shelf, the largest fraction of oxygen is consumed directly during aerobic mineralization of organic matter and re-oxidation processes play only a minor role. Furthermore, the combination of rapid and strong fluctuation of bottom water oxygen concentration and low sedimentation rates appear to repress anaerobic organic matter degradation. This study was carried out within the framework of the EU-funded project HYPOX (www.hypox.net), which is set up to improve our understanding of hypoxia formation and to develop capacities and know-how for hypoxia monitoring.
NASA Astrophysics Data System (ADS)
Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish
2018-02-01
Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Stewart, Derek A.
2016-04-01
Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.
CO and NO pulmonary diffusing capacity during pregnancy: Safety and diagnostic potential
Zavorsky, Gerald S.; Blood, Arlin B.; Power, Gordon G.; Longo, Lawrence D.; Artal, Raul; Vlastos, Emanuel J.
2013-01-01
This paper reviews the scientific evidence for the safety of carbon monoxide (CO) and nitric oxide (NO) inhalation to measure pulmonary diffusing capacity (DLCO and DLNO) in pregnant women and their fetuses. In eight earlier studies, 650 pregnant women had DLCO measurements performed at various times during pregnancy, with a minimum of two to four tests per session. Both pregnant subjects that were healthy and those with medical complications were tested. No study reported adverse maternal, fetal, or neonatal outcomes from the CO inhalation in association with measuring DLCO. Eleven pregnant women, chiefly with pulmonary hypertension, and 1105 pre-term neonates, mostly with respiratory failure, were administered various dosages of NO (5–80 ppm for 4 weeks continuously in pregnant women, and 1–20 ppm for 15 min to 3 weeks for the neonates). NO treatment was found to be an effective therapy for pregnant women with pulmonary hypertension. In neonates with respiratory failure and pulmonary hypertension, NO therapy improved oxygenation and survival and has been associated with only minor, transient adverse effects. In conclusion, maternal carboxyhemoglobin ([HbCO]) levels can safely increase to 5% per testing session when the dose-exposure limit is 0.3% CO inhalation for ≤3 min, and for NO, 80 ppm for ≤ 3 min. The risk of late fetal or neonatal death from increased HbCO from diffusion testing is considerably less than the risk of death from all causes reported by the Centers for Disease Control, and is therefore considered “minimal risk”. PMID:20149901
Theoretical approach to oxygen atom degradation of silver
NASA Technical Reports Server (NTRS)
Fromhold, Albert T., Jr.; Noh, Seung; Beshears, Ronald; Whitaker, Ann F.; Little, Sally A.
1987-01-01
Based on available Rutherford backscattering spectrometry (RBS), proton induced X-ray emission (PIXE) and ellipsometry data obtained on silver specimens subjected to atomic oxygen attack in low Earth orbit STS flight 41-G, a theory was developed to model the oxygen atom degradation of silver. The diffusion of atomic oxygen in a microscopically nonuniform medium is an essential constituent of the theory. The driving force for diffusion is the macroscopic electrochemical potential gradient developed between the specimen surface exposed to the ambient and the bulk of the silver specimen. The longitudinal electric effect developed parallel to the gradient is modified by space charge of the diffusing charged species. Lateral electric fields and concentration differences also exist due to the nonuniform nature of the medium. The lateral concentration differences are found to be more important than the lateral electric fields in modifying the diffusion rate. The model was evaluated numerically. Qualitative agreement exists between the kinetics predicted by the theory and kinetic data taken in ground-based experiments utilizing a plasma asher.
Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin
2011-07-01
Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.
Modeling oxygen transport in human placental terminal villi.
Gill, J S; Salafia, C M; Grebenkov, D; Vvedensky, D D
2011-12-21
Oxygen transport from maternal blood to fetal blood is a primary function of the placenta. Quantifying the effectiveness of this exchange remains key in identifying healthy placentas because of the great variability in capillary number, caliber and position within the villus-even in placentas deemed clinically "normal". By considering villous membrane to capillary membrane transport, stationary oxygen diffusion can be numerically solved in terminal villi represented by digital photomicrographs. We aim to provide a method to determine whether and if so to what extent diffusional screening may operate in placental villi. Segmented digital photomicrographs of terminal villi from the Pregnancy, Infection and Nutrition study in North Carolina 2002 are used as a geometric basis for solving the stationary diffusion equation. Constant maternal villous oxygen concentration and perfect fetal capillary membrane absorption are assumed. System efficiency is defined as the ratio of oxygen flux into a villus and the sum of the capillary areas contained within. Diffusion screening is quantified by comparing numerical and theoretical maximum oxygen fluxes. A strong link between various measures of villous oxygen transport efficiency and the number of capillaries within a villus is established. The strength of diffusional screening is also related to the number of capillaries within a villus. Our measures of diffusional efficiency are shown to decrease as a function of the number of capillaries per villus. This low efficiency, high capillary number relationship supports our hypothesis that diffusional screening is present in this system. Oxygen transport per capillary is reduced when multiple capillaries compete for diffusing oxygen. A complete picture of oxygen fluxes, capillary and villus areas is obtainable and presents an opportunity for future work. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
Ahn, Geunseon; Park, Jeong Hun; Kang, Taeyun; Lee, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2010-10-01
The aim of this study was to maximize oxygen diffusion within a three-dimensional scaffold in order to improve cell viability and proliferation. To evaluate the effect of pore architecture on oxygen diffusion, we designed a regular channel shape with uniform diameter, referred to as cylinder shaped, and a new channel shape with a channel diameter gradient, referred to as cone shaped. A numerical analysis predicted higher oxygen concentration in the cone-shaped channels than in the cylinder-shaped channels, throughout the scaffold. To confirm these numerical results, we examined cell proliferation and viability in 2D constructs and 3D scaffolds. Cell culture experiments revealed that cell proliferation and viability were superior in the constructs and scaffolds with cone-shaped channels.
High Rate Oxygen Reduction in Non-aqueous Electrolytes with the Addition of Perfluorinated Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Yang, X.; Zheng, D.
2011-08-04
The discharge rate capability of Li-air batteries is substantially increased by using perfluorinated compounds as oxygen carriers. The solubility of oxygen in a non-aqueous electrolyte can be significantly increased by the introduction of such compounds, which leads to the increase in the diffusion-limited current of oxygen reduction on the gas diffusion electrode in a Li-air battery. The perfluorinated compound is found to be stable within the electrochemical window of the electrolyte. A powder microelectrode and a rotating disk electrode were used to study the gas diffusion-limited current together with a rotating disk electrode. A 5 mA cm{sup -2} discharge ratemore » is demonstrated in a lab Li-O{sub 2} cell.« less
Determining the inertial states of low Prandtl number fluids using electrochemical cells
NASA Astrophysics Data System (ADS)
Crunkleton, Daniel Wray
The quality of crystals grown from the melt is often deteriorated by the presence of buoyancy-induced convection, produced by temperature or concentration inhomogenities. It is, therefore, important to develop techniques to visualize such flows. In this study, a novel technique is developed that uses solid-state electrochemical cells to establish and measure dissolved oxygen boundary conditions. To visualize convection, a packet of oxygen is electrochemically introduced at a specific location in the melt. As the fluid convects, this oxygen packet follows the flow, acting as a tracer. Electrochemical sensors located along the enclosure then detect the oxygen as it passes. Over sufficiently long times, oxygen diffusion is important; consequently, the oxygen diffusivity in the fluid is measured. This diffusivity is determined using both transient and steady state experiments with tin and tin-lead alloys as model fluids. It is concluded that the presence of convection due to solutal gradients and/or tilt increases the measured diffusivity by one-half to one order of magnitude. The oxygen diffusivity in tin-lead alloys is measured and the results show that the alloy diffusivities are lower than those of the corresponding pure metals. This concentration functionality is explained with a multicomponent diffusion model and shows good agreement. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Finally, experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cell with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).
Brijs, Jeroen; Jutfelt, Fredrik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Sandblom, Erik
2015-08-01
A progressive inability of the cardiorespiratory system to maintain systemic oxygen supply at elevated temperatures has been suggested to reduce aerobic scope and the upper thermal limit of aquatic ectotherms. However, few studies have directly investigated the dependence of thermal limits on oxygen transport capacity. By manipulating oxygen availability (via environmental hyperoxia) and blood oxygen carrying capacity (via experimentally induced anaemia) in European perch (Perca fluviatilis Linneaus), we investigated the effects of oxygen transport capacity on aerobic scope and the critical thermal maximum (CT(max)). Hyperoxia resulted in a twofold increase in aerobic scope at the control temperature of 23°C, but this did not translate to an elevated CT(max) in comparison with control fish (34.6±0.1 versus 34.0±0.5°C, respectively). Anaemia (∼43% reduction in haemoglobin concentration) did not cause a reduction in aerobic scope or CT(max) (33.8±0.3°C) compared with control fish. Additionally, oxygen consumption rates of anaemic perch during thermal ramping increased in a similar exponential manner to that in control fish, highlighting that perch have an impressive capacity to compensate for a substantial reduction in blood oxygen carrying capacity. Taken together, these results indicate that oxygen limitation is not a universal mechanism determining the CT(max) of fishes. © 2015. Published by The Company of Biologists Ltd.
Miller, Albert; Warshaw, Raphael; Nezamis, James
2013-12-01
Asbestosis is an interstitial lung disease whose radiographic severity has long been graded by the International Labour Office (ILO) profusion score. Its effect on pulmonary function is further impacted by asbestos related pleural thickening. This report aims to describe the relationships between radiographic grading of interstitial and pleural fibrosis and a key test of pulmonary function, the diffusing capacity, which measures gas exchange and has rarely been assessed in large groups, and to confirm the relationship to an independent test of pulmonary function, the vital capacity, which measures a mechanical property of the lungs. The data were derived from a survey during the period 1997-2004 of 5,003 workers (all white males) exposed to asbestos in various trades. Tests included chest radiographs read by a certified expert ("B") reader, forced vital capacity (FVC), and carbon monoxide diffusing capacity (DLco). Cigarette smoking was adjusted for in the predictive equation for DLCO . Workers were evaluated at a mobile facility at work sites in four southern states. Both diffusing capacity and vital capacity were negatively correlated with profusion score over the full spectrum of radiographic severity. ILO profusion scores 0/1 (conventionally classified as normal) and 1/0 (conventionally classified as abnormal) were associated with similar diffusing capacity and vital capacity values. The highest profusion scores were associated with a greater proportionate decrease in diffusing capacity than in FVC. Both tests showed an effect of pleural fibrosis. Both radiographic severity graded by the profusion score and pleural thickening are correlated with two independent measures of pulmonary function. FVC (which had been reported in smaller work forces) and DLCO (which has not been reported). Both measures show a decrease from normal to intermediate (0/1, 1/0) scores and a further decrease with greater scores, demonstrating the consistency of radiographic and functional assessments. © 2013 Wiley Periodicals, Inc.
Oxygen-vacancy behavior in La2-xSrxCuO4-y by positron annihilation and oxygen diffusion
NASA Astrophysics Data System (ADS)
Smedskjaer, L. C.; Routbort, J. L.; Flandermeyer, B. K.; Rothman, S. J.; Legnini, D. G.; Baker, J. E.
1987-09-01
Oxygen-diffusion and positron-annihilation results for La2-xSrxCuO4-y compounds are reported. A qualitative explanation of the observed results is given on the basis of a model in which the oxygen-vacancy concentration in La2-xSrxCuO4-y is determined by Sr2+ ion clustering on the La sublattice. This model also leads to a maximum in the Cu3+ ion concentration as a function of the Sr2+ ion concentration.
Ungprasert, Patompong; Wilton, Katelynn M; Ernste, Floranne C; Kalra, Sanjay; Crowson, Cynthia S; Rajagopalan, Srinivasan; Bartholmai, Brian J
2017-10-01
To evaluate the correlation between measurements from quantitative thoracic high-resolution CT (HRCT) analysis with "Computer-Aided Lung Informatics for Pathology Evaluation and Rating" (CALIPER) software and measurements from pulmonary function tests (PFTs) in patients with idiopathic inflammatory myopathies (IIM)-associated interstitial lung disease (ILD). A cohort of patients with IIM-associated ILD seen at Mayo Clinic was identified from medical record review. Retrospective analysis of HRCT data and PFTs at baseline and 1 year was performed. The abnormalities in HRCT were quantified using CALIPER software. A total of 110 patients were identified. At baseline, total interstitial abnormalities as measured by CALIPER, both by absolute volume and by percentage of total lung volume, had a significant negative correlation with diffusing capacity for carbon monoxide (DLCO), total lung capacity (TLC), and oxygen saturation. Analysis by subtype of interstitial abnormality revealed significant negative correlations between ground glass opacities (GGO) and reticular density (RD) with DLCO and TLC. At one year, changes of total interstitial abnormalities compared with baseline had a significant negative correlation with changes of TLC and oxygen saturation. A negative correlation between changes of total interstitial abnormalities and DLCO was also observed, but it was not statistically significant. Analysis by subtype of interstitial abnormality revealed negative correlations between changes of GGO and RD and changes of DLCO, TLC, and oxygen saturation, but most of the correlations did not achieve statistical significance. CALIPER measurements correlate well with functional measurements in patients with IIM-associated ILD.
Measurement of the oxygen mass transfer through the air-water interface.
Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas
2005-01-01
Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.
Computation Of Facilitated Transport of O2 In Hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1991-01-01
Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.
Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen
Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.
Song, Shang; Roy, Shuvo
2018-01-01
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macrocapsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host’s body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. PMID:26615050
Point-of-care instrument for monitoring tissue health during skin graft repair
NASA Astrophysics Data System (ADS)
Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.
2011-06-01
We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.
Micro-CT based modelling for characterising injection-moulded porous titanium implants.
Chen, Junning; Chen, Liangjian; Chang, Che-Cheng; Zhang, Zhongpu; Li, Wei; Swain, Michael V; Li, Qing
2017-01-01
Design of prosthetic implants to ensure rapid and stable osseointegration remains a significant challenge, and continuous efforts have been directed to new implant materials, structures and morphology. This paper aims to develop and characterise a porous titanium dental implant fabricated by metallic powder injection-moulding. The surface morphology of the specimens was first examined with a scanning electron microscope (SEM), followed by microscopic computerised tomography (μ-CT) scanning to capture its 3D microscopic features non-destructively. The nature of porosity and pore sizes were determined statistically. A homogenisation technique based on the Hills-energy theorem was adopted to evaluate its directional elastic moduli, and the conservation of mass theorem was employed to quantify the oxygen diffusivity for bio-transportation feature. This porous medium was found to have pore sizes varying from 50 to 400 µm and the average porosity of 46.90 ± 1.83%. The anisotropic principal elastic moduli were found fairly close to the upper range of cortical bone, and the directional diffusivities could potentially enable radial osseous tissue ingrowth and vascularisation. This porous titanium successfully reduces the elastic modulus mismatch between implant and bone for dental and orthopaedic applications, and provides improved capacity for transporting oxygen, nutrient and waste for pre-vascular network formation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Tracheole investment does not vary with body size among bumblebee (Bombus impatiens) sisters.
Vogt, Jessica R; Dillon, Megan K; Dillon, Michael E
2014-08-01
Body size is a key organism trait with critical implications for the physiology, life history, and ecology of organisms. Modern insects vary in body mass by over 6 orders of magnitude, but are small by comparison to many other metazoan taxa. The small size of modern insects may reflect limitations imposed by their open respiratory systems which rely, in part, on diffusion. Diffusion rates decline with distance such that, absent compensation, the capacity for larger insects to deliver oxygen to their tissues may be compromised. To compensate, larger grasshoppers, beetles, and bumblebees devote proportionally more of their body volume to the respiratory system, as demonstrated by hypermetric scaling of tracheal volume with body mass(>1). Among bumblebee sisters, total respiratory volume scaled with mass(2.6), but it is unclear at what level or levels of the tracheal system (main tracheal trunks, air sacs, tracheoles) bumblebees express this extreme hypermetry. Here we use transmission electron microscopy to examine the morphology of tracheoles in bumblebee flight muscle among sister bumblebees varying nearly four-fold in body mass. Neither tracheole density nor tracheole diameter changed with body mass. The total cross-sectional area of tracheoles was also invariant with body mass. Together, these results reveal that bumblebees do not compensate for size-related limitations on oxygen delivery by increasing investment at the level of the tracheoles. Copyright © 2014 Elsevier Inc. All rights reserved.
Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components
NASA Astrophysics Data System (ADS)
Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.
2017-09-01
The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.
NASA Astrophysics Data System (ADS)
Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.
2015-12-01
Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward diffusion of oxygen from the basalt into the overlying sediment may be a widespread phenomenon in this area of the Pacific Ocean that is characterized by numerous seamounts.
OXYGEN TRANSFER EFFICIENCY SURVEYS AT THE SOUTH SHORE WASTEWATER TREATMENT PLANT - 1985-1987
Ceramic plate diffusers were among the earliest forms of fine pore diffusers used for oxygen transfer in activated sludge treatment. They have been successfully used for over 60 years in the Jones Island West Plant of the Milwaukee Metropolitan Sewerage District and, since initi...
OXYGEN TRANSFER EFFICIENCY SURVEYS AT THE JONES ISLAND TREATMENT PLANTS - 1985-1988
Ceramic plate diffusers were among the earliest forms of fine pore diffusers used for oxygen transfer in activated sludge treatment. They have been successfully used for over 60 years in the Jones Island West Plant of the Milwaukee Metropolitan Sewerage District and, since initia...
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H
2017-09-01
Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.
The Use Of Fluorescence Quenching To Measure Oxygen Concentration
NASA Astrophysics Data System (ADS)
Cox, M. E.; Dunn, B.
1986-01-01
The method of fluorescence quenching is used to measure the concentration of molecular oxygen. The method is rapid, reversible, and does not consume oxygen. The method may provide the basis for a unique biomedical sensor. The key to developing such a device lies in the choice of a fluorophor/polymer composite matrix having the desired optical and transport properties. Experimental results will be presented for certain parameters essential for assessing device development. The properties of interest include the kinetics of fluorescence quenching, the biomolecular rate constants, the temperature dependence of oxygen solubility and diffusivity in the composite matrix, and the oxygen diffusion coefficient. Poly(dimethyl siloxane) [PDMS] was chosen as the polymer host because it is biocompatible, hydrophobic, has a high diffusivity for the simple gases, and is easily bonded to fused silica. 9,10-diphenyl anthracene [9,10-D] was selected since it is readily soluble in a number of organic solvents, has an excitation spectrum in the near UV, an emission spectrum in the visible, a long fluorescence lifetime, and a high quantum yield. When incorporated into PDMS, the optical spectra of 9,10-D does not alter appreciably. The response time of the device is determined by the solution/diffusion kinetics of oxygen in PDMS. The solubility of oxygen in PDMS decreases with increasing temperature and an enthalpy of solution of off = -3.0 kcal/mole. (1) The diffusion of oxyzen in PDMS is found to obey an Arrhenius relation over the temperature range of 5'C to 450C with D = Do exp (-ED/RT) (2) where Do = 0.115 cm2/s (3) and ED = 4.77 kcal/mole. (4) Results of these studies indicate that an appropriate device, based on a fluorophor/polymer composite, for the measurement of oxygen concentration should be sensitive over those ranges which are important for physiological monitoring.
Yin, T T; Loughna, P; Ong, S S; Padfield, J; Mayhew, T M
2009-08-01
We test the experimental hypothesis that early changes in the ultrasound appearance of the placenta reflect poor or reduced placental function. The sonographic (Grannum) grade of placental maturity was compared to placental function as expressed by the morphometric oxygen diffusive conductance of the villous membrane. Ultrasonography was used to assess the Grannum grade of 32 placentas at 31-34 weeks of gestation. Indications for the scans included a history of previous fetal abnormalities, previous fetal growth problems or suspicion of IUGR. Placentas were classified from grade 0 (most immature) to grade III (most mature). We did not exclude smokers or complicated pregnancies as we aimed to correlate the early appearance of mature placentas with placental function. After delivery, microscopical fields on formalin-fixed, trichrome-stained histological sections of each placenta were obtained by multistage systematic uniform random sampling. Using design-based stereological methods, the exchange surface areas of peripheral (terminal and intermediate) villi and their fetal capillaries and the arithmetic and harmonic mean thicknesses of the villous membrane (maternal surface of villous trophoblast to adluminal surface of vascular endothelium) were estimated. An index of the variability in thickness of this membrane, and an estimate of its oxygen diffusive conductance, were derived secondarily as were estimates of the mean diameters and total lengths of villi and fetal capillaries. Group comparisons were drawn using analysis of variance. We found no significant differences in placental volume or composition or in the dimensions or diffusive conductances of the villous membrane. Subsequent exclusion of smokers did not alter these main findings. Grannum grades at 31-34 weeks of gestation appear not to provide reliable predictors of the functional capacity of the term placenta as expressed by the surrogate measure, morphometric diffusive conductance.
Unsteady Oxygen Transfer in Space-Filling Models of the Pulmonary Acinus
NASA Astrophysics Data System (ADS)
Hofemeier, Philipp; Shachar-Berman, Lihi; Filoche, Marcel; Sznitman, Josue
2014-11-01
Diffusional screening in the pulmonary acinus is a well-known physical phenomenon that results from the depletion of fresh oxygen in proximal acinar generations diffusing through the alveolar wall membranes and effectively creating a gradient in the oxygen partial pressure along the acinar airways. Until present, most studies have focused on steady-state oxygen diffusion in generic sub-acinar structures and discarded convective oxygen transport due to low Peclet numbers in this region. Such studies, however, fall typically short in capturing the complex morphology of acinar airways as well as the oscillatory nature of convecive acinar breathing. Here, we revisit this problem and solve the convective-diffusive transport equations in breathing 3D acinar structures, underlining the significance of convective flows in proximal acinar generations as well as recirculating alveolar flow patterns. In particular, to assess diffusional screening, we monitor time-dependent efficiencies of the acinus under cyclic breathing motion. Our study emphasizes the necessity of capturing both a dynamically breathing and anatomically-realistic model of the sub-acinus to characterize unsteady oxygen transport across the acinar walls.
Microscale diffusion measurements and simulation of a scaffold with a permeable strut.
Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan
2013-10-10
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.
Oxygen concentration sensor for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, T.; Okada, Y.; Mieno, T.
1988-09-29
This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.
1992-01-01
The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.
Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G
2018-03-01
The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
NASA Astrophysics Data System (ADS)
Maitra, Urmimala; House, Robert A.; Somerville, James W.; Tapia-Ruiz, Nuria; Lozano, Juan G.; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A.; Massel, Felix; Pickup, David M.; Ramos, Silvia; Lu, Xingye; McNally, Daniel E.; Chadwick, Alan V.; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C.; Roberts, Matthew R.; Bruce, Peter G.
2018-03-01
The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.
NASA Technical Reports Server (NTRS)
Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.
1981-01-01
The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.
Burpee, Jessica L; Bardsley, Elise L; Dillaman, Richard M; Watanabe, Wade O; Kinsey, Stephen T
2010-10-01
White muscle (WM) fibers in many fishes often increase in size from <50 μm in juveniles to >250 μm in adults. This leads to increases in intracellular diffusion distances that may impact the scaling with body mass of muscle metabolism. We have previously found similar negative scaling of aerobic capacity (mitochondrial volume density, V(mt)) and the rate of an aerobic process (post-contractile phosphocreatine recovery) in fish WM. In the present study, we examined the scaling with body mass of oxygen consumption rates of isolated mitochondria (VO(2mt)) from WM in three species from different families that vary in morphology and behavior: an active, pelagic species (bluefish, Pomatomus saltatrix), a relatively inactive demersal species (black sea bass, Centropristis striata), and a sedentary, benthic species (southern flounder, Paralichthys lethostigma). In contrast to our prior studies, the measurement of respiration in isolated mitochondria is not influenced by the diffusion of oxygen or metabolites. V(mt) was measured in WM and in high-density isolates used for VO(2mt) measurements. WM V(mt) was significantly higher in the bluefish than in the other two species and VO(2mt) was independent of body mass when expressed per milligram protein or per milliliter mitochondria. The size-independence of VO(2mt) indicates that differences in WM aerobic function result from variation in V(mt) and not to changes in VO(2mt). This is consistent with our prior work that indicated that while diffusion constraints influence mitochondrial distribution, the negative scaling of aerobic processes like post-contractile PCr recovery can largely be attributed to the body size dependence of V(mt).
Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen
2011-01-01
The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550–700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300–400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum – most likely along Pt grain boundaries – as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum. PMID:22210951
Pottecher, Julien; Santelmo, Nicola; Noll, Eric; Charles, Anne-Laure; Benahmed, Malika; Canuet, Matthieu; Frossard, Nelly; Namer, Izzie J; Geny, Bernard; Massard, Gilbert; Diemunsch, Pierre
2013-10-01
The aim of this study was to assess the functional preservation of the lung graft with anterograde lung perfusion in a model of donation after cardiac death. Thirty minutes after cardiac arrest, in situ anterograde selective pulmonary cold perfusion was started in six swine. The alveolo-capillary membrane was challenged at 3, 6, and 8 h with measurements of the mean pulmonary arterial pressure (mPAP), the pulmonary vascular resistance (PVR), the PaO2 /FiO2 ratio, the transpulmonary oxygen output (tpVO2 ), and the transpulmonary CO2 clearance (tpCO2 ). Mitochondrial homeostasis was investigated by measuring maximal oxidative capacity (Vmax ) and the coupling of phosphorylation to oxidation (ACR, acceptor control ratio) in lung biopsies. Inflammation and induction of primary immune response were assessed by measurement of tumor necrosis factor alpha (TNFα), interleukine-6 (IL-6) and receptor for advanced glycation endproducts (RAGE) in bronchoalveolar lavage fluid. Data were compared using repeated measures Anova. Pulmonary hemodynamics (mPAP: P = 0.69; PVR: P = 0.46), oxygenation (PaO2 /FiO2 : P = 0.56; tpVO2 : P = 0.46), CO2 diffusion (tpCO2 : P = 0.24), mitochondrial homeostasis (Vmax : P = 0.42; ACR: P = 0.8), and RAGE concentrations (P = 0.24) did not significantly change up to 8 h after cardiac arrest. TNFα and IL-6 were undetectable. Unaffected pulmonary hemodynamics, sustained oxygen and carbon dioxide diffusion, preserved mitochondrial homeostasis, and lack of inflammation suggest a long-lasting functional preservation of the graft with selective anterograde in situ pulmonary perfusion. © 2013 Steunstichting ESOT. Published by John Wiley & Sons Ltd.
Ryu, Won-Hee; Yoon, Taek-Han; Song, Sung Ho; Jeon, Seokwoo; Park, Yong-Joon; Kim, Il-Doo
2013-09-11
Designing a highly efficient catalyst is essential to improve the electrochemical performance of Li-O2 batteries for long-term cycling. Furthermore, these batteries often show significant capacity fading due to the irreversible reaction characteristics of the Li2O2 product. To overcome these limitations, we propose a bifunctional composite catalyst composed of electrospun one-dimensional (1D) Co3O4 nanofibers (NFs) immobilized on both sides of the 2D nonoxidized graphene nanoflakes (GNFs) for an oxygen electrode in Li-O2 batteries. Highly conductive GNFs with noncovalent functionalization can facilitate a homogeneous dispersion in solution, thereby enabling simple and uniform attachment of 1D Co3O4 NFs on GNFs without restacking. High first discharge capacity of 10 500 mAh/g and superior cyclability for 80 cycles with a limited capacity of 1000 mAh/g were achieved by (i) improved catalytic activity of 1D Co3O4 NFs with large surface area, (ii) facile electron transport via interconnected GNFs functionalized by Co3O4 NFs, and (iii) fast O2 diffusion through the ultrathin GNF layer and porous Co3O4 NF networks.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
Carrying capacity in a heterogeneous environment with habitat connectivity.
Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David
2017-09-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.
Carrying capacity in a heterogeneous environment with habitat connectivity
Zhang, Bo; Kula, Alex; Mack, Keenan M.L.; Zhai, Lu; Ryce, Arrix L.; Ni, Wei-Ming; DeAngelis, Donald L.; Van Dyken, J. David
2017-01-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.
Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model
NASA Astrophysics Data System (ADS)
Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin
2015-03-01
An appropriate expression for the oxygen supply rate (Γs) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate Γs=g (1-[O]/[]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O]/[]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of Γs to [3O2]/] are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (ϕ). The results show a linear relationship between Γs and [3O2]/], independent of ϕ and photochemical parameters; the obtained g ranges from 0.4 to 1390 μM/s.
Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia
NASA Astrophysics Data System (ADS)
Yang, C.; Trachenko, K.; Hull, S.; Todorov, I. T.; Dove, M. T.
2018-05-01
Large-scale molecular dynamics simulations have been used to study the microstructure in Y-doped ZrO2. From simulations performed as a function of composition the dependence of microstructure on composition is quantified, showing how it is formed from two coexisting phases, and the transformation to the stabilized cubic form is observed at higher concentrations of yttrium and higher temperatures. The effect of composition and temperature on oxygen diffusion is also studied, showing strong correlations between microstructure and diffusion.
NASA Astrophysics Data System (ADS)
Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki
2016-09-01
The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.
Ji, Ho-Il; Davenport, Timothy C.; Gopal, Chirranjeevi Balaji; ...
2016-07-18
The redox kinetics of undoped ceria (CeO 2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO 2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant k chem is found to obey the correlation log(k chem/cm s -1) = (0.84 ± 0.02) × log(pO 2/atm) - (0.99 ± 0.05) and increases withmore » oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.« less
Ji, Ho-Il; Davenport, Timothy C; Gopal, Chirranjeevi Balaji; Haile, Sossina M
2016-08-03
The redox kinetics of undoped ceria (CeO2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant kchem is found to obey the correlation log(kchem/cm s(-1)) = (0.84 ± 0.02) × log(pO2/atm) - (0.99 ± 0.05) and increases with oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.
Osmotic phenomena in application for hyperbaric oxygen treatment.
Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G
2011-03-01
Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.
Oxygen diffusion model of the mixed (U,Pu)O2 ± x: Assessment and application
NASA Astrophysics Data System (ADS)
Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul
2017-03-01
The uranium-plutonium (U,Pu)O2 ± x mixed oxide (MOX) is used as a nuclear fuel in some light water reactors and considered for future reactor generations. To gain insight into fuel restructuring, which occurs during the fuel lifetime as well as possible accident scenarios understanding of the thermodynamic and kinetic behavior is crucial. A comprehensive evaluation of thermo-kinetic properties is incorporated in a computational CALPHAD type model. The present DICTRA based model describes oxygen diffusion across the whole range of plutonium, uranium and oxygen compositions and temperatures by incorporating vacancy and interstitial migration pathways for oxygen. The self and chemical diffusion coefficients are assessed for the binary UO2 ± x and PuO2 - x systems and the description is extended to the ternary mixed oxide (U,Pu)O2 ± x by extrapolation. A simulation to validate the applicability of this model is considered.
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
Recently published data show that the adsorptive capacity of granular activated carbon for phenois increases significantly in the presence of molecular oxygen (Vidic, Suidan,Traegner and Nakhla, 1990). in this study, the effect of molecular oxygen on the adsorptive capacity of a...
NASA Astrophysics Data System (ADS)
Watson, E. B.; Cherniak, D. J.
1997-05-01
Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.
NASA Astrophysics Data System (ADS)
Park, A. J.; Chan, M. A.
2006-12-01
Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.
Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A
2015-07-01
Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.
Rong, Nan; Shan, Baoqing; Wang, Chao
2016-01-01
A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307
Chen, Ho-Wen; Chuang, Yen Hsun; Hsu, Cheng-Feng; Huang, Winn-Jung
2017-09-19
This study was undertaken to investigate the adsorption kinetics and isotherms of bromate (BrO 3 - ) on bamboo charcoals that are activated with nitrogen and water vapor. Bamboo-based activated carbon (AC) was dipped in acid and oxidized in a mixture of potassium permanganate and sulfuric acid. Oxidation treatment considerably improved the physicochemical properties of AC, including purity, pore structure and surface nature, significantly enhancing BrO 3 - adsorption capacity. AC with many oxygenated groups and a high mesopore volume exhibited a particularly favorable tendency for BrO 3 - adsorption. Its adsorption of BrO 3 - is best fitted using Langmuir isotherm, and forms a monolayer. A kinetic investigation revealed that the adsorption of BrO 3 - by the ACs involved chemical sorption and was controlled by intra-particle diffusion. The competitive effects of natural organic matter (NOM) on AC were evaluated, and found to reduce the capacity of carbon to adsorb BrO 3 - . Residual dissolved ozone reacted with AC, reducing its capacity to absorb BrO 3 - . Proper dosing and staging of the ozonation processes can balance the ozone treatment efficiency, BrO 3 - formation, and the subsequent removal of BrO 3 - .
Gilbert, Matthew E.; McElrone, Andrew J.
2017-01-01
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower (Helianthus annuus) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. PMID:28432257
Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.
Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R
2017-06-01
In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.
Deconvoluting lung evolution: from phenotypes to gene regulatory networks
Torday, John S.; Rehan, Virender K.; Hicks, James W.; Wang, Tobias; Maina, John; Weibel, Ewald R.; Hsia, Connie C.W.; Sommer, Ralf J.; Perry, Steven F.
2007-01-01
Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework. PMID:20607138
Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration.
Pham, Ted D; Wallace, Douglas C; Burke, Peter J
2016-07-09
It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles' functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects. However, available technologies require significant quantities of mitochondria. Here, we develop a technology to assay the respiration of a single mitochondrion. Our "micro-respirometer" consists of micron sized chambers etched out of borofloat glass substrates and coated with an oxygen sensitive phosphorescent dye Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) mixed with polystyrene. The chambers are sealed with a polydimethylsiloxane layer coated with oxygen impermeable Viton rubber to prevent diffusion of oxygen from the environment. As the mitochondria consume oxygen in the chamber, the phosphorescence signal increases, allowing direct determination of the respiration rate. Experiments with coupled vs. uncoupled mitochondria showed a substantial difference in respiration, confirming the validity of the microchambers as single mitochondrial respirometers. This demonstration could enable future high-throughput assays of mitochondrial respiration and benefit the study of mitochondrial functional heterogeneity, and its role in health and disease.
Hu, S; Seidel, J
2016-08-12
Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.
NASA Astrophysics Data System (ADS)
Hu, S.; Seidel, J.
2016-08-01
Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion.
NASA Astrophysics Data System (ADS)
Gordillo-Delgado, F.; Marín, E.; Calderón, A.
2016-09-01
In this work, the photosynthetic process of maize plants ( Zea mays), which were grown using seeds inoculated with plant growth promoting bacteria Azospirillum brasilense and Burkholderia unamae, was monitored. Photothermal and photobaric signals obtained by a time-resolved photoacoustic measurement configuration were used for measuring the oxygen evolution rate in situ. A frequency-resolved configuration of the method was utilized to determine the oxygen diffusion coefficient and the thermal diffusivity of the maize leaves. The latter parameters, which can be used as indicators of the photosynthetic activity of maize, are found to vary according to the plant-microbe interaction. Treatment with plant growth promoting bacteria induced a decrease in the oxygen diffusion coefficient of about 20 %.
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
2001-01-01
In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.
Anomaly diffuse and dielectric relaxation in strontium doped lanthanum molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao; Fan, Huiqing, E-mail: hqfan3@163.com; Shi, Jing
2011-12-15
Highlights: Black-Right-Pointing-Pointer The anomaly diffuse and dielectric relaxation behaviors are fitted by the Cole-Cole approach. Black-Right-Pointing-Pointer The peak in the LSMO is corresponding to different oxygen ion diffusion process. Black-Right-Pointing-Pointer We first give better explanation about the strange conductivity change caused by doping. Black-Right-Pointing-Pointer The oxygen ion diffusion is due to a combination of the dipolar relaxation and the motion of ions. -- Abstract: The dielectric properties of the La{sub 2-x}Sr{sub x}Mo{sub 2}O{sub 9-{delta}} (x = 0-0.2) ceramics were investigated in the temperature range of 300-800 K. Dielectric measurement reveals that two dielectric anomalies, associated with the oxygen ion diffusion,more » exist in frequency spectrum with x = 0.5. The broad dielectric peaks in tan {delta}({omega}) can be well fitted by a modified Cole-Cole approach. When x = 0.1, only one dielectric relaxation peak is observed, corresponding to different oxygen ion diffusion processes, as distinct from the only relaxation peak in the pure La{sub 2}Mo{sub 2}O{sub 9}. The relaxation parameters {tau}{sub 0}, the dielectric relaxation strength {Delta}, and the activation energy E{sub a} were obtained. The result of this work shows that, the conductivity change caused by doping between the two phases is due to the combination of the dipolar effects and motion of ions.« less
Lee, Chang-Joon; Ngo, Jennifer P; Kar, Saptarshi; Gardiner, Bruce S; Evans, Roger G; Smith, David W
2017-08-01
To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4-1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84-3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2-4.8%). Under normal physiological conditions, blood Po 2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po 2 is predicted to fall most rapidly from Strahler order 4 , under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states. Copyright © 2017 the American Physiological Society.
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S.; Subczynski, Witold K.
2015-01-01
This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer. PMID:26441482
Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S; Subczynski, Witold K
2015-08-01
This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer.
Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin
2017-03-01
Continuous measurement of local brain oxygen saturation (SO 2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO 2 ), which is closely related to SO 2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO 2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO 2 for different blood concentrations. The P 3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO 2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO 2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shick, J M
1990-08-01
Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.
The role of intraluminal thrombus on oxygen transport in abdominal aortic aneurysms
NASA Astrophysics Data System (ADS)
Madhavan, Sudharsan; Cherry Kemmerling, Erica
2017-11-01
Abdominal aortic aneurysm is ranked as the 13th leading cause of death in the United States. The presence of intraluminal thrombus is thought to cause hypoxia in the vessel wall eventually aggravating the condition. Our work investigates oxygen transport and consumption in a patient-specific model of an abdominal aortic aneurysm. The model includes intraluminal thrombus and consists of the abdominal aorta, renal arteries, and iliac arteries. Oxygen transport to and within the aortic wall layer was modeled, accounting for oxygen consumption and diffusion. Flow and transport in the lumen layer were modeled using coupled Navier-Stokes and scalar transport equations. The thrombus layer was assumed to be biomechanically inactive but permeable to oxygen transport in accordance with previously-measured diffusion coefficients. Plots of oxygen concentration through the layers illustrating reduced oxygen supply to the vessel walls in parts of the model that include thrombus will be presented.
Development of lithium diffused radiation resistant solar cells, part 2
NASA Technical Reports Server (NTRS)
Payne, P. R.; Somberg, H.
1971-01-01
The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.
Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2
NASA Technical Reports Server (NTRS)
Semkow, K. W.; Haskin, L. A.
1985-01-01
The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.
2003-01-01
The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and oxygen reactions occur. This results in a sharp gradient in oxygen concentration from the edge where it is supplied to the nearest source of carbon, which is where the oxygen is quickly consumed. A moving reaction front is seen in which the outlaying carbon is consumed before the next inner layer of carbon begins to react.
Development and fabrication of lithium-doped solar cells
NASA Technical Reports Server (NTRS)
Iles, P. A.
1971-01-01
The application of contacts and coatings after lithium diffusion provides good electrical output and satisfactory contact adhesion by sintering for short times at temperatures less than the lithium diffusion temperature. High output and repeatability are obtainable from both oxygen-rich and oxygen-lean silicon. These fabrication sequence alterations have led to higher cell output, better appearance, and increased contact strength.
NASA Astrophysics Data System (ADS)
Baricci, Andrea; Casalegno, Andrea
2016-09-01
Limiting current density of oxygen reduction reaction in polymer electrolyte fuel cells is determined by several mass transport resistances that lower the concentration of oxygen on the catalyst active site. Among them, diffusion across porous media plays a significant role. Despite the extensive experimental activity documented in PEMFC literature, only few efforts have been dedicated to the measurement of the effective transport properties in porous layers. In the present work, a methodology for ex situ measurement of the effective diffusion coefficient and Knudsen radius of porous layers for polymer electrolyte fuel cells (gas diffusion layer, micro porous layer and catalyst layer) is described and applied to high temperature polymer fuel cells State of Art materials. Regression of the measured quantities by means of a quasi 2D physical model is performed to quantify the Knudsen effect, which is reported to account, respectively, for 30% and 50% of the mass transport resistance in micro porous layer and catalyst layer. On the other side, the model reveals that pressure gradient consequent to permeation in porous layers of high temperature polymer fuel cells has a negligible effect on oxygen concentration in relevant operating conditions.
Quantitative confirmation of diffusion-limited oxidation theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, K.T.; Clough, R.L.
1990-01-01
Diffusion-limited (heterogeneous) oxidation effects are often important for studies of polymer degradation. Such effects are common in polymers subjected to ionizing radiation at relatively high dose rate. To better understand the underlying oxidation processes and to aid in the planning of accelerated aging studies, it would be desirable to be able to monitor and quantitatively understand these effects. In this paper, we briefly review a theoretical diffusion approach which derives model profiles for oxygen surrounded sheets of material by combining oxygen permeation rates with kinetically based oxygen consumption expressions. The theory leads to a simple governing expression involving the oxygenmore » consumption and permeation rates together with two model parameters {alpha} and {beta}. To test the theory, gamma-initiated oxidation of a sheet of commercially formulated EPDM rubber was performed under conditions which led to diffusion-limited oxidation. Profile shapes from the theoretical treatments are shown to accurately fit experimentally derived oxidation profiles. In addition, direct measurements on the same EPDM material of the oxygen consumption and permeation rates, together with values of {alpha} and {beta} derived from the fitting procedure, allow us to quantitatively confirm for the first time the governing theoretical relationship. 17 refs., 3 figs.« less
OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION
Pittman, Roland N.
2012-01-01
Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284
Prior, Steven J; Ryan, Alice S; Blumenthal, Jacob B; Watson, Jonathan M; Katzel, Leslie I; Goldberg, Andrew P
2016-08-01
Skeletal muscle capillary rarefaction limits the transcapillary transport of nutrients and oxygen to muscle and may contribute to sarcopenia and functional impairment in older adults. We tested the hypothesis that skeletal muscle capillarization and exercise capacity (VO2max) are lower in sarcopenic than in nonsarcopenic older adults and that the degree of sarcopenia is related to lower skeletal muscle capillarization. Body composition, VO2max, and vastus lateralis capillarization were determined in 76 middle-aged and older men and women (age = 61±1 years, body mass index [BMI] = 30.7±0.5kg/m(2) [mean ± SEM]). Participants were classified as sarcopenic if appendicular lean mass divided by BMI (ALMBMI) was less than 0.789 for men or less than 0.512 for women. Sarcopenic subjects (ALMBMI = 0.65±0.04, n = 16) had 20% lower capillary-to-fiber ratio, as well as 13% and 15% lower VO2max expressed as mL/kg/min or L/min, respectively, compared with sex-, race-, and age-matched participants without sarcopenia (ALMBMI = 0.81±0.05, n = 16; p < .05). In all 76 subjects, ALMBMI, thigh muscle cross-sectional area, and VO2max correlated directly with capillarization (r = .30-.37, p ≤ .05), after accounting for age, sex, and race. These findings suggest that low skeletal muscle capillarization is one factor that may contribute to sarcopenia and reduced exercise capacity in older adults by limiting diffusion of substrates, oxygen, hormones, and nutrients. Strategies to prevent the aging-related decline in skeletal muscle capillarization may help to prevent or slow the progression of sarcopenia and its associated functional declines in generally healthy older adults. Published by Oxford University Press on behalf of the Gerontological Society of America 2016.
NASA Technical Reports Server (NTRS)
Deb, Rahul; Snyder, Jeff G.
2005-01-01
A viewgraph presentation describing thermoelectric materials, an algorithm for heat capacity measurements and the process of flash thermal diffusivity. The contents include: 1) What are Thermoelectrics?; 2) Thermoelectric Applications; 3) Improving Thermoelectrics; 4) Research Goal; 5) Flash Thermal Diffusivity; 6) Background Effects; 7) Stainless Steel Comparison; 8) Pulse Max Integral; and 9) Graphite Comparison Algorithm.
NASA Technical Reports Server (NTRS)
Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki
1989-01-01
The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.
Oxygen concentration dependence of silicon oxide dynamical properties
NASA Astrophysics Data System (ADS)
Yajima, Yuji; Shiraishi, Kenji; Endoh, Tetsuo; Kageshima, Hiroyuki
2018-06-01
To understand oxidation in three-dimensional silicon, dynamic characteristics of a SiO x system with various stoichiometries were investigated. The calculated results show that the self-diffusion coefficient increases as oxygen density decreases, and the increase is large when the temperature is low. It also shows that the self-diffusion coefficient saturates, when the number of removed oxygen atoms is sufficiently large. Then, approximate analytical equations are derived from the calculated results, and the previously reported expression is confirmed in the extremely low-SiO-density range.
2013-01-01
The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691
Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart
2017-11-01
Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
General theory for integrated analysis of growth, gene, and protein expression in biofilms.
Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S
2013-01-01
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.
[Function of alveoles as a result of evolutionary development of respiratory system in mammals].
Ivanov, K P
2013-01-01
Reaction of hemoglobin oxygenation is known to occur for 40 femtoseconds (40 x 10(-15) s). However, the process of oxygen diffusion to hemoglobin under physiologic conditions decelerated this reaction approximately billion times. In mammalian lungs, blood is moving at a high rate and in a relatively high amount. The human lung mass is as low as 600 g, but the complete cardiac output approaches 6 1/min. In rat, from 20 to 40 ml of blood is passed for q min through the lung whose mass is about 1.5 g. Such blood flow rate is possible, as in lungs of high animals there exists a dense network of relatively large microvessels with diameter from 20 to 40 microm and more. In spite of a large volume and a high blood flow rate hampering oxygen diffusion, the complete blood oxygenation occurs in lung alveoli. This is due to peculiar mechanisms that facilitate markedly the oxygen diffusion and that developed in alveoli of mammals in the course of many million years of evolution of their respiratory system. Thus, alveolus is not a bubble with air, but a complex tool of fight with inertness of diffusion. It is interesting that in lungs of the low vertebrates, neither such system of blood vessels nor alveoli exist, and their blood flow rate is much lower than in mammals.
Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs
NASA Astrophysics Data System (ADS)
Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien
2018-01-01
Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.
NASA Astrophysics Data System (ADS)
Ter Heege, J. H.; Dohmen, R.; Becker, H.; Chakraborty, S.
2006-12-01
Fe-Mg interdiffusion in silicate minerals is of interest in petrological studies for determining the closure temperature of geothermometers and for determining cooling rates from compositional profiles. It is also relevant for studies of the physical properties of silicates, such as rheology or electrical conductivity, because knowledge of its dependence on oxygen fugacity can aid in the understanding of point defect chemistry. Compositionally zoned orthopyroxenes are common in meteorites, mantle rocks, lower crustal rocks and a variety of plutonic and volcanic igneous rocks. However, experimental difficulties have precluded direct determination of Fe-Mg diffusion rates in orthopyroxenes so far and the available information comes from (1) Mg tracer diffusion coefficients obtained from isotope tracer studies using enriched ^{25}MgO films [1], (2) calculations of interdiffusion rates based on the (diffusion-controlled) order-disorder kinetics measured in orthopyroxene [2], and (3) indirect estimates from the comparison of diffusion widths in coexisting garnets and olivines, in which Fe-Mg diffusion rates are relatively well known [e.g., 3]. We have directly measured Fe-Mg interdiffusion coefficients parallel to the [001] direction in two natural orthopyroxene single crystals (approximately En95Fs5 and En90Fs10) using diffusion couples consisting of an olivine thin film (Fo30Fa70, typically 20 - 50 nm thick) deposited under vacuum on pre-heated, polished and oriented pyroxene single crystals using a pulsed laser ablation deposition technique. Samples were annealed for 4 - 337 hours at 800 - 1100 °C under atmospheric pressure in a continuous flow of CO + CO2 to control the oxygen fugacity between 10-16 and 10^{-12} bar within the stability field of pyroxene. Film thickness and compositional profiles were measured using Rutherford backscattering Spectroscopy (RBS) on reference and annealed samples, and Fe concentration depth profiles were extracted from the RBS spectra and fitted numerically. At an oxygen fugacity of 10-16 bar, Fe-Mg interdiffusion coefficients in the Fs richer orthopyroxene vary between 4.10^{-22} m2/s and 2.10^{-20} m2/s for temperatures between 800 and 1000°C. Diffusion coefficients decrease by a factor of ~ 4 with decreasing oxygen fugacity between 10^{-12} and 10-16 bar at 1000 °C. Comparison of our data with other Fe-Mg diffusion data shows that these diffusion coefficients are (1) similar to Mg tracer diffusion coefficients measured in orthopyroxene at somewhat more reducing (e.g. fO2 = 10-16 to 10^{-19} bar) conditions at the same temperatures [1], (2) similar to Mg tracer diffusion in garnets measured at higher pressures of 10 kbar at an oxygen fugacity corresponding to the C-O equilibrium in graphite present systems [4], and (3) slower than Fe-Mg diffusion rates in olivine by a factor of ~10 at the same oxygen fugacities [5]. Further experiments to quantify the dependence on composition, temperature and oxygen fugacity are in progress. References: [1] Schwandt et al. (1998), Contr. Mineral. Petrol. 130: 390-396; [2] Ganguly and Tazzoli (1994), Am. Mineral. 79: 930-937; [3] Smith and Barron (1991), Am. Mineral. 76: 1950-1963; [4] Ganguly et al. (1998), Contr. Mineral. Petrol. 131: 171-180; [5] Chakraborty (1997), J. Geoph. Res. 102: 12317-12331.
Activation volumes of oxygen self-diffusion in fluorite structured oxides
Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; ...
2016-10-27
In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 formore » a wide range of temperature (300–1700 K) and pressure (–7.5 to 7.5 GPa).« less
Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude
2013-10-01
of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.
[Hemoglobin oxygen transport capacity in surgical endotoxicosis ].
Poryadin, G V; Vlasov, A P; Trofimov, V A; Vlasova, T I; Kamkina, O V; Grigoryev, A G; Vlasov, P A
2016-01-01
In surgical endointoxication hemoglobin oxygen transport capacity of red blood cells (hemoglobin affinity ligands: the ability to bind and release ligands) is reduced and is associated with the severity of endogenous intoxication. Violation of oxygen transport function of hemoglobin at endogenous intoxication is associated with conformational changes of a biomolecule, and its possible influence on reactive oxygen species, which confirmed in experiments in vitro: under the influence of oxygen-iron ascorbate ability of hemoglobin deteriorates. Largely similar structural and functional changes in hemoglobin occur in patients with surgical endotoxicosis.
Heat transfer, diffusion, and evaporation
NASA Technical Reports Server (NTRS)
Nusselt, Wilhelm
1954-01-01
Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.
Lung vital capacity and oxygen saturation in adults with cerebral palsy
Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana
2014-01-01
Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID:25525345
NASA Astrophysics Data System (ADS)
Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy
2016-12-01
Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.
Migration mechanisms and diffusion barriers of vacancies in Ga2O3
NASA Astrophysics Data System (ADS)
Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico
2017-06-01
We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.
Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.
Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra
2012-01-01
The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society
Pulmonary function of nonsmoking female asbestos workers without radiographic signs of asbestosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.R.; Yano, E.; Nonaka, Koichi
Researchers disagree about whether exposure to asbestos causes significant respiratory impairments and airway obstruction in the absence of radiographic asbestosis and smoking. To obtain confirmatory information, the authors examined pulmonary function of 208 nonsmoking female asbestos workers who did not have asbestosis and 136 controls. The authors observed an overall lower single-breath carbon monoxide diffusing capacity in the asbestos workers than in controls. In addition, significant decreases in percentage vital capacity, percentage forced vital capacity, and percentage mean forced expiratory flow during the middle half of the forced vital capacity were evident in the older workers. Logistic regression analysis revealedmore » that asbestos exposure was associated with abnormal single-breath carbon monoxide diffusing capacity, vital capacity, and mean forced expiratory flow during the middle half of the forced vital capacity among the older workers. The age-related decline in vital capacity, forced vital capacity, and mean forced expiratory flow during the middle half of the forced vital capacity was significantly greater in the asbestos workers than the controls. The findings imply that asbestos-exposure per se contributes predominantly to restricted lung volume and reduced single-breath carbon monoxide diffusing capacity. Asbestos may also cause slight airway obstruction, especially in workers who are heavily exposed.« less
Thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x solid solutions
NASA Astrophysics Data System (ADS)
Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo
2013-09-01
The authors prepared the sintered sample of (Np0.20Pu0.50Am0.25Cm0.05)O2-x (2 - x = 1.98, 1.96) solid solution and evaluated the dependence of the thermal conductivity on storage time and temperature. The heat capacity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was measured between 324 and 1082 K by a drop calorimetry. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was measured when the storage time became 48, 216, 720 and 1584 h and that of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 was measured when the storage time became 0,528 and 1386 h. In this study, the latter sample was annealed at 1423 K in vacuum with background pressure of less than 2.0 × 10-4 Pa just after the measurement on the storage time, 1386 h. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 just after annealing returned to the values of the storage time, 0 h. This result reveals the thermal recovery behavior by annealing. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x was determined from the measured thermal diffusivity, heat capacity and bulk density. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x exponentially decreased with increasing storage time. This result suggested that the decrease of the thermal conductivity was attributed to the accumulation of lattice defects caused by self-irradiation. The heat capacity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was expressed by Cp (J mol-1 K-1) = 1.7314 × 10-2T + 75.720 - 1.0579 × 106 T-2. The heat capacity at higher than 473 K was almost close to those of stoichiometric actinide dioxide within at least ±5%. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x decreased with increasing storage time in the temperature range from 473 to 573 K. The decrease of the thermal diffusivity was attributed by the lattice defect rapidly accumulated by the α-decay of 244Cm. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 just after annealing returned to the values of the storage time, 0 h. This result reveals the thermal recovery behavior by annealing. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x was smaller than those of PuO2 and (Pu0.91Cm0.09)O2 mainly because of the oxygen vacancies as is seen other actinide dioxide, such as mixed oxide (MOX) fuels.
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.
1992-01-01
The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.
Li, Mao; Li, Yan; Wen, Peng Paul
2014-01-01
The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.
Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...
2017-10-17
Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.
Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less
Li, Walter; Niu, Bolin; Henderson, Katherine; Northrup, Veronika; Pollak, Jeffery S; Trow, Terence; Fahey, John; White, Robert I
2011-06-01
Patients with pulmonary arteriovenous malformations (PAVMs) are at risk for multiple complications and require close follow-up. We investigated the reproducibility of the 6-minute walk test (6MWT) and exercise stress test (EST) for the evaluation of low oxygen saturation in patients with PAVMs. Twenty-two patients with PAVMs, most of whom had hereditary hemorrhagic telangiectasia (HHT), participated in a Human Investigations Committee-approved protocol. Patients ranged from 9 to 74 years of age (mean 28) and had a broad spectrum of anatomic subtypes of PAVMs, including focal and diffuse. Standard 6MWT and cycle ergometry EST were both performed twice with adequate rest between tests. Heart rate (HR) and oxygen saturation were measured at the beginning and end of each test. Distance walked and maximum resistance was also recorded. The intraclass correlation coefficients (r(i)) at the end of 6MWT were as follows: HR (r(i) = 0.940; 95% confidence interval [CI] 0.863-0.975), oxygen saturation (r(i) = 0.973; 95% CI 0.933-0.989), and distance (r(i) = 0.942; 95% CI 0.867-0.975). The r(i)s at the end of EST were as follows: HR (r(i) = 0.941; 95% CI 0.865-0.975), oxygen saturation (r(i) = 0.993; 95% CI 0.982-0.997), and maximum resistance (r(i) = 0.941; 95% CI 0.864-0.975). 6MWT and EST were reproducible measures of exercise capacity and oxygen saturation and are potential adjunct tests in the follow-up assessment for patients with PAVMs.
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...
2016-05-16
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
Gas Exchange Models for a Flexible Insect Tracheal System.
Simelane, S M; Abelman, S; Duncan, F D
2016-06-01
In this paper two models for movement of respiratory gases in the insect trachea are presented. One model considers the tracheal system as a single flexible compartment while the other model considers the trachea as a single flexible compartment with gas exchange. This work represents an extension of Ben-Tal's work on compartmental gas exchange in human lungs and is applied to the insect tracheal system. The purpose of the work is to study nonlinear phenomena seen in the insect respiratory system. It is assumed that the flow inside the trachea is laminar, and that the air inside the chamber behaves as an ideal gas. Further, with the isothermal assumption, the expressions for the tracheal partial pressures of oxygen and carbon dioxide, rate of volume change, and the rates of change of oxygen concentration and carbon dioxide concentration are derived. The effects of some flow parameters such as diffusion capacities, reaction rates and air concentrations on net flow are studied. Numerical simulations of the tracheal flow characteristics are performed. The models developed provide a mathematical framework to further investigate gas exchange in insects.
Cerebral blood flow and metabolism during exercise: implications for fatigue.
Secher, Neils H; Seifert, Thomas; Van Lieshout, Johannes J
2008-01-01
During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
Beebe, David C; Shui, Ying-Bo; Siegfried, Carla J; Holekamp, Nancy M; Bai, Fang
2014-05-01
Oxygen levels in the eye are generally low and tightly regulated. Oxygen enters the eye largely by diffusion from retinal arterioles and through the cornea. In intact eyes, oxygen from the retinal arterioles diffuses into the vitreous body. There is a decreasing oxygen gradient from the retina to the lens, established by oxygen consumption by ascorbate in the vitreous fluid and lens metabolism. Age-related degeneration of the vitreous body or removal during vitrectomy exposes the posterior of the lens to increased oxygen, causing nuclear sclerotic cataracts. Lowering oxygen in the vitreous, as occurs in patients with ischemic diabetic retinopathy, protects against cataracts after vitrectomy. Vitrectomy and cataract surgery increase oxygen levels at the trabecular meshwork and with it the risk of open angle glaucoma. Two additional risk factors for glaucoma, African heritage and having a thinner cornea, are also associated with increased oxygen in the anterior chamber angle. Preservation of the vitreous body and the lens, two important oxygen consumers, would protect against nuclear sclerotic cataracts and open angle glaucoma. Delaying removal of the lens for as long as possible after vitrectomy would be an important step in delaying ocular hypertension and glaucoma progression.
Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods
NASA Astrophysics Data System (ADS)
Durduran, Turgut
Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility. In total, the research has pioneered the development of diffuse optical measurements of blood flow, oxygenation and oxygen metabolism in a large range of research and clinical applications.
Scott, Graham R; Milsom, William K
2006-11-01
The ability of some bird species to fly at extreme altitude has fascinated comparative respiratory physiologists for decades, yet there is still no consensus about what adaptations enable high altitude flight. Using a theoretical model of O(2) transport, we performed a sensitivity analysis of the factors that might limit exercise performance in birds. We found that the influence of individual physiological traits on oxygen consumption (Vo2) during exercise differed between sea level, moderate altitude, and extreme altitude. At extreme altitude, haemoglobin (Hb) O(2) affinity, total ventilation, and tissue diffusion capacity for O(2) (D(To2)) had the greatest influences on Vo2; increasing these variables should therefore have the greatest adaptive benefit for high altitude flight. There was a beneficial interaction between D(To2) and the P(50) of Hb, such that increasing D(To2) had a greater influence on Vo2 when P(50) was low. Increases in the temperature effect on P(50) could also be beneficial for high flying birds, provided that cold inspired air at extreme altitude causes a substantial difference in temperature between blood in the lungs and in the tissues. Changes in lung diffusion capacity for O(2), cardiac output, blood Hb concentration, the Bohr coefficient, or the Hill coefficient likely have less adaptive significance at high altitude. Our sensitivity analysis provides theoretical suggestions of the adaptations most likely to promote high altitude flight in birds and provides direction for future in vivo studies.
Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California
Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara
2009-01-01
Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
NASA Astrophysics Data System (ADS)
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-Ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-04-01
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g-1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g-1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode.
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-04-18
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Asahara, Ryohei
2015-12-21
The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures withmore » the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.« less
Li, Ting; Lin, Yu; Shang, Yu; He, Lian; Huang, Chong; Szabunio, Margaret; Yu, Guoqiang
2013-01-01
We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~−20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:23446991
UO(2) Oxidative Corrosion by Nonclassical Diffusion.
Stubbs, Joanne E; Chaka, Anne M; Ilton, Eugene S; Biwer, Craig A; Engelhard, Mark H; Bargar, John R; Eng, Peter J
2015-06-19
Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.
On optima: the case of myoglobin-facilitated oxygen diffusion.
Wittenberg, Jonathan B
2007-08-15
The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.
Modeling and simulation of a low-grade urinary bladder carcinoma.
Bunimovich-Mendrazitsky, Svetlana; Pisarev, Vladimir; Kashdan, Eugene
2015-03-01
In this work, we present a mathematical model of the initiation and progression of a low-grade urinary bladder carcinoma. We simulate the crucial processes affecting tumor growth, such as oxygen diffusion, carcinogen penetration, and angiogenesis, within the framework of the urothelial cell dynamics. The cell dynamics are modeled using the discrete technique of cellular automata, while the continuous processes of carcinogen penetration and oxygen diffusion are described by nonlinear diffusion-absorption equations. As the availability of oxygen is necessary for tumor progression, processes of oxygen transport to the tumor growth site seem most important. Our model yields a theoretical insight into the main stages of development and growth of urinary bladder carcinoma with emphasis on the two most common types: bladder polyps and carcinoma in situ. Analysis of histological structure of bladder tumor is important to avoid misdiagnosis and wrong treatment. We expect our model to be a valuable tool in the study of bladder cancer progression due to the exposure to carcinogens and the oxygen dependent expression of genes promoting tumor growth. Our numerical simulations have good qualitative agreement with in vivo results reported in the corresponding medical literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J
2016-09-01
The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability.
Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2011-12-01
Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption rates. This least-favorable zone for aerobic respiration is bound to expand with further ocean warming.
NASA Technical Reports Server (NTRS)
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
Micro-Raman study of isotope substitution in YBa2Cu183O6.2 during local laser annealing
NASA Astrophysics Data System (ADS)
Ivanov, V. G.; Iliev, M. N.; Thomsen, C.
1995-11-01
The local laser heating of YBa2Cu183O6.2 in air was used to study the oxygen diffusion and oxygen ordering in sample volumes of the order of a few μm3. Raman microprobe at points corresponding to different annealing temperatures was applied to monitor both the stages of substitution of 16O for 18O at different oxygen sites and the structural changes in the basal [Cu(1)-O(1)] planes occurring during the oxygen in-diffusion. The population of the O(1) sites initially results in the formation of short Cu(1)-O(1) fragments which later conjunct into long chains. The results can be applied for a better understanding of oxygen reordering processes in YBa2Cu3O7-δ during thermal treatment.
NASA Astrophysics Data System (ADS)
Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.
2018-04-01
The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.
Khinda, Vineet Inder Singh; Bhuria, Parvesh; Khinda, Paramjit; Kallar, Shiminder; Brar, Gurlal Singh
2016-01-01
Diffusion hypoxia is the most serious potential complication associated with nitrous oxide. It occurs during the recovery period. Hence, administration of 100% oxygen is mandatory as suggested by many authors. The aim of this study is to evaluate the occurrence/nonoccurrence of diffusion hypoxia in two groups of patients undergoing routine dental treatment under nitrous oxide sedation when one group is subjected to 7 min of postsedation oxygenation and the second group of the patients is made to breathe room air for the similar period. A total of sixty patients within the age group of 7-10 years requiring invasive dental procedures were randomly divided into two groups of 30 each using chit method. In the control group, patients were administered 100% oxygen postsedation, whereas, in the study group, patients were made to breathe room air postsedation. Various parameters (pulse rate, respiratory rate, blood pressure, and oxygen saturation [SpO2]) were recorded pre- and post-operatively. Data were collected and then sent for statistical analysis. The mean postoperative SpO2 at measurement times 1, 3, 5, and 7 min in both the groups was higher than the mean preoperative SpO2. This increase was statistically significant. No significant difference was found between the Trieger test scores. This study proves that clinical occurrence of diffusion hypoxia is not possible while following the routine procedure of nitrous oxide sedation.
NASA Astrophysics Data System (ADS)
Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya
2017-07-01
A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.
Chemistry of the metal-polymer interfacial region.
Leidheiser, H; Deck, P D
1988-09-02
In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.
Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.
Seibel, Brad A
2011-01-15
The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.
Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany
NASA Astrophysics Data System (ADS)
Kohfahl, Claus; Massmann, Gudrun; Pekdeger, Asaf
2009-05-01
The microbial degradation of pharmaceuticals found in surface water used for artificial recharge is strongly dependent on redox conditions of the subsurface. Furthermore the durability of production wells may decrease considerably with the presence of oxygen and ferrous iron due to the precipitation of trivalent iron oxides and subsequent clogging. Field measurements are presented for oxygen at a bank filtration site in Berlin, Germany, along with simplified calculations of different oxygen pathways into the groundwater. For a two-dimensional vertical cross-section, oxygen input has been calculated for six scenarios related to different water management strategies. Calculations were carried out in order to assess the amount of oxygen input due to (1) the infiltration of oxic lake water, (2) air entrapment as a result of water table oscillations, (3) diffusive oxygen flux from soil air and (4) infiltrating rainwater. The results show that air entrapment and infiltrating lake water during winter constitute by far the most important mechanism of oxygen input. Oxygen input by percolating rainwater and by diffusive delivery of oxygen in the gas phase is negligible. The results exemplify the importance of well management as a determining factor for water oscillations and redox conditions during artificial recharge.
Rooting Responses of Three Oak Species to Low Oxygen Stress
Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello
1997-01-01
Rooting characteristics were compared in blue (Q. douglasii), valley (Q. lobata), and cork oak (Q. suber) seedlings under hypoxic (low oxygen) conditions. A 50 percent reduction in root growth occurred in all species at an oxygen level of 4 percent, or an oxygen diffusion rate of 0.3 mg cm-2...
Microstructure design for fast oxygen conduction
Aidhy, Dilpuneet S.; Weber, William J.
2015-11-11
Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less
Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor
2018-05-24
The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-01-01
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width. PMID:28796167
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-08-10
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.
Watanabe, Jun; Oki, Tomoyuki; Takebayashi, Jun; Yamasaki, Koji; Takano-Ishikawa, Yuko; Hino, Akihiro; Yasui, Akemi
2013-01-01
We improved the procedure for lipophilic-oxygen radical absorbance capacity (L-ORAC) measurement for better repeatability and intermediate precision. A sealing film was placed on the assay plate, and glass vials and microdispensers equipped with glass capillaries were used. The antioxidant capacities of food extracts can be evaluated by this method with nearly the same precision as antioxidant solutions.
Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L
2011-09-08
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.
Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto
2016-01-01
Nanocomposite SiO x particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiO x matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH 4 promotes reduction in the oxygen content x of SiO x , and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.
Tashiro, Tohru; Dougakiuchi, Masashi; Kambara, Makoto
2016-01-01
Abstract Nanocomposite SiOx particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiOx matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH4 promotes reduction in the oxygen content x of SiOx, and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD. PMID:27933114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Uberuaga, Blas P.
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
Ergul, Ayse Betul; Calıskan, Emrah; Samsa, Hasan; Gokcek, Ikbal; Kaya, Ali; Zararsiz, Gozde Erturk; Torun, Yasemin Altuner
2018-06-18
The effectiveness of using a face mask with a small diffuser for oxygen delivery (OxyMask) was compared to use of a high-flow nasal cannula (HFNC) in patients with moderate or severe bronchiolitis.The study population in this open, phase 4, randomized controlled trial consisted of 60 patients aged 1-24 months diagnosed with moderate or severe bronchiolitis and admitted to an intensive care unit (ICU) for oxygen therapy. The patients were randomized into two groups according to the method of oxygen delivery: a diffuser mask group and an HFNC group.There were seven failures in the mask group and none in the HFNC group. The survival probability differed significantly between the two treatment methods (p = 0.009).Time to weaning off oxygen therapy was 56 h in the HFNC group and 96 h in the mask group (p < 0.001). HFNC use decreased the treatment failure rate and the duration of both oxygen therapy and ICU treatment compared to the diffuser mask, which implies that an HFNC should be the first choice for treating patients admitted to the ICU with severe bronchiolitis. What is known: • A high-flow nasal cannula (HFNC) does not significantly reduce the time on oxygen compared to standard therapy in children with moderate to severe bronchiolitis. Observational studies show that, since the introduction of HFNC, fewer children with bronchiolitis need intubation. For children with moderate to severe bronchiolitis there is no proof of its benefit. What Is New: • In children with moderate to severe bronchiolitis, HFNC provides faster and more effective improvement than can be achieved with a diffuser mask.
NASA Astrophysics Data System (ADS)
Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín
2017-04-01
In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yaobiao; Zhang, Bo; Ye, Jingyun
2012-10-18
We have studied the dynamic relationship between acetone and bridge-bonded oxygen (Ob) vacancy (VO) defect sites on the TiO2(110)-1 × 1 surface using scanning tunneling microscopy (STM) and density function theory (DFT) calculations. We report an adsorbate-assisted VO diffusion mechanism. The STM images taken at 300 K show that acetone preferably adsorbs on the VO site and is mobile. The sequential isothermal STM images directly show that the mobile acetone effectively migrates the position of VO by a combination of two acetone diffusion channels: one is the diffusion along the Ob row and moving as an alkyl group, which healsmore » the initial VO; another is the diffusion from the Ob row to the fivecoordinated Ti4+ row and then moving along the Ti4+ row as an acetone, which leaves a VO behind. The calculated acetone diffusion barriers for the two channels are comparable and agree with experimental results.« less
Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.
Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven
2016-11-30
Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debuigne, J.; Lehr, P.
1963-12-01
The oxidation processes of zirconium at 600-850 deg C were studied. A micrographic and radiocrystallographic analysis of the oxide layers formed at the surface of the metal was carried out. The kinetic results, weight gains as function nf time, were completed by the study of oxygen diffusion through the oxide layer formed and in the underlying metal. (auth)
Goto, Yoshihiro; Morikawa, Akira; Iwasaki, Masaoki; Miura, Masahide; Tanabe, Toshitaka
2018-04-03
Herein, we report on the synthesis of Ce0.5Zr0.5-xTixO2 oxygen storage materials prepared via a solution combustion method. Ce0.5Zr0.4Ti0.1O2 showed an outstanding oxygen storage capacity (1310 μmol-O per g) at 200 °C compared to conventional κ-Ce2Zr2O8 (650 μmol-O per g) due to its cation ordering and the formation of weakly bound oxygen atoms induced by Ti substitution.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Guo, Jian; Zheng, Cong; Xiao, Qiang; Gong, Sugang; Zhao, Qinhua; Wang, Lan; He, Jing; Yang, Wenlan; Shi, Xue; Sun, Xingguo; Liu, Jinming
2015-10-08
This study intended to search for potential correlations between anaemia in patients with severe chronic obstructive pulmonary disease (COPD; GOLD stage III) and pulmonary function at rest, exercise capacity as well as ventilatory efficiency, using pulmonary function test (PFT) and cardiopulmonary exercise testing (CPET). The study was undertaken at Shanghai Pulmonary Hospital, a tertiary-level centre affiliated to Tongji University. It caters to a large population base within Shanghai and referrals from centres in other cities as well. 157 Chinese patients with stable severe COPD were divided into 2 groups: the anaemia group (haemoglobin (Hb) <12.0 g/dL for males, and <11 g/dL for females (n=48)) and the non-anaemia group (n=109). Arterial blood gas, PFT and CPET were tested in all patients. (1) Diffusing capacity for carbon monoxide (DLCO) corrected by Hb was significantly lower in the anaemia group ((15.3±1.9) mL/min/mm Hg) than in the non-anaemia group ((17.1±2.1) mL/min/mm Hg) (p<0.05). A significant difference did not exist in the level of forced expiratory volume in 1 s (FEV1), FEV1%pred, FEV1/forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (p>0.05). (2) Peak Load, Peak oxygen uptake (VO2), Peak VO2%pred, Peak VO2/kg, Peak O2 pulse and the ratio of VO2 increase to WR increase (ΔVO2/ΔWR) were significantly lower in the anaemia group (p<0.05); however, Peak minute ventilation (VE), Lowest VE/carbon dioxide output (VCO2) and Peak dead space/tidal volume ratio (VD/VT) were similar between the 2 groups (p>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01). Anaemia has a negative impact on gas exchange and exercise tolerance during exercise in patients with severe COPD. The decrease in amplitude of Hb levels is related to the quantity of oxygen uptake. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2018-01-01
We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.
NASA Astrophysics Data System (ADS)
Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.
1984-10-01
The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.
MOLECULAR OXYGEN AND THE ADSORPTION OF PHENOLS - EFFECT OF FUNCTIONAL GROUPS
This study reveals that the presence of molecular oxygen (oxic conditions) has a significant impact on the exhibited adsorptive capacity of granular activated carbon (GAC) for several phenolic compounds. The increase in the GAC adsorptive capacity under oxic conditions results f...
Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J
2014-09-06
A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.
Reversible control of magnetism in La 0.67Sr 0.33MnO 3 through chemically-induced oxygen migration
Grutter, A. J.; Gilbert, D. A.; Alaan, U. S.; ...
2016-02-22
We demonstrate reversible control of magnetization and anisotropy in La 0.67Sr 0.33MnO 3 films through interfacial oxygen migration. Gd metal capping layers deposited onto La 0.67Sr 0.33MnO 3 leach oxygen from the film through a solid-state redox reaction to form porous Gd 2O 3. X-ray absorption and polarized neutron reflectometry measurements show Mn valence alterations consistent with high oxygen vacancy concentrations, resulting in suppressed magnetization and increased coercive fields. Effects of the oxygen migration are observed both at the interface and also throughout the majority of a 40 nm thick film, suggesting extensive diffusion of oxygen vacancies. After Gd-capped Lamore » 0.67Sr 0.33MnO 3 is exposed to atmospheric oxygen for a prolonged period of time, oxygen diffuses through the Gd 2O 3 layer and the magnetization of the La 0.67Sr 0.33MnO 3 returns to the uncapped value. In conclusion, these findings showcase perovskite heterostructures as ideal candidates for developing functional interfaces through chemically-induced oxygen migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi
1994-05-12
New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less
van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J
2016-09-01
V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.
Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag
NASA Astrophysics Data System (ADS)
Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi
2015-12-01
The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.
Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
2017-05-04
In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion,more » while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.« less
Morphological and physiological studies on Indian national kabaddi players.
Dey, S K; Khanna, G L; Batra, M
1993-01-01
Twenty-five national kabaddi players (Asiad gold medalists 1990), mean age 27.91 years, who attended a national camp at the Sports Authority of India, Bangalore before the Beijing Asian Games in 1990, were investigated for their physical characteristics, body fat, lean body mass (LBM) and somatotype. The physiological characteristics assessed included back strength, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and related cardiorespiratory parameters (oxygen pulse, breathing equivalent, maximum pulmonary ventilation, maximum heart rate). Body fat was calculated from skinfold thicknesses taken at four different sites, using Harpenden skinfold calipers. An exercise test (graded protocol) was performed on a bicycle ergometer (ER-900) using a computerized EOS Sprint (Jaeger, West Germany). The mean(s.d.) percentage body fat (17.56(3.48)) of kabaddi players was found to be higher than normal sedentary people. Their physique was found to be endomorphic mesomorph (3.8-5.2-1.7). Mean(s.d.) back strength, maximum oxygen uptake capacity (VO2max) and oxygen debt were found to be 162.6(18.08) kg, 42.6(4.91) ml kg-1 min-1 and 5.02(1.29) litre respectively. Physical characteristics, percentage body fat, somatotype, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and other cardiorespiratory parameters were compared with other national counterparts. Present data are comparable with data for judo, wrestling and weightlifting. Since no such study has been conducted on international counterparts, these data could not be compared. These data may act as a guideline in the selection of future kabaddi players and to attain the physiological status comparable to the present gold medalists. Images Figure 4 Figure 5 p242-a PMID:8130960
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-01-01
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g−1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g−1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes. PMID:27088834
NASA Astrophysics Data System (ADS)
Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.
2017-12-01
The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.
Will open ocean oxygen stress intensify under climate change?
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Dunne, J. P.; John, J.
2011-07-01
Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full earth system model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in oxygen is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of oxygen due to lateral diffusion. compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model.
Oxygen vacancies: The origin of n -type conductivity in ZnO
NASA Astrophysics Data System (ADS)
Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong
2016-06-01
Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.
Beuhler, Robert J [East Moriches, NY; White, Michael G [Blue Point, NY; Hrbek, Jan [Rocky Point, NY
2006-08-15
A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.
Baranov, V I; Belichenko, V M; Shoshenko, C A
2000-09-01
Oxygen diffusion from medium to cultured isolated muscle fibers from red gastrocnemius muscle (deep part) (RGM) and white pectoralis muscle (WPM) of embryonic and postnatal chickens (about 6 months) was explored. The intracellular effective O(2) diffusion coefficient (D(i)) in muscle fiber was calculated from a model of a cylindrical fiber with a uniform distribution of an oxygen sink based on these experimentally measured parameters: critical tension of O(2) (PO(2)) on the surface of a fiber, specific rate of O(2) consumption by a weight unit of muscle fibers (;VO(2)), and average diameter of muscle fibers. The results document the rapid hypertrophic growth of RGM fibers when compared to WPM fibers in the second half of the embryonic period and the higher values of;VO(2) and critical PO(2) during the ontogenetic period under study. The oxygen D(i) in RGM fibers of embryos and 1-day chickens was two to three times higher than observed for WPM fibers. For senior chickens, the oxygen D(i) value in RGM and WPM fibers does not differ. The D(i) of O(2) in both RGM and WPM fibers increased from 1.4-2.7 x 10(-8) to 90-95 x 10(-8) cm(2)/s with an ontogenetic increase in fiber diameter from 7. 5 to 67.0 microm. At all stages the oxygen D(i) values in RGM and WPM fibers are significantly lower than the O(2) diffusion coefficient in water: for 11-day embryos they are 889 and 1714 times lower and for adult individuals 25 and 27 times lower, respectively. Why oxygen D(i) values in RGM and WPM fibers are so low and why they are gradually increasing during the course of hypertrophic ontogenetic growth are still unclear. Copyright 2000 Academic Press.
Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo
2005-06-01
The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.
Molecular Diffusion Coefficients: Experimental Determination and Demonstration.
ERIC Educational Resources Information Center
Fate, Gwendolyn; Lynn, David G.
1990-01-01
Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)
Electrochemical cell for obtaining oxygen from carbon dioxide atmospheres
NASA Technical Reports Server (NTRS)
Hooker, M. W.; Rast, H. E.; Rogers, D. K.
1989-01-01
For manned missions to Mars to become a reality, an efficient and reliable means of obtaining oxygen from the carbon dioxide-rich atmosphere will be required. Otherwise, the high cost of transporting the oxygen needed to sustain the astronauts will severely restrict the expedition to the martian surface. Recently, the use of electrochemical devices has been explored as a means of obtaining oxygen from the carbon dioxide-rich atmosphere. In these devices, oxygen ions diffuse through solid oxide membranes, thus, separating oxygen from the other gases presented. This phenomenon has only recently been explored as a means of obtaining large quantities of oxygen from toxic atmospheres, although first observed by Walter nernst in 1899. Nernst observed that stabilized zirconia will conduct oxygen ions when an electrical potential is applied across metallic electrodes applied to the ceramic membrane. Diatomic oxygen molecules are dissociated at the positive electrode/electrolyte interface. The oxygen ions enter the ceramic body due to the ion density gradient which is produced by the electrical potential across the electrolytic membrane. Once the ions have diffused through the membrane, they reform diatomic oxygen molecules at the anode. The separation of oxygen from carbon dioxide is achieved by the combination of thermal and electrochemical processes. The thermal decomposition of carbon dioxide (at 1000 C) results in the production of carbon monoxide and oxygen by the reaction.
Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes
Li, Hui; Yue, Fan; Wen, Hongmei
2016-01-01
This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004
The rise in carboxyhemoglobin from repeated pulmonary diffusing capacity tests.
Zavorsky, Gerald S
2013-03-01
The purpose of this study determined the rise in carboxyhemoglobin percentage (COHb) from repeated pulmonary diffusing capacity tests using 5 or 10s single breath-hold maneuvers. Five male and four female non-smokers [baseline COHb=1.2 (SD 0.5%)] performed repeated pulmonary diffusing capacity testing on two separate days. The days were randomized to either repeated 10s (0.28% CO), or 5s (0.28% CO, 55ppm NO) breath-hold maneuvers. Twenty-two 5s breath-hold maneuvers, each separated by 4min rest, raised COHb to 11.1 (1.4)% and minimally raised the methemoglobin percentage (METHb) by 0.3 (0.2)% to a value of 0.8 (0.2)%. After the 22nd test, pulmonary diffusing capacity for carbon monoxide (DLCO) was reduced by about 4mL/min/mmHg, equating to a 0.44% increase in COHb per 5s breath-hold maneuver and a concomitant 0.35mL/min/mmHg decrease in DLCO. Pulmonary diffusing capacity for nitric oxide (DLNO) was not altered after 22 tests. On another day, the 10s single breath-hold maneuver increased COHb by 0.64% per test, and reduced DLCO by 0.44mL/min/mmHg per test. In conclusion, 5s breath-hold maneuvers do not appreciably raise METHb or DLNO, and DLCO is only significantly reduced when COHb is at least 6%. Copyright © 2013 Elsevier B.V. All rights reserved.
Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba.
Hoffmann, Friederike; Røy, Hans; Bayer, Kristina; Hentschel, Ute; Pfannkuchen, Martin; Brümmer, Franz; de Beer, Dirk
2008-01-01
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6-12 μmol cm -3 sponge day -1 . Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm -3 sponge day -1 , and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.
NASA Astrophysics Data System (ADS)
Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2016-02-01
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.
Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS
NASA Technical Reports Server (NTRS)
Szumila, Ian; Danielson, Lisa; Trail, Dustin
2017-01-01
Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706; Stewart, Derek A., E-mail: derek.stewart@hgst.com
Metal oxide resistive memory devices based on Ta{sub 2}O{sub 5} have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta{sub 2}O{sub 5} is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta{sub 2}O{sub 5}. Identified diffusion paths are associated with collective motion of neighboringmore » atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta{sub 2}O{sub 5} is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta{sub 2}O{sub 5} based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.« less
Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites
Uberuaga, Blas Pedro; Pilania, Ghanshyam
2015-07-08
Perovskite structured oxides (ABO 3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O 6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO 6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two endmore » member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti 4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less
Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.
2013-01-01
High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.
Grinberg, Oleg; Novozhilov, Boris; Grinberg, Stalina; Friedman, Bruce; Swartz, Harold M
2005-01-01
The cylindrical steady-state model developed by Krogh with Erlang has served as the basis of understanding oxygen supply in living tissue for over eighty years. Due to its simplicity and agreement with some observations, it has been extensively used and successfully extended to new fields, especially for situations such as drug diffusion, water transport, and ice formation in tissues. However, the applicability of the model to make even a qualitative prediction of the oxygen level of specific volumes of the tissue is still controversial. We recently have developed an approximate analytical solution of a steady-state diffusion equation for a Krogh cylinder, including oxygen concentration in the capillary. This model was used to explain our previous experimental data on myocardial pO2 in isolated perfused rat hearts measured by EPR oximetry. An acceptable agreement with the experimental data was obtained by assuming that a known limitation of the existing EPR methods--a tendency to over-weight low pO2 values--had resulted in an under-estimate of the pO2. These results are consistent with recent results of others, which stress the importance of taking into account the details of what is measured by various methods.
Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion
2009-01-01
Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections.
Wenisch, C; Parschalk, B; Hasenhündl, M; Wiesinger, E; Graninger, W
1995-01-01
Thirty patients with severe bacterial infections were treated with 50 mg of cefodizime per kg of body weight once daily or 50 mg of ceftriaxone per kg once daily for 10 +/- 3 days. The effect of cefodizime and ceftriaxone on the phagocytic capacity and generation of reactive oxygen intermediates after phagocytosis by granulocytes was assessed prior to, during, and after therapy. Flow cytometry was used to study phagocytic capacity by measuring the uptake of fluorescein-labeled bacteria. The generation of reactive oxygen intermediates after phagocytosis was estimated by the quantification of the intracellular conversion of dihydrorhodamine 123 to rhodamine 123. Prior to therapy, patients in both groups exhibited a decreased capacity to phagocytize Escherichia coli and subsequently to generate reactive oxygen intermediates. Granulocyte function increased after the initiation of therapy and normalized within 7 days for the ceftriaxone-treated patients and within 3 days for the cefodizime group (P < 0.05). In the cefodizime group, an enhancement of phagocytic capacity was observed 14 days after the initiation of therapy (P < 0.05). Prior to therapy, phagocytic capacity was significantly correlated with the generation of reactive oxygen products (r = 0.674 and P < 0.005). PMID:7793871
Water has no effect on oxygen self-diffusion rate in forsterite
NASA Astrophysics Data System (ADS)
Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.
2014-12-01
Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.
Reactivity and oxygen diffusion property of resistive barriers for Bi-2223/Ag tapes
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.
2002-12-01
Reactivity of several oxide materials (OM) with BSCCO powder and oxygen diffusion through OM layer has been tested at temperature ≈840 °C in air. The OM (e.g.: BaZrO 3, SrCO 3, MgO and ZrO 2) showing the low or no reactivity with BSCCO have been mixed (10 wt.%) with precursor powder and used for single-core tapes. Bi-2223/Ag/OM/Ag single-core tapes with oxide barriers made of BaZrO 3, SrCO 3, ZrO 2 and Al 2O 3 have been also prepared by a standard powder-in-tube technique. The used OM in the direct contact with BSCCO influences the electrical properties of Bi-2223 phase differently. These is because the oxides react with BSCCO during the heat treatment and simultaneously affect the 2212→2223 phase transformation, the Bi-2223 grain growth and so also grain connectivity. SrCO 3 powder has been evaluated as the best material from the point of no destructive effect on 2223 phase transport current property. The oxide barrier controls the oxygen diffusion during the tape heat treatment and simultaneously the HTS phase formation kinetics, its purity and content within the superconducting core. For single-core Bi-2223/Ag/OM/Ag tapes, the highest current density was measured for Al 2O 3 due to only slightly reduced oxygen diffusion through the barrier.
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.; McManus, Hugh L.
1996-01-01
It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.
Computational characterization of lightweight multilayer MXene Li-ion battery anodes
NASA Astrophysics Data System (ADS)
Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.
2016-01-01
MXenes, a class of two-dimensional transition metal carbides and nitrides, have shown promise experimentally and computationally for use in energy storage applications. In particular, the most lightweight members of the monolayer MXene family (M = Sc, Ti, V, or Cr) are predicted to have gravimetric capacities above 400 mAh/g, higher than graphite. Additionally, intercalation of ions into multilayer MXenes can be accomplished at low voltages, and low diffusion barriers exist for Li diffusing across monolayer MXenes. However, large discrepancies have been observed between the calculated and experimental reversible capacities of MXenes. Here, dispersion-corrected density functional theory calculations are employed to predict reversible capacities and other battery-related properties for six of the most promising members of the MXene family (O-functionalized Ti- and V-based carbide MXenes) as bilayer structures. The calculated reversible capacities of the V2CO2 and Ti2CO2 bilayers agree more closely with experiment than do previous calculations for monolayers. Additionally, the minimum energy paths and corresponding energy barriers along the in-plane [1000] and [0100] directions for Li travelling between neighboring MXene layers are determined. V4C3O2 exhibits the lowest diffusion barrier of the compositions considered, at 0.42 eV, but its reversible capacity (148 mAh/g) is dragged down by its heavy formula unit. Conversely, the V2CO2 MXene shows good reversible capacity (276 mAh/g), but a high diffusion barrier (0.82 eV). We show that the diffusion barriers of all bilayer structures are significantly higher than those calculated for the corresponding monolayers, advocating the use of dispersed monolayer MXenes instead of multilayers in high performance anodes.
Sorbent-based Oxygen Production for Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Vijay
Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less
Predictors of oxygen desaturation during submaximal exercise in 8,000 patients.
Hadeli, K O; Siegel, E M; Sherrill, D L; Beck, K C; Enright, P L
2001-07-01
To determine predictors of oxygen desaturation during submaximal exercise in patients with various lung diseases. This retrospective case series used pulmonary function laboratory results from all patients referred to a major tertiary-care center. All patients > or = 35 years old who underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), lung volumes, and pulse oximetry during 3-min submaximal step-test exercise during 1996 were included (4,545 men and 3,472 women). Logistic regression models, correcting for gender, age, and weight, determined the odds ratios (ORs) for oxygen desaturation of > or = 4% during exercise for each category of lung function abnormality (compared to those with entirely normal lung function). Approximately 74% of the patients had airways obstruction, while only 5.6% had restriction of lung volumes. One third of those with obstruction had a low DLCO, compared to 56% with restriction, while 2.7% had a low DLCO without obstruction or restriction. The risk of oxygen desaturation during submaximal exercise was very high (OR, 34) in patients with restriction and low DLCO (as in interstitial lung disease) and in patients with obstruction and low DLCO (as in COPD; OR, 18), intermediate (OR, 9) in patients with only a low DLCO, and lowest in those with a normal DLCO (OR, 4 if restricted; OR, 2 if obstructed). A cut point of DLCO < 62% predicted resulted in 75% sensitivity and specificity for exercise desaturation. No untoward cardiac events occurred in any patients during or following the submaximal exercise tests. The risk of oxygen desaturation during submaximal exercise is very high in patients with a low DLCO. Submaximal exercise tests are safe, even in elderly patients with heart and lung diseases.
Rodeghiero, Mirco; Niinemets, Ulo; Cescatti, Alessandro
2007-08-01
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.
Lai, YenJung Sean; Ontiveros-Valencia, Aura; Ilhan, Zehra Esra; Zhou, Yun; Miranda, Evelyn; Maldonado, Juan; Krajmalnik-Brown, Rosa; Rittmann, Bruce E
2017-10-15
Quaternary ammonium compounds (QACs) (e.g., hexadecyltrimethyl-ammonium bromide, CTAB) are emerging contaminants with widespread use as surfactants and disinfectants. Because the initial step of QAC biodegradation is mono-oxygenation, QAC degraders require O 2 , but normal aeration leads to serious foaming. Here, we developed and tested an oxygen-based membrane biofilm reactor (O 2 -MBfR) that delivers O 2 by diffusion through the walls of hollow-membranes to a biofilm accumulating on the outer surface of membranes. The O 2 -MBfR sustained QAC biodegradation even with high and toxic QAC input concentrations, up to 400 mg/L CTAB. Bubbleless O 2 transfer completely eliminated foaming, and biofilm accumulation helped the QAC biodegraders resist toxicity. Pseudomonas, Achromobacter, Stenotrophomonas, and members of the Xanthomonadaceae family were dominant in the biofilm communities degrading CTAB, and their proportions depended on the O 2 -delivery capacity of the membranes. Bacteria capable of biodegrading QACs often harbor antibiotic resistance genes (ARGs) that help them avoid QAC toxicity. Gene copies of ARGs were detected in biofilms and liquid, but the levels of ARGs were 5- to 35-fold lower in the liquid than in the biofilm. In summary, the O 2 -MBfR achieved aerobic biodegradation of CTAB with neither foaming nor toxicity, and it also minimized the spread of ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methane oxidation and formation of EPS in compost: effect of oxygen concentration.
Wilshusen, J H; Hettiaratchi, J P A; De Visscher, A; Saint-Fort, R
2004-05-01
Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters.
Cd(II) removal on surface-modified activated carbon: equilibrium, kinetics and mechanism.
Liang, Jianjun; Liu, Meiling; Zhang, Yufei
2016-10-01
Commercial pulverous activated carbon (AC-0) was modified through two steps: oxidize AC-0 acid firstly, impregnate it with iron using ferric chloride secondly. Orthogonal experiment was conducted then to prepare modified activated carbon with high Cd(II) adsorption capacity (ACNF). Batch adsorption experiments were undertaken to determine the adsorption characteristics of Cd(II) from aqueous solution onto AC-0 and ACNF and the effect of pH, contact time and initial Cd(II) concentration. The results indicate that: the adsorption behavior of Cd(II) on ACNF can be well fitted with Langmuir model, and the maximum adsorption capacity of ACNF was 2.3 times higher than that of AC-0, supporting a monolayer coverage of Cd(II) on the surface. The kinetics of the adsorption process can be described by pseudo-second-order rate equation very well, and the adsorption capacity increased from 0.810 mg/g to 0.960 mg/g after modification. Compared with AC-0, the kinetic parameters of ACNF showed a higher adsorption rate through the aqueous solution to the solid surface and a lower intraparticle diffusion rate. Surface modification resulted in a lower Brunauer-Emmett-Teller (BET) surface area and pore size because of the collapse and blockage of pores, according to the X-ray diffraction (XRD) analysis, while the total number of surface oxygen acid groups increased, and this was supposed to contribute to the enhanced adsorption capacity of modified activated carbon.
Full scale evaluation of diffuser ageing with clean water oxygen transfer tests.
Krampe, J
2011-01-01
Aeration is a crucial part of the biological wastewater treatment in activated sludge systems and the main energy user of WWTPs. Approximately 50 to 60% of the total energy consumption of a WWTP can be attributed to the aeration system. The performance of the aeration system, and in the case of fine bubble diffused aeration the diffuser performance, has a significant impact on the overall plant efficiency. This paper seeks to isolate the changes of the diffuser performance over time by eliminating all other influencing parameters like sludge retention time, surfactants and reactor layout. To achieve this, different diffusers have been installed and tested in parallel treatment trains in two WWTPs. The diffusers have been performance tested in clean water tests under new conditions and after one year of operation. A set of material property tests describing the diffuser membrane quality was also performed. The results showed a significant drop in the performance of the EPDM diffuser in the first year which resulted in similar oxygen transfer efficiency around 16 g/m3/m for all tested systems. Even though the tested silicone diffusers did not show a drop in performance they had a low efficiency in the initial tests. The material properties indicate that the EPDM performance loss is partly due to the washout of additives.
Rahardjo, Yovita S P; Weber, Frans J; le Comte, E Paul; Tramper, Johannes; Rinzema, Arjen
2002-06-05
Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 539-544, 2002.
Diffusion of Redox-Sensitive Elements in Basalt at Different Oxygen Fugacities
NASA Technical Reports Server (NTRS)
Szumila, I.; Trail, D.; Danielson, L. R.
2017-01-01
The terrestrial planets and moons of our solar system have differentiated over a range of oxygen fugacity conditions. Basalts formed from magmas on the Earth cover a range of more oxidized states (from approximately IW (iron wustite) plus 2 to approximately FMQ (fayalite-magnetite-quartz) plus 3) than crustal rocks from Mars (IW to approximately IW plus 3), and basalts from the Moon are more reduced than both, ranging from IW to IW minus 2. The small body Vesta differentiated around IW minus 4. Characterization of redox sensitive elements' diffusivities will offer insight into behavior of these elements as a function of f (fugacity of) O2 for these planetary bodies. Here, we report a systematic study of the diffusion of redox-sensitive elements in basaltic melts with varying oxygen fugacities (fO2) for trace elements, V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Since fO2 is an intensive variable that is different for the reservoirs of various planets and moons in our solar system, it is important to characterize how changes in redox states will affect diffusion. We conducted experiments in a piston cylinder device at 1300 degrees Centigrade and 1 gigapascal, at the University of Rochester and NASA Johnson Space Center. We buffered some experiments at Ru-RuO2 (FMQ plus 6.00), and conducted other experiments within either a graphite or Mo capsule, which corresponds to fO2s of either FMQ minus1.2, or FMQ minus 3.00, respectively. Characterizing the diffusivities of redox sensitive elements at different fO2s is important because some elements, like Eu, have varying valence states, such as Eu (sup 2 plus) and Eu (sup 3 plus). Differences in charge and ion radii may lead to differences in diffusivities within silicate melts. This could, lead to formation of a Eu anomaly by diffusion, the magnitude of which may be controlled by the fO2. Characterization of trace element diffusion is also important in understanding trace element fractionation. We found, during the course of our investigation, that not only did the diffusivities of the redox sensitive elements change with fO2, but that the diffusivities of all other analyzed elements also changed. This indicates that not only do changes in valence influence trace elements diffusivities but that the structure of melt may have changed with varying oxygen fugacity, probably due to changes in the speciation of the major element Fe.
Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.
1999-01-01
Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.
Ma, Jie; Yu, Fei; Zhou, Lu; Jin, Lu; Yang, Mingxuan; Luan, Jingshuai; Tang, Yuhang; Fan, Haibo; Yuan, Zhiwen; Chen, Junhong
2012-11-01
An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.
Bubble Formation Modeling in IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.F.
2000-09-27
The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.
Rhenium-Oxygen Interactions at High Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald
2000-01-01
The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.
Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light
NASA Astrophysics Data System (ADS)
Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.
2017-05-01
A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.
Composition and method for polymer moderated catalytic water formation
Shepodd, Timothy Jon
1999-01-01
A composition suitable for safely removing hydrogen from gaseous mixtures containing hydrogen and oxygen, particularly those mixtures wherein the hydrogen concentration is within the explosive range. The composition comprises a hydrogenation catalyst, preferably Pd dispersed on carbon, wherein the concentration of Pd is from about 1-10 wt %, dispersed in a polymeric material matrix. As well as serving as a matrix to contain the hydrogenation catalyst, the polymeric material, which is substantially unreactive to hydrogen, provides both a diffusion restriction to hydrogen and oxygen, thereby limiting the rate at which the reactants (hydrogen and oxygen) can diffuse to the catalyst surface and thus, the production of heat from the recombination reaction and as a heat sink.
Condiment-Derived 3D Architecture Porous Carbon for Electrochemical Supercapacitors.
Qian, Wenjing; Zhu, Jingyue; Zhang, Ye; Wu, Xiao; Yan, Feng
2015-10-07
The one-step synthesis of porous carbon nanoflakes possessing a 3D texture is achieved by cooking (carbonization) a mixture containing two condiments, sodium glutamate (SG) and sodium chloride, which are commonly used in kitchens. The prepared 3D porous carbons are composed of interconnected carbon nanoflakes and possess instinct heteroatom doping such as nitrogen and oxygen, which furnishes the electrochemical activity. The combination of micropores and mesopores with 3D configurations facilitates persistent and fast ion transport and shorten diffusion pathways for high-performance supercapacitor applications. Sodium glutamate carbonized at 800 °C exhibits high charge storage capacity with a specific capacitance of 320 F g(-1) in 6 m KOH at a current density of 1 A g(-1) and good stability over 10,000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qing; Wei, Yaqing; Yang, Haotian
Here, the low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K xTiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K xTiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K xTiO 2 with large (2more » × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K xTiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g –1 (nearly 3 times of (1 × 1) tunnel-structured Na 2Ti 6O 13) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2Ti 3O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K xTiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K xTiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.« less
Zhang, Qing; Wei, Yaqing; Yang, Haotian; ...
2017-02-03
Here, the low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K xTiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K xTiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K xTiO 2 with large (2more » × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K xTiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g –1 (nearly 3 times of (1 × 1) tunnel-structured Na 2Ti 6O 13) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2Ti 3O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K xTiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K xTiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.« less
Zhang, Qing; Wei, Yaqing; Yang, Haotian; Su, Dong; Ma, Ying; Li, Huiqiao; Zhai, Tianyou
2017-03-01
The low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K x TiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K x TiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K x TiO 2 with large (2 × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K x TiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g -1 (nearly 3 times of (1 × 1) tunnel-structured Na 2 Ti 6 O 13 ) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2 Ti 3 O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K x TiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K x TiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.
Measuring the viscosity of whole bovine lens using a fiber optic oxygen sensing system
Thao, Mai T.; Perez, Daniel; Dillon, James
2014-01-01
Purpose To obtain a better understanding of oxygen and nutrient transport within the lens, the viscosity of whole lenses was investigated using a fiber optic oxygen sensor (optode). The diffusion coefficient of oxygen was calculated using the Stokes-Einstein equation at the slip boundary condition. Methods The optode was used to measure the oxygen decay signal in samples consisting of different glycerol/water solutions with known viscosities. The oxygen decay signal was fitted to a double exponential decay rate equation, and the lifetimes (tau) were calculated. It was determined that the tau-viscosity relationship is linear, which served as the standard curve. The same procedure was applied to fresh bovine lenses, and the unknown viscosity of the bovine lens was calculated from the tau-viscosity relationship. Results The average viscosity in a whole bovine lens was determined to be 5.74±0.88 cP by our method. Using the Stokes-Einstein equation at the slip boundary condition, the diffusion coefficient for oxygen was calculated to be 8.2 × 10−6 cm2/s. Conclusions These data indicate a higher resistance to flow for oxygen and nutrients in the lens than what is currently assumed in the literature. Overall, this study allows a better understanding of oxygen transport within the lens. PMID:24505211
Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves
NASA Astrophysics Data System (ADS)
Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas
2010-03-01
Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.
The effects of capillary transit time heterogeneity (CTH) on brain oxygenation
Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N
2015-01-01
We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion,more » while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.« less
Numerical study of influence of molecular diffusion in the Mild combustion regime
NASA Astrophysics Data System (ADS)
Mardani, Amir; Tabejamaat, Sadegh; Ghamari, Mohsen
2010-09-01
In this paper, the importance of molecular diffusion versus turbulent transport in the moderate or intense low-oxygen dilution (Mild) combustion mode has been numerically studied. The experimental conditions of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154] were used for modelling. The EDC model was used to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI 2.11 full mechanism were used to represent the chemical reactions of an H2/methane jet flame. The importance of molecular diffusion for various O2 levels, jet Reynolds numbers and H2 fuel contents was investigated. Results show that the molecular diffusion in Mild combustion cannot be ignored in comparison with the turbulent transport. Also, the method of inclusion of molecular diffusion in combustion modelling has a considerable effect on the accuracy of numerical modelling of Mild combustion. By decreasing the jet Reynolds number, decreasing the oxygen concentration in the airflow or increasing H2 in the fuel mixture, the influence of molecular diffusion on Mild combustion increases.
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
Taguchi, Yoshio; Ebina, Masahito; Hashimoto, Seishu; Ogura, Takashi; Azuma, Arata; Taniguchi, Hiroyuki; Kondoh, Yasuhiro; Suga, Moritaka; Takahashi, Hiroki; Nakata, Koichiro; Sugiyama, Yukihiko; Kudoh, Shoji; Nukiwa, Toshihiro
2015-11-01
A phase III clinical trial of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF) in Japan has revealed that pirfenidone attenuated the decline in vital capacity (VC) and improved progression-free survival (PFS). We conducted an extended analysis of the pirfenidone trial to investigate its efficacy with respect to IPF severity in the trial population. Patients in the phase III trial were stratified by baseline pulmonary functions including %VC predicted, %diffusion capacity for carbon monoxide predicted, and oxygen saturation by pulse oximetry on exertion and were categorized into mild, moderate, and severe groups of functional impairment. The efficacy of pirfenidone for VC and PFS over 52 weeks was compared among the three sub-populations. Of 264 patients, 102 (39%), 90 (34%), and 72 patients (27%) were classified as having mild, moderate, and severe grades of functional impairment, respectively. This classification was associated with arterial oxygen partial pressure at rest and degree of dyspnea at baseline. While pirfenidone attenuated VC decline at all grades of severity, covariance analysis revealed pirfenidone to have better efficacy in the sub-population with mild-grade IPF. Mixed model repeated measures analysis confirmed that pirfenidone markedly attenuated VC decline in patients with mild-grade IPF compared to its effects in patients with moderate or severe IPF. Pirfenidone also improved PFS markedly in patients with mild-grade IPF. This extended analysis suggested that pirfenidone exerted better therapeutic effects in patients with milder IPF. Further analysis with a larger population is needed to confirm these results. Copyright © 2015. Published by Elsevier B.V.
The Relationship between Aerobic Capacity and Physical Activity in Blind and Sighted Adolescents.
ERIC Educational Resources Information Center
Kobberling, G.; And Others
1991-01-01
This study investigated the relationship between habitual physical activity and aerobic capacity in 30 blind and 30 sighted adolescents. Both physical activity and maximal oxygen consumption were significantly higher among the sighted adolescents. A minimum of 30 minutes of daily activity at a minimal oxygen consumption of 8 METs (resting…
NASA Astrophysics Data System (ADS)
Téllez Lozano, Helena; Druce, John; Cooper, Samuel J.; Kilner, John A.
2017-12-01
18O and 2H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo2O5+δ (PBCO) in flowing air containing 200 mbar of 2H216O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity ( 1.3 × 10-11 cm2s-1) at this temperature and that the presence of water (2H216O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of 3. The 2H distribution, as inferred from the 2H216O- SIMS signal, shows an apparent depth profile which could be interpreted as 2H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.
Kopp, Renate; Schwerte, Thorsten; Egg, Margit; Sandbichler, Adolf Michael; Egger, Bernhard; Pelster, Bernd
2010-09-01
In the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate. Surprisingly, an increased red blood cell concentration and an earlier appearance of trunk vessels in bre larvae indicated some compensation to convective oxygen transport, although in previous studies it has been shown that zebrafish larvae at this stage obtain oxygen by bulk diffusion. In bre animals immunohistochemical analyses showed a significant increase in hypoxia inducible factor 1 (HIF)-α protein expression, comparable with wild-type larvae that were raised under hypoxic conditions. Accordingly, the expression of some hif downstream genes was affected. Furthermore, Affymetrix microarray analyses revealed a large number of genes that were differently expressed comparing control and bre larvae, and the number even increased with proceeding development. The results showed that a chronic reduction in blood flow generated hypoxic molecular signals despite partial compensation by increased oxygen carrying capacity and transiently slowed the overall development of zebrafish bre larvae.
NASA Astrophysics Data System (ADS)
McKenna, Keith P.
2018-02-01
First principles calculations are employed to investigate the structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310) tilt grain boundary with relevance to applications of polycrystalline TiN in microelectronics and protective coatings. We show that the grain boundary does not significantly modify electronic states near the Fermi energy but does induce an upward shift of up to 0.6 eV in a number of deeper occupied bands. We also show that oxygen is preferentially incorporated into the TiN grain boundary (GB) but must overcome relatively high activation energies for further diffusion. These predictions are consistent with the "stuffed barrier model" proposed to explain the good barrier characteristics of TiN. We also show that while the oxidizing power of TiN GBs is not sufficient to reduce HfO2 (a prototypical gate dielectric material), they can act as a scavenger for interstitial oxygen. Altogether, these results provide the much needed atomistic insights into the properties of a model GB in TiN and suggest a number of directions for future investigation.
Stegemann, J
1992-07-01
Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.
NASA Astrophysics Data System (ADS)
Stegemann, J.
Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.
NASA Astrophysics Data System (ADS)
Dong, B.; Wang, G. X.; Yu, H. G.
2017-08-01
The periphyton, attached to the surfaces of submerged plants, has important effects on plant growth and development in eutrophic waters. Periphyton complicates the microenvironment of diffusive boundary layer around submerged plants. We researched periphyton characteristics, oxygen (O2), pH, and Eh microprofiles at various growing stages of Vallisneria natans. The results suggested that during the growing period of V. natans, O2 concentration and pH decreased from 0 to 2 mm above the leaf surface, whereas the Eh increased. As V. natans grew, O2 and pH gradually increased until they peaked during stable growing stages, while the Eh decreased. However, during the decline stage, O2 and pH gradually decreased, and Eh increased. To summarise, O2 and pH showed a unimodal pattern in response to the life cycle of V. natans, with the maximum levels during the stable growth stage and the minimum levels during the rapid growth and decline stages. Our study demonstrated that V. natans growth induced steep gradients in O2 concentrations, pH, and Eh at the DBL by increasing the layer’s thickness, macrophyte photosynthetic capacity, and periphyton biomass in eutrophic waters.
A new approach to assess COPD by identifying lung function break-points
Eriksson, Göran; Jarenbäck, Linnea; Peterson, Stefan; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen
2015-01-01
Purpose COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions. Patients and methods Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1), and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points. Results Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume) and reactance (reactance area and reactance at 5Hz) were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC) and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of −5.3 per unit FEV1, while residual volume had no slope change above and −3.3 change per unit FEV1 below its break-point of 61%. Conclusion Continuous analyses of different lung function parameters over the spirometric COPD severity range gave valuable information additional to categorical analyses. Parameters related to volume, diffusion capacity, and reactance showed break-points around 65% of FEV1, indicating that air trapping starts to dominate in moderate COPD (FEV1 =50%–80%). This may have an impact on the patient’s management plan and selection of patients and/or outcomes in clinical research. PMID:26508849
Elucidating anionic oxygen activity in lithium-rich layered oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jing; Sun, Meiling; Qiao, Ruimin
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
Elucidating anionic oxygen activity in lithium-rich layered oxides
Xu, Jing; Sun, Meiling; Qiao, Ruimin; ...
2018-03-05
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
Perriot, Romain; Uberuaga, Blas P.
2015-04-21
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
Diffuse optical tomography and spectroscopy of breast cancer and fetal brain
NASA Astrophysics Data System (ADS)
Choe, Regine
Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.
Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1975-01-01
Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Tsurumaki-Fukuchi, Atsushi; Nakagawa, Ryosuke; Arita, Masashi; Takahashi, Yasuo
2018-02-14
We demonstrate that the inclusion of a Ta interfacial layer is a remarkably effective strategy for forming interfacial oxygen defects at metal/oxide junctions. The insertion of an interfacial layer of a reactive metal, that is, a "scavenging" layer, has been recently proposed as a way to create a high concentration of oxygen defects at an interface in redox-based resistive switching devices, and growing interest has been given to the underlying mechanism. Through structural and chemical analyses of Pt/metal/SrTiO 3 /Pt structures, we reveal that the rate and amount of oxygen scavenging are not directly determined by the formation free energies in the oxidation reactions of the scavenging metal and unveil the important roles of oxygen diffusibility. Active oxygen scavenging and highly uniform oxidation via scavenging are revealed for a Ta interfacial layer with high oxygen diffusibility. In addition, the Ta scavenging layer is shown to exhibit a highly uniform structure and to form a very flat interface with SrTiO 3 , which are advantageous for the fabrication of a steep metal/oxide contact.
Liu, Hong; Tan, Shuying; Sheng, Zhiya; Yu, Tong; Liu, Yang
2015-03-01
Membrane aerated biofilms (MABs) are subject to "counter diffusion" of oxygen and substrates. In a membrane aerated biofilm reactor, gases (e.g., oxygen) diffuse through the membrane into the MAB, and liquid substrates pass from the bulk liquid into the MAB. This behavior can result in a unique biofilm structure in terms of microbial composition, distribution, and community activity in the MAB. Previous studies have shown simultaneous aerobic oxidation, nitrification, and denitrification within a single MAB. Using molecular techniques, we investigated the growth of sulfate-reducing bacteria (SRB) in the oxygen-based MAB attached to a flat sheet membrane. Denaturing gradient gel electrophoresis of the amplified 16S rRNA gene fragments and functional gene fragments specific for ammonia-oxidizing bacteria (amoA), denitrifying bacteria (nirK), and SRB (dsrB) demonstrated the coexistence of nitrifiers, denitrifiers, and SRB communities within a single MAB. The functional diversities of SRB and denitrifiers decreased with an increase in the oxygen concentration in the bulk water of the reactor.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Brotto, Laura; Battistutta, Franco; Tat, Lara; Comuzzo, Piergiorgio; Zironi, Roberto
2010-03-24
Some modifications to a previous nondestructive colorimetric method that permits evaluation of the oxygen diffusion rate through wine closures were proposed. The method is based on the reaction of indigo carmine solution with oxygen and the tristimulus measurement of the consequent color change. Simplified preparation and measurement procedures were set up, allowing the analysis of a large number of samples simultaneously. The method was applied to the evaluation of the variability within the lot of 20 different types of stoppers (synthetic, produced by molding, and natural cork). The closures were tested at a storage temperature of 26 degrees C. With regard to oxygen permeability, the natural cork stopper showed a low homogeneity within the lot, especially during the first month after bottling, whereas the synthetic closure showed a greater steadiness in the performance. The limits of the colorimetric method were also analyzed, and three possible causes of degradation of the indigo carmine solution were identified: oxygen, light, and heat.
Modification of molybdenum surface by low-energy oxygen implantation at room temperature
NASA Astrophysics Data System (ADS)
Kavre Piltaver, Ivna; Jelovica Badovinac, Ivana; Peter, Robert; Saric, Iva; Petravic, Mladen
2017-12-01
We have studied the initial stages of oxide formation on molybdenum surfaces under 1 keV O2+ ion bombardment at room temperature (RT), using x-ray photoelectron spectroscopy around Mo 3d or O 1s core-levels and the valence band photoemission. The results are compared with the oxidation mechanism of thermally oxidized Mo at RT. The thermal oxidation reveals the formation of a very thin MoO2 layer that prevents any further adsorption of oxygen at higher oxygen doses. Oxygen implantation is more efficient in creating thicker oxide films with the simultaneous formation of several oxide compounds. The oxidation rates of MoO2 and Mo2O5 follow the parabolic growth rate consistent with the mass transport driven by diffusion of either neutral or singly and doubly charged oxygen interstitials. The oxidation of MoO3, which occurs at a later oxidation stage, follows the logarithmic rate driven by the diffusion of cations in an electric field.
Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue
2016-01-01
To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595
Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Shayeganfar, Farzaneh; Shahsavari, Rouzbeh
2016-12-20
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.
Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes.
Kim, Jinsoo; Lim, Hee-Dae; Gwon, Hyeokjo; Kang, Kisuk
2013-03-14
Recently, metal-air batteries, such as lithium-air and zinc-air systems, have been studied extensively as potential candidates for ultra-high energy density storage devices because of their exceptionally high capacities. Here, we report such an electrochemical system based on sodium, which is abundant and inexpensive. Two types of sodium-oxygen batteries were introduced and studied, i.e. with carbonate and non-carbonate electrolytes. Both types could deliver specific capacities (2800 and 6000 mA h g(-1)) comparable to that of lithium-oxygen batteries but with slightly lower discharge voltages (2.3 V and 2.0 V). The reaction mechanisms of sodium-oxygen batteries in carbonate and non-carbonate electrolytes were investigated and compared with those of lithium-oxygen batteries.
Modeling of Diffusion Based Correlations Between Heart Rate Modulations and Respiration Pattern
2001-10-25
1 of 4 MODELING OF DIFFUSION BASED CORRELATIONS BETWEEN HEART RATE MODULATIONS AND RESPIRATION PATTERN R.Langer,(1) Y.Smorzik,(2) S.Akselrod,(1...generations of the bronchial tree. The second stage describes the oxygen diffusion process from the pulmonary gas in the alveoli into the pulmonary...patterns (FRC, TV, rate). Keywords – Modeling, Diffusion , Heart Rate fluctuations I. INTRODUCTION Under a whole-body management perception, the
Davis, Bryce H; Morimoto, Yoshihisa; Sample, Chris; Olbrich, Kevin; Leddy, Holly A; Guilak, Farshid; Taylor, Doris A
2012-10-01
One of the primary limitations of cell therapy for myocardial infarction is the low survival of transplanted cells, with a loss of up to 80% of cells within 3 days of delivery. The aims of this study were to investigate the distribution of nutrients and oxygen in infarcted myocardium and to quantify how macromolecular transport properties might affect cell survival. Transmural myocardial infarction was created by controlled cryoablation in pigs. At 30 days post-infarction, oxygen and metabolite levels were measured in the peripheral skeletal muscle, normal myocardium, the infarct border zone, and the infarct interior. The diffusion coefficients of fluorescein or FITC-labeled dextran (0.3-70 kD) were measured in these tissues using fluorescence recovery after photobleaching. The vascular density was measured via endogenous alkaline phosphatase staining. To examine the influence of these infarct conditions on cells therapeutically used in vivo, skeletal myoblast survival and differentiation were studied in vitro under the oxygen and glucose concentrations measured in the infarct tissue. Glucose and oxygen concentrations, along with vascular density were significantly reduced in infarct when compared to the uninjured myocardium and infarct border zone, although the degree of decrease differed. The diffusivity of molecules smaller than 40 kD was significantly higher in infarct center and border zone as compared to uninjured heart. Skeletal myoblast differentiation and survival were decreased stepwise from control to hypoxia, starvation, and ischemia conditions. Although oxygen, glucose, and vascular density were significantly reduced in infarcted myocardium, the rate of macromolecular diffusion was significantly increased, suggesting that diffusive transport may not be inhibited in infarct tissue, and thus the supply of nutrients to transplanted cells may be possible. in vitro studies mimicking infarct conditions suggest that increasing nutrients available to transplanted cells may significantly increase their ability to survive in infarct.
Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.
2011-03-01
concentrations. Cathode capacity approaching 000mAhg−1 for a Mn based catalyst [7] and cathode capac- ty 5360mAhg−1 for cell employing a hydrophobic ionic ... liquid nd lithium salt were reported [8]. A gravimetric capacity of 813mAhg−1 was achieved using a novel lithium–oxygen cath- de architecture without...andNafion (tetrafluoroethy- ene based fluoropolymer-copolymer) solution in one case and -KB and Nafion in another were prepared and spread on graphite
Interferometric study on the mass transfer in cryogenic distillation under magnetic field
NASA Astrophysics Data System (ADS)
Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.
2017-12-01
Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.
Garzon, Fernando H.; Brosha, Eric L.
1997-01-01
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.
Garzon, F.H.; Brosha, E.L.
1997-12-09
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.
Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold
2015-01-01
Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758
Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li
2018-05-07
Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.
Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans.
Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Madsen, Peter Teglberg; Wang, Tobias; Bayley, Mark
2015-06-01
Thermal sensitivity of the cardiorespiratory oxygen supply capacity has been proposed as the cardinal link underlying the upper boundary of the temperature niche in aquatic ectotherms. Here we examined the evidence for this link in two eurythermal decapods, the Giant tiger shrimp (Penaeus monodon) and the European crayfish (Astacus astacus). We found that both species have a temperature resistant cardiorespiratory system, capable of maintaining oxygen delivery up to their upper critical temperature (Tcrit). In neither species was Tcrit reduced in hypoxia (60% air saturation) and both species showed an exponential increase in heart and gill ventilation rates up to their Tcrit. Further, failure of action potential conduction in preparations of A. astacus motor neurons coincided with Tcrit, indicating that compromised nervous function may provide the underlying determinant for Tcrit rather than oxygen delivery. At high temperatures, absolute aerobic scope was maintained in P. monodon, but reduced in A. astacus. However, A. astacus also displayed reduced exercise intensity indicating that impaired muscle performance with resulting reduced tissue oxygen demand may explain the reduced scope rather than insufficient oxygen supply capacity. This interpretation agrees with early literature on aquatic ectotherms, correlating loss of nervous function with impaired locomotion as temperatures approach Tcrit.
Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments
NASA Astrophysics Data System (ADS)
Hu, Wei-Chieh; Lin, Ta-Hui
2016-04-01
In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.
NASA Astrophysics Data System (ADS)
Epting, William K.; Litster, Shawn
2016-02-01
Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.
Diffusion of neon in white dwarf stars.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2010-12-01
Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.
Pörtner, H O
2001-04-01
Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.
Horina, J H; Schwaberger, G; Brussee, H; Sauseng-Fellegger, G; Holzer, H; Krejs, G J
1993-01-01
The efficacy of recombinant human erythropoietin (rHuEpo) for the treatment of renal anaemia is well established. To assess the effect of rHuEpo treatment on physical performance we evaluated physical working capacity, oxygen uptake and red cell 2,3-diphosphoglycerate (DPG) values at rest and during and after exercise on a bicycle spiroergometer in eight chronically haemodialysed patients. Follow-up examination was carried out after a mean of 14 weeks (range 9-19 weeks), when mean haemoglobin had increased from 7.8 to a stable value of 13.0 g/dl in response to rHuEpo treatment (P < 0.001). Physical working capacity and oxygen uptake at the anaerobic threshold (4 mmol/l blood lactate concentration) increased from 68 +/- 12 to 80 +/- 16 watts and 0.95 +/- 0.14 to 1.10 +/- 0.20 l/min, respectively (P < 0.01). DPG, which determines oxygen affinity to haemoglobin in red cells, increased by 13% from 13.7 +/- 1.5 to 15.5 +/- 2.2 mumol/g Hb (P < 0.05). With maximal exercise mean DPG values significantly decreased to a much lower level without rHuEpo treatment than after correction of anaemia. Therefore rHuEpo treatment results both in better oxygen transport capacity and reduced intraerythrocytic oxygen affinity, which is followed by improved oxygen delivery to tissues per unit of haemoglobin. These effects may explain the improvement of exercise capacity observed in dialysis patients after rHuEpo treatment.
NASA Astrophysics Data System (ADS)
Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming
2017-10-01
Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.
NASA Astrophysics Data System (ADS)
Singleton, V. L.; Gantzer, P.; Little, J. C.
2007-02-01
An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.
Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...
2017-04-12
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
Redistribution of oxygen ions in single crystal YBa2Cu3O7-x owing to external hydrostatic pressure
NASA Astrophysics Data System (ADS)
Boiko, Yu. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhai, G. Ya.; Savich, S. V.
2018-01-01
The effect of high hydrostatic pressure on the temperature dependences of the electrical resistance in the basal plane of single crystal YBa2Cu3O7-x with an oxygen deficit is studied. It is found that an external hydrostatic pressure P ≈ 7 kbar substantially intensifies the diffusive coalescence of oxygen clusters, i.e., causes an increase in their average size. This, in turn, produces an increased number of negative U-centers whose presence leads to the appearance of a phase capable of generating paired carriers of electrical charge and is, therefore, characterized by a higher transition temperature Tc. Changes in the form of the temperature and time dependences of the electrical resistivity under external hydrostatic pressure are discussed in terms of this same hypothesis regarding the mechanism of diffusive coalescence of oxygen clusters.