Study of Oxygen Diffusion in Reduced LiNbO3 Crystals
NASA Astrophysics Data System (ADS)
Yatsenko, A. V.; Pritulenko, A. S.; Yagupov, S. V.; Sugak, D. Yu.; Sol'skii, I. M.
2018-03-01
Using the method of impedance spectroscopy and optical density measurements, the diffusion of oxygen in single crystals of lithium niobate of the congruent composition after the reductive thermochemical processing is studied. The parameters describing the diffusion of oxygen in the temperature range 493-693 K are established.
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
NASA Technical Reports Server (NTRS)
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
A modelling approach for the heterogeneous oxidation of elastomers
NASA Astrophysics Data System (ADS)
Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.
2017-09-01
The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick's law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Astrophysics Data System (ADS)
Good, Brian
2015-03-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the diffusion of oxygen and water vapor through these coatings is undesirable if high temperature corrosion is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated oxygen diffusion in Ytterbium Disilicate. Oxygen vacancy site energies and diffusion barrier energies are computed using Density Functional Theory. We find that many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small in the pure material, with the result that the material is unlikely to exhibit significant oxygen permeability.
Determination of oxygen diffusion kinetics during thin film ruthenium oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.
2015-08-07
In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.
Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen
Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.
Development of lithium diffused radiation resistant solar cells, part 2
NASA Technical Reports Server (NTRS)
Payne, P. R.; Somberg, H.
1971-01-01
The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.
On optima: the case of myoglobin-facilitated oxygen diffusion.
Wittenberg, Jonathan B
2007-08-15
The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.
Regmi, Chola K.; Bhandari, Yuba R.; Gerstman, Bernard S.; Chapagain, Prem P.
2013-01-01
The development of fluorescent proteins (FPs) has revolutionized cell biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for tagging and tracking cellular processes in vivo. Determining oxygen diffusion pathways in FPs can be important for improving photostability and for understanding maturation of the chromophore. We use molecular dynamics (MD) calculations to investigate the diffusion of molecular oxygen in one of the most useful monomeric RFPs, mCherry. We describe a pathway that allows oxygen molecules to enter from the solvent and travel through the protein barrel to the chromophore. We calculate the free-energy of an oxygen molecule at points along the path. The pathway contains several oxygen hosting pockets, which are identified by the amino acid residues that form the pocket. We also investigate an RFP variant known to be significantly less photostable than mCherry and find much easier oxygen access in this variant. The results provide a better understanding of the mechanism of molecular oxygen access into the fully folded mCherry protein barrel and provide insight into the photobleaching process in these proteins. PMID:23363049
NASA Astrophysics Data System (ADS)
Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk
2015-11-01
We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.
Oxygen chemical diffusion in hypo-stoichiometric MOX
NASA Astrophysics Data System (ADS)
Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki
2009-06-01
Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.
NASA Technical Reports Server (NTRS)
Tower, L. K.
1973-01-01
The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.
Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue
2016-01-01
To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
Modeling and simulation of a low-grade urinary bladder carcinoma.
Bunimovich-Mendrazitsky, Svetlana; Pisarev, Vladimir; Kashdan, Eugene
2015-03-01
In this work, we present a mathematical model of the initiation and progression of a low-grade urinary bladder carcinoma. We simulate the crucial processes affecting tumor growth, such as oxygen diffusion, carcinogen penetration, and angiogenesis, within the framework of the urothelial cell dynamics. The cell dynamics are modeled using the discrete technique of cellular automata, while the continuous processes of carcinogen penetration and oxygen diffusion are described by nonlinear diffusion-absorption equations. As the availability of oxygen is necessary for tumor progression, processes of oxygen transport to the tumor growth site seem most important. Our model yields a theoretical insight into the main stages of development and growth of urinary bladder carcinoma with emphasis on the two most common types: bladder polyps and carcinoma in situ. Analysis of histological structure of bladder tumor is important to avoid misdiagnosis and wrong treatment. We expect our model to be a valuable tool in the study of bladder cancer progression due to the exposure to carcinogens and the oxygen dependent expression of genes promoting tumor growth. Our numerical simulations have good qualitative agreement with in vivo results reported in the corresponding medical literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bailey, R.; Sun, Y.
2018-04-01
In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.
Surface defect chemistry and oxygen exchange kinetics in La2-xCaxNiO4+δ
NASA Astrophysics Data System (ADS)
Tropin, E. S.; Ananyev, M. V.; Farlenkov, A. S.; Khodimchuk, A. V.; Berenov, A. V.; Fetisov, A. V.; Eremin, V. A.; Kolchugin, A. A.
2018-06-01
Surface oxygen exchange kinetics and diffusion in La2-xCaxNiO4+δ (x = 0; 0.1; 0.3) have been studied by the isotope exchange method with gas phase equilibration in the temperature range of 600-800 °C and oxygen pressure range 0.13-2.5 kPa. Despite an enhanced electrical conductivity of La2-xCaxNiO4+δ theirs oxygen surface exchange (k*) and oxygen tracer diffusion (D*) coefficients were significantly lower in comparison with La2NiO4+δ. The rates of the elementary stages of oxygen exchange have been calculated. Upon Ca doping the change of the rate-determining stage was observed. The surface of the oxides was found to be inhomogeneous towards oxygen exchange process according to the recently developed model. The reasons of such inhomogeneity are discussed as well as Ca influence on the surface defect chemistry and oxygen surface exchange and diffusivity.
Heat transfer, diffusion, and evaporation
NASA Technical Reports Server (NTRS)
Nusselt, Wilhelm
1954-01-01
Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.
Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen
2011-01-01
The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550–700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300–400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum – most likely along Pt grain boundaries – as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum. PMID:22210951
Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.
Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz
2018-05-23
Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.
Colom, Adai; Galgoczy, Roland; Almendros, Isaac; Xaubet, Antonio; Farré, Ramon; Alcaraz, Jordi
2014-08-01
Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies. © 2013 Wiley Periodicals, Inc.
Jaworski, Jacek; Redlarski, Grzegorz
2014-08-01
This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anomaly diffuse and dielectric relaxation in strontium doped lanthanum molybdate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao; Fan, Huiqing, E-mail: hqfan3@163.com; Shi, Jing
2011-12-15
Highlights: Black-Right-Pointing-Pointer The anomaly diffuse and dielectric relaxation behaviors are fitted by the Cole-Cole approach. Black-Right-Pointing-Pointer The peak in the LSMO is corresponding to different oxygen ion diffusion process. Black-Right-Pointing-Pointer We first give better explanation about the strange conductivity change caused by doping. Black-Right-Pointing-Pointer The oxygen ion diffusion is due to a combination of the dipolar relaxation and the motion of ions. -- Abstract: The dielectric properties of the La{sub 2-x}Sr{sub x}Mo{sub 2}O{sub 9-{delta}} (x = 0-0.2) ceramics were investigated in the temperature range of 300-800 K. Dielectric measurement reveals that two dielectric anomalies, associated with the oxygen ion diffusion,more » exist in frequency spectrum with x = 0.5. The broad dielectric peaks in tan {delta}({omega}) can be well fitted by a modified Cole-Cole approach. When x = 0.1, only one dielectric relaxation peak is observed, corresponding to different oxygen ion diffusion processes, as distinct from the only relaxation peak in the pure La{sub 2}Mo{sub 2}O{sub 9}. The relaxation parameters {tau}{sub 0}, the dielectric relaxation strength {Delta}, and the activation energy E{sub a} were obtained. The result of this work shows that, the conductivity change caused by doping between the two phases is due to the combination of the dipolar effects and motion of ions.« less
Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide
NASA Astrophysics Data System (ADS)
Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.
2017-10-01
In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.
Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart
2017-11-01
Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Strain effects on oxygen vacancy energetics in KTaO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
Strain effects on oxygen vacancy energetics in KTaO 3
Xi, Jianqi; Xu, Haixuan; Zhang, Yanwen; ...
2017-02-07
Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO 3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V 2+O) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO 3. Wemore » find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. Lastly, these anisotropic diffusion processes can further enhance site preferences.« less
Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.
2017-11-17
A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.
Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag
NASA Astrophysics Data System (ADS)
Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi
2015-12-01
The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.
Beuhler, Robert J [East Moriches, NY; White, Michael G [Blue Point, NY; Hrbek, Jan [Rocky Point, NY
2006-08-15
A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.
NASA Astrophysics Data System (ADS)
Gordillo-Delgado, F.; Marín, E.; Calderón, A.
2016-09-01
In this work, the photosynthetic process of maize plants ( Zea mays), which were grown using seeds inoculated with plant growth promoting bacteria Azospirillum brasilense and Burkholderia unamae, was monitored. Photothermal and photobaric signals obtained by a time-resolved photoacoustic measurement configuration were used for measuring the oxygen evolution rate in situ. A frequency-resolved configuration of the method was utilized to determine the oxygen diffusion coefficient and the thermal diffusivity of the maize leaves. The latter parameters, which can be used as indicators of the photosynthetic activity of maize, are found to vary according to the plant-microbe interaction. Treatment with plant growth promoting bacteria induced a decrease in the oxygen diffusion coefficient of about 20 %.
Constraints on oxygen fugacity within metal capsules
NASA Astrophysics Data System (ADS)
Faul, Ulrich H.; Cline, Christopher J., II; Berry, Andrew; Jackson, Ian; Garapić, Gordana
2018-06-01
Experiments were conducted with olivine encapsulated or wrapped in five different metals (Pt, Ni, Ni_{70}Fe_{30}, Fe, and Re) to determine the oxygen fugacity in the interior of large capsules used for deformation and seismic property experiments. Temperature (1200°C), pressure (300 MPa), and duration (24 h) were chosen to represent the most common conditions in these experiments. The oxygen fugacity was determined by analysing the Fe content of initially pure Pt particles that were mixed with the olivine powder prior to the experiments. Oxygen fugacities in the more oxidizing metal containers are substantially below their respective metal-oxide buffers, with the fO_2 of sol-gel olivine in Ni about 2.5 orders of magnitude below Ni-NiO. Analysis of olivine and metal blebs reveals three different length-, and hence diffusive time scales: (1) Fe loss to the capsule over ˜ 100 μ m, (2) fO_2 gradients at the sample-capsule interface up to 2 mm into the sample, and (3) constant interior fO_2 values with an ordering corresponding to the capsule material. The inferred diffusive processes are: Fe diffusion in olivine with a diffusivity ˜ 10^{-14} m^2/s, diffusion possibly of oxygen along grain boundaries with a diffusivity ˜ 10^{-12} m^2/s, and diffusion possibly involving pre-existing defects with a diffusivity ˜ 10^{-10} m^2/s. The latter, fast adjustment to changing fO_2 may consist of a rearrangement of pre-existing defects, representing a metastable equilibrium, analogous to decoration of pre-existing defects by hydrogen. Full adjustment to the external fO_2 requires atomic diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debuigne, J.; Lehr, P.
1963-12-01
The oxidation processes of zirconium at 600-850 deg C were studied. A micrographic and radiocrystallographic analysis of the oxide layers formed at the surface of the metal was carried out. The kinetic results, weight gains as function nf time, were completed by the study of oxygen diffusion through the oxide layer formed and in the underlying metal. (auth)
UO(2) Oxidative Corrosion by Nonclassical Diffusion.
Stubbs, Joanne E; Chaka, Anne M; Ilton, Eugene S; Biwer, Craig A; Engelhard, Mark H; Bargar, John R; Eng, Peter J
2015-06-19
Using x-ray scattering, spectroscopy, and density-functional theory, we determine the structure of the oxidation front when a UO(2) (111) surface is exposed to oxygen at ambient conditions. In contrast to classical diffusion and previously reported bulk UO(2+x) structures, we find oxygen interstitials order into a nanoscale superlattice with three-layer periodicity and uranium in three oxidation states: IV, V, and VI. This oscillatory diffusion profile is driven by the nature of the electron transfer process, and has implications for understanding the initial stages of oxidative corrosion in materials at the atomistic level.
Modeling of acetone biofiltration process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiu-Mu Tang; Shyh-Jye Hwang; Wen-Chuan Wang
1996-12-31
The objective of this research was to investigate the kinetic behavior of the biofiltration process for the removal of acetone 41 which was used as a model compound for highly water soluble gas pollutants. A mathematical model was developed by taking into account diffusion and biodegradation of acetone and oxygen in the biofilm, mass transfer resistance in the gas film, and flow pattern of the bulk gas phase. The simulated results obtained by the proposed model indicated that mass transfer resistance in the gas phase was negligible for this biofiltration process. Analysis of the relative importance of various rate stepsmore » indicated that the overall acetone removal process was primarily limited by the oxygen diffusion rate. 11 refs., 6 figs., 1 tab.« less
Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua
2005-08-01
The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
NASA Astrophysics Data System (ADS)
Han, Myung-Soo; Kim, Dae Hyeon; Ko, Hang Ju; Shin, Jae Chul; Kim, Hyo Jin; Kim, Do Gun
2014-06-01
In this work, a novel fabrication method for VOx-ZnO multilayers with mixed phase of the VO2 and V2O3 through the diffusion of oxygen by annealing at low temperature is presented. A stable sandwich structure of a VOx/ZnO/VOx multilayer was deposited at room temperature, through the oxygen gas flow rate, by RF sputtering system, and the mixed phase was formed through oxygen diffusion by annealing at O2 atmosphere. The results show that the single phase like multilayer formed by this process has a high TCR of more than -2.5%/K and low resistance of about 100 kohm at room temperature. XRD results for the as-deposited VOx/ZnO/VOx multilayer.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.; McManus, Hugh L.
1996-01-01
It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
Method and apparatus for producing oxygen and nitrogen and membrane therefor
Roman, I.C.; Baker, R.W.
1985-09-17
Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.
Method and apparatus for producing oxygen and nitrogen and membrane therefor
Roman, Ian C.; Baker, Richard W.
1985-01-01
Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
Oxygen diffusion: an enzyme-controlled variable parameter.
Erdmann, Wilhelm; Kunke, Stefan
2014-01-01
Previous oxygen microelectrode studies have shown that the oxygen diffusion coefficient (DO₂) increases during extracellular PO₂ decreases, while intracellular PO₂ remained unchanged and thus cell function (spike activity of neurons). Oxygen dependency of complex multicellular organisms requires a stable and adequate oxygen supply to the cells, while toxic concentrations have to be avoided. Oxygen brought to the tissue by convection diffuses through the intercellular and cell membranes, which are potential barriers to diffusion. In gerbil brain cortex, PO₂ and DO₂ were measured by membrane-covered and by bare gold microelectrodes, as were also spike potentials. Moderate respiratory hypoxia was followed by a primary sharp drop of tissue PO₂ that recovered to higher values concomitant with an increase of DO₂. A drop in intracellular PO₂ recovered immediately. Studies on the abdominal ganglion of aplysia californica showed similar results.Heterogeneity is a feature of both normal oxygen supply to tissue and supply due to a wide range of disturbances in oxygen supply. Oxygen diffusion through membranes is variable thereby ensuring adequate intracellular PO₂. Cell-derived glucosamine oxidase seems to regulate the polymerization/depolymerisation ratio of membrane mucopolysaccharides and thus oxygen diffusion.Variability of oxygen diffusion is a decisive parameter for regulating the supply/demand ratio of oxygen supply to the cell; this occurs in highly developed animals as well as in species of a less sophisticated nature. Autoregulation of oxygen diffusion is as important as the distribution/perfusion ratio of the capillary meshwork and as the oxygen extraction ratio in relation to oxygen consumption of the cell. Oxygen diffusion resistance is the cellular protection against luxury oxygen supply (which can result in toxic oxidative species leading to mutagenesis).
Modeling of Diffusion Based Correlations Between Heart Rate Modulations and Respiration Pattern
2001-10-25
1 of 4 MODELING OF DIFFUSION BASED CORRELATIONS BETWEEN HEART RATE MODULATIONS AND RESPIRATION PATTERN R.Langer,(1) Y.Smorzik,(2) S.Akselrod,(1...generations of the bronchial tree. The second stage describes the oxygen diffusion process from the pulmonary gas in the alveoli into the pulmonary...patterns (FRC, TV, rate). Keywords – Modeling, Diffusion , Heart Rate fluctuations I. INTRODUCTION Under a whole-body management perception, the
Micro-Raman study of isotope substitution in YBa2Cu183O6.2 during local laser annealing
NASA Astrophysics Data System (ADS)
Ivanov, V. G.; Iliev, M. N.; Thomsen, C.
1995-11-01
The local laser heating of YBa2Cu183O6.2 in air was used to study the oxygen diffusion and oxygen ordering in sample volumes of the order of a few μm3. Raman microprobe at points corresponding to different annealing temperatures was applied to monitor both the stages of substitution of 16O for 18O at different oxygen sites and the structural changes in the basal [Cu(1)-O(1)] planes occurring during the oxygen in-diffusion. The population of the O(1) sites initially results in the formation of short Cu(1)-O(1) fragments which later conjunct into long chains. The results can be applied for a better understanding of oxygen reordering processes in YBa2Cu3O7-δ during thermal treatment.
Interferometric study on the mass transfer in cryogenic distillation under magnetic field
NASA Astrophysics Data System (ADS)
Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.
2017-12-01
Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.
Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim
1993-01-01
The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.
Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model
NASA Astrophysics Data System (ADS)
Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin
2015-03-01
An appropriate expression for the oxygen supply rate (Γs) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate Γs=g (1-[O]/[]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O]/[]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of Γs to [3O2]/] are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (ϕ). The results show a linear relationship between Γs and [3O2]/], independent of ϕ and photochemical parameters; the obtained g ranges from 0.4 to 1390 μM/s.
Heat-induced redistribution of surface oxide in uranium
NASA Astrophysics Data System (ADS)
Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph
1990-09-01
The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.
Sutton, Jonathan E.; Beste, Ariana; Steven H. Overbury
2015-10-12
In this study, we use density functional theory to explain the preferred structure of partially reduced CeO 2(111). Low-energy ordered structures are formed when the vacancies are isolated (maximized intervacancy separation) and the size of the Ce 3+ ions is minimized. Both conditions help minimize disruptions to the lattice around the vacancy. The stability of the ordered structures suggests that isolated vacancies are adequate for modeling more complex (e.g., catalytic) systems. Oxygen diffusion barriers are predicted to be low enough that O diffusion between vacancies is thermodynamically controlled at room temperature. The O-diffusion-reaction energies and barriers are decreased when onemore » Ce f electron hops from a nearest-neighbor Ce cation to a next-nearest-neighbor Ce cation, with a barrier that has been estimated to be slightly less than the barrier to O diffusion in the absence of polaron hopping. In conculsion, this indicates that polaron hopping plays a key role in facilitating the overall O diffusion process, and depending on the relative magnitudes of the polaron hopping and O diffusion barriers, polaron hopping may be the kinetically limiting process.« less
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms
Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.
2016-01-01
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S
2016-05-10
The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.
Quantitative confirmation of diffusion-limited oxidation theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, K.T.; Clough, R.L.
1990-01-01
Diffusion-limited (heterogeneous) oxidation effects are often important for studies of polymer degradation. Such effects are common in polymers subjected to ionizing radiation at relatively high dose rate. To better understand the underlying oxidation processes and to aid in the planning of accelerated aging studies, it would be desirable to be able to monitor and quantitatively understand these effects. In this paper, we briefly review a theoretical diffusion approach which derives model profiles for oxygen surrounded sheets of material by combining oxygen permeation rates with kinetically based oxygen consumption expressions. The theory leads to a simple governing expression involving the oxygenmore » consumption and permeation rates together with two model parameters {alpha} and {beta}. To test the theory, gamma-initiated oxidation of a sheet of commercially formulated EPDM rubber was performed under conditions which led to diffusion-limited oxidation. Profile shapes from the theoretical treatments are shown to accurately fit experimentally derived oxidation profiles. In addition, direct measurements on the same EPDM material of the oxygen consumption and permeation rates, together with values of {alpha} and {beta} derived from the fitting procedure, allow us to quantitatively confirm for the first time the governing theoretical relationship. 17 refs., 3 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
Down-regulation of respiration in pear fruit depends on temperature.
Ho, Quang Tri; Hertog, Maarten L A T M; Verboven, Pieter; Ambaw, Alemayehu; Rogge, Seppe; Verlinden, Bert E; Nicolaï, Bart M
2018-04-09
The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.
Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.
Budhiraja, Vikas; Hellums, J David
2002-09-01
The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qinghua; He, Xu; Shi, Jinan
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less
Zhang, Qinghua; He, Xu; Shi, Jinan; ...
2017-07-24
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less
Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae
2017-01-01
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088
NASA Astrophysics Data System (ADS)
Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae
2017-02-01
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.
Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae
2017-02-23
We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.
Bouwer, S T; Hoofd, L; Kreuzer, F
2001-02-16
The purpose of this study was to verify the concept of non-equilibrium facilitated oxygen diffusion. This work succeeds our previous study, where facilitated oxygen diffusion by hemoglobin was measured at conditions of chemical equilibrium, and which yielded diffusion coefficients of hemoglobin and of oxygen. In the present work chemical non-equilibrium was induced using very thin diffusion layers. As a result, facilitation was decreased as predicted by theory. Thus, this work presents the first experimental demonstration of non-equilibrium facilitated oxygen diffusion. In addition, association and dissociation rate parameters of the reaction between oxygen and bovine and human hemoglobin were calculated and the effect of the homotropic and heterotropic interactions on each rate parameter was demonstrated. The results indicate that the homotropic interaction--which leads to increasing oxygen affinity with increasing oxygenation--is predominantly due to an increase in the association rate. The heterotropic interaction--which leads to decreasing oxygen affinity by anionic ligands--appears to be effected in two ways. Cl- increases the dissociation rate. In contrast, 2,3-diphosphoglycerate decreases the association rate.
Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation
NASA Astrophysics Data System (ADS)
Günay, Seçkin D.
2016-11-01
In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.
NASA Astrophysics Data System (ADS)
Park, A. J.; Chan, M. A.
2006-12-01
Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.
Laminar Soot Processes (Lsp) Experiment: Findings From Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Kim, C. H.; El-Leathy, A. M.; Faeth, G. M.; Xu, F.
2003-01-01
Processes of soot formation and oxidation must be understood in order to achieve reliable computational combustion calculations for nonpremixed (diffusion) flames involving hydrocarbon fuels. Motivated by this observation, the present investigation extended earlier work on soot formation and oxidation in laminar jet ethylene/air and methane/oxygen premixed and acetylene-nitrogen/air diffusion flames at atmospheric pressure in this laboratory, emphasizing soot surface growth and early soot surface oxidation in laminar diffusion flames fueled with a variety of hydrocarbons at pressures in the range 0.1 - 1.0 atm.
[Function of alveoles as a result of evolutionary development of respiratory system in mammals].
Ivanov, K P
2013-01-01
Reaction of hemoglobin oxygenation is known to occur for 40 femtoseconds (40 x 10(-15) s). However, the process of oxygen diffusion to hemoglobin under physiologic conditions decelerated this reaction approximately billion times. In mammalian lungs, blood is moving at a high rate and in a relatively high amount. The human lung mass is as low as 600 g, but the complete cardiac output approaches 6 1/min. In rat, from 20 to 40 ml of blood is passed for q min through the lung whose mass is about 1.5 g. Such blood flow rate is possible, as in lungs of high animals there exists a dense network of relatively large microvessels with diameter from 20 to 40 microm and more. In spite of a large volume and a high blood flow rate hampering oxygen diffusion, the complete blood oxygenation occurs in lung alveoli. This is due to peculiar mechanisms that facilitate markedly the oxygen diffusion and that developed in alveoli of mammals in the course of many million years of evolution of their respiratory system. Thus, alveolus is not a bubble with air, but a complex tool of fight with inertness of diffusion. It is interesting that in lungs of the low vertebrates, neither such system of blood vessels nor alveoli exist, and their blood flow rate is much lower than in mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing
Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less
Riley, Jarrett; Siriwardane, Ranjani; Tian, Hanjing; ...
2017-05-20
Chemical Looping Gasification (CLG) is an emerging technology that shows promise for efficient coal gasification by eliminating the need for energy intensive gas separations to achieve a non-nitrogen diluted syngas stream. Oxygen from oxygen carriers, such as CaFe 2O 4, are used for coal gasification in place of conventionally produced gaseous oxygen from cryogenic separation of air. These oxygen carriers are unique for their ability to selectively oxidize coal to form syngas and show limited reactivity with syngas components (H 2, CO). To gain a deeper understanding of how these unique oxygen carriers perform and to offer a first attemptmore » at the reaction modeling of solid mediated interactions of this nature, this study was carried out to determine the kinetic parameters associated with the selective oxidation of coal derived char (Wyodak and Illinois #6) with a metal ferrite, CaFe 2O 4. Using thermogravimetric analysis (TGA) coupled with mass spectrometry, the selective oxygen release of metal ferrite in the presence of char by proximal contact was examined. The application of combinatory model fitting approaches was used to describe controlling resistances during oxygen release. A combination of the modified shrinking core model (SCM) with planar oxygen ion diffusion control and reaction order based models was used for kinetic parameter determination. CaFe 2O 4 particle size plays a major role in the prevailing mode of oxygen release. Particle sizes on the order of 40–50 μm tend to favor first order kinetically controlled regimes independent of geometric and diffusion controls. The probability for oxygen ion diffusion controlling regimes increased when the particle size range of the oxygen carrier was increased up to 350 μm. Char type also impacted the prevalence of the controlling regime. Higher ranked chars react in a slower manner, limiting the gradient for oxygen ion release from the oxygen carrier. Activation energies determined for this process range from 120–200kJ/mol and oxygen ion diffusion coefficients are on the order of 10-8 cm 2/s. It is suggested that oxygen ion movement is regulated by lattice diffusion out of partially reduced phases (Ca 2Fe 2O 5) and through reduced outer layers composed of CaO and Fe. The controlled movement of oxygen ions influences the rate of carbon oxidation in the char and therefore the selectivity towards partial oxidation products, which are desirable in CLG applications.« less
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
Effect of oxygen on dislocation multiplication in silicon crystals
NASA Astrophysics Data System (ADS)
Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi
2018-03-01
This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.
NASA Astrophysics Data System (ADS)
Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.
2017-12-01
The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.
Oxygen vacancies: The origin of n -type conductivity in ZnO
NASA Astrophysics Data System (ADS)
Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong
2016-06-01
Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
Starck, J M; Weimer, I; Aupperle, H; Müller, K; Marschang, R E; Kiefer, I; Pees, M
2015-11-01
A qualitative and quantitative morphological study of the pulmonary exchange capacity of healthy and diseased Burmese pythons (Python molurus) was carried out in order to test the hypothesis that the high morphological excess capacity for oxygen exchange in the lungs of these snakes is one of the reasons why pathological processes extend throughout the lung parenchyma and impair major parts of the lungs before clinical signs of respiratory disease become apparent. Twenty-four Burmese pythons (12 healthy and 12 diseased) were included in the study. A stereology-based approach was used to quantify the lung parenchyma using computed tomography. Light microscopy was used to quantify tissue compartments and the respiratory exchange surface, and transmission electron microscopy was used to measure the thickness of the diffusion barrier. The morphological diffusion capacity for oxygen of the lungs and the anatomical diffusion factor were calculated. The calculated anatomical diffusion capacity was compared with published values for oxygen consumption of healthy snakes, and the degree to which the exchange capacity can be obstructed before normal physiological function is impaired was estimated. Heterogeneous pulmonary infections result in graded morphological transformations of pulmonary parenchyma involving lymphocyte migration into the connective tissue and thickening of the septal connective tissue, increasing thickness of the diffusion barrier and increasing transformation of the pulmonary epithelium into a columnar pseudostratified or stratified epithelium. The transformed epithelium developed by hyperplasia of ciliated cells arising from the tip of the faveolar septa and by hyperplasia of type II pneumocytes. These results support the idea that the lungs have a remarkable overcapacity for oxygen consumption and that the development of pulmonary disease continuously reduces the capacity for oxygen consumption. However, due to the overcapacity of the lungs, this reduction does not result in clinical signs and disease can progress unrecognized for an extended period. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Mao; Li, Yan; Wen, Peng Paul
2014-01-01
The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.
Oxygen and wound care: a review of current therapeutic modalities and future direction.
Howard, Michael A; Asmis, Reto; Evans, Karen Kim; Mustoe, Thomas A
2013-01-01
While the importance of oxygen to the wound healing process is well accepted, research and technological advances continue in this field and efforts are ongoing to further utilize oxygen as a therapeutic modality. In this paper, the authors briefly review the role of oxygen in wound healing and discuss the distinct mechanism of action as well as the advantages and disadvantages of the three major oxygen-based therapies currently in clinical use (Hyperbaric Oxygen and Topical Oxygen and Continuous Diffusion of Oxygen), as well as review the existing literature regarding these distinct therapeutic modalities. © 2013 by the Wound Healing Society.
Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.
1996-01-01
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.
Desorption of oxygen from YBa2Cu3O6+x films studied by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bock, A.; Kürsten, R.; Brühl, M.; Dieckmann, N.; Merkt, U.
1996-08-01
Phonons of laser-deposited YBa2Cu3O6+x films on MgO(100) substrates are investigated in a Raman setup as a function of laser power density. Investigations of YBa2Cu3O7 films allow us to study oxygen out-diffusion, where the onset of out-diffusion is indicated by the appearance of disorder-induced modes in the Raman spectra. At a pressure of 5×10-6 mbar the temperature threshold of the out-diffusion is (490+/-15) K. With increasing oxygen pressure the observed temperature thresholds rise only moderately in contrast to the behavior expected from the pox-T phase diagram of YBa2Cu3O6+x. Even at 1 bar oxygen partial pressure out-diffusion is observed and tetragonal sites with x=0 develop. These observations can be explained by photon-stimulated desorption of oxygen. Investigations of YBa2Cu3O6 films allow us to study oxygen in-diffusion. In 1 bar oxygen we observe competing oxygen fluxes due to thermally activated diffusion and photon-stimulated desorption. From these measurements we determine an upper bound of the thermal activation energy of the oxygen in-diffusion into YBa2Cu3O6 films of (0.19+/-0.01) eV.
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P
2015-11-01
To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.
Process for photosynthetically splitting water
Greenbaum, Elias
1984-01-01
The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.
SIMS study of oxygen diffusion in monoclinic HfO2
NASA Astrophysics Data System (ADS)
Mueller, Michael P.; De Souza, Roger A.
2018-01-01
The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .
Measurement of the oxygen mass transfer through the air-water interface.
Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas
2005-01-01
Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.
1996-08-06
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.
Mixed ionic and electronic conducting membranes for hydrogen generation and separation
NASA Astrophysics Data System (ADS)
Cui, Hengdong
Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Yuan, Fenglin; Zhang, Yanwen; Weber, William J.
2015-05-19
In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less
NASA Astrophysics Data System (ADS)
Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo
2018-05-01
Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.
Osmotic phenomena in application for hyperbaric oxygen treatment.
Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G
2011-03-01
Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.
Schuldes, Matthew; Riley, Jeffrey B.; Francis, Stephen G.; Clingan, Sean
2016-01-01
Abstract: Gaseous microemboli (GME) are an abnormal physiological occurrence during cardiopulmonary bypass and extracorporeal membrane oxygenation (ECMO). Several studies have correlated negative sequelae with exposure to increased amounts of GME. Hypobaric oxygenation is effective at eliminating GME in hollow-fiber microporous membrane oxygenators. However, hollow-fiber diffusion membrane oxygenators, which are commonly used for ECMO, have yet to be validated. The purpose of this study was to determine if hypobaric oxygenation, compared against normobaric oxygenation, can reduce introduced GME when used on diffusion membrane oxygenators. Comparison of a sealed Quadrox-iD with hypobaric sweep gas (.67 atm) vs. an unmodified Quadrox-iD with normal atmospheric sweep gas (1 atm) in terms of GME transmission during continuous air introduction (50 mL/min) in a recirculating in vitro circuit, over a range of flow rates (3.5, 5 L/min) and crystalloid prime temperatures (37°C, 28°C, and 18°C). GME were measured using three EDAC Doppler probes positioned pre-oxygenator, post-oxygenator, and at the arterial cannula. Hypobaric oxygenation vs. normobaric oxygenation significantly reduced hollow-fiber diffusion membrane oxygenator GME transmission at all combination of pump flows and temperatures. There was further significant reduction in GME count between the oxygenator outlet and at the arterial cannula. Hypobaric oxygenation used on hollow-fiber diffusion membrane oxygenators can further reduce GME compared to normobaric oxygenation. This technique may be a safe approach to eliminate GME during ECMO. PMID:27729706
Influence of oxygen on the chemical stage of radiobiological mechanism
NASA Astrophysics Data System (ADS)
Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel
2016-07-01
The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.
Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.
Gantzer, Paul A; Bryant, Lee D; Little, John C
2009-04-01
Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.
Electrochemical cell for obtaining oxygen from carbon dioxide atmospheres
NASA Technical Reports Server (NTRS)
Hooker, M. W.; Rast, H. E.; Rogers, D. K.
1989-01-01
For manned missions to Mars to become a reality, an efficient and reliable means of obtaining oxygen from the carbon dioxide-rich atmosphere will be required. Otherwise, the high cost of transporting the oxygen needed to sustain the astronauts will severely restrict the expedition to the martian surface. Recently, the use of electrochemical devices has been explored as a means of obtaining oxygen from the carbon dioxide-rich atmosphere. In these devices, oxygen ions diffuse through solid oxide membranes, thus, separating oxygen from the other gases presented. This phenomenon has only recently been explored as a means of obtaining large quantities of oxygen from toxic atmospheres, although first observed by Walter nernst in 1899. Nernst observed that stabilized zirconia will conduct oxygen ions when an electrical potential is applied across metallic electrodes applied to the ceramic membrane. Diatomic oxygen molecules are dissociated at the positive electrode/electrolyte interface. The oxygen ions enter the ceramic body due to the ion density gradient which is produced by the electrical potential across the electrolytic membrane. Once the ions have diffused through the membrane, they reform diatomic oxygen molecules at the anode. The separation of oxygen from carbon dioxide is achieved by the combination of thermal and electrochemical processes. The thermal decomposition of carbon dioxide (at 1000 C) results in the production of carbon monoxide and oxygen by the reaction.
Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1975-01-01
Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods
NASA Astrophysics Data System (ADS)
Durduran, Turgut
Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility. In total, the research has pioneered the development of diffuse optical measurements of blood flow, oxygenation and oxygen metabolism in a large range of research and clinical applications.
Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California
Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara
2009-01-01
Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).
Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.
De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred
2008-04-21
The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.
2003-01-01
The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and oxygen reactions occur. This results in a sharp gradient in oxygen concentration from the edge where it is supplied to the nearest source of carbon, which is where the oxygen is quickly consumed. A moving reaction front is seen in which the outlaying carbon is consumed before the next inner layer of carbon begins to react.
Molecular dynamics analysis of diffusion of uranium and oxygen ions in uranium dioxide
NASA Astrophysics Data System (ADS)
Arima, T.; Yoshida, K.; Idemitsu, K.; Inagaki, Y.; Sato, I.
2010-03-01
Diffusion behaviours of oxygen and uranium were evaluated for bulk and grain-boundaries of uranium dioxide using the molecular dynamics (MD) simulation. It elucidated that oxygen behaved like liquid in superionic state at high temperatures and migrated on sub-lattice sites accompanying formation of lattice defects such as Frenkel defects at middle temperatures. Formation energies of Frenkel and Shottky defects were compared to literature data, and migration energies of oxygen and uranium were estimated by introducing vacancies into the supercell. For grain-boundaries (GB) modelled by the coincidence-site lattice theory, MD calculations showed that GB energy and diffusivities of oxygen and uranium increased with the misorientation angle. By analysing GB structures such as pair-correlation functions, it also showed that the disordered phase was observed for uranium as well as oxygen in GBs especially for a large misorientation angle such as S5 GB. Hence, GB diffusion was much larger than bulk diffusion for oxygen and uranium.
Modelling oxygen self-diffusion in UO 2 under pressure
Cooper, Michael William D.; Grimes, R. W.; Fitzpatrick, M. E.; ...
2015-10-22
Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO 2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO 2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.
Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics
Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...
2015-03-05
In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less
Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher
2016-04-28
This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.
Role of Hf4+ Doping on Oxygen Grain Boundary Diffusion in Alumina
2014-09-01
Statement of Purpose 56 Chapter 4. Experimental Procedure 57 4.1 Powder Processing 57 4.1.1 Hf02-doped Alumina 59 4.1.2 Other Alumina/Ni Composites 60...combination of five to ten other elements alloyed with nickel to achieve a significant improvement in properties such as creep, oxidation and so on, as...lifetime. Considering the growth of the alumina protective layer is a diffusion controUed- process , understanding the transport mechanisms of Al and O in the
Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide
NASA Astrophysics Data System (ADS)
Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.
2018-03-01
The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longeville, Stéphane; Stingaciu, Laura-Roxana
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
Study on low intensity aeration oxygenation model and optimization for shallow water
NASA Astrophysics Data System (ADS)
Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi
2018-02-01
Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.
2003-01-01
Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.
1992-07-01
22202-4302. and to the Office of Managel ent and Bidget . P worki Reduction Pfo4ect(07T4-016 Wahington. DC 20S03. -1. AGENCY USE ONLY (Leave blank) 2...higher pool elevation can not be maintained, it is likely that additional aerators must be installed for incremental use to meet periodic heavy oxygen...install additional aerators throughout the reservoir for incremental use as needed to enhance oxygen diffusion processes. The difficulty with this
Rahardjo, Yovita S P; Weber, Frans J; le Comte, E Paul; Tramper, Johannes; Rinzema, Arjen
2002-06-05
Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 539-544, 2002.
NASA Astrophysics Data System (ADS)
Berger, Christian; Bucher, Edith; Windischbacher, Andreas; Boese, A. Daniel; Sitte, Werner
2018-03-01
The Sr-free mixed ionic electronic conducting perovskites La0.8Ca0.2FeO3-δ (LCF82) and Pr0.8Ca0.2FeO3-δ (PCF82) were synthesized via a glycine-nitrate process. Crystal structure, phase purity, and lattice constants were determined by XRD and Rietveld analysis. The oxygen exchange kinetics and the electronic conductivity were obtained from in-situ dc-conductivity relaxation experiments at 600-800 °C and 1×10-3≤pO2/bar≤0.1. Both LCF82 and PCF82 show exceptionally fast chemical surface exchange coefficients and chemical diffusion coefficients of oxygen. The oxygen nonstochiometry of LCF82 and PCF82 was determined by precision thermogravimetry. A point defect model was used to calculate the thermodynamic factors of oxygen and to estimate self-diffusion coefficients and ionic conductivities. Density Functional Theory (DFT) calculations on the crystal structure, oxygen vacancy formation as well as oxygen migration energies are in excellent agreement with the experimental values. Due to their favourable properties both LCF82 and PCF82 are of interest for applications in solid oxide fuel cell cathodes, solid oxide electrolyser cell anodes, oxygen separation membranes, catalysts, or electrochemical sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakulin, A. V., E-mail: bakulin@ispms.tsc.ru; Kulkova, S. E.; Hu, Q. M.
2015-02-15
The oxygen sorption on the low-index (001), (100), and (110) surfaces of a γ-TiAl alloy is studied by the pseudopotential method with the generalized gradient approximation for the exchange-correlation functional. The most preferred sites for oxygen sorption in the bulk and on the surface of the alloy are determined. The titanium-rich octahedral site is shown to be preferred for oxygen sorption in the bulk material. The effect of the oxygen concentration on the atomic and electronic structures of the stoichiometric TiAl(100) surface is studied. It is shown that, at the first stage of oxidation, oxygen prefers to form bonds withmore » titanium. The energy barriers for oxygen diffusion on the stoichiometric (100) surface and in the bulk of the material are calculated. The energy barriers are shown to depend substantially on the local environments of oxygen and to increase during diffusion from titanium-rich sites. The most possible mechanism of oxygen diffusion from the (100) surface to the bulk of the material is oxygen migration through tetrahedral sites.« less
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1993-01-01
Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.
Oxygen diffusion in Gd-doped mixed oxides
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2017-10-23
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Oxygen diffusion in Gd-doped mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer - A pilot study
NASA Astrophysics Data System (ADS)
Anand, Suresh; Sujatha, N.; Narayanamurthy, V. B.; Seshadri, V.; Poddar, Richa
2014-02-01
Foot ulceration due to diabetes mellitus is a major problem affecting 12-25% of diabetic subjects in their lifetime. An untreated ulcer further gets infected which causes necrosis leading to amputation of lower extremities. Early identification of risk factors and treatment for these chronic wounds would reduce health care costs and improve the quality of life for people with diabetes. Recent clinical investigations have shown that a series of factors including reduced oxygen delivery and disturbed metabolism have been observed on patients with foot ulceration due to diabetes. Also, these factors can impair the wound healing process. Optical techniques based on diffuse reflectance spectroscopy provide characteristic spectral finger prints shed light on tissue oxygenation levels and morphological composition of a tissue. This study deals with the application of diffuse reflectance intensity ratios based on oxyhemoglobin bands (R542/R580), ratios of oxy- and deoxy-hemoglobin bands (R580/R555), total hemoglobin concentration and hemoglobin oxygen saturation between normal and diabetic foot ulcer sites. Preliminary results obtained are found to be promising indicating the application of reflectance spectroscopy in the assessment of foot ulcer healing.
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
Cuticular gas exchange by Antarctic sea spiders.
Lane, Steven J; Moran, Amy L; Shishido, Caitlin M; Tobalske, Bret W; Woods, H Arthur
2018-04-25
Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or sea spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas exchange. Here, we examined alternative paths of gas exchange in sea spiders: (1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, (2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or (3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of sea spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas exchange and structural support, in which the cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas exchange. © 2018. Published by The Company of Biologists Ltd.
Bifunctional catalytic electrode
NASA Technical Reports Server (NTRS)
Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)
2005-01-01
The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2016-10-31
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.
Pendleton, Phillip; Wu, Sophie Hua
2003-10-15
This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.
Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat
NASA Technical Reports Server (NTRS)
Canfield, Donald E.; Des Marais, David J.
1993-01-01
Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works. We infer from the data the various sinks for O2 as well as the sources of carbon for primary production. Although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Oxygenic photosynthesis was the most important process of carbon fixation. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount.
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
NASA Astrophysics Data System (ADS)
Strömberg, Tomas; Karlsson, Hanna; Fredriksson, Ingemar; Nyström, Fredrik H.; Larsson, Marcus
2014-05-01
Microvascular assessment would benefit from co-registration of blood flow and hemoglobin oxygenation dynamics during stimulus response tests. We used a fiber-optic probe for simultaneous recording of white light diffuse reflectance (DRS; 475-850 nm) and laser Doppler flowmetry (LDF; 780 nm) spectra at two source-detector distances (0.4 and 1.2 mm). An inverse Monte Carlo algorithm, based on a multiparameter three-layer adaptive skin model, was used for analyzing DRS data. LDF spectra were conventionally processed for perfusion. The system was evaluated on volar forearm recordings of 33 healthy subjects during a 5-min systolic occlusion protocol. The calibration scheme and the optimal adaptive skin model fitted DRS spectra at both distances within 10%. During occlusion, perfusion decreased within 5 s while oxygenation decreased slowly (mean time constant 61 s dissociation of oxygen from hemoglobin). After occlusion release, perfusion and oxygenation increased within 3 s (inflow of oxygenized blood). The increased perfusion was due to increased blood tissue fraction and speed. The supranormal hemoglobin oxygenation indicates a blood flow in excess of metabolic demands. In conclusion, by integrating DRS and LDF in a fiber-optic probe, a powerful tool for assessment of blood flow and oxygenation in the same microvascular bed has been presented.
Strömberg, Tomas; Karlsson, Hanna; Fredriksson, Ingemar; Nyström, Fredrik H; Larsson, Marcus
2014-05-01
Microvascular assessment would benefit from co-registration of blood flow and hemoglobin oxygenation dynamics during stimulus response tests. We used a fiber-optic probe for simultaneous recording of white light diffuse reflectance (DRS; 475-850 nm) and laser Doppler flowmetry (LDF; 780 nm) spectra at two source-detector distances (0.4 and 1.2 mm). An inverse Monte Carlo algorithm, based on a multiparameter three-layer adaptive skin model, was used for analyzing DRS data. LDF spectra were conventionally processed for perfusion. The system was evaluated on volar forearm recordings of 33 healthy subjects during a 5-min systolic occlusion protocol. The calibration scheme and the optimal adaptive skin model fitted DRS spectra at both distances within 10%. During occlusion, perfusion decreased within 5 s while oxygenation decreased slowly (mean time constant 61 s; dissociation of oxygen from hemoglobin). After occlusion release, perfusion and oxygenation increased within 3 s (inflow of oxygenized blood). The increased perfusion was due to increased blood tissue fraction and speed. The supranormal hemoglobin oxygenation indicates a blood flow in excess of metabolic demands. In conclusion, by integrating DRS and LDF in a fiber-optic probe, a powerful tool for assessment of blood flow and oxygenation in the same microvascular bed has been presented.
NASA Astrophysics Data System (ADS)
Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe
2017-04-01
Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water column. Additionally, entrainment of POM into the water column during resuspension events, and the associated increase in remineralization there, also increased oxygen consumption in the region of the water column below the pycnocline. During these resuspension events, modeled rates of oxygen consumption increased by factors of up to ˜ 2 and ˜ 8 in the seabed and below the pycnocline, respectively. When averaged over 2 months, the intermittent cycles of erosion and deposition led to a ˜ 16 % increase of oxygen consumption in the seabed, as well as a larger increase of ˜ 140 % below the pycnocline. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhône Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in bottom waters, only a thin seabed oxic layer, and abundant labile organic matter.
NASA Astrophysics Data System (ADS)
Bomba, A. Ya.; Safonik, A. P.
2018-05-01
A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.
NASA Astrophysics Data System (ADS)
Bomba, A. Ya.; Safonik, A. P.
2018-03-01
A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.
Water has no effect on oxygen self-diffusion rate in forsterite
NASA Astrophysics Data System (ADS)
Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.
2014-12-01
Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.
NASA Astrophysics Data System (ADS)
Poulsen, H. F.; Andersen, N. H.; Lebech, B.
1991-02-01
We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa 2Cu 3O 6+ x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes and 250 and 350Å, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J=J 0 exp( {-t}/{τ}) despite a rather broad particle size distribution. At higher temperatures, τ is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective bulk oxygen in-diffusion. All our results may be interpreted in terms of the 2D ASYNNNI model description of the oxygen basal plane ordering, and they suggest that recent first principles interaction parameters should be modified.
Nitrous Oxide Production in Co- Versus Counter-Diffusion Nitrifying Biofilms
NASA Astrophysics Data System (ADS)
Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie
2016-06-01
For the application of biofilm processes, a better understanding of nitrous oxide (N2O) formation within the biofilm is essential for design and operation of biofilm reactors with minimized N2O emissions. In this work, a previously established N2O model incorporating both ammonia oxidizing bacteria (AOB) denitrification and hydroxylamine (NH2OH) oxidation pathways is applied in two structurally different biofilm systems to assess the effects of co- and counter-diffusion on N2O production. It is demonstrated that the diffusion of NH2OH and oxygen within both types of biofilms would form an anoxic layer with the presence of NH2OH and nitrite ( ), which would result in a high N2O production via AOB denitrification pathway. As a result, AOB denitrification pathway is dominant over NH2OH oxidation pathway within the co- and counter-diffusion biofilms. In comparison, the co-diffusion biofilm may generate substantially higher N2O than the counter-diffusion biofilm due to the higher accumulation of NH2OH in co-diffusion biofilm, especially under the condition of high-strength ammonium influent (500 mg N/L), thick biofilm depth (300 μm) and moderate oxygen loading (~1-~4 m3/d). The effect of co- and counter-diffusion on N2O production from the AOB biofilm is minimal when treating low-strength nitrogenous wastewater.
Nitrous Oxide Production in Co- Versus Counter-Diffusion Nitrifying Biofilms
Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie
2016-01-01
For the application of biofilm processes, a better understanding of nitrous oxide (N2O) formation within the biofilm is essential for design and operation of biofilm reactors with minimized N2O emissions. In this work, a previously established N2O model incorporating both ammonia oxidizing bacteria (AOB) denitrification and hydroxylamine (NH2OH) oxidation pathways is applied in two structurally different biofilm systems to assess the effects of co- and counter-diffusion on N2O production. It is demonstrated that the diffusion of NH2OH and oxygen within both types of biofilms would form an anoxic layer with the presence of NH2OH and nitrite ( ), which would result in a high N2O production via AOB denitrification pathway. As a result, AOB denitrification pathway is dominant over NH2OH oxidation pathway within the co- and counter-diffusion biofilms. In comparison, the co-diffusion biofilm may generate substantially higher N2O than the counter-diffusion biofilm due to the higher accumulation of NH2OH in co-diffusion biofilm, especially under the condition of high-strength ammonium influent (500 mg N/L), thick biofilm depth (300 μm) and moderate oxygen loading (~1–~4 m3/d). The effect of co- and counter-diffusion on N2O production from the AOB biofilm is minimal when treating low-strength nitrogenous wastewater. PMID:27353382
Computational Analyses of Complex Flows with Chemical Reactions
NASA Astrophysics Data System (ADS)
Bae, Kang-Sik
The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme and Thomas algorithm are applied to solve the nonlinear partial differential equations (PDEs). This study shows that the important factors which have an effect on the drug penetration depth to the tissue are the mass diffusivity and the consumption of relevant species during the time allowed for diffusion to the brain tissue. Also, a computational fluid dynamics (CFD) model has been developed to simulate the blood flow and oxygen/drug diffusion in a three dimensional capillary network, which are satisfied in the physiological range of a typical capillary. A three dimensional geometry has been constructed to replicate the one studied by Secomb et al. (2000), and the computational framework features a non-Newtonian viscosity model for blood, the oxygen transport model including in oxygen-hemoglobin dissociation and wall flux due to tissue absorption, as well as an ability to study the diffusion of drugs and other materials in the capillary streams. Finally, a chemical kinetic mechanism of JP-10 has been compiled and validated for a wide range of combustion regimes, covering pressures of 1atm to 40atm with temperature ranges of 1,200 K--1,700 K, which is being studied as a possible Jet propellant for the Pulse Detonation Engine (PDE) and other high-speed flight applications such as hypersonic missiles. The comprehensive skeletal mechanism consists of 58 species and 315 reactions including in CPD, Benzene formation process by the theory for polycyclic aromatic hydrocarbons (PAH) and soot formation process on the constant volume combustor, premixed flame characteristics.
NASA Technical Reports Server (NTRS)
Good, Brian S.
2011-01-01
Yttria-stabilized zirconia s high oxygen diffusivity and corresponding high ionic conductivity, and its structural stability over a broad range of temperatures, have made the material of interest for use in a number of applications, for example, as solid electrolytes in fuel cells. At low concentrations, the stabilizing yttria also serves to increase the oxygen diffusivity through the presence of corresponding oxygen vacancies, needed to maintain charge neutrality. At higher yttria concentration, however, diffusivity is impeded by the larger number of relatively high energy migration barriers associated with yttrium cations. In addition, there is evidence that oxygen vacancies preferentially occupy nearest-neighbor sites around either dopant or Zr cations, further affecting vacancy diffusion. We present the results of ab initio calculations that indicate that it is energetically favorable for oxygen vacancies to occupy nearest-neighbor sites adjacent to Y ions, and that the presence of vacancies near either species of cation lowers the migration barriers. Kinetic Monte Carlo results from simulations incorporating this effect are presented and compared with results from simulations in which the effect is not present.
Kohfahl, Claus; Graupner, Torsten; Fetzer, Christian; Pekdeger, Asaf
2010-11-01
This article reports fibre-optic oxygen measurements on a reactive mine waste heap located in the polymetallic sulphide mine district of Freiberg in south-eastern Germany. The heaped material consists of sulphide-bearing tailings from a processing plant of a lead-zinc mine. Mine waste material was deposited in the water phase after separation of mining ores in a flotation process. The tailing impoundment is partly covered with coarse sand and topsoil. Oxygen profiles were monitored during one year at eleven locations showing different physical and mineralogical compositions. At each location a borehole was drilled where the optic sensors were installed at 2-5 different depths. After installation the oxygen profiles were monitored seven times during one year from 2006-2007 and three to five oxygen profiles at each location were obtained. Oxygen measurements were accompanied by physical, chemical and mineralogical data of the tailing material. Additionally, a detailed mineralogical profile was analysed at a location representative for the central part of the heap, where the cemented layers show lateral continuity. Results showed that cemented layers have a significant influence on natural attenuation of the toxic As and Pb species owing to their capacity of water retention. The measured oxygen profiles are controlled by the zone of active pyrite weathering as well as by the higher water content in the cemented layers which reduces gaseous atmospheric oxygen supply. In contrast, gypsum bearing hardpans detected at three other locations have no detectable influence on oxygen profiles. Furthermore, the grain size distribution was proved to have a major effect on oxygen diffusivity due to its control on the water saturation. Temporal changes of the oxygen profiles were only observed at locations with coarse sediment material indicating also an important advective part of gas flux. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.
2016-04-01
Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.
Non-signalling energy use in the developing rat brain
Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N
2016-01-01
Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699
NASA Astrophysics Data System (ADS)
Gulsoy, Gokce; Was, Gary S.
2015-04-01
Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293
Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.
Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken
2011-01-01
Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion. An EBC system typically includes a bond coat located between the EBC and the component surface. Bond coat materials are generally chosen for properties other than low oxygen diffusivity, but low oxygen diffusivity is nevertheless a desirable characteristic, as the bond coat could provide some additional component protection, particularly in the case where cracks in the coating system provide a direct path from the environment to the bond coat interface. We have therefore performed similar kMC simulations of oxygen diffusion in this material.
Flewelling, Sarena; Parker, Scott L
2015-08-01
Development of reptile embryos is dependent upon adequate oxygen availability to meet embryonic metabolic demand. Metabolic rate of embryos is temperature dependent, with oxygen consumption increasing exponentially as a function of temperature. Because metabolic rate is more temperature sensitive than diffusion, developmental processes are predicted to be oxygen-limited at high temperatures. We tested the hypothesis that the amount of development lizard embryos achieve in the oviduct is dependent upon both temperature and oxygen availability. We evaluated the effect of temperature (23, 33°C) and oxygen concentration (9%, 15%, 21% O2 ) on survival and development of embryos of the oviparous skink Scincella lateralis. We predicted that incubation at 33°C under hypoxic conditions would result in higher embryo mortality due to mismatch between embryo oxygen demand and oxygen supply compared to eggs incubated at 23°C under hypoxic conditions. Embryo mortality was highest at 33°C/9% O2 (86%) compared to 23°C/9% O2 (14%), however, mortality did not differ among any other oxygen-temperature treatment combination. Both temperature and oxygen affected differentiation, but the interaction between temperature and oxygen was not significant. Embryo growth in mass and hatchling mass were affected by oxygen concentration independent of temperature treatment. Differing responses of growth and differentiation to temperature and oxygen treatments suggests that somatic growth may be more sensitive to oxygen availability than differentiation. Results indicate that embryo mortality can occur both via the direct effect of high temperature on cellular function as well as indirectly through thermally induced oxygen diffusion limitation. © 2015 Wiley Periodicals, Inc.
Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone
NASA Astrophysics Data System (ADS)
Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim
2017-04-01
Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline. Journal of Geophysical Research 118. Hahn, J., Brandt, P., Greatbatch, R., Krahmann, G., Körtzinger, A., 2014. Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone. Climate Dynamics 43, 2999-3024.
NASA Astrophysics Data System (ADS)
Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.
2012-10-01
Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.
Soldatov, A A
2012-01-01
Effect of hypoosmotic conditions of medium on oxygen regime of skeletal muscles of the stenohalin goby Gobius cobitus Pallas was studied under conditions of experiment. The control fish group was maintained at 12-14 %o, the experimental one - at 4.8-5.6 per thousand. Duration of the experiment - 44-45 days, water temperature - 15 +/- 1 degrees C, photoperiod - 12 day/12 night. It was established that under conditions of external hypoosmia there occurred hydration of the goby skeletal muscles and a decrease of their diffusion capability with respect to oxygen. The latter was accompanied by the tissue P(O2) decrease, which is indicated by low values of P(O2) in the venous blood outflowing from muscles. For the first 14-16 days of adaptation to the hypoosmotic medium there were restricted processes of mass transfer and oxygen utilization, which was associated with a decrease of the voluminous tissue blood flow and the blood oxygen concentration. These changes occurred on the background of the blood plasma hydration and a decrease of the number of circulated erythrocytes, and then they were completely compensated.
Pischedda, L; Poggiale, J C; Cuny, P; Gilbert, F
2008-06-01
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.
Bouwer, S T; Hoofd, L; Kreuzer, F
1997-03-07
Diffusion coefficients of oxygen (DO2) and hemoglobin (DHb) were obtained from measuring the oxygen flux through thin layers of hemoglobin solutions at 20 degrees C. The liquid layers were supported by a membrane and not soaked in any filter material. Oxygen fluxes were measured from the changes in oxygen partial pressure in the gas phases at both sides of the layer. A mathematical treatment is presented for correct evaluation of the measurements. Measurements were done for bovine and for human hemoglobin. Hemoglobin concentrations (CHb) were between 11 and 42 g/dl, which covers the concentrations in the erythrocyte. Both DO2 and DHb could be fitted to the empirical equation D = D0(1-CHb/C1)10-CHb/C2. The following parameters were obtained: DO = 1.80 x 10(-9) m2/s, C1 = 100 g/dl, C2 = 119 g/dl, for oxygen and D0 = 7.00 x 10(-11) m2/s, C1 = 46 g/dl, C2 = 128 g/dl, for hemoglobin. No difference between the diffusion coefficients of bovine or human hemoglobin was found. The diffusion coefficients of hemoglobin were higher than most values reported in the literature, probably because in this study the mobility of hemoglobin was not hindered by surrounding filter material.
Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen
2017-02-01
In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical reaction of atomic oxygen with evaporated films of copper, part 4
NASA Technical Reports Server (NTRS)
Fromhold, A. T.; Williams, J. R.
1990-01-01
Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).
Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu
2014-04-22
Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.
Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations
Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...
2016-04-01
Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less
Growth of the 889 per cm infrared band in annealed electron-irradiated silicon
NASA Technical Reports Server (NTRS)
Svensson, B. G.; Lindstrom, J. L.; Corbett, J. W.
1985-01-01
Isothermal annealing of electron-irradiated Czochralski silicon has been studied at four different temperatures ranging from 304 to 350 C using infrared spectroscopy. At annealing temperatures above 300 C the irradiation-induced band at 830 per cm, usually attributed to a vacancy-oxygen complex (the A center), disappears and a new band at 889 per cm grows up. Within the experimental accuracy, the activation energy for the growth of this band is found to be identical with the value given by Stavola et al. for 'anomalous' oxygen diffusion in silicon. Also the frequency factors for the two processes are in reasonable agreement. The results show that a vacancy-assisted process may provide an explanation for enhanced motion of oxygen in silicon.
Factors related to the implementation and diffusion of new technologies: a pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
In order to develop an understanding of how government intervention affects the processes of implementation and diffusion of new technologies, case studies of 14 technologies were carried out: automobiles; broadcast radio; frozen foods; black and white TV; color TV; polio vaccine; supersonic transport; fluoridation of water supplies; computer-aided instruction; basic oxygen process for steel; numerical control in manufacturing; digital computers; lasers; and integrated circuit. The key factors, their motivations for implementing/adopting the technology (or not doing so), the interactions among the key factors, and how these affected implementation/adoption are examined.
Heise, H M; Lampen, P; Stücker, M
2003-11-01
The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.
About the Role of the Bottleneck/Cork Interface on Oxygen Transfer.
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Paulin, Christian; Simon, Jean-Marc; Gougeon, Régis D; Bellat, Jean-Pierre
2016-09-07
The transfer of oxygen through a corked bottleneck was investigated using a manometric technique. First, the effect of cork compression on oxygen transfer was evaluated without considering the glass/cork interface. No significant effect of cork compression (at 23% strain, corresponding to the compression level of cork in a bottleneck for still wines) was noticeable on the effective diffusion coefficient of oxygen. The mean value of the effective diffusion coefficient is equal to 10(-8) m(2) s(-1), with a statistical distribution ranging from 10(-10) to 10(-7) m(2) s(-1), which is of the same order of magnitude as for the non-compressed cork. Then, oxygen transfer through cork compressed in a glass bottleneck was determined to assess the effect of the glass/cork interface. In the particular case of a gradient-imposed diffusion of oxygen through our model corked bottleneck system (dry cork without surface treatment; 200 and ∼0 hPa of oxygen on both sides of the sample), the mean effective diffusion coefficient is of 5 × 10(-7) m(2) s(-1), thus revealing the possible importance of the role of the glass/stopper interface in the oxygen transfer.
Titanium aluminide intermetallic alloys with improved wear resistance
Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.
2014-07-08
The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.
Oxygen gradients in the microcirculation.
Pittman, R N
2011-07-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.
Oxygen Gradients in the Microcirculation
Pittman, Roland N.
2010-01-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
2018-01-17
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling
NASA Astrophysics Data System (ADS)
Chhabra, Mahendra
The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A new parameter "Oxygen Deficiency Factor" (ODF) is defined to quantify oxygen deficiency in local regions of the cornea. We use this concept to determine the minimum required contact-lens oxygen transmissibility, Dk/L = 150 Barrer/cm, to avoid hypoxia-induced corneal physiologic complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngala, V.T.; Page, C.L.; Parrott, L.J.
1995-05-01
Steady-state diffusion of dissolved oxygen and chloride ions in hydrated OPC and OPC/30%PFA pastes, hydrated for 2 weeks at 20 C and 10 weeks at 38 C, was studied at water/binder (w/s) ratios 0.4, 0.5, 0.6 and 0.7. Total porosity and a simple measure of capillary porosity, the volume fractions of the water lost in specimens from a saturated surface dry condition to a near-constant weight at 90.7% relative humidity, were also determined. The diffusion rate of chloride ions diminished markedly, to very low values, as the capillary porosity approached zero. For a given w/s ratio or capillary porosity themore » chloride ion diffusion coefficient for OPC/30%PFA pastes was about one order of magnitude smaller than that to OPC pastes. The rate of diffusion of dissolved oxygen also diminished as the capillary porosity reduced but it was still significant as the capillary porosity approached zero. For a given capillary porosity the oxygen diffusion coefficient for OPC/30%PFA pastes was about 30% smaller than that for OPC pastes. The results support the view that chloride ion diffusion in pastes of low capillary porosity is retarded by the surface charge of the hydrated cement gel. In contrast, the hydrated cement gel is much more permeable to the similarly-sized, neutral oxygen molecule.« less
Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy
2015-01-01
Background It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Materials and methods Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate–malate or N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)–ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate–malate as substrate. Results As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. Conclusion In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process. PMID:26203225
Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy
2015-01-01
It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate-malate or N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)-ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate-malate as substrate. As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate-malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD-ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process.
Kinetic Monte Carlo Simulations of Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian
2017-01-01
Ceramic Matrix Components (CMC) components for use in turbine engines offer a number of advantages compared with current practice. However, such components are subject to degradation through a variety of mechanisms. In particular, in the hot environment inside a turbine in operation a considerable amount of water vapor is present, and this can lead to corrosion and recession. Environmental Barrier Coating (EBC) systems that limit the amount of oxygen and water reaching the component are required to reduce this degradation and extend component life. A number of silicate-based materials are under consideration for use in such coating systems, including Yttterbium and Yttrium di- and monosilicates. In this work, we present results of kinetic Monte Carlo computer simulations of oxygen diffusion in Yttrium disilicate, and compare with previous work on Yttterbium disilicate. Coatings may also exhibit cracking, and the cracks can provide a direct path for oxygen to reach the component. There is typically a bond coat between the coating and component surface, but the bond coat material is generally chosen for properties other than low oxygen diffusivity. Nevertheless, the degree to which the bond coat can inhibit oxygen diffusion is of interest, as it may form the final defense against oxygen impingement on the component. We have therefore performed similar simulations of oxygen diffusion through HfSiO4, a proposed bond coat material.
Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation
NASA Astrophysics Data System (ADS)
Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji
2018-06-01
Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.
Oxygen self-diffusion in diopside with application to cooling rate determinations
NASA Astrophysics Data System (ADS)
Farver, John R.
1989-04-01
The kinetics of oxygen self-diffusion in a natural diopside have been measured over the temperature range 700-1250°C. Experiments were run under hydrothermal conditions using 18O-enriched water. Profiles of 18O/( 16O+ 18O) versus depth into the crystal were obtained using an ion microprobe. At 1000 bars (100 MPa) confining pressure, the Arrhenius relation for diffusion parallel to the c crystallographic direction yields a pre-exponential factor ( D0) = 1.5 × 10 -6 cm 2/s and an activation energy ( Q) = 54 ± 5 kcal/g-atom O (226 kJ/g-atom O) over the temperature range of the experiments. Diffusion coefficients parallel to the c crystallographic direction are ≈ 100 times greater than perpendicular to c. The oxygen self-diffusion coefficient obtained for diopside is ≈ 1000 times less than that for diffusion in feldspars, and ≈ 100 times less than that for quartz at 800°C, transport parallel to the c axis. Closure temperatures calculated for oxygen diffusional exchange in natural diopside are significantly higher than for quartz or feldspars. Measurable oxygen isotope exchange in diopside by diffusion would require geological settings with very high temperatures maintained for very long durations. The oxygen diffusional exchange kinetics in diopside presented in this paper find important applications in studies of meteoric hydrothermal circulation systems and the time-temperature history of high-grade regionally metamorphosed terrains. Examples considered include the Outer Unlayered Gabbro, Cuillins Gabbro Complex, Isle of Skye, Scotland, and the granulite-grade Turpentine Hill Metamorphics near Einasleigh, Queensland, Australia.
Oxygen depletion speeds and simplifies diffusion in HeLa cells.
Edwald, Elin; Stone, Matthew B; Gray, Erin M; Wu, Jing; Veatch, Sarah L
2014-10-21
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilot, P.; Bonnefoy, F.; Marcuccilli, F.
1993-10-01
Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o]more » increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuschel, Thomas; Keudell, Achim von
2010-05-15
Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with thismore » microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.« less
Oxygen transfer in a full-depth biological aerated filter.
Stenstrom, Michael K; Rosso, Diego; Melcer, Henryk; Appleton, Ron; Occiano, Victor; Langworthy, Alan; Wong, Pete
2008-07-01
The City of San Diego, California, evaluated the performance capabilities of biological aerated filters (BAFs) at the Point Loma Wastewater Treatment Plant. The City conducted a 1-year pilot-plant evaluation of BAF technology supplied by two BAF manufacturers. This paper reports on the first independent oxygen-transfer test of BAFs at full depth using the offgas method. The tests showed process-water oxygen-transfer efficiencies of 1.6 to 5.8%/m (0.5 to 1.8%/ft) and 3.9 to 7.9%/m (1.2 to 2.4%/ft) for the two different pilot plants, at their nominal design conditions. Mass balances using chemical oxygen demand and dissolved organic carbon corroborated the transfer rates. Rates are higher than expected from fine-pore diffusers for similar process conditions and depths and clean-water conditions for the same column and are mostly attributed to extended bubble retention time resulting from interactions with the media and biofilm.
NASA Astrophysics Data System (ADS)
Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.
2012-04-01
Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen penetrating less than 5 mm into the seafloor. In total oxygen uptake by the seafloor, the fraction of the diffusive flux, which comprises microbial consumption plus re-oxidation of reduced compounds, increased with declining oxygen concentrations. Measurements and modeling of penetration depths and fluxes of the electron acceptors nitrate, iron- and manganese oxides, sulfate suggest that as long as oxygen is available in the oxic and the hypoxic zones of the Crimean shelf, the largest fraction of oxygen is consumed directly during aerobic mineralization of organic matter and re-oxidation processes play only a minor role. Furthermore, the combination of rapid and strong fluctuation of bottom water oxygen concentration and low sedimentation rates appear to repress anaerobic organic matter degradation. This study was carried out within the framework of the EU-funded project HYPOX (www.hypox.net), which is set up to improve our understanding of hypoxia formation and to develop capacities and know-how for hypoxia monitoring.
Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T
2008-06-01
Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.
Myocardial oxygen delivery after experimental hemorrhagic shock.
Archie, J P; Mertz, W R
1978-01-01
The two components of myocardial oxygen delivery, coronary blood flow to capillaries and diffusion from capillaries to mitochondria, were studied in six dogs, (1) prior to shock, (2) after three hours of hemorrhage shock at a mean systemic arterial pressure of 40 torr, (3) after reinfusion of shed blood, and (4) during the irreversible late posttransfusion stage. There was a maldistribution of left ventricular coronary flow during late shock consistent with subendocardial ischemia. Cardiac performance was significantly impaired after resuscitation and all dogs became irreversible. Total and regional left ventricular coronary blood flow and myocardial oxygen delivery to capillaries were significantly greater than preshock values in (3) but not different from preshock values in (4). However, the myocardial oxygen diffusion area to distance ratio was significantly lower than preshock values in (3), and slightly lower in (4). These data suggest that myocardial oxygen diffusion may be impaired in the early post transfusion period, (3). Accordingly, the probable etiology of left ventricular dysfunction and possibly irreversibility after resuscitation from hemorrhagic shock is subendocardial ischemia during shock with either post-resuscitation impairment of myocardial oxygen diffusion, or in cellular oxygen utilization, or both. PMID:629622
Analysis of Textile Composite Structures Subjected to High Temperature Oxidizing Environment
2010-08-01
process in a polymer is a combination of the diffusion of oxygen and its consumption by reaction, which also results in the creation of by-products...based on the work by Pochiraju et al[24-26] in which they used the conservation of mass law for diffusion with a term to model the rate of consumption ...Oxidation of C/SiC Composites, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics Materials and Structures, Cocoa Beach
NASA Astrophysics Data System (ADS)
Bhatia, Pramod; Singh, Ravinder
2017-06-01
Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.
NASA Astrophysics Data System (ADS)
Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert
2017-09-01
Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T < 1050 °C). This transformation is connected to an oxygen incorporation which occurs at regions facing high oxygen partial pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.
Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...
2015-04-21
Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less
Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.
Bucci, Enrico
2009-06-01
Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.
Plimpton, Steven J.; Sershen, Cheryl L.; May, Elebeoba E.
2015-01-01
This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figuremore » 1 is the evolution of the diffusion profiles of a containment granuloma over time.« less
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.
Berezhkovskii, Alexander M; Shvartsman, Stanislav Y
2016-05-28
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.
NASA Technical Reports Server (NTRS)
Rao, D. B.; Heinemann, K.; Douglass, D. L.
1976-01-01
Single-crystalline thin films of copper were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of .005 Torr in situ in a high-resolution electron microscope. The specimens were prepared by epitaxial vapor deposition onto polished 100 and 110 faces of rocksalt and mounted in a hot stage inside an ultra-high-vacuum specimen chamber of the microscope. Large amounts of sulfur, carbon, and oxygen were detected by Auger electron spectroscopy on the surface of the as-received films and were removed in situ by ion-sputter etching immediately prior to the oxidation. The nucleation and growth characteristics of Cu2O on Cu were studied. Results show that neither stacking faults nor dislocations are associated with the Cu2O nucleation sites. The growth of Cu2O nuclei is linear with time. The experimental findings, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving (a) the formation of a surface-charge layer, (b) oxygen saturation in the metal and (c) nucleation, followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Electrolytic production of metals using a resistant anode
Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.
1986-01-01
An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navickas, Edvinas; Chen, Yan; Lu, Qiyang
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films
2017-01-01
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...
2017-10-05
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
NASA Astrophysics Data System (ADS)
Fathi, H.; Raoof, A.; Mansouri, S. H.
2017-05-01
The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Phase separated membrane bioreactor: Results from model system studies
NASA Astrophysics Data System (ADS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
NASA Astrophysics Data System (ADS)
Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan
2014-07-01
A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.
Phase separated membrane bioreactor - Results from model system studies
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.
Model system studies with a phase separated membrane bioreactor
NASA Technical Reports Server (NTRS)
Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.
1989-01-01
The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.
NASA Astrophysics Data System (ADS)
Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.
2017-07-01
Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.
NASA Technical Reports Server (NTRS)
Newton, G. P.
1973-01-01
Previous solutions of the problem of the distribution of vibrationally excited molecular nitrogen in the thermosphere have either assumed a Boltzmann distribution and considered diffusion as one of the loss processes or solved for the energy level populations and neglected diffusion. Both of the previous approaches are combined by solving the time dependent continuity equations, including the diffusion process, for the first six energy levels of molecular nitrogen for conditions in the thermosphere corresponding to a stable auroral red arc. The primary source of molecular nitrogen excitation was subexcitation, and inelastic collisions between thermal electrons and molecular nitrogen. The reaction rates for this process were calculated from published cross section calculations. The loss processes for vibrational energy were electron and atomic oxygen quenching and vibrational energy exchange. The coupled sets of nonlinear, partial differential equations were solved numerically by employing finite difference equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Vitaly; Sushko, Maria L.; Schreiber, Daniel K.
A density-functional-theory modeling study of atomic oxygen/sulfur adsorption and diffusion at pristine and doped Ni(111) and (110) surfaces is presented. We find that oxygen and sulfur feature comparable adsorption energies over the same surface sites, however, the surface diffusion of sulfur is characterized by an activation barrier about one half that of oxygen. Calculations with different alloying elements at Ni surfaces show that Cr strongly enhances surface binding of both species in comparison to Al. These results in combination with previous modeling studies help explain the observed differences in selective grain boundary oxidation mechanisms of Ni-Cr and Ni-Al alloys.
Experimental determination of oxygen diffusion in liquid iron at high pressure
NASA Astrophysics Data System (ADS)
Posner, Esther S.; Rubie, David C.; Frost, Daniel J.; Steinle-Neumann, Gerd
2017-04-01
Oxygen diffusion experiments in liquid iron have been performed at 3-18 GPa and 1975-2643 K using a multi-anvil apparatus. Diffusion couples consisted of a pure iron rod and a sintered disk of Fe0.85O0.15 placed end-to-end in a vertical orientation. Images and chemical spot analyses were acquired along the full length of the quenched sample on lines perpendicular to the diffusion interface. Exsolution features that formed during quenching consist mostly of spherical oxide blobs of at least two size populations, as well as feathery dendritic textures in more oxygen-rich regions near the top of the samples. Diffusion during heating (i.e. prior to reaching the peak annealing temperature, Tf) is treated numerically to refine Arrhenian parameters from simultaneous least-squares fits to several concentration profiles obtained from experiments at constant pressure and variable Tf. Diffusion coefficients range from ∼ 6 ×10-9 to ∼ 2 ×10-8 m2s-1 over the P-T range of the study, with activation enthalpies of less than 100 kJ mol-1. We find a very weak effect of pressure on oxygen diffusion with an activation volume of 0.1 ± 0.1 cm3mol-1, in agreement with computational studies performed above 100 GPa. Arrhenian extrapolation of diffusion coefficients for oxygen to P-T conditions of the Earth's outer core yields faster average diffusion rates (∼ 3 ×10-8 m2s-1) than for Si or Fe in silicon-rich liquid iron alloys or pure liquid iron (∼ 5 ×10-9 m2s-1) reported previously. Oxygen diffusion data are used to constrain the maximum size of descending liquid metal droplets in a magma ocean that is required for chemical equilibration to be achieved. Our results indicate that if the Earth's core composition is representative of equilibrium chemical exchange with a silicate magma ocean, then it could only have been accomplished by large-scale break-up of impactor cores to liquid iron droplet sizes no larger than a few tens of centimeters.
Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane)
NASA Astrophysics Data System (ADS)
Kaiser, Sonja; Göckede, Mathias; Castro-Morales, Karel; Knoblauch, Christian; Ekici, Altug; Kleinen, Thomas; Zubrzycki, Sebastian; Sachs, Torsten; Wille, Christian; Beer, Christian
2017-01-01
A detailed process-based methane module for a global land surface scheme has been developed which is general enough to be applied in permafrost regions as well as wetlands outside permafrost areas. Methane production, oxidation and transport by ebullition, diffusion and plants are represented. In this model, oxygen has been explicitly incorporated into diffusion, transport by plants and two oxidation processes, of which one uses soil oxygen, while the other uses oxygen that is available via roots. Permafrost and wetland soils show special behaviour, such as variable soil pore space due to freezing and thawing or water table depths due to changing soil water content. This has been integrated directly into the methane-related processes. A detailed application at the Samoylov polygonal tundra site, Lena River Delta, Russia, is used for evaluation purposes. The application at Samoylov also shows differences in the importance of the several transport processes and in the methane dynamics under varying soil moisture, ice and temperature conditions during different seasons and on different microsites. These microsites are the elevated moist polygonal rim and the depressed wet polygonal centre. The evaluation shows sufficiently good agreement with field observations despite the fact that the module has not been specifically calibrated to these data. This methane module is designed such that the advanced land surface scheme is able to model recent and future methane fluxes from periglacial landscapes across scales. In addition, the methane contribution to carbon cycle-climate feedback mechanisms can be quantified when running coupled to an atmospheric model.
Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre
2014-09-17
The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.
Terada, Akihiko; Lackner, Susanne; Tsuneda, Satoshi; Smets, Barth F
2007-05-01
A multi-population biofilm model for completely autotrophic nitrogen removal was developed and implemented in the simulation program AQUASIM to corroborate the concept of a redox-stratification controlled biofilm (ReSCoBi). The model considers both counter- and co-diffusion biofilm geometries. In the counter-diffusion biofilm, oxygen is supplied through a gas-permeable membrane that supports the biofilm while ammonia (NH(4)(+)) is supplied from the bulk liquid. On the contrary, in the co-diffusion biofilm, both oxygen and NH(4)(+) are supplied from the bulk liquid. Results of the model revealed a clear stratification of microbial activities in both of the biofilms, the resulting chemical profiles, and the obvious effect of the relative surface loadings of oxygen and NH(4)(+) (J(O(2))/J(NH(4)(+))) on the reactor performances. Steady-state biofilm thickness had a significant but different effect on T-N removal for co- and counter-diffusion biofilms: the removal efficiency in the counter-diffusion biofilm geometry was superior to that in the co-diffusion counterpart, within the range of 450-1,400 microm; however, the efficiency deteriorated with a further increase in biofilm thickness, probably because of diffusion limitation of NH(4)(+). Under conditions of oxygen excess (J(O(2))/J(NH(4)(+)) > 3.98), almost all NH(4)(+) was consumed by aerobic ammonia oxidation in the co-diffusion biofilm, leading to poor performance, while in the counter-diffusion biofilm, T-N removal efficiency was maintained because of the physical location of anaerobic ammonium oxidizers near the bulk liquid. These results clearly reveal that counter-diffusion biofilms have a wider application range for autotrophic T-N removal than co-diffusion biofilms. (c) 2006 Wiley Periodicals, Inc.
Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation
NASA Astrophysics Data System (ADS)
Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.
2017-06-01
Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.
Dynamics of oxygen species on reduced TiO2 (110) rutile
NASA Astrophysics Data System (ADS)
Wang, Yun; Pillay, Devina; Hwang, Gyeong S.
2004-11-01
Using density functional theory calculations, we have investigated the adsorption and diffusion of oxygen species on the reduced TiO2(110) surface. We have found that molecular O2 strongly binds not only to O vacancies, but also to Ti(5c) neighbors, due to delocalization of unpaired electrons arising from removal of neutral bridging oxygen. Our results show that molecular O2 can jump across an oxygen vacancy and diffuse along a Ti(5c) row with moderate barriers. On the other hand, atomic O diffusion along a Ti(5c) row is rather unlikely at low temperatures (<300K) , because of the relatively higher probability of O-O formation from interaction with an adjacent bridging O(2c) atom. Based on our calculation results, we discuss the diffusion and healing of O vacancies associated with O2 adsorption.
NASA Technical Reports Server (NTRS)
Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David
2010-01-01
Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.
Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas
1995-01-01
A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.
Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.
1995-11-07
A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.
Ethylene--and oxygen signalling--drive plant survival during flooding.
Voesenek, L A C J; Sasidharan, R
2013-05-01
Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre
2012-04-04
This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.
Wyman's equation and oxygen flux through the red cell.
McCabe, Michael; Maguire, David J
2007-01-01
Wyman's equation of 1966 describes the facilitation of flux of a reversibly bound substrate such as oxygen, consequent on the translational diffusion of the binding protein (the carrier). While Wyman's equation, or some modification of it such as that by Murray 2, may provide a realistic description of the flux of oxygen through a dilute solution of haemoglobin (see also Wittenburg), it is unlikely to be the complete explanation, nor even the basis, for oxygen transport through the intact red cell. The mature erythrocyte contains approximately 350 g/l haemoglobin, and while this suggests that only 35% of the available water volume is actually occupied by the protein, the remaining 65% is unavailable for protein translational diffusion due to the mutual exclusion of the haemoglobin molecules. For this reason we have examined other possible mechanisms whereby haemoglobin may facilitate the translational diffusion of oxygen within the erythrocyte. Possible alternatives include rotational diffusion by the haemoglobins, intracellular shuffling of haemoglobins due to shape changes by the erythrocyte, and haemoglobin rotations and oxygen exchange consequent on the charge change which accompanies substration and desubstration of the haemoglobin molecule. Finally the dipole interactions are shown to generate significant intermolecular attractions between adjacent haemoglobins.
Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego
2016-07-01
Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.
Pulsation-limited oxygen diffusion in the tumour microenvironment
NASA Astrophysics Data System (ADS)
Milotti, Edoardo; Stella, Sabrina; Chignola, Roberto
2017-01-01
Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation. We find that the low-frequency oscillations play an important role in the establishment of tumour hypoxia. The oscillations interact with consumption to inhibit oxygen diffusion in the microenvironment. This suggests that alpha-blockers-a class of drugs used to treat hypertension and stress disorders, and known to lower or even abolish low-frequency oscillations of arterial blood flow -may act as adjuvant drugs in the radiotherapy of solid tumours by enhancing the oxygen effect.
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien
2008-10-01
SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.
Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.
Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François
2015-10-01
Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
Cooper, Michael William D.; Fitzpatrick, M. E.; Tsoukalas, L. H.; ...
2016-06-06
ThO 2 is a candidate material for use in nuclear fuel applications and as such it is important to investigate its materials properties over a range of temperatures and pressures. In the present study molecular dynamics calculations are used to calculate elastic and expansivity data. These are used in the framework of a thermodynamic model, the cBΩ model, to calculate the oxygen self-diffusion coefficient in ThO 2 over a range of pressures (–10–10 GPa) and temperatures (300–1900 K). As a result, increasing the hydrostatic pressure leads to a significant reduction in oxygen self-diffusion. Conversely, negative hydrostatic pressure significantly enhances oxygenmore » self-diffusion.« less
Petrou, Athinoula L; Terzidaki, Athina
2017-08-02
From kinetic data (k, T) we calculated the thermodynamic parameters for various processes (nucleation, elongation, fibrillization, etc.) of proteinaceous diseases that are related to the β-amyloid protein (Alzheimer's), to tau protein (Alzheimer's, Pick's), to α-synuclein (Parkinson's), prion, amylin (type II diabetes), and to α-crystallin (cataract). Our calculations led to ΔG ≠ values that vary in the range 92.8-127 kJ mol -1 at 310 K. A value of ∼10-30 kJ mol -1 is the activation energy for the diffusion of reactants, depending on the reaction and the medium. The energy needed for the excitation of O 2 from the ground to the first excited state ( 1 Δ g , singlet oxygen) is equal to 92 kJ mol -1 So, the ΔG ≠ is equal to the energy needed for the excitation of ground state oxygen to the singlet oxygen ( 1 Δ g first excited) state. The similarity of the ΔG ≠ values is an indication that a common mechanism in the above disorders may be taking place. We attribute this common mechanism to the (same) role of the oxidative stress and specifically of singlet oxygen, ( 1 Δ g ), to the above-mentioned processes: excitation of ground state oxygen to the singlet oxygen, 1 Δ g , state (92 kJ mol -1 ), and reaction of the empty π* orbital with high electron density regions of biomolecules (∼10-30 kJ mol -1 for their diffusion). The ΔG ≠ for cases of heat-induced cell killing (cancer) lie also in the above range at 310 K. The present paper is a review and meta-analysis of literature data referring to neurodegenerative and other disorders. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J
2014-02-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions
Markov, Dmitry A.; Lillie, Elizabeth M.; Garbett, Shawn P.; McCawley, Lisa J.
2013-01-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results show that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a three-day storage in air, but remained significant for up to three weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60% smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a three-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585
NASA Astrophysics Data System (ADS)
Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi
2017-04-01
Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.
NASA Astrophysics Data System (ADS)
Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.
2018-05-01
A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.
Influence of water on clumped-isotope bond reordering kinetics in calcite
NASA Astrophysics Data System (ADS)
Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.
2018-03-01
Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external fluids. We explore the mechanism(s) by which clumped isotope reordering rates may be modestly increased under wet, high-pressure conditions, including changes in defect concentrations in the near surface environment due to reactions at the water-mineral interface, and lattice deformation resulting from pressurization of samples.
Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI
NASA Astrophysics Data System (ADS)
Chang, Yulin V.; Conradi, Mark S.
2006-08-01
We report measurements of free diffusivity D0 and relaxation times T1 and T2 for pure C 2F 6 and C 3F 8 and their mixtures with oxygen. A simplified relaxation theory is presented and used to fit the data. The results enable spatially localized relaxation time measurements to determine the local gas concentration in lung MR images, so the free diffusivity D0 is then known. Comparison of the measured diffusion to D0 will express the extent of diffusion restriction and allow the local surface-to-volume ratio to be found.
Oxygen as a critical determinant of bone fracture healing-a multiscale model.
Carlier, Aurélie; Geris, Liesbet; van Gastel, Nick; Carmeliet, Geert; Van Oosterwyck, Hans
2015-01-21
A timely restoration of the ruptured blood vessel network in order to deliver oxygen and nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as in the regulation of several (angiogenic) genes. In this paper, a previously developed model of bone fracture healing is further improved with a detailed description of the influence of oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges of the cell-specific oxygen-dependent processes were established based on the state-of-the art experimental knowledge through a rigorous literature study. The newly developed oxygen model is compared with previously published experimental and in silico results. An extensive sensitivity analysis was also performed on the newly introduced oxygen thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was applied to the challenging clinical case of a critical sized defect (3mm) where it predicted the formation of a fracture non-union. Further model analyses showed that the harsh hypoxic conditions in the central region of the callus resulted in cell death and disrupted bone healing thereby indicating the importance of a timely vascularization for the successful healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen delivery, diffusion and consumption with the several healing steps, each occurring at distinct, optimal oxygen tensions during the bone repair process. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Katta, Viswanath R.
2003-01-01
Diffusion flame stabilization is of essential importance in both Earth-bound combustion systems and spacecraft fire safety. Local extinction, re-ignition, and propagation processes may occur as a result of interactions between the flame zone and vortices or fire-extinguishing agents. By using a computational fluid dynamics code with a detailed chemistry model for methane combustion, the authors have revealed the chemical kinetic structure of the stabilizing region of both jet and flat-plate diffusion flames, predicted the flame stability limit, and proposed diffusion flame attachment and detachment mechanisms in normal and microgravity. Because of the unique geometry of the edge of diffusion flames, radical back-diffusion against the oxygen-rich entrainment dramatically enhanced chain reactions, thus forming a peak reactivity spot, i.e., reaction kernel, responsible for flame holding. The new results have been obtained for the edge diffusion flame propagation and attached flame structure using various C1-C3 hydrocarbons.
Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes
NASA Astrophysics Data System (ADS)
Yu, Anthony S.
Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two approaches to increase surface reaction kinetics and decrease Rs that were examined in this thesis involved modifying the surface microstructure, as well as adding both metallic (e.g. Pt) and oxide (e.g. CeO2, La0.8Sr0.2FeO3) catalysts to both membrane surfaces. These two approaches were investigated for single-phase MIEC membrane reactors (La0.9Ca0.1FeO3-delta ), as well as composite membrane reactors composed of an electronic conductor (La0.8Sr-0.2CrO3-delta) and an ionic conductor (YSZ). The use of catalysts and microstructure modifications to decrease interfacial losses is equally important for SOFCs. In this thesis, the electrochemical activity and microstructure of metallic catalysts formed by "ex-solving" metals from an oxide lattice, and oxide catalysts deposited by Atomic Layer Deposition (ALD) were investigated. It is shown that these methods for depositing catalysts resulted in very different effects on electrode performance when compared to the same catalysts deposited by wet impregnation. For example, when transition metals, such as Ni and Co, were "ex-solved" from a La0.8Sr0.2CrO3-delta anode lattice, these "ex-solved" metal particles not only exhibited great catalytic activity, they were also less prone to coking compared to their wet impregnated counterparts. On the cathode side, thin layers of various oxides (e.g. Al 2O3, CeOx, SrO) that were deposited using ALD also exhibited drastically different electrochemical activity compared to their wet impregnated counterparts. It was determined that differences in electrochemical activity could be attributed to a difference in the oxide morphology, showing that a catalyst's microstructure and morphology are very important in dictating its overall activity in SOFC electrodes.
2016-01-01
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs. PMID:26650970
Retinal oxygen distribution and the role of neuroglobin.
Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M
2016-07-01
The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.
NASA Astrophysics Data System (ADS)
Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.
2013-02-01
The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.
Diffusion coalescence in НоBa2Cu3O7-x single crystals under the application of hydrostatic pressure
NASA Astrophysics Data System (ADS)
Boiko, Y. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhaj, G. Ya; Kamchatnaya, S. N.; Goulatis, I. L.; Chroneos, A.
2017-09-01
Experimental results on the effect of external hydrostatic pressure up to 5 kbar on the ρ(T) dependence in the ab plane of HoBa2Cu3O7-x single crystals (x ≈ 0.35) in the temperature range from 300 K to the superconducting transition temperature T c are presented and discussed. It was established that the application of external hydrostatic pressure P = 5 kbar significantly intensified the process of diffusion coalescence of oxygen clusters, causing the growth of their average size. This leads to an increase in the number of negative U-centers, the presence of which results to the appearance of a phase capable of generating paired carriers of electric charge and, correspondingly, characterized by a higher transition temperature T c. Employing this hypothesis that concerns the mechanism of the diffusion coalescence of oxygen clusters, the change in the form of the temperature and time dependences of the electrical resistivity under the application of external hydrostatic pressure is discussed.
Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.
Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P
2014-12-01
This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I
2011-08-01
Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.
A porous media theory for characterization of membrane blood oxygenation devices
NASA Astrophysics Data System (ADS)
Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira
2013-07-01
A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
Mehala, N; Rajendran, L; Meena, V
2017-02-01
A mathematical model developed by Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009), which describes a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose-sensitive composite membrane has been discussed. This theoretical model depicts a system of non-linear non-steady state reaction diffusion equations. These equations have been solved using new approach of homotopy perturbation method and analytical solutions pertaining to the concentrations of glucose, oxygen, and gluconic acid are derived. These analytical results are compared with the numerical results, and limiting case results for steady state conditions and a good agreement is observed. The influence of various kinetic parameters involved in the model has been presented graphically. Theoretical evaluation of the kinetic parameters like the maximal reaction velocity (V max ) and Michaelis-Menten constants for glucose and oxygen (K g and K ox ) is also reported. This predicted model is very much useful for designing the glucose-responsive composite membranes for closed-loop insulin delivery.
Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films
NASA Astrophysics Data System (ADS)
Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu
2015-12-01
Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudman, K.; Dickerson, P.; Byler, Darrin David
The initial microstructure of an oxide fuel can play a key role in its performance. At low burn-ups, the diffusion of fission products can depend strongly on grain size and grain boundary (GB) characteristics, which in turn depend on processing conditions and oxygen stoichiometry. Serial sectioning techniques using Focused Ion Beam were developed to obtain Electron Backscatter Diffraction (EBSD) data for depleted UO2 pellets that were processed to obtain 3 different oxygen stoichiometries. The EBSD data were used to create 3D microstructure reconstructions and to gather statistical information on the grain and GB crystallography, with emphasis on identifying the charactermore » (twist, tilt, mixed) for GBs that meet the Coincident Site Lattice (CSL) criterion as well as GBs with the most common misorientation angles. Data on dihedral angles at triple points were also collected. The results were compared across different samples to understand effects of oxygen content on microstructure evolution.« less
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.
Hyakutake, Toru; Kishimoto, Takumi
2017-12-01
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Self-diffusion of protons in H{sub 2}O ice VII at high pressures: Anomaly around 10 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Naoki, E-mail: noguchi-n@okayama-u.ac.jp; Okuchi, Takuo
2016-06-21
The self-diffusion of ice VII in the pressure range of 5.5–17 GPa and temperature range of 400–425 K was studied using micro Raman spectroscopy and a diamond anvil cell. The diffusion was monitored by observing the distribution of isotope tracers: D{sub 2}O and H{sub 2}{sup 18}O. The diffusion coefficient of hydrogen reached a maximum value around 10 GPa. It was two orders of magnitude greater at 10 GPa than at 6 GPa. Hydrogen diffusion was much faster than oxygen diffusion, which indicates that protonic diffusion is the dominant mechanism for the diffusion of hydrogen in ice VII. This mechanism ismore » in remarkable contrast to the self-diffusion in ice I{sub h} that is dominated by an interstitial mechanism for the whole water molecule. An anomaly around 10 GPa in ice VII indicates that the rate-determining process for the proton diffusion changes from the diffusion of ionic defects to the diffusion of rotational defects, which was suggested by proton conductivity measurements and molecular dynamics simulations.« less
The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
Electrolytic production of metals using a resistant anode
Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.
1986-11-04
An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.
NASA Astrophysics Data System (ADS)
Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang
2018-03-01
This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.
NASA Astrophysics Data System (ADS)
Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang
2018-06-01
This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.
NASA Astrophysics Data System (ADS)
Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish
2018-02-01
Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Stewart, Derek A.
2016-04-01
Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.
Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf
NASA Astrophysics Data System (ADS)
Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.
2015-04-01
The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.
Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.
Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel
2013-03-01
Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.
Theoretical approach to oxygen atom degradation of silver
NASA Technical Reports Server (NTRS)
Fromhold, Albert T., Jr.; Noh, Seung; Beshears, Ronald; Whitaker, Ann F.; Little, Sally A.
1987-01-01
Based on available Rutherford backscattering spectrometry (RBS), proton induced X-ray emission (PIXE) and ellipsometry data obtained on silver specimens subjected to atomic oxygen attack in low Earth orbit STS flight 41-G, a theory was developed to model the oxygen atom degradation of silver. The diffusion of atomic oxygen in a microscopically nonuniform medium is an essential constituent of the theory. The driving force for diffusion is the macroscopic electrochemical potential gradient developed between the specimen surface exposed to the ambient and the bulk of the silver specimen. The longitudinal electric effect developed parallel to the gradient is modified by space charge of the diffusing charged species. Lateral electric fields and concentration differences also exist due to the nonuniform nature of the medium. The lateral concentration differences are found to be more important than the lateral electric fields in modifying the diffusion rate. The model was evaluated numerically. Qualitative agreement exists between the kinetics predicted by the theory and kinetic data taken in ground-based experiments utilizing a plasma asher.
Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin
2011-07-01
Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.
Modeling oxygen transport in human placental terminal villi.
Gill, J S; Salafia, C M; Grebenkov, D; Vvedensky, D D
2011-12-21
Oxygen transport from maternal blood to fetal blood is a primary function of the placenta. Quantifying the effectiveness of this exchange remains key in identifying healthy placentas because of the great variability in capillary number, caliber and position within the villus-even in placentas deemed clinically "normal". By considering villous membrane to capillary membrane transport, stationary oxygen diffusion can be numerically solved in terminal villi represented by digital photomicrographs. We aim to provide a method to determine whether and if so to what extent diffusional screening may operate in placental villi. Segmented digital photomicrographs of terminal villi from the Pregnancy, Infection and Nutrition study in North Carolina 2002 are used as a geometric basis for solving the stationary diffusion equation. Constant maternal villous oxygen concentration and perfect fetal capillary membrane absorption are assumed. System efficiency is defined as the ratio of oxygen flux into a villus and the sum of the capillary areas contained within. Diffusion screening is quantified by comparing numerical and theoretical maximum oxygen fluxes. A strong link between various measures of villous oxygen transport efficiency and the number of capillaries within a villus is established. The strength of diffusional screening is also related to the number of capillaries within a villus. Our measures of diffusional efficiency are shown to decrease as a function of the number of capillaries per villus. This low efficiency, high capillary number relationship supports our hypothesis that diffusional screening is present in this system. Oxygen transport per capillary is reduced when multiple capillaries compete for diffusing oxygen. A complete picture of oxygen fluxes, capillary and villus areas is obtainable and presents an opportunity for future work. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
Ahn, Geunseon; Park, Jeong Hun; Kang, Taeyun; Lee, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2010-10-01
The aim of this study was to maximize oxygen diffusion within a three-dimensional scaffold in order to improve cell viability and proliferation. To evaluate the effect of pore architecture on oxygen diffusion, we designed a regular channel shape with uniform diameter, referred to as cylinder shaped, and a new channel shape with a channel diameter gradient, referred to as cone shaped. A numerical analysis predicted higher oxygen concentration in the cone-shaped channels than in the cylinder-shaped channels, throughout the scaffold. To confirm these numerical results, we examined cell proliferation and viability in 2D constructs and 3D scaffolds. Cell culture experiments revealed that cell proliferation and viability were superior in the constructs and scaffolds with cone-shaped channels.
High Rate Oxygen Reduction in Non-aqueous Electrolytes with the Addition of Perfluorinated Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Yang, X.; Zheng, D.
2011-08-04
The discharge rate capability of Li-air batteries is substantially increased by using perfluorinated compounds as oxygen carriers. The solubility of oxygen in a non-aqueous electrolyte can be significantly increased by the introduction of such compounds, which leads to the increase in the diffusion-limited current of oxygen reduction on the gas diffusion electrode in a Li-air battery. The perfluorinated compound is found to be stable within the electrochemical window of the electrolyte. A powder microelectrode and a rotating disk electrode were used to study the gas diffusion-limited current together with a rotating disk electrode. A 5 mA cm{sup -2} discharge ratemore » is demonstrated in a lab Li-O{sub 2} cell.« less
Determining the inertial states of low Prandtl number fluids using electrochemical cells
NASA Astrophysics Data System (ADS)
Crunkleton, Daniel Wray
The quality of crystals grown from the melt is often deteriorated by the presence of buoyancy-induced convection, produced by temperature or concentration inhomogenities. It is, therefore, important to develop techniques to visualize such flows. In this study, a novel technique is developed that uses solid-state electrochemical cells to establish and measure dissolved oxygen boundary conditions. To visualize convection, a packet of oxygen is electrochemically introduced at a specific location in the melt. As the fluid convects, this oxygen packet follows the flow, acting as a tracer. Electrochemical sensors located along the enclosure then detect the oxygen as it passes. Over sufficiently long times, oxygen diffusion is important; consequently, the oxygen diffusivity in the fluid is measured. This diffusivity is determined using both transient and steady state experiments with tin and tin-lead alloys as model fluids. It is concluded that the presence of convection due to solutal gradients and/or tilt increases the measured diffusivity by one-half to one order of magnitude. The oxygen diffusivity in tin-lead alloys is measured and the results show that the alloy diffusivities are lower than those of the corresponding pure metals. This concentration functionality is explained with a multicomponent diffusion model and shows good agreement. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Finally, experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cell with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).
Study of the kinetics and mechanism of the thermal nitridation of SiO2
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L.
1985-01-01
X-ray photoelectron spectroscopy (XPS) has been used to study the nitridation time and temperature dependence of the nitrogen distribution in thermally nitrided SiO2 films. The XPS data show that the maximum nitrogen concentration near the (SiO(x)N(y)/Si interface is initially at the interface, but moves 20-25 A away from the interface with increasing nitridation time. Computer modeling of the kinetic processes involved is carried out and reveals a mechanism in which diffusing species, initially consisting primarily of nitrogen, react with the substrate, followed by formation of the oxygen-rich oxynitride due to reaction of the diffusing oxygen displaced by the slower nitridation of the SiO2. The data are consistent with this mechanism provided the influence of the interfacial strain on the nitridation and oxidation kinetics is explicitly accounted for.
Post deposition annealing effect on the properties of Al2O3/InP interface
NASA Astrophysics Data System (ADS)
Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon
2018-02-01
Post deposition in-situ annealing effect on the interfacial and electrical properties of Au/Al2O3/n-InP junctions were investigated. With increasing the annealing time, both the barrier height and ideality factor changed slightly but the series resistance decreased significantly. Photoluminescence (PL) measurements showed that the intensities of both the near band edge (NBE) emission from InP and defect-related bands (DBs) from Al2O3 decreased with 30 min annealing. With increasing the annealing time, the diffusion of oxygen (indium) atoms into Al2O3/InP interface (into Al2O3 layer) occurred more significantly, giving rise to the increase of the interface state density. Therefore, the out-diffusion of oxygen atoms from Al2O3 during the annealing process should be controlled carefully to optimize the Al2O3/InP based devices.
Mass Separation by Metamaterials
Restrepo-Flórez, Juan Manuel; Maldovan, Martin
2016-01-01
Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419
NASA Astrophysics Data System (ADS)
Miara, Lincoln James
Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The unknown rate constants (kad, k des, k1, k1¯ ), and parameters (Ds, Q°, n) arising from the governing equations are estimated from a combination of experiments, mathematical analysis, and numerical data analysis. In the second system, dense patterned films of cathode with composition: La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF-6428) were fabricated on Ga-doped CeO2 coated YSZ substrates. These samples were analyzed by EIS over a temperature and pO 2 range of 600--800 °C and 10-3--1.00 atm, respectively. To understand the EIS results, a 2-dimensional model was developed which accounted for surface oxygen exchange, and both surface and bulk transport of oxygen to the electrolyte interface. The results were obtained by numerically solving a stationary partial differential equation describing the oxygen vacancy distribution in the cathode. From these results, the model impedance was derived and then fitted to the experimental EIS results. From the fitting results the contributions to the impedance from each of the processes were estimated. Also, the surface exchange rate was estimated over the experimental operating conditions. Finally, the results suggest that the surface diffusion occurred by an interstitial type mechanism in this material. The cathode surface is intimately involved in most of the oxygen reduction processes; however, the surface structure and chemistry is typically treated as an extension of the bulk without consideration of the actual surface properties. Recent evidence suggests that significant changes occur to the surface during operation which in turn leads to changes in electrochemical performance. To investigate these phenomena, well-oriented thin films (250 nm in thickness) of Sr-doped lanthanum manginite (LSM) films were grown on single crystals of YSZ (111). Films which were cathodically biased with a -1 V applied dc potential were compared to control samples. The cathodic bias results in both an enhancement in electrochemical performance and a change in surface chemistry. The changes in electrochemical performance were monitored by ES, while the surface changes were tracked with a combination of soft x-ray techniques such as x-ray photoemission spectroscopy and x-ray absorption spectroscopy. The soft x-ray results indicated that the removal of surface passivating phases (i.e., SrO and MnO) are correlated with improved performance. This work demonstrates the success of estimating fundamental parameters, such as diffusivity and surface coverage, from experimental EIS results using a physically realistic model without, as is commonly done, assuming a specific rate limiting step or using an ambiguous equivalent circuit. This allows researchers to fabricate designer cathodes by selecting materials with optimal kinetic properties such as rapid oxygen dissociation and rapid oxygen transport in (or on) the cathode, independent of geometry.
Oxygen-vacancy behavior in La2-xSrxCuO4-y by positron annihilation and oxygen diffusion
NASA Astrophysics Data System (ADS)
Smedskjaer, L. C.; Routbort, J. L.; Flandermeyer, B. K.; Rothman, S. J.; Legnini, D. G.; Baker, J. E.
1987-09-01
Oxygen-diffusion and positron-annihilation results for La2-xSrxCuO4-y compounds are reported. A qualitative explanation of the observed results is given on the basis of a model in which the oxygen-vacancy concentration in La2-xSrxCuO4-y is determined by Sr2+ ion clustering on the La sublattice. This model also leads to a maximum in the Cu3+ ion concentration as a function of the Sr2+ ion concentration.
Computation Of Facilitated Transport of O2 In Hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1991-01-01
Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
NASA Astrophysics Data System (ADS)
Coleman, M. L.; Hubbard, C. G.; Mielke, R. E.; Black, S.
2005-12-01
Meridiani Planum sediments formed in an acid environment and include jarosite and other evaporitic sulfate minerals. Nodular spheroidal concretions appear to have grown in situ and are predominantly hematite. The source of the Rio Tinto, S. Spain, drains an area of extensive sulfide mineralization and is dominated by acid mine drainage processes. The system is not a Mars analog but potentially similar processes of sulfide oxidation produce sulfate rich waters which feed into the river and precipitate a large range of evaporitic sulfates including jarosite. Iron oxide minerals associated with the evaporites are either dispersed or bedded but not nodular. The water compositions appear to be mixtures of a few discreet end-members: the two most significant occur in undiluted form as inputs to the river and are relevant to many such systems. They both have all sulfur totally oxidized as sulfate. The first is a bright red water, pH ~1.5, Fe/S 0.5 and 23 g/L iron which is greater than 95% Fe3+. Its sulfate oxygen isotope composition is +2‰SMOW and about +7‰, relative to the water O isotope composition. These data indicate pyrite oxidation by Fe3+ with O in sulfate coming mainly from water. The second end-member is a pale green water, pH ~0.7, Fe/S 0.7, 50 g/L iron present mainly as Fe2+ and O isotope composition of sulfate about +6‰SMOW , about +12.5‰ relative to the water O value. Oxygen in sulfate comes mainly from atmospheric oxygen resulting from pyrite oxidation by molecular oxygen dissolved in water. Although the Rio Tinto system reactions probably are microbiologically mediated (relevant genera have been identified there) similar processes could occur abiotically but more slowly. Meridiani Planum sediments and nodules can be described by a plausible set of similar end-member processes. The primary source of sulfate is oxidation of sulfides present in basalt (pyrite, FeS2 or pyrrhotite, FeS) and weathering would have produced oxidized sulfate rich solutions at low pH. Ground water migration could produce evaporitic ponds where various bedded sulfate mineral sediments could form. The intergranular pore-spaces would be water filled. Most terrestrial spheroidal nodular concretions form by radial diffusion in pore-water of a chemical component of a very different oxidation state from that of the surrounding water. A nodular concretion is most usually formed by the reaction of the diffusive component with others in the pore-water. There are two main possible reaction sets for formation of the Blueberries that are consistent with all current data. 1. Local concentrations of organic matter (pre-biotic or biotic) formed reduction spots in which a small amount of Fe3+ either in solution or from evaporite mineral salts, was reduced to Fe2+ and then diffused radially to form an iron oxide nodule by reaction with inwardly diffusing dissolved oxygen. 2. Similar local concentrations of organic matter could also have engendered sulfate reduction and consequent outward diffusion of dissolved sulfide reacted with iron in solution to produce an iron sulfide nodule, subsequently oxidized in situ to hematite (maybe via goethite). Our current work is successfully identifying chemical and stable isotopic characteristics for both microbial and abiotic modes of all relevant reactions.
Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy
2014-01-01
Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply.
Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy
2014-01-01
Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438
Origin of Active Oxygen in a Ternary CuO x /Co 3O 4–CeO 2 Catalyst for CO Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhigang; Wu, Zili; Peng, Xihong
2014-11-14
In this paper, we have studied CO oxidation over a ternary CuO x/Co 3O 4-CeO 2 catalyst and employed the techniques of N 2 adsorption/desporption, XRD, TPR, TEM, in situ DRIFTS and QMS (Quadrupole mass spectrometer) to explore the origin of active oxygen. DRIFTS-QMS results with labeled 18O2 indicate that the origin of active oxygens in CuO x/Co 3O 4-CeO 2 obeys a model, called as queue mechanism. Namely gas-phase molecular oxygens are dissociated to atomic oxygens and then incorporate in oxygen vacancies located at the interface of Co 3O 4-CeO 2 to form active crystalline oxygens, and these activemore » oxygens diffuse to the CO-Cu + sites thanks to the oxygen vacancy concentration magnitude and react with the activated CO to form CO 2. This process, obeying a queue rule, provides active oxygens to form CO 2 from gas-phase O 2 via oxygen vacancies and crystalline oxygen at the interface of Co 3O 4-CeO 2.« less
Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure
NASA Technical Reports Server (NTRS)
Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)
2002-01-01
This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.
Point-of-care instrument for monitoring tissue health during skin graft repair
NASA Astrophysics Data System (ADS)
Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.
2011-06-01
We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.
NASA Astrophysics Data System (ADS)
Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.
2015-12-01
Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward diffusion of oxygen from the basalt into the overlying sediment may be a widespread phenomenon in this area of the Pacific Ocean that is characterized by numerous seamounts.
OXYGEN TRANSFER EFFICIENCY SURVEYS AT THE SOUTH SHORE WASTEWATER TREATMENT PLANT - 1985-1987
Ceramic plate diffusers were among the earliest forms of fine pore diffusers used for oxygen transfer in activated sludge treatment. They have been successfully used for over 60 years in the Jones Island West Plant of the Milwaukee Metropolitan Sewerage District and, since initi...
OXYGEN TRANSFER EFFICIENCY SURVEYS AT THE JONES ISLAND TREATMENT PLANTS - 1985-1988
Ceramic plate diffusers were among the earliest forms of fine pore diffusers used for oxygen transfer in activated sludge treatment. They have been successfully used for over 60 years in the Jones Island West Plant of the Milwaukee Metropolitan Sewerage District and, since initia...
Analysis techniques for tracer studies of oxidation. M. S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Basu, S. N.
1984-01-01
Analysis techniques to obtain quantitative diffusion data from tracer concentration profiles were developed. Mass balance ideas were applied to determine the mechanism of oxide growth and to separate the fraction of inward and outward growth of oxide scales. The process of inward oxygen diffusion with exchange was theoretically modelled and the effect of lattice diffusivity, grain boundary diffusivity and grain size on the tracer concentration profile was studied. The development of the tracer concentration profile in a growing oxide scale was simulated. The double oxidation technique was applied to a FeCrAl-Zr alloy using 0-18 as a tracer. SIMS was used to obtain the tracer concentration profile. The formation of lacey oxide on the alloy was discussed. Careful consideration was given to the quality of data required to obtain quantitative information.
The Use Of Fluorescence Quenching To Measure Oxygen Concentration
NASA Astrophysics Data System (ADS)
Cox, M. E.; Dunn, B.
1986-01-01
The method of fluorescence quenching is used to measure the concentration of molecular oxygen. The method is rapid, reversible, and does not consume oxygen. The method may provide the basis for a unique biomedical sensor. The key to developing such a device lies in the choice of a fluorophor/polymer composite matrix having the desired optical and transport properties. Experimental results will be presented for certain parameters essential for assessing device development. The properties of interest include the kinetics of fluorescence quenching, the biomolecular rate constants, the temperature dependence of oxygen solubility and diffusivity in the composite matrix, and the oxygen diffusion coefficient. Poly(dimethyl siloxane) [PDMS] was chosen as the polymer host because it is biocompatible, hydrophobic, has a high diffusivity for the simple gases, and is easily bonded to fused silica. 9,10-diphenyl anthracene [9,10-D] was selected since it is readily soluble in a number of organic solvents, has an excitation spectrum in the near UV, an emission spectrum in the visible, a long fluorescence lifetime, and a high quantum yield. When incorporated into PDMS, the optical spectra of 9,10-D does not alter appreciably. The response time of the device is determined by the solution/diffusion kinetics of oxygen in PDMS. The solubility of oxygen in PDMS decreases with increasing temperature and an enthalpy of solution of off = -3.0 kcal/mole. (1) The diffusion of oxyzen in PDMS is found to obey an Arrhenius relation over the temperature range of 5'C to 450C with D = Do exp (-ED/RT) (2) where Do = 0.115 cm2/s (3) and ED = 4.77 kcal/mole. (4) Results of these studies indicate that an appropriate device, based on a fluorophor/polymer composite, for the measurement of oxygen concentration should be sensitive over those ranges which are important for physiological monitoring.
Unsteady Oxygen Transfer in Space-Filling Models of the Pulmonary Acinus
NASA Astrophysics Data System (ADS)
Hofemeier, Philipp; Shachar-Berman, Lihi; Filoche, Marcel; Sznitman, Josue
2014-11-01
Diffusional screening in the pulmonary acinus is a well-known physical phenomenon that results from the depletion of fresh oxygen in proximal acinar generations diffusing through the alveolar wall membranes and effectively creating a gradient in the oxygen partial pressure along the acinar airways. Until present, most studies have focused on steady-state oxygen diffusion in generic sub-acinar structures and discarded convective oxygen transport due to low Peclet numbers in this region. Such studies, however, fall typically short in capturing the complex morphology of acinar airways as well as the oscillatory nature of convecive acinar breathing. Here, we revisit this problem and solve the convective-diffusive transport equations in breathing 3D acinar structures, underlining the significance of convective flows in proximal acinar generations as well as recirculating alveolar flow patterns. In particular, to assess diffusional screening, we monitor time-dependent efficiencies of the acinus under cyclic breathing motion. Our study emphasizes the necessity of capturing both a dynamically breathing and anatomically-realistic model of the sub-acinus to characterize unsteady oxygen transport across the acinar walls.
Microscale diffusion measurements and simulation of a scaffold with a permeable strut.
Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan
2013-10-10
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.
Computer modeling of electron and proton transport in chloroplasts.
Tikhonov, Alexander N; Vershubskii, Alexey V
2014-07-01
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Oxygen concentration sensor for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, T.; Okada, Y.; Mieno, T.
1988-09-29
This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.
1992-01-01
The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-07-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.
Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley
2016-01-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944
Qiu, Bao; Zhang, Minghao; Wu, Lijun; ...
2016-07-01
Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high asmore » 301 mAh g –1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g –1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.« less
NASA Technical Reports Server (NTRS)
Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.
1981-01-01
The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.
Giuliana, D'Imporzano; Fabrizio, Adani
2007-02-01
This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.
NASA Astrophysics Data System (ADS)
Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo
2016-06-01
In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.
Influence of oxygen on the carbide formation on tungsten
NASA Astrophysics Data System (ADS)
Luthin, J.; Linsmeier, Ch.
2001-03-01
As a first wall material in nuclear fusion devices, tungsten will interact with carbon and oxygen from the plasma. In this study, we report on the process of thermally induced carbide formation of thin carbon films on polycrystalline tungsten and the influence of oxygen on this process. All investigations are performed using X-ray photoelectron spectroscopy (XPS). Carbon films are supplied through electron beam evaporation of graphite. The carbidization process, monitored during increased substrate temperature, can be divided into four phases. In phase I disordered carbon converts into graphite-like carbon. In phase II significant diffusion and the reaction to W 2C is observed, followed by phase III which is dominated by the presence of W 2C and the beginning reaction to WC. Finally in phase IV only WC is present, but the total carbon amount has strongly decreased. Different mechanisms of oxygen influence on the carbide formation are proposed and measurements of the reaction of carbon on tungsten with intermediate oxide layers are presented in detail. A WO 2+ x intermediate layer completely inhibits the carbide formation, while a WO 2 layer leads to WC formation at temperatures above 1270 K.
NASA Astrophysics Data System (ADS)
Gamal, Yosr E. E.-D.; Abdellatif, Galila
2017-08-01
A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.
Song, Huanqiao; Luo, Mingsheng; Wang, Aimei
2017-01-25
Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV 3 O 8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g -1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g -1 , respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g -1 . The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V 4+ ) and the attendant oxygen vacancies into LiV 3 O 8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV 3 O 8 without detectable V 4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.
Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia
NASA Astrophysics Data System (ADS)
Yang, C.; Trachenko, K.; Hull, S.; Todorov, I. T.; Dove, M. T.
2018-05-01
Large-scale molecular dynamics simulations have been used to study the microstructure in Y-doped ZrO2. From simulations performed as a function of composition the dependence of microstructure on composition is quantified, showing how it is formed from two coexisting phases, and the transformation to the stabilized cubic form is observed at higher concentrations of yttrium and higher temperatures. The effect of composition and temperature on oxygen diffusion is also studied, showing strong correlations between microstructure and diffusion.
NASA Astrophysics Data System (ADS)
Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki
2016-09-01
The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.
Racault, Y; Stricker, A-E; Husson, A; Gillot, S
2011-01-01
Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.
Oxygen diffusion model of the mixed (U,Pu)O2 ± x: Assessment and application
NASA Astrophysics Data System (ADS)
Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul
2017-03-01
The uranium-plutonium (U,Pu)O2 ± x mixed oxide (MOX) is used as a nuclear fuel in some light water reactors and considered for future reactor generations. To gain insight into fuel restructuring, which occurs during the fuel lifetime as well as possible accident scenarios understanding of the thermodynamic and kinetic behavior is crucial. A comprehensive evaluation of thermo-kinetic properties is incorporated in a computational CALPHAD type model. The present DICTRA based model describes oxygen diffusion across the whole range of plutonium, uranium and oxygen compositions and temperatures by incorporating vacancy and interstitial migration pathways for oxygen. The self and chemical diffusion coefficients are assessed for the binary UO2 ± x and PuO2 - x systems and the description is extended to the ternary mixed oxide (U,Pu)O2 ± x by extrapolation. A simulation to validate the applicability of this model is considered.
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
NASA Astrophysics Data System (ADS)
Watson, E. B.; Cherniak, D. J.
1997-05-01
Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.
Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A
2015-07-01
Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.
Assessment of diffuser pressure loss on WWTPs in Baden-Württemberg.
Krampe, J
2011-01-01
Aeration of activated sludge is a critical treatment step for the operation of activated sludge plants. To achieve a cost effective treatment process, assessing and benchmarking of aeration system performance are important measures. A simple means of gauging the relative condition of a fine bubble diffused aeration system is to evaluate the pressure loss of the diffusers as oxygen transfer tests are rarely applied during the lifetime of an aeration system. This paper shows an assessment of fine bubble diffuser systems in Baden-Württemberg, Germany, based on the results of a questionnaire sent to 941 WWTPs. Apart from the results with regards to the diffuser pressure loss, this paper also presents information on the current state of diffuser technology such as types and materials as well as the diffuser cleaning methods used in Baden-Württemberg. The majority of the WWTPs were equipped with tube diffusers (71%) with 50% of all plants having EPDM membranes installed. Regular mechanical cleaning is the most common cleaning method followed by regular pressure release/air-bumping programs during operations. With regard to the diffuser pressure loss it was found that 50% of the evaluated plants had a diffuser pressure loss that was twice as high as measured for new diffusers.
NASA Astrophysics Data System (ADS)
Sun, Daoxun; Ito, Takamitsu; Bracco, Annalisa
2017-10-01
The concentration of dissolved oxygen (O2) plays fundamental roles in diverse chemical and biological processes throughout the oceans. The balance between the physical supply and the biological consumption controls the O2 level of the interior ocean, and the O2 supply to the deep waters can only occur through deep convection in the polar oceans. We develop a theoretical framework describing the oceanic O2 uptake during open-ocean deep convection events and test it against a suite of numerical sensitivity experiments. Our framework allows for two predictions, confirmed by the numerical simulations. First, both the duration and the intensity of the wintertime cooling contribute to the total O2 uptake for a given buoyancy loss. Stronger cooling leads to deeper convection and the oxygenation can reach down to deeper depths. Longer duration of the cooling period increases the total amount of O2 uptake over the convective season. Second, the bubble-mediated influx of O2 tends to weaken the diffusive influx by shifting the air-sea disequilibrium of O2 toward supersaturation. The degree of compensation between the diffusive and bubble-mediated gas exchange depends on the dimensionless number measuring the relative strength of oceanic vertical mixing and the gas transfer velocity. Strong convective mixing, which may occur under strong cooling, reduces the degree of compensation so that the two components of gas exchange together drive exceptionally strong oceanic O2 uptake.
Rong, Nan; Shan, Baoqing; Wang, Chao
2016-01-01
A study coupling sedimentcore incubation and microelectrode measurementwas performed to explore the sediment oxygen demand (SOD) at 16 stations in the Ziya River Watershed, a severely polluted and anoxic river system in the north of China. Total oxygen flux values in the range 0.19–1.41 g/(m2·d) with an average of 0.62 g/(m2·d) were obtained by core incubations, and diffusive oxygen flux values in the range 0.15–1.38 g/(m2·d) with an average of 0.51 g/(m2·d) were determined by microelectrodes. Total oxygen flux obviously correlated with diffusive oxygen flux (R2 = 0.842). The microelectrode method produced smaller results than the incubation method in 15 of 16 sites, and the diffusive oxygen flux was smaller than the total oxygen flux. Although the two sets of SOD values had significant difference accepted by the two methods via the Wilcoxon signed-rank test (p < 0.05), the microelectrode method was shown to produce results that were similar to those from the core incubation method. The microelectrode method, therefore, could be used as an alternative method for traditional core incubation method, or as a method to verify SOD rates measured by other methods. We consider that high potential sediment oxygen demand would occur in the Ziya River Watershed when the dissolved oxygen (DO) recovered in the overlying water. PMID:26907307
Studies of the Terrestrial Molecular Oxygen and Carbon Cycles in Sand Dune Gases and in Biosphere 2.
NASA Astrophysics Data System (ADS)
Severinghaus, Jeffrey Peck
Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O_2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO_2. Test drilling in sand dunes shows that sand dunes do contain old air, as shown by the concentrations of chlorofluorocarbons and ^{85}Kr. Diffusion is shown to dominate mixing rather than advection. However, biological respiration in dunes corrupts the signal, and isotopic analysis of O_2 and N _2 shows that fractionation of the gases precludes use of sand dunes as archives. Chapter 2 further explores this fractionation, revealing a previously unknown "water vapor flux fractionation" process. A flux of water vapor out of the moist dune into the dry desert air sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N_2 and O_2 diffuse more slowly, creating a steady state depletion of heavy isotopes in the dune interior. Molecular diffusion theory and a laboratory simulation of the effect agree well with the observations. Additional fractionation of the dune air occurs via thermal diffusion and gravitational settling, and it is predicted that soil gases in general will enjoy all three effects. Chapter 3 examines the cause of a mysterious drop in O _2 concentrations in the closed ecosystem of Biosphere 2, located near Tucson, Arizona. The organic -rich soil manufactured for the experiment is shown to be the culprit, with CO_2 produced by bacterial respiration of the organic matter reacting with the extensive concrete surfaces inside. Chapter 4 examines the O_2:C stoichiometry of terrestrial soil respiration and photosynthesis, in the context of using atmospheric O_2 measurements to constrain the size of the "missing sink" of CO_2. Direct measurements of soil respiration and biomatter elemental abundance suggest a value of 1.1 +/- 0.05 oxygen molecules per CO_2 molecule.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Chronic recurrent multifocal osteomyelitis of the mandible: report of three cases].
Paim, Luciana B; Liphaus, Bernadete Lourdes; Rocha, André C; Castellanos, Aura Ligia Z; Silva, Clovis Artur A
2003-01-01
To report three cases of chronic recurrent multifocal osteomyelitis of the mandible, an inflammatory disease affecting one or more bones with absence of isolated microorganisms in affected areas. The first case is a 13 year-old female presenting with pain and fever after dental treatment. The patient received antibiotic treatment for osteomyelitis, but developed progressive enlargement of the mandible and palmoplantar pustulosis. Bone scintigraphy showed intense and diffuse uptake in the mandible. The swelling decreased after indomethacin and hyperbaric oxygen therapy. Case 2 is a 9 year-old female patient with recurrent pain and edema of the right mandible for three years. The diagnosis of osteomyelitis was established and amoxicillin introduced. After three months, tomography showed diffuse mandible osteolysis. Indomethacin and hyperbaric oxygen therapy were introduced, however the patient presented a relapse and was treated with prednisone, rofecoxib and methotrexate. Patient 3, a 10 year-old male, had palmoplantar pustulosis and recurrent enlargement of the mandible. Tomography showed diffuse mandible osteolysis and scintigraphy revealed intense and diffuse uptake in the mandible. The patient was treated with prednisone. Rofecoxib was replaced after two relapses. Chronic recurrent multifocal osteomyelitis of the mandible is often associated with prolonged pain periods and periods of activity and remission of the inflammatory process. Its recognition is important to prevent the patient from being submitted to prolonged antibiotic therapy and unnecessary invasive procedures.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion.
Lee, Chang-Joon; Ngo, Jennifer P; Kar, Saptarshi; Gardiner, Bruce S; Evans, Roger G; Smith, David W
2017-08-01
To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4-1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84-3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2-4.8%). Under normal physiological conditions, blood Po 2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po 2 is predicted to fall most rapidly from Strahler order 4 , under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Mily, Edward Joseph, Jr.
Physical vapor deposition of thin film thermites allow for a clean avenue for probing fundamental properties of nanoenergetic materials that prove difficult for traditional powder processing. Precise control over diffusion dimensions, microstructure, and total amount of material are able to be realized with this fabrication technique and the testing of such materials provide valuable insight into how oxidation occurs. This thesis provides several examples of how existing PVD techniques can be coupled with thermite constituents to further the energetic community's understanding of how oxidation occurs in the solid state with the variation of geometric and chemical alterations. The goal of these investigations was to elucidate which material properties and mechanisms drive exothermic activity. The thermite thin films of Al/CuO, Zr/CuO, and Mg/Cuo with varied reducing metal constituents were tested under slow heating conditions. The trend of the metal variation demonstrated the importance of terminal oxide diffusion properties in either impeding or enhancing oxygen exchange. When the reducing metal forms a terminal oxide with limited oxygen diffusivity, exothermicity requires elevated activation energies to commence self-sustaining reaction. In addition to the effects of chemical variation, bilayer thicknesses were varied and found to decrease exothermic peak temperatures similar to the trends found in intermetallic thin film energetics and powder energetic materials. The thin film thermites were also subjected to extreme initiation methods via laser driven flyer plate impact ignition and high heating rate heat treatment (105 K/s). General insight into nano thermite behavior at environments characteristic of applications was sought, and similar trends discovered among slow vs rapid testing. Decreasing reaction dimensions yielded higher reactivity and diffusion barrier properties role in impacting exothermic behavior persist to into the microsecond regime. Ultimately through this work it has been shown that the process of thermite exothermicity proceeds through more than one pathway and more than the free energy of oxidation of reducing metals should be considered when describing how oxygen exchange occurs. It has been shown that these self-sustaining reactivity can be realized in the solid and.
Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics
NASA Technical Reports Server (NTRS)
Good, Brian
2013-01-01
Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S.; Subczynski, Witold K.
2015-01-01
This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer. PMID:26441482
Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S; Subczynski, Witold K
2015-08-01
This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer.
Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin
2017-03-01
Continuous measurement of local brain oxygen saturation (SO 2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO 2 ), which is closely related to SO 2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO 2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO 2 for different blood concentrations. The P 3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO 2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO 2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shick, J M
1990-08-01
Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.
The role of intraluminal thrombus on oxygen transport in abdominal aortic aneurysms
NASA Astrophysics Data System (ADS)
Madhavan, Sudharsan; Cherry Kemmerling, Erica
2017-11-01
Abdominal aortic aneurysm is ranked as the 13th leading cause of death in the United States. The presence of intraluminal thrombus is thought to cause hypoxia in the vessel wall eventually aggravating the condition. Our work investigates oxygen transport and consumption in a patient-specific model of an abdominal aortic aneurysm. The model includes intraluminal thrombus and consists of the abdominal aorta, renal arteries, and iliac arteries. Oxygen transport to and within the aortic wall layer was modeled, accounting for oxygen consumption and diffusion. Flow and transport in the lumen layer were modeled using coupled Navier-Stokes and scalar transport equations. The thrombus layer was assumed to be biomechanically inactive but permeable to oxygen transport in accordance with previously-measured diffusion coefficients. Plots of oxygen concentration through the layers illustrating reduced oxygen supply to the vessel walls in parts of the model that include thrombus will be presented.
Gan, Patrick; Foord, John S; Compton, Richard G
2015-10-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSalvia, Vincenzo; Jensen, Mallory Ann; Youssef, Amanda
2016-11-21
We investigate a high temperature, high cooling-rate anneal Tabula Rasa (TR) and report its implications on n-type Czochralski-grown silicon (n-Cz Si) for photovoltaic fabrication. Tabula Rasa aims at dissolving and homogenizing oxygen precipitate nuclei that can grow during the cell process steps and degrade the cell performance due to their high internal gettering and recombination activity. The Tabula Rasa thermal treatment is performed in a clean tube furnace with cooling rates >100 degrees C/s. We characterize the bulk lifetime by Sinton lifetime and photoluminescence mapping just after Tabula Rasa, and after the subsequent cell processing. After TR, the bulk lifetimemore » surprisingly degrades to <; 0.1ms, only to recover to values equal or higher than the initial non-treated wafer (several ms), after typical high temperature cell process steps. Those include boron diffusion and oxidation; phosphorus diffusion/oxidation; ambient annealing at 850 degrees C; and crystallization annealing of tunneling-passivating contacts (doped polycrystalline silicon on 1.5 nm thermal oxide). The drastic lifetime improvement during high temperature cell processing is attributed to improved external gettering of metal impurities and annealing of intrinsic point defects. Time and injection dependent lifetime spectroscopy further reveals the mechanisms of lifetime improvement after Tabula Rasa treatment. Additionally, we report the efficacy of Tabula Rasa on n-type Cz-Si wafers and its dependence on oxygen concentration, correlated to position within the ingot.« less
Responsibility for clinical innovation. A case study in neonatal medicine.
Miké, V; Krauss, A N; Ross, G S
1998-03-01
Proper evaluation of clinical innovations and of the process of their diffusion is essential for the development of sound health care policy. This case study examines transcutaneous oxygen monitoring in neonatal intensive care, a procedure that was rapidly adopted in the late 1970s as a scientific breakthrough of great promise, then all but abandoned within a decade in favor of pulse oximetry, a still more recent technology. The study incorporates the results of interviews with representatives of industry as well as biomedical researchers and clinicians involved with these devices. Factors in technology diffusion are analyzed, with special attention to those susceptible to change by policy makers. Participants in the diffusion process also include nurses, hospital administrators, the legal profession, the news media, and the public, but the pivotal role--and hence ultimate responsibility--is seen to be that of the physician. The discussion is presented in the context of a proposed "ethics of evidence" pertinent to medical decision making.
NASA Astrophysics Data System (ADS)
Nemschokmichal, Sebastian; Tschiersch, Robert; Meichsner, Jürgen
2017-11-01
The laser photodetachment experiment in a diffuse helium-oxygen barrier discharge is evaluated by a 1D fluid simulation. As in the experiment, the simulated discharge operates in helium with 400 {ppm} oxygen admixture at 500 {mbar} inside a discharge gap of 3 {mm}. The laser photodetachment is included by the interaction of negative ions with a temporally and spatially dependent photon flux. The simulation with the usually applied set of reactions and rate coefficients provides a much lower negative ion density than needed to explain the impact on the discharge characteristics in the experiment. Further processes for an enhanced negative ion formation and their capabilities of reproducing the experimental results are discussed. These further processes are additional attachment processes in the volume and the negative ion formation at the negatively charged dielectric. Both approaches are able to reproduce the measured laser photodetachment effect partially, but the best agreement with the experimental results is achieved with the formation of negative ions at the negatively charged dielectric.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
Lee, Minhee
2002-04-01
Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.
Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2
NASA Technical Reports Server (NTRS)
Semkow, K. W.; Haskin, L. A.
1985-01-01
The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.
Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E
2017-01-01
Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
NASA Astrophysics Data System (ADS)
Saito, Minoru; Furuya, Hirotaka; Sugisaki, Masayasu
1985-09-01
Oxidation of SUS-316 stainless steel for a fast breeder reactor fuel cladding was examined in the temperature range of 843-1010 K under the oxygen pressure of 1017 t - 10 t-13 Pa hy use of an experimental technique of a Ni/NiO oxygen buffer. The formation of the duplex oxide layer, i.e. an outer Fe 3O 4 layer and an inner (Fe, Cr, Ni)-spinel layer, was observed and the oxidation kinetics was found to obey the parabolic rate law. The oxygen pressure and temperature dependence of the parabolic rate constant kp( PO2, T) was determined as follows: kp( PO2, T)/ kg2 · m-1 · s-1 = 0.170( PO2/ Pa) 0.141exp[-114 × 10 3/( RT/ J)]. On the basis of the oxidation kinetics and the metallographic information, the outward diffusion of Fe in the outer oxide layer was assigned to be the rate-determining process.
Studies of high coverage oxidation of the Cu(100) surface using low energy positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.
2012-02-01
The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).
Optical in situ monitoring of plasma-enhanced atomic layer deposition process
NASA Astrophysics Data System (ADS)
Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang
2018-06-01
An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.
A new method to measure and model dynamic oxygen microdistributions in moving biofilms.
Wang, Jian-Hui; Chen, You-Peng; Dong, Yang; Wang, Xi-Xi; Guo, Jin-Song; Shen, Yu; Yan, Peng; Ma, Teng-Fei; Sun, Xiu-Qian; Fang, Fang; Wang, Jing
2017-10-01
Biofilms in natural environments offer a superior solution to mitigate water pollution. Artificially intensified biofilm reactors represented by rotating biological contactors (RBCs) are widely applied and studied. Understanding the oxygen transfer process in biofilms is an important aspect of these studies, and describing this process in moving biofilms (such as biofilms in RBCs) is a particular challenge. Oxygen transfer in RBCs behaves differently than in other biological reactors due to the special oxygen supply mode that results from alternate exposure of the biofilm to wastewater and air. The study of oxygen transfer in biofilms is indispensable for understanding biodegradation in RBCs. However, the mechanisms are still not well known due to a lack of effective tools to dynamically analyze oxygen diffusion, reaction, and microdistribution in biofilms. A new experimental device, the Oxygen Transfer Modeling Device (OTMD), was designed and manufactured for this purpose, and a mathematical model was developed to model oxygen transfer in biofilm produced by an RBC. This device allowed the simulation of the local environment around the biofilm during normal RBC operation, and oxygen concentrations varying with time and depth in biofilm were measured using an oxygen microelectrode. The experimental data conformed well to the model description, indicating that the OTMD and the model were stable and reliable. Moreover, the OTMD offered a flexible approach to study the impact of a single-factor on oxygen transfer in moving biofilms. In situ environment of biofilm in an RBC was simulated, and dynamic oxygen microdistributions in the biofilm were measured and well fitted to the built model description. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development and fabrication of lithium-doped solar cells
NASA Technical Reports Server (NTRS)
Iles, P. A.
1971-01-01
The application of contacts and coatings after lithium diffusion provides good electrical output and satisfactory contact adhesion by sintering for short times at temperatures less than the lithium diffusion temperature. High output and repeatability are obtainable from both oxygen-rich and oxygen-lean silicon. These fabrication sequence alterations have led to higher cell output, better appearance, and increased contact strength.
Mathematical Modeling of Decarburization in Levitated Fe-Cr-C Droplets
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Yang, Yindong; Li, Donghui; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor
2018-04-01
Using carbon dioxide to replace oxygen as an alternative oxidant gas has proven to be a viable solution in the decarburization process, with potential for industrial applications. In a recent study, the transport phenomena governing the carbon dioxide decarburization process through the use of electromagnetic levitation (EML) was examined. CO2/CO mass transfer was found to be the principal reaction rate control step, as a result gas diffusion has gained significant attention. In the present study, gas diffusion during decarburization process was investigated using computational fluid dynamics (CFD) modeling coupled with chemical reactions. The resulting model was verified through experimental data in a published paper, and employed to provide insights on phenomena typically unobservable through experiments. Based on the results, a new correction of the Frössling equation was presented which better represents the mass transfer phenomena at the metal-gas interface within the range of this research.
NASA Astrophysics Data System (ADS)
Baricci, Andrea; Casalegno, Andrea
2016-09-01
Limiting current density of oxygen reduction reaction in polymer electrolyte fuel cells is determined by several mass transport resistances that lower the concentration of oxygen on the catalyst active site. Among them, diffusion across porous media plays a significant role. Despite the extensive experimental activity documented in PEMFC literature, only few efforts have been dedicated to the measurement of the effective transport properties in porous layers. In the present work, a methodology for ex situ measurement of the effective diffusion coefficient and Knudsen radius of porous layers for polymer electrolyte fuel cells (gas diffusion layer, micro porous layer and catalyst layer) is described and applied to high temperature polymer fuel cells State of Art materials. Regression of the measured quantities by means of a quasi 2D physical model is performed to quantify the Knudsen effect, which is reported to account, respectively, for 30% and 50% of the mass transport resistance in micro porous layer and catalyst layer. On the other side, the model reveals that pressure gradient consequent to permeation in porous layers of high temperature polymer fuel cells has a negligible effect on oxygen concentration in relevant operating conditions.
OXYGEN TRANSPORT IN THE MICROCIRCULATION AND ITS REGULATION
Pittman, Roland N.
2012-01-01
Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium and cells. Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand and their regulation are decided. PMID:23025284
NASA Astrophysics Data System (ADS)
Visbeck, M.; Banyte, D.; Brandt, P.; Dengler, M.; Fischer, T.; Karstensen, J.; Krahmann, G.; Tanhua, T. S.; Stramma, L.
2013-12-01
Equatorial Dynamics provide an essential influence on the ventilation pathways of well oxygenated surface water on their route to tropical oxygen minimum zones (OMZ). The large scale wind driven circulation shield OMZs from the direct ventilation pathways. They are located in the so called ';shadow zones' equator ward of the subtropical gyres. From what is known most of the oxygen is supplied via pathways from the western boundary modulated by the complex zonal equatorial current system and marginally by vertical mixing. What was less clear is which of the possible pathways are most effective in transporting dissolved oxygen towards the OMZ. A collaborative research program focused on the dynamics of oxygen minimum zones, called SFB754 "Climate - Biogeochemistry Interactions in the Tropical Ocean", allowed us to conduct two ocean tracer release experiments to investigate the vertical and horizontal mixing rates and associated oxygen transports. Specifically we report on the first deliberate tracer release experiment (GUTRE, Guinea Upwelling Tracer Release Experiment) in the tropical northeast Atlantic carried out in order to determine the diapycnal diffusivity coefficient in the upper layer of the OMZ. A tracer (CF3SF5) was injected in spring of 2008 and subsequently measured during three designated tracer survey cruises until the end of 2010. We found that, generally, the diffusivity is larger than expected for low latitudes and similar in magnitude to what has previously been experimentally determined in the Canary Basin. When combining the tracer study with estimates of diapycnal mixing based on microstructure profiling and a newly developed method using ship board ADCPs we were able to compute the vertical oxygen flux and its divergence for the OMZ. To our surprise, the vertical flux of oxygen by diapycnal mixing provides about 30% of the total ventilation. The estimate was derived from the simple advection-diffusion model taking into account moored and ship based velocity observations of the equatorial current systems along 23°W in the tropical Atlantic. However, the advective pathways are less certain and possibly more variable. Firstly, the strength of lateral eddy stirring and the role in oxygen transport is less well known, and is the focus of the ongoing second tracer release experiment (OSTRE, Oxygen Supply Tracer Release Experiment). Secondly, the analysis of historical data from the equatorial regime suggests that the observed decline in dissolved oxygen in the tropical North Atlantic might in part be a consequence of reduced horizontal ventilation by equatorial intermediate current systems. The uncertainty of the long-term variability of the circulation in the equatorial systems and additional uncertainty in the biogeochemical consumption rates provide a challenge for estimates of the future of the OMZ regimes. Model prediction of future oxygen changes depend on the models ability to reproduce the observed oxygen ventilation pathways and processes, which might limit the prediction's accuracy.
Oxygen concentration dependence of silicon oxide dynamical properties
NASA Astrophysics Data System (ADS)
Yajima, Yuji; Shiraishi, Kenji; Endoh, Tetsuo; Kageshima, Hiroyuki
2018-06-01
To understand oxidation in three-dimensional silicon, dynamic characteristics of a SiO x system with various stoichiometries were investigated. The calculated results show that the self-diffusion coefficient increases as oxygen density decreases, and the increase is large when the temperature is low. It also shows that the self-diffusion coefficient saturates, when the number of removed oxygen atoms is sufficiently large. Then, approximate analytical equations are derived from the calculated results, and the previously reported expression is confirmed in the extremely low-SiO-density range.
2013-01-01
The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691
Raman, Abhinav S; Li, Huiyong; Chiew, Y C
2018-01-07
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.
NASA Astrophysics Data System (ADS)
Raman, Abhinav S.; Li, Huiyong; Chiew, Y. C.
2018-01-01
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the supercritical state.
The kinetics of ulvoespinel reduction - Synthetic study and applications to lunar rocks.
NASA Technical Reports Server (NTRS)
Mccallister, R. H.; Taylor, L. A.
1973-01-01
The kinetics of Fe2TiO4 reduction to FeTiO3 + Fe were studied using CO-CO2 gas mixtures with fO2 measured by a solid ceramic (calcia-zirconia) oxygen electrolyte cell. Isothermal rate studies at 900 C suggest that the mechanism of Fe2TiO4 reduction is one of nucleation and growth, where the growth stage may be controlled by the diffusion of the reactant through the product layer or volume diffusion. The activation energy for the growth stage of the process was determined to be 46 plus or minus 4 kcal/mole.
Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs
NASA Astrophysics Data System (ADS)
Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien
2018-01-01
Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.
NASA Astrophysics Data System (ADS)
Ter Heege, J. H.; Dohmen, R.; Becker, H.; Chakraborty, S.
2006-12-01
Fe-Mg interdiffusion in silicate minerals is of interest in petrological studies for determining the closure temperature of geothermometers and for determining cooling rates from compositional profiles. It is also relevant for studies of the physical properties of silicates, such as rheology or electrical conductivity, because knowledge of its dependence on oxygen fugacity can aid in the understanding of point defect chemistry. Compositionally zoned orthopyroxenes are common in meteorites, mantle rocks, lower crustal rocks and a variety of plutonic and volcanic igneous rocks. However, experimental difficulties have precluded direct determination of Fe-Mg diffusion rates in orthopyroxenes so far and the available information comes from (1) Mg tracer diffusion coefficients obtained from isotope tracer studies using enriched ^{25}MgO films [1], (2) calculations of interdiffusion rates based on the (diffusion-controlled) order-disorder kinetics measured in orthopyroxene [2], and (3) indirect estimates from the comparison of diffusion widths in coexisting garnets and olivines, in which Fe-Mg diffusion rates are relatively well known [e.g., 3]. We have directly measured Fe-Mg interdiffusion coefficients parallel to the [001] direction in two natural orthopyroxene single crystals (approximately En95Fs5 and En90Fs10) using diffusion couples consisting of an olivine thin film (Fo30Fa70, typically 20 - 50 nm thick) deposited under vacuum on pre-heated, polished and oriented pyroxene single crystals using a pulsed laser ablation deposition technique. Samples were annealed for 4 - 337 hours at 800 - 1100 °C under atmospheric pressure in a continuous flow of CO + CO2 to control the oxygen fugacity between 10-16 and 10^{-12} bar within the stability field of pyroxene. Film thickness and compositional profiles were measured using Rutherford backscattering Spectroscopy (RBS) on reference and annealed samples, and Fe concentration depth profiles were extracted from the RBS spectra and fitted numerically. At an oxygen fugacity of 10-16 bar, Fe-Mg interdiffusion coefficients in the Fs richer orthopyroxene vary between 4.10^{-22} m2/s and 2.10^{-20} m2/s for temperatures between 800 and 1000°C. Diffusion coefficients decrease by a factor of ~ 4 with decreasing oxygen fugacity between 10^{-12} and 10-16 bar at 1000 °C. Comparison of our data with other Fe-Mg diffusion data shows that these diffusion coefficients are (1) similar to Mg tracer diffusion coefficients measured in orthopyroxene at somewhat more reducing (e.g. fO2 = 10-16 to 10^{-19} bar) conditions at the same temperatures [1], (2) similar to Mg tracer diffusion in garnets measured at higher pressures of 10 kbar at an oxygen fugacity corresponding to the C-O equilibrium in graphite present systems [4], and (3) slower than Fe-Mg diffusion rates in olivine by a factor of ~10 at the same oxygen fugacities [5]. Further experiments to quantify the dependence on composition, temperature and oxygen fugacity are in progress. References: [1] Schwandt et al. (1998), Contr. Mineral. Petrol. 130: 390-396; [2] Ganguly and Tazzoli (1994), Am. Mineral. 79: 930-937; [3] Smith and Barron (1991), Am. Mineral. 76: 1950-1963; [4] Ganguly et al. (1998), Contr. Mineral. Petrol. 131: 171-180; [5] Chakraborty (1997), J. Geoph. Res. 102: 12317-12331.
Activation volumes of oxygen self-diffusion in fluorite structured oxides
Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; ...
2016-10-27
In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO 2, UO 2 and PuO 2 formore » a wide range of temperature (300–1700 K) and pressure (–7.5 to 7.5 GPa).« less
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude
2013-10-01
of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.
Complex Diffusion Mechanisms for Li in Feldspar: Re-thinking Li-in-Plag Geospeedometry
NASA Astrophysics Data System (ADS)
Holycross, M.; Watson, E. B.
2017-12-01
In recent years, the lithium isotope system has been applied to model processes in a wide variety of terrestrial environments. In igneous settings, Li diffusion gradients have been frequently used to time heating episodes. Lithium partitioning behavior during decompression or cooling events drives Li transfer between phases, but the extent of Li exchange may be limited by its diffusion rate in geologic materials. Lithium is an exceptionally fast diffuser in silicate media, making it uniquely suited to record short-lived volcanic phenomena. The Li-in-plagioclase geospeedometer is often used to time explosive eruptions by applying laboratory-calibrated Li diffusion coefficients to model concentration profiles in magmatic feldspar samples. To quantify Li transport in natural scenarios, experimental measurements are needed that account for changing temperature and oxygen fugacity as well as different feldspar compositions and crystallographic orientation. Ambient pressure experiments were run at RPI to diffuse Li from a powdered spodumene source into polished sanidine, albite, oligoclase or anorthite crystals over the temperature range 500-950 ºC. The resulting 7Li concentration gradients developed in the mineral specimens were evaluated using laser ablation ICP-MS. The new data show that Li diffusion in all feldspar compositions simultaneously operates by both a "fast" and "slow" diffusion mechanism. Fast path diffusivities are similar to those found by Giletti and Shanahan [1997] for Li diffusion in plagioclase and are typically 10 to 20 times greater than slow path diffusivities. Lithium concentration gradients in the feldspar experiments plot in the shape of two superimposed error function curves with the slow diffusion regime in the near-surface of the crystal. Lithium diffusion is most sluggish in sanidine and is significantly faster in the plagioclase feldspars. It is still unclear what diffusion mechanism operates in nature, but the new measurements may impact how Li-in-plagioclase geospeedometry is used to time igneous processes. Giletti, B.J., and T.M. Shanahan (1997) Alkali diffusion in plagioclase feldspar, Chem. Geol., 139, 3-20
Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds
NASA Astrophysics Data System (ADS)
Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J.
2001-04-01
The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals-and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere-and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30°N to 30°S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2-C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation.
Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.
Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego
2017-10-01
Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.
Green, Bridget S
2004-05-01
Variation in size at hatching is common in demersal spawning organisms, suggesting that processes during embryonic development may be critical in determining growth and development. To examine critical periods during embryonic development in the demersal spawning reef fish Amphiprion melanopus, the rate of oxygen consumption within an egg clutch was compared to morphological changes in the embryos. Oxygen consumption was least on day 1 of development where organ differentiation had not begun (mean 1.73+/-0.34x10(-5) micromol O(2) egg(-1) s(-1)). Tail movement throughout the perivitelline fluid began on day 3 and is likely to assist in moving oxygen around the embryo, complementing diffusive transport. The appearance of haemoglobin in the blood corresponded to a peak in oxygen consumption on day 4, where the highest mean rate of oxygen consumption was recorded (6.73+/-0.82x10(-5) micromol O(2) egg(-1) s(-1)). This could be a critical period in development whereby risk of mortality is increased through increased embryo requirements at developmental thresholds.
In situ characterization of the oxidative degradation of a polymeric light emitting device
NASA Astrophysics Data System (ADS)
Cumpston, B. H.; Parker, I. D.; Jensen, K. F.
1997-04-01
Light-emitting devices with polymeric emissive layers have great promise for the production of large-area, lightweight, flexible color displays, but short lifetimes currently limit applications. We address mechanisms of bulk polymer degradation in these devices and show through in situ Fourier transform infrared characterization of working light-emitting devices with active layers of poly[2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] that oxygen is responsible for the degradation of the polymer film. A mechanism is given based on the formation of singlet oxygen from oxygen impurities in the film via energy transfer from a nonradiative exciton. Fourier transform infrared and x-ray photoelectron spectroscopy results are consistent with the mechanism, involving singlet oxygen attack followed by free radical processes. We further show that oxygen readily diffuses into the active polymer layer, changing the electrical characteristics of the film even at low concentrations. Thus, polyphenylene-vinylene-based light-emitting devices will self-destruct during operation if fabricated without special attention to eliminating oxygen contamination during fabrication and device operation.
NASA Astrophysics Data System (ADS)
Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy
2016-12-01
Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.
Migration mechanisms and diffusion barriers of vacancies in Ga2O3
NASA Astrophysics Data System (ADS)
Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico
2017-06-01
We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.
Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J
2011-05-01
Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste. Copyright © 2011 Elsevier B.V. All rights reserved.
Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat
NASA Astrophysics Data System (ADS)
Canfield, Donald E.; Des Marais, David J.
1993-08-01
Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works located in Guerrero Negro, Baja California Sur, Mexico. Included in the budget are measured rates of O 2 production, sulfate reduction, and elemental exchange across the mat/brine interface, day and night, at various temperatures and times of the year. We infer from this data the various sinks for O 2, as well as the sources of carbon for primary production. To summarize, although seasonal variability exists, a major percentage of the O 2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O 2 that diffused into the mat was used to oxidize sulfide, with O 2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O 2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Also, oxygenic photosynthesis was the most important process of carbon fixation, although anoxygenic photosynthesis may have been important at low light levels during some times of the year. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount. These mats are thus closely coupled systems where rapid rates of photosynthesis both require and fuel rapid rates of heterotrophic carbon oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
NASA Technical Reports Server (NTRS)
Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.
1992-01-01
The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
Beebe, David C; Shui, Ying-Bo; Siegfried, Carla J; Holekamp, Nancy M; Bai, Fang
2014-05-01
Oxygen levels in the eye are generally low and tightly regulated. Oxygen enters the eye largely by diffusion from retinal arterioles and through the cornea. In intact eyes, oxygen from the retinal arterioles diffuses into the vitreous body. There is a decreasing oxygen gradient from the retina to the lens, established by oxygen consumption by ascorbate in the vitreous fluid and lens metabolism. Age-related degeneration of the vitreous body or removal during vitrectomy exposes the posterior of the lens to increased oxygen, causing nuclear sclerotic cataracts. Lowering oxygen in the vitreous, as occurs in patients with ischemic diabetic retinopathy, protects against cataracts after vitrectomy. Vitrectomy and cataract surgery increase oxygen levels at the trabecular meshwork and with it the risk of open angle glaucoma. Two additional risk factors for glaucoma, African heritage and having a thinner cornea, are also associated with increased oxygen in the anterior chamber angle. Preservation of the vitreous body and the lens, two important oxygen consumers, would protect against nuclear sclerotic cataracts and open angle glaucoma. Delaying removal of the lens for as long as possible after vitrectomy would be an important step in delaying ocular hypertension and glaucoma progression.
High Temperature Degradation Mechanisms in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.
1996-01-01
Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects in the neat resin, and anisotropic diffusion effects in the composites, are identified through the use of specimens with different aspect ratios. The data is used with the model to determine reaction coefficients and effective diffusion coefficients. The empirical and analytical correlations confirm the preliminary model results which suggest that mass loss at lower temperatures is dominated by oxidative reactions and that these reaction are limited by diffusion of oxygen from the surface. The mechanism-based model is able to successfully capture the basic physics of the degradation phenomena under a wide range of test conditions. The analysis-based test design is successful in separating out oxidative, thermal, and diffusion effects to allow the determination of material coefficients. This success confirms the basic picture of the process; however, a more complete understanding of some aspects of the physics are required before truly predictive capability can be achieved.
Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery
NASA Astrophysics Data System (ADS)
grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther
2016-02-01
In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Asahara, Ryohei
2015-12-21
The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures withmore » the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.« less
Li, Ting; Lin, Yu; Shang, Yu; He, Lian; Huang, Chong; Szabunio, Margaret; Yu, Guoqiang
2013-01-01
We report a novel noncontact diffuse correlation spectroscopy flow-oximeter for simultaneous quantification of relative changes in tissue blood flow (rBF) and oxygenation (Δ[oxygenation]). The noncontact probe was compared against a contact probe in tissue-like phantoms and forearm muscles (n = 10), and the dynamic trends in both rBF and Δ[oxygenation] were found to be highly correlated. However, the magnitudes of Δ[oxygenation] measured by the two probes were significantly different. Monte Carlo simulations and phantom experiments revealed that the arm curvature resulted in a significant underestimation (~−20%) for the noncontact measurements in Δ[oxygenation], but not in rBF. Other factors that may cause the residual discrepancies between the contact and noncontact measurements were discussed, and further comparisons with other established technologies are needed to identify/quantify these factors. Our research paves the way for noncontact and simultaneous monitoring of blood flow and oxygenation in soft and vulnerable tissues without distorting tissue hemodynamics. PMID:23446991
NASA Astrophysics Data System (ADS)
Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.
2013-06-01
Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.
Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.
The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A modelmore » of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.« less
McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J
2016-09-01
The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability.
Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen
2015-01-01
The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5 × 104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.
CO2 decomposition using electrochemical process in molten salts
NASA Astrophysics Data System (ADS)
Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2012-08-01
The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.
Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2011-12-01
Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption rates. This least-favorable zone for aerobic respiration is bound to expand with further ocean warming.
NASA Technical Reports Server (NTRS)
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
NASA Astrophysics Data System (ADS)
Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.
2018-04-01
The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.
Khinda, Vineet Inder Singh; Bhuria, Parvesh; Khinda, Paramjit; Kallar, Shiminder; Brar, Gurlal Singh
2016-01-01
Diffusion hypoxia is the most serious potential complication associated with nitrous oxide. It occurs during the recovery period. Hence, administration of 100% oxygen is mandatory as suggested by many authors. The aim of this study is to evaluate the occurrence/nonoccurrence of diffusion hypoxia in two groups of patients undergoing routine dental treatment under nitrous oxide sedation when one group is subjected to 7 min of postsedation oxygenation and the second group of the patients is made to breathe room air for the similar period. A total of sixty patients within the age group of 7-10 years requiring invasive dental procedures were randomly divided into two groups of 30 each using chit method. In the control group, patients were administered 100% oxygen postsedation, whereas, in the study group, patients were made to breathe room air postsedation. Various parameters (pulse rate, respiratory rate, blood pressure, and oxygen saturation [SpO2]) were recorded pre- and post-operatively. Data were collected and then sent for statistical analysis. The mean postoperative SpO2 at measurement times 1, 3, 5, and 7 min in both the groups was higher than the mean preoperative SpO2. This increase was statistically significant. No significant difference was found between the Trieger test scores. This study proves that clinical occurrence of diffusion hypoxia is not possible while following the routine procedure of nitrous oxide sedation.
Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films
Pant, Astrid F.; Sängerlaub, Sven; Müller, Kajetan
2017-01-01
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O2/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (aw > 0.86). PMID:28772849
Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.
Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan
2017-05-03
Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).
NASA Astrophysics Data System (ADS)
Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya
2017-07-01
A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.
Chemistry of the metal-polymer interfacial region.
Leidheiser, H; Deck, P D
1988-09-02
In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.
Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany
NASA Astrophysics Data System (ADS)
Kohfahl, Claus; Massmann, Gudrun; Pekdeger, Asaf
2009-05-01
The microbial degradation of pharmaceuticals found in surface water used for artificial recharge is strongly dependent on redox conditions of the subsurface. Furthermore the durability of production wells may decrease considerably with the presence of oxygen and ferrous iron due to the precipitation of trivalent iron oxides and subsequent clogging. Field measurements are presented for oxygen at a bank filtration site in Berlin, Germany, along with simplified calculations of different oxygen pathways into the groundwater. For a two-dimensional vertical cross-section, oxygen input has been calculated for six scenarios related to different water management strategies. Calculations were carried out in order to assess the amount of oxygen input due to (1) the infiltration of oxic lake water, (2) air entrapment as a result of water table oscillations, (3) diffusive oxygen flux from soil air and (4) infiltrating rainwater. The results show that air entrapment and infiltrating lake water during winter constitute by far the most important mechanism of oxygen input. Oxygen input by percolating rainwater and by diffusive delivery of oxygen in the gas phase is negligible. The results exemplify the importance of well management as a determining factor for water oscillations and redox conditions during artificial recharge.
Uptake of Light Elements in Thin Metallic Films
NASA Astrophysics Data System (ADS)
Markwitz, Andreas; Waldschmidt, Mathias
Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.
Rooting Responses of Three Oak Species to Low Oxygen Stress
Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello
1997-01-01
Rooting characteristics were compared in blue (Q. douglasii), valley (Q. lobata), and cork oak (Q. suber) seedlings under hypoxic (low oxygen) conditions. A 50 percent reduction in root growth occurred in all species at an oxygen level of 4 percent, or an oxygen diffusion rate of 0.3 mg cm-2...
Yu, Jie; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng
2013-02-01
Heavy metals volatilization during thermal treatment of model solid waste was theoretically and experimentally investigated in a fluidized bed reactor. Lead, cadmium, zinc and copper, the most four conventional heavy metals were investigated. Particle temperature model and metal diffusion model were established to simulate the volatilization of CdCl(2) evaporation and investigate the possible influencing factors. The diffusion coefficient, porosity and particle size had significant effects on metal volatilization. The higher diffusion coefficient and porosity resulted in the higher metal evaporation. The influence of redox conditions, HCl, water and mineral matrice were also investigated experimentally. The metal volatilization can be promoted by the injection of HCl, while oxygen played a negative role. The diffusion process of heavy metals within particles also had a significant influence on kinetics of their vaporization. The interaction between heavy metals and mineral matter can decrease metal evaporation amount by forming stable metallic species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microstructure design for fast oxygen conduction
Aidhy, Dilpuneet S.; Weber, William J.
2015-11-11
Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less
Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor
2018-05-24
The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-01-01
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width. PMID:28796167
Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan
2017-08-10
The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.
Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas
2012-04-01
Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.
Barmpalexis, P; Syllignaki, P; Kachrimanis, K
2018-06-01
Water diffusion through the matrix of three superdisintegrants, namely sodium starch glycolate (SSG), croscarmellose sodium (cCMC-Na) and crospovidone (cPVP), was studied at the sub-molecular level using Attenuated Total Reflectance (ATR)-FTIR spectroscopy and molecular dynamics simulations, and the results were correlated to water uptake studies conducted at the particulate level using Parallel Exponential Kinetics (PEK) modeling in dynamic moisture sorption studies and optical microscopy. ATR-FTIR studies indicated that water diffuses inside cPVP by a single fast acting process, while in SSG and cCMC-Na, a slow and a fast process acting simultaneously, were identified. The same pattern regarding the rate of water uptake for all superdisintegrants was found also at the particulate level by PEK modeling. Moreover, molecular dynamics simulation helped elucidate the hydrogen bonding patterns formed between water-SSG and water-cCMC-Na, mainly via their carboxylic oxygen atoms and secondarily via their hydroxyl groups, while cPVP formed hydrogen bonds only through carbonyl oxygen. Finally, cPVP chains showed significant flexibility during hydration, while cCMC-Na and SSG chains retain their conformation to some extent, explaining the extensive swelling observed also at the particulate level by optical microscopy hydration studies.
Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L
2011-09-08
Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Uberuaga, Blas P.
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
Wu, Ying; Jiang, Yu; Shi, Jinan; Gu, Lin; Yu, Yan
2017-06-01
TiO 2 as an anode for sodium-ion batteries (NIBs) has attracted much recent attention, but poor cyclability and rate performance remain problematic owing to the intrinsic electronic conductivity and the sluggish diffusivity of Na ions in the TiO 2 matrix. Herein, a simple process is demonstrated to improve the sodium storage performance of TiO 2 by fabricating a 1D, multichannel, porous binary-phase anatase-TiO 2 -rutile-TiO 2 composite with oxygen-deficient and high grain-boundary density (denoted as a-TiO 2- x /r-TiO 2- x ) via electrospinning and subsequent vacuum treatment. The introduction of oxygen vacancies in the TiO 2 matrix enables enhanced intrinsic electronic conductivity and fast sodium-ion diffusion kinetics. The porous structure offers easy access of the liquid electrolyte and a short transport path of Na + through the pores toward the TiO 2 nanoparticle. Furthermore, the high density of grain boundaries between the anatase TiO 2 and rutile TiO 2 offer more interfaces for a novel interfacial storage. The a-TiO 2- x /r-TiO 2- x shows excellent long cycling stability (134 mAh g -1 at 10 C after 4500 cycles) and superior rate performance (93 mAh g -1 after 4500 cycles at 20 C) for sodium-ion batteries. This simple and effective process could serve as a model for the modification of other materials applied in energy storage systems and other fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ergul, Ayse Betul; Calıskan, Emrah; Samsa, Hasan; Gokcek, Ikbal; Kaya, Ali; Zararsiz, Gozde Erturk; Torun, Yasemin Altuner
2018-06-18
The effectiveness of using a face mask with a small diffuser for oxygen delivery (OxyMask) was compared to use of a high-flow nasal cannula (HFNC) in patients with moderate or severe bronchiolitis.The study population in this open, phase 4, randomized controlled trial consisted of 60 patients aged 1-24 months diagnosed with moderate or severe bronchiolitis and admitted to an intensive care unit (ICU) for oxygen therapy. The patients were randomized into two groups according to the method of oxygen delivery: a diffuser mask group and an HFNC group.There were seven failures in the mask group and none in the HFNC group. The survival probability differed significantly between the two treatment methods (p = 0.009).Time to weaning off oxygen therapy was 56 h in the HFNC group and 96 h in the mask group (p < 0.001). HFNC use decreased the treatment failure rate and the duration of both oxygen therapy and ICU treatment compared to the diffuser mask, which implies that an HFNC should be the first choice for treating patients admitted to the ICU with severe bronchiolitis. What is known: • A high-flow nasal cannula (HFNC) does not significantly reduce the time on oxygen compared to standard therapy in children with moderate to severe bronchiolitis. Observational studies show that, since the introduction of HFNC, fewer children with bronchiolitis need intubation. For children with moderate to severe bronchiolitis there is no proof of its benefit. What Is New: • In children with moderate to severe bronchiolitis, HFNC provides faster and more effective improvement than can be achieved with a diffuser mask.
Slow positrons in single-crystal samples of Al and Al-AlxOy
NASA Astrophysics Data System (ADS)
Lynn, K. G.; Lutz, H.
1980-11-01
Well-characterized Al(111) and Al(100) samples were studied with monoenergetic positrons before and after exposure to oxygen. Both positronium-formation and positron-emission curves were obtained for various incident positron energies at sample temperatures ranging from 160-900 K. The orthopositronium decay signal provides a unique signature that the positron has emerged from the surface region of a clean metal. In the clean Al crystals part of the positronium formed near the surface is found to be associated with a temperature-activated process described as the thermally activated detrapping of a positron from a surface state. A simple positron diffusion model, including surface and vacancy trapping, is fitted to the positronium data and an estimate of the binding energy of the positron in this trap is made. The positron diffusion constant is found to have a negative temperature dependence before the onset of positron trapping at thermally generated monovacancies (>500 K), in reasonable agreement with theoretical predictions. The depth of the positron surface state is reduced or positronium is formed in the chemisorbed layer as oxygen is adsorbed on both Al sample surfaces, thus increasing the positronium fraction and decreasing the positron emission. At higher oxygen exposures [>500 L (1 L = 10-6 torr sec)] positron or positronium traps are generated in the overlayer and the positronium fraction is reduced. The amorphous-to-crystalline surface transition of AlxOy on Al is observed between 650 and 800 K by the change in the positronium fraction and is interpreted as the removal of trapping centers in the metal-oxide overlayer. At the higher temperatures and incident energies vacancy trapping is observed by the decrease in the positron diffusion length in both the clean and the underlying Al of the oxygen-exposed samples. Similar vacancy formation enthalpies for Al are extracted in both the clean and oxygen-covered samples by a simple model and are in good agreement with those measured by other experimental methods. This technique provides a new experimental means for the study of interfaces and thin films and the vacancy-type defects associated with them.
Neurobiologic Correlates of Attention and Memory Deficits Following Critical Illness in Early Life.
Schiller, Raisa M; IJsselstijn, Hanneke; Madderom, Marlous J; Rietman, André B; Smits, Marion; van Heijst, Arno F J; Tibboel, Dick; White, Tonya; Muetzel, Ryan L
2017-10-01
Survivors of critical illness in early life are at risk of long-term-memory and attention impairments. However, their neurobiologic substrates remain largely unknown. A prospective follow-up study. Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands. Thirty-eight school-age (8-12 yr) survivors of neonatal extracorporeal membrane oxygenation and/or congenital diaphragmatic hernia with an intelligence quotient greater than or equal to 80 and a below average score (z score ≤ -1.5) on one or more memory tests. None. Intelligence, attention, memory, executive functioning, and visuospatial processing were assessed and compared with reference data. White matter microstructure and hippocampal volume were assessed using diffusion tensor imaging and structural MRI, respectively. Global fractional anisotropy was positively associated with selective attention (β = 0.53; p = 0.030) and sustained attention (β = 0.48; p = 0.018). Mean diffusivity in the left parahippocampal region of the cingulum was negatively associated with visuospatial memory, both immediate (β = -0.48; p = 0.030) and delayed recall (β = -0.47; p = 0.030). Mean diffusivity in the parahippocampal region of the cingulum was negatively associated with verbal memory delayed recall (left: β = -0.52, p = 0.021; right: β = -0.52, p = 0.021). Hippocampal volume was positively associated with verbal memory delayed recall (left: β = 0.44, p = 0.037; right: β = 0.67, p = 0.012). Extracorporeal membrane oxygenation treatment or extracorporeal membrane oxygenation type did not influence the structure-function relationships. Our findings indicate specific neurobiologic correlates of attention and memory deficits in school-age survivors of neonatal extracorporeal membrane oxygenation and congenital diaphragmatic hernia. A better understanding of the neurobiology following critical illness, both in early and in adult life, may lead to earlier identification of patients at risk for impaired neuropsychological outcome with the use of neurobiologic markers.
Garrido-Baserba, Manel; Sobhani, Reza; Asvapathanagul, Pitiporn; McCarthy, Graham W; Olson, Betty H; Odize, Victory; Al-Omari, Ahmed; Murthy, Sudhir; Nifong, Andrea; Godwin, Johnnie; Bott, Charles B; Stenstrom, Michael K; Shaw, Andrew R; Rosso, Diego
2017-03-15
This research systematically studied the behavior of aeration diffuser efficiency over time, and its relation to the energy usage per diffuser. Twelve diffusers were selected for a one year fouling study. Comprehensive aeration efficiency projections were carried out in two WRRFs with different influent rates, and the influence of operating conditions on aeration diffusers' performance was demonstrated. This study showed that the initial energy use, during the first year of operation, of those aeration diffusers located in high rate systems (with solids retention time - SRT-less than 2 days) increased more than 20% in comparison to the conventional systems (2 > SRT). Diffusers operating for three years in conventional systems presented the same fouling characteristics as those deployed in high rate processes for less than 15 months. A new procedure was developed to accurately project energy consumption on aeration diffusers; including the impacts of operation conditions, such SRT and organic loading rate, on specific aeration diffusers materials (i.e. silicone, polyurethane, EPDM, ceramic). Furthermore, it considers the microbial colonization dynamics, which successfully correlated with the increase of energy consumption (r 2 :0.82 ± 7). The presented energy model projected the energy costs and the potential savings for the diffusers after three years in operation in different operating conditions. Whereas the most efficient diffusers provided potential costs spanning from 4900 USD/Month for a small plant (20 MGD, or 74,500 m 3 /d) up to 24,500 USD/Month for a large plant (100 MGD, or 375,000 m 3 /d), other diffusers presenting less efficiency provided spans from 18,000USD/Month for a small plant to 90,000 USD/Month for large plants. The aim of this methodology is to help utilities gain more insight into process mechanisms and design better energy efficiency strategies at existing facilities to reduce energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stability of nanoclusters in an oxide dispersion strengthened alloy under neutron irradiation
Liu, Xiang; Miao, Yinbin; Wu, Yaqiao; ...
2017-06-01
In this paper, we report atom probe tomography results of the nanoclusters in a neutron-irradiated oxide dispersion strengthened alloy. Following irradiation to 5 dpa at target temperatures of 300 °C and 450 °C, fewer large nanoclusters were found and the residual nanoclusters tend to reach an equilibrium Guinier radius of 1.8 nm. With increasing dose, evident decrease in peak oxygen and titanium (but not yttrium) concentrations in the nanoclusters was observed, which was explained by atomic weight, solubility, diffusivity, and chemical bonding arguments. Finally, the chemical modifications indicate the equilibrium size is indeed a balance of two competing processes: radiationmore » enhanced diffusion and collisional dissolution.« less
Biological Productivity from an Oxygen Mass Balance in the subarctic North Pacific
NASA Astrophysics Data System (ADS)
Giesbrecht, K. E.; Hamme, R. C.
2008-12-01
Biological productivity is an important process controlling the export of carbon into the deep ocean and thus influencing the earth's climate. An O2 mass balance of the upper ocean can estimate this export of organic carbon if the physical processes affecting the O2 concentrations are accounted for. This can be accomplished by measuring the dissolved O2/Ar ratio, because their similar physical properties allow us to consider Ar an 'abiotic' O2 analogue. Here we present a two-year data set of O2/N2/Ar ratio measurements collected at Station Papa and along Line P in 2007/08. Line P, situated in the subarctic North Pacific, is a series of oceanographic stations running from the southwest tip of Vancouver Island to Station Papa (50°N, 145°W), one of the oldest deep-ocean time series in existence which is located in the High-Nutrient/Low-Chlorophyll (HNLC) region of the subarctic gyre. Current cruises along Line P run three times per year, typically in February, June and August. The dissolved gas ratios are measured using a stable isotope mass spectrometer and oxygen concentrations by titration. In a simple steady state, we equate biological O2 production to diffusive gas exchange, using the O2/Ar ratio to normalize the physical component of the oxygen signal and calculate the net biological oxygen production. Diffusive gas exchange is calculated using a wind speed parameterization. Preliminary estimates of the net biological production in the mixed layer at Station Papa for 2007 are calculated at 30.9 and 14.0 mmol C m-2 d- 1 for June and August respectively, both exhibiting mixed layer O2/Ar supersaturations. The O2/Ar undersaturation in the mixed layer for February 2007 suggests net respiration at that time. The wind speed parameterization of diffusive gas exchange is the major source of error for this method. We plan to refine our productivity calculation to account for vertical mixing and also by measuring rates of production using a number of different methods, so that we may determine if the values obtained converge on a result. Future investigations to obtain a better-constrained estimate of the biological carbon export in this region by measuring Nitrogen and Carbon uptake rates in the euphotic zone using dual, stable isotope tracer 15N/13C incubations in addition to the oxygen mass balance will be discussed.
NASA Astrophysics Data System (ADS)
Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.
2016-09-01
Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.
Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yaobiao; Zhang, Bo; Ye, Jingyun
2012-10-18
We have studied the dynamic relationship between acetone and bridge-bonded oxygen (Ob) vacancy (VO) defect sites on the TiO2(110)-1 × 1 surface using scanning tunneling microscopy (STM) and density function theory (DFT) calculations. We report an adsorbate-assisted VO diffusion mechanism. The STM images taken at 300 K show that acetone preferably adsorbs on the VO site and is mobile. The sequential isothermal STM images directly show that the mobile acetone effectively migrates the position of VO by a combination of two acetone diffusion channels: one is the diffusion along the Ob row and moving as an alkyl group, which healsmore » the initial VO; another is the diffusion from the Ob row to the fivecoordinated Ti4+ row and then moving along the Ti4+ row as an acetone, which leaves a VO behind. The calculated acetone diffusion barriers for the two channels are comparable and agree with experimental results.« less
Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.
Novitski, David; Kosakian, Aslan; Weissbach, Thomas; Secanell, Marc; Holdcroft, Steven
2016-11-30
Mass transport of oxygen through an ionomer contained within the cathode catalyst layer in an anion exchange membrane fuel cell is critical for a functioning fuel cell, yet is relatively unexplored. Moreover, because water is a reactant in the oxygen reduction reaction (ORR) in alkaline media, an adequate supply of water is required. In this work, ORR mass transport behavior is reported for methylated hexamethyl-p-terphenyl polymethylbenzimidazoles (HMT-PMBI), charge balanced by hydroxide ions (IEC from 2.1 to 2.5 mequiv/g), and commercial Fumatec FAA-3 membranes. Electrochemical mass transport parameters are determined by potential step chronoamperometry using a Pt microdisk solid-state electrochemical cell, in air at 60 °C, with relative humidity controlled between 70% and 98%. The oxygen diffusion coefficient (D bO2 ), oxygen concentration (c bO2 ), and oxygen permeability (D bO2 ·c bO2 ) were obtained by nonlinear curve fitting of the current transients using the Shoup-Szabo equation. Mass transport parameters are correlated to water content of the ionomer membrane. It is found that the oxygen diffusion coefficients decreased by 2 orders of magnitude upon reducing the water content of the ionomer membrane by lowering the relative humidity. The limitation of the Shoup-Szabo equation for extracting ORR mass transport parameters using thin ionomer films was evaluated by numerical modeling of the current transients, which revealed that a significant discrepancy (up to 29% under present conditions) was evident for highly hydrated membranes for which the oxygen diffusion coefficient was largest, and in which the oxygen depletion region reached the ionomer/gas interface during the chronoamperometric analysis.
Grist, Samantha M.; Schmok, Jonathan C.; Liu, Meng-Chi (Andy); Chrostowski, Lukas; Cheung, Karen C.
2015-01-01
Control of oxygen over cell cultures in vitro is a topic of considerable interest, as chronic and cyclic hypoxia can alter cell behaviour. Both static and transient hypoxic levels have been found to affect tumour cell behaviour; it is potentially valuable to include these effects in early, in vitro stages of drug screening. A barrier to their inclusion is that rates of transient hypoxia can be a few cycles/hour, which is difficult to reproduce in traditional in vitro cell culture environments due to long diffusion distances from control gases to the cells. We use a gas-permeable three-layer microfluidic device to achieve spatial and temporal oxygen control with biologically-relevant switching times. We measure the oxygen profiles with integrated, ratiometric optical oxygen sensors, demonstrate sensor and system stability over multi-day experiments, and characterize a pre-bleaching process to improve sensor stability. We show, with both finite-element modelling and experimental data, excellent control over the oxygen levels by the device, independent of fluid flow rate and oxygenation for the operating flow regime. We measure equilibration times of approximately 10 min, generate complex, time-varying oxygen profiles, and study the effects of oxygenated media flow rates on the measured oxygen levels. This device could form a useful tool for future long-term studies of cell behaviour under hypoxia. PMID:26287202
NLS propulsion - Government view
NASA Technical Reports Server (NTRS)
Smelser, Jerry W.
1992-01-01
The paper discusses the technology development for the Space Transportation Main Engine (STME). The STME is a liquid oxygen/liquid hydrogen engine with 650,000 pounds of thrust, which may be flown in single-engine or multiple-engine configurations, depending upon the payload and mission requirements. The technological developments completed so far include a vacuum plasma spray process, the liquid interface diffusion bonding, and a thin membrane platelet technology for the combustion chamber fabrication; baseline designs for the hydrogen turbopump and the oxygen pump; and the engine control system. The family of spacecraft for which this engine is being developed includes a 20,000 pound payload to LEO and a 150,000 pound to LEO vehicle.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Diffusion and related transport mechanisms in brain tissue
NASA Astrophysics Data System (ADS)
Nicholson, Charles
2001-07-01
Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.
Anomalous Surface Diffusion of Protons on Lipid Membranes
Wolf, Maarten G.; Grubmüller, Helmut; Groenhof, Gerrit
2014-01-01
The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of −13.0 ± 0.5 kJ mol−1. The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. PMID:24988343
Anomalous surface diffusion of protons on lipid membranes.
Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit
2014-07-01
The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Gan, Patrick; Foord, John S; Compton, Richard G
2015-01-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, G.M.; Snezhko, A.D.
1961-08-28
A modified polarographic method has been developed to determine continuously variations in the oxygen content of tissue by inserting a platinum needle as an electrode directly into the tissue of a living animal. The''oxygen test," in which the animal is allowed to breathe a controlled amount of pure oxygen, gives information about the rate of utilization of oxygen by the tissue. Ordinarily the increase in the oxygen diffusion current DELTA I is stable in form and amplitude for any given experimental animal and for a given location of the electrode. Thus, after a total irradiation of 700 to 1000 r,more » the value of DELTA I increased by a factor of two. A decrease in the ability of tissue to utilize oxygen after irradiation is indicated. Local irradiation gives a low value of DELTA I, and indicates that the unirradiated cells utilize oxygen at a faster rate than before irradiation. The oxygen content of the tissue was observed to vary rhythmically with two periods. One rhythm had a small amplitude and a high frequency of 15 to 20 oscillations per minute, and the other rhythm had a large amplitude and a low frequency of 2 to 3 oscillations per minute. Irradiation leads to a suppression of this rhythmic oscillation in the oxygen content of the tissue. These effects are most readily apparent in the irradiation of growing rootlets (Vicia fabia) and of a multiplying yeast culture. This method sheds some light on the course of chemical processes such as oxidation that occur in the cell as a function of the period of time after irradiation. (TTT)« less
Fast Three-Dimensional Method of Modeling Atomic Oxygen Undercutting of Protected Polymers
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce A.
2002-01-01
A method is presented to model atomic oxygen erosion of protected polymers in low Earth orbit (LEO). Undercutting of protected polymers by atomic oxygen occurs in LEO due to the presence of scratch, crack or pin-window defects in the protective coatings. As a means of providing a better understanding of undercutting processes, a fast method of modeling atomic-oxygen undercutting of protected polymers has been developed. Current simulation methods often rely on computationally expensive ray-tracing procedures to track the surface-to-surface movement of individual "atoms." The method introduced in this paper replaces slow individual particle approaches by substituting a model that utilizes both a geometric configuration-factor technique, which governs the diffuse transport of atoms between surfaces, and an efficient telescoping series algorithm, which rapidly integrates the cumulative effects stemming from the numerous atomic oxygen events occurring at the surfaces of an undercut cavity. This new method facilitates the systematic study of three-dimensional undercutting by allowing rapid simulations to be made over a wide range of erosion parameters.
NASA Technical Reports Server (NTRS)
Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.
1985-01-01
Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer onboard the AMPTE/CCE spacecraft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (4-6, 6-8, and greater than 8), and quiet to moderately disturbed days (Kp less than or equal to 4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2018-01-01
We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.
NASA Astrophysics Data System (ADS)
Tari, Alireza; Wong, William S.
2018-02-01
Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.
Size-related bioconcentration kinetics of hydrophobic chemicals in fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sijm, D.T.H.M.; Linde, A. van der
1994-12-31
Uptake and elimination of hydrophobic chemicals by fish can be regarded as passive diffusive transport processes. Diffusion coefficients, lipid/water partitioning, diffusion pathlenghts, concentration gradients and surface exchange areas are key parameters describing this bioconcentration distribution process. In the present study two of these parameters were studied: the influence of lipid/water partitioning was studied by using hydrophobic chemicals of different hydrophobicity, and the surface exchange area by using different sizes of fish. By using one species of fish it was assumed that all other parameters were kept constant. Seven age classes of fish were exposed to a series of hydrophobic, formore » five days, which was followed by a deputation phase lasting up to 6 months. Bioconcentration parameters, such as uptake and elimination rate constants, and bioconcentration factors were determined. Uptake of the hydrophobic compounds was compared to that of oxygen. Uptake and elimination rates were compared to weight and estimated (gill) exchange areas. The role of weight and its implications for extrapolations of bioconcentration parameters to other species and sizes will be discussed.« less
NASA Astrophysics Data System (ADS)
Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.
1984-10-01
The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.
NASA Astrophysics Data System (ADS)
Kar, Pritish
Titanium and its alloys have excellent engineering properties but their applications are limited because they are expensive and a good percentage of this cost results from the extraction process. The national agencies of many countries around the world have invested a lot of resources to develop a more cost-effective titanium extraction process. A result of one such research efforts is the Fray-Farthing-Chen (FFC) process in which pellets of titanium dioxide are made the cathode in an electrochemical cell with a graphite anode and an electrolyte of molten CaCl2 at 900°C. After electro-deoxidation, the pellets are reduced to titanium with oxygen in solid solution. From this short description, this one step process provides distinct advantages over the current process of extracting titanium known as the Kroll process that takes several days to complete. For investigation of the FFC process theoretically, a coupled electrochemical and diffusion based model was set-up to simulate the linear sweep voltammograms that was developed by collaborators working on lab-scale experiments on the FCC process. Using this model, a parameter called "deltadc" (that is the product of diffusion coefficients of oxygen in the phases, Ti3O5 and Ti2O3 and the stoichiometric range of these phases) was determined. The results suggest a reaction of first-order in the concentration of oxygen in the solid phase. For modeling the reaction of an individual sintered pellet of TiO 2 as it undergoes electro-deoxidation in a molten salt bath of CaCl 2, a similarity of this process with the operation of a lithium ion battery was exploited. Using the model, a number of parameters of physical importance, namely thickness of the sintered pellets, porosity of the pellets and the radius of the particles making up the pellets and the optimum values for the these parameters were proposed based on the simulation data. It is also shown that if the reduction is started with a pellet of partially reduced titanium dioxide (such as by reducing with hydrogen), one can avoid titanate formation. The work described in this dissertation will hopefully help in the development of a more cost-effective titanium extraction process.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro
2017-06-01
Solid source diffusions of phosphorus (P) and boron (B) into the half-inch (12.5 mm) minimal silicon (Si) wafers by spin on dopants (SOD) have been systematically investigated and the physical-vapor-deposited (PVD) titanium nitride (TiN) metal gate minimal silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have successfully been fabricated using the developed SOD thermal diffusion technique. It was experimentally confirmed that a low temperature oxidation (LTO) process which depresses a boron silicide layer formation is effective way to remove boron-glass in a diluted hydrofluoric acid (DHF) solution. It was also found that top Si layer thickness of SOI wafers is reduced in the SOD thermal diffusion process because of its consumption by thermal oxidation owing to the oxygen atoms included in SOD films, which should be carefully considered in the ultrathin SOI device fabrication. Moreover, normal operations of the fabricated minimal PVD-TiN metal gate SOI-CMOS inverters, static random access memory (SRAM) cells and ring oscillators have been demonstrated. These circuit level results indicate that no remarkable particles and interface traps were introduced onto the minimal wafers during the device fabrication, and the developed solid source diffusion by SOD is useful for the fabrication of functional logic gate minimal SOI-CMOS integrated circuits.
Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J
2014-09-06
A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.
Reversible control of magnetism in La 0.67Sr 0.33MnO 3 through chemically-induced oxygen migration
Grutter, A. J.; Gilbert, D. A.; Alaan, U. S.; ...
2016-02-22
We demonstrate reversible control of magnetization and anisotropy in La 0.67Sr 0.33MnO 3 films through interfacial oxygen migration. Gd metal capping layers deposited onto La 0.67Sr 0.33MnO 3 leach oxygen from the film through a solid-state redox reaction to form porous Gd 2O 3. X-ray absorption and polarized neutron reflectometry measurements show Mn valence alterations consistent with high oxygen vacancy concentrations, resulting in suppressed magnetization and increased coercive fields. Effects of the oxygen migration are observed both at the interface and also throughout the majority of a 40 nm thick film, suggesting extensive diffusion of oxygen vacancies. After Gd-capped Lamore » 0.67Sr 0.33MnO 3 is exposed to atmospheric oxygen for a prolonged period of time, oxygen diffuses through the Gd 2O 3 layer and the magnetization of the La 0.67Sr 0.33MnO 3 returns to the uncapped value. In conclusion, these findings showcase perovskite heterostructures as ideal candidates for developing functional interfaces through chemically-induced oxygen migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishide, Hiroyuki; Suzuki, Takayuki; Kawakami, Hiroyoshi
1994-05-12
New derivatives of (meso-[alpha],[alpha],[alpha],[alpha]-tetrakis(o-pivalamidophenyl)porphinato)cobalt (CoPs) were characterized by oxygen-binding equilibrium and rate constants of the cobalt centered in the porphyrins. They depended on the structure of the porphyrin; for example, the rate constants of oxygen binding and dissociation (k[sub on] and k[sub off]) for [alpha][sup 3][beta]-CoP[sub 4]P were 3 and 20 times as large as those for [alpha][sup 4]-CoB[sub 4]P, respectively. Oxygen transport through the polymer membranes containing CoPs as the fixed oxygen carriers was facilitated and was affected by the oxygen-binding character or the structure of CoPs. The logarithmically linear correlation of the oxygen-dissociation rate constant of CoPs (k[submore » off] = (3-66) x 10[sup 3] S[sup [minus]1]) with the diffusion constant of oxygen via CoPs fixed in the membranes (D[sub cc] = (3-140) x 10[sup [minus]9] cm[sup 2] s[sup [minus]1]) was given for those six CoP derivatives. 26 refs., 5 figs., 2 tabs.« less
Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
2017-05-04
In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion,more » while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.« less
Will open ocean oxygen stress intensify under climate change?
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Dunne, J. P.; John, J.
2011-07-01
Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full earth system model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in oxygen is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of oxygen due to lateral diffusion. compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model.
Baranov, V I; Belichenko, V M; Shoshenko, C A
2000-09-01
Oxygen diffusion from medium to cultured isolated muscle fibers from red gastrocnemius muscle (deep part) (RGM) and white pectoralis muscle (WPM) of embryonic and postnatal chickens (about 6 months) was explored. The intracellular effective O(2) diffusion coefficient (D(i)) in muscle fiber was calculated from a model of a cylindrical fiber with a uniform distribution of an oxygen sink based on these experimentally measured parameters: critical tension of O(2) (PO(2)) on the surface of a fiber, specific rate of O(2) consumption by a weight unit of muscle fibers (;VO(2)), and average diameter of muscle fibers. The results document the rapid hypertrophic growth of RGM fibers when compared to WPM fibers in the second half of the embryonic period and the higher values of;VO(2) and critical PO(2) during the ontogenetic period under study. The oxygen D(i) in RGM fibers of embryos and 1-day chickens was two to three times higher than observed for WPM fibers. For senior chickens, the oxygen D(i) value in RGM and WPM fibers does not differ. The D(i) of O(2) in both RGM and WPM fibers increased from 1.4-2.7 x 10(-8) to 90-95 x 10(-8) cm(2)/s with an ontogenetic increase in fiber diameter from 7. 5 to 67.0 microm. At all stages the oxygen D(i) values in RGM and WPM fibers are significantly lower than the O(2) diffusion coefficient in water: for 11-day embryos they are 889 and 1714 times lower and for adult individuals 25 and 27 times lower, respectively. Why oxygen D(i) values in RGM and WPM fibers are so low and why they are gradually increasing during the course of hypertrophic ontogenetic growth are still unclear. Copyright 2000 Academic Press.
Compañ, Vicente; Tiemblo, Pilar; García, F; García, J M; Guzmán, Julio; Riande, Evaristo
2005-06-01
The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.
Molecular Diffusion Coefficients: Experimental Determination and Demonstration.
ERIC Educational Resources Information Center
Fate, Gwendolyn; Lynn, David G.
1990-01-01
Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)
Space water electrolysis: Space Station through advance missions
NASA Technical Reports Server (NTRS)
Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.
1991-01-01
Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.
Diffusion bonding of Ti-48Ni-2Mn-2Nb (at.%)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, S.P.; Strangwood, M.; Threadgill, P.L.
The diffusion bonding behavior of Ti-48at. % Al-2at. % Mn-2at. %Nb has been studied as a function of temperature (in the range 1,200--1,350C), time (15--45 minutes) and starting microstructure (lamellar, duplex and near {gamma}) at constant bonding pressure of 10 MPa. It was found, that under the above conditions, small twin related {gamma} grains, approximately 10-20 {mu}m in size, nucleated at the original interface and grew into the matrix forming a double necklace grain structure. Particles of {alpha}{sub 2} were observed around the interface, the formation of {alpha}{sub 2} particles was believed to be related to oxygen partitioning and stabilizationmore » effects from dissolved oxide films during the bonding process. Evidence for this mechanism was obtained from parallel electron energy loss spectroscopy (PEELS), which identified oxygen partitioning in the (X2) particles. For the fully lamellar structure bonded at 1,250 C for 45 minutes the failure strength of the bond was found to be 250 MPa, approximately 50 MPa lower than the failure strength of the base material.« less
A kinetic model for the thermal nitridation of SiO2/Si
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.
1986-01-01
To explain the observed nitrogen distributions in thermally nitridated SiO2 films, a kinetic model is proposed in which the nitridation process is simulated, using the first-order chemical kinetics and Arrhenius dependence of the diffusion and reaction rates on temperature. The calculations show that initially, as the substrate reacts with diffusing nitrogen, a nitrogen-rich oxynitride forms at the SiO2-Si interface, while at nitridation temperatures above 1000 C, an oxygen-rich oxynitride subsequently forms at the interface, due to reaction of the substrate with an increasingly concentrated oxygen displaced by the slower nitridation of the SiO2. This sequence of events results in a nitrogen distribution in which the peak of the interfacial nitrogen concentration occurs away from the interface. The results are compared with the observed nitrogen distribution. The calculated results have correctly predicted the positions of the interfacial nitrogen peaks at the temperatures of 800, 1000, and 1150 C. To account for the observed width of the interfacial nitrogen distribution, it was found necessary to include in the simulations the effect of interfacial strain.
Upgraded metallurgical-grade silicon solar cells with efficiency above 20%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, P.; Rougieux, F. E.; Samundsett, C.
We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less
Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ
Yang, Tianrang; Mattick, Victoria F.; Chen, Yan; ...
2018-01-29
The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less
Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tianrang; Mattick, Victoria F.; Chen, Yan
The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less
Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba.
Hoffmann, Friederike; Røy, Hans; Bayer, Kristina; Hentschel, Ute; Pfannkuchen, Martin; Brümmer, Franz; de Beer, Dirk
2008-01-01
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6-12 μmol cm -3 sponge day -1 . Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm -3 sponge day -1 , and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.
NASA Astrophysics Data System (ADS)
Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2016-02-01
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.
Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS
NASA Technical Reports Server (NTRS)
Szumila, Ian; Danielson, Lisa; Trail, Dustin
2017-01-01
Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706; Stewart, Derek A., E-mail: derek.stewart@hgst.com
Metal oxide resistive memory devices based on Ta{sub 2}O{sub 5} have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta{sub 2}O{sub 5} is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta{sub 2}O{sub 5}. Identified diffusion paths are associated with collective motion of neighboringmore » atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta{sub 2}O{sub 5} is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta{sub 2}O{sub 5} based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.« less
Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites
Uberuaga, Blas Pedro; Pilania, Ghanshyam
2015-07-08
Perovskite structured oxides (ABO 3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O 6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO 6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two endmore » member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti 4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less
Oxygen isotope geospeedometry by SIMS
NASA Astrophysics Data System (ADS)
Bonamici, C. E.; Valley, J. W.
2013-12-01
Geospeedometry, a discipline closely related and complimentary to thermochronology, exploits the phenomenon of diffusion in order to extract rate and duration information for segments of a rock's thermal history. Geospeedometry data, when anchored in absolute time by geochronologic data, allow for the construction of detailed temperature-time paths for specific terranes and geologic processes. We highlight the developing field of SIMS-based oxygen isotope geospeedometry with an application from granulites of the Adirondack Mountains (New York) and discuss potential future applications based on a recently updated and expanded modeling tool, the Fast Grain Boundary diffusion program (FGB; Eiler et al. 1994). Equilibrium oxygen isotope ratios in minerals are a function of temperature and bulk rock composition. In dynamic systems, intragrain oxygen isotope zoning can develop in response to geologic events that affect the thermal state of a rock and/or induce recrystallization, especially tectonic deformation and fluid infiltration. As an example, titanite grains from late-Grenville shear zones in the northwestern Adirondack Mountains exhibit a range of δ18O zoning patterns that record post-peak metamorphic cooling, episodic fluid infiltration, and deformation-facilitated recrystallization. Many titanite grains preserve smooth, core-to-rim decreasing, diffusional δ18O profiles, which are amenable to diffusion modeling. FGB models that best fit the measured δ18O profiles indicate cooling from ~700-500°C in just 2-5 m.y., a rapid thermal change signaling the final gravitational collapse of the late-Grenville orogen. Titanite can also be utilized as a U-Pb chronometer, and comparison of δ18O and U-Pb age zoning patterns within the Adirondack titanites pins the episode of rapid cooling inferred from the δ18O record to some time between 1054 and 1047 Ma. The expanded capabilities of FGB also allow for evaluation of a range of heating-cooling histories for the Adirondack granulites. Diffusional δ18O zoning profiles in titanite are best fit by complete re-equilibration at temperatures above 675 °C followed by rapid, monotonic cooling; FGB models that include only partial re-equilibration and/or episodes of reheating along the retrograde path do not fit the observed δ18O profiles. Beyond the Adirondack titanite example, FGB can be used as a predictive tool to target either specific minerals within a rock or specific rock types within a terrane for oxygen isotope geospeedometry and zoning studies. FGB generates predictions of δ18O zoning for all minerals in a rock of a given mineralogy and heating-cooling history. Different minerals within the same rock will record different segments of the thermal and fluid history based on their individual diffusivities, phase stabilities, and propensities for deformation-induced/facilitated recrystallization. It should therefore be possible to extract long thermal histories from a single sample by measuring oxygen isotope zoning profiles across several minerals with different partial retention zones for oxygen.
Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.
2013-01-01
High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.
Grinberg, Oleg; Novozhilov, Boris; Grinberg, Stalina; Friedman, Bruce; Swartz, Harold M
2005-01-01
The cylindrical steady-state model developed by Krogh with Erlang has served as the basis of understanding oxygen supply in living tissue for over eighty years. Due to its simplicity and agreement with some observations, it has been extensively used and successfully extended to new fields, especially for situations such as drug diffusion, water transport, and ice formation in tissues. However, the applicability of the model to make even a qualitative prediction of the oxygen level of specific volumes of the tissue is still controversial. We recently have developed an approximate analytical solution of a steady-state diffusion equation for a Krogh cylinder, including oxygen concentration in the capillary. This model was used to explain our previous experimental data on myocardial pO2 in isolated perfused rat hearts measured by EPR oximetry. An acceptable agreement with the experimental data was obtained by assuming that a known limitation of the existing EPR methods--a tendency to over-weight low pO2 values--had resulted in an under-estimate of the pO2. These results are consistent with recent results of others, which stress the importance of taking into account the details of what is measured by various methods.
Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion
2009-01-01
Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051
Reactivity and oxygen diffusion property of resistive barriers for Bi-2223/Ag tapes
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.
2002-12-01
Reactivity of several oxide materials (OM) with BSCCO powder and oxygen diffusion through OM layer has been tested at temperature ≈840 °C in air. The OM (e.g.: BaZrO 3, SrCO 3, MgO and ZrO 2) showing the low or no reactivity with BSCCO have been mixed (10 wt.%) with precursor powder and used for single-core tapes. Bi-2223/Ag/OM/Ag single-core tapes with oxide barriers made of BaZrO 3, SrCO 3, ZrO 2 and Al 2O 3 have been also prepared by a standard powder-in-tube technique. The used OM in the direct contact with BSCCO influences the electrical properties of Bi-2223 phase differently. These is because the oxides react with BSCCO during the heat treatment and simultaneously affect the 2212→2223 phase transformation, the Bi-2223 grain growth and so also grain connectivity. SrCO 3 powder has been evaluated as the best material from the point of no destructive effect on 2223 phase transport current property. The oxide barrier controls the oxygen diffusion during the tape heat treatment and simultaneously the HTS phase formation kinetics, its purity and content within the superconducting core. For single-core Bi-2223/Ag/OM/Ag tapes, the highest current density was measured for Al 2O 3 due to only slightly reduced oxygen diffusion through the barrier.
Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter
2010-01-01
The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052
Transient Evolution of a Planar Diffusion Flame Aft of a Translating Flat Plate
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
2003-01-01
The high degree of spatial symmetry of a planar diffusion flame affords great simplifications for experimental and modeling studies of gaseous fuel combustion. Particularly, in a microgravity environment, where buoyancy effects are negligible, an effectively strain-rate-free, vigorous flame may be obtained. Such a flame can also provide long residence times and large length scales for practical probing of flame structures and soot processes. This 2-D numerical study explores the feasibility of establishing such a planar diffusion flame in an enclosed container utilizing a realistic test protocol for a microgravity experiment. Fuel and oxygen mixtures, initially segregated into two half-volumes of a squat rectangular container by a thin separator, are ignited as soon as a flammable mixture is formed in the wake of the separator withdrawn in the centerplane. A triple-flame ensues that propagates behind the trailing edge of the separator. The results of calculations show that the mechanically- and thermally-induced convection decays in about two seconds. The establishment of a planar diffusion flame after this period seems feasible in the central region of the container with sufficient quantities of reactants left over for subsequent studies. An analysis of the flame initiation and formation process suggests how the feasibility of creating such a flame can be further improved.
Eusebi, Anna Laura; Bellezze, Tiziano; Chiappini, Gianluca; Sasso, Marco; Battistoni, Paolo
2017-06-15
The paper deals with the evaluation of the effect of on/off switching of diffuser membranes, in the intermittent aeration process of the urban wastewater treatments. Accelerated tests were done using two types of commercial EPDM diffusers, which were submitted to several consecutive cycles up to the simulation of more than 8 years of real working conditions. The effect of this switching on the mechanical characteristics of the membranes was evaluated in terms of pressure increment of the air operating at different flow rates (2, 3.5 and 6 m 3 /h/diff): during accelerated tests, such increment ranged from 2% to 18%. The intermittent phases emphasized the loss both of the original mechanical proprieties of the diffusers and of the initial pore shapes. The main cause of pressure increment was attributed to the fouling of the internal channels of the pores. Further analyses performed by scanning electron microscopy and by mechanical tests on EPDM membrane, using a traditional tensile test and a non destructive optical method, from which the Young's Modulus was obtained, supported previous conclusions. Any changes in terms of oxygen transfer parameters (KLa and SOTE%) were specifically founded by causing to the repeated on/off switching. Copyright © 2017. Published by Elsevier Ltd.
Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments
NASA Astrophysics Data System (ADS)
Larson, T. E.
2012-12-01
Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.
Dielectric relaxation study of amorphous TiTaO thin films in a large operating temperature range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouahi, A.; Kahouli, A.; Laboratoire Materiaux, Organisation et Proprietes
2012-11-01
Two relaxation processes have been identified in amorphous TiTaO thin films deposited by reactive magnetron sputtering. The parallel angle resolved x-ray photoelectron spectroscopy and field emission scanning electron microscopy analyses have shown that this material is composed of an agglomerates mixture of TiO{sub 2}, Ta{sub 2}O{sub 5}, and Ti-Ta bonds. The first relaxation process appears at low temperature with activation energy of about 0.26 eV and is related to the first ionisation of oxygen vacancies and/or the reduction of Ti{sup 4+} to Ti{sup 3+}. The second relaxation process occurs at high temperature with activation energy of 0.95 eV. This lastmore » peak is associated to the diffusion of the doubly ionized oxygen vacancies V{sub O}e. The dispersion phenomena observed at high temperature can be attributed to the development of complex defect such as (V{sub O}e - 2Ti{sup 3+}).« less
Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.
Koga, Kenji; Hirasawa, Makoto
2013-09-20
NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.
Petrou, Athinoula L.; Petrou, Petros L.; Ntanos, Theodoros; Liapis, Antonis
2018-01-01
The thermodynamic parameters Eact, ΔH≠, ΔS≠, and ΔG≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T). The ΔG≠ values of the antioxidants’ processes vary in the range 91.27–116.46 kJmol−1 at 310 K. The similarity of the ΔG≠ values (for all of the antioxidants studied) is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10–30 kJmol−1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol−1 is needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen). We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen’s empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density. PMID:29495515
Wan, Hao; Mao, Ya; Liu, Zixuan; Bai, Qingyou; Peng, Zhe; Bao, Jingjing; Wu, Gang; Liu, Yang; Wang, Deyu; Xie, Jingying
2017-04-10
As the first step during discharge, the mass transfer of oxygen should play a crucial role in Li-air batteries to tailor the growth of discharge products, however, not enough attention has been paid to this issue. Herein, we introduce an oxygen-enriching cosolvent, 1,2-(1,1,2,2-tetrafluoroethoxy) ethane (FE1), into the electrolyte, and investigate its influence on the discharge performance. The incorporation of this novel cosolvent consistently enhances the oxygen solubility of the electrolyte, and improves the oxygen diffusivity following a volcano-shape trend peaking at 50 % FE1. It is interesting that the discharge capacities obtained with the investigated electrolytes share the similar volcano trends as the oxygen transport under 50 mA g carbon -1 and higher current densities. The improved oxygen diffusion could benefit the volumetric utilization of the air cathode, especially at the separator side, probably owing to the fast oxygen transport to moderate its concentration gradient. Our results demonstrate the importance of oxygen provision, which easily becomes the capacity-determining factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methane oxidation and formation of EPS in compost: effect of oxygen concentration.
Wilshusen, J H; Hettiaratchi, J P A; De Visscher, A; Saint-Fort, R
2004-05-01
Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters.
Full scale evaluation of diffuser ageing with clean water oxygen transfer tests.
Krampe, J
2011-01-01
Aeration is a crucial part of the biological wastewater treatment in activated sludge systems and the main energy user of WWTPs. Approximately 50 to 60% of the total energy consumption of a WWTP can be attributed to the aeration system. The performance of the aeration system, and in the case of fine bubble diffused aeration the diffuser performance, has a significant impact on the overall plant efficiency. This paper seeks to isolate the changes of the diffuser performance over time by eliminating all other influencing parameters like sludge retention time, surfactants and reactor layout. To achieve this, different diffusers have been installed and tested in parallel treatment trains in two WWTPs. The diffusers have been performance tested in clean water tests under new conditions and after one year of operation. A set of material property tests describing the diffuser membrane quality was also performed. The results showed a significant drop in the performance of the EPDM diffuser in the first year which resulted in similar oxygen transfer efficiency around 16 g/m3/m for all tested systems. Even though the tested silicone diffusers did not show a drop in performance they had a low efficiency in the initial tests. The material properties indicate that the EPDM performance loss is partly due to the washout of additives.
McClure, Ryan P; Hamre, Kathleen D; Niederlehner, B R; Munger, Zackary W; Chen, Shengyang; Lofton, Mary E; Schreiber, Madeline E; Carey, Cayelan C
2018-04-30
Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH 4 ) and carbon dioxide (CO 2 ). The vertical distribution and diffusive efflux of CH 4 and CO 2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH 4 accumulated within the anoxic MOM, reaching a maximum of 120 μM, and elevated concentrations of CO 2 accumulated in the oxic hypolimnion, reaching a maximum of 780 μM. Interestingly, the largest observed diffusive CH 4 effluxes occurred before fall turnover in both years, while peak diffusive CO 2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH 4 and CO 2 in the water column in reservoirs, resulting in the accumulation of CH 4 in the metalimnion (vs. at the sediments) and CO 2 in the hypolimnion. Copyright © 2018 Elsevier B.V. All rights reserved.
Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.
Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert
2015-02-03
Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.
On the progressive enrichment of the oxygen isotopic composition of water along a leaf.
Farquhar, G. D.; Gan, K. S.
2003-06-01
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.
Oxygen transport in the internal xenon plasma of a dispenser hollow cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.
2014-04-21
Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less
Diffusion of Redox-Sensitive Elements in Basalt at Different Oxygen Fugacities
NASA Technical Reports Server (NTRS)
Szumila, I.; Trail, D.; Danielson, L. R.
2017-01-01
The terrestrial planets and moons of our solar system have differentiated over a range of oxygen fugacity conditions. Basalts formed from magmas on the Earth cover a range of more oxidized states (from approximately IW (iron wustite) plus 2 to approximately FMQ (fayalite-magnetite-quartz) plus 3) than crustal rocks from Mars (IW to approximately IW plus 3), and basalts from the Moon are more reduced than both, ranging from IW to IW minus 2. The small body Vesta differentiated around IW minus 4. Characterization of redox sensitive elements' diffusivities will offer insight into behavior of these elements as a function of f (fugacity of) O2 for these planetary bodies. Here, we report a systematic study of the diffusion of redox-sensitive elements in basaltic melts with varying oxygen fugacities (fO2) for trace elements, V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Since fO2 is an intensive variable that is different for the reservoirs of various planets and moons in our solar system, it is important to characterize how changes in redox states will affect diffusion. We conducted experiments in a piston cylinder device at 1300 degrees Centigrade and 1 gigapascal, at the University of Rochester and NASA Johnson Space Center. We buffered some experiments at Ru-RuO2 (FMQ plus 6.00), and conducted other experiments within either a graphite or Mo capsule, which corresponds to fO2s of either FMQ minus1.2, or FMQ minus 3.00, respectively. Characterizing the diffusivities of redox sensitive elements at different fO2s is important because some elements, like Eu, have varying valence states, such as Eu (sup 2 plus) and Eu (sup 3 plus). Differences in charge and ion radii may lead to differences in diffusivities within silicate melts. This could, lead to formation of a Eu anomaly by diffusion, the magnitude of which may be controlled by the fO2. Characterization of trace element diffusion is also important in understanding trace element fractionation. We found, during the course of our investigation, that not only did the diffusivities of the redox sensitive elements change with fO2, but that the diffusivities of all other analyzed elements also changed. This indicates that not only do changes in valence influence trace elements diffusivities but that the structure of melt may have changed with varying oxygen fugacity, probably due to changes in the speciation of the major element Fe.
Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.
1999-01-01
Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.
Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank
2014-02-07
Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.
Burpee, Jessica L; Bardsley, Elise L; Dillaman, Richard M; Watanabe, Wade O; Kinsey, Stephen T
2010-10-01
White muscle (WM) fibers in many fishes often increase in size from <50 μm in juveniles to >250 μm in adults. This leads to increases in intracellular diffusion distances that may impact the scaling with body mass of muscle metabolism. We have previously found similar negative scaling of aerobic capacity (mitochondrial volume density, V(mt)) and the rate of an aerobic process (post-contractile phosphocreatine recovery) in fish WM. In the present study, we examined the scaling with body mass of oxygen consumption rates of isolated mitochondria (VO(2mt)) from WM in three species from different families that vary in morphology and behavior: an active, pelagic species (bluefish, Pomatomus saltatrix), a relatively inactive demersal species (black sea bass, Centropristis striata), and a sedentary, benthic species (southern flounder, Paralichthys lethostigma). In contrast to our prior studies, the measurement of respiration in isolated mitochondria is not influenced by the diffusion of oxygen or metabolites. V(mt) was measured in WM and in high-density isolates used for VO(2mt) measurements. WM V(mt) was significantly higher in the bluefish than in the other two species and VO(2mt) was independent of body mass when expressed per milligram protein or per milliliter mitochondria. The size-independence of VO(2mt) indicates that differences in WM aerobic function result from variation in V(mt) and not to changes in VO(2mt). This is consistent with our prior work that indicated that while diffusion constraints influence mitochondrial distribution, the negative scaling of aerobic processes like post-contractile PCr recovery can largely be attributed to the body size dependence of V(mt).
Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor
NASA Astrophysics Data System (ADS)
Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.
2015-10-01
Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.
Bubble Formation Modeling in IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.F.
2000-09-27
The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.
Rhenium-Oxygen Interactions at High Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald
2000-01-01
The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.
Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light
NASA Astrophysics Data System (ADS)
Kleshnin, M. S.; Orlova, A. G.; Kirillin, M. Yu.; Golubyatnikov, G. Yu.; Turchin, I. V.
2017-05-01
A new approach to the measurement of blood oxygenation is developed and implemented, based on an original two-step algorithm reconstructing the relative concentration of biological chromophores (haemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the radiation source. The numerical experiments and approbation of the proposed approach using a biological phantom have shown the high accuracy of the reconstruction of optical properties of the object in question, as well as the possibility of correct calculation of the haemoglobin oxygenation in the presence of additive noises without calibration of the measuring device. The results of the experimental studies in animals agree with the previously published results obtained by other research groups and demonstrate the possibility of applying the developed method to the monitoring of blood oxygenation in tumour tissues.
In situ study of emerging metallicity on ion-bombarded SrTiO3 surface
NASA Astrophysics Data System (ADS)
Gross, Heiko; Bansal, Namrata; Kim, Yong-Seung; Oh, Seongshik
2011-10-01
We report how argon bombardment induces metallic states on the surface of insulating SrTiO3 at different temperatures by combining in situ conductance measurements and model calculations. At cryogenic temperatures, ionic bombardment created a thin-but much thicker than the argon-penetration depth-steady-state oxygen-vacant layer, leading to a highly-concentric metallic state. Near room temperatures, however, significant thermal diffusion occurred and the metallic state continuously diffused into the bulk, leaving only low concentration of electron carriers on the surface. Analysis of the discrepancy between the experiments and the models also provided evidence for vacancy clustering, which seems to occur during any vacancy formation process and affects the observed conductance.
Why do veins appear blue? A new look at an old question
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Hibst, Raimund; Steiner, Rudolf; Lilge, Lothar; Vitkin, I. Alex; Wilson, Brian C.; Patterson, Michael S.
1996-03-01
We investigate why vessels that contain blood, which has a red or a dark red color, may look bluish in human tissue. A CCD camera was used to make images of diffusely reflected light at different wavelengths. Measurements of reflectance that are due to model blood vessels in scattering media and of human skin containing a prominent vein are presented. Monte Carlo simulations were used to calculate the spatially resolved diffuse reflectance for both situations. We show that the color of blood vessels is scattering and absorption characteristics of skin at different wavelengths, (ii) the oxygenation state of blood, which affects its absorption properties, (iii) the diameter and the depth of the vessels, and (iv) the visual perception process.
Composition and method for polymer moderated catalytic water formation
Shepodd, Timothy Jon
1999-01-01
A composition suitable for safely removing hydrogen from gaseous mixtures containing hydrogen and oxygen, particularly those mixtures wherein the hydrogen concentration is within the explosive range. The composition comprises a hydrogenation catalyst, preferably Pd dispersed on carbon, wherein the concentration of Pd is from about 1-10 wt %, dispersed in a polymeric material matrix. As well as serving as a matrix to contain the hydrogenation catalyst, the polymeric material, which is substantially unreactive to hydrogen, provides both a diffusion restriction to hydrogen and oxygen, thereby limiting the rate at which the reactants (hydrogen and oxygen) can diffuse to the catalyst surface and thus, the production of heat from the recombination reaction and as a heat sink.
The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria
Maisch, Tim; Baier, Jürgen; Franz, Barbara; Maier, Max; Landthaler, Michael; Szeimies, Rolf-Markus; Bäumler, Wolfgang
2007-01-01
New antibacterial strategies are required in view of the increasing resistance of bacteria to antibiotics. One promising technique involves the photodynamic inactivation of bacteria. Upon exposure to light, a photosensitizer in bacteria can generate singlet oxygen, which oxidizes proteins or lipids, leading to bacteria death. To elucidate the oxidative processes that occur during killing of bacteria, Staphylococcus aureus was incubated with a standard photosensitizer, and the generation and decay of singlet oxygen was detected directly by its luminescence at 1,270 nm. At low bacterial concentrations, the time-resolved luminescence of singlet oxygen showed a decay time of 6 ± 2 μs, which is an intermediate time for singlet oxygen decay in phospholipids of membranes (14 ± 2 μs) and in the surrounding water (3.5 ± 0.5 μs). Obviously, at low bacterial concentrations, singlet oxygen had sufficient access to water outside of S. aureus by diffusion. Thus, singlet oxygen seems to be generated in the outer cell wall areas or in adjacent cytoplasmic membranes of S. aureus. In addition, the detection of singlet oxygen luminescence can be used as a sensor of intracellular oxygen concentration. When singlet oxygen luminescence was measured at higher bacterial concentrations, the decay time increased significantly, up to ≈40 μs, because of oxygen depletion at these concentrations. This observation is an important indicator that oxygen supply is a crucial factor in the efficacy of photodynamic inactivation of bacteria, and will be of particular significance should this approach be used against multiresistant bacteria. PMID:17431036
Measuring the viscosity of whole bovine lens using a fiber optic oxygen sensing system
Thao, Mai T.; Perez, Daniel; Dillon, James
2014-01-01
Purpose To obtain a better understanding of oxygen and nutrient transport within the lens, the viscosity of whole lenses was investigated using a fiber optic oxygen sensor (optode). The diffusion coefficient of oxygen was calculated using the Stokes-Einstein equation at the slip boundary condition. Methods The optode was used to measure the oxygen decay signal in samples consisting of different glycerol/water solutions with known viscosities. The oxygen decay signal was fitted to a double exponential decay rate equation, and the lifetimes (tau) were calculated. It was determined that the tau-viscosity relationship is linear, which served as the standard curve. The same procedure was applied to fresh bovine lenses, and the unknown viscosity of the bovine lens was calculated from the tau-viscosity relationship. Results The average viscosity in a whole bovine lens was determined to be 5.74±0.88 cP by our method. Using the Stokes-Einstein equation at the slip boundary condition, the diffusion coefficient for oxygen was calculated to be 8.2 × 10−6 cm2/s. Conclusions These data indicate a higher resistance to flow for oxygen and nutrients in the lens than what is currently assumed in the literature. Overall, this study allows a better understanding of oxygen transport within the lens. PMID:24505211
Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves
NASA Astrophysics Data System (ADS)
Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas
2010-03-01
Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.
The effects of capillary transit time heterogeneity (CTH) on brain oxygenation
Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N
2015-01-01
We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911
Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids
NASA Astrophysics Data System (ADS)
Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.
2002-12-01
High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.
In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion,more » while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.« less
Numerical study of influence of molecular diffusion in the Mild combustion regime
NASA Astrophysics Data System (ADS)
Mardani, Amir; Tabejamaat, Sadegh; Ghamari, Mohsen
2010-09-01
In this paper, the importance of molecular diffusion versus turbulent transport in the moderate or intense low-oxygen dilution (Mild) combustion mode has been numerically studied. The experimental conditions of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154] were used for modelling. The EDC model was used to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI 2.11 full mechanism were used to represent the chemical reactions of an H2/methane jet flame. The importance of molecular diffusion for various O2 levels, jet Reynolds numbers and H2 fuel contents was investigated. Results show that the molecular diffusion in Mild combustion cannot be ignored in comparison with the turbulent transport. Also, the method of inclusion of molecular diffusion in combustion modelling has a considerable effect on the accuracy of numerical modelling of Mild combustion. By decreasing the jet Reynolds number, decreasing the oxygen concentration in the airflow or increasing H2 in the fuel mixture, the influence of molecular diffusion on Mild combustion increases.
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
NASA Astrophysics Data System (ADS)
Téllez Lozano, Helena; Druce, John; Cooper, Samuel J.; Kilner, John A.
2017-12-01
18O and 2H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo2O5+δ (PBCO) in flowing air containing 200 mbar of 2H216O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity ( 1.3 × 10-11 cm2s-1) at this temperature and that the presence of water (2H216O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of 3. The 2H distribution, as inferred from the 2H216O- SIMS signal, shows an apparent depth profile which could be interpreted as 2H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.
NASA Astrophysics Data System (ADS)
McKenna, Keith P.
2018-02-01
First principles calculations are employed to investigate the structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310) tilt grain boundary with relevance to applications of polycrystalline TiN in microelectronics and protective coatings. We show that the grain boundary does not significantly modify electronic states near the Fermi energy but does induce an upward shift of up to 0.6 eV in a number of deeper occupied bands. We also show that oxygen is preferentially incorporated into the TiN grain boundary (GB) but must overcome relatively high activation energies for further diffusion. These predictions are consistent with the "stuffed barrier model" proposed to explain the good barrier characteristics of TiN. We also show that while the oxidizing power of TiN GBs is not sufficient to reduce HfO2 (a prototypical gate dielectric material), they can act as a scavenger for interstitial oxygen. Altogether, these results provide the much needed atomistic insights into the properties of a model GB in TiN and suggest a number of directions for future investigation.
Oxygen diffusion barrier coating
NASA Technical Reports Server (NTRS)
Unnam, Jalaiah (Inventor); Clark, Ronald K. (Inventor)
1987-01-01
A method for coating a titanium panel or foil with aluminum and amorphous silicon to provide an oxygen barrier abrogating oxidation of the substrate metal is developed. The process is accomplished with known inexpensive procedures common in materials research laboratories, i.e., electron beam deposition and sputtering. The procedures are conductive to treating foil gage titanium and result in submicron layers which virtually add no weight to the titanium. There are no costly heating steps. The coatings blend with the substrate titanium until separate mechanical properties are subsumed by those of the substrate without cracking or spallation. This method appreciably increases the ability of titanium to mechanically perform in high thermal environments such as those witnessed on structures of space vehicles during re-entry
NASA Astrophysics Data System (ADS)
Lee, Yeol-Hyeong; Cho, Yong-Jung; Kim, Woo-Sic; Park, Jeong Ki; Kim, Geon Tae; Kim, Ohyun
2017-10-01
We explained how H2O degrades amorphous-InGaZnO thin-film transistors. H2O caused serious degradation only during negative bias temperature stress (NBTS). Degradation was caused by molecules that were absorbed or diffused from the outside. We suggest that degradation under NBTS is caused by the migration of hydrogen ions among oxygen vacancies. Under illumination, the soaking time t S did not affect the threshold voltage shift ΔV th. We consider that this independence occurred because illumination caused ionization from the oxygen vacancy VO state to VO 2+, which impeded hydrogen migration induced by electric field and thereby protected the device from degradation after exposure to water.
Perriot, Romain; Uberuaga, Blas P.
2015-04-21
We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less
Vacancies and Vacancy-Mediated Self Diffusion in Cr 2 O 3 : A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.
Charged and neutral vacancies and vacancy mediated self diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge state are the dominant defects in O-rich conditions. The charge transition levels of both O and Cr vacancies are deep within the bandgap indicating the stability ofmore » these defects. Transport calculations indicate that vacancy mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy mediated self diffusion processes correspond to the diffusion of Cr ion in 3+ charge state and O ion in 2- state, respectively. Our calculations reveal that Cr triple defects comprised of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c-axis have a lower formation energy compared to that of charged Cr vacancies. The formation of such triple defects facilitate Cr self diffusion along the c-axis.« less
Oxygen Carbon Dynamics within the Hyporheic Zone of a Headwater Stream
NASA Astrophysics Data System (ADS)
Pennington, R.; Haggerty, R.; Wondzell, S. M.; Serchan, S. P.; Reeder, W. J.; Tonina, D.
2016-12-01
Streams and rivers influence global carbon fluxes; on an aerial basis, they have disproportionately high export rates compared to land. Various mechanisms exist for the movement of terrestrially derived carbon to the stream network including transport of organic and inorganic carbon with groundwater and hillslope runoff. A secondary process that has received little attention is carbon dynamics of hyporheic flow along flow paths that pass beneath the vegetated riparian zone. Through use of high frequency monitoring of dissolved inorganic carbon and dissolved oxygen we find that the riparian zone is a net source of carbon throughout the year. Increases in DIC relative stream water are generally more than double decreases in O2 on a molar basis. Metabolic quotients of C to O2 are close to 1.0, therefore respiration of dissolved or particulate organic carbon along flow paths would result in an equal magnitude increase in inorganic carbon to decrease in O2. Diffusion from the high CO2 soil atmosphere into hyporheic water has been considered, however 2-D reactive transport modeling using PFLOTRAN indicates that soil diffusion processes are unlikely to produce observed increases in carbon and that alternative transport mechanisms including root respiration or diel water level fluctuations are necessary for mass balance. Results of the analysis will feed into a comprehensive distributed model of the system that explores carbon dynamics at the reach scale.
Diffuse optical tomography and spectroscopy of breast cancer and fetal brain
NASA Astrophysics Data System (ADS)
Choe, Regine
Diffuse optical techniques utilize light in the near infrared spectral range to measure tissue physiology non-invasively. Based on these measurements, either on average or a three-dimensional spatial map of tissue properties such as total hemoglobin concentration, blood oxygen saturation and scattering can be obtained using model-based reconstruction algorithms. In this thesis, diffuse optical techniques were applied for in vivo breast cancer imaging and trans-abdominal fetal brain oxygenation monitoring. For in vivo breast cancer imaging, clinical diffuse optical tomography and related instrumentation was developed and used in several contexts. Bulk physiological properties were quantified for fifty-two healthy subjects in the parallel-plate transmission geometry. Three-dimensional images of breast were reconstructed for subjects with breast tumors and, tumor contrast with respect to normal tissue was found in total hemoglobin concentration and scattering and was quantified for twenty-two breast carcinomas. Tumor contrast and tumor volume changes during neoadjuvant chemotherapy were tracked for one subject and compared to the dynamic contrast-enhanced MRI. Finally, the feasibility for measuring blood flow of breast tumors using optical methods was demonstrated for seven subjects. In a qualitatively different set of experiments, the feasibility for trans-abdominal fetal brain oxygenation monitoring was demonstrated on pregnant ewes with induced fetal hypoxia. Preliminary clinical experiences were discussed to identify future directions. In total, this research has translated diffuse optical tomography techniques into clinical research environment.
NASA Astrophysics Data System (ADS)
Balaish, Moran; Ein-Eli, Yair
2018-03-01
Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.
Tsurumaki-Fukuchi, Atsushi; Nakagawa, Ryosuke; Arita, Masashi; Takahashi, Yasuo
2018-02-14
We demonstrate that the inclusion of a Ta interfacial layer is a remarkably effective strategy for forming interfacial oxygen defects at metal/oxide junctions. The insertion of an interfacial layer of a reactive metal, that is, a "scavenging" layer, has been recently proposed as a way to create a high concentration of oxygen defects at an interface in redox-based resistive switching devices, and growing interest has been given to the underlying mechanism. Through structural and chemical analyses of Pt/metal/SrTiO 3 /Pt structures, we reveal that the rate and amount of oxygen scavenging are not directly determined by the formation free energies in the oxidation reactions of the scavenging metal and unveil the important roles of oxygen diffusibility. Active oxygen scavenging and highly uniform oxidation via scavenging are revealed for a Ta interfacial layer with high oxygen diffusibility. In addition, the Ta scavenging layer is shown to exhibit a highly uniform structure and to form a very flat interface with SrTiO 3 , which are advantageous for the fabrication of a steep metal/oxide contact.
Liu, Hong; Tan, Shuying; Sheng, Zhiya; Yu, Tong; Liu, Yang
2015-03-01
Membrane aerated biofilms (MABs) are subject to "counter diffusion" of oxygen and substrates. In a membrane aerated biofilm reactor, gases (e.g., oxygen) diffuse through the membrane into the MAB, and liquid substrates pass from the bulk liquid into the MAB. This behavior can result in a unique biofilm structure in terms of microbial composition, distribution, and community activity in the MAB. Previous studies have shown simultaneous aerobic oxidation, nitrification, and denitrification within a single MAB. Using molecular techniques, we investigated the growth of sulfate-reducing bacteria (SRB) in the oxygen-based MAB attached to a flat sheet membrane. Denaturing gradient gel electrophoresis of the amplified 16S rRNA gene fragments and functional gene fragments specific for ammonia-oxidizing bacteria (amoA), denitrifying bacteria (nirK), and SRB (dsrB) demonstrated the coexistence of nitrifiers, denitrifiers, and SRB communities within a single MAB. The functional diversities of SRB and denitrifiers decreased with an increase in the oxygen concentration in the bulk water of the reactor.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Brotto, Laura; Battistutta, Franco; Tat, Lara; Comuzzo, Piergiorgio; Zironi, Roberto
2010-03-24
Some modifications to a previous nondestructive colorimetric method that permits evaluation of the oxygen diffusion rate through wine closures were proposed. The method is based on the reaction of indigo carmine solution with oxygen and the tristimulus measurement of the consequent color change. Simplified preparation and measurement procedures were set up, allowing the analysis of a large number of samples simultaneously. The method was applied to the evaluation of the variability within the lot of 20 different types of stoppers (synthetic, produced by molding, and natural cork). The closures were tested at a storage temperature of 26 degrees C. With regard to oxygen permeability, the natural cork stopper showed a low homogeneity within the lot, especially during the first month after bottling, whereas the synthetic closure showed a greater steadiness in the performance. The limits of the colorimetric method were also analyzed, and three possible causes of degradation of the indigo carmine solution were identified: oxygen, light, and heat.
Modification of molybdenum surface by low-energy oxygen implantation at room temperature
NASA Astrophysics Data System (ADS)
Kavre Piltaver, Ivna; Jelovica Badovinac, Ivana; Peter, Robert; Saric, Iva; Petravic, Mladen
2017-12-01
We have studied the initial stages of oxide formation on molybdenum surfaces under 1 keV O2+ ion bombardment at room temperature (RT), using x-ray photoelectron spectroscopy around Mo 3d or O 1s core-levels and the valence band photoemission. The results are compared with the oxidation mechanism of thermally oxidized Mo at RT. The thermal oxidation reveals the formation of a very thin MoO2 layer that prevents any further adsorption of oxygen at higher oxygen doses. Oxygen implantation is more efficient in creating thicker oxide films with the simultaneous formation of several oxide compounds. The oxidation rates of MoO2 and Mo2O5 follow the parabolic growth rate consistent with the mass transport driven by diffusion of either neutral or singly and doubly charged oxygen interstitials. The oxidation of MoO3, which occurs at a later oxidation stage, follows the logarithmic rate driven by the diffusion of cations in an electric field.
Davis, Bryce H; Morimoto, Yoshihisa; Sample, Chris; Olbrich, Kevin; Leddy, Holly A; Guilak, Farshid; Taylor, Doris A
2012-10-01
One of the primary limitations of cell therapy for myocardial infarction is the low survival of transplanted cells, with a loss of up to 80% of cells within 3 days of delivery. The aims of this study were to investigate the distribution of nutrients and oxygen in infarcted myocardium and to quantify how macromolecular transport properties might affect cell survival. Transmural myocardial infarction was created by controlled cryoablation in pigs. At 30 days post-infarction, oxygen and metabolite levels were measured in the peripheral skeletal muscle, normal myocardium, the infarct border zone, and the infarct interior. The diffusion coefficients of fluorescein or FITC-labeled dextran (0.3-70 kD) were measured in these tissues using fluorescence recovery after photobleaching. The vascular density was measured via endogenous alkaline phosphatase staining. To examine the influence of these infarct conditions on cells therapeutically used in vivo, skeletal myoblast survival and differentiation were studied in vitro under the oxygen and glucose concentrations measured in the infarct tissue. Glucose and oxygen concentrations, along with vascular density were significantly reduced in infarct when compared to the uninjured myocardium and infarct border zone, although the degree of decrease differed. The diffusivity of molecules smaller than 40 kD was significantly higher in infarct center and border zone as compared to uninjured heart. Skeletal myoblast differentiation and survival were decreased stepwise from control to hypoxia, starvation, and ischemia conditions. Although oxygen, glucose, and vascular density were significantly reduced in infarcted myocardium, the rate of macromolecular diffusion was significantly increased, suggesting that diffusive transport may not be inhibited in infarct tissue, and thus the supply of nutrients to transplanted cells may be possible. in vitro studies mimicking infarct conditions suggest that increasing nutrients available to transplanted cells may significantly increase their ability to survive in infarct.
Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).
Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael
2012-08-01
This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier GmbH. All rights reserved.
Garzon, Fernando H.; Brosha, Eric L.
1997-01-01
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.
Garzon, F.H.; Brosha, E.L.
1997-12-09
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.
Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold
2015-01-01
Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758
Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments
NASA Astrophysics Data System (ADS)
Hu, Wei-Chieh; Lin, Ta-Hui
2016-04-01
In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.
NASA Astrophysics Data System (ADS)
Epting, William K.; Litster, Shawn
2016-02-01
Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.
Deepwater dynamics and mixing processes during a major inflow event in the central Baltic Sea
NASA Astrophysics Data System (ADS)
Holtermann, Peter L.; Prien, Ralf; Naumann, Michael; Mohrholz, Volker; Umlauf, Lars
2017-08-01
Intrusions of large amounts of dense and oxygen-rich waters during so-called Major Baltic Inflows (MBIs) form an essential component of the Baltic Sea overturning circulation and deepwater ventilation. Despite their importance, however, detailed observations of the processes occurring in the central basins during an MBI are virtually lacking. Here data from a long-term deployment of an autonomous profiling platform located in the center of one of the main basins are presented, providing the first direct and detailed view of the deepwater modifications and dynamics induced by one of the largest MBIs ever recorded (MBI 2014/2015). Approximately, 21 Gmol of oxygen were imported during three distinct inflow phases with an unexpectedly large contribution of oxic intrusions at intermediate depth. Oxygen consumption rates during the stagnation period immediately following the inflow phase was found to be 87 g m-2 yr-1 with a dominant contribution of sedimentary oxygen demand. The most energetic deepwater processes (topographic and near-inertial waves) were only marginally affected by the inflow; however, subinertial energy levels associated with intrusions and eddies were strongly enhanced. Turbulence microstructure data revealed that the deep interior regions remain essentially nonturbulent even during the energetic conditions of an MBI, emphasizing the importance of boundary mixing. Warm intrusions frequently showed a temperature fine structure with vertical scales of the order of 0.1 m, without any signs of active turbulence. At the upper flanks of these intrusions, double-diffusive staircases were often found to develop, suggesting an important alternative mixing process during inflow conditions.
NASA Astrophysics Data System (ADS)
Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei
2015-09-01
A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.
Diffusion of neon in white dwarf stars.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2010-12-01
Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.
Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret
2016-01-01
The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.
Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells
NASA Astrophysics Data System (ADS)
Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.
2016-05-01
Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0. Electronic supplementary information (ESI) available: Physical characterization, Fig. S1-S4 electrochemical experiments Fig. S5-S11. See DOI: 10.1039/c6nr01245k
NASA Astrophysics Data System (ADS)
Singleton, V. L.; Gantzer, P.; Little, J. C.
2007-02-01
An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.