Sample records for oxygen evolving complex

  1. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.

    PubMed

    Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan

    2015-03-14

    A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.

  3. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    ERIC Educational Resources Information Center

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  4. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn₄ cluster in photosystem II.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.

  5. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    DOE PAGES

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less

  6. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    PubMed Central

    Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-01-01

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex. PMID:25242490

  7. In-Situ Formation of Cobalt-Phosphate Oxygen-Evolving Complex-Anchored Reduced Graphene Oxide Nanosheets for Oxygen Reduction Reaction

    PubMed Central

    Zhao, Zhi-Gang; Zhang, Jing; Yuan, Yinyin; Lv, Hong; Tian, Yuyu; Wu, Dan; Li, Qing-Wen

    2013-01-01

    Oxygen conversion process between O2 and H2O by means of electrochemistry or photochemistry has lately received a great deal of attention. Cobalt-phosphate (Co-Pi) catalyst is a new type of cost-effective artificial oxygen-evolving complex (OEC) with amorphous features during photosynthesis. However, can such Co-Pi OEC also act as oxygen reduction reaction (ORR) catalyst in electrochemical processes? The question remains unanswered. Here for the first time we demonstrate that Co-Pi OEC does be rather active for the ORR. Particularly, Co-Pi OEC anchoring on reduced graphite oxide (rGO) nanosheet is shown to possess dramatically improved electrocatalytic activities. Differing from the generally accepted role of rGO as an “electron reservoir”, we suggest that rGO serves as “peroxide cleaner” in enhancing the electrocatalytic behaviors. The present study may bridge the gap between photochemistry and electrochemistry towards oxygen conversion. PMID:23877331

  8. Orientation of Calcium in the Mn4Ca Cluster of the Oxygen-Evolving Complex Determined Using Polarized Strontium EXAFS of Photosystem II Membranes†

    PubMed Central

    Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Holman, Karen L. McFarlane; Sauer, Kenneth; Yachandra, Vittal K.

    2014-01-01

    The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current study using polarized Sr EXAFS on oriented Sr-reactivated samples shows that Fourier peak II, which fits best to Mn at 3.5 Å rather than lighter atoms (C, N, O, or Cl), is dichroic, with a larger magnitude at 10° (angle between the PS II membrane normal and the X-ray electric field vector) and a smaller magnitude at 80°. Analysis of the dichroism of the Sr EXAFS yields a lower and upper limit of 0° and 23° for the average angle between the Sr–Mn vectors and the membrane normal and an isotropic coordination number (number of Mn neighbors to Sr) of 1 or 2 for these layered PS II samples. The results confirm the contention that Ca (Sr) is proximal to the Mn cluster and lead to refined working models of the heteronuclear Mn4Ca cluster of the oxygen-evolving complex in PS II. PMID:15491134

  9. Time-resolved vibrational spectroscopy detects protein-based intermediates in the photosynthetic oxygen-evolving cycle.

    PubMed

    Barry, Bridgette A; Cooper, Ian B; De Riso, Antonio; Brewer, Scott H; Vu, Dung M; Dyer, R Brian

    2006-05-09

    Photosynthetic oxygen production by photosystem II (PSII) is responsible for the maintenance of aerobic life on earth. The production of oxygen occurs at the PSII oxygen-evolving complex (OEC), which contains a tetranuclear manganese (Mn) cluster. Photo-induced electron transfer events in the reaction center lead to the accumulation of oxidizing equivalents on the OEC. Four sequential photooxidation reactions are required for oxygen production. The oxidizing complex cycles among five oxidation states, called the S(n) states, where n refers to the number of oxidizing equivalents stored. Oxygen release occurs during the S(3)-to-S(0) transition from an unstable intermediate, known as the S(4) state. In this report, we present data providing evidence for the production of an intermediate during each S state transition. These protein-derived intermediates are produced on the microsecond to millisecond time scale and are detected by time-resolved vibrational spectroscopy on the microsecond time scale. Our results suggest that a protein-derived conformational change or proton transfer reaction precedes Mn redox reactions during the S(2)-to-S(3) and S(3)-to-S(0) transitions.

  10. Biogeochemical Modeling of the Second Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    The rise of atmospheric oxygen set the tempo for the evolution of complex life on Earth. Oxygen levels are thought to have increased in two broad steps: one step occurred in the Archean ~ 2.45 Ga (the Great Oxidation Event or GOE), and another step occured in the Neoproterozoic ~750-580 Ma (the Neoprotoerozoic Oxygenation Event or NOE). During the NOE, oxygen levels increased from ~1-10% of the present atmospheric level (PAL) (Holland, 2006), to ~15% PAL in the late Neoproterozoic, to ~100% PAL later in the Phanerozoic. Complex life requires O2, so this transition allowed complex life to evolve. We seek to understand what caused the NOE. To explore causes for the NOE, we build upon the biogeochemical model of Claire et al. (2006), which calculates the redox evolution of the atmosphere, ocean, biosphere, and crust in the Archean through to the early Proterozoic. In this model, the balance between oxygenconsuming and oyxgen-producing fluxes evolves over time such that at ~2.4 Ga, the rapidly acting sources of oxygen outweigh the rapidly-acting sinks. Or, in other words, at ~2.4 Ga, the flux of oxygen from organic carbon burial exceeds the sinks of oxygen from reaction with reduced volcanic and metamoprphic gases. The model is able to drive oxygen levels to 1-10% PAL in the Proterozoic; however, the evolving redox fluxes in the model cannot explain how oxygen levels pushed above 1-10% in the late Proterozoic. The authors suggest that perhaps another buffer, such as sulfur, is needed to describe Proterozoic and Phanerozoic redox evolution. Geologic proxies show that in the Proterozoic, up to 10% of the deep ocean may have been sulfidic. With this ocean chemistry, the global sulfur cycle would have worked differently than it does today. Because the sulfur and oxygen cycles interact, the oxygen concentration could have permanently changed due to an evolving sulfur cycle (in combination with evolving redox fluxes associated with other parts of the oxygen cycle and carbon cycles). To determine how fluxes of sulfur, carbon, and oxygen define oxygen levels before, during, and after the NOE, we add a sulfur cycle to the biogeochemical model of Claire et al. (2006). Understanding processes that impact the evolution of atmospheric oxygen on Earth is key to diagnosing the habitability of other planets because it is possible that other planets undergo a similar evolution. If a sulfidic deep ocean was instrumental in driving oxygen levels to modern values, then it would be valuable to remotely detect a sulfide-rich ocean on another planet. One such remotely-detectable signature could be the color of a sulfide-rich ocean. For example, Gallardo and Espinoza (2008) have hypothesized that a sulfidic ocean may be have been blacker in color. Even if a sulfidic ocean is not key to oxygenation, detecting a planet in transition--that is, a planet with intermediate levels of oxygen co-existing with higher levels of reduced gases - would be important for diagnosing habitability.

  11. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    PubMed

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Tetrametallic molecular catalysts for photochemical water oxidation.

    PubMed

    Sartorel, Andrea; Bonchio, Marcella; Campagna, Sebastiano; Scandola, Franco

    2013-03-21

    Among molecular water oxidation catalysts (WOCs), those featuring a reactive set of four multi-redox transition metals can leverage an extraordinary interplay of electronic and structural properties. These are of particular interest, owing to their close structural, and possibly functional, relationship to the oxygen evolving complex of natural photosynthesis. In this review, special attention is given to two classes of tetrametallic molecular WOCs: (i) M(4)O(4) cubane-type structures stabilized by simple organic ligands, and (ii) systems in which a tetranuclear metal core is stabilized by coordination of two polyoxometalate (POM) ligands. Recent work in this rapidly evolving field is reviewed, with particular emphasis on photocatalytic aspects. Special attention is given to studies addressing the mechanistic complexity of these systems, sometimes overlooked in the rush for oxygen evolving performance. The complementary role of molecular WOCs and their relationship with bulk oxides and heterogeneous catalysis are discussed.

  13. Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II.

    PubMed

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-04-01

    The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.

  14. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues.

    PubMed

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A

    2016-04-28

    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.

  15. Nonadiabatic one-electron transfer mechanism for the O-O bond formation in the oxygen-evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi

    2018-04-01

    The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.

  16. Structural changes in the oxygen-evolving complex of photosystem II induced by the S 1 to S 2 transition: A combined XRD and QM/MM study

    DOE PAGES

    Askerka, Mikhail; Wang, Jimin; Brudvig, Gary W.; ...

    2014-10-27

    The S 1 → S 2 transition of the oxygen-evolving complex (OEC) of photosystem II does not involve the transfer of a proton to the lumen and occurs at cryogenic temperatures. Therefore, it is commonly thought to involve only Mn oxidation without any significant change in the structure of the OEC. Here, we analyze structural changes upon the S 1 → S 2 transition, as revealed by quantum mechanics/molecular mechanics methods and the isomorphous difference Fourier method applied to serial femtosecond X-ray diffraction data. Lastly, we find that the main structural change in the OEC is in the position ofmore » the dangling Mn and its coordination environment.« less

  17. Ultrafast Primary Reactions in the Photosystems of Oxygen-Evolving Organisms

    NASA Astrophysics Data System (ADS)

    Holzwarth, A. R.

    In oxygen-evolving photosynthetic organisms (plants, green algae, cyanobacteria), the primary steps of photosynthesis occur in two membrane-bound protein supercomplexes, Photosystem I (PS I) and Photosystem II (PS II), located in the thylakoid membrane (c.f. Fig. 7.1) along with two other important protein complexes, the cytochrome b6/f complex and the ATP-synthase [1]. Each of the photosystems consists of a reaction center (RC) where the photoinduced early electron transfer processes occur, of a so-called core antenna consisting of chlorophyll (Chl) protein complexes responsible for light absorption and ultrafast energy transfer to the RC pigments, and additional peripheral antenna complexes of various kinds that increase the absorption cross-section. The peripheral complexes are Chl a/b-protein complexes in higher plants and green algae (LHC I or LHC II for PS I or PS II, respectively) and so-called phycobilisomes in cyanobacteria and red algae [2-4]. The structures and light-harvesting functions of these antenna systems have been extensively reviewed [2, 5-9]. Recently, X-ray structures of both PS I and PS II antenna/RC complexes have been determined, some to atomic resolution. Although many details of the pigment content and organization of the RCs and antenna systems of PS I and PS II have been known before, the high resolution structures of the integral complexes allow us for the first time to try to understand structure/function relationships in detail. This article covers our present understanding of the ultrafast energy transfer and early electron transfer processes occurring in the photosystems of oxygen-evolving organisms. The main emphasis will be on the electron transfer processes. However, in both photosystems the kinetics of the energy transfer processes in the core antennae is intimately interwoven with the kinetics of the electron transfer steps. Since both types of processes occur on a similar time scale, their kinetics cannot be considered separately in any experiment and consequently they have to be discussed together.

  18. Water oxidation: High five iron

    NASA Astrophysics Data System (ADS)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  19. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    PubMed

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  20. [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltametry

    PubMed Central

    Cady, Clyde W.; Shinopoulos, Katherine E.; Crabtree, Robert H.; Brudvig, Gary W.

    2010-01-01

    Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(H2O)](NO3)3 [terpy = 2,2′:6′,2″-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments will show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen. PMID:20372724

  1. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    PubMed

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electronic structural changes of Mn in the oxygen-evolving complex of photosystem II during the catalytic cycle.

    PubMed

    Glatzel, Pieter; Schroeder, Henning; Pushkar, Yulia; Boron, Thaddeus; Mukherjee, Shreya; Christou, George; Pecoraro, Vincent L; Messinger, Johannes; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-05-20

    The oxygen-evolving complex (OEC) in photosystem II (PS II) was studied in the S0 through S3 states using 1s2p resonant inelastic X-ray scattering spectroscopy. The spectral changes of the OEC during the S-state transitions are subtle, indicating that the electrons are strongly delocalized throughout the cluster. The result suggests that, in addition to the Mn ions, ligands are also playing an important role in the redox reactions. A series of Mn(IV) coordination complexes were compared, particularly with the PS II S3 state spectrum to understand its oxidation state. We find strong variations of the electronic structure within the series of Mn(IV) model systems. The spectrum of the S3 state best resembles those of the Mn(IV) complexes Mn3(IV)Ca2 and saplnMn2(IV)(OH)2. The current result emphasizes that the assignment of formal oxidation states alone is not sufficient for understanding the detailed electronic structural changes that govern the catalytic reaction in the OEC.

  3. The Effects of Non-Redox Active Metal Ions on the Activation of Dioxygen: Isolation and Characterization of a Heterobimetallic Complex Containing a MnIII–(μ-OH)–CaII core

    PubMed Central

    Park, Young Jun; Ziller, Joseph W.; Borovik, A. S.

    2011-01-01

    Rate enhancements for the reduction of dioxygen by a MnII complex were observed in the presence of redox inactive Group 2 metal ions. The rate changes correlated with an increase in the Lewis acidity of the Group 2 metal ions. These studies led to the isolation of heterobimetallic complexes that contain MnIII-(μ-OH)-MII cores (MII = CaII, BaII), in which the hydroxo oxygen atom is derived from O2. This type of core structure has relevance to the oxygen evolving complexes within photosystem II. PMID:21595481

  4. Orbital-Dependent Density Functionals for Chemical Catalysis

    DTIC Science & Technology

    2014-10-17

    noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic

  5. Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-09-01

    The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621

  7. Bicarbonate may Be required for ligation of manganese in the oxygen-evolving complex of photosystem II.

    PubMed

    Klimov, V V; Hulsebosch, R J; Allakhverdiev, S I; Wincencjusz, H; van Gorkom, H J; Hoff, A J

    1997-12-23

    It was previously shown in the photosystem II membrane preparation DT-20 that photoxidation of the oxygen-evolving manganese cluster was blocked by 0.1 mM formate, unless 0.2 mM bicarbonate was present as well [Wincencjusz, H., Allakhverdiev, S. I., Klimov, V. V., and Van Gorkom, H. J. (1996) Biochim. Biophys. Acta 1273, 1-3]. Here it is shown by measurements of EPR signal II that oxidation of the secondary electron donor, YZ, is not inhibited. However, the reduction of is greatly slowed and occurs largely by back reaction with reduced acceptors. Bicarbonate is shown to prevent the loss of fast electron donation to . The release of about one or two free Mn2+ per photosystem II during formate treatment, and the fact that these effects are mimicked by Mn-depletion, suggests that formate may act by replacing a bicarbonate which is essential for Mn binding. Irreversible light-induced rebinding in an EPR-silent form of Mn2+ that was added to Mn-depleted DT-20 was indeed found to depend on the presence of bicarbonate, as did the reconstitution in such material of both the fast electron donation to and the UV absorbance changes characteristic of a functional oxygen-evolving complex. It is concluded that bicarbonate may be an essential ligand of the functional Mn cluster.

  8. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria.

    PubMed

    Soo, Rochelle M; Hemp, James; Parks, Donovan H; Fischer, Woodward W; Hugenholtz, Philip

    2017-03-31

    The origin of oxygenic photosynthesis in Cyanobacteria led to the rise of oxygen on Earth ~2.3 billion years ago, profoundly altering the course of evolution by facilitating the development of aerobic respiration and complex multicellular life. Here we report the genomes of 41 uncultured organisms related to the photosynthetic Cyanobacteria (class Oxyphotobacteria ), including members of the class Melainabacteria and a new class of Cyanobacteria (class Sericytochromatia ) that is basal to the Melainabacteria and Oxyphotobacteria All members of the Melainabacteria and Sericytochromatia lack photosynthetic machinery, indicating that phototrophy was not an ancestral feature of the Cyanobacteria and that Oxyphotobacteria acquired the genes for photosynthesis relatively late in cyanobacterial evolution. We show that all three classes independently acquired aerobic respiratory complexes, supporting the hypothesis that aerobic respiration evolved after oxygenic photosynthesis. Copyright © 2017, American Association for the Advancement of Science.

  9. Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation

    PubMed Central

    Szabó, Ildikó; Bergantino, Elisabetta; Giacometti, Giorgio Mario

    2005-01-01

    Efficient photosynthesis is of fundamental importance for plant survival and fitness. However, in oxygenic photosynthesis, the complex apparatus responsible for the conversion of light into chemical energy is susceptible to photodamage. Oxygenic photosynthetic organisms have therefore evolved several protective mechanisms to deal with light energy. Rapidly inducible non-photochemical quenching (NPQ) is a short-term response by which plants and eukaryotic algae dissipate excitation energy as heat. This review focuses on recent advances in the elucidation of the molecular mechanisms underlying this protective quenching pathway in higher plants. PMID:15995679

  10. Oxygen tolerance of an in silico-designed bioinspired hydrogen-evolving catalyst in water.

    PubMed

    Sit, Patrick H-L; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2013-02-05

    Certain bacterial enzymes, the diiron hydrogenases, have turnover numbers for hydrogen production from water as large as 10(4)/s. Their much smaller common active site, composed of earth-abundant materials, has a structure that is an attractive starting point for the design of a practical catalyst for electrocatalytic or solar photocatalytic hydrogen production from water. In earlier work, our group has reported the computational design of [FeFe](P)/FeS(2), a hydrogenase-inspired catalyst/electrode complex, which is efficient and stable throughout the production cycle. However, the diiron hydrogenases are highly sensitive to ambient oxygen by a mechanism not yet understood in detail. An issue critical for practical use of [FeFe](P)/FeS(2) is whether this catalyst/electrode complex is tolerant to the ambient oxygen. We report demonstration by ab initio simulations that the complex is indeed tolerant to dissolved oxygen over timescales long enough for practical application, reducing it efficiently. This promising hydrogen-producing catalyst, composed of earth-abundant materials and with a diffusion-limited rate in acidified water, is efficient as well as oxygen tolerant.

  11. Oxygen tolerance of an in silico-designed bioinspired hydrogen-evolving catalyst in water

    PubMed Central

    Sit, Patrick H.-L.; Car, Roberto; Cohen, Morrel H.; Selloni, Annabella

    2013-01-01

    Certain bacterial enzymes, the diiron hydrogenases, have turnover numbers for hydrogen production from water as large as 104/s. Their much smaller common active site, composed of earth-abundant materials, has a structure that is an attractive starting point for the design of a practical catalyst for electrocatalytic or solar photocatalytic hydrogen production from water. In earlier work, our group has reported the computational design of [FeFe]P/FeS2, a hydrogenase-inspired catalyst/electrode complex, which is efficient and stable throughout the production cycle. However, the diiron hydrogenases are highly sensitive to ambient oxygen by a mechanism not yet understood in detail. An issue critical for practical use of [FeFe]P/FeS2 is whether this catalyst/electrode complex is tolerant to the ambient oxygen. We report demonstration by ab initio simulations that the complex is indeed tolerant to dissolved oxygen over timescales long enough for practical application, reducing it efficiently. This promising hydrogen-producing catalyst, composed of earth-abundant materials and with a diffusion-limited rate in acidified water, is efficient as well as oxygen tolerant. PMID:23341607

  12. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    PubMed

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  13. Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure.

    PubMed

    Pellegrino, Vincent; Hockings, Lisen E; Davies, Andrew

    2014-10-01

    To examine the utility and technical challenges of applying veno-arterial extracorporeal membrane oxygenation for acute cardiovascular failure in adults with acute and chronic causes of heart failure. The role of mechanical circulatory support in acute cardiovascular continues to evolve as technology and clinical experience develop. There is increasing interest in the role of veno-arterial extracorporeal membrane oxygenation as a bridging therapy and as an adjunct to conventional cardiopulmonary resuscitation. Veno-arterial extracorporeal membrane oxygenation is an expensive, complex, resource intensive support. It is essential that its future use be guided by evidence obtained from centres that have demonstrated timely, safe support.

  14. Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity.

    PubMed

    Gazquez, Ayelén; Vilas, Juan Manuel; Colman Lerner, Jorge Esteban; Maiale, Santiago Javier; Calzadilla, Pablo Ignacio; Menéndez, Ana Bernardina; Rodríguez, Andrés Alberto

    2018-06-01

    The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  16. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity

    DOE PAGES

    Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...

    2017-11-11

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less

  17. Energetics of the S 2 state spin isomers of the oxygen-evolving complex of Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinyard, David J.; Khan, Sahr; Askerka, Mikhail

    Here, the S 2 redox intermediate of the oxygen-evolving complex in Photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline EPR signal at g = 2, while the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decaysmore » to S 1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S 3 state is formed via the S 2 state S = 5/2 isomer and that the stabilized S 2 state S = 1/2 isomer plays a role in minimizing S 2Q A- decay in light-limiting conditions.« less

  18. Energetics of the S 2 state spin isomers of the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Vinyard, David J.; Khan, Sahr; Askerka, Mikhail; ...

    2017-01-12

    Here, the S 2 redox intermediate of the oxygen-evolving complex in Photosystem II is present as two spin isomers. The S = 1/2 isomer gives rise to a multiline EPR signal at g = 2, while the S = 5/2 isomer exhibits a broad EPR signal at g = 4.1. The electronic structures of these isomers are known, but their role in the catalytic cycle of water oxidation remains unclear. We show that formation of the S = 1/2 state from the S = 5/2 state is exergonic at temperatures above 160 K. However, the S = 1/2 isomer decaysmore » to S 1 more slowly than the S = 5/2 isomer. These differences support the hypotheses that the S 3 state is formed via the S 2 state S = 5/2 isomer and that the stabilized S 2 state S = 1/2 isomer plays a role in minimizing S 2Q A- decay in light-limiting conditions.« less

  19. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semin, B. K.; Davletshina, L. N.; Seibert, M.

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less

  20. Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation.

    PubMed

    Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang

    2014-08-15

    The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. Copyright © 2014, American Association for the Advancement of Science.

  1. Crystallization of Photosystem II for Time-Resolved Structural Studies Using an X-ray Free Electron Laser

    PubMed Central

    Coe, Jesse; Kupitz, Christopher; Basu, Shibom; Conrad, Chelsie E.; Roy-Chowdhury, Shatabdi; Fromme, Raimund; Fromme, Petra

    2015-01-01

    Photosystem II (PSII) is a membrane protein supercomplex that executes the initial reaction of photosynthesis in higher plants, algae, and cyanobacteria. It captures the light from the sun to catalyze a transmembrane charge separation. In a series of four charge separation events, utilizing the energy from four photons, PSII oxidizes two water molecules to obtain dioxygen, four protons, and four electrons. The light reactions of photosystems I and II (PSI and PSII) result in the formation of an electrochemical transmembrane proton gradient that is used for the production of ATP. Electrons that are subsequently transferred from PSI via the soluble protein ferredoxin to ferredoxin-NADP+ reductase that reduces NADP+ to NADPH. The products of photosynthesis and the elemental oxygen evolved sustain all higher life on Earth. All oxygen in the atmosphere is produced by the oxygen-evolving complex in PSII, a process that changed our planet from an anoxygenic to an oxygenic atmosphere 2.5 billion years ago. In this chapter, we provide recent insight into the mechanisms of this process and methods used in probing this question. PMID:25950978

  2. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Karki, Santosh; Van Vliet, Megan M; Levis, Robert J; Zdilla, Michael J

    2017-04-05

    The molecular mechanism of the Oxygen Evolving Center of photosystem II has been under debate for decades. One frequently cited proposal is the nucleophilic attack by water hydroxide on a pendant Mn═O moiety, though no chemical example of this reactivity at a manganese cubane cluster has been reported. We describe here the preparation, characterization, and a reactivity study of a synthetic manganese cubane cluster with a pendant manganese-oxo moiety. Reaction of this cluster with alkenes results in oxygen and hydrogen atom transfer reactions to form alcohol- and ketone-based oxygen-containing products. Nitrene transfer from core imides is negligible. The inorganic product is a cluster identical to the precursor, but with the pendant Mn═O moiety replaced by a hydrogen abstracted from the organic substrate, and is isolated in quantitative yield. 18 O and 2 H isotopic labeling studies confirm the transfer of atoms between the cluster and the organic substrate. The results suggest that the core cubane structure of this model compound remains intact, and that the pendant Mn═O moiety is preferentially reactive.

  3. Photodamage of a Mn(III/IV)-oxo mixed-valence compound and photosystem II: evidence that a high-valent manganese species is responsible for UV-induced photodamage of the oxygen-evolving complex in photosystem II.

    PubMed

    Wei, Zi; Cady, Clyde W; Brudvig, Gary W; Hou, Harvey J M

    2011-01-01

    The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2''-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone. Ultraviolet light irradiation induced a new absorption peak at around 400-440 nm of the Mn-oxo mixed-valence dimer. Visible light did not have the same effect on the Mn-oxo mixed-valence dimer. We speculate that the spectral change may be caused by conversion of the Mn(III)O(2)Mn(IV) dimer into a new structure--Mn(IV)O(2)Mn(IV). In the processes, the appearance of a 514 nm fluorescence peak was observed in the solution and may be linked to the hydration or protonation of Terpy ligand in the Mn-oxo dimer. In comparing the response of the PS II functional model compound and the PS II complex to excess light radiation, our results support the idea that UV photoinhibition is triggered at the Mn(4)Ca center of the oxygen-evolution complex in PS II by forming a modified structure, possibly a Mn(IV) species, and that the reaction of Mn ions is likely the initial step. Published by Elsevier B.V.

  4. Fluorescence kinetics of PSII crystals containing Ca(2+) or Sr(2+) in the oxygen evolving complex.

    PubMed

    van Oort, Bart; Kargul, Joanna; Maghlaoui, Karim; Barber, James; van Amerongen, Herbert

    2014-02-01

    Photosystem II (PSII) is the pigment-protein complex which converts sunlight energy into chemical energy by catalysing the process of light-driven oxidation of water into reducing equivalents in the form of protons and electrons. Three-dimensional structures from x-ray crystallography have been used extensively to model these processes. However, the crystal structures are not necessarily identical to those of the solubilised complexes. Here we compared picosecond fluorescence of solubilised and crystallised PSII core particles isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The fluorescence of the crystals is sensitive to the presence of artificial electron acceptors (K3Fe(CN)3) and electron transport inhibitors (DCMU). In PSII with reaction centres in the open state, the picosecond fluorescence of PSII crystals and solubilised PSII is indistinguishable. Additionally we compared picosecond fluorescence of native PSII with PSII in which Ca(2) in the oxygen evolving complex (OEC) is biosynthetically replaced by Sr(2+). With the Sr(2+) replaced OEC the average fluorescence decay slows down slightly (81ps to 85ps), and reaction centres are less readily closed, indicating that both energy transfer/trapping and electron transfer are affected by the replacement. Copyright © 2013. Published by Elsevier B.V.

  5. Goldilocks and the three inorganic equilibria: how Earth's chemistry and life coevolve to be nearly in tune.

    PubMed

    Rickaby, R E M

    2015-03-13

    Life and the chemical environment are united in an inescapable feedback cycle. The periodic table of the elements essential for life has transformed over Earth's history, but, as today, evolved in tune with the elements available in abundance in the environment. The most revolutionary time in life's history was the advent and proliferation of oxygenic photosynthesis which forced the environment towards a greater degree of oxidation. Consideration of three inorganic chemical equilibria throughout this gradual oxygenation prescribes a phased release of trace metals to the environment, which appear to have coevolved with employment of these new chemicals by life. Evolution towards complexity was chemically constrained, and changes in availability of notably Fe, Zn and Cu paced the systematic development of complex organisms. Evolving life repeatedly catalysed its own chemical challenges via the unwitting release of new and initially toxic chemicals. Ultimately, the harnessing of these allowed life to advance to greater complexity, though the mechanism responsible for translating novel chemistry to heritable use remains elusive. Whether a chemical acts as a poison or a nutrient lies both in the dose and in its environmental history. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Formate-induced inhibition of the water-oxidizing complex of photosystem II studied by EPR.

    PubMed

    Feyziev, Y M; Yoneda, D; Yoshii, T; Katsuta, N; Kawamori, A; Watanabe, Y

    2000-04-04

    The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.

  7. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.

  8. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.

    PubMed

    Niyogi, Krishna K; Truong, Thuy B

    2013-06-01

    All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Exploring the Role of Carbonate in the Formation of an Organomanganese Tetramer.

    PubMed

    Kadassery, Karthika J; Dey, Suman Kr; Friedman, Alan E; Lacy, David C

    2017-08-07

    The formation of metal-oxygen clusters is an important chemical transformation in biology and catalysis. For example, the biosynthesis of the oxygen-evolving complex in the enzyme photosystem II is a complicated stepwise process that assembles a catalytically active cluster. Herein we describe the role that carbonato ligands have in the formation of the known tetrameric complex [Mn(CO) 3 (μ 3 -OH)] 4 (1). Complex 1 is synthesized in one step via the treatment of Mn 2 (CO) 10 with excess Me 3 NO·2H 2 O. Alternatively, when anhydrous Me 3 NO is used, an OH-free synthetic intermediate (2) with carbonato ligands is produced. Complex 2 produces carbon dioxide, Me 3 NO·2H 2 O, and 1 when treated with water. Labeling studies reveal that the μ 3 -OH ligands in 1 are derived from the water and possibly the carbonato ligands in 2.

  10. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes

    DOE PAGES

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; ...

    2015-07-28

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  11. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.

  12. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  13. A study of QM/Langevin-MD simulation for oxygen-evolving center of photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Waka; Kimura, Yoshiro; Wakabayashi, Masamitsu

    2013-12-10

    We have performed three QM/Langevin-MD simulations for oxygen-evolving complex (OEC) and surrounding residues, which are different configurations of the oxidation numbers on Mn atoms in the Mn{sub 4}O{sub 5}Ca cluster. By analyzing these trajectories, we have observed sensitivity of the change to the configuration of Mn oxidation state on O atoms of carboxyl on three amino acids, Glu354, Ala344, and Glu333. The distances from Mn to O atoms in residues contacting with the Mn{sub 4}O{sub 5}Ca cluster were analyzed for the three trajectories. We found the good correlation of the distances among the simulations. However, the distances with Glu354, Ala344,more » and Glu333 have not shown the correlation. These residues can be sensitive index of the changes of Mn oxidation numbers.« less

  14. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.

    2007-06-01

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  15. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris.

    PubMed

    Ziurys, L M; Milam, S N; Apponi, A J; Woolf, N J

    2007-06-28

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach ( Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsicmore » domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Furthermore, our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.« less

  17. Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabdulkhakov, A. G., E-mail: azat@vega.protres.ru; Kljashtorny, V. G.; Dontsova, M. V.

    2015-01-15

    Photosystem II (PSII) catalyzes the light-induced generation of oxygen from water. The oxygen-evolving complex is buried deep in the protein on the lumenal side of PSII, and water molecules need to pass through protein subunits to reach the active site—the manganese cluster. Previous studies on the elucidation of water channels in PSII were based on an analysis of the cavities in the static PSII structure determined by X-ray diffraction. In the present study, we perform molecular dynamics simulations of the water movement in the transport system of PSII.

  18. Photoprotection in plants: a new light on photosystem II damage.

    PubMed

    Takahashi, Shunichi; Badger, Murray R

    2011-01-01

    Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  20. IMPACT OF BLEACHING STRESS ON THE FUNCTION OF THE OXYGEN EVOLVING COMPLEX OF ZOOXANTHELLAE FROM SCLERACTINIAN CORALS(1).

    PubMed

    Hill, Ross; Ralph, Peter J

    2008-04-01

    Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. The expulsion of the symbiotic dinoflagellate algae is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. Here, the sensitivity of the oxygen evolving complex (OEC) to bleaching stress was studied as well as its natural variation between seasons. The artificial electron donor, diphenyl carbazide (DPC), was added to cultured, freshly isolated and expelled (bleaching treatments only) zooxanthellae suspensions. Chl a fluorescence and oxygen production measurements showed that upon addition of DPC, no restoration of diminished photochemical efficiency occurred under control or bleaching conditions. This result was consistent between 12 h and 5 d bleaching treatments on Pocilloporadamicornis, indicating that the OEC is not the primary site of damage, and that zooxanthellae expulsion from the host is a nonselective process with respect to the functioning of the OEC. Further experiments measuring fast induction curves (FICs) revealed that in both summer and winter, the temperature when OEC function was lost occurred between 7°C and 14°C above the sea surface temperature. FIC and oxygen production measurements of P. damicornis during exposure to bleaching stress demonstrated that the thermotolerance of the OEC increased above the temperature of the bleaching treatment over a 4 h period. This finding indicates that the OEC has the capacity to acclimate between seasons and remains functional at temperatures well above bleaching thresholds. © 2008 Phycological Society of America.

  1. Comparison of the Manganese Cluster in Oxygen-Evolving Photosystem II with Distorted Cubane Manganese Compounds through X-ray Absorption Spectroscopy

    PubMed Central

    Cinco, Roehl M.; Rompel, Annette; Visser, Hendrik; Aromí, Guillem; Christou, George; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.

    2014-01-01

    X-ray absorption spectroscopy has been employed to assess the degree of similarity between the oxygen-evolving complex (OEC) in photosystem II (PS II) and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride, or bromide). These [Mn4(μ3-O)3(μ3-X)] cubanes possess C3v symmetry except for the X = benzoate species, which is slightly more distorted with only Cs symmetry. In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The Mn K-edge X-ray absorption near edge structure (XANES) from the oxygen-ligated complexes begin to resemble general features of the PS II (S1 state) spectrum, although the second derivatives are distinct from those in PS II. The extended X-ray absorption fine structure (EXAFS) of these Mn compounds also displays superficial resemblance to that of PS II, but major differences emerge on closer examination of the phases and amplitudes. The most obvious distinction is the smaller magnitude of the Fourier transform (FT) of the PS II EXAFS compared to the FTs from the distorted cubanes. Curve fitting of the Mn EXAFS spectra verifies the known core structures of the Mn cubanes, and shows that the number of the crucial 2.7 and 3.3 Å Mn–Mn distances differs from that observed in the OEC. The EXAFS method detects small changes in the core structures as X is varied in this series, and serves to exclude the distorted cubane of C3v symmetry as a topological model for the Mn catalytic cluster of the OEC. Instead, the method shows that even more distortion of the cubane framework, altering the ratio of the Mn–Mn distances, is required to resemble the Mn cluster in PS II. PMID:11671305

  2. Breaking wind to survive: fishes that breathe air with their gut.

    PubMed

    Nelson, J A

    2014-03-01

    Several taxonomically disparate groups of fishes have evolved the ability to extract oxygen from the air with elements of their gut. Despite perceived difficulties with balancing digestive and respiratory function, gut air breathing (GAB) has evolved multiple times in fishes and several GAB families are among the most successful fish families in terms of species numbers. When gut segments evolve into an air-breathing organ (ABO), there is generally a specialized region for exchange of gases where the gut wall has diminished, vascularization has increased, capillaries have penetrated into the luminal epithelium and surfactant is produced. This specialized region is generally separated from digestive portions of the gut by sphincters. GAB fishes tend to be facultative air breathers that use air breathing to supplement aquatic respiration in hypoxic waters. Some hindgut breathers may be continuous, but not obligate air breathers (obligate air breathers drown if denied access to air). Gut ABOs are generally used only for oxygen uptake; CO₂ elimination seems to occur via the gills and skin in all GAB fishes studied. Aerial ventilation in GAB fishes is driven primarily by oxygen partial pressure of the water (PO₂) and possibly also by metabolic demand. The effect of aerial ventilation on branchial ventilation and the cardiovascular system is complex and generalizations across taxa or ABO type are not currently possible. Blood from GAB fishes generally has a low blood oxygen partial pressure that half saturates haemoglobin (p50) with a very low erythrocytic nucleoside triphosphate concentration [NTP]. GAB behaviour in nature depends on the social and ecological context of the animal as well as on physiological factors. © 2014 The Fisheries Society of the British Isles.

  3. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  4. Properties of evolved mass-losing stars in the Milky Way and variations in the interstellar dust composition

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Latter, William B.; Black, John H.; Bally, John; Hacking, Perry

    1987-01-01

    A large sample of evolved carbon-rich and oxygen-rich objects has been studied using data from the IRAS Point Source Catalog. The number density of infrared-emitting 'carbon' stars shows no variation with Galactocentric radius, while the evolved 'oxygen' star volume density can be well fitted by a given law. A law is given for the number of carbon stars; a total is found in the Galaxy of 48,000 highly evolved oxygen stars. The mass-return rate for all evolved stars is found to be 0.35 solar mass/yr, with a small percentage contribution from carbon stars. The mass-loss rates for both types of stars are dominated by the small number of objects with the smallest rates. A mean lifetime of about 200,000 yr is obtained for both carbon and oxygen stars. Main-sequence stars in the mass range of three to five solar masses are the probable precursors of the carbon stars.

  5. Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca²⁺ or Ca²⁺ substituted by Sr²⁺

    DOE PAGES

    Vogt, Leslie; Ertem, Mehmed Z.; Pal, Rhitankar; ...

    2015-01-15

    The oxygen-evolving complex of photosystem II can function with either Ca²⁺ or Sr²⁺ as the heterocation, but the reason for differing turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S₁) and in a series of reduced states (S₀, S₋₁, and S-₂). Through comparison with experimental data, we determine that X-ray crystal structures with either Ca²⁺ or Sr²⁺ are most consistent with the S-₂ state, Mn₄[III,III,III,II] with O4 and O5 protonated. As expected, the QM/MM models show that Ca²⁺/Sr²⁺ substitutionmore » results in elongation of the heterocation bonds and displaces terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr²⁺ as the heterocation, suggesting that this water may play a critical role during water oxidation.« less

  6. The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life.

    PubMed

    Ziurys, Lucy M

    2006-08-15

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C(8)H, C(3)S, SiC(3), and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO(+), SO(2), and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO(+), HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  7. A Causal Relation between Bioluminescence and Oxygen to Quantify the Cell Niche

    PubMed Central

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner. PMID:24840204

  8. A causal relation between bioluminescence and oxygen to quantify the cell niche.

    PubMed

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Vande Velde, Greetje; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner.

  9. The Nitrogen Cycle Before the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Ward, L. M.; Hemp, J.; Fischer, W. W.

    2016-12-01

    The nitrogen cycle on Earth today is driven by a complex network of microbially-mediated transformations. Atmospheric N2 is fixed into biologically available forms that can either be incorporated into biomass or utilized for bioenergetic redox reactions. The cycle is kept in balance by the return of fixed nitrogen to the atmospheric N2 pool by anammox and denitrification. The early evolution and history of the nitrogen cycle is not well resolved, particularly before the evolution of oxygenic photosynthesis and rise of atmospheric oxygen ca. 2.3 Gya. Ammonia oxidation is a biochemically difficult reaction requiring activation of ammonia using O2 or oxidized nitrogen species that are produced using O2. Before the rise of oxygen, when O2 was largely unavailable, nitrification could not proceed, trapping fixed nitrogen in reduced forms such as ammonia and biomass. Without production of nitrite and nitrate, anammox and denitrification could not occur, preventing return of fixed nitrogen to the N2 pool and leaving the nitrogen cycle unclosed. While it has been hypothesized that ammonia oxidation could be driven anaerobically by processes such as phototrophy or iron reduction, these metabolisms have not been recovered in extant microorganisms, and would require complex unknown biochemical mechanisms. Furthermore, phylogenetic data for the key organisms and biochemical pathways involved in denitrification and anammox suggest that these metabolisms postdate the rise of oxygen. This is particularly clear for steps utilizing enzymes in the Heme-Copper Oxidoreductase superfamily, which appear to have originally evolved for O2 reduction at non-negligible substrate concentrations. Together, this suggests that the Archean nitrogen cycle was not closed, and that nitrogen fixed to reduced forms—either through biological nitrogen fixation or abiotic processes—was not easily returned to the atmospheric N2 pool. In principle, this could have stripped the atmosphere of N2 over timescales of hundreds of Myr, which is consistent with recent paleopressure estimates that suggest < 0.5 bar by late Archean time. The modern, N2-rich atmosphere and (largely) closed biological nitrogen cycle may therefore not have evolved until Proterozoic time, after the rise of oxygen.

  10. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  11. Oxygen and oxidative stress in the perinatal period.

    PubMed

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a challenge for the immediate future since accurate evaluation of oxidative stress would contribute to improve the quality of care of our neonatal patients. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II†

    PubMed Central

    Cinco, Roehl M.; Holman, Karen L. McFarlane; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.

    2014-01-01

    The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 Å, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is ~ 3.5 Å distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster. PMID:12390018

  13. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  14. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  15. Recent advances on the functional and evolutionary morphology of the amniote respiratory apparatus.

    PubMed

    Lambertz, Markus

    2016-02-01

    Increased organismic complexity in metazoans was achieved via the specialization of certain parts of the body involved in different faculties (structure-function complexes). One of the most basic metabolic demands of animals in general is a sufficient supply of all tissues with oxygen. Specialized structures for gas exchange (and transport) consequently evolved many times and in great variety among bilaterians. This review focuses on some of the latest advancements that morphological research has added to our understanding of how the respiratory apparatus of the primarily terrestrial vertebrates (amniotes) works and how it evolved. Two main components of the respiratory apparatus, the lungs as the "exchanger" and the ventilatory apparatus as the "active pump," are the focus of this paper. Specific questions related to the exchanger concern the structure of the lungs of the first amniotes and the efficiency of structurally simple snake lungs in health and disease, as well as secondary functions of the lungs in heat exchange during the evolution of sauropod dinosaurs. With regard to the active pump, I discuss how the unique ventilatory mechanism of turtles evolved and how understanding the avian ventilatory strategy affects animal welfare issues in the poultry industry. © 2016 New York Academy of Sciences.

  16. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    PubMed Central

    Ziurys, Lucy M.

    2006-01-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule “freeze-out,” shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This “survivor” molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells. PMID:16894164

  17. Interstellar Chemistry Special Feature: The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2006-08-01

    Mass loss from evolved stars results in the formation of unusual chemical laboratories: circumstellar envelopes. Such envelopes are found around carbon- and oxygen-rich asymptotic giant branch stars and red supergiants. As the gaseous material of the envelope flows from the star, the resulting temperature and density gradients create a complex chemical environment involving hot, thermodynamically controlled synthesis, molecule "freeze-out," shock-initiated reactions, and photochemistry governed by radical mechanisms. In the circumstellar envelope of the carbon-rich star IRC+10216, >50 different chemical compounds have been identified, including such exotic species as C8H, C3S, SiC3, and AlNC. The chemistry here is dominated by molecules containing long carbon chains, silicon, and metals such as magnesium, sodium, and aluminum, which makes it quite distinct from that found in molecular clouds. The molecular composition of the oxygen-rich counterparts is not nearly as well explored, although recent studies of VY Canis Majoris have resulted in the identification of HCO+, SO2, and even NaCl in this object, suggesting chemical complexity here as well. As these envelopes evolve into planetary nebulae with a hot, exposed central star, synthesis of molecular ions becomes important, as indicated by studies of NGC 7027. Numerous species such as HCO+, HCN, and CCH are found in old planetary nebulae such as the Helix. This "survivor" molecular material may be linked to the variety of compounds found recently in diffuse clouds. Organic molecules in dense interstellar clouds may ultimately be traced back to carbon-rich fragments originally formed in circumstellar shells.

  18. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  19. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    2016-11-09

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  20. Genomics of a phototrophic nitrite oxidizer: insights into the evolution of photosynthesis and nitrification.

    PubMed

    Hemp, James; Lücker, Sebastian; Schott, Joachim; Pace, Laura A; Johnson, Jena E; Schink, Bernhard; Daims, Holger; Fischer, Woodward W

    2016-11-01

    Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.

  1. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor.

    PubMed

    Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao

    2017-02-01

    This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Renal Carcinogenesis, Tumor Heterogeneity, and Reactive Oxygen Species: Tactics Evolved

    PubMed Central

    Shanmugasundaram, Karthigayan

    2016-01-01

    Abstract Significance: The number of kidney cancers is growing 3–5% each year due to unknown etiologies. Intra- and inter-tumor mediators increase oxidative stress and drive tumor heterogeneity. Recent Advances: Technology advancement in state-of-the-art instrumentation and methodologies allows researchers to detect and characterize global landscaping modifications in genes, proteins, and pathophysiology patterns at the single-cell level. Critical Issues: We postulate that the sources of reactive oxygen species (ROS) and their activation within subcellular compartments will change over a timeline of tumor evolvement and contribute to tumor heterogeneity. Therefore, the complexity of intracellular changes within a tumor and ROS-induced tumor heterogeneity coupled to the advancement of detecting these events globally are limited at the level of data collection, organization, and interpretation using software algorithms and bioinformatics. Future Directions: Integrative and collaborative research, combining the power of numbers with careful experimental design, protocol development, and data interpretation, will translate cancer biology and therapeutics to a heightened level or leave the abundant raw data as stagnant and underutilized. Antioxid. Redox Signal. 25, 685–701. PMID:27287984

  3. The Multiple Origins of Complex Multicellularity

    NASA Astrophysics Data System (ADS)

    Knoll, Andrew H.

    2011-05-01

    Simple multicellularity has evolved numerous times within the Eukarya, but complex multicellular organisms belong to only six clades: animals, embryophytic land plants, florideophyte red algae, laminarialean brown algae, and two groups of fungi. Phylogeny and genomics suggest a generalized trajectory for the evolution of complex multicellularity, beginning with the co-optation of existing genes for adhesion. Molecular channels to facilitate cell-cell transfer of nutrients and signaling molecules appear to be critical, as this trait occurs in all complex multicellular organisms but few others. Proliferation of gene families for transcription factors and cell signals accompany the key functional innovation of complex multicellular clades: differentiated cells and tissues for the bulk transport of oxygen, nutrients, and molecular signals that enable organisms to circumvent the physical limitations of diffusion. The fossil records of animals and plants document key stages of this trajectory.

  4. Enhancement of photoassembly of the functionally active water-oxidizing complex in Mn-depleted photosystem II membranes upon transition to anaerobic conditions.

    PubMed

    Khorobrykh, A A; Yanykin, D V; Klimov, V V

    2016-10-01

    It has been shown earlier (Khorobrykh and Klimov, 2015) that molecular oxygen is directly involved in the general mechanism of the donor side photoinhibition of photosystem II (PSII) membranes. In the present work the effect of oxygen on photoassembly ("photoactivation") of the functionally active inorganic core of the water-oxidizing complex (WOC) in Mn-depleted PSII preparations (apo-WOC-PSII) in the presence of exogenous Mn(2+), Ca(2+) as well as ferricyanide was investigated. It was revealed that the efficiency of the photoassembly of the WOC was considerably increased upon removal of oxygen from the medium during photoactivation procedure using the enzymatic oxygen trap or argon flow. The lowering of O2 concentration from 250μM to 75μM, 10μM and near 0μM results in 29%, 71% and 92%, respectively, stimulation of the rate of O2 evolution measured after the photoactivation. The increase in the intensity of light used during the photoactivation was accompanied by a decrease of both the efficiency of photoassembly of the WOC and the stimulation effect of removal of O2 (that may be due to the enhancement of the processes leading to the photodamage to PSII). It is concluded that the enhancement in photoactivation of oxygen-evolving activity of apo-WOC-PSII induced by oxygen removal from the medium is due to the suppression of the donor side photoinhibition of PSII in which molecular oxygen can be involved. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary "Oxygenation Time"

    NASA Astrophysics Data System (ADS)

    Catling, David C.; Glein, Christopher R.; Zahnle, Kevin J.; McKay, Christopher P.

    2005-06-01

    Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of ~10-1-100 m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (>m)~m-1 for aquatic aerobes, and we show that for anaerobes the predicted scaling is n~m -1.5, close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (PO2) must exceed ~103 Pa to allow organisms that rely on O2 diffusion to evolve to a size ~10-3 m. PO2 in the range ~103-104 Pa is needed to exceed the threshold of ~10-2 m size for complex life with circulatory physiology. In terrestrial life, O2 also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach PO2 ~104 Pa, or "oxygenation time," was long on the Earth (~3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.

  6. An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paz, Aaron

    2017-01-01

    ISRU of Mars resources was base lined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. HOWEVER: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not base lined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRU Phase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4LO2 ISRU production system.Evolvable Mars CampaignPre-deployed Mars ascent vehicle (MAV)4 crew membersPropellants: Oxygen MethaneGenerate a system model to roll up mass power of a full ISRU system and enable parametric trade studies. Leverage models from previous studies and technology development programs Anchor with mass power performance from existing hardware. Whenever possible used reference-able (published) numbers for traceability.Modular approach to allow subsystem trades and parametric studies. Propellant mass needs taken from most recently published MAV study:Polsgrove, T. et al. (2015), AIAA2015-4416MAV engines operate at mixture ratios (oxygen: methane) between 3:1 and 3.5:1, whereas the Sabatier reactor produces at a 4:1 ratio. Therefore:Methane production is the driving requirement-Excess Oxygen will be produced.

  7. The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering

    PubMed Central

    Yano, Junko; Visser, Hendrik; Robblee, John H.; Gu, Weiwei; de Groot, Frank M. F.; Christou, George; Pecoraro, Vincent L.

    2014-01-01

    Resonant inelastic X-ray scattering (RIXS) was used to collect Mn K pre-edge spectra and to study the electronic structure in oxides, molecular coordination complexes, as well as the S1 and S2 states of the oxygen-evolving complex (OEC) of photosystem II (PS II). The RIXS data yield two-dimensional plots that can be interpreted along the incident (absorption) energy or the energy transfer axis. The second energy dimension separates the pre-edge (predominantly 1s to 3d transitions) from the main K-edge, and a detailed analysis is thus possible. The 1s2p RIXS final-state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy, and the RIXS spectra are therefore sensitive to the Mn spin state. This new technique thus yields information on the electronic structure that is not accessible in conventional K-edge absorption spectroscopy. The line splittings can be understood within a ligand field multiplet model, i.e., (3d,3d) and (2p,3d) two-electron interactions are crucial to describe the spectral shapes in all systems. We propose to explain the shift of the K pre-edge absorption energy upon Mn oxidation in terms of the effective number of 3d electrons (fractional 3d orbital population). The spectral changes in the Mn 1s2p3/2 RIXS spectra between the PS II S1 and S2 states are small compared to that of the oxides and two of the coordination complexes (MnIII(acac)3 and MnIV(sal)2(bipy)). We conclude that the electron in the step from S1 to S2 is transferred from a strongly delocalized orbital. PMID:15303869

  8. 13C ENDOR reveals that the D1 polypeptide C-terminus is directly bound to Mn in the photosystem II oxygen evolving complex.

    PubMed

    Stull, Jamie A; Stich, Troy A; Service, Rachel J; Debus, Richard J; Mandal, Sanjay K; Armstrong, William H; Britt, R David

    2010-01-20

    Antiferromagnetically coupled Mn(III)Mn(IV) dimers have been commonly used to study biological systems that exhibit complex exchange interactions. Such is the case for the oxygen evolving complex (OEC) in photosystem II (PSII), where we have studied whether the C-terminal carboxylate of D1-Ala344 is directly bound to the Mn cluster. To probe these protein-derived carboxylate hyperfine interactions, which give direct bonding information, Q-band (34 GHz) Mims ENDOR was performed on a Mn(III)Mn(IV) dimer ([Mn(III)Mn(IV)(mu-O)(2)mu-OAc(TACN)(2)](BPh(4))(2)) (1) that was labeled with (13)C (I = (1)/(2)) at the carboxylate position of the acetate bridge. A(dip) is computed based on atomic coordinates from available X-ray crystal structures to be [-2.4, -0.8, 3.2] MHz. The value for A(iso) was determined based on simulation of the experimental ENDOR data, for complex 1 A(iso) = -1 MHz. Similar studies were then performed on PSII from Synechocystis sp. PCC 6803, in which all alanine-derived C=O groups are labeled with (13)C including the C-terminal alpha-COO(-) group of D1 (Ala344), as well as PSII proteins uniformly labeled with (13)C. Using recent X-ray crystallography data from T. elongatus the values for A(dip) were calculated and simulations of the experimental data led to A(iso) values of 1.2, 1, and 2 MHz, respectively. We infer from complex 1 that an A(iso) significantly larger than 1.2 MHz for a Mn-coordinating carboxylate moiety is unlikely. Therefore, we support the closer arrangement of Ala344 suggested by the Loll and Guskov structures and conclude that the C-terminal carboxylate of D1 polypeptide is directly bound to the Mn cluster.

  9. High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.

    PubMed

    Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2015-04-28

    The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.

  10. Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies.

    PubMed

    Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp

    2011-05-02

    Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The origin of multicellularity in cyanobacteria

    PubMed Central

    2011-01-01

    Background Cyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45 - 2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms. Results We conducted and compared phylogenetic analyses of 16S rDNA sequences from a large sample of taxa representing the morphological and genetic diversity of cyanobacteria. We reconstructed ancestral character states on 10,000 phylogenetic trees. The results suggest that the majority of extant cyanobacteria descend from multicellular ancestors. Reversals to unicellularity occurred at least 5 times. Multicellularity was established again at least once within a single-celled clade. Comparison to the fossil record supports an early origin of multicellularity, possibly as early as the "Great Oxygenation Event" that occurred 2.45 - 2.22 billion years ago. Conclusions The results indicate that a multicellular morphotype evolved early in the cyanobacterial lineage and was regained at least once after a previous loss. Most of the morphological diversity exhibited in cyanobacteria today —including the majority of single-celled species— arose from ancient multicellular lineages. Multicellularity could have conferred a considerable advantage for exploring new niches and hence facilitated the diversification of new lineages. PMID:21320320

  12. Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time".

    PubMed

    Catling, David C; Glein, Christopher R; Zahnle, Kevin J; McKay, Christopher P

    2005-06-01

    Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.

  13. Isolation and purification assay of ex vivo photosystem II D1 protein toward integrated biointeraction analysis.

    PubMed

    Muktiono, B; Schulten, C; Heemken, O; Gandrass, J; Prange, A; Schnabl, H; Cerboncini, C

    2008-02-01

    Protein extracts of photosystem II were prepared from leaf chloroplasts of different plant species by fast and nondenaturing methods. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis of the proteins obtained showed that the extracts were enriched by D1 proteins, which appeared putatively in association with the 33-kDa oxygen-evolving-complex subunits. In further isolation steps D1 proteins were purified using salt-gradient chromatography (fast protein liquid chromatography) and characterized by western blot and mass spectrometry.

  14. Atmospheric oxygen level and the evolution of insect body size.

    PubMed

    Harrison, Jon F; Kaiser, Alexander; VandenBrooks, John M

    2010-07-07

    Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO(2), suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO(2) on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.

  15. What spectroscopy reveals concerning the Mn oxidation levels in the oxygen evolving complex of photosystem II: X-ray to near infra-red.

    PubMed

    Pace, Ron J; Jin, Lu; Stranger, Rob

    2012-08-28

    Photosystem II (PS II), found in oxygenic photosynthetic organisms, catalyses the most energetically demanding reaction in nature, the oxidation of water to molecular oxygen and protons. The water oxidase in PS II contains a Mn(4)Ca cluster (oxygen evolving complex, OEC), whose catalytic mechanism has been extensively investigated but is still unresolved. In particular the precise Mn oxidation levels through which the cluster cycles during functional turnover are still contentious. In this, the first of several planned parts, we examine a broad range of published data relating to this question, while considering the recent atomic resolution PS II crystal structure of Umena et al. (Nature, 2011, 473, 55). Results from X-ray, UV-Vis and NIR spectroscopies are considered, using an approach that is mainly empirical, by comparison with published data from known model systems, but with some reliance on computational or other theoretical considerations. The intention is to survey the extent to which these data yield a consistent picture of the Mn oxidation states in functional PS II - in particular, to test their consistency with two current proposals for the mean redox levels of the OEC during turnover; the so called 'high' and 'low' oxidation state paradigms. These systematically differ by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S(0)···S(3)). In summary, we find that the data, in total, substantially favor the low oxidation proposal, particularly as a result of the new analyses we present. The low oxidation state scheme is able to resolve a number of previously 'anomalous' results in the observed UV-Visible S state turnover spectral differences and in the resonant inelastic X-ray spectroscopy (RIXS) of the Mn pre-edge region of the S(1) and S(2) states. Further, the low oxidation paradigm is able to provide a 'natural' explanation for the known sensitivity of the OEC Mn cluster to cryogenic near infra-red (NIR) induced turnover to alternative spin/redox states in S(2) and S(3).

  16. Construction of a psb C deletion strain in Synechocystis 6803.

    PubMed

    Goldfarb, N; Knoepfle, N; Putnam-Evans, C

    1997-01-01

    Synechocystis 6803 is a cyanobacterium that carries out-oxygenic photosynthesis. We are interested in the introduction of mutations in the large extrinsic loop region of the CP43 protein of Photosystem II (PSII). CP43 appears to be required for the stable assembly of the PSII complex and also appears to play a role in photosynthetic oxygen evolution. Deletion of short segments of the large extrinsic loop results in mutants incapable of evolving oxygen. Alterations in psbC, the gene encoding CP43, are introduced into Synechocystis 6803 by transformation and homologous recombination. Specifically, plasmid constructs bearing the site-directed mutations are introduced into a deletion strain where the portion of the gene encoding the area of mutation has been deleted and replaced by a gene conferring antibiotic resistance. We have constructed a deletion strain of Synechocystis appropriate for the introduction of mutations in the large extrinsic loop of CP43 and have used it successfully to produce site-directed mutants.

  17. Nanoscale oxidation and complex oxide growth on single crystal iron surfaces and external electric field effects.

    PubMed

    Jeon, Byoungseon; Van Overmeere, Quentin; van Duin, Adri C T; Ramanathan, Shriram

    2013-02-14

    Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.

  18. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Single crystal X- and Q-band EPR spectroscopy of a binuclear Mn(2)(III,IV) complex relevant to the oxygen-evolving complex of photosystem II.

    PubMed

    Yano, Junko; Sauer, Kenneth; Girerd, Jean-Jacques; Yachandra, Vittal K

    2004-06-23

    The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.

  20. Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3

    DOE PAGES

    Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...

    2017-10-18

    Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less

  1. Bacterial sulfur disproportionation constrains timing of neoproterozoic oxygenation

    USGS Publications Warehouse

    Kunzmann, Marcus; Bui, Thi Hao; Crockford, Peter W.; Halverson, Galen P.; Scott, Clinton T.; Lyons, Timothy W.; Wing, Boswell A.

    2017-01-01

    Various geochemical records suggest that atmospheric O2 increased in the Ediacaran (635–541 Ma), broadly coincident with the emergence and diversification of large animals and increasing marine ecosystem complexity. Furthermore, geochemical proxies indicate that seawater sulfate levels rose at this time too, which has been hypothesized to reflect increased sulfide oxidation in marine sediments caused by sediment mixing of the newly evolved macrofauna. However, the exact timing of oxygenation is not yet understood, and there are claims for significant oxygenation prior to the Ediacaran. Furthermore, recent evidence suggests that physical mixing of sediments did not become important until the late Silurian. Here we report a multiple sulfur isotope record from a ca. 835–630 Ma succession from Svalbard, further supported by data from Proterozoic strata in Canada, Australia, Russia, and the United States, in order to investigate the timing of oxygenation. We present isotopic evidence for onset of globally significant bacterial sulfur disproportionation and reoxidative sulfur cycling following the 635 Ma Marinoan glaciation. Widespread sulfide oxidation helps to explain the observed first-order increase in seawater sulfate concentration from the earliest Ediacaran to the Precambrian-Cambrian boundary by reducing the amount of sulfur buried as pyrite. Expansion of reoxidative sulfur cycling to a global scale also indicates increasing environmental O2 levels. Thus, our data suggest that increasing atmospheric O2 levels may have played a role in the emergence of the Ediacaran macrofauna and increasing marine ecosystem complexity.

  2. Planetary Atmospheres and Evolution of Complex Life

    NASA Astrophysics Data System (ADS)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on O2 diffusion to evolve to mm size. pO2 in the range 10^3-10^4 Pa is needed to exceed the threshold of cm size for complex life with circulatory physiology. The timescale to reach pO2 10^4 Pa, or "oxygenation time", was long on the Earth ( 3.9 billion years), within almost a factor of two of the Sun's main sequence lifetime. The oxygenation time could preclude complex life on rocky planets with prodigious reducing volatiles orbiting stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable places for complex life.

  3. Process for photosynthetically splitting water

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.

  4. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    DOE PAGES

    Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...

    2014-12-10

    Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less

  5. [Origin of the oxygen detected by the Viking stations in an analysis of Mars soil].

    PubMed

    Imshenetskiĭ, A A; Murzakov, B G; Dorofeeva, I K

    1978-01-01

    Reactions between the mineral limonite and hydrogen peroxide were studied and gases produced thereupon were analysed by gas chromatography. Oxygen did not evolve if limonite was added to hydrogen peroxide frozen at a temperature of dry ice. However, at room temperature, a vigorous chemical reaction occurred and a large amount of oxygen evolved. Apparently, the ground of Mars contains not only hydrated iron oxides but also frozen hydrogen peroxide whose thawing in the incubation chamber of Viking resulted in its catalytic degradation under the action of iron ions. The evidence thus obtained and its comparison with the data of American scientists account for considerable evolution of oxygen detected by Viking upon analysis of the Mars ground.

  6. The oxygen paradox of neurovascular coupling

    PubMed Central

    Leithner, Christoph; Royl, Georg

    2014-01-01

    The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931

  7. Stoichiometry for binding and transport by the twin arginine translocation system.

    PubMed

    Celedon, Jose M; Cline, Kenneth

    2012-05-14

    Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.

  8. Water oxidation catalysed by manganese compounds: from complexes to 'biomimetic rocks'.

    PubMed

    Wiechen, Mathias; Berends, Hans-Martin; Kurz, Philipp

    2012-01-07

    One of the most fundamental processes of the natural photosynthetic reaction sequence is the light-driven oxidation of water to molecular oxygen. In vivo, this reaction takes place in the large protein ensemble Photosystem II, where a μ-oxido-Mn(4)Ca- cluster, the oxygen-evolving-complex (OEC), has been identified as the catalytic site for the four-electron/four-proton redox reaction of water oxidation. This Perspective presents recent progress for three strategies which have been followed to prepare functional synthetic analogues of the OEC: (1) the synthesis of dinuclear manganese complexes designed to act as water-oxidation catalysts in homogeneous solution, (2) heterogeneous catalysts in the form of clay hybrids of such Mn(2)-complexes and (3) the preparation of manganese oxide particles of different compositions and morphologies. We discuss the key observations from the studies of such synthetic manganese systems in order to shed light upon the catalytic mechanism of natural water oxidation. Additionally, it is shown how research in this field has recently been motivated more and more by the prospect of finding efficient, robust and affordable catalysts for light-driven water oxidation, a key reaction of artificial photosynthesis. As manganese is an abundant and non-toxic element, manganese compounds are very promising candidates for the extraction of reduction equivalents from water. These electrons could consecutively be fed into the synthesis of "solar fuels" such as hydrogen or methanol.

  9. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, S E; Hopkins, R C; Blanchette, C

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  10. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi

    NASA Astrophysics Data System (ADS)

    Shih, Patrick M.; Ward, Lewis M.; Fischer, Woodward W.

    2017-10-01

    Various lines of evidence from both comparative biology and the geologic record make it clear that the biochemical machinery for anoxygenic photosynthesis was present on early Earth and provided the evolutionary stock from which oxygenic photosynthesis evolved ca. 2.3 billion years ago. However, the taxonomic identity of these early anoxygenic phototrophs is uncertain, including whether or not they remain extant. Several phototrophic bacterial clades are thought to have evolved before oxygenic photosynthesis emerged, including the Chloroflexi, a phylum common across a wide range of modern environments. Although Chloroflexi have traditionally been thought to be an ancient phototrophic lineage, genomics has revealed a much greater metabolic diversity than previously appreciated. Here, using a combination of comparative genomics and molecular clock analyses, we show that phototrophic members of the Chloroflexi phylum are not particularly ancient, having evolved well after the rise of oxygen (ca. 867 million years ago), and thus cannot be progenitors of oxygenic photosynthesis. Similarly, results show that the carbon fixation pathway that defines this clade—the 3-hydroxypropionate bicycle—evolved late in Earth history as a result of a series of horizontal gene transfer events, explaining the lack of geological evidence for this pathway based on the carbon isotope record. These results demonstrate the role of horizontal gene transfer in the recent metabolic innovations expressed within this phylum, including its importance in the development of a novel carbon fixation pathway.

  11. Uniting sex and eukaryote origins in an emerging oxygenic world.

    PubMed

    Gross, Jeferson; Bhattacharya, Debashish

    2010-08-23

    Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation, prokaryotic DNA recombination, and the universality of nuclear-mediated meiotic activities might corroborate the hypothesis that sex and the nucleus evolved to support DNA repair. Oxygen tolerance emerges as an important principle to investigate eukaryogenesis. The evolution of eukaryotic complexity might be best understood as a synergic process between key evolutionary innovations, of which meiosis (sex) played a central role. This manuscript was reviewed by Eugene V. Koonin, Anthony M. Poole, and Gáspár Jékely.

  12. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  13. Interactions of chloride and formate at the donor and the acceptor side of photosystem II.

    PubMed

    Jajoo, Anjana; Bharti, Sudhakar; Kawamori, Asako

    2005-02-01

    Chloride is required for the maximum activity of the oxygen evolving complex (OEC) while formate inhibits the function of OEC. On the basis of the measurements of oxygen evolution rates and the S(2) state multiline EPR signal, an interaction between the action of chloride and formate at the donor side of PS II has been suggested. Moreover, the Fe(2)+Q-A EPR signals were measured to investigate a common binding site of both these anions at the PS II acceptor side. Other monovalent anions like bromide, nitrate etc. could influence the effects of formate to a small extent at the donor side of PS II, but not significantly at the acceptor side of PS II. The results presented in this paper clearly suggest a competitive binding of formate and chloride at the PS II acceptor side.

  14. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  15. Oxidative stress, redox stress or redox success?

    PubMed

    Gutteridge, John M C; Halliwell, Barry

    2018-05-09

    The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress". Copyright © 2018. Published by Elsevier Inc.

  16. Why did Nature choose manganese to make oxygen?

    PubMed Central

    Armstrong, Fraser A

    2007-01-01

    This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329

  17. Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lee, Yong-Min; Tcho, Woon-Young; Tussupbayev, Samat; Kim, Seoung-Tae; Kim, Yujeong; Seo, Mi Sook; Cho, Kyung-Bin; Dede, Yavuz; Keegan, Brenna C.; Ogura, Takashi; Kim, Sun Hee; Ohta, Takehiro; Baik, Mu-Hyun; Ray, Kallol; Shearer, Jason; Nam, Wonwoo

    2017-03-01

    Terminal cobalt(IV)-oxo (CoIV-O) species have been implicated as key intermediates in various cobalt-mediated oxidation reactions. Herein we report the photocatalytic generation of a mononuclear non-haem [(13-TMC)CoIV(O)]2+ (2) by irradiating [CoII(13-TMC)(CF3SO3)]+ (1) in the presence of [RuII(bpy)3]2+, Na2S2O8, and water as an oxygen source. The intermediate 2 was also obtained by reacting 1 with an artificial oxidant (that is, iodosylbenzene) and characterized by various spectroscopic techniques. In particular, the resonance Raman spectrum of 2 reveals a diatomic Co-O vibration band at 770 cm-1, which provides the conclusive evidence for the presence of a terminal Co-O bond. In reactivity studies, 2 was shown to be a competent oxidant in an intermetal oxygen atom transfer, C-H bond activation and olefin epoxidation reactions. The present results lend strong credence to the intermediacy of CoIV-O species in cobalt-catalysed oxidation of organic substrates as well as in the catalytic oxidation of water that evolves molecular oxygen.

  18. Removal of Ca 2+ from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn 4O 5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study

    DOE PAGES

    Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; ...

    2015-05-19

    We studied Ca 2+ -depleted and Ca 2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca 2+ ion in the Mn 4O 5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca 2+ -depleted S 1 (S 1') and S 2 (S 2') states, the S 2'Y Z• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca 2+ -reconstituted S 1 state. Polarized Mnmore » K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca 2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca 2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca 2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca 2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S 1 and S 2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca 2+ removal are discussed, attributing to the Ca 2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to Y Z• (D1-Tyr161).« less

  19. Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S(2) state of the oxygen-evolving complex of photosystem II.

    PubMed

    Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin

    2010-09-10

    Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.

  20. Removal of Ca(2+) from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study.

    PubMed

    Lohmiller, Thomas; Shelby, Megan L; Long, Xi; Yachandra, Vittal K; Yano, Junko

    2015-10-29

    Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).

  1. Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A

    2013-08-13

    The latest crystal structure of photosystem II at 1.9 Å resolution, which resolves the topology of the Mn4CaO5 oxygen evolving complex (OEC) at atomistic detail, enables a better correlation between structural features and spectroscopic properties than ever before. Building on the refined crystallographic model of the OEC and the protein, we present combined quantum mechanical/molecular mechanical (QM/MM) studies of the spectroscopic properties of the natural catalyst embedded in the protein matrix. Focusing on the S2 state of the catalytic cycle, we examine the convergence of not only structural parameters but also of the intracluster magnetic interactions in terms of exchange coupling constants and of experimentally relevant (55)Mn, (17)O, and (14)N hyperfine coupling constants with respect to QM/MM partitioning using five QM regions of increasing size. This enables us to assess the performance of the method and to probe second sphere effects by identifying amino acid residues that principally affect the spectroscopic properties of the OEC. Comparison between QM-only and QM/MM treatments reveals that whereas QM/MM models converge quickly to stable values, the QM cluster models need to incorporate significantly larger parts of the second coordination sphere and surrounding water molecules to achieve convergence for certain properties. This is mainly due to the sensitivity of the QM-only models to fluctuations in the hydrogen bonding network and ligand acidity. Additionally, a hydrogen bond that is typically omitted in QM-only treatments is shown to determine the hyperfine coupling tensor of the unique Mn(III) ion by regulating the rotation plane of the ligated D1-His332 imidazole ring, the only N-donor ligand of the OEC.

  2. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi

    DOE PAGES

    Shih, Patrick M.; Ward, Lewis M.; Fischer, Woodward W.

    2017-09-18

    We report various lines of evidence from both comparative biology and the geologic record make it clear that the biochemical machinery for anoxygenic photosynthesis was present on early Earth and provided the evolutionary stock from which oxygenic photosynthesis evolved ca. 2.3 billion years ago. However, the taxonomic identity of these early anoxygenic phototrophs is uncertain, including whether or not they remain extant. Several phototrophic bacterial clades are thought to have evolved before oxygenic photosynthesis emerged, including the Chloroflexi, a phylum common across a wide range of modern environments. Although Chloroflexi have traditionally been thought to be an ancient phototrophic lineage,more » genomics has revealed a much greater metabolic diversity than previously appreciated. Here, using a combination of comparative genomics and molecular clock analyses, we show that phototrophic members of the Chloroflexi phylum are not particularly ancient, having evolved well after the rise of oxygen (ca. 867 million years ago), and thus cannot be progenitors of oxygenic photosynthesis. Similarly, results show that the carbon fixation pathway that defines this clade—the 3-hydroxypropionate bicycle—evolved late in Earth history as a result of a series of horizontal gene transfer events, explaining the lack of geological evidence for this pathway based on the carbon isotope record. Finally, these results demonstrate the role of horizontal gene transfer in the recent metabolic innovations expressed within this phylum, including its importance in the development of a novel carbon fixation pathway.« less

  3. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Patrick M.; Ward, Lewis M.; Fischer, Woodward W.

    We report various lines of evidence from both comparative biology and the geologic record make it clear that the biochemical machinery for anoxygenic photosynthesis was present on early Earth and provided the evolutionary stock from which oxygenic photosynthesis evolved ca. 2.3 billion years ago. However, the taxonomic identity of these early anoxygenic phototrophs is uncertain, including whether or not they remain extant. Several phototrophic bacterial clades are thought to have evolved before oxygenic photosynthesis emerged, including the Chloroflexi, a phylum common across a wide range of modern environments. Although Chloroflexi have traditionally been thought to be an ancient phototrophic lineage,more » genomics has revealed a much greater metabolic diversity than previously appreciated. Here, using a combination of comparative genomics and molecular clock analyses, we show that phototrophic members of the Chloroflexi phylum are not particularly ancient, having evolved well after the rise of oxygen (ca. 867 million years ago), and thus cannot be progenitors of oxygenic photosynthesis. Similarly, results show that the carbon fixation pathway that defines this clade—the 3-hydroxypropionate bicycle—evolved late in Earth history as a result of a series of horizontal gene transfer events, explaining the lack of geological evidence for this pathway based on the carbon isotope record. Finally, these results demonstrate the role of horizontal gene transfer in the recent metabolic innovations expressed within this phylum, including its importance in the development of a novel carbon fixation pathway.« less

  4. Investigating the subsurface connection beneath Cerro Negro volcano and the El Hoyo Complex, Nicaragua

    NASA Astrophysics Data System (ADS)

    Venugopal, Swetha; Moune, Séverine; Williams-Jones, Glyn

    2016-10-01

    Cerro Negro, the youngest volcano along the Central American Volcanic Belt (CAVB), is a polygenetic cinder cone with relatively frequent basaltic eruptions. The neighbouring El Hoyo complex, of which Las Pilas is the dominant edifice, is a much larger and older complex with milder and less frequent eruptions. Previous studies have suggested a deep link beneath these two closely spaced volcanoes (McKnight, 1995; MacQueen, 2013). Melt inclusions were collected from various tephra samples in order to determine whether a connection exists and to delineate the features of this link. Major, volatile, and trace elemental compositions reveal a distinct geochemical continuum with Cerro Negro defining the primitive endmember and El Hoyo representing the evolved endmember. Magmatic conditions at the time of melt inclusion entrapment were estimated with major and volatile contents: 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for El Hoyo melts with an overall oxygen fugacity at the NNO buffer. Trace element contents are distinct and suggest Cerro Negro magmas fractionally crystallise while El Hoyo magmas are a mix between primitive Cerro Negro melts and residual and evolved El Hoyo magma. Modelling of end member compositions with alphaMELTS confirms the unique nature of El Hoyo magmas as resulting from incremental mixing between Cerro Negro and residual evolved magma at 4 km depth. Combining all available literature data, this study presents a model of the interconnected subsurface plumbing system. This model considers the modern day analogue of the Lemptégy cinder cones in Massif Central, France and incorporates structurally controlled dykes. The main implications of this study are the classification of Cerro Negro as the newest conduit within the El Hoyo Complex as well as the potential re-activation of the El Hoyo edifice.

  5. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  6. Hydrodynamic models for novae with ejecta rich in oxygen, neon and magnesium

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Sparks, W. M.; Truran, J. W.

    1985-01-01

    The characteristics of a new class of novae are identified and explained. This class consists of those objects that have been observed to eject material rich in oxygen, neon, magnesium, and aluminum at high velocities. We propose that for this class of novae the outburst is occurring not on a carbon-oxygen white dwarf but on an oxygen-neon-magnesium white dwarf which has evolved from a star which had a main sequence mass of approx. 8 solar masses to approx. 12 solar masses. An outburst was simulated by evolving 1.25 solar mass white dwarfs accreting hydrogen rich material at various rates. The effective enrichment of the envelope by ONeMg material from the core is simulated by enhancing oxygen in the accreted layers. The resulting evolutionary sequences can eject the entire accreted envelope plus core material at high velocities. They can also become super-Eddington at maximum bolometric luminosity. The expected frequency of such events (approx. 1/4) is in good agreement with the observed numbers of these novae.

  7. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.

  8. Calcium in the Oxygen-Evolving Complex: Structural and Mechanistic Role Determined by X-ray Spectroscopy

    PubMed Central

    Yachandra, Vittal K.; Yano, Junko

    2011-01-01

    This review describes the results from X-ray absorption spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn4Ca catalytic center. PMID:21524917

  9. ALMA observations of TiO2 around VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Vlemmings, W.; Muller, S.; Black, J. H.; O'Gorman, E.; Richards, A. M. S.; Baudry, A.; Maercker, M.; Decin, L.; Humphreys, E. M.

    2015-08-01

    Context. Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2 has been detected only in the complex environment of the red supergiant VY CMa. Aims: We aim to constrain the distribution and excitation of TiO2 around VY CMa in order to clarify its role in dust formation. Methods: We analyse spectra and channel maps for TiO2 extracted from ALMA science verification data. Results: We detect 15 transitions of TiO2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. An accelerating bipolar-like structure is found, oriented roughly east-west, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. Conclusions: We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa. Appendix A is available in electronic form at http://www.aanda.org

  10. Development of a Reactor for the Extraction of Oxygen and Volatiles From Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Yuan, Zengguang; Sacksteder, Kurt; Caruso, John

    2009-01-01

    The RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, aims to extract and quantify useful resources from lunar soil. The reactor developed for RESOLVE is a dual purpose system, designed to evolve both water, at 150 C and up to 80 psig, and oxygen, using hydrogen reduction at 900 C. A variety of laboratory tests were performed to verify its operation and to explore the properties of the analog site soil. The results were also applied to modeling efforts which are being used to estimate the apparent thermal properties of the soil. The experimental and numerical results, along with the analog site tests, will be used to evolve and optimize future reactor designs.

  11. How did life survive Earth's great oxygenation?

    PubMed

    Fischer, Woodward W; Hemp, James; Valentine, Joan Selverstone

    2016-04-01

    Life on Earth originated and evolved in anoxic environments. Around 2.4 billion-years-ago, ancestors of Cyanobacteria invented oxygenic photosynthesis, producing substantial amounts of O2 as a byproduct of phototrophic water oxidation. The sudden appearance of O2 would have led to significant oxidative stress due to incompatibilities with core cellular biochemical processes. Here we examine this problem through the lens of Cyanobacteria-the first taxa to observe significant fluxes of intracellular dioxygen. These early oxygenic organisms likely adapted to the oxidative stress by co-opting preexisting systems (exaptation) with fortuitous antioxidant properties. Over time more advanced antioxidant systems evolved, allowing Cyanobacteria to adapt to an aerobic lifestyle and become the most important environmental engineers in Earth history. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor.

    PubMed

    Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W

    2016-07-01

    Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Molecular evolution of psbA gene in ferns: unraveling selective pressure and co-evolutionary pattern

    PubMed Central

    2012-01-01

    Background The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. Results We sequenced psbA , which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. Conclusions The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA , in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study, eleven co-evolving sites have been detected via different molecules, which may be more important than others. PMID:22899792

  14. Manganese-oxidizing photosynthesis before the rise of cyanobacteria.

    PubMed

    Johnson, Jena E; Webb, Samuel M; Thomas, Katherine; Ono, Shuhei; Kirschvink, Joseph L; Fischer, Woodward W

    2013-07-09

    The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2--multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains--reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn.

  15. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robblee, John Henry

    A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S 3 → [S 4] → S 0 transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn Kβ X-ray emission spectroscopy (Kb XES) to this problem for the first time. The Kβ XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electronmore » paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S 2 → S 3 transition, in contrast to the S 0 → S 1 and S 1 → S 2 transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese μ-oxo bridge radical formation during the S 2 → S 3 transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S 0 state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-μ-oxo-bridged Mn-Mn moieties increases from 2.7 Å in the S 1} state to 2.85 Å in the S 0 state. Furthermore, evidence is presented that shows three di-μ-oxo binuclear Mn 2 clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S 0 state have been investigated and a characteristic ''multiline'' signal in the S 0 state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S 0 state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of Mn in the S 0 state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II.« less

  16. Structural Diversities in Heterometallic Mn-Ca Cluster Chemistry from the Use of Salicylhydroxamic Acid: {MnIII4Ca2}, {MnII/III6Ca2}, {MnIII/IV8Ca}, and {MnIII8Ca2} Complexes with Relevance to Both High- and Low-Valent States of the Oxygen-Evolving Complex.

    PubMed

    Alaimo, Alysha A; Koumousi, Evangelia S; Cunha-Silva, Luís; McCormick, Laura J; Teat, Simon J; Psycharis, Vassilis; Raptopoulou, Catherine P; Mukherjee, Shreya; Li, Chaoran; Gupta, Sayak Das; Escuer, Albert; Christou, George; Stamatatos, Theocharis C

    2017-09-05

    One-pot reactions between the [Mn 3 O(O 2 CPh) 6 (py) x ] +/0 triangular precursors and either CaBr 2 ·xH 2 O or CaCl 2 ·6H 2 O, in the presence of salicylhydroxamic acid (shaH 2 ), have afforded the heterometallic complexes [Mn III 4 Ca 2 (O 2 CPh) 4 (shi) 4 (H 2 O) 3 (Me 2 CO)] (1) and (pyH)[Mn II 2 Mn III 4 Ca 2 Cl 2 (O 2 CPh) 7 (shi) 4 (py) 4 ] (2), respectively, in good yields. Further reactions but using a more flexible synthetic scheme comprising the Mn(NO 3 ) 2 ·4H 2 O/Ca(NO 3 ) 2 ·4H 2 O and Mn(O 2 CPh) 2 ·2H 2 O/Ca(ClO 4 ) 2 ·4H 2 O "metal blends" and shaH 2 , in the presence of external base NEt 3 , led to the new complexes (NHEt 3 ) 2 [Mn III 4 Mn IV 4 Ca(OEt) 2 (shi) 10 (EtOH) 2 ] (3) and (NHEt 3 ) 4 [Mn III 8 Ca 2 (CO 3 ) 4 (shi) 8 ] (4), respectively. In all reported compounds, the anion of the tetradentate (N,O,O,O)-chelating/bridging ligand salicylhydroxime (shi 3- ), resulting from the in situ metal-ion-assisted amide-iminol tautomerism of shaH 2 , was found to bridge both Mn and Ca atoms. Complexes 1-4 exhibit a variety of different structures, metal stoichiometries, and Mn oxidation-state descriptions; 1 possesses an overall octahedral metal arrangement, 2 can be described as a Mn 4 Ca 2 octahedron bound to an additional Mn 2 unit, 3 consists of a Mn 8 "ring" surrounding a Ca II atom, and 4 adopts a rectangular cuboidal motif of eight Mn atoms accommodating two Ca II atoms. Solid-state direct-current magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the Mn centers, leading to S = 0 spin ground-state values for all complexes. From a bioinorganic chemistry perspective, the reported compounds may demonstrate some relevance to both high-valent scheme (3) and lower-oxidation-level species (1, 2, and 4) of the catalytic cycle of the oxygen-evolving complex.

  17. Mutations of Photosystem II D1 Protein That Empower Efficient Phenotypes of Chlamydomonas reinhardtii under Extreme Environment in Space

    PubMed Central

    Lambreva, Maya D.; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K.

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA − state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space. PMID:23691201

  18. Testing directed evolution strategies for space exploration: genetic modification of photosystem II to increase stress tolerance under space conditions

    NASA Astrophysics Data System (ADS)

    Bertalan, I.; Giardi, M. T.; Johanningmeier, U.

    Plants and many microorganisms are able to convert and store solar energy in chemical bonds by a process called photosynthesis They remove CO 2 from the atmosphere fix it as carbohydrate and simultaneously evolve oxygen Oxygen evolution is of supreme relevance for all higher life forms and results from the splitting of water molecules This process is catalyzed by the so called photosystem II PSII complex and represents the very beginning of biomass production PS II is also a central point of regulation being responsive to various physical and physiological parameters Complex space radiation is damaging PS II and reduces photosynthetic efficiency Thus bioregenerative life-support systems are severely disturbed at this point Genetic manipulation of photosynthesis checkpoints offer the possibility to adjust biomass and oxygen production to changing environmental conditions As the photosynthetic apparatus has adapted to terrestrial and not to space conditions we are trying to adapt a central and particularly stress-susceptible element of the photosynthesis apparatus - the D1 subunit of PS II - to space radiation by a strategy of directed evolution The D1 subunit together with its sister subunit D2 form the reaction centre of PS II D1 presents a central weak point for radiation energy that hits the chloroplast We have constructed a mutant of the green alga Chlamydomonas reinhardtii with a defect D1 protein This mutant is easily transformable with D1-encoding PCR fragments without purification and cloning steps 1 When

  19. Evolution from S3 to S4 States of the Oxygen-Evolving Complex in Photosystem II Monitored by Quantum Mechanics/Molecular Mechanics (QM/MM) Dynamics.

    PubMed

    Narzi, Daniele; Capone, Matteo; Bovi, Daniele; Guidoni, Leonardo

    2018-04-16

    Water oxidation in the early steps of natural photosynthesis is fulfilled by photosystem II, which is a protein complex embedded in the thylakoid membrane inside chloroplasts. The water oxidation reaction occurs in the catalytic core of photosystem II, which consists of a Mn4Ca metal cluster, at which, after the accumulation of four oxidising equivalents through five steps (S0-S4) of the Kok-Joliot cycle, two water molecules are split into electrons, protons, and molecular oxygen. In recent years, by combining experimental and theoretical approaches, new insights have been achieved into the structural and electronic properties of different steps of the catalytic cycle. Nevertheless, the exact catalytic mechanism, especially concerning the final stages of the cycle, remains elusive and greatly debated. Herein, by means of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, from the structural, electronic, and magnetic points of view, the S 3 state before and upon oxidation has been characterised. In contrast with the S 2 state, the oxidation of the S 3 state is not followed by a spontaneous proton-coupled electron-transfer event. Nevertheless, upon modelling the reduction of the tyrosine residue in photosystem II (Tyr Z ) and the protonation of Asp61, spontaneous proton transfer occurs, leading to the deprotonation of an oxygen atom bound to Mn1; thus making it available for O-O bond formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway.

    PubMed

    Boyd, Eric S; Thomas, Khaleh M; Dai, Yuyuan; Boyd, Jeff M; Outten, F Wayne

    2014-09-23

    Iron-sulfur (Fe-S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe-S clusters and the fundamental requirement for Fe-S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth's atmosphere. Intriguingly, Fe-S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe-S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe-S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe-S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB-SufC scaffold complex. This analysis provides a new framework for the study of Fe-S cluster biogenesis pathways and Fe-S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen.

  1. Electrons, life and the evolution of Earth's oxygen cycle.

    PubMed

    Falkowski, Paul G; Godfrey, Linda V

    2008-08-27

    The biogeochemical cycles of H, C, N, O and S are coupled via biologically catalysed electron transfer (redox) reactions. The metabolic processes responsible for maintaining these cycles evolved over the first ca 2.3 Ga of Earth's history in prokaryotes and, through a sequence of events, led to the production of oxygen via the photobiologically catalysed oxidation of water. However, geochemical evidence suggests that there was a delay of several hundred million years before oxygen accumulated in Earth's atmosphere related to changes in the burial efficiency of organic matter and fundamental alterations in the nitrogen cycle. In the latter case, the presence of free molecular oxygen allowed ammonium to be oxidized to nitrate and subsequently denitrified. The interaction between the oxygen and nitrogen cycles in particular led to a negative feedback, in which increased production of oxygen led to decreased fixed inorganic nitrogen in the oceans. This feedback, which is supported by isotopic analyses of fixed nitrogen in sedimentary rocks from the Late Archaean, continues to the present. However, once sufficient oxygen accumulated in Earth's atmosphere to allow nitrification to out-compete denitrification, a new stable electron 'market' emerged in which oxygenic photosynthesis and aerobic respiration ultimately spread via endosymbiotic events and massive lateral gene transfer to eukaryotic host cells, allowing the evolution of complex (i.e. animal) life forms. The resulting network of electron transfers led a gas composition of Earth's atmosphere that is far from thermodynamic equilibrium (i.e. it is an emergent property), yet is relatively stable on geological time scales. The early coevolution of the C, N and O cycles, and the resulting non-equilibrium gaseous by-products can be used as a guide to search for the presence of life on terrestrial planets outside of our Solar System.

  2. Protons and pleomorphs: aerobic hydrogen production in Azotobacters.

    PubMed

    Noar, Jesse D; Bruno-Bárcena, José M

    2016-02-01

    As obligate aerobic soil organisms, the ability of Azotobacter species to fix nitrogen is unusual given that the nitrogenase complex requires a reduced cellular environment. Molecular hydrogen is an unavoidable byproduct of the reduction of dinitrogen; at least one molecule of H2 is produced for each molecule of N2 fixed. This could be considered a fault in nitrogenase efficiency, essentially a waste of energy and reducing equivalents. Wild-type Azotobacter captures this hydrogen and oxidizes it with its membrane-bound uptake hydrogenase complex. Strains lacking an active hydrogenase complex have been investigated for their hydrogen production capacities. What is the role of H2 in the energy metabolism of nitrogen-fixing Azotobacter? Is hydrogen production involved in Azotobacter species' protection from or tolerance to oxygen, or vice versa? What yields of hydrogen can be expected from hydrogen-evolving strains? Can the yield of hydrogen be controlled or increased by changing genetic, environmental, or physiological conditions? We will address these questions in the following mini-review.

  3. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  4. Preparation and properties of a monomeric high-spin Mn(V)-oxo complex.

    PubMed

    Taguchi, Taketo; Gupta, Rupal; Lassalle-Kaiser, Benedikt; Boyce, David W; Yachandra, Vittal K; Tolman, William B; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2012-02-01

    Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center. © 2012 American Chemical Society

  5. A comparison between artificial and natural water oxidation.

    PubMed

    Li, Xichen; Chen, Guangju; Schinzel, Sandra; Siegbahn, Per E M

    2011-11-14

    Two artificial water oxidation catalysts, the blue dimer and the Llobet catalyst, have been studied using hybrid DFT methods. The results are compared to those for water oxidation in the natural photosystem II enzyme. Studies on the latter system have now reached a high level of understanding, at present much higher than the one for the artificial systems. A recent high resolution X-ray structural investigation of PSII has confirmed the main features of the structure of the oxygen evolving complex (OEC) suggested by previous DFT cluster studies. The O-O bond formation mechanism suggested is of direct coupling (DC) type between an oxygen radical and a bridging oxo ligand. A similar DC mechanism is found for the Llobet catalyst, while an acid-base (AB) mechanism is preferred for the blue dimer. All of them require at least one oxygen radical. Full energy diagrams, including both redox and chemical steps, have been constructed illustrating similarities and differences to the natural system. Unlike previous DFT studies, the results of the present study suggest that the blue dimer is rate-limited by the initial redox steps, and the Llobet catalyst by O(2) release. The results could be useful for further improvement of the artificial systems.

  6. Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex

    PubMed Central

    Wang, Bin; Lee, Yong-Min; Tcho, Woon-Young; Tussupbayev, Samat; Kim, Seoung-Tae; Kim, Yujeong; Seo, Mi Sook; Cho, Kyung-Bin; Dede, Yavuz; Keegan, Brenna C.; Ogura, Takashi; Kim, Sun Hee; Ohta, Takehiro; Baik, Mu-Hyun; Ray, Kallol; Shearer, Jason; Nam, Wonwoo

    2017-01-01

    Terminal cobalt(IV)–oxo (CoIV–O) species have been implicated as key intermediates in various cobalt-mediated oxidation reactions. Herein we report the photocatalytic generation of a mononuclear non-haem [(13-TMC)CoIV(O)]2+ (2) by irradiating [CoII(13-TMC)(CF3SO3)]+ (1) in the presence of [RuII(bpy)3]2+, Na2S2O8, and water as an oxygen source. The intermediate 2 was also obtained by reacting 1 with an artificial oxidant (that is, iodosylbenzene) and characterized by various spectroscopic techniques. In particular, the resonance Raman spectrum of 2 reveals a diatomic Co–O vibration band at 770 cm−1, which provides the conclusive evidence for the presence of a terminal Co–O bond. In reactivity studies, 2 was shown to be a competent oxidant in an intermetal oxygen atom transfer, C–H bond activation and olefin epoxidation reactions. The present results lend strong credence to the intermediacy of CoIV–O species in cobalt-catalysed oxidation of organic substrates as well as in the catalytic oxidation of water that evolves molecular oxygen. PMID:28337985

  7. Solid-state (55)Mn NMR spectroscopy of bis(μ-oxo)dimanganese(IV) [Mn(2)O(2)(salpn)(2)], a model for the oxygen evolving complex in photosystem II.

    PubMed

    Ellis, Paul D; Sears, Jesse A; Yang, Ping; Dupuis, Michel; Boron, Thaddeus T; Pecoraro, Vincent L; Stich, Troy A; Britt, R David; Lipton, Andrew S

    2010-12-01

    We have examined the antiferromagneticly coupled bis(μ-oxo)dimanganese(IV) complex [Mn(2)O(2)(salpn)(2)] (1) with (55)Mn solid-state NMR at cryogenic temperatures and first-principle theory. The extracted values of the (55)Mn quadrupole coupling constant, C(Q), and its asymmetry parameter, η(Q), for 1 are 24.7 MHz and 0.43, respectively. Further, there was a large anisotropic contribution to the shielding of each Mn(4+), i.e. a Δσ of 3375 ppm. Utilizing broken symmetry density functional theory, the predicted values of the electric field gradient (EFG) or equivalently the C(Q) and η(Q) at ZORA, PBE QZ4P all electron level of theory are 23.4 MHz and 0.68, respectively, in good agreement with experimental observations.

  8. Cyanobacteria HABs - Causes, Prevention, and Mitigation Workgroup Report.

    USDA-ARS?s Scientific Manuscript database

    Cyanobacteria (blue-green algae) are estimated to have evolved 3.5 billion years ago, at which time they began to add oxygen to the existing anaerobic atmosphere, actually changing the chemistry of the planet and allowing new life forms to evolve. These ubiquitous microbes are capable of tolerating ...

  9. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis.

    PubMed

    Kopp, Robert E; Kirschvink, Joseph L; Hilburn, Isaac A; Nash, Cody Z

    2005-08-09

    Although biomarker, trace element, and isotopic evidence have been used to claim that oxygenic photosynthesis evolved by 2.8 giga-annum before present (Ga) and perhaps as early as 3.7 Ga, a skeptical examination raises considerable doubt about the presence of oxygen producers at these times. Geological features suggestive of oxygen, such as red beds, lateritic paleosols, and the return of sedimentary sulfate deposits after a approximately 900-million year hiatus, occur shortly before the approximately 2.3-2.2 Ga Makganyene "snowball Earth" (global glaciation). The massive deposition of Mn, which has a high redox potential, practically requires the presence of environmental oxygen after the snowball. New age constraints from the Transvaal Supergroup of South Africa suggest that all three glaciations in the Huronian Supergroup of Canada predate the Snowball event. A simple cyanobacterial growth model incorporating the range of C, Fe, and P fluxes expected during a partial glaciation in an anoxic world with high-Fe oceans indicates that oxygenic photosynthesis could have destroyed a methane greenhouse and triggered a snowball event on time-scales as short as 1 million years. As the geological evidence requiring oxygen does not appear during the Pongola glaciation at 2.9 Ga or during the Huronian glaciations, we argue that oxygenic cyanobacteria evolved and radiated shortly before the Makganyene snowball.

  10. Structural changes in the S 3 state of the oxygen evolving complex in photosystem II

    DOE PAGES

    Hatakeyama, Makoto; Ogata, Koji; Fujii, Katsushi; ...

    2016-03-19

    The S 3 state of the Mn 4CaO 5-cluster in photosystem II was investigated by DFT calculations and compared with EXAFS data. Considering previously proposed mechanism; a water molecule is inserted into an open coordination site of Mn upon S 2 to S 3 transition that becomes a substrate water, we examined if the water insertion is essential for the S 3 formation, or if one cannot eliminate other possible routes that do not require a water insertion at the S 3 stage. The novel S 3 state structure consisting of only short 2.7–2.8 Å MnMn distances was discussed.

  11. Structural changes in the S 3 state of the oxygen evolving complex in photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatakeyama, Makoto; Ogata, Koji; Fujii, Katsushi

    The S 3 state of the Mn 4CaO 5-cluster in photosystem II was investigated by DFT calculations and compared with EXAFS data. Considering previously proposed mechanism; a water molecule is inserted into an open coordination site of Mn upon S 2 to S 3 transition that becomes a substrate water, we examined if the water insertion is essential for the S 3 formation, or if one cannot eliminate other possible routes that do not require a water insertion at the S 3 stage. The novel S 3 state structure consisting of only short 2.7–2.8 Å MnMn distances was discussed.

  12. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data.

    PubMed

    Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-01-17

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4 O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S 1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S 1 state is exposed to light, the S 1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S 1 → S 2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the "narrow" channel through a "carousel" rearrangement of waters around Mn4 upon the S 2 → S 3 transition. An alternative hypothesis suggests water delivery through the "large" channel on the Ca side. However, both water delivery paths lead to a similar S 3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O 2 evolution.

  13. The O 2 -Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data

    DOE PAGES

    Askerka, Mikhail; Brudvig, Gary W.; Batista, Victor S.

    2016-12-21

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage “S” states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves throughmore » the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/ MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional Xray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S 1 state is exposed to light, the S 1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S 1 → S 2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the “narrow” channel through a “carousel” rearrangement of waters around Mn4 upon the S 2 → S 3 transition. An alternative hypothesis suggests water delivery through the “large” channel on the Ca side. However, both water delivery paths lead to a similar S 3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O 2 evolution.« less

  14. The O 2 -Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askerka, Mikhail; Brudvig, Gary W.; Batista, Victor S.

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage “S” states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves throughmore » the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/ MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional Xray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal structure are still not consistent with high-resolution EXAFS spectroscopy, partially due to the poorly resolved oxygen positions next to Mn centers and partial reduction due to extended dark adaptation of the sample. These inconsistencies led to the new models of the OEC with an alternative low oxidation state and raised questions on the protonation state of the cluster, especially the O5 μ-oxo bridge. This Account summarizes the most recent models of the OEC that emerged from QM/MM, EXAFS and femtosecond X-ray crystallography methods. When PSII in the S 1 state is exposed to light, the S 1 state is advanced to the higher oxidation states and eventually binds substrate water molecules. Identifying the substrate waters is of paramount importance for establishing the water-oxidation mechanism but is complicated by a large number of spectroscopically similar waters. Water analogues can, therefore, be helpful because they serve as spectroscopic markers that help to track the motion of the substrate waters. Due to a close structural and electronic similarity to water, ammonia has been of particular interest. We review three competing hypotheses on substrate water/ammonia binding and compile theoretical and experimental evidence to support them. Binding of ammonia as a sixth ligand to Mn4 during the S 1 → S 2 transition seems to satisfy most of the criteria, especially the most compelling recent EPR data on D1-D61A mutated PSII. Such a binding mode suggests delivery of water from the “narrow” channel through a “carousel” rearrangement of waters around Mn4 upon the S 2 → S 3 transition. An alternative hypothesis suggests water delivery through the “large” channel on the Ca side. However, both water delivery paths lead to a similar S 3 structure, seemingly reaching consensus on the nature of the last detectable S-state intermediate in the Kok cycle before O 2 evolution.« less

  15. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  16. The development of concentration gradients in a suspension of chemotactic bacteria

    NASA Technical Reports Server (NTRS)

    Hillesdon, A. J.; Pedley, T. J.; Kessler, J. O.

    1995-01-01

    When a suspension of bacterial cells of the species Bacillus subtilis is placed in a chamber with its upper surface open to the atmosphere complex bioconvection patterns are observed. These arise because the cells: (1) are denser than water; and (2) usually swim upwards, so that the density of an initially uniform suspension becomes greater at the top than the bottom. When the vertical density gradient becomes large enough, an overturning instability occurs which ultimately evolves into the observed patterns. The reason that the cells swim upwards is that they are aerotactic, i.e., they swim up gradients of oxygen, and they consume oxygen. These properties are incorporated in conservation equations for the cell (N) and oxygen (C) concentrations, and these are solved in the pre-instability phase of development when N and C depend only on the vertical coordinate and time. Numerical results are obtained for both shallow- and deep-layer chambers, which are intrinsically different and require different mathematical and numerical treatments. It is found that, for both shallow and deep chambers, a thin boundary layer, densely packed with cells, forms near the surface. Beneath this layer the suspension becomes severely depleted of cells. Furthermore, in the deep chamber cases, a discontinuity in the cell concentration arises between this cell-depleted region and a cell-rich region further below, where no significant oxygen concentration gradients develop before the oxygen is fully consumed. The results obtained from the model are in good qualitative agreement with the experimental observations.

  17. Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization.

    PubMed

    Liu, Kai; Zhang, Han; Xing, Ruirui; Zou, Qianli; Yan, Xuehai

    2017-12-26

    Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co 3 O 4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co 3 O 4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co 3 O 4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.

  18. Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.

    2016-01-01

    ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.

  19. Facile Method to Study Catalytic Oxygen Evolution Using a Dissolved Oxygen Optical Probe: An Undergraduate Chemistry Laboratory to Appreciate Artificial Photosynthesis

    ERIC Educational Resources Information Center

    Renderos, Genesis; Aquino, Tawanda; Gutierrez, Kristian; Badiei, Yosra M.

    2017-01-01

    Artificial photosynthesis (AP) is a synthetic chemical process that replicates natural photosynthesis to mass produce hydrogen as a clean fuel from sunlight-driven water splitting (2H[subscript 2]O [right arrow] O[subscript 2] + H[subscript 2]). In both natural and artificial photosynthesis, an oxygen-evolving catalyst (OEC) is needed to catalyze…

  20. Measuring oxygen uptake in fishes with bimodal respiration.

    PubMed

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  1. Environmental Influence on the Evolution of Morphological Complexity in Machines

    PubMed Central

    Auerbach, Joshua E.; Bongard, Josh C.

    2014-01-01

    Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483

  2. The evolution of photosynthesis...again?

    PubMed

    Rothschild, Lynn J

    2008-08-27

    'Replaying the tape' is an intriguing 'would it happen again?' exercise. With respect to broad evolutionary innovations, such as photosynthesis, the answers are central to our search for life elsewhere. Photosynthesis permits a large planetary biomass on Earth. Specifically, oxygenic photosynthesis has allowed an oxygenated atmosphere and the evolution of large metabolically demanding creatures, including ourselves. There are at least six prerequisites for the evolution of biological carbon fixation: a carbon-based life form; the presence of inorganic carbon; the availability of reductants; the presence of light; a light-harvesting mechanism to convert the light energy into chemical energy; and carboxylating enzymes. All were present on the early Earth. To provide the evolutionary pressure, organic carbon must be a scarce resource in contrast to inorganic carbon. The probability of evolving a carboxylase is approached by creating an inventory of carbon-fixation enzymes and comparing them, leading to the conclusion that carbon fixation in general is basic to life and has arisen multiple times. Certainly, the evolutionary pressure to evolve new pathways for carbon fixation would have been present early in evolution. From knowledge about planetary systems and extraterrestrial chemistry, if organic carbon-based life occurs elsewhere, photosynthesis -- although perhaps not oxygenic photosynthesis -- would also have evolved.

  3. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    NASA Astrophysics Data System (ADS)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.

  4. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.

    PubMed

    Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio; Ueno, Go; Murakami, Hironori; Nakajima, Yoshiki; Shimizu, Tetsuya; Yamashita, Keitaro; Yamamoto, Masaki; Ago, Hideo; Shen, Jian-Ren

    2015-01-01

    Photosynthesis converts light energy into biologically useful chemical energy vital to life on Earth. The initial reaction of photosynthesis takes place in photosystem II (PSII), a 700-kilodalton homodimeric membrane protein complex that catalyses photo-oxidation of water into dioxygen through an S-state cycle of the oxygen evolving complex (OEC). The structure of PSII has been solved by X-ray diffraction (XRD) at 1.9 ångström resolution, which revealed that the OEC is a Mn4CaO5-cluster coordinated by a well defined protein environment. However, extended X-ray absorption fine structure (EXAFS) studies showed that the manganese cations in the OEC are easily reduced by X-ray irradiation, and slight differences were found in the Mn-Mn distances determined by XRD, EXAFS and theoretical studies. Here we report a 'radiation-damage-free' structure of PSII from Thermosynechococcus vulcanus in the S1 state at a resolution of 1.95 ångströms using femtosecond X-ray pulses of the SPring-8 ångström compact free-electron laser (SACLA) and hundreds of large, highly isomorphous PSII crystals. Compared with the structure from XRD, the OEC in the X-ray free electron laser structure has Mn-Mn distances that are shorter by 0.1-0.2 ångströms. The valences of each manganese atom were tentatively assigned as Mn1D(III), Mn2C(IV), Mn3B(IV) and Mn4A(III), based on the average Mn-ligand distances and analysis of the Jahn-Teller axis on Mn(III). One of the oxo-bridged oxygens, O5, has significantly longer distances to Mn than do the other oxo-oxygen atoms, suggesting that O5 is a hydroxide ion instead of a normal oxygen dianion and therefore may serve as one of the substrate oxygen atoms. These findings provide a structural basis for the mechanism of oxygen evolution, and we expect that this structure will provide a blueprint for the design of artificial catalysts for water oxidation.

  5. BIODEGRADATION - MONITORED NATURAL ATTENUATION (MNA) FOR OXYGENATES: HOW IT EVOLVED, WHY IT OCCURS AND STABLE ISOTOPES

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  6. Theoretical reflections on the structural polymorphism of the oxygen-evolving complex in the S2 state and the correlations to substrate water exchange and water oxidation mechanism in photosynthesis.

    PubMed

    Guo, Yu; Li, Hui; He, Lan-Lan; Zhao, Dong-Xia; Gong, Li-Dong; Yang, Zhong-Zhi

    2017-10-01

    The structural polymorphism of the oxygen-evolving complex is of great significance to photosynthetic water oxidation. Employing density functional theory calculations, we have made further advisement on the interconversion mechanism of O5 transfer in the S 2 state, mainly focusing on the potentiality of multi-state reactivity and spin transitions. Then, O5 protonation is proven impossible in S 2 for irreversibility of the interconversion, which serves as an auxiliary judgment for the protonation state of O5 in S 1 . Besides, the structural polymorphism could also be archived by alternative mechanisms involving Mn3 ligand exchange, one of which with Mn3(III) makes sense to substrate water exchange in S 2 , although being irresponsible for the derivations of the observed EPR signals. During the water exchange, high-spin states would prevail to facilitate electron transfer between the ferromagnetically coupled Mn centers. In addition, water exchange in S 1 could account for the closed-cubane structure as the initial form entering S 2 at cryogenic temperatures. With regard to water oxidation, the structural flexibility and variability in both S 2 and S 3 guarantee smooth W2-O5 coupling in S 4 , according to the substrate assignments from water exchange kinetics. Within this theoretical framework, the new XFEL findings on S 1 -S 3 can be readily rationalized. Finally, an alternative mechanistic scenario for OO bond formation with ·OH radical near O4 is presented, followed by water binding to the pivot Mn4(III) from O4 side during S 4 -S 0 . This may diversify the substrate sources combined with the Ca channel in water delivery for the forthcoming S-cycle. Copyright © 2017. Published by Elsevier B.V.

  7. Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy.

    PubMed

    Kulik, Leonid V; Epel, Boris; Lubitz, Wolfgang; Messinger, Johannes

    2007-11-07

    The heart of the oxygen-evolving complex (OEC) of photosystem II is a Mn4OxCa cluster that cycles through five different oxidation states (S0 to S4) during the light-driven water-splitting reaction cycle. In this study we interpret the recently obtained 55Mn hyperfine coupling constants of the S0 and S2 states of the OEC [Kulik et al. J. Am. Chem. Soc. 2005, 127, 2392-2393] on the basis of Y-shaped spin-coupling schemes with up to four nonzero exchange coupling constants, J. This analysis rules out the presence of one or more Mn(II) ions in S0 in methanol (3%) containing samples and thereby establishes that the oxidation states of the manganese ions in S0 and S2 are, at 4 K, Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. By applying a "structure filter" that is based on the recently reported single-crystal EXAFS data on the Mn4OxCa cluster [Yano et al. Science 2006, 314, 821-825] we (i) show that this new structural model is fully consistent with EPR and 55Mn-ENDOR data, (ii) assign the Mn oxidation states to the individual Mn ions, and (iii) propose that the known shortening of one 2.85 A Mn-Mn distance in S0 to 2.75 A in S1 [Robblee et al. J. Am. Chem. Soc. 2002, 124, 7459-7471] corresponds to a deprotonation of a mu-hydroxo bridge between MnA and MnB, i.e., between the outer Mn and its neighboring Mn of the mu3-oxo bridged moiety of the cluster. We summarize our results in a molecular model for the S0 --> S1 and S1 --> S2 transitions.

  8. Antibiotics induce redox-related physiological alterations as part of their lethality

    PubMed Central

    Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.

    2014-01-01

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  9. The origin and evolution of oxygenic photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Hartman, H.

    1998-01-01

    The evolutionary developments that led to the ability of photosynthetic organisms to oxidize water to molecular oxygen are discussed. Two major changes from a more primitive non-oxygen-evolving reaction center are required: a charge-accumulating system and a reaction center pigment with a greater oxidizing potential. Intermediate stages are proposed in which hydrogen peroxide was oxidized by the reaction center, and an intermediate pigment, similar to chlorophyll d, was present.

  10. A multiscale model of placental oxygen exchange: The effect of villous tree structure on exchange efficiency.

    PubMed

    Lin, Mabelle; Mauroy, Benjamin; James, Joanna L; Tawhai, Merryn H; Clark, Alys R

    2016-11-07

    The placenta is critical to fetal health during pregnancy as it supplies oxygen and nutrients to maintain life. It has a complex structure, and alterations to this structure across spatial scales are associated with several pregnancy complications, including intrauterine growth restriction (IUGR). The relationship between placental structure and its efficiency as an oxygen exchanger is not well understood in normal or pathological pregnancies. Here we present a computational framework that predicts oxygen transport in the placenta which accounts for blood and oxygen transport in the space around a placental functional unit (the villous tree). The model includes the well-defined branching structure of the largest villous tree branches, as well as a smoothed representation of the small terminal villi that comprise the placenta's gas exchange interfaces. The model demonstrates that oxygen exchange is sensitive to villous tree geometry, including the villous branch length and volume, which are seen to change in IUGR. This is because, to be an efficient exchanger, the architecture of the villous tree must provide a balance between maximising the surface area available for exchange, and the opposing condition of allowing sufficient maternal blood flow to penetrate into the space surrounding the tree. The model also predicts an optimum oxygen exchange when the branch angle is 24 °, as villous branches and TBs are spread out sufficiently to channel maternal blood flow deep into the placental tissue for oxygen exchange without being shunted directly into the DVs. Without concurrent change in the branch length and angles, the model predicts that the number of branching generations has a small influence on oxygen exchange. The modelling framework is presented in 2D for simplicity but is extendible to 3D or to incorporate the high-resolution imaging data that is currently evolving to better quantify placental structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Computational Insights into the O2-evolving complex of photosystem II

    PubMed Central

    Sproviero, Eduardo M.; McEvoy, James P.; Gascón, José A.; Brudvig, Gary W.; Batista, Victor S.

    2009-01-01

    Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based but comprises important modifications due to structural refinement, hydration and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies. PMID:18483777

  12. Understanding Two Different Structures in the Dark Stable State of the Oxygen‐Evolving Complex of Photosystem II: Applicability of the Jahn–Teller Deformation Formula

    PubMed Central

    Shoji, Mitsuo; Isobe, Hiroshi; Tanaka, Ayako; Fukushima, Yoshimasa; Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Nakajima, Takahito

    2017-01-01

    Abstract Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three‐dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X‐ray diffraction (XRD) using extremely low X‐ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen‐bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn–Teller (JT) deformation formula based on large‐scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low‐dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low‐dose XRD and damage‐free serial femtosecond X‐ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low‐dose XRD structures were not damaged by X‐ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation. PMID:29577075

  13. The genotype-phenotype map of an evolving digital organism.

    PubMed

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  14. The genotype-phenotype map of an evolving digital organism

    PubMed Central

    Zaman, Luis; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039

  15. Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

    NASA Astrophysics Data System (ADS)

    Ahmad, Iffat Zareen; Sundaram, Shanthy; Tripathi, Ashutosh; Soumya, K. K.

    2009-06-01

    The effect of heavy metals was seen on the oxygen evolution pattern of a unicellular, non-heterocystous cyanobacterial strain of Synechococcus spp. PCC 7942. It was grown in a BG-11 medium supplemented with heavy metals, namely, nickel, copper, cadmium and mercury. Final concentrations of the heavy metal solution used in the culture were 0.1, 0.4 and 1 μM. All the experiments were performed in the exponential phase of the culture. Oxygen-evolving photosystem II (PS II) particles were purified from Synechococcus spp. PCC 7942 by a single-step Ni2+-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. Oxygen evolution was measured with Clark type oxygen electrode fitted with a circulating water jacket. The light on the surface of the vessel was 10 w/m2. The cultures were incubated in light for 15 minutes prior to the measurement of oxygen evolution. Oxygen evolution was measured in assay mixture containing phosphate buffer (pH-7.5, 0.1 M) in the presence of potassium ferricyanide as the electron acceptor. The preparation from the control showed a high oxygen-evolving activity of 2, 300-2, 500 pmol O2 (mg Chl)-1 h-1 while the activity was decreased in the cultures grown with heavy metals. The inhibition of oxygen evolution shown by the organism in the presence of different metals was in the order Hg>Ni>Cd>Cu. Such heavy metal resistant strains will find application in the construction of PS II- based biosensors for the monitoring of pollutants.

  16. Theory of chemical bonds in metalloenzymes XXI. Possible mechanisms of water oxidation in oxygen evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kizashi; Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Kawakami, Takashi; Yamada, Satoru; Katouda, Michio; Nakajima, Takahito

    2018-03-01

    Possible mechanisms for water cleavage in oxygen evolving complex (OEC) of photosystem II (PSII) have been investigated based on broken-symmetry (BS) hybrid DFT (HDFT)/def2 TZVP calculations in combination with available XRD, XFEL, EXAFS, XES and EPR results. The BS HDFT and the experimental results have provided basic concepts for understanding of chemical bonds of the CaMn4O5 cluster in the catalytic site of OEC of PSII for elucidation of the mechanism of photosynthetic water cleavage. Scope and applicability of the hybrid DFT (HDFT) methods have been examined in relation to relative stabilities of possible nine intermediates such as Mn-hydroxide, Mn-oxo, Mn-peroxo, Mn-superoxo, etc., in order to understand the O-O (O-OH) bond formation in the S3 and/or S4 states of OEC of PSII. The relative stabilities among these intermediates are variable, depending on the weight of the Hartree-Fock exchange term of HDFT. The Mn-hydroxide, Mn-oxo and Mn-superoxo intermediates are found to be preferable in the weak, intermediate and strong electron correlation regimes, respectively. Recent different serial femtosecond X-ray (SFX) results in the S3 state are investigated based on the proposed basic concepts under the assumption of different water-insertion steps for water cleavage in the Kok cycle. The observation of water insertion in the S3 state is compatible with previous large-scale QM/MM results and previous theoretical proposal for the chemical equilibrium mechanism in the S3 state . On the other hand, the no detection of water insertion in the S3 state based on other SFX results is consistent with previous proposal of the O-OH (or O-O) bond formation in the S4 state . Radical coupling and non-adiabatic one-electron transfer (NA-OET) mechanisms for the OO-bond formation are examined using the energy diagrams by QM calculations and by QM(UB3LYP)/MM calculations . Possible reaction pathways for the O-O and O-OH bond formations are also investigated based on two water-inlet pathways for oxygen evolution in OEC of PSII. Future perspectives are discussed in relation to post HDFT calculations of the energy diagrams for elucidation of the mechanism of water oxidation in OEC of PSII.

  17. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    PubMed Central

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136

  18. MNA of Chlorinated Solvents and Fuel Oxygenates: Why it occurs, how it evolved, and using stable carbon isotopes to predict plume behavior

    EPA Science Inventory

    The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  19. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  20. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototrophic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

  1. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    PubMed Central

    Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D.; Sierra, Raymond G.; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L.; Lassalle-Kaiser, Benedikt; Glownia, James M.; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J.; Minitti, Michael P.; Dakovski, Georgi L.; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S.; Tsui, Emily Y.; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S.; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe

    2017-01-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. PMID:28944255

  2. Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects

    PubMed Central

    Gammella, Elena; Recalcati, Stefania; Cairo, Gaetano

    2016-01-01

    Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings. PMID:27006749

  3. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    NASA Astrophysics Data System (ADS)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  4. Flammability and sensitivity of materials in oxygen-enriched atmospheres; Proceedings of the Fourth International Symposium, Las Cruces, NM, Apr. 11-13, 1989. Volume 4

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Editor); Benz, Frank J. (Editor); Stradling, Jack S. (Editor)

    1989-01-01

    The present volume discusses the ignition of nonmetallic materials by the impact of high-pressure oxygen, the promoted combustion of nine structural metals in high-pressure gaseous oxygen, the oxygen sensitivity/compatibility ranking of several materials by different test methods, the ignition behavior of silicon greases in oxygen atmospheres, fire spread rates along cylindrical metal rods in high-pressure oxygen, and the design of an ignition-resistant, high pressure/temperature oxygen valve. Also discussed are the promoted ignition of oxygen regulators, the ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen, evolving nonswelling elastomers for high-pressure oxygen environments, the evaluation of systems for oxygen service through the use of the quantitative fault-tree analysis, and oxygen-enriched fires during surgery of the head and neck.

  5. Interplay between Oxygen and Fe–S Cluster Biogenesis: Insights from the Suf Pathway

    PubMed Central

    2015-01-01

    Iron–sulfur (Fe–S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe–S clusters and the fundamental requirement for Fe–S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth’s atmosphere. Intriguingly, Fe–S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe–S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe–S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe–S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB–SufC scaffold complex. This analysis provides a new framework for the study of Fe–S cluster biogenesis pathways and Fe–S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen. PMID:25153801

  6. Singlet Oxygen Generation by Cyclometalated Complexes and Applications†

    PubMed Central

    Ashen-Garry, David; Selke, Matthias

    2014-01-01

    While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes is presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4+2] and [2+2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed. PMID:24344628

  7. Singlet oxygen generation by cyclometalated complexes and applications.

    PubMed

    Ashen-Garry, David; Selke, Matthias

    2014-01-01

    While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of (1) O2 generation is discussed, including evidence for singlet oxygen generation via an electron-transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including "traditional" singlet oxygen reactions (ene reaction, [4 + 2] and [2 + 2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed. © 2013 The American Society of Photobiology.

  8. The artificial leaf.

    PubMed

    Nocera, Daniel G

    2012-05-15

    To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a corner-sharing, head-to-tail dimer. The ability to perform the oxygen-evolving reaction in water at neutral or near-neutral conditions has several consequences for the construction of the artificial leaf. The NiMoZn alloy may be used in place of Pt to generate hydrogen. To stabilize silicon in water, its surface is coated with a conducting metal oxide onto which the Co-OEC may be deposited. The net result is that immersing a triple-junction Si wafer coated with NiMoZn and Co-OEC in water and holding it up to sunlight can effect direct solar energy conversion via water splitting. By constructing a simple, stand-alone device composed of earth-abundant materials, the artificial leaf provides a means for an inexpensive and highly distributed solar-to-fuels system that employs low-cost systems engineering and manufacturing. Through this type of system, solar energy can become a viable energy supply to those in the non-legacy world.

  9. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation.

    PubMed

    Cheng, Vesa; Abdul-Aziz, Mohd-Hafiz; Roberts, Jason A; Shekar, Kiran

    2018-03-01

    Optimal pharmacological management during extracorporeal membrane oxygenation (ECMO) involves more than administering drugs to reverse underlying disease. ECMO is a complex therapy that should be administered in a goal-directed manner to achieve therapeutic endpoints that allow reversal of disease and ECMO wean, minimisation of complications (treatment of complications when they do occur), early interruption of sedation and rehabilitation, maximising patient comfort and minimising risks of delirium. ECMO can alter both the pharmacokinetics (PK) and pharmacodynamics (PD) of administered drugs and our understanding of these alterations is still evolving. Based on available data it appears that modern ECMO circuitry probably has a less significant impact on PK when compared with critical illness itself. However, these findings need further confirmation in clinical population PK studies and such studies are underway. The altered PD associated with ECMO is less understood and more research is indicated. Until robust dosing guidelines become available, clinicians will have to rely on the principles of drug dosing in critically ill and known PK alterations induced by ECMO itself. This article summarises the PK alterations and makes preliminary recommendations on possible dosing approaches.

  10. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    PubMed

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.

    PubMed

    Siegbahn, Per E M; Himo, Fahmi

    2009-06-01

    The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.

  12. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  13. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    PubMed

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  14. Biodegradation – Monitored Natural Attenuation (MNA) for Oxygenates: How it Evolved, why it Occurs and Using Stable Carbon Isotopes to Predict Plume Behavior

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  15. MNA for Chlorinated Solvents and Fuel Oxygenates: Why It Occurs, How It Evolved, and Using Stable Carbon Isotopes to Predict Plume Behavior

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  16. Earth’s oxygen cycle and the evolution of animal life

    PubMed Central

    Reinhard, Christopher T.; Planavsky, Noah J.; Olson, Stephanie L.; Lyons, Timothy W.; Erwin, Douglas H.

    2016-01-01

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth’s oxygen cycle—the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism’s life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8–0.8 billion years ago). PMID:27457943

  17. Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode

    DOE PAGES

    Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo; ...

    2017-11-13

    Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less

  18. Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo

    Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less

  19. Earth's oxygen cycle and the evolution of animal life.

    PubMed

    Reinhard, Christopher T; Planavsky, Noah J; Olson, Stephanie L; Lyons, Timothy W; Erwin, Douglas H

    2016-08-09

    The emergence and expansion of complex eukaryotic life on Earth is linked at a basic level to the secular evolution of surface oxygen levels. However, the role that planetary redox evolution has played in controlling the timing of metazoan (animal) emergence and diversification, if any, has been intensely debated. Discussion has gravitated toward threshold levels of environmental free oxygen (O2) necessary for early evolving animals to survive under controlled conditions. However, defining such thresholds in practice is not straightforward, and environmental O2 levels can potentially constrain animal life in ways distinct from threshold O2 tolerance. Herein, we quantitatively explore one aspect of the evolutionary coupling between animal life and Earth's oxygen cycle-the influence of spatial and temporal variability in surface ocean O2 levels on the ecology of early metazoan organisms. Through the application of a series of quantitative biogeochemical models, we find that large spatiotemporal variations in surface ocean O2 levels and pervasive benthic anoxia are expected in a world with much lower atmospheric pO2 than at present, resulting in severe ecological constraints and a challenging evolutionary landscape for early metazoan life. We argue that these effects, when considered in the light of synergistic interactions with other environmental parameters and variable O2 demand throughout an organism's life history, would have resulted in long-term evolutionary and ecological inhibition of animal life on Earth for much of Middle Proterozoic time (∼1.8-0.8 billion years ago).

  20. The Role of Oxygen in the Evolution of Molybdenum Nitrogenase

    NASA Astrophysics Data System (ADS)

    Peters, J.; Boyd, E. S.; Hamilton, T. L.

    2012-12-01

    Since early in Earth's history, the supply of nitrogen (N) into the biosphere has been controlled by the activity of nitrogenase, an oxygen sensitive enzyme that catalyzes the reduction of dinitrogen gas (N2) to bioavailable ammonia. The most common form of nitrogenase harbors a complex molybdenum (Mo) cofactor at its active site [Mo-nitrogenase (Nif)], although other phylogenetically related (alternative) forms of nitrogenase that differ in their active-site metal composition also likely contribute NH3 in environments that are limiting in Mo. The solubility of Mo is significantly influenced by redox and this fact has been used to argue that that the iron (Fe)-dependent nitrogenase (Anf) was predominant prior to ~ 2.5 Ga because oceans were depleted in Mo and rich in Fe. This hypothesis, however, is inconsistent with recent phylogenetic data which strongly suggest that Anf is derived from Nif. Here, we examine the evolutionary history of the Nif enzyme complex in reference to the physiological, biochemical, and morphological strategies for reducing damage by molecular oxygen. A total of 189 nif operons were characterized and quantitatively mapped on a NifHDK concatenated phylogenetic tree. An overlay of the primary mode of metabolism, as defined as either anaerobic (AN) or aerobic/facultative aerobic (AFA), on the NifHDK tree indicates that Nif originated in an anoxic environment and was first acquired in an AFA lineage within the actinobacteria. The complexity of nif operons increased during the evolutionary history of Nif, with a pronounced increase observed during the transition from AN to AFA modes of metabolism. This increase in operon complexity is accompanied by a number of gene loss (nifI1 and nifI2) and gene acquisition (nifW, nifT, nifZ, nifQ) events, with variation in the overall composition of nif operons attributable to adaptations that mediated the toxicity of O2. Collectively, these results underscore the role of O2 in shaping the evolutionary history of Nif, presumably through selection to evolve regulatory and/or protective mechanisms to temporally or spatially decouple N2 fixation from aerobic metabolism.

  1. Structural and mechanistic aspects of Mn-oxo and co-based compounds in water oxidation catalysis and potential applications in solar fuel production.

    PubMed

    Hou, Harvey J M

    2010-08-01

    To address the issues of energy crisis and global warming, novel renewable carbon-free or carbon-neutral energy sources must be identified and developed. A deeper understanding of photosynthesis is the key to provide a solid foundation to facilitate this transformation. To mimic the water oxidation of photosystem II oxygen evolving complex, Mn-oxo complexes and Co-phosphate catalytic material were discovered in solar energy storage. Building on these discoveries, recent advances in solar energy conversion showed a compelling working principle by combing the active Mn-oxo and Co-based catalysts in water splitting with semiconductor hetero-nanostructures for effective solar energy harnessing. In this review the appealing systems including Mn-oxo tetramer/Nafion, Mn-oxo dimer/TiO(2), Mn-oxo oligomer/WO(3), Co-Pi/Fe(2)O(3), and Co-Pi/ZnO are summarized and discussed. These accomplishments offer a promising framework and have a profound impact in the field of solar fuel production.

  2. Lunar production of oxygen by electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Two approaches to prepare oxygen from lunar resources by direct electrolysis are discussed. Silicates can be melted or dissolved in a fused salt and electrolyzed with oxygen evolved at the anode. Direct melting and electrolysis is potentially a very simple process, but high temperatures of 1400-1500 C are required, which aggravates materials problems. Operating temperatures can be lowered to about 1000 C by employing a molten salt flux. In this case, however, losses of electrolyte components must be avoided. Experimentation on both approaches is progressing.

  3. A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms

    PubMed Central

    Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles

    2013-01-01

    Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113

  4. Complex network view of evolving manifolds

    NASA Astrophysics Data System (ADS)

    da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2018-03-01

    We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.

  5. Nature-driven photochemistry for catalytic solar hydrogen production: a Photosystem I-transition metal catalyst hybrid.

    PubMed

    Utschig, Lisa M; Silver, Sunshine C; Mulfort, Karen L; Tiede, David M

    2011-10-19

    Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature's specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.

  6. Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species

    DOE PAGES

    Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...

    2014-12-04

    Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.

  7. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse.

    PubMed

    Greek, Ray; Hansen, Lawrence A

    2013-11-01

    We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. FORCAST Observations of Galactic Evolved Stars: Measurements of Carbonaceous Dust, Crystalline Silicates, and Fullerenes from SOFIA

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen; Sloan, G. C.; Keller, L. D.; Groenewegen, M. A. T.

    2018-01-01

    We present preliminary results from two projects to observe the mid-infrared spectra of evolved stars in the Milky Way using the FORCAST instrument on SOFIA. In the first project, we observed a set of 31 carbon stars over the course of three cycles (government shutdowns contributed to the delays in the program execution), covering a wavelength range of 5-13.7 μm, which includes prominent dust and gas diagnostics. The sources were selected to sample portions of period and flux phase space which were not covered in existing samples from older telescopes such as the Infrared Space Observatory (ISO) or Infrared Astronomical Satellite (IRAS). In the second project, we searched for fullerene emission (C60) at 18.9 μm in Galactic sources with crystalline silicate emission. Although most evolved stars are either carbon-rich or oxygen- (silicate-) rich, fullerenes, a carbon-rich molecule, have been observed in several oxygen-rich evolved stars whose silicate emission features are crystalline rather than the more usual amorphous types. None of our targets show clear signatures of fullerene emission.Support for this work was provided by NASA through awards SOF 03-0079, SOF 03-0104, and SOF 04-0129 issued by USRA.

  9. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOEpatents

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  10. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOEpatents

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  11. Cation Effects on the Electron-Acceptor Side of Photosystem II.

    PubMed

    Khan, Sahr; Sun, Jennifer S; Brudvig, Gary W

    2015-06-18

    The normal pathway of electron transfer on the electron-acceptor side of photosystem II (PSII) involves electron transfer from quinone A, QA, to quinone B, QB. It is possible to redirect electrons from QA(-) to water-soluble Co(III) complexes, which opens a new avenue for harvesting electrons from water oxidation by immobilization of PSII on electrode surfaces. Herein, the kinetics of electron transfer from QA(-) to [Co(III)(terpy)2](3+) (terpy = 2,2';6',2″-terpyridine) are investigated with a spectrophotometric assay revealing that the reaction follows Michaelis-Menten saturation kinetics, is inhibited by cations, and is not affected by variation of the QA reduction potential. A negatively charged site on the stromal surface of the PSII protein complex, composed of glutamic acid residues near QA, is hypothesized to bind cations, especially divalent cations. The cations are proposed to tune the redox properties of QA through electrostatic interactions. These observations may thus explain the molecular basis of the effect of divalent cations like Ca(2+), Sr(2+), Mg(2+), and Zn(2+) on the redox properties of the quinones in PSII, which has previously been attributed to long-range conformational changes propagated from divalent cations binding to the Ca(II)-binding site in the oxygen-evolving complex on the lumenal side of the PSII complex.

  12. Oxygen-Evolving Porous Glass Plates Containing the Photosynthetic Photosystem II Pigment-Protein Complex.

    PubMed

    Noji, Tomoyasu; Kawakami, Keisuke; Shen, Jian-Ren; Dewa, Takehisa; Nango, Mamoru; Kamiya, Nobuo; Itoh, Shigeru; Jin, Tetsuro

    2016-08-09

    The development of artificial photosynthesis has focused on the efficient coupling of reaction at photoanode and cathode, wherein the production of hydrogen (or energy carriers) is coupled to the electrons derived from water-splitting reactions. The natural photosystem II (PSII) complex splits water efficiently using light energy. The PSII complex is a large pigment-protein complex (20 nm in diameter) containing a manganese cluster. A new photoanodic device was constructed incorporating stable PSII purified from a cyanobacterium Thermosynechococcus vulcanus through immobilization within 20 or 50 nm nanopores contained in porous glass plates (PGPs). PSII in the nanopores retained its native structure and high photoinduced water splitting activity. The photocatalytic rate (turnover frequency) of PSII in PGP was enhanced 11-fold compared to that in solution, yielding a rate of 50-300 mol e(-)/(mol PSII·s) with 2,6-dichloroindophenol (DCIP) as an electron acceptor. The PGP system realized high local concentrations of PSII and DCIP to enhance the collisional reactions in nanotubes with low disturbance of light penetration. The system allows direct visualization/determination of the reaction inside the nanotubes, which contributes to optimize the local reaction condition. The PSII/PGP device will substantively contribute to the construction of artificial photosynthesis using water as the ultimate electron source.

  13. Quantitative modeling of the rise in atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Claire, Mark W.

    The abrupt rise of molecular oxygen in Earth's atmosphere approximately 2.4 billion years ago was perhaps the most profound event in Earth's history after the evolution of life itself. Biogeochemical cycles in Earth's atmosphere, ocean, and crust were completely reorganized and it also likely marked the first moment when our planet could be deemed "inhabited" across interstellar space via identification of biogenically produced O 2 and O 3 in a spectrum of Earth's atmosphere. This dissertation explores the "Great Oxidation Event" via numerical modeling of evolving ancient atmospheres. In creating a self-consistent description of evolving redox fluxes in the Earth system, we reach the following conclusions. After the evolution of oxygenic photosynthesis, the atmosphere has two primary stable states--one is methane- rich and produces mass-independent fractionation of sulfur isotopes (MIF-S), and one is oxygen-rich and does not produce MIF-S. These two stable states are separated by only a few percent in the fluxes of O 2 and CH 4 needed to sustain them. The atmosphere evolves rapidly from one state to the other when the net flux of reductants drops below the net flux of oxidants into the atmosphere. The transition between the two states - "the rise of oxygen" - is only feasible once methane levels drop below ~50 ppm. We show numerically that hydrogen escape can drive irreversible oxidation of Earth's crust, leading to decreasing CH 4 concentrations over long timescales. We argue that the disappearance of the MIF-S signal is better described as recording a collapse of atmospheric CH 4 , rather than the appearance of O 2 . As CH 4 levels decrease, a positive feedback between oxidative weathering, oceanic sulfate concentrations, and the anaerobic oxidation of methane further drives atmospheric instability. Once a critical threshold in CH 4 concentration is overcome, the atmosphere transitions from an anoxic to oxic state on the timescale of 10 3 years. The post-transition levels of O 2 and CH 4 and the global climate are strongly driven by biological forcing. Considering the events of 2.4 Ga as a "Great Collapse of Methane" helps explain the initiation of Snowball Earth, the disappearance of MIF-S, and the rise of oxygen.

  14. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties

    PubMed Central

    Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.

    2013-01-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726

  15. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties.

    PubMed

    Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2013-02-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.

  16. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation.

    PubMed

    Offenbacher, Adam R; Polander, Brandon C; Barry, Bridgette A

    2013-10-04

    Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.

  17. Pilot Plant Makes Oxygen Difluoride

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F.; Lawton, Emil A.

    1989-01-01

    Pilot plant makes oxygen difluoride highly-energetic, space-storable oxidizer not made commercially. Designed to handle reactants, product, and byproduct, most of which highly reactive, corrosive, and toxic. Oxygen difluoride evolves continuously from reactor containing potassium hydroxide in water at 10 degree C. Collection tanks alternated; one filled while other drained to storage cylinder. Excess OF2 and F2 dissipated in combustion of charcoal in burn barrel. Toxic byproduct, potassium fluoride, reacted with calcium hydroxide to form nontoxic calcium fluoride and to regenerate potassium hydroxide. Equipment processes toxic, difficult-to-make substance efficiently and safely.

  18. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenchuan

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S 2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S 2 state with the g~4 electron paramagnetic resonance (EPR) signal (S 2-g4 state) was compared with that in the S 2 state with multiline signal (S 2-MLS state) and the S 1 state. The S 2-g4 statemore » has a higher XAS inflection point energy than that of the S 1 state, indicating the oxidation of Mn in the advance from the S 1 to the S 2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S 2-g4 state is different from that in the S 2-MLS or the S 1 state. In the S 2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S 1 or S 2-MLS states. The third shell of the S 2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S 2-MLS or the S 1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S 1 → S 2 transition.« less

  19. Metal oxidation states in biological water splitting.

    PubMed

    Krewald, Vera; Retegan, Marius; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; DeBeer, Serena; Neese, Frank; Pantazis, Dimitrios A

    2015-03-01

    A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five S i states ( i = 0-4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called "high-valent scheme"-where, for example, the Mn oxidation states in the S 2 state are assigned as III, IV, IV, IV-the competing "low-valent scheme" that differs by a total of two metal unpaired electrons ( i.e. III, III, III, IV in the S 2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55 Mn ENDOR data of the S 2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S 0 (III, III, III, IV) to S 3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.

  20. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO 2.5-σ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qinghua; He, Xu; Shi, Jinan

    Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less

  1. Atomic-resolution imaging of electrically induced oxygen vacancy migration and phase transformation in SrCoO 2.5-σ

    DOE PAGES

    Zhang, Qinghua; He, Xu; Shi, Jinan; ...

    2017-07-24

    Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less

  2. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic we see evidence for an oxygenation event that significantly predated recent evidence for ocean ventilation in the post-glacial Ediacaran ocean. The trigger that facilitated the transition out of the oxygen-lean ';boring billion' is an area of active study. Additional evidence points to the likelihood of rising and falling oxygen levels through the later Neoproterozoic, which would have had a strong impact on early animal diversification and development of oxygen-demanding ecologies marked by large animals with complex trophic relationships. These observations now provide a context for interpreting the cause-and-effect relationships among the late Proterozoic rise in oxygen, the onset and dynamics of global-scale Neoproterozoic glaciation, metazoan diversification, and large-scale tectonic processes as surface expressions of deep-Earth processes.

  3. Peroxy defects in Rocks and H2O2 formation on the early Earth

    NASA Astrophysics Data System (ADS)

    Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.

    2013-12-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock-water interfaces as part of stress-activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life. [1] Balk et al. (2009) Earth and Planetary Science Letters 283, 87-92. [2] Grant, R. A. et al. (2011) Int. J. Environ. Res. Public Health 8, 1936-1956.

  4. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  5. Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    PubMed Central

    Torday, John S.; Rehan, Virender K.; Hicks, James W.; Wang, Tobias; Maina, John; Weibel, Ewald R.; Hsia, Connie C.W.; Sommer, Ralf J.; Perry, Steven F.

    2007-01-01

    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework. PMID:20607138

  6. RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: amarble@nso.edu

    We present new MMT spectroscopic observations of four dwarf galaxies representative of a larger sample observed by the Sloan Digital Sky Survey and identified by Peeples et al. as low-mass, high oxygen abundance outliers from the mass-metallicity relation. Peeples showed that these four objects (with metallicity estimates of 8.5 {<=} 12 + log(O/H) {<=} 8.8) have oxygen abundance offsets of 0.4-0.6 dex from the M{sub B} luminosity-metallicity relation. Our new observations extend the wavelength coverage to include the [O II] {lambda}{lambda}3726, 3729 doublet, which adds leverage in oxygen abundance estimates and allows measurements of N/O ratios. All four spectra aremore » low excitation, with relatively high N/O ratios (N/O {approx}> 0.10), each of which tend to bias estimates based on strong emission lines toward high oxygen abundances. These spectra all fall in a regime where the 'standard' strong-line methods for metallicity determinations are not well calibrated either empirically or by photoionization modeling. By comparing our spectra directly to photoionization models, we estimate oxygen abundances in the range of 7.9 {<=} 12 + log (O/H) {<=} 8.4, consistent with the scatter of the mass-metallicity relation. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the 'Wolf-Rayet galaxy' phase. We compare our results to the 'main' sample of Peeples and conclude that they are outliers primarily due to enrichment of nitrogen relative to oxygen and not due to unusually high oxygen abundances for their masses or luminosities.« less

  7. Big History or the 13800 million years from the Big Bang to the Human Brain

    NASA Astrophysics Data System (ADS)

    Gústafsson, Ludvik E.

    2017-04-01

    Big History is the integrated history of the Cosmos, Earth, Life, and Humanity. It is an attempt to understand our existence as a continuous unfolding of processes leading to ever more complex structures. Three major steps in the development of the Universe can be distinguished, the first being the creation of matter/energy and forces in the context of an expanding universe, while the second and third steps were reached when completely new qualities of matter came into existence. 1. Matter comes out of nothing Quantum fluctuations and the inflation event are thought to be responsible for the creation of stable matter particles in what is called the Big Bang. Along with simple particles the universe is formed. Later larger particles like atoms and the most simple chemical elements hydrogen and helium evolved. Gravitational contraction of hydrogen and helium formed the first stars und later on the first galaxies. Massive stars ended their lives in violent explosions releasing heavier elements like carbon, oxygen, nitrogen, sulfur and iron into the universe. Subsequent star formation led to star systems with bodies containing these heavier elements. 2. Matter starts to live About 9200 million years after the Big Bang a rather inconspicous star of middle size formed in one of a billion galaxies. The leftovers of the star formation clumped into bodies rotating around the central star. In some of them elements like silicon, oxygen, iron and many other became the dominant matter. On the third of these bodies from the central star much of the surface was covered with an already very common chemical compound in the universe, water. Fluid water and plenty of various elements, especially carbon, were the ingredients of very complex chemical compounds that made up even more complex structures. These were able to replicate themselves. Life had appeared, the only occasion that we human beings know of. Life evolved subsequently leading eventually to the formation of multicellular structures like plants, animals and fungi. 3. Matter starts to think A comet or an asteroid crashed into Earth about 66 million years ago, ending the dominance of dinosaurs. Small animals giving birth to living offspring were now able to evolve into a multitude of species, among them the primates. A group of primates migrated from Africa to other continents less than 100000 years ago. Their brain developed a special quality, self-conscience. This ability to reflect about oneself boosted their survival considerably. Man (Homo sapiens) had entered the scene, becoming one of the dominant species of this planet. Due to his immense ability today to handle matter and energy he has become something of a caretaker of planet Earth. Man is responsible for sustainable development for the good of his society and of the whole biosphere. If there is a fourth step in the history of the universe, discoveries in astrobiology may provide us with some clues in the next decades.

  8. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    PubMed

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II

    PubMed Central

    Ifuku, Kentaro; Noguchi, Takumi

    2016-01-01

    Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and enhance binding of inorganic cofactors, such as Ca2+ and Cl-, in the oxygen-evolving center (OEC) of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae and diatoms have unique PSII extrinsic proteins, such as PsbQ′ and Psb31, suggesting functional divergence during evolution. Recent studies with reconstitution experiments combined with Fourier transform infrared spectroscopy have revealed how the individual PSII extrinsic proteins affect the structure and function of the OEC in different organisms. In this review, we summarize our recent results and discuss changes that have occurred in the structural coupling of extrinsic proteins with the OEC during evolutionary history. PMID:26904056

  10. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  11. Hypothetical Modeling of Redox Conditions Within a Complex Ground-Water Flow Field in a Glacial Setting

    USGS Publications Warehouse

    Feinstein, Daniel T.; Thomas, Mary Ann

    2009-01-01

    This report describes a modeling approach for studying how redox conditions evolve under the influence of a complex ground-water flow field. The distribution of redox conditions within a flow system is of interest because of the intrinsic susceptibility of an aquifer to redox-sensitive, naturally occurring contaminants - such as arsenic - as well as anthropogenic contaminants - such as chlorinated solvents. The MODFLOW-MT3D-RT3D suite of code was applied to a glacial valley-fill aquifer to demonstrate a method for testing the interaction of flow patterns, sources of reactive organic carbon, and availability of electron acceptors in controlling redox conditions. Modeling results show how three hypothetical distributions of organic carbon influence the development of redox conditions in a water-supply aquifer. The distribution of strongly reduced water depends on the balance between the rate of redox reactions and the capability of different parts of the flow system to transmit oxygenated water. The method can take account of changes in the flow system induced by pumping that result in a new distribution of reduced water.

  12. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    DOE PAGES

    Kubin, Markus; Kern, Jan; Gul, Sheraz; ...

    2017-09-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. But, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexesmore » (Mn ~ 6-15 mmol/l) with no visible effects of radiation damage. We then present the first L-edge absorption spectra of the oxygen evolving complex (Mn 4 CaO 5 ) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.« less

  13. Parallel evolution of Nitric Oxide signaling: Diversity of synthesis & memory pathways

    PubMed Central

    Moroz, Leonid L.; Kohn, Andrea B.

    2014-01-01

    The origin of NO signaling can be traceable back to the origin of life with the large scale of parallel evolution of NO synthases (NOSs). Inducible-like NOSs may be the most basal prototype of all NOSs and that neuronal-like NOS might have evolved several times from this prototype. Other enzymatic and non-enzymatic pathways for NO synthesis have been discovered using reduction of nitrites, an alternative source of NO. Diverse synthetic mechanisms can co-exist within the same cell providing a complex NO-oxygen microenvironment tightly coupled with cellular energetics. The dissection of multiple sources of NO formation is crucial in analysis of complex biological processes such as neuronal integration and learning mechanisms when NO can act as a volume transmitter within memory-forming circuits. In particular, the molecular analysis of learning mechanisms (most notably in insects and gastropod molluscs) opens conceptually different perspectives to understand the logic of recruiting evolutionarily conserved pathways for novel functions. Giant uniquely identified cells from Aplysia and related species precent unuque opportunities for integrative analysis of NO signaling at the single cell level. PMID:21622160

  14. Enthalpy Changes during Photosynthetic Water Oxidation Tracked by Time-Resolved Calorimetry Using a Photothermal Beam Deflection Technique☆☆☆

    PubMed Central

    Krivanek, Roland; Dau, Holger; Haumann, Michael

    2008-01-01

    The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn4Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, ΔH, coupled to the formation of the radical pair YZ⋅+QA− (where YZ is Tyr-161 of the D1 subunit of PSII) is estimated as −820 ± 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be −400 ± 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent ΔV of about −13 Å3). For the first time, the enthalpy change of the O2-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of ΔH(S3 ⇒ S0) of −210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent ΔV of about +42 Å3) may reflect O2 and proton release from the manganese complex, but also reorganization of the protein matrix. PMID:17993488

  15. Prebiotic molecules formation through the gas-phase reaction between HNO and CH2CHOH2+

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Martínez, Henar; Largo, Antonio; Barrientos, Carmen

    2017-07-01

    Context. Knowing how the molecules that are present in the ISM can evolve to more complex ones is an interesting topic in interstellar chemistry. The study of possible reactions between detected species can help to understand the evolution in complexity of the interstellar matter and also allows knowing the formation of new molecules which could be candidates to be detected. We focus our attention on two molecules detected in space, vinyl alcohol (CH2CHOH) and azanone (HNO). Aims: We aim to carry out a theoretical study of the ion-molecule reaction between protonated vinyl alcohol and azanone. The viability of formation of complex organic molecules (COMs) from these reactants is expected to provide some insight into the formation of prebiotic species through gas phase reactions. Methods: The reaction of protonated vinyl alcohol with azanone has been theoretically studied by using ab initio methods. Stationary points on the potential energy surface (PES) were characterized at the second-order Moller-Plesset level in conjunction with the aug-cc-pVTZ (correlation-consistent polarized valence triple-zeta) basis set. In addition, the electronic energies were refined by means of single-point calculations at the CCSD(T) level (coupled cluster single and double excitation model augmented with a non-iterative treatment of triple excitations) with the same basis set. Results: From a thermodynamic point of view, twelve products, composed of carbon, oxygen, nitrogen, and hydrogen which could be precursors in the formation of more complex biological molecules, can be obtained from this reaction. Among these, we focus especially on ionized glycine and two of its isomers. The analysis of the PES shows that only formation of cis- and trans-O-protonated imine acetaldehyde, CH2NHCOH+ and, CHNHCHOH+, are viable under interstellar conditions. Conclusions: The reaction of protonated vinyl alcohol with azanone can evolve in the interstellar medium to more complex organic molecules of prebiotic interest. Our results suggest that imine acetaldehyde could be a feasible candidate molecule to be searched for in space.

  16. On optima: the case of myoglobin-facilitated oxygen diffusion.

    PubMed

    Wittenberg, Jonathan B

    2007-08-15

    The process of myoglobin/leghemoglobin-facilitated oxygen diffusion is adapted to function in different environments in diverse organisms. We enquire how the functional parameters of the process are optimized in particular organisms. The ligand-binding properties of the proteins, myoglobin and plant symbiotic hemoglobins, we discover, suggest that they have been adapted under genetic selection pressure for optimal performance. Since carrier-mediated oxygen transport has probably evolved independantly many times, adaptation of diverse proteins for a common functionality exemplifies the process of convergent evolution. The progenitor proteins may be built on the myoglobin scaffold or may be very different.

  17. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  18. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL.

    PubMed

    Suga, Michihiro; Akita, Fusamichi; Sugahara, Michihiro; Kubo, Minoru; Nakajima, Yoshiki; Nakane, Takanori; Yamashita, Keitaro; Umena, Yasufumi; Nakabayashi, Makoto; Yamane, Takahiro; Nakano, Takamitsu; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Kimura, Tetsunari; Nomura, Takashi; Yonekura, Shinichiro; Yu, Long-Jiang; Sakamoto, Tomohiro; Motomura, Taiki; Chen, Jing-Hua; Kato, Yuki; Noguchi, Takumi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Nango, Eriko; Tanaka, Rie; Naitow, Hisashi; Matsuura, Yoshinori; Yamashita, Ayumi; Yamamoto, Masaki; Nureki, Osamu; Yabashi, Makina; Ishikawa, Tetsuya; Iwata, So; Shen, Jian-Ren

    2017-03-02

    Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn 4 CaO 5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the Q B /non-haem iron and the Mn 4 CaO 5 cluster. The changes around the Q B /non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn 4 CaO 5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ 4 -oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.

  19. Zymographic differentiation of [NiFe]-Hydrogenases 1, 2 and 3 of Escherichia coli K-12

    PubMed Central

    2012-01-01

    Background When grown under anaerobic conditions, Escherichia coli K-12 is able to synthesize three active [NiFe]-hydrogenases (Hyd1-3). Two of these hydrogenases are respiratory enzymes catalysing hydrogen oxidation, whereby Hyd-1 is oxygen-tolerant and Hyd-2 is considered a standard oxygen-sensitive hydrogenase. Hyd-3, together with formate dehydrogenase H (Fdh-H), forms the formate hydrogenlyase (FHL) complex, which is responsible for H2 evolution by intact cells. Hydrogen oxidation activity can be assayed for all three hydrogenases using benzyl viologen (BV; Eo′ = -360 mV) as an artificial electron acceptor; however ascribing activities to specific isoenzymes is not trivial. Previously, an in-gel assay could differentiate Hyd-1 and Hyd-2, while Hyd-3 had long been considered too unstable to be visualized on such native gels. This study identifies conditions allowing differentiation of all three enzymes using simple in-gel zymographic assays. Results Using a modified in-gel assay hydrogen-dependent BV reduction catalyzed by Hyd-3 has been described for the first time. High hydrogen concentrations facilitated visualization of Hyd-3 activity. The activity was membrane-associated and although not essential for visualization of Hyd-3, the activity was maximal in the presence of a functional Fdh-H enzyme. Furthermore, through the use of nitroblue tetrazolium (NBT; Eo′ = -80 mV) it was demonstrated that Hyd-1 reduces this redox dye in a hydrogen-dependent manner, while neither Hyd-2 nor Hyd-3 could couple hydrogen oxidation to NBT reduction. Hydrogen-dependent reduction of NBT was also catalysed by an oxygen-sensitive variant of Hyd-1 that had a supernumerary cysteine residue at position 19 of the small subunit substituted for glycine. This finding suggests that tolerance toward oxygen is not the main determinant that governs electron donation to more redox-positive electron acceptors such as NBT. Conclusions The utilization of particular electron acceptors at different hydrogen concentrations and redox potentials correlates with the known physiological functions of the respective hydrogenase. The ability to rapidly distinguish between oxygen-tolerant and standard [NiFe]-hydrogenases provides a facile new screen for the discovery of novel enzymes. A reliable assay for Hyd-3 will reinvigorate studies on the characterisation of the hydrogen-evolving FHL complex. PMID:22769583

  20. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    PubMed

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-06

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Design of a lunar oxygen production plant

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  2. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  3. Center for Thin Film Studies

    DTIC Science & Technology

    1988-10-31

    techniques, and to investigate the simultaneous use of ion bombardment and substrate cooling for production of low-loss, stable ZnS material. 7 0.14 q(a) N...films indicate that even implanted argon is firmly embedded and shows no tendency to evolve. When the ions are reactive (e.g., oxygen or nitrogen ...oxygen ions can result in very good oxide layers. Nitrogen is another compound-forming gas which lacks sufficient reactivity to have been a useful

  4. Lunar Water Resource Demonstration (LWRD)

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  5. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    EPA Science Inventory

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  6. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  7. Aerobic metabolism underlies complexity and capacity

    PubMed Central

    Koch, Lauren G; Britton, Steven L

    2008-01-01

    The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307

  8. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    PubMed

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.

  9. Environmental Sensing of Expert Knowledge in a Computational Evolution System for Complex Problem Solving in Human Genetics

    NASA Astrophysics Data System (ADS)

    Greene, Casey S.; Hill, Douglas P.; Moore, Jason H.

    The relationship between interindividual variation in our genomes and variation in our susceptibility to common diseases is expected to be complex with multiple interacting genetic factors. A central goal of human genetics is to identify which DNA sequence variations predict disease risk in human populations. Our success in this endeavour will depend critically on the development and implementation of computational intelligence methods that are able to embrace, rather than ignore, the complexity of the genotype to phenotype relationship. To this end, we have developed a computational evolution system (CES) to discover genetic models of disease susceptibility involving complex relationships between DNA sequence variations. The CES approach is hierarchically organized and is capable of evolving operators of any arbitrary complexity. The ability to evolve operators distinguishes this approach from artificial evolution approaches using fixed operators such as mutation and recombination. Our previous studies have shown that a CES that can utilize expert knowledge about the problem in evolved operators significantly outperforms a CES unable to use this knowledge. This environmental sensing of external sources of biological or statistical knowledge is important when the search space is both rugged and large as in the genetic analysis of complex diseases. We show here that the CES is also capable of evolving operators which exploit one of several sources of expert knowledge to solve the problem. This is important for both the discovery of highly fit genetic models and because the particular source of expert knowledge used by evolved operators may provide additional information about the problem itself. This study brings us a step closer to a CES that can solve complex problems in human genetics in addition to discovering genetic models of disease.

  10. A modelling approach for the heterogeneous oxidation of elastomers

    NASA Astrophysics Data System (ADS)

    Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.

    2017-09-01

    The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick's law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.

  11. Ammonia binding to the oxygen-evolving complex of photosystem II identifies the solvent-exchangeable oxygen bridge (μ-oxo) of the manganese tetramer

    PubMed Central

    Pérez Navarro, Montserrat; Ames, William M.; Nilsson, Håkan; Lohmiller, Thomas; Pantazis, Dimitrios A.; Rapatskiy, Leonid; Nowaczyk, Marc M.; Neese, Frank; Boussac, Alain; Messinger, Johannes; Lubitz, Wolfgang; Cox, Nicholas

    2013-01-01

    The assignment of the two substrate water sites of the tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (μ-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522–3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable μ-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable μ-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55–60]}; (ii) ammonia displaces a water ligand to the outer manganese (MnA4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the MnA4-O5 bond, leading to the perturbation of the μ-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water. PMID:24023065

  12. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    NASA Astrophysics Data System (ADS)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  13. The protonation states of oxo-bridged Mn(IV) dimers resolved by experimental and computational Mn K pre-edge X-ray absorption spectroscopy.

    PubMed

    Krewald, Vera; Lassalle-Kaiser, Benedikt; Boron, Thaddeus T; Pollock, Christopher J; Kern, Jan; Beckwith, Martha A; Yachandra, Vittal K; Pecoraro, Vincent L; Yano, Junko; Neese, Frank; DeBeer, Serena

    2013-11-18

    In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn dimer is represented by the system [Mn(IV)2(salpn)2(μ-OHn)2](n+). Although the three species [Mn(IV)2(salpn)2(μ-O)2], [Mn(IV)2(salpn)2(μ-O)(μ-OH)](+) and [Mn(IV)2(salpn)2(μ-OH)2](2+) differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretically calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high spin (HS) and broken symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn 1s core electrons into the unoccupied orbitals of local e(g) character (d(z)(2) and d(xy) based in the chosen coordinate system). The lowest energy experimental feature is dominated by excitations of 1s-α electrons, and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in both the HS and BS solutions, are discussed in terms of the strength of the antiferromagnetic coupling and associated changes in the covalency of Mn-O bonds. The information presented in this paper is complemented with the X-ray emission spectra of the same compounds published in an accompanying paper. Taken together, the two studies provide the foundation for a better understanding of the X-ray spectroscopic data of the oxygen evolving complex (OEC) in photosystem II.

  14. Paracellular transport as a strategy for energy conservation by multicellular organisms?

    PubMed

    Yu, Alan S L

    2017-04-03

    Paracellular transport of solutes and water accompanies transcellular transport across epithelial barriers and together they serve to maintain internal body composition. However, whether paracellular transport is necessary and why it evolved is unknown. In this commentary I discuss our recent studies to address this question in the proximal tubule of the kidney. Paracellular reabsorption of sodium occurs in the proximal tubule and is mediated by claudin-2. However, deletion of claudin-2 in mice does not affect whole kidney sodium excretion because it can be completely compensated by downtream transcellular transport mechanisms. This occurs at the expense of increased oxygen consumption, tissue hypoxia and increased susceptibility to ischemic injury. It is concluded that paracellular transport acts as an energy saving mechanism to increase transport without consuming additional oxygen. It is speculated that this might be why paracellular transport evolved in leaky epithelia with high transport needs.

  15. Paracellular transport as a strategy for energy conservation by multicellular organisms?

    PubMed Central

    Yu, Alan S. L.

    2017-01-01

    ABSTRACT Paracellular transport of solutes and water accompanies transcellular transport across epithelial barriers and together they serve to maintain internal body composition. However, whether paracellular transport is necessary and why it evolved is unknown. In this commentary I discuss our recent studies to address this question in the proximal tubule of the kidney. Paracellular reabsorption of sodium occurs in the proximal tubule and is mediated by claudin-2. However, deletion of claudin-2 in mice does not affect whole kidney sodium excretion because it can be completely compensated by downtream transcellular transport mechanisms. This occurs at the expense of increased oxygen consumption, tissue hypoxia and increased susceptibility to ischemic injury. It is concluded that paracellular transport acts as an energy saving mechanism to increase transport without consuming additional oxygen. It is speculated that this might be why paracellular transport evolved in leaky epithelia with high transport needs. PMID:28452575

  16. Spectra from the IRS of Bright Oxygen-Rich Evolved Stars in the SMC

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, Greg; Wood, Peter

    2016-06-01

    We have used Spitzer's Infrared Spectrograph (IRS) to obtain spectra of stars in the Small Magellanic Cloud (SMC). The targets were chosen from the Point Source Catalog of the Mid-Course Space Experiment (MSX), which detected the 243 brightest infrared sources in the SMC. Our SMC sample of oxygen-rich evolved stars shows more dust than found in previous samples, and the dust tends to be dominated by silicates, with little contribution from alumina. Both results may arise from the selection bias in the MSX sample and our sample toward more massive stars. Additionally, several sources show peculiar spectral features such as PAHs, crystalline silicates, or both carbon-rich and silicate features. The spectrum of one source, MSX SMC 145, is a combination of an ordinary AGB star and a background galaxy at z~0.16, rather than an OH/IR star as previously suggested.

  17. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    PubMed

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes) is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair

    PubMed Central

    Modarressi, Ali; Pittet-Cuénod, Brigitte

    2017-01-01

    Our understanding of the role of oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in oxidative metabolism to its recognition as an important player in cell signaling. With regard to the latter, oxygen is needed for the generation of reactive oxygen species (ROS), which regulate a number of different cellular functions including differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding wound contraction. In this review we provide an overview of the current literature on the role of molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions. PMID:29036938

  19. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  20. Active printed materials for complex self-evolving deformations.

    PubMed

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-12-18

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.

  1. Active Printed Materials for Complex Self-Evolving Deformations

    PubMed Central

    Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar

    2014-01-01

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053

  2. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures

    DOE PAGES

    Ibrahim, Mohamed; Chatterjee, Ruchira; Hellmich, Julia; ...

    2015-07-01

    In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup thatmore » requires microcrystals less than 40 μm in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 Å, using crystals grown without the micro seeding approach, to 4.5 Å using crystals generated with the new method.« less

  3. Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals

    PubMed Central

    Tsui, Emily Y.; Agapie, Theodor

    2013-01-01

    Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese–oxido cubane clusters [MMn3O4] (M = Sr2+, Zn2+, Sc3+, Y3+) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese–tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese–dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer. PMID:23744039

  4. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser

    PubMed Central

    Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra

    2015-01-01

    Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005

  5. Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2015-09-07

    Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  7. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  8. Antioxidant Activity of Oxygen Evolving Enhancer Protein 1 Purified from Capsosiphon fulvescens.

    PubMed

    Kim, Eun-Young; Choi, Youn Hee; Lee, Jung Im; Kim, In-Hye; Nam, Taek-Jeong

    2015-06-01

    This study was conducted to determine the antioxidant activity of a protein purified from Capsosiphon fulvescens. The purification steps included sodium acetate (pH 6) extraction and diethylaminoethyl-cellulose, reversed phase Shodex C4P-50 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the molecular weight of the purified protein was 33 kDa. The N-terminus and partial peptide amino acid sequence of this protein was identical to the sequence of oxygen evolving enhancer (OEE) 1 protein. The antioxidant activity of the OEE 1 was determined in vitro using a scavenging test with 4 types of reactive oxygen species (ROS), including the 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical, superoxide anion, and hydrogen peroxide (H2 O2 ). OEE 1 had higher H2 O2 scavenging activity, which proved to be the result of enzymatic antioxidants rather than nonenzymatic antioxidants. In addition, OEE 1 showed less H2 O2 -mediated ROS formation in HepG2 cells. In conclusion, this study demonstrates that OEE 1 purified from C. fulvescens is an excellent antioxidant. © 2015 Institute of Food Technologists®

  9. In vivo system for analyzing the function of the PsbP protein using Chlamydomonas reinhardtii.

    PubMed

    Nishimura, Taishi; Sato, Fumihiko; Ifuku, Kentaro

    2017-09-01

    The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically developed in green-plant species including land plants and green algae. The protein-protein interactions involving PsbP and its effect on oxygen evolution have been investigated in vitro using isolated PSII membranes. However, the importance of those interactions needs to be examined at the cellular level. To this end, we developed a system expressing exogenous PsbP in the background of the Chlamydomonas BF25 mutant lacking native PsbP. Expression of His-tagged PsbP successfully restored the oxygen-evolving activity and photoautotrophic growth of the mutant, while PsbP-∆15 lacking the N-terminal 15 residues, which are crucial for the oxygen-evolving activity of spinach PSII in vitro, only partially did. This demonstrated the importance of N-terminal sequence of PsbP for the photosynthetic activity in vivo. Furthermore, the PSII-LHCII supercomplex can be specifically purified from the Chlamydomonas cells having His-tagged PsbP using a metal affinity chromatography. This study provides a platform not only for the functional analysis of PsbP in vivo but also for structural analysis of the PSII-LHCII supercomplex from green algae.

  10. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice

    PubMed Central

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki; Kumasaka, Takashi; Natarajan, Chandrasekhar; Storz, Jay F.

    2017-01-01

    Background Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Results Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetrameric hemoglobin molecules. Conclusions The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites. PMID:28362841

  11. Alteration of the α1β2/α2β1 subunit interface contributes to the increased hemoglobin-oxygen affinity of high-altitude deer mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoguchi, Noriko; Mizuno, Nobuhiro; Baba, Seiki

    2017-03-31

    Deer mice (Peromyscus maniculatus) that are native to high altitudes in the Rocky Mountains have evolved hemoglobins with an increased oxygen-binding affinity relative to those of lowland conspecifics. To elucidate the molecular mechanisms responsible for the evolved increase in hemoglobin-oxygen affinity, the crystal structure of the highland hemoglobin variant was solved and compared with the previously reported structure for the lowland variant. Highland hemoglobin yielded at least two crystal types, in which the longest axes were 507 and 230 Å. Using the smaller unit cell crystal, the structure was solved at 2.2 Å resolution. The asymmetric unit contained two tetramericmore » hemoglobin molecules. The analyses revealed that αPro50 in the highland hemoglobin variant promoted a stable interaction between αHis45 and heme that was not seen in the αHis50 lowland variant. The αPro50 mutation also altered the nature of atomic contacts at the α1β2/α2β1 intersubunit interfaces. These results demonstrate how affinity-altering changes in intersubunit interactions can be produced by mutations at structurally remote sites.« less

  12. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  13. An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2 -Tolerant Hydrogenase.

    PubMed

    Lindenmaier, Nils J; Wahlefeld, Stefan; Bill, Eckhard; Szilvási, Tibor; Eberle, Christopher; Yao, Shenglai; Hildebrandt, Peter; Horch, Marius; Zebger, Ingo; Driess, Matthias

    2017-02-13

    To understand the molecular details of O 2 -tolerant hydrogen cycling by a soluble NAD + -reducing [NiFe] hydrogenase, we herein present the first bioinspired heterobimetallic S-oxygenated [NiFe] complex as a structural and vibrational spectroscopic model for the oxygen-inhibited [NiFe] active site. This compound and its non-S-oxygenated congener were fully characterized, and their electronic structures were elucidated in a combined experimental and theoretical study with emphasis on the bridging sulfenato moiety. Based on the vibrational spectroscopic properties of these complexes, we also propose novel strategies for exploring S-oxygenated intermediates in hydrogenases and similar enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of oxygenation on the reactivity of ruthenium-thiolato bonds in arene anticancer complexes: insights from XAS and DFT.

    PubMed

    Sriskandakumar, Thamayanthy; Petzold, Holm; Bruijnincx, Pieter C A; Habtemariam, Abraha; Sadler, Peter J; Kennepohl, Pierre

    2009-09-23

    Thiolate ligand oxygenation is believed to activate cytotoxic half-sandwich [(eta(6)-arene)Ru(en)(SR)](+) complexes toward DNA binding. We have made detailed comparisons of the nature of the Ru-S bond in the parent thiolato complexes and mono- (sulfenato) and bis- (sulfinato) oxygenated species including the influence of substituents on the sulfur and arene. Sulfur K-edge XAS indicates that S(3p) donation into the Ru(4d) manifold depends strongly on the oxidation state of the sulfur atom, whereas Ru K-edge data suggest little change at the metal center. DFT results are in agreement with the experimental data and allow a more detailed analysis of the electronic contributions to the Ru-S bond. Overall, the total ligand charge donation to the metal center remains essentially unchanged upon ligand oxygenation, but the origin of the donation differs markedly. In sulfenato complexes, the terminal oxo group makes a large contribution to charge donation and even small electronic changes in the thiolato complexes are amplified upon ligand oxygenation, an observation which carries direct implications for the biological activity of this family of complexes. Details of Ru-S bonding in the mono-oxygenated complexes suggest that these should be most susceptible to ligand exchange, yet only if protonation of the terminal oxo group can occur. The potential consequences of these results for biological activation are discussed.

  15. Subsurface Connections and Magma Mixing as revealed by Olivine- and Pyroxene-Hosted Melt Inclusions from Cerro Negro Volcano and the Las Pilas-El Hoyo Complex, Nicaragua.

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Moune, S.; Williams-Jones, G.

    2015-12-01

    Cerro Negro, the youngest volcano in the Central American Volcanic Belt, is a polygenetic cinder cone with relatively frequent explosive basaltic eruptions. Las Pilas, on the other hand, is a much larger and older complex with milder and less frequent eruptions. Based on historical data, these two closely spaced volcanoes have shown concurrent eruptive behavior, suggesting a subsurface connection. To further investigate this link, melt inclusions, which are blebs of melt trapped in growing crystals, were the obvious choice for optimal comparison of sources and determination of pre-eruptive volatile contents and magmatic conditions. Olivine-hosted inclusions were chosen for both volcanoes and pyroxene-hosted inclusions were also sampled from Las Pilas to represent the evolved melt. Major, volatile and trace elements reveal a distinct geochemical continuum with Cerro Negro defining the primitive end member and Las Pilas representing the evolved end member. Volatile contents are high for Cerro Negro (up to 1260 ppm CO2, 4.27 wt% H2O and 1700 ppm S) suggesting that volatile exsolution is likely the trigger for Cerro Negro's explosive eruptions. Las Pilas volatile contents are lower but consistent with degassing and evolutionary trends shown by major oxides. Trace element contents are rather unique and suggest Cerro Negro magmas fractionally crystallize while Las Pilas magmas are the products of mixing. Magmatic conditions were estimated with major and volatile contents: at least 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for Las Pilas melts with an overall oxygen fugacity at the NNO buffer. In combination with available literature data, this study suggests an interconnected subsurface plumbing system and thus Cerro Negro should be considered as the newest vent within the Las Pilas-El Hoyo Complex.

  16. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.

    1986-01-01

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  18. What makes a planet habitable, and how to search for habitable planets in other solar systems.

    PubMed

    Papagiannis, M D

    1992-06-01

    The availability of liquid water is the most important factor that makes a planet habitable, because water is a very effective polar molecule and hence an excellent solvent and facilitator for the complex chemistry of life. Its presence presupposes a planet with a significant mass that guarantees the presence of a substantial atmosphere, and a reasonable spinning rate to avoid overheating. It also implies that the planet is at moderate distances from its central star, a range that is called the Ecosphere or the Habitable Zone. Since the evolution of life to high intelligence seems to take billions of years, it requires also that the central star must be neither too massive, that will produce a lot of lethal UV radiation and will have too short a life-span to allow life to evolve, nor of very small mass which will be producing too feeble a radiation to sustain life. The detection of free Oxygen in the atmosphere of a planet is a very strong evidence for the presence of life, because Oxygen is highly reactive and would rapidly disappear by combining with other elements, unless it is continuously replenished by life as the by-product of the process of photosynthesis that builds food for life (sugars) from CO2 and H2O.

  19. Bayesian Mixed-Membership Models of Complex and Evolving Networks

    DTIC Science & Technology

    2006-12-01

    R. Hughes, J. Parkinson , M. Gerstein, S . J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces...provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Membership Models of Complex and Evolving Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e

  20. Reactive Oxygen Species in Cardiovascular Disease

    PubMed Central

    Sugamura, Koichi; Keaney, John F.

    2011-01-01

    Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding or reactive oxygen species has evolved to the point that we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review will address our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology. PMID:21627987

  1. Envisioning a New Foundation for Gifted Education: Evolving Complexity Theory (ECT) of Talent Development

    ERIC Educational Resources Information Center

    Dai, David Yun

    2017-01-01

    This article presents a new theory of talent development, evolving complexity theory (ECT), in the context of the changing theoretical directions as well as the landscape of gifted education. I argue that gifted education needs a new foundation that provides a broad psychosocial basis than what the notion of giftedness can afford. A focus on…

  2. Uncovering the Roles of Oxygen in Cr(III) Photoredox Catalysis.

    PubMed

    Higgins, Robert F; Fatur, Steven M; Shepard, Samuel G; Stevenson, Susan M; Boston, David J; Ferreira, Eric M; Damrauer, Niels H; Rappé, Anthony K; Shores, Matthew P

    2016-04-27

    A combined experimental and theoretical investigation aims to elucidate the necessary roles of oxygen in photoredox catalysis of radical cation based Diels-Alder cycloadditions mediated by the first-row transition metal complex [Cr(Ph2phen)3](3+), where Ph2phen = bathophenanthroline. We employ a diverse array of techniques, including catalysis screening, electrochemistry, time-resolved spectroscopy, and computational analyses of reaction thermodynamics. Our key finding is that oxygen acts as a renewable energy and electron shuttle following photoexcitation of the Cr(III) catalyst. First, oxygen quenches the excited Cr(3+)* complex; this energy transfer process protects the catalyst from decomposition while preserving a synthetically useful 13 μs excited state and produces singlet oxygen. Second, singlet oxygen returns the reduced catalyst to the Cr(III) ground state, forming superoxide. Third, the superoxide species reduces the Diels-Alder cycloadduct radical cation to the final product and reforms oxygen. We compare the results of these studies with those from cycloadditions mediated by related Ru(II)-containing complexes and find that the distinct reaction pathways are likely part of a unified mechanistic framework where the photophysical and photochemical properties of the catalyst species lead to oxygen-mediated photocatalysis for the Cr-containing complex but radical chain initiation for the Ru congener. These results provide insight into how oxygen can participate as a sustainable reagent in photocatalysis.

  3. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  6. Mechanisms of Oxidative Stress Resistance in The Brain: Lessons Learned From Hypoxia Tolerant Extremophilic Vertebrates

    PubMed Central

    Garbarino, Valentina R.; Orr, Miranda E.; Rodriguez, Karl A.; Buffenstein, Rochelle

    2016-01-01

    The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel’s second axiom that “evolution is smarter than we are” and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases. PMID:25841340

  7. Correlated microanalysis of zircon: Trace element, δ 18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains

    NASA Astrophysics Data System (ADS)

    Cavosie, Aaron J.; Valley, John W.; Wilde, Simon A.; E. I. M. F.

    2006-11-01

    The origins of >3900 Ma detrital zircons from Western Australia are controversial, in part due to their complexity and long geologic histories. Conflicting interpretations for the genesis of these zircons propose magmatic, hydrothermal, or metamorphic origins. To test the hypothesis that these zircons preserve magmatic compositions, trace elements [rare earth elements (REE), Y, P, Th, U] were analyzed by ion microprobe from a suite of >3900 Ma zircons from Jack Hills, Western Australia, and include some of the oldest detrital zircons known (4400-4300 Ma). The same ˜20 μm domains previously characterized for U/Pb age, oxygen isotope composition (δ 18O), and cathodoluminescence (CL) zoning were specifically targeted for analysis. The zircons are classified into two types based on the light-REE (LREE) composition of the domain analyzed. Zircons with Type 1 domains form the largest group (37 of 42), consisting of grains that preserve evolved REE compositions typical of igneous zircon from crustal rocks. Grains with Type 1 domains display a wide range of CL zoning patterns, yield nearly concordant U/Pb ages from 4400 to 3900 Ma, and preserve a narrow range of δ 18O values from 4.7‰ to 7.3‰ that overlap or are slightly elevated relative to mantle oxygen isotope composition. Type 1 domains are interpreted to preserve magmatic compositions. Type 2 domains occur in six zircons that contain spots with enriched light-REE (LREE) compositions, here defined as having chondrite normalized values of La N > 1 and Pr N > 10. A subset of analyses in Type 2 domains appear to result from incorporation of sub-surface mineral inclusions in the analysis volume, as evidenced by positively correlated secondary ion beam intensities for LREE, P, and Y, which are anti-correlated to Si, although not all Type 2 analyses show these features. The LREE enrichment also occurs in areas with discordant U/Pb ages and/or high Th/U ratios, and is apparently associated with past or present radiation damage. The enrichment is not attributed to hydrothermal alteration, however, as oxygen isotope ratios in Type 2 domains overlap with magmatic values of Type 1 domains, and do not appear re-set as might be expected from dissolution or ion-exchange processes operating at variable temperatures. Thus, REE compositions in Type 2 domains where mineral inclusions are not suspected are best interpreted to result from localized enrichment of LREE in areas with past or present radiation damage, and with a very low fluid/rock ratio. Correlated in situ analyses allow magmatic compositions in these complex zircons to be distinguished from the effects of secondary processes. These results are additional evidence for preservation of magmatic compositions in Jack Hills zircons, and demonstrate the benefits of detailed imaging in studies of complicated detrital zircons of unknown origin. The data reported here support previous interpretations that the majority of >3900 Ma zircons from the Jack Hills have an origin in evolved granitic melts, and are evidence for the existence of continental crust very early in Earth's history.

  8. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    NASA Astrophysics Data System (ADS)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  9. An Intrinsically Disordered Photosystem II Subunit, PsbO, Provides a Structural Template and a Sensor of the Hydrogen-bonding Network in Photosynthetic Water Oxidation*

    PubMed Central

    Offenbacher, Adam R.; Polander, Brandon C.; Barry, Bridgette A.

    2013-01-01

    Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global 13C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster. PMID:23940038

  10. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance.

    PubMed

    Ngo, Jennifer P; Ow, Connie P C; Gardiner, Bruce S; Kar, Saptarshi; Pearson, James T; Smith, David W; Evans, Roger G

    2016-11-01

    Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle's loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma. Copyright © 2016 the American Physiological Society.

  11. Health effects of metals: a role for evolution?

    PubMed Central

    Clarkson, T

    1995-01-01

    Metals have been mined and used since ancient times. The industrial era has seen a sharp increase in both the amounts and variety of metals that find applications in industry. The inadvertent release of metals, such as from fossil fuel consumption, also adds to the global burden. A number of catastrophic outbreaks have alerted us to the occupational and environmental health risks. Life on this planet has evolved in the presence of metals. Cells learned to make use of the more abundant metals in the Archean oceans as an integral component in their structure and function. Today, we inherit these as the essential metals. At the same time, evolving life must have developed means of coping with the potentially toxic actions of metals. The appearance of oxygen in the atmosphere in the Precambrian period also resulted in cells both using and developing protective mechanisms against what must have been a highly toxic, reactive gas. Atmospheric oxygen must have increased the solubility of many metals as insoluble metal sulfides were oxidized to the more soluble sulfates. It may be no coincidence that the protective mechanisms for oxygen are also used to protect against a number of toxic metals. Selected examples are given on the role of evolution in metal toxicology, specifically, examples where the normal function of essential metals is deranged by competition with nonessential metals. Examples are also given of protective mechanisms that involve enzymes or cofactors involved in the oxygen defense system. PMID:7621810

  12. Revisiting the Supramolecular Organization of Photosystem II in Chlamydomonas reinhardtii*

    PubMed Central

    Tokutsu, Ryutaro; Kato, Nobuyasu; Bui, Khanh Huy; Ishikawa, Takashi; Minagawa, Jun

    2012-01-01

    Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core. PMID:22801422

  13. In-plane dissipation maxima and vortex-line distortions in the resistive transitions of oxygen-doped Bi2Sr2CaCu2O(8+delta) single crystals

    NASA Astrophysics Data System (ADS)

    Hsu, J. W. P.; Mitzi, D. B.; Kapitulnik, A.; Lee, Mark

    1991-10-01

    Measurements of the in-plane resistive transition of Bi2Sr2CaCu2O(8+delta) single crystals in perpendicular magnetic fields reveal that in oxygen-reduced samples a giant resistance maximum evolves with field. This is not seen in oxygenated samples with similar metallic normal resistivities. As the peak resistivity may exceed the normal resistivity, it cannot arise from ordinary vortex-motion dissipation. A model is proposed where the excess resistance results from nonrigid vortex motion coupling the out-of-plane dissipation to the in-plane resistance at temperatures where pinning effects are negligible.

  14. First-charge instabilities of layered-layered lithium-ion-battery materials.

    PubMed

    Croy, Jason R; Iddir, Hakim; Gallagher, Kevin; Johnson, Christopher S; Benedek, Roy; Balasubramanian, Mahalingam

    2015-10-07

    Li- and Mn-rich layered oxides with composition xLi2MnO3·(1 -x)LiMO2 enable high capacity and energy density Li-ion batteries, but suffer from degradation with cycling. Evidence of atomic instabilities during the first charge are addressed in this work with X-ray absorption spectroscopy, first principles simulation at the GGA+U level, and existing literature. The pristine material of composition xLi2MnO3·(1 -x)LiMn0.5Ni0.5O2 is assumed in the simulations to have the form of LiMn2 stripes, alternating with NiMn stripes, in the metal layers. The charged state is simulated by removing Li from the Li layer, relaxing the resultant system by steepest descents, then allowing the structure to evolve by molecular dynamics at 1000 K, and finally relaxing the evolved system by steepest descents. The simulations show that about ¼ of the oxygen ions in the Li2MnO3 domains are displaced from their original lattice sites, and form oxygen-oxygen bonds, which significantly lowers the energy, relative to that of the starting structure in which the oxygen sublattice is intact. An important consequence of the displacement of the oxygen is that it enables about ⅓ of the (Li2MnO3 domain) Mn ions to migrate to the delithiated Li layers. The decrease in the coordination of the Mn ions is about twice that of the Ni ions. The approximate agreement of simulated coordination number deficits for Mn and Ni following the first charge with analysis of EXAFS measurements on 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2 suggests that the simulation captures significant features of the real material.

  15. Differential expression of survival proteins during decreased intracellular oxygen tension in brain endothelial cells of grey mullets.

    PubMed

    Ekambaram, Padmini; Narayanan, Meenakshi; Parasuraman, Parimala

    2017-02-15

    The brain requires constant oxygen supply to perform its biological functions essential for survival. Because of low oxygen capacity and poor oxygen diffusibility of water, many fish species have evolved various adaptive mechanisms to cope with depleted oxygen. Endothelial cells (EC) are the primary components responsible for controlled environment of brain. Brain homeostasis largely depends on integrity of the EC. To elucidate their adaptive strategy, EC were isolated from the fish brain of Kovalam-control site and Ennore estuary-test/field hypoxic site and were subjected to low oxygen tension in laboratory. Cell viability, 4-hydroxynonenal (4HNE) and total antioxidant capacity (TAC) were analyzed to ascertain stress. Hypoxic insult, cytoprotective role of HSPs and apoptotic effect were analyzed by assessing hypoxia-inducible-factor-α (HIF1α), heat-shock-protein-70 (HSP70), heme-oxygenase 1 (HO-1), and apoptosis signal regulating kinase-1 (ASK1). This study evidenced that HSP70 and HO-1 are the key stress proteins, confer high tolerance to decreased oxygen tension mediated stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Ping; Wang, Juan

    2016-12-01

    The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.

  17. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  18. The role of immunostimulatory nucleic acids in septic shock

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2012-01-01

    Sepsis and its associated syndromes represent the systemic host response to severe infection and is manifested by varying degrees of hypotension, coagulopathy, and multiorgan dysfunction. Despite great efforts being made to understand this condition and designing therapies to treat sepsis, mortality rates are still high in septic patients. Characterization of the complex molecular signaling networks between the various components of host-pathogen interactions, highlights the difficulty in identifying a single driving force responsible for sepsis. Although triggering the inflammatory response is generally considered as protective against pathogenic threats, the interplay between the signaling pathways that are induced or suppressed during sepsis may harm the host. Numerous surveillance mechanisms have evolved to discriminate self from foreign agents and accordingly provoke an effective cellular response to target the pathogens. Nucleic acids are not only an essential genetic component, but sensing their molecular signature is also an important quality control mechanism which has evolved to maintain the integrity of the human genome. Evidence that has accumulated recently indicated that distinct pattern recognition receptors sense nucleic acids released from infectious organisms or from damaged host cells, resulting in the modulation of intracellular signalling cascades. Immunoreceptor-mediated detection of these nucleic acids induces antigen-specific immunity, secretion of proinflammatory cytokines and reactive oxygen/nitrogen species and thus are implicated in a range of diseases including septic shock. PMID:22328944

  19. Thermal Decomposition of Calcium Perchlorate/Iron-Mineral Mixtures: Implications of the Evolved Oxygen from the Rocknest Eolian Deposit in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bruck, A. M.; Sutter, B.; Ming, D. W.; Mahaffy, P.

    2014-01-01

    A major oxygen release between 300 and 500 C was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian deposit. Thermal decomposition of perchlorate (ClO4-) salts in the Rocknest samples are a possible explanation for this evolved oxygen release. Releative to Na-, K-, Mg-, and Fe-perchlorate, the thermal decomposition of Ca-perchlorate in laboratory experiments released O2 in the temperature range (400-500degC) closest to the O2 release temperatures observed for the Rocknest material. Furthermore, calcium perchlorate could have been the source of Cl in the chlorinated-hydrocarbons species that were detected by SAM. Different components in the Martian soil could affect the decomposition temperature of calcium per-chlorate or another oxychlorine species. This interaction of the two components in the soil could result in O2 release temperatures consistent with those detected by SAM in the Rocknest materials. The decomposition temperatures of various alkali metal perchlorates are known to decrease in the presence of a catalyst. The objective of this work is to investigate catalytic interactions on calcium perchlorate from various iron-bearing minerals known to be present in the Rocknest material

  20. Long-lasting hydrophilicity on nanostructured Si-incorporated diamond-like carbon films.

    PubMed

    Yi, Jin Woo; Moon, Myoung-Woon; Ahmed, Sk Faruque; Kim, Haeri; Cha, Tae-Gon; Kim, Ho-Young; Kim, Seock-Sam; Lee, Kwang-Ryeol

    2010-11-16

    We investigated the long-lasting hydrophilic behavior of a Si-incorporated diamond-like carbon (Si-DLC) film by varying the Si fraction in DLC matrix through oxygen and nitrogen plasma surface treatments. The wetting behavior of the water droplets on the pure DLC and Si-DLC with the nitrogen or oxygen plasma treatment revealed that the Si element in the oxygen-plasma-treated Si-DLC films played a major role in maintaining a hydrophilic wetting angle of <10° for 20 days in ambient air. The nanostructured patterns with a roughness of ∼10 nm evolved because of the selective etching of the carbon matrix by the oxygen plasma in the Si-DLC film, where the chemical component of the Si-Ox bond was enriched on the top of the nanopatterns and remained for over 20 days.

  1. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II.

    PubMed

    Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K

    2014-06-28

    Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.

  2. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.

    ABSTRACT Photobiologically synthesized hydrogen (H 2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H 2production, a highly perplexing phenomenon because H 2evolving enzymes are O 2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve tomore » prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.« less

  3. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    PubMed

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  4. Ranking in evolving complex networks

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  5. ALS turbomachinery technology

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Faulkner, C.; Ferlita, F.

    1990-01-01

    Advanced Development Programs are being pursued by Rocketdyne, Aerojet, and Pratt and Whitney to define and validate design approaches toward producing low-cost, reliable liquid-hydrogen and liquid-oxygen turbopumps for a 2580 kN (580 klb) thrust Advanced Launch System. The generic approach, which is evolving after 18 months of trade studies and conceptual and preliminary design efforts, is explained. In addition, the preliminary liquid-hydrogen turbopump designs produced in parallel tasks by Rocketdyne and Aerojet and the liquid-oxygen turbopump design produced by Pratt and Whitney are described, and technology features and issues are discussed.

  6. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    PubMed Central

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.; Hayes, Dugan; Kempa, Thomas J.; von Cube, Felix; Bell, David C.; Chen, Lin X.; Nocera, Daniel G.

    2017-01-01

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid. PMID:28137835

  7. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.

    2017-01-30

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.

  8. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  9. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Dooling, D.; Finckenor, M. M.

    1999-01-01

    This report provides guidelines in selecting materials for satellites and space platforms, designed to operate within the Low-Earth orbit environment, which limit the effects of atomic oxygen interactions with spacecraft surfaces. This document should be treated as an introduction rather than a comprehensive guide since analytical and flight technologies continue to evolve, flight experiments are conducted as primary or piggyback opportunities arise, and our understanding of materials interactions and protection methods grows. The reader is urged to consult recent literature and current web sites containing information about research and flight results.

  10. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Groundwater Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Moran, James J.; Nims, Megan K.

    Report summarizing stable oxygen and hydrogen isotope analysis of two groundwater samples from the B-Complex. Results from analyses were compared to perched water and pore water analyses performed previously.

  11. Spectrophotometric investigation on the kinetics of oxidation of adrenaline by dioxygen of μ-dioxytetrakis(histidinato)-dicobalt(II) complex

    NASA Astrophysics Data System (ADS)

    Rafiquee, M. Z. A.; Siddiqui, Masoom R.; Ali, Mohd. Sajid; Al-Lohedan, Hamad A.

    The cobalt(II)histidine complex binds molecular oxygen reversibly to form an oxygen adduct complex, μ-dioxytetrakis-(histidinato)dicobalt(II). The molecular oxygen can be released from the oxygenated complex by heating it or by passing N2, He or Ar gas through its solution. μ-Dioxytetrakis-(histidinato)dicobalt(II) complex oxidizes adrenaline into leucoadrenochrome at 25 °C while at higher temperature (>40 °C) adrenochrome with λmax at 490 nm is formed. The rate of formation of leucoadrenochrome was found to be independent of [bis(histidinato)cobalt(II)]. The rate of reaction for the formation of leucoadrenochrome and adrenochrome increased with the increase in [adrenaline] at its lower concentration but become independent at higher concentration. Similarly, the rate of formation of both leucoadrenochrome and adrenochrome was linearly dependent upon [NaOH]. The values of activation parameters i.e. ΔEa, ΔH‡ and ΔS‡ for the formation of leucoadrenochrome are reported.

  12. A Reaction Center-dependent Photoprotection Mechanism in a Highly Robust Photosystem II from an Extremophilic Red Alga, Cyanidioschyzon merolae*

    PubMed Central

    Krupnik, Tomasz; Kotabová, Eva; van Bezouwen, Laura S.; Mazur, Radosław; Garstka, Maciej; Nixon, Peter J.; Barber, James; Kaňa, Radek; Boekema, Egbert J.; Kargul, Joanna

    2013-01-01

    Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date. Here we report the isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae. We show that this complex is highly stable across a range of extreme light, temperature, and pH conditions. By measuring fluorescence quenching properties of the isolated C. merolae PSII complex, we provide the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center. This type of quenching, together with high zeaxanthin content, appears to underlie photoprotection mechanisms that are efficiently employed by this robust natural water-splitting complex under excess irradiance. In order to provide structural details of this eukaryotic form of PSII, we have employed electron microscopy and single particle analyses to obtain a 17 Å map of the C. merolae PSII dimer in which we locate the position of the protein mass corresponding to the additional extrinsic protein stabilizing the oxygen-evolving complex, PsbQ′. We conclude that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane plane. PMID:23775073

  13. Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms

    PubMed Central

    2016-01-01

    A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large—but not intermediate-sized—populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations. PMID:27923053

  14. The indirect electrochemical refining of lunar ores

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.

  15. Three-Body Forces and the Limit of Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori

    2010-07-01

    The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

  16. Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia.

    PubMed

    Woods, H Arthur; Moran, Amy L; Arango, Claudia P; Mullen, Lindy; Shields, Chris

    2009-03-22

    Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (-1.8-0 degrees C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for sizexDO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes.

  17. Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia

    PubMed Central

    Woods, H. Arthur; Moran, Amy L.; Arango, Claudia P.; Mullen, Lindy; Shields, Chris

    2008-01-01

    Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (−1.8–0°C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for size×DO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes. PMID:19129117

  18. A rhenium complex doped in a silica molecular sieve for molecular oxygen sensing: Construction and characterization.

    PubMed

    Yang, Xiaozhou; Li, Yanxiao

    2016-01-15

    This paper reported a diamine ligand and its Re(I) complex for potential application in oxygen sensing. The novelty of this diamine ligand localized at its increased conjugation chain which had a typical electron-withdrawing group of 1,3,4-oxadiazole. Electronic distribution of excited electrons and their lifetime were supposed to be increased, favoring oxygen sensing collision. This hypothesis was confirmed by single crystal analysis, theoretical calculation and photophysical measurement. It was found that this Re(I) complex had a long-lived emission peaking at 545 nm, favoring sensing application. By doping this complex into a silica matrix MCM-41, oxygen sensing performance and mechanism of the resulting composites were discussed in detail. Non-linear Stern-Volmer working curves were observed with maximum sensitivity of 5.54 and short response time of ~6 s. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  20. Project Morpheus testing

    NASA Image and Video Library

    2012-06-25

    A frame grab from a mounted video camera on the E-3 Test Stand at Stennis Space Center documents testing of the new Project Morpheus engine. The new liquid methane, liquid oxygen engine will power the Morpheus prototype lander, which could one day evolve to carry cargo safely to the moon, asteroids or Mars surfaces.

  1. Redox signaling and stress tolerance in plants: a focus on vitamin E.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2015-03-01

    Plants are subject to specific redox processes, in which photosynthesis plays a prominent role. Chloroplasts function in light at high oxygen tensions and are enormous generators of reactive oxygen species, mainly singlet oxygen. This side product of photosynthesis inflicts damage to thylakoid membranes at high concentrations, but at the same time it is an essential component of cellular signaling. Detoxification of singlet oxygen is achieved by different means, including quenching and scavenging by tocopherols, responsible for controlling singlet oxygen levels, and the extent of lipid peroxidation in chloroplasts. Here, environmental conditions leading to excess light in chloroplasts will be used to show the importance of singlet oxygen, tocopherols, and lipid peroxidation in cell signaling. Defects in antioxidant protection (e.g., tocopherol deficiency) can lead to increased photo-oxidative damage, but also to the activation of defense pathways, illustrating the phenotypic plasticity evolved by plants to withstand stress. Most importantly, these studies show how redox signaling processes are integrated within the cell and illustrate the great capacity of plants to adapt to their environment. © 2015 New York Academy of Sciences.

  2. Characteristics of an ITS that evolves from tutor to operator's assistant. [intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Chu, R. W.; Mitchell, C. M.; Govindaraj, T.

    1989-01-01

    This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.

  3. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  4. Purification and characterization of an oxygen-evolving photosystem II from Leptolyngbya sp. strain O-77.

    PubMed

    Nakamori, Harutaka; Yatabe, Takeshi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-01

    A new cyanobacterium of strain O-77 was isolated from a hot spring at Aso-Kuju National Park, Kumamoto, Japan. According to the phylogenetic analysis determined by 16S rRNA gene sequence, the strain O-77 belongs to the genus Leptolyngbya, classifying into filamentous non-heterocystous cyanobacteria. The strain O-77 showed the thermophilic behavior with optimal growth temperature of 55°C. Moreover, we have purified and characterized the oxygen-evolving photosystem II (PSII) from the strain O-77. The O2-evolving activity of the purified PSII from strain O-77 (PSIIO77) was 1275 ± 255 μmol O2 (mg Chl a)(-1) h(-1). Based on the results of MALDI-TOF mass spectrometry and urea-SDS-PAGE analysis, the purified PSIIO77 was composite of the typical PSII components of CP47, CP43, PsbO, D2, D1, PsbV, PsbQ, PsbU, and several low molecular mass subunits. Visible absorption and 77 K fluorescence spectra of the purified PSIIO77 were almost identical to those of other purified PSIIs from cyanobacteria. This report provides the successful example for the purification and characterization of an active PSII from thermophilic, filamentous non-heterocystous cyanobacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of Ocean Deoxygenation.

    PubMed

    Gallo, N D; Levin, L A

    Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxia-tolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world. © 2016 Elsevier Ltd. All rights reserved.

  6. Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production.

    PubMed

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2016-12-01

    The need for energy and the associated burden are ever growing. It is crucial to develop new technologies for generating clean and efficient energy for society to avoid upcoming energetic and environmental crises. Sunlight is the most abundant source of energy on the planet. Consequently, it has captured our interest. Certain microalgae possess the ability to capture solar energy and transfer it to the energy carrier, H 2 . H 2 is a valuable fuel, because its combustion produces only one by-product: water. However, the establishment of an efficient biophotolytic H 2 production system is hindered by three main obstacles: (1) the hydrogen-evolving enzyme, [FeFe]-hydrogenase, is highly sensitive to oxygen; (2) energy conversion efficiencies are not economically viable; and (3) hydrogen-producing organisms are sensitive to stressful conditions in large-scale production systems. This study aimed to circumvent the oxygen sensitivity of this process with a cyclic hydrogen production system. This approach required a mutant that responded to high temperatures by reducing oxygen evolution. To that end, we randomly mutagenized the green microalgae, Chlamydomonas reinhardtii, to generate mutants that exhibited temperature-sensitive photoautotrophic growth. The selected mutants were further characterized by their ability to evolve oxygen and hydrogen at 25 and 37 °C. We identified four candidate mutants for this project. We characterized these mutants with PSII fluorescence, P700 absorbance, and immunoblotting analyses. Finally, we demonstrated that these mutants could function in a prototype hydrogen-producing bioreactor. These mutant microalgae represent a novel approach for sustained hydrogen production.

  7. SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kromer, M.; Taubenberger, S.; Seitenzahl, I. R.

    2013-11-20

    SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M {sub ☉} adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close tomore » the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp.« less

  8. The electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1990-01-01

    Electrochemical cells have been fabricated for the simultaneous generation of oxygen and lithium from a Li2O-containing molten salt (Li2O-LiCl-LiF). The cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia (YSZ), to effect separation between oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700-850 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducing agent for the chemical refining of lunar ores. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery system which possesses the highest theoretical energy density yet investigated.

  9. The electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    Electrochemical cells have been fabricated for the simultaneous generation of oxygen and lithium from a Li2O-containing molten salt (Li2O-LiCl-LiF). The cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia (YSZ), to effect separation between oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700-850 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducing agent for the chemical refining of lunar ores. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery system which possesses the highest theoretical energy density yet investigated.

  10. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. This journal is © The Royal Society of Chemistry 2012

  11. Evolution of complex adaptations in molecular systems

    PubMed Central

    Pál, Csaba; Papp, Balázs

    2017-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044

  12. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    PubMed

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for these catalysts.

  13. The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity

    PubMed Central

    Pagliano, Cristina; La Rocca, Nicoletta; Andreucci, Flora; Deák, Zsuzsanna; Vass, Imre; Rascio, Nicoletta; Barbato, Roberto

    2009-01-01

    Background and Aims Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca2+ and Cl− as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl− and Ca2+, but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides. Methods Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT–PCR and time-resolved chlorophyll fluorescence were used. Key Results Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein. Conclusions In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII. PMID:19033288

  14. Electrostatic interaction of positive charges on the surface of Psb31 with photosystem II in the diatom Chaetoceros gracilis.

    PubMed

    Nagao, Ryo; Suzuki, Takehiro; Okumura, Akinori; Kihira, Tomohiro; Toda, Ayaka; Dohmae, Naoshi; Nakazato, Katsuyoshi; Tomo, Tatsuya

    2017-09-01

    Psb31, a novel extrinsic protein found in diatom photosystem II (PSII), directly binds to PSII core subunits, independent of the other extrinsic proteins, and functions to maintain optimum oxygen evolution. However, how Psb31 electrostatically interacts with PSII intrinsic proteins remains to be clarified. In this study, we examined electrostatic interaction of Psb31 with PSII complexes isolated from the diatom Chaetoceros gracilis. Positive or negative charges of isolated Psb31 proteins were modified with N-succinimidyl propionate (NSP) or glycine methyl ester (GME), respectively, resulting in formation of uncharged groups. NSP-modified Psb31 did not bind to PSII with a concomitant increase in NSP concentration, whereas GME-modified Psb31 clearly bound to PSII with retention of oxygen-evolving activity, indicating that positive charges of Lys residues and the N-terminus on the surface of Psb31 are involved in electrostatic interactions with PSII intrinsic proteins. Mass spectrometry analysis of NSP-modified Psb31 and sequence comparisons of Psb31 from C. gracilis with other chromophyte algae led to identification of three Lys residues as possible binding sites to PSII. Based on these findings, together with our previous cross-linking study in diatom PSII and a red algal PSII structure, we discuss binding properties of Psb31 with PSII core proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  16. Effect of micro-oxygenation and wood type on the phenolic composition and color of an aged red wine.

    PubMed

    Sánchez-Iglesias, Montserrat; González-Sanjosé, Ma Luisa; Pérez-Magariño, Silvia; Ortega-Heras, Miriam; González-Huerta, Carlos

    2009-12-23

    Many studies have recently been published focused on the effects of micro-oxygenation on the quality of wines, its application modes, and doses, etc. However, there are still few scientific papers on how previously micro-oxygenated wines perform during storage or barrel aging. This study focused on the evolution of the phenolic composition, especially of anthocyanins, and color, together with astringency and tannins, during micro-oxygenation before barrel aging. In addition, to evaluate whether wine evolution during aging depends on barrel type, wines were aged in four different oak barrel types. Tempranillo wines, some micro-oxygenated before malolactic fermentation and others not, were aged for 12 months in American, French, Central European, and Spanish oak, following wine evolution during that period. The study was carried out for two consecutive vintages. Results showed that all wines evolved similarly; therefore, the micro-oxygenation treatment neither accelerated nor delayed the typical changes of aging. Slightly different evolutions were detected according to the barrel wood type, whether or not the wine was micro-oxygenated. The varied evolutions must therefore be associated with the differences from each oak type (structure, grain and density, composition, etc.).

  17. Oxygen control of breathing by an olfactory receptor activated by lactate

    PubMed Central

    Chang, Andy J.; Ortega, Fabian E.; Riegler, Johannes; Madison, Daniel V.; Krasnow, Mark A.

    2015-01-01

    Summary Animals have evolved homeostatic responses to changes in oxygen availability that act on different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long term responses to low oxygen (hypoxia) has been established1, the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood oxygen and stimulates breathing within seconds when oxygen declines2. Olfr78 mutants fail to increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces hyperventilation3–6, activates Olfr78 in heterologous expression experiments, induces calcium transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose that in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by sensing lactate produced when oxygen levels decline. PMID:26560302

  18. Oxidative damage to DNA: counterion-assisted addition of water to ionized DNA.

    PubMed

    Barnett, Robert N; Bongiorno, Angelo; Cleveland, Charles L; Joy, Abraham; Landman, Uzi; Schuster, Gary B

    2006-08-23

    Oxidative damage to DNA, implicated in mutagenesis, aging, and cancer, follows electron loss that generates a radical cation that migrates to a guanine, where it may react with water to form 8-oxo-7,8-dihydroguanine (8-OxoG). Molecular dynamics and ab initio quantum simulations on a B-DNA tetradecamer reveal activated reaction pathways that depend on the local counterion arrangement. The lowest activation barrier, 0.73 eV, is found for a reaction that starts from a configuration where a Na(+) resides in the major groove near the N7 atoms of adjacent guanines, and evolves through a transition state where a bond between a water oxygen atom and a carbon atom forms concurrently with displacement of a proton toward a neighboring water molecule. Subsequently, a bonded complex of a hydronium ion and the nearest backbone phosphate group forms. This counterion-assisted proton shuttle mechanism is supported by experiments exploiting selective substitution of backbone phosphates by methylphosphonates.

  19. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte.

    PubMed

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri.

  20. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte

    PubMed Central

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri. PMID:21845201

  1. Tendency towards maximum complexity in a nonequilibrium isolated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calbet, Xavier; Lopez-Ruiz, Ricardo

    2001-06-01

    The time evolution equations of a simplified isolated ideal gas, the {open_quotes}tetrahedral{close_quotes} gas, are derived. The dynamical behavior of the Lopez-Ruiz{endash}Mancini{endash}Calbet complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A >209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated {open_quotes}tetrahedral{close_quotes} gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach themore » maximum complexity path as it evolves toward equilibrium.« less

  2. A Practical Measure for the Complexity of Evolving Seismicity Patterns

    NASA Astrophysics Data System (ADS)

    Goltz, C.

    2005-12-01

    Earthquakes are a "complex" phenomenon. There is, however, no clear definition of what complexity actually is. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns. Such a measurement is desirable, not only for fundamental understanding but also for monitoring and possibly for forecasting. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such a measure of complexity to temporally evolving real-world seismicity patterns. Finally, I discuss the usefulness of the approach and regard the results in view of the occurrence of large earthquakes.

  3. Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms.

    PubMed

    Yedid, G; Ofria, C A; Lenski, R E

    2008-09-01

    Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.

  4. Bistability of atmospheric oxygen and the Great Oxidation.

    PubMed

    Goldblatt, Colin; Lenton, Timothy M; Watson, Andrew J

    2006-10-12

    The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability. The largest chemical transition was the 'Great Oxidation', approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10(-5) of the present atmospheric level (PAL) to more than 0.01 PAL, and possibly to more than 0.1 PAL. This transition took place long after oxygenic photosynthesis is thought to have evolved, but the causes of this delay and of the Great Oxidation itself remain uncertain. Here we show that the origin of oxygenic photosynthesis gave rise to two simultaneously stable steady states for atmospheric oxygen. The existence of a low-oxygen (less than 10(-5) PAL) steady state explains how a reducing atmosphere persisted for at least 300 million years after the onset of oxygenic photosynthesis. The Great Oxidation can be understood as a switch to the high-oxygen (more than 5 x 10(-3) PAL) steady state. The bistability arises because ultraviolet shielding of the troposphere by ozone becomes effective once oxygen levels exceed 10(-5) PAL, causing a nonlinear increase in the lifetime of atmospheric oxygen. Our results indicate that the existence of oxygenic photosynthesis is not a sufficient condition for either an oxygen-rich atmosphere or the presence of an ozone layer, which has implications for detecting life on other planets using atmospheric analysis and for the evolution of multicellular life.

  5. Structure of Sr-substituted photosystem II at 2.1 A resolution and its implications in the mechanism of water oxidation.

    PubMed

    Koua, Faisal Hammad Mekky; Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren

    2013-03-05

    Oxygen-evolving complex of photosystem II (PSII) is a tetra-manganese calcium penta-oxygenic cluster (Mn4CaO5) catalyzing light-induced water oxidation through several intermediate states (S-states) by a mechanism that is not fully understood. To elucidate the roles of Ca(2+) in this cluster and the possible location of water substrates in this process, we crystallized Sr(2+)-substituted PSII from Thermosynechococcus vulcanus, analyzed its crystal structure at a resolution of 2.1 Å, and compared it with the 1.9 Å structure of native PSII. Our analysis showed that the position of Sr was moved toward the outside of the cubane structure of the Mn4CaO5-cluster relative to that of Ca(2+), resulting in a general elongation of the bond distances between Sr and its surrounding atoms compared with the corresponding distances in the Ca-containing cluster. In particular, we identified an apparent elongation in the bond distance between Sr and one of the two terminal water ligands of Ca(2+), W3, whereas that of the Sr-W4 distance was not much changed. This result may contribute to the decrease of oxygen evolution upon Sr(2+)-substitution, and suggests a weak binding and rather mobile nature of this particular water molecule (W3), which in turn implies the possible involvement of this water molecule as a substrate in the O-O bond formation. In addition, the PsbY subunit, which was absent in the 1.9 Å structure of native PSII, was found in the Sr-PSII structure.

  6. Evolution of Mat Strength from the Paleoarchean to the Modern: A Record of Evolving Microbial Communities?

    NASA Astrophysics Data System (ADS)

    Tice, M.; Pope, M.; Thornton, D.

    2011-12-01

    Fossil microbial mats, i.e. surface-attached communities of benthic microorganisms, form the most extensive record of life on Earth. Qualitatively changing mat morphologies from 3.43-0.56-billion-years-ago may reflect the evolution of microorganism communities or changing environmental conditions. However, mat morphogenesis is not well understood or easily quantifiable, making interpretation of the mat record difficult. We show that microbial mat cohesion increased from ~1 Pa to ~13 Pa at 2.7-billion-years-ago (Ga), and has remained high for most of the rest of Earth history. This initial increase may represent an early increase in the productivity of mat communities, a change in the composition of extracellular polymeric substances (EPS) produced by mat-formers, or a change in the composition of seawater affecting EPS strength. The appearance of early high-strength communities was coincident with the appearance of voids representing gas bubbles in the apices of conical stromatolites; together, these changes may record the emergence of productive mat communities dominated by oxygenic cyanobacteria. The earliest high-strength communities, like early bubble-forming conical stromatolites, grew in low-energy environments. The appearance of high-strength communities in shallow-water environments starting 2.63-2.52 Ga coincided with the appearance of the first barrier reef complexes. We hypothesize that the first oxygenic cyanobacteria were most competitive with anoxygenic phototrophs in diffusion-limited environments. As the cyanobacteria became more proficient at oxygenic photosynthesis, they eventually outcompeted anoxygenic phototrophs in higher-energy environments. Competition with higher strength seaweed and grazing by metazoans has displaced mat communities from essentially all modern high-energy niches.

  7. Geochemical investigation of a sediment core from the Trajan basin at Portus, the harbor of ancient Rome

    NASA Astrophysics Data System (ADS)

    Delile, H.; Mazzini, I.; Blichert-Toft, J.; Goiran, J. P.; Arnaud-Godet, F.; Salomon, F.; Albarède, F.

    2014-03-01

    From the 1st century AD and for the duration of the Roman Empire, the Portus complex was the main harbor of Rome. Its location on the Tiber delta next to the Tyrrhenian Sea produced rapid environmental changes that, together with historical vicissitudes, largely determined the fate of the harbor. We have assembled data on the mineralogy, sedimentology, geochemistry, and ostracod populations of a sediment core drilled in the access channel of the hexagonal basin of Trajan, with the expectation that such a combined data set will shed new light on how the connections of the inland Trajan basin with the Tiber river, the earlier Claudius harbor on the nearby shoreline, and the sea evolved through the centuries. The data define four distinct periods which geochemistry characterizes by different conditions of salinity and oxygenation. These in turn can be related to historical periods and events by means of 14C data. The early Imperial Period was dominated by input of well-oxygenated freshwater from the Tiber. During the Late Empire, harbor water became relatively more influenced by seawater and increasingly oxygen deficient, which attests to a decommissioning of the Canale Trasverso connecting the harbor to the Tiber. The strong anthropogenic signal, which is visible very clearly in geochemical parameters, attests to the human occupation of the harbor area up to the Early Middle Ages, when human activity was brought to an abrupt end. The simultaneous use in this study of multiple complementary tracers has allowed for the sedimentary sources of the different classes of particles in the harbor basin to be identified and assigned to either the freshwater supply from the Canale Trasverso or the seawater of the Claudius harbor.

  8. Identification of vacancy-oxygen complexes in oxygen-implanted silicon probed with slow positrons

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Suzuki, R.; Ohdaira, T.; Akahane, T.

    2004-04-01

    Defects and their annealing behavior for low (2×1015/cm2) and high (1.7×1018/cm2) doses of 180 keV oxygen-implanted silicon have been investigated by the coincidence Doppler broadening (CDB) and lifetime measurements in variable-energy positron annihilation spectroscopy. In the low-dose sample, divacancies are induced throughout the entire implantation region. In the vacancy-oxygen coexisting region (300-500 nm depths), by raising the annealing temperature to 600 °C, vacancy-oxygen VxOy complexes with one vacant site are formed and, simultaneously, the migration of oxygen begins to takes place. In the vacancy-rich region (-200 nm depths), the evolution of simple vacancy clusters to V4 is mainly observed below 600 °C. From CDB and lifetime measurements, it has been proven that after annealing at 800 °C, the VxOy complexes are formed throughout the implanted region and they contain four vacant sites and a high ratio of y to x. On the other hand, high-dose implantation at 550 °C produces the VxOy complexes with a lifetime of a 430 ps in the near-surface region (less than 200 nm deep) and annealing at 1100 °C leads to the highest ratio of y to x. These complexes cannot be annealed out even by annealing at 1350 °C, and their structure is found to be very similar to that for the electron-irradiated amorphous SiO2.

  9. Hypotheses of cancer weakening and origin.

    PubMed

    Chan, John Cheung Yuen

    2015-01-01

    Approximately 2.7 billion years ago, cyanobacteria began producing oxygen by photosynthesis. Any free oxygen they produced was chemically captured by dissolved iron or organic matter. There was no ozone layer to protect living species against the radiation from space. Eukaryotic cells lived in water, under hypoxic environments, and metabolized glucose by fermentation. The Great Oxygenation Event (GOE) describes the point when oxygen sinks became saturated. This massive oxygenation of the Earth occurred approximately half a billion years ago. Species that evolved after the GOE are characterized by aerobic metabolism. Mammals evolved approximately a few hundred million years ago, with the ancient eukaryotic genes deeply embedded in their genome. Many genes have been exchanged by horizontal gene transfer (HGT) throughout the history of cellular evolution. Mammals have been invaded by viruses, and while viral genetic relics are embedded in mammalian junk genes, not all junk genes are genetic relics of viruses. These viral relics have been inactivated through evolution and have little impact on mammalian life. However, there is evidence to suggest that these viral genetic relics are linked to cancer. This hypothesis states that cancer develops when cell reproduction becomes defective because of the active involvement of viral genes, in a process similar to genetic engineering. Cancer cells are amalgamations of genetically modified organisms (GMOs). There are two main groups in cancer development. One group of cells arises by genetic engineering of a viral genetic relic, such as endogenous retroviruses (ERVs), which evolved after oxygenation of the atmosphere. This group is referred to here as genetically modified organisms from viral genes (GMOV). GMOVs may be inhibited by anticancer drugs. The second group arises by engineering of the genes of ancient eukaryotes, which existed prior to the oxygenation of the Earth. This second group is referred to as genetically modified organisms from ancient eukaryotic genes (GMOE). The GMOE group lives in hypoxic environments and metabolizes glucose by fermentation. GMOEs represent advanced cancer, which proliferate aggressively and are resistant to DNA damage. It has been demonstrated that as an ERV becomes more prevalent in a mammalian genome, the possibility that the mammal will develop cancer increases. The hypothesis also states that most cancers have their origins in GMOV by the incorporation of viral genes from junk genes. As the cancer progresses, further subgroups of cancer GMOs will develop. If the cancer advances even further, the GMOE could eventually develop prior to late-stage cancer. Because the genes of ancient eukaryotes have enhanced innate immunity, GMOE will eventually prevail over the weaker GMOV during cancer subgroup competition. Hence, cancer development is mainly determined by genes in the mammalian genome. An inherent weakness of cancer cells is their dependence on glucose and iron. Furthermore, they cannot tolerate physical disturbance. Ancient gene GMOs can be treated with a combination of mechanical vibration using glucose-coated magnetic nanoparticles and strengthening of the immune system. Herein, I suggest trials for verifying this hypothesis.

  10. Hypotheses of Cancer Weakening and Origin

    PubMed Central

    CHAN, John Cheung Yuen

    2015-01-01

    Approximately 2.7 billion years ago, cyanobacteria began producing oxygen by photosynthesis. Any free oxygen they produced was chemically captured by dissolved iron or organic matter. There was no ozone layer to protect living species against the radiation from space. Eukaryotic cells lived in water, under hypoxic environments, and metabolized glucose by fermentation. The Great Oxygenation Event (GOE) describes the point when oxygen sinks became saturated. This massive oxygenation of the Earth occurred approximately half a billion years ago. Species that evolved after the GOE are characterized by aerobic metabolism. Mammals evolved approximately a few hundred million years ago, with the ancient eukaryotic genes deeply embedded in their genome. Many genes have been exchanged by horizontal gene transfer (HGT) throughout the history of cellular evolution. Mammals have been invaded by viruses, and while viral genetic relics are embedded in mammalian junk genes, not all junk genes are genetic relics of viruses. These viral relics have been inactivated through evolution and have little impact on mammalian life. However, there is evidence to suggest that these viral genetic relics are linked to cancer. This hypothesis states that cancer develops when cell reproduction becomes defective because of the active involvement of viral genes, in a process similar to genetic engineering. Cancer cells are amalgamations of genetically modified organisms (GMOs). There are two main groups in cancer development. One group of cells arises by genetic engineering of a viral genetic relic, such as endogenous retroviruses (ERVs), which evolved after oxygenation of the atmosphere. This group is referred to here as genetically modified organisms from viral genes (GMOV). GMOVs may be inhibited by anticancer drugs. The second group arises by engineering of the genes of ancient eukaryotes, which existed prior to the oxygenation of the Earth. This second group is referred to as genetically modified organisms from ancient eukaryotic genes (GMOE). The GMOE group lives in hypoxic environments and metabolizes glucose by fermentation. GMOEs represent advanced cancer, which proliferate aggressively and are resistant to DNA damage. It has been demonstrated that as an ERV becomes more prevalent in a mammalian genome, the possibility that the mammal will develop cancer increases. The hypothesis also states that most cancers have their origins in GMOV by the incorporation of viral genes from junk genes. As the cancer progresses, further subgroups of cancer GMOs will develop. If the cancer advances even further, the GMOE could eventually develop prior to late-stage cancer. Because the genes of ancient eukaryotes have enhanced innate immunity, GMOE will eventually prevail over the weaker GMOV during cancer subgroup competition. Hence, cancer development is mainly determined by genes in the mammalian genome. An inherent weakness of cancer cells is their dependence on glucose and iron. Furthermore, they cannot tolerate physical disturbance. Ancient gene GMOs can be treated with a combination of mechanical vibration using glucose-coated magnetic nanoparticles and strengthening of the immune system. Herein, I suggest trials for verifying this hypothesis. PMID:25874009

  11. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles

    PubMed Central

    Raven, John A.; Giordano, Mario; Beardall, John; Maberly, Stephen C.

    2012-01-01

    Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)–photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO2 assimilation. The high CO2 and (initially) O2-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO2 decreased and O2 increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO2 affinity and CO2/O2 selectivity correlated with decreased CO2-saturated catalytic capacity and/or for CO2-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco–PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO2 episode followed by one or more lengthy high-CO2 episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO2 ocean. More investigations, including studies of genetic adaptation, are needed. PMID:22232762

  12. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis.

    PubMed

    Berney, Michael; Greening, Chris; Hards, Kiel; Collins, Desmond; Cook, Gregory M

    2014-01-01

    Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_2262–2263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.

  13. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Alex Brown, B.

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960's and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  14. History of chemical oxygen-iodine laser (COIL) development in the USA

    NASA Astrophysics Data System (ADS)

    Truesdell, Keith A.; Helms, Charles A.; Hager, Gordon D.

    1994-09-01

    This is an overview of the development of Chemical Oxygen-Iodine Laser (COIL) technology in the United States. Key technical developments will be reviewed, beginning in 1960 and culminating in 1977 with the first COIL lasing demonstration at the Air Force Weapons Laboratory (now the Phillips Laboratory). The discussion will then turn to subsonic laser development, supersonic lasing demonstration and efficiency improvements, and finishing with a brief discussion of some spin off COIL technologies. Particular emphasis will be placed on how the O2 (1(Delta) ) generator and O2-I2 mixing nozzle technologies evolved.

  15. History of chemical oxygen-iodine laser (COIL) development in the USA

    NASA Astrophysics Data System (ADS)

    Truesdell, Keith A.; Helms, Charles A.; Hager, Gordon D.

    1995-03-01

    This is an overview of the development of Chemical Oxygen-Iodine Laser (COIL) technology in the United States. Key technical developments will be reviewed, beginning in 1960 and culminating in 1977 with the first COIL lasing demonstration at the Air Force Weapons Laboratory (now the Phillips Laboratory). The discussion will then turn to subsonic laser development, supersonic lasing demonstration and efficiency improvements, and finishing with a brief discussion of some spin off COIL technologies. Particular emphasis will be placed on how the O2 (1(Delta) ) generator and O2-I2 mixing nozzle technologies evolved.

  16. Evolving a Method to Capture Science Stakeholder Inputs to Optimize Instrument, Payload, and Program Design

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Bailin, S.

    2012-03-01

    We are developing Frontier, a highly adaptable, stably reconfigurable, web-accessible intelligent decision engine capable of optimizing design as well as the simulating operation of complex systems in response to evolving needs and environment.

  17. Modern and ancient geochemical constraints on Proterozoic atmosphere-ocean redox evolution

    NASA Astrophysics Data System (ADS)

    Hardisty, D. S.; Horner, T. J.; Wankel, S. D.; Lu, Z.; Lyons, T.; Nielsen, S.

    2017-12-01

    A detailed understanding of the spatiotemporal oxygenation of Earth's atmosphere-ocean system through the Precambrian has important implications for the environments capable of sustaining early eukaryotic life and the evolving oxidant budget of subducted sediments. Proxy records suggest an anoxic Fe-rich deep ocean through much of the Precambrian and atmospheric and surface-ocean oxygenation that started in earnest at the Paleoproterozoic Great Oxidation Event (GOE). The marine photic zone represented the initial site of oxygen production and accumulation via cyanobacteria, yet our understanding of surface-ocean oxygen contents and the extent and timing of oxygen propagation and exchange between the atmosphere and deeper ocean are limited. Here, we present an updated perspective of the constraints on atmospheric, surface-ocean, and deep-ocean oxygen contents starting at the GOE. Our research uses the iodine content of Proterozoic carbonates as a tracer of dissolved iodate in the shallow ocean, a redox-sensitive species quantitatively reduced in modern oxygen minimum zones. We supplement our understanding of the ancient record with novel experiments examining the rates of iodate production from oxygenated marine environments based on seawater incubations. Combining new data from iodine with published shallow marine (Ce anomaly, N isotopes) and atmospheric redox proxies, we provide an integrated view of the vertical redox structure of the atmosphere and ocean across the Proterozoic.

  18. The Secretion of Oxygen into the Swim-bladder of Fish

    PubMed Central

    Wittenberg, Jonathan B.; Wittenberg, Beatrice A.

    1961-01-01

    Toadfish, Opsanus tau, L., were maintained in sea water equilibrated with gas mixtures containing a fixed proportion of oxygen and varying proportions of carbon monoxide. The swim-bladder was emptied by puncture, and, after an interval of 24 or 48 hours, the newly secreted gases were withdrawn and analyzed. Both carbon monoxide and oxygen are accumulated in the swim-bladder at tensions greater than ambient. The ratio of concentrations, carbon monoxide (secreted): carbon monoxide (administered) bears a constant relation to the ratio, oxygen (secreted): oxygen (administered). The value of the partition coefficient describing this relation is (α = 5.44). The two gases are considered to compete for a common intracellular carrier mediating their active transport. The suggestion is advanced that the intracellular oxygen carrier is a hemoglobin. Comparison of the proportions of carboxy- and oxyhemoglobin in the blood with the composition of the secreted gas proves that the secreted gases are not evolved directly from combination with blood hemoglobin. The suggestion is advanced that cellular oxygen secretion occurs in the rete mirabile: the rete may build up large oxygen tensions in the gas gland capillaries. It is suggested that the gas gland acts as a valve impeding back diffusion of gases from the swim-bladder. PMID:13786093

  19. The Birth of a Cratonic Core: Petrologic Evolution of the Hadean-Eoarchean Acasta Gneiss Complex

    NASA Astrophysics Data System (ADS)

    Reimink, J. R.; Chacko, T.; Davies, J.; Pearson, D. G.; Stern, R. A.; Heaman, L. M.; Carlson, R.; Shirey, S. B.

    2016-12-01

    Granitoid magmatism within the 4.02-3.6 Ga Acasta Gneiss Complex records distinct whole-rock compositional changes during the building the Slave Craton. Previously1,2 we suggested that these signatures implied petrologic changes from initiation of evolved crust formation in an Iceland-like setting to partial melting of hydrated mafic crust at increasing depth through time, culminating in relatively voluminous magmatism at 3.6 Ga. Increasing La/Yb in these rocks suggest increasing depth of melting (and increasing residual garnet content) with time, ending in emplacement of rocks comparable to other Archean TTG suites3, with both high pressure (high La/Yb) and low pressure (low La/Yb) rocks represented at 3.6 Ga. Data from rocks with variable La/Yb that crystallized 3.6 Ga allow us to evaluate potential mechanisms for formation of rocks of this age such as subduction/accretion or intracrustal melting/delamination. Despite major and trace element compositional and age variability, zircon oxygen isotope compositions from a wide variety of rocks are extremely consistent (+6.0-6.5 ‰ from 3.9-2.9 Ga), implying a similar source, one that had been altered by surface waters1. Potential source rocks include the upper portion of oceanic crust, which contains a large portion of mafic crust that had been altered at low temperatures (e.g., 4). Paired whole rock and zircon radiogenic isotopic data are especially sensitive to the extent of pre-existing felsic material in the region, as well as the longevity of primary, basaltic rocks prior to their reworking into more evolved crust. New paired zircon Hf and whole rock Nd isotope data collected from these samples show variably unradiogenic signatures and allow an exploration of similarities and disparities between crust formation in the Acasta Gneiss Complex and other Paleoarchean-Mesoarchean crustal blocks. [1] Reimink et al., 2016. Precambrian Research 281, 453-472. [2] Reimink et al., 2014 Nature Geoscience 7, 529-533. [3] Moyen and Martin, 2012 Lithos 148, 312-348. [4] Eiler, J.M., 2001 Reviews in Mineralogy and Geochemistry 43, 319-364.

  20. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    PubMed

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic and Epigenetic Interactions Regulate Vascular Phenotypic Change and Maintenance in Pulmonary Hypertension

    DTIC Science & Technology

    2016-10-01

    Krebs cycle through the generation of alpha-ketoglutarate. However, increased oxidative stress affected oxygen consumption rates at the Complex I...machinery and respiration in PH-Fibs. The difference in endogenous respiration, (i.e., oxygen consumption ) was not statistically different compared...driven through complex I. We found a roughly17% drop in oxygen consumption in PH-Fibs versus Co-Fibs (Figure 3C), which corresponded to the down

  2. Nitrogen oxides from burning forest fuels examined by thermogravimetry and evolved gas analysis

    Treesearch

    H.B. Clements; Charles K. McMahon

    1980-01-01

    Abstract. Twelve forest fuels that varied widely in nitrogen content were burned in a thermogravimetric system, and nitrogen oxide production was analyzed by chemiluminescence. The effects of fuel nitrogen concentration, available oxygen, flow rate, and heating rate on nitrogen oxide production were examined.Results show that fuel nitrogen is an...

  3. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  4. SSV Launch Monitoring Strategies: HGDS Design Implementation Through System Maturity

    NASA Technical Reports Server (NTRS)

    Shoemaker, Marc D.; Crimi, Thomas

    2010-01-01

    With over 500,000 gallons of liquid hydrogen and liquid oxygen, it is of vital importance to monitor the space shuttle vehicle (SSV) from external tank (ET) load through launch. The Hazardous Gas Detection System (HGDS) was installed as the primary system responsible for monitoring fuel leaks within the orbiter and ET. The HGDS was designed to obtain the lowest possible detection limits with the best resolution while monitoring the SSV for any hydrogen, helium, oxygen, or argon as the main requirement. The HGDS is a redundant mass spectrometer used for real-time monitoring during Power Reactant Storage and Distribution (PRSD) load and ET load through launch or scrub. This system also performs SSV processing leak checks of the Tail Service Mast (TSM) umbilical quick disconnects (QD's), Ground Umbilical Carrier Plate (GUCP) QD's and supports auxiliary power unit (APU) system tests. From design to initial implementation and operations, the HGDS has evolved into a mature and reliable launch support system. This paper will discuss the operational challenges and lessons learned from facing design deficiencies, validation and maintenance efforts, life cycle issues, and evolving requirements

  5. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Buschbacher, Ralph M.; Newton, Gerald L.

    1988-01-01

    The low molecular weight thiol composition of a variety of phototropic microorganisms is examined in order to ascertain how evolution of glutathione (GSH) production is related to the evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols (RSH) to fluorescent derivatives (RSmB) which were analyzed by high performance liquid chromatography (HPLC). Significant levels of GSH were not found in green sulfur bacteria. Substantial levels were present in purple bacteria, cyanobacteria, and eukaryotic algae. Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide. Many of the organisms also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability which was quenched by treatment with 2-pyridyl disulfide or 5,5 prime-bisdithio - (2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototropic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

  6. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    PubMed

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermal Control Technologies for Complex Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    2004-01-01

    Thermal control is a generic need for all spacecraft. In response to ever more demanding science and exploration requirements, spacecraft are becoming ever more complex, and hence their thermal control systems must evolve. This paper briefly discusses the process of technology development, the state-of-the-art in thermal control, recent experiences with on-orbit two-phase systems, and the emerging thermal control technologies to meet these evolving needs. Some "lessons learned" based on experience with on-orbit systems are also presented.

  8. 3d-4f {Co(II)3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts.

    PubMed

    Evangelisti, Fabio; Moré, René; Hodel, Florian; Luber, Sandra; Patzke, Greta Ricarda

    2015-09-02

    Although the {CaMn4O5} oxygen evolving complex (OEC) of photosystem II is a major paradigm for water oxidation catalyst (WOC) development, the comprehensive translation of its key features into active molecular WOCs remains challenging. The [Co(II)3Ln(hmp)4(OAc)5H2O] ({Co(II)3Ln(OR)4}; Ln = Ho-Yb, hmp = 2-(hydroxymethyl)pyridine) cubane WOC series is introduced as a new springboard to address crucial design parameters, ranging from nuclearity and redox-inactive promoters to operational stability and ligand exchange properties. The {Co(II)3Ln(OR)4} cubanes promote bioinspired WOC design by newly combining Ln(3+) centers as redox-inactive Ca(2+) analogues with flexible aqua-/acetate ligands into active and stable WOCs (max. TON/TOF values of 211/9 s(-1)). Furthermore, they open up the important family of 3d-4f complexes for photocatalytic applications. The stability of the {Co(II)3Ln(OR)4} WOCs under photocatalytic conditions is demonstrated with a comprehensive analytical strategy including trace metal analyses and solution-based X-ray absorption spectroscopy (XAS) investigations. The productive influence of the Ln(3+) centers is linked to favorable ligand mobility, and the experimental trends are substantiated with Born-Oppenheimer molecular dynamics studies.

  9. Di-μ-but-2-enoato-bis­[diaqua­bis(but-2-enoato)neodymium(III)] 2,6-diamino­purine disolvate

    PubMed Central

    Atria, Ana María; Astete, Alan; Garland, Maria Teresa; Baggio, Ricardo

    2011-01-01

    The title Nd complex [Nd2(C4H5O2)6(H2O)4]·2C5H6N6 is isotypic with two previously reported Dy and Ho isologues. It is composed of [Nd(crot)3(H2O)2]2 dimers [crot(onate) = but-2-enoate = C4H5O2], built up around symmetry centres and completed by 2,6-diamine­purine mol­ecules acting as solvates. The neodymium cations are coordinated by three chelating crotonato units and two water mol­ecules. One of the chelating carboxyl­ates acts also in a bridging mode, sharing one oxygen with both cations, and the final result is a pair of NdO9 tricapped prismatic polyhedra linked to each other through a central (Nd—O)2 loop. A most attractive aspect of the structures resides in the existence of a complex inter­molecular hydrogen-bonding interaction scheme involving two sets of tightly inter­linked, non-inter­secting one-dimensional structures, one of them formed by the [Nd(crot)3(H2O)2]2 dimers running along [100] and the second by the solvate mol­ecules evolving along [010]. PMID:22058842

  10. CONNECTIVITY OF ENVIRONMENT, HUMAN HEALTH AND SOCIOECONOMICS: IMPLICATIONS FOR SCIENCE AND POLICY

    EPA Science Inventory

    Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization of commerce, evolving patterns of land use, and technological advances in such areas as manufacturing and genetically modified food...

  11. Combustion of organic matter in Mars analogs using SAM-like techniques

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; McAdam, A.; Mahaffy, P. R.; Steele, A.

    2012-12-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure the carbon isotopic composition (δ13C) of the evolved CO2 using the Tunable Laser Spectrometer (TLS). The degree to which the δ13C of the sample is representative of any organic carbon present depends on a) whether complete combustion has been achieved, and b) the simultaneous presence of inorganic, or mineralogical carbon in the sample, and our ability to quantify its contribution to the bulk δ13C. To optimize and characterize combustion of a variety of organic molecules in a range of rock matrices, combustion experiments simulating those to be performed on SAM were conducted at NASA Goddard. CO2 gas generated by heating Mars analogs in a SAM-like oven in the presence of oxygen on a laboratory breadboard was captured and analyzed via IRMS for δ13C. These values were compared to bulk and total organic carbon (TOC) abundance and δ13C values using commercial flash combustion EA- IRMS techniques to determine whether quantitative conversion of reduced carbon to CO2 was achieved. Factors contributing to incomplete combustion and isotopic fractionation include structural complexity of reduced organics, their thermal decomposition temperatures, and mineral-organic associations. An additional consideration must be made for unintentional combustion by oxidizing salts (perchlorates), which may partially or totally oxidize reduced organic compounds to CO2, depending on soil perchlorate concentration, sample matrix, and how refractory the organics are. Thus, to investigate the oxidizing potential of a salt known to exist on the Martian surface, laboratory breadboard experiments heating simple and complex organics in the presence of Mg perchlorate were performed using a SAM-like oven coupled to a Hiden Mass Spectrometer and gas collection manifold. Samples were heated in the absence and presence of Mg perchlorate to ~900 °C and mass spectral data were monitored for O2, CO2, CO, and chlorinated hydrocarbons. If CO2 was produced by perchlorate-induced oxidation of organics, a second experiment was conducted and CO2 was captured for δ13C analysis. These results could help determine whether δ13C of CO2 evolved during decomposition of organics could provide useful information in lieu of the organics themselves, in the case of the coexistence of organics with highly oxidizing materials in the regolith.

  12. Metal oxidation states in biological water splitting† †Electronic supplementary information (ESI) available: Additional methodological details and discussion, Tables S1–S10, Fig. S1–S16, spin populations, parameters of optimized structures, experimental details and analysis of 55Mn ENDOR at 2.5 K, analysis of calculated Mn K pre-edge XAS, discussion of reduced S states. See DOI: 10.1039/c4sc03720k Click here for additional data file.

    PubMed Central

    Krewald, Vera; Retegan, Marius; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; DeBeer, Serena; Neese, Frank

    2015-01-01

    A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster. PMID:29308133

  13. Photosensitized generation of singlet oxygen by rhenium(I) complex

    NASA Astrophysics Data System (ADS)

    Burchinov, A. N.; Kiselev, V. M.; Penni, A. A.; Khistyaeva, V. V.

    2015-12-01

    The photosensitized generation of singlet oxygen in solutions of rhenium(I) complex fac-[Re(bipy)(CO)3NCCH3]+OTf-, where bipy=2,2'-bipyridine, in chloride methylene and carbon tetrachloride under continuous LED irradiation in the UV and visible ranges has been investigated.

  14. A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression.

    PubMed

    Winkler, Andreas; Heintz, Udo; Lindner, Robert; Reinstein, Jochen; Shoeman, Robert L; Schlichting, Ilme

    2013-07-01

    The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light energy. Illumination, however, enhances repression under semiaerobic conditions. Here, we describe molecular details of two proteins mediating oxygen and light control of photosynthesis-gene expression: the light-sensing antirepressor AppA and the transcriptional repressor PpsR. Our crystal structures of both proteins and their complex and hydrogen/deuterium-exchange data show that light activation of AppA-PpsR2 affects the PpsR effector region within the complex. DNA binding studies demonstrate the formation of a light-sensitive ternary AppA-PpsR-DNA complex. We discuss implications of these results for regulation by light and oxygen, highlighting new insights into blue light-mediated signal transduction.

  15. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies

    PubMed Central

    Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.

    2016-01-01

    Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices. PMID:27829071

  16. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.

    PubMed

    Sové, Richard J; Fraser, Graham M; Goldman, Daniel; Ellis, Christopher G

    2016-01-01

    Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.

  17. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  18. 3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions.

    PubMed

    Huang, Xiaobo; Wang, Jianqiang; Bao, Hongliang; Zhang, Xiangkun; Huang, Yongmin

    2018-02-28

    The extensive research and developments of highly efficient oxygen electrode electrocatalysts to get rid of the kinetic barriers for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are very important in energy conversion and storage devices. Especially, exploring nonprecious metal alternatives to replace traditional noble metal catalysts with high cost and poor durability is the paramount mission. In this paper, we utilize property-flexible ZIF-67 and sulfur-functionalized graphene oxide to obtain a cobalt, nitrogen, and sulfur codoped nanomaterial with 3D hierarchical porous structures, owing to their rich dopant species and good conductivity. The crosslinked structures of polyhedron particles throughout the whole carbon framework speeds up the mass transportation and charge-delivery processes during oxygen-evolving reactions. Also, by exploring the location and coordination type of sulfur dopants, we emphasize the effects of sulfone and sulfide functional groups anchored into the graphitic structure on enhancing the catalytic abilities for ORR and OER. To note, compared to the noble metal electrocatalysts, the best-performing CoO@Co 3 O 4 /NSG-650 (0.79 V) is 40 mV less active than the commercial Pt/C catalyst (0.83 V) for ORR and merely 10 mV behind IrO 2 (1.68 V) for OER. Besides, the metric between ORR and OER difference for CoO@Co 3 O 4 /NSG-650 to evaluate its overall electrocatalytic activity is 0.90 V, surpassing 290 and 430 mV over Pt/C (1.19 V) and IrO 2 (1.33 V). Comprehensively, the as-prepared CoO@Co 3 O 4 /NSG-650 indicates excellent bifunctional catalytic activities for ORR and OER, which shows great potential for replacing noble metal catalysts in the application of fuel cells and metal-air batteries.

  19. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    PubMed Central

    Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael

    2013-01-01

    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369

  20. Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.

    2011-10-01

    An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.

  1. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover.

    PubMed

    Leshin, L A; Mahaffy, P R; Webster, C R; Cabane, M; Coll, P; Conrad, P G; Archer, P D; Atreya, S K; Brunner, A E; Buch, A; Eigenbrode, J L; Flesch, G J; Franz, H B; Freissinet, C; Glavin, D P; McAdam, A C; Miller, K E; Ming, D W; Morris, R V; Navarro-González, R; Niles, P B; Owen, T; Pepin, R O; Squyres, S; Steele, A; Stern, J C; Summons, R E; Sumner, D Y; Sutter, B; Szopa, C; Teinturier, S; Trainer, M G; Wray, J J; Grotzinger, J P

    2013-09-27

    Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

  2. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    NASA Astrophysics Data System (ADS)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  3. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue.

    PubMed

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-13

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO 4 :Eu 3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  4. Adult venovenous extracorporeal membrane oxygenation for severe respiratory failure: Current status and future perspectives.

    PubMed

    Sen, Ayan; Callisen, Hannelisa E; Alwardt, Cory M; Larson, Joel S; Lowell, Amelia A; Libricz, Stacy L; Tarwade, Pritee; Patel, Bhavesh M; Ramakrishna, Harish

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) for severe acute respiratory failure was proposed more than 40 years ago. Despite the publication of the ARDSNet study and adoption of lung protective ventilation, the mortality for acute respiratory failure due to acute respiratory distress syndrome has continued to remain high. This technology has evolved over the past couple of decades and has been noted to be safe and successful, especially during the worldwide H1N1 influenza pandemic with good survival rates. The primary indications for ECMO in acute respiratory failure include severe refractory hypoxemic and hypercarbic respiratory failure in spite of maximum lung protective ventilatory support. Various triage criteria have been described and published. Contraindications exist when application of ECMO may be futile or technically impossible. Knowledge and appreciation of the circuit, cannulae, and the physiology of gas exchange with ECMO are necessary to ensure lung rest, efficiency of oxygenation, and ventilation as well as troubleshooting problems. Anticoagulation is a major concern with ECMO, and the evidence is evolving with respect to diagnostic testing and use of anticoagulants. Clinical management of the patient includes comprehensive critical care addressing sedation and neurologic issues, ensuring lung recruitment, diuresis, early enteral nutrition, treatment and surveillance of infections, and multisystem organ support. Newer technology that delinks oxygenation and ventilation by extracorporeal carbon dioxide removal may lead to ultra-lung protective ventilation, avoidance of endotracheal intubation in some situations, and ambulatory therapies as a bridge to lung transplantation. Risks, complications, and long-term outcomes and resources need to be considered and weighed in before widespread application. Ethical challenges are a reality and a multidisciplinary approach that should be adopted for every case in consideration.

  5. Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops

    PubMed Central

    Erickson, Gregory M.; Sidebottom, Mark A.; Kay, David I.; Turner, Kevin T.; Ip, Nathan; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.

    2015-01-01

    Herbivorous reptiles rarely evolve occluding dentitions that allow for the mastication (chewing) of plant matter. Conversely, most herbivorous mammals have occluding teeth with complex tissue architectures that self-wear to complex morphologies for orally processing plants. Dinosaurs stand out among reptiles in that several lineages acquired the capacity to masticate. In particular, the horned ceratopsian dinosaurs, among the most successful Late Cretaceous dinosaurian lineages, evolved slicing dentitions for the exploitation of tough, bulky plant matter. We show how Triceratops, a 9-m-long ceratopsian, and its relatives evolved teeth that wore during feeding to create fullers (recessed central regions on cutting blades) on the chewing surfaces. This unique morphology served to reduce friction during feeding. It was achieved through the evolution of a complex suite of osseous dental tissues rivaling the complexity of mammalian dentitions. Tribological (wear) properties of the tissues are preserved in ~66-million-year-old teeth, allowing the creation of a sophisticated three-dimensional biomechanical wear model that reveals how the complexes synergistically wore to create these implements. These findings, along with similar discoveries in hadrosaurids (duck-billed dinosaurs), suggest that tissue-mediated changes in dental morphology may have played a major role in the remarkable ecological diversification of these clades and perhaps other dinosaurian clades capable of mastication. PMID:26601198

  6. Excellently guarded materials against UV and oxygen in the surfactant molecular complex crystal matrix

    NASA Astrophysics Data System (ADS)

    Ichikawa, Haruyo; Iimura, Nahoko; Hirata, Hirotaka

    2000-07-01

    Crystalline surfactant molecular complexes (SCMs) generated between quaternary ammonium cationic surfactants such as CTAB and various additives disclose their excellent protective properties from UV light and oxygen to complex additive materials, which are occluded in the complex crystal matrix. The effects of UV and oxygen were followed by the absorption decay of additive chromophores in comparing that of naked additive specimens with that of those in the complexed state. From the decay profiles, the rate constants and the half-life times were estimated under the assumptions in which the photo and oxidation processes were dominated in accordance with the first-ordered reaction. The results afford us promising prospects in extending the shelf-life of every material, above all medicinal drug, with the consequence that these obtained values evidently demonstrate the remarkably suppressed rate and extremely elongated half-life times.

  7. Respiration in a changing environment.

    PubMed

    Perry, Steven F; Spinelli Oliveira, Elisabeth

    2010-08-31

    Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    PubMed

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  9. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.

    PubMed

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-05-22

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.

  10. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis

    PubMed Central

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-01-01

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710

  11. Brains, brawn and sociality: a hyaena’s tale

    PubMed Central

    Holekamp, Kay E.; Dantzer, Ben; Stricker, Gregory; Shaw Yoshida, Kathryn C.; Benson-Amram, Sarah

    2015-01-01

    Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores. PMID:26160980

  12. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution.

    PubMed

    Oz, Tugce; Guvenek, Aysegul; Yildiz, Sadik; Karaboga, Enes; Tamer, Yusuf Talha; Mumcuyan, Nirva; Ozan, Vedat Burak; Senturk, Gizem Hazal; Cokol, Murat; Yeh, Pamela; Toprak, Erdal

    2014-09-01

    Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations' resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity

    NASA Technical Reports Server (NTRS)

    Frost, S. A.; Balas, M. J.

    2010-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.

  14. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  15. Differential responses of juvenile and adult South African abalone (Haliotis midae Linnaeus) to low and high oxygen levels.

    PubMed

    Vosloo, Andre; Laas, Anél; Vosloo, Dalene

    2013-01-01

    Marine invertebrates have evolved multiple responses to naturally variable environmental oxygen, all aimed at either maintaining cellular oxygen homeostasis or limiting cellular damage during or after hypoxic or hyperoxic events. We assessed organismal (rates of oxygen consumption and ammonia excretion) and cellular (heat shock protein expression, anti-oxidant enzymes) responses of juvenile and adult abalone exposed to low (~83% of saturation), intermediate (~95% of saturation) and high (~115% of saturation) oxygen levels for one month. Using the Comet assay, we measured DNA damage to determine whether the observed trends in the protective responses were sufficient to prevent oxidative damage to cells. Juveniles were unaffected by moderately hypoxic and hyperoxic conditions. Elevated basal rates of superoxide dismutase, glutathione peroxidase and catalase were sufficient to prevent DNA fragmentation and protein damage. Adults, with their lower basal rate of anti-oxidant enzymes, had increased DNA damage under hypoxic and hyperoxic conditions, indicating that the antioxidant enzymes were unable to prevent oxidative damage under hypoxic and hyperoxic conditions. The apparent insensitivity of juvenile abalone to decreased and increased oxygen might be related to their life history and development in algal and diatom biofilms where they are exposed to extreme diurnal fluctuations in dissolved oxygen levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Mitochondrial oxygen consumption in permeabilized fibers and its link to colour changes in bovine M. semimembranosus muscle.

    PubMed

    Phung, V T; Khatri, M; Liland, K H; Slinde, E; Sørheim, O; Almøy, T; Saarem, K; Egelandsdal, B

    2013-01-01

    Animal and muscle characteristics were recorded for 41 cattle. The oxygen consumption rate (OCR) of M. semimembranosus was measured between 3.0-6.4h post mortem (PM3-6) and after 3 weeks in a vacuum pack at 4°C. Colour change measurements were performed following the 3 weeks using reflectance spectra (400-1,100 nm) and the colour coordinates L, a and b, with the samples being packaged in oxygen permeable film and stored at 4°C for 167 h. Significant individual animal differences in OCR at PM3-6 were found for mitochondrial complexes I and II. OCR of complex I declined with increased temperature and time PM, while residual oxygen-consuming side-reactions (ROX) did not. OCR of stored muscles was dominated by complex II respiration. A three-way regression between samples, colour variables collected upon air exposure and OCR of 3 weeks old fibres revealed a positive relationship between OCR and complex II activity and also between OCR and OCR(ROX). The presence of complex I and β-oxidation activities increased metmyoglobin formation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    PubMed

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Purification and properties of two terminal oxidase complexes of Escherichia coli aerobic respiratory chain.

    PubMed

    Kita, K; Konishi, K; Anraku, Y

    1986-01-01

    Two terminal oxidase complexes, cytochrome b-562-o complex and cytochrome b-558-d complex, are isolated in highly purified forms which show ubiquinol oxidase activities. From the result of steady-state kinetics of cytochromes in the membrane and E'm values of purified cytochromes, we propose a branched arrangement of the late exponential phase of aerobic growth, as shown in Fig. 10. Cytochrome b-556 is reduced by several dehydrogenases and the gene for this cytochrome (cybA) is located in the sdh gene cluster. Recently, we found another low-potential b-type cytochrome, cytochrome b-561 (Em' = 20 mV), which is also reduced by dehydrogenases. The position of this new cytochrome in the aerobic respiratory chain is under investigation. Two terminal oxidase complexes branch at the site of ubiquinone-8, and the Km value for oxygen of the purified cytochrome b-558-d complex is about 8-fold lower than that of the purified cytochrome b-562-o complex when ubiquinol-1 is used as substrate. This result is consistent with the idea that the cytochrome b-558-d complex is synthesized as an alternative oxidase for more efficient utilization of oxygen at low oxygen concentration. Thus, E. coli cells can maintain efficient oxidative energy conservation over a wide range of oxygen pressures by simply changing the contents of the two terminal oxidases, each of which functions as a coupling site.

  19. 'Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'.

    PubMed

    Barber, James

    2016-01-01

    About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally inorganic precursor for the evolution of the photosynthetic oxygen-evolving complex. In summary, the overall structure of the catalytic site has given a framework on which to build a mechanistic scheme for photosynthetic dioxygen generation and at the same time provide a blue-print and incentive to develop catalysts for artificial photo-electrochemical systems to split water and generate renewable solar fuels.

  20. The electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    Electrochemical cells have been fabricated for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF). The cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia (YSZ), to effect separation between oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 850 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density (i sub o) values being greater than 60mA sq cm. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducing agent (compared to H2) for the chemical refining of lunar ores. Because of the high reversibility of this electrochemical system, it has also formed tha basis for the lithium oxygen secondary battery system which possesses the highest theoretical energy density yet investigated.

  1. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    NASA Astrophysics Data System (ADS)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  2. The electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-12-01

    Electrochemical cells have been fabricated for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF). The cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia (YSZ), to effect separation between oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 850 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density (i sub o) values being greater than 60mA sq cm. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducing agent (compared to H2) for the chemical refining of lunar ores. Because of the high reversibility of this electrochemical system, it has also formed tha basis for the lithium oxygen secondary battery system which possesses the highest theoretical energy density yet investigated.

  3. Electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Sammells, Anthony F.; Semkow, Krystyna W.

    1987-01-01

    A high temperature electrolytic cell which simultaneously generates oxygen at the anode and liquid alkali metals at the cathode is electrochemically characterized. The electrolytic technology being investigated utilizes the oxygen vacancy conducting solid electrolyte, yttria stabilized zirconia, which effectively separates the oxygen evolving (at La0.89Sr0.10MnO3) and alkali metal (Li, Na) reducing (from a molten salt at either Pt or FeSi2) half cell reactions. In the finally engineered cell liquid alkali metal would be continuously removed from the cathode compartment and used as an effective reductant for the direct thermochemical refining of lunar ores to their metallic state with simultaneous oxidation of the alkali metal to its oxide. The alkali metal oxide would then be reintroduced into the electrolytic cell to complete the overall system cycle.

  4. Electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Sammells, Anthony F.; Semkow, Krystyna W.

    1987-09-01

    A high temperature electrolytic cell which simultaneously generates oxygen at the anode and liquid alkali metals at the cathode is electrochemically characterized. The electrolytic technology being investigated utilizes the oxygen vacancy conducting solid electrolyte, yttria stabilized zirconia, which effectively separates the oxygen evolving (at La0.89Sr0.10MnO3) and alkali metal (Li, Na) reducing (from a molten salt at either Pt or FeSi2) half cell reactions. In the finally engineered cell liquid alkali metal would be continuously removed from the cathode compartment and used as an effective reductant for the direct thermochemical refining of lunar ores to their metallic state with simultaneous oxidation of the alkali metal to its oxide. The alkali metal oxide would then be reintroduced into the electrolytic cell to complete the overall system cycle.

  5. Stereoselectivity in ene reactions with 1O2: matrix effects in polymer supports, photo-oxygenation of organic salts and asymmetric synthesis.

    PubMed

    Griesbeck, Axel G; Bartoschek, Anna; Neudörfl, Jörg; Miara, Claus

    2006-01-01

    The ene reaction of chiral allylic alcohols is applied as a tool for the investigation of intrapolymer effects by means of the stereoselectivity of the singlet-oxygen addition. The diastereo selectivity strongly depends on the structure of the polymer, the substrate loading degree and also on the degree of conversion demonstrating additional supramolecular effects evolving during the reaction. The efficiency and the stability of polymer-bound sensitizers were evaluated by the ene reaction of singlet oxygen with citronellol. The ene reaction with chiral ammonium salts of tiglic acid was conducted under solution phase conditions or in polystyrene beads under chiral contact ion-pair conditions. The products thus obtained precipitate during the photoreaction as ammonium salts. Moderate asymmetric induction was observed for this procedure for the first time.

  6. The oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.

  7. Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Wong, Ka Tat

    2018-04-01

    Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.

  8. On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.

    Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.

  9. Complexity in the Chinese stock market and its relationships with monetary policy intensity

    NASA Astrophysics Data System (ADS)

    Ying, Shangjun; Fan, Ying

    2014-01-01

    This paper introduces how to formulate the CSI300 evolving stock index using the Paasche compiling technique of weighed indexes after giving the GCA model. It studies dynamics characteristics of the Chinese stock market and its relationships with monetary policy intensity, based on the evolving stock index. It concludes by saying that it is possible to construct a dynamics equation of the Chinese stock market using three variables, and that it is useless to regular market-complexity according to changing intensity of external factors from a chaos point of view.

  10. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  11. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    DOE PAGES

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; ...

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni II-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar Ni III–oxygen adduct. Moreover, this rare examplemore » of a high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.« less

  12. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  13. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    PubMed Central

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-01-01

    Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825

  14. Oxychlorine and Chloride/Ferrian Saponite Mixtures as a Possible Source of Hydrochloric Acid Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hogancamp, J. V.; Sutter, B.; Archer, D., Jr.; Ming, D. W.; Mahaffy, P. R.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected HCl gas releases from several analyzed Gale Crater sediments, which are attributed to the presence of perchlorates, chlorates, and/or chlorides in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates produced HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced characteristic O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce HCl releases comparable to those detected by the SAM instrument. Perchlorates, chlorates, and chlorides were mixed with Gale Crater analog ferrian saponite to understand evolved HCl detected by SAM. Evolved water from thermally decomposing saponite is hypothesized to react with residual chloride phases from oxychlorine decomposition to produce high temperature (>700°C) HCl. Mixtures of chlorates, perchlorates, or chlorides with ferrian saponite were heated to 1000 °C in a laboratory analog SAM instrument. Results demonstrated that all chlorate and perchlorate mixtures produce HCl releases below 1000 °C when mixed with ferrian saponite. Mixtures of chlorides with ferrian saponite produced no oxygen releases but did produce HCl releases with peaks below 1000 °C. Ferrian saponite/Mg-chlorate mixtures produced two HCl releases (347 and 820 °C) similar to the Cumberland drilled sample. Additionally, sodium chloride mixed with ferrian saponite produced no oxygen releases and an HCl release (767 °C) similar to the Quela drilled sample. The Marimba drilled sample, which also produced no oxychlorine-derived oxygen, produced a high temperature HCl release that may be the result of chloride(s) reacting with evolved water from thermally decomposing ferrian saponite. Results of this work demonstrated that chlorides in the presence of evolved water from thermally decomposing saponite can explain the high temperature evolved HCl detected by SAM. Chlorides may either be native to the sample or be produced by perchlorate/chlorate thermal decomposition in order to yield Cl for high temperature (>700 °C) HCl production. Mg bearing Cl phases tend to produce two HCl releases (347-496 and 820 °C) while Ca and Na bearing phases produced one high temperature (>700 °C) HCl release. HCl release temperatures can be used to indicate the cation-type of the oxychlorine phase or chloride which is critical to understanding past geochemical conditions in Gale Crater.

  15. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships.

    PubMed

    Maharjan, Ram P; Ferenci, Thomas

    2017-06-01

    Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.

  16. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input–mutation output relationships

    PubMed Central

    Maharjan, Ram P.

    2017-01-01

    Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input–mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input–output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection. PMID:28594817

  17. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  18. Evolution of early life inferred from protein and ribonucleic acid sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Schwartz, R. M.

    1978-01-01

    The chemical structures of ferredoxin, 5S ribosomal RNA, and c-type cytochrome sequences have been employed to construct a phylogenetic tree which connects all major photosynthesizing organisms: the three types of bacteria, blue-green algae, and chloroplasts. Anaerobic and aerobic bacteria, eukaryotic cytoplasmic components and mitochondria are also included in the phylogenetic tree. Anaerobic nonphotosynthesizing bacteria similar to Clostridium were the earliest organisms, arising more than 3.2 billion years ago. Bacterial photosynthesis evolved nearly 3.0 billion years ago, while oxygen-evolving photosynthesis, originating in the blue-green algal line, came into being about 2.0 billion years ago. The phylogenetic tree supports the symbiotic theory of the origin of eukaryotes.

  19. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death.

    PubMed

    Koh, Eugene; Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-07-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death1[OPEN

    PubMed Central

    Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-01-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487

  1. Supplemental oxygen attenuates the increase in wound bacterial growth during simulated aeromedical evacuation in goats.

    PubMed

    Earnest, Ryan E; Sonnier, Dennis I; Makley, Amy T; Campion, Eric M; Wenke, Joseph C; Bailey, Stephanie R; Dorlac, Warren C; Lentsch, Alex B; Pritts, Timothy A

    2012-07-01

    Bacterial growth in soft tissue and open fractures is a known risk factor for tissue loss and complications in contaminated musculoskeletal wounds. Current care for battlefield casualties with soft tissue and musculoskeletal wounds includes tactical and strategic aeromedical evacuation (AE). This exposes patients to a hypobaric, hypoxic environment. In this study, we sought to determine whether exposure to AE alters bacterial growth in contaminated complex musculoskeletal wounds and whether supplemental oxygen had any effect on wound infections during simulated AE. A caprine model of a contaminated complex musculoskeletal wound was used. Complex musculoskeletal wounds were created and inoculated with bioluminescent Pseudomonas aeruginosa. Goats were divided into three experimental groups: ground control, simulated AE, and simulated AE with supplemental oxygen. Simulated AE was induced in a hypobaric chamber pressurized to 8,800 feet for 7 hours. Bacterial luminescence was measured using a photon counting camera at three time points: preflight (20 hours postsurgery), postflight (7 hours from preflight and 27 hours postsurgery), and necropsy (24 hours from preflight and 44 hours postsurgery). There was a significant increase in bacterial growth in the AE group compared with the ground control group measured postflight and at necropsy. Simulated AE induced hypoxia with oxygen saturation less than 93%. Supplemental oxygen corrected the hypoxia and significantly reduced bacterial growth in wounds at necropsy. Hypoxia induced during simulated AE enhances bacterial growth in complex musculoskeletal wounds which can be prevented with the application of supplemental oxygen to the host.

  2. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

    PubMed

    Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall

    2018-05-23

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice.

    PubMed

    Pfitzner, Michael; Schlothauer, Jan C; Bastien, Estelle; Hackbarth, Steffen; Bezdetnaya, Lina; Lassalle, Henri-Pierre; Röder, Beate

    2016-06-01

    Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A mechanistic and kinetic study on the formation of PBDD/Fs from PBDEs.

    PubMed

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z

    2013-05-21

    This study presents a detailed mechanistic and kinetic investigation that explains the experimentally observed high yields of formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the polybrominated diphenyl ethers (PBDEs), commonly deployed in brominated flame retardants (BFRs). Theoretical calculations involved the accurate meta hybrid functional of M05-2X. The previously suggested pathways of debromination and generation of bromophenols/bromophenoxys/bromobenzenes were found to be unimportant corridors for the formation of PBDD/Fs. A loss of an ortho Br or H atom from PBDEs, followed by a ring-closure reaction, is the most accessible pathway for the production of PBDFs via modest reaction barriers. The initially formed peroxy-type adduct (RO₂) is found to evolve in a complex, nevertheless very exoergic, mechanism to produce PBDDs. Results indicate that, degree and pattern of bromination, in the vicinity of the ether oxygen bridge, has a minor influence on governing mechanisms and that even fully brominated isomers of BFRs are capable of forming PBDD/Fs. We thoroughly discuss bimolecular reactions of PBDEs with Br and H, as well as the Br-displacement reaction by triplet oxygen. The rate of the Br-displacement reaction significantly exceeds that of the unimolecular inititiation reactions due to loss of ortho Br or H. Results presented herein address conclusively the intriguing question of how PBDEs form PBDD/Fs, a matter that has been in the center of much debate among environmental chemists.

  5. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans

    PubMed Central

    Liu, Hui; Probert, Ian; Uitz, Julia; Claustre, Hervé; Aris-Brosou, Stéphane; Frada, Miguel; Not, Fabrice; de Vargas, Colomban

    2009-01-01

    The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the “rare biosphere.” This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19′-hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere. PMID:19622724

  6. Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans.

    PubMed

    Liu, Hui; Probert, Ian; Uitz, Julia; Claustre, Hervé; Aris-Brosou, Stéphane; Frada, Miguel; Not, Fabrice; de Vargas, Colomban

    2009-08-04

    The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the "rare biosphere." This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19'-hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere.

  7. Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations

    PubMed Central

    Weinkam, Patrick; Sali, Andrej

    2014-01-01

    Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820

  8. Complexity science and leadership in healthcare.

    PubMed

    Burns, J P

    2001-10-01

    The emerging field of complexity science offers an alternative leadership strategy for the chaotic, complex healthcare environment. A survey revealed that healthcare leaders intuitively support principles of complexity science. Leadership that uses complexity principles offers opportunities in the chaotic healthcare environment to focus less on prediction and control and more on fostering relationships and creating conditions in which complex adaptive systems can evolve to produce creative outcomes.

  9. Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho

    USGS Publications Warehouse

    Leeman, William P.; Whelan, Joseph F.

    1983-01-01

    The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are consistent with crystal fractionation processes and do not necessarily require bulk interaction with crustal rocks. Enrichment in d80 but not in 87Sr/86Sr in one suite of evolved lavas suggests that crustal contamination may not be essential to the petrogenesis of those lavas. Other suites of evolved lavas display large variations in 87Sr/86Sr that reflect at least some selective contamination with 87St. Bulk solid/liquid oxygen-isotope fractionation factors (a's) calculated for the evolved lavas from Craters of the Moon National Monument are comparatively large. These a's are dependent upon the nature and proportions of phases removed by crystal fractionation; basaltic lava a's differ from latitic lava a?s in accordance with different phenocryst assemblages in these rocks. Snake River Plain rhyolites are isotopically distinct from both the analyzed crustal xenoliths and olivine tholeiites. Their origin remains poorly understood, but crustal or sub-crustal sources may be viable. In the first case, they must be derived by anatexis of material distinct from the analyzed crustal xenoliths. In the second case, they must be derived from material unlike the source for tholeiites. No cogenetic relation with the tholeiites seems likely on the basis of available data. that might relate to the variation in the chemical petrology of the pluton.

  10. Eyes on the prize: reflections on the impact of the evolving digital ecology on the librarian as expert intermediary and knowledge coach, 1969-2009.

    PubMed

    Homan, J Michael

    2010-01-01

    The 2009 Janet Doe Lecture reflects on the continuing value and increasing return on investment of librarian-mediated services in the constantly evolving digital ecology and complex knowledge environment of the health sciences. The interrelationship of knowledge, decision making based on knowledge, technology used to access and retrieve knowledge, and the important linkage roles of expert librarian intermediaries is examined. Professional experiences from 1969 to 2009, occurring during a time of unprecedented changes in the digital ecology of librarianship, are the base on which the evolving role and value of librarians as knowledge coaches and expert intermediaries are examined. Librarian-mediated services linking knowledge and critical decision making in health care have become more valuable than ever as technology continues to reshape an increasingly complex knowledge environment.

  11. Primordial Evolution in the Finitary Process Soup

    NASA Astrophysics Data System (ADS)

    Görnerup, Olof; Crutchfield, James P.

    A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.

  12. Adaptive Correction from Virtually Complex Dynamic Libraries: The Role of Noncovalent Interactions in Structural Selection and Folding.

    PubMed

    Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio

    2015-11-16

    The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Temperature and oxygenation during organ preservation: friends or foes?

    PubMed

    Gilbo, Nicholas; Monbaliu, Diethard

    2017-06-01

    The liberalization of donor selection criteria in organ transplantation, with the increased use of suboptimal grafts, has stimulated interest in ischemia-reperfusion injury prevention and graft reconditioning. Organ preservation technologies are changing considerably, mostly through the reintroduction of dynamic machine preservation. Here, we review the current evidence on the role of temperature and oxygenation during dynamic machine preservation. A large but complex body of evidence exists and comparative studies are few. Oxygenation seems to support an advantageous effect in hypothermic machine preservation and is mandatory in normothermic machine preservation, although in the latter, supraphysiological oxygen tensions should be avoided. High-risk grafts, such as suboptimal organs, may optimally benefit from oxygenated perfusion conditions that support metabolism and activate mechanisms of repair such as subnormothermic machine preservation, controlled oxygenated rewarming, and normothermic machine preservation. For lower risk grafts, oxygenation during hypothermic machine preservation may sufficiently reduce injuries and recharge the cellular energy to secure functional recovery after transplantation. The relationship between temperature and oxygenation in organ preservation is more complex than physiological laws would suggest. Rather than one default perfusion temperature/oxygenation standard, perfusion protocols should be tailored for specific needs of grafts of different quality.

  14. Structure of 1:1 complex of 1-naphthylmethyl ester of monensin A with sodium perchlorate studied by X-ray, FT-IR and ab initio methods

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Brzezinski, Bogumil

    2012-12-01

    A new crystalline complex formed between 1-naphthylmethyl ester of the naturally occurring antibiotic - monensin A (MON8) with sodium perchlorate has been obtained and studied using X-ray crystallography and FT-IR spectroscopy. The X-ray data of the complex show that MON8 forms a pseudo-cyclic structure stabilised by one weak intramolecular hydrogen bond and the sodium cation co-ordinated by two oxygen atoms of hydroxyl groups and four etheric oxygen atoms in the hydrophilic sphere. Within this structure the oxygen atoms of the ester groups are not involved in the coordination of sodium cation. In contrast to the solid state structure of the complex, in acetonitrile solution an equilibrium between two structures, in which the oxygen atom of the carbonyl ester group is either involved or not involved in the complexation of the sodium cation, is found. In acetonitrile this equilibrium is shifted towards the latter structure i.e. the structure existing in the solid state. The gas-phase structure of [MON8sbnd Na]+ cation as shown the ab initio MO calculations is comparable with the crystal one. Three-dimensional molecular electrostatic potential calculated for the neutral MON8 and [MON8sbnd Na]+ molecules is helpful for understanding the structural aspects of the sodium complex formation.

  15. Structures of nitrato-(2-hydroxybenzaldehydo) (2,2 Prime -bipyridyl)copper and nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Paladi, L. G.; Antosyak, B. Ya.

    2011-03-15

    Nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper (I) and nitrato-(2-hydroxybenzaldehydo)(2,2 Prime -bipyridyl)copper (II) were synthesized and characterized by X-ray diffraction. The coordination polyhedron of the central copper atom in complex I can be described as a distorted tetragonal pyramid whose base is formed by the phenol and carbonyl oxygen atoms of the monodeprotonated 2-hydroxy-5nitrobenzaldehyde molecule and the nitrogen atoms of the 2,2 Prime -bipyridyl ligand and whose apex is occupied by the oxygen atom of the nitrato group. In the crystal structure, complexes I are linked by the acido ligands and the NO{sub 2} groups of the aldehyde molecule into infinite chains. In complexmore » II, the central copper atom is coordinated by 2-hydroxybenzaldehyde, 2,2 Prime -bipyridyl, and the nitrato group, resulting in the formation of centrosymmetric dimers. The coordination polyhedron of the central copper atom can be described as a bipyramid (4 + 1 + 1) with the same base as in complex I. The axial vertices of the bipyramid are occupied by the oxygen atom of the nitrato group and the bridging phenol oxygen atom of the adjacent complex related to the initial complex by a center of symmetry. In the crystal structure, complexes II are hydrogen bonded into infinite chains.« less

  16. Characterization of oxygen defects in diamond by means of density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Thiering, Gergő; Gali, Adam

    2016-09-01

    Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.

  17. The potential for chemical evolution on Titan

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Lunine, J. I.; Welch, C.

    2002-01-01

    Sampling of organics to determine oxygen content, extent of acetylene polymerization, existence of chiral molecules and enantiomeric excesses, and searches for specific polymer products, would be of interest in assessing how organic chemistry evolves toward biochemistry. Such efforts would require fairly sophisticated chemical analyses from landed missions. This paper examines this chemistry and the potential instruments that could distinguish chemical evolution.

  18. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  19. Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

    PubMed Central

    Bertrand, Arnaud; Chaigneau, Alexis; Peraltilla, Salvador; Ledesma, Jesus; Graco, Michelle; Monetti, Florian; Chavez, Francisco P.

    2011-01-01

    Background In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems. PMID:22216315

  20. Oxygen: a fundamental property regulating pelagic ecosystem structure in the coastal southeastern tropical Pacific.

    PubMed

    Bertrand, Arnaud; Chaigneau, Alexis; Peraltilla, Salvador; Ledesma, Jesus; Graco, Michelle; Monetti, Florian; Chavez, Francisco P

    2011-01-01

    In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems. © 2011 Bertrand et al.

  1. Oxygen reduction reaction catalyzed by nickel complexes based on thiophosphorylated calix[4]resorcinols and immobilized in the membrane electrode assembly of fuel cells.

    PubMed

    Kadirov, M K; Knyazeva, I R; Nizameev, I R; Safiullin, R A; Matveeva, V I; Kholin, K V; Khrizanforova, V V; Ismaev, T I; Burilov, A R; Budnikova, Yu H; Sinyashin, O G

    2016-10-18

    The catalytic activity of the nickel complexes of thiophosphorylated calix[4]resorcinols for oxygen reduction in a polymer electrolyte membrane fuel cell (PEMFC) has been studied. The conformation of the macrocyclic ligand determines the morphology and catalytic properties of the resulting organometallic species.

  2. Low frequency vibrational spectra and the nature of metal-oxygen bond of alkaline earth metal acetylacetonates

    NASA Astrophysics Data System (ADS)

    Fakheri, Hamideh; Tayyari, Sayyed Faramarz; Heravi, Mohammad Momen; Morsali, Ali

    2017-12-01

    Theoretical quantum chemistry calculations were used to assign the observed vibrational band frequencies of Be, Mg, Ca, Sr, and Ba acetylacetonates complexes. Density functional theory (DFT) calculations have been carried out at the B3LYP level, using LanL2DZ, def2SVP, and mixed, GenECP, (def2SVP for metal ions and 6-311++G** for all other atoms) basis sets. The B3LYP level, with mixed basis sets, was utilized for calculations of vibrational frequencies, IR intensity, and Raman activity. Analysis of the vibrational spectra indicates that there are several bands which could almost be assigned mainly to the metal-oxygen vibrations. The strongest Raman band in this region could be used as a measure of the stability of the complex. The effects of central metal on the bond orders and charge distributions in alkaline earth metal acetylacetonates were studied by the Natural Bond Orbital (NBO) method for fully optimized compounds. Optimization were performed at the B3LYP/6-311++G** level for the lighter alkaline earth metal complexes (Be, Mg, and Ca acetylacetonates) while the B3LYP level, using LanL2DZ (extrabasis, d and f on oxygen and metal atoms), def2SVP and mixed (def2SVP on metal ions and 6-311++G** for all other atoms) basis sets for all understudy complexes. Calculations indicate that the covalence nature of metal-oxygen bonds considerably decreases from Be to Ba complexes. The nature of metal-oxygen bond was further studied by using Atoms In Molecules (AIM) analysis. The topological parameters, Wiberg bond orders, natural charges of O and metal ions, and also some vibrational band frequencies were correlated with the stability constants of understudy complexes.

  3. Evolving Identities: The Person(al), the Profession(al), and the Artist(ic)

    ERIC Educational Resources Information Center

    Kaimal, Girija

    2015-01-01

    In this viewpoint, the author shares some experiences of living in the United States for the past 16 years and explores the uses of art and narratives in uncovering bias, illustrating lived experience, and informing research enterprises. In addition, contradictions, vulnerabilities, and complexities that underlie evolving constructions of culture,…

  4. Optimists' Creed: Brave New Cyberlearning, Evolving Utopias (Circa 2041)

    ERIC Educational Resources Information Center

    Burleson, Winslow; Lewis, Armanda

    2016-01-01

    This essay imagines the role that artificial intelligence innovations play in the integrated living, learning and research environments of 2041. Here, in 2041, in the context of increasingly complex wicked challenges, whose solutions by their very nature continue to evade even the most capable experts, society and technology have co-evolved to…

  5. Correlated nanoscale characterization of a unique complex oxygen-rich stardust grain: Implications for circumstellar dust formation

    NASA Astrophysics Data System (ADS)

    Leitner, J.; Hoppe, P.; Floss, C.; Hillion, F.; Henkel, T.

    2018-01-01

    We report the light to intermediate-mass element abundances as well as the oxygen, magnesium, silicon, and titanium isotope compositions of a unique and unusually large (0.8 μm × 3.75 μm) presolar O-rich grain from the Krymka LL3.2 chondrite. The O-, Al-, and Ti-isotopic compositions are largely compatible with an origin from an asymptotic giant branch (AGB) star of 1.5 solar masses with a metallicity that is 15% higher than the solar metallicity. The grain has an elevated 17O/16O ratio (8.40 ± 0.16 × 10-4) compared to solar, and slightly sub-solar 18O/16O ratio (1.83 ± 0.03 × 10-3). It shows evidence for the presence of initial 26Al, suggesting formation after the first dredge-up, during one of the early third dredge-up (TDU) episodes. Titanium isotopic data indicate condensation of the grain before significant amounts of material from the He-burning shell were admixed to the stellar surface with progressive TDUs. We observed a small excess in 30Si (δ30Si = 41 ± 5‰), which most likely is inherited from the parent star's initial Si-isotopic composition. For such stars stellar models predict a C/O-ratio < 1 even after the onset of TDU, thus allowing the condensation of O-rich dust. The grain is an unusual complex presolar grain, consisting of an Al-Ca-Ti-oxide core, surrounded by an Mg-Ca-silicate mantle, and resembles the condensation sequence for a cooling gas of solar composition at pressures and dust/gas ratios typically observed for circumstellar envelopes around evolved stars. We also report the first observation of phosphorus in a presolar grain, although the origin of the P-bearing phase remains ambiguous.

  6. The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life

    NASA Astrophysics Data System (ADS)

    Gale, Joseph; Wandel, Amri

    2017-01-01

    We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around Solar type stars.

  7. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    PubMed

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  8. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  9. Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.

    2018-04-01

    Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.

  10. Co-evolution of atmospheres, life, and climate.

    PubMed

    Grenfell, J Lee; Rauer, Heike; Selsis, Franck; Kaltenegger, Lisa; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO(2). CH(4) was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO(2) plus H(2) to CH(4), may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.

  11. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.

    PubMed

    Beltrame, T; Hughson, R L

    2017-05-01

    What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O 2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Reactive oxygen species may play an essential role in driving biological evolution: The Cambrian Explosion as an example.

    PubMed

    Yang, Dong; Guo, Xuejun; Xie, Tian; Luo, Xiaoyan

    2018-01-01

    The Cambrian Explosion is one of the most significant events in the history of life; essentially all easily fossilizable animal body plans first evolved during this event. Although many theories have been proposed to explain this event, its cause remains unresolved. Here, we propose that the elevated level of oxygen, in combination with the increased mobility and food intake of metazoans, led to increased cellular levels of reactive oxygen species (ROS), which drove evolution by enhancing mutation rates and providing new regulatory mechanisms. Our hypothesis may provide a unified explanation for the Cambrian Explosion as it incorporates both environmental and developmental factors and is also consistent with ecological explanations for animal radiation. Future studies should focus on testing this hypothesis, and may lead to important insights into evolution. Copyright © 2017. Published by Elsevier B.V.

  13. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans.

    PubMed

    Giovannelli, Donato; Sievert, Stefan M; Hügler, Michael; Markert, Stephanie; Becher, Dörte; Schweder, Thomas; Vetriani, Costantino

    2017-04-24

    Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the lineage of these modern organisms co-evolved with our planet. Hence, these organisms carry both ancestral and acquired genes and serve as models to reconstruct early metabolism. Based on comparative genomic and proteomic analyses, we identified two distinct groups of genes in Thermovibrio ammonificans : the first codes for enzymes that do not require oxygen and use substrates of geothermal origin; the second appears to be a more recent acquisition, and may reflect adaptations to cope with the rise of oxygen on Earth. We propose that the ancestor of the Aquificae was originally a hydrogen oxidizing, sulfur reducing bacterium that used a hybrid pathway for CO 2 fixation. With the gradual rise of oxygen in the atmosphere, more efficient terminal electron acceptors became available and this lineage acquired genes that increased its metabolic flexibility while retaining ancestral metabolic traits.

  14. The Complex Origins of the Registrar

    ERIC Educational Resources Information Center

    Smith, Shawn C.

    2012-01-01

    The origins of the registrar's office are complex. According to common tradition, the registrar was, or evolved from, the office of the beadle (sometimes referred to as "bedel") in the medieval university. This tradition is incorrect; the story is more complex. The beadle sometimes performed functions similar to those performed by the…

  15. Planktonic Marine Iron-Oxidizers Drive Iron(III) Mineralization Under Low Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Field, E.; Findlay, A.; MacDonald, D. J.; Chan, C. S. Y.; Kato, S.

    2016-02-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive banded iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypotheses was that cyanobacteria produced oxygen that oxidized iron(II) abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron(II)-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron-oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to iron deposits, but there is currently little evidence for planktonic marine iron-oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron-oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 µM O2, <0.2 µM H2S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Instead, cyanobacteria may be providing oxygen for microaerophilic iron(II) oxidation through a symbiotic relationship that promotes oxygen consumption rather than build-up. Our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron(II)-oxidizers were likely important drivers of iron(III) mineralization in ancient oceans.

  16. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  17. Response to reactive nitrogen intermediates in Mycobacterium tuberculosis: induction of the 16-kilodalton alpha-crystallin homolog by exposure to nitric oxide donors.

    PubMed

    Garbe, T R; Hibler, N S; Deretic, V

    1999-01-01

    In contrast to the apparent paucity of Mycobacterium tuberculosis response to reactive oxygen intermediates, this organism has evolved a specific response to nitric oxide challenge. Exposure of M. tuberculosis to NO donors induces the synthesis of a set of polypeptides that have been collectively termed Nox. In this work, the most prominent Nox polypeptide, Nox16, was identified by immunoblotting and by N-terminal sequencing as the alpha-crystallin-related, 16-kDa small heat shock protein, sHsp16. A panel of chemically diverse donors of nitric oxide, with the exception of nitroprusside, induced sHsp16 (Nox16). Nitroprusside, a coordination complex of Fe2+ with a nitrosonium (NO+) ion, induced a 19-kDa polypeptide (Nox19) homologous to the nonheme bacterial ferritins. We conclude that the NO response in M. tuberculosis is dominated by increased synthesis of the alpha-crystallin homolog sHsp16, previously implicated in stationary-phase processes and found in this study to be a major M. tuberculosis protein induced upon exposure to reactive nitrogen intermediates.

  18. Neonatal pulmonary physiology.

    PubMed

    Davis, Ryan P; Mychaliska, George B

    2013-11-01

    Managing pulmonary issues faced by both term and preterm infants remains a challenge to the practicing pediatric surgeon. An understanding of normal fetal and neonatal pulmonary development and physiology is the cornerstone for understanding the pathophysiology and treatment of many congenital and acquired problems in the neonate. Progression through the phases of lung development and the transition to postnatal life requires a symphony of complex and overlapping events to work in concert for smooth and successful transition to occur. Pulmonary physiology and oxygen transport in the neonate are similar to older children; however, there are critical differences that are important to take into consideration when treating the youngest of patients. Our understanding of fetal and neonatal pulmonary physiology continues to evolve as the molecular and cellular events governing these processes are better understood. This deeper understanding has helped to facilitate groundbreaking research, leading to improved technology and treatment of term and preterm infants. As therapeutics and research continue to advance, a review of neonatal pulmonary physiology is essential to assist the clinician with his/her management of the wide variety of challenging congenital and acquired pulmonary disease. © 2013 Published by Elsevier Inc.

  19. Genetic constraints predict evolutionary divergence in Dalechampia blossoms.

    PubMed

    Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott

    2014-08-19

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.

  20. Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2010-01-01

    Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O2 transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O2 transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O2 transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the α- and β-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O2 binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold. PMID:20660759

  1. Millimeter wave studies of circumstellar chemistry

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Emily Dale

    2010-06-01

    Millimeter wave studies of molecules in circumstellar envelopes and a planetary nebula have been conducted. Using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO) on Mt. Graham, a comparative spectral survey from 215-285 GHz was carried out of the carbon-rich asymptotic giant branch star IRC +10216 and the oxygen-rich supergiant VY Canis Majoris. A total of 858 emission lines were observed in both objects, arising from 40 different molecules. In VY Canis Majoris, AlO, AlOH, and PO were detected for the first time in interstellar space. In IRC +10216, PH3 was detected for the first time beyond the solar system, and C3O, and CH2NH were found for the first time in a circumstellar envelope. Additionally, in the evolved planetary nebula, the Helix, H2CO, C2H, and cyclic-C3H2 were observed using the SMT and the Kitt Peak 12 m telescopes. The presence of these three molecules in the Helix suggests that relatively complex chemistry occurs in planetary nebulae, despite the harsh ultraviolet field. Overall, the research on molecules in circumstellar and planetary nebulae furthers our understanding of the nature of the material that is fed back into the interstellar medium from evolved stars. Besides telescope work, laboratory research was also conducted -- the rotational spectrum of ZnCl was measured and its bond length and rotational constants were determined. Lastly, in partial fulfillment of a graduate certificate in entrepreneurial chemistry, the commercial applications of terahertz spectroscopy were explored through literature research.

  2. The evolution of phenotypic plasticity in fish swimming

    PubMed Central

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  3. The formation of diethyl ether via the reaction of iodoethane with atomic oxygen on the Ag(110) surface

    NASA Astrophysics Data System (ADS)

    Jones, G. Scott; Barteau, Mark A.; Vohs, John M.

    1999-01-01

    The reactions of iodoethane (ICH 2CH 3) on clean and oxygen-covered Ag(110) surfaces were investigated using temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). Iodoethane adsorbs dissociatively at 150 K to produce surface ethyl groups on both clean and oxygen-covered Ag(110) surfaces. The ethyl species couple to form butane on both surfaces, with the desorption peak maximum located between 218 and 238 K, depending on the ethyl coverage. In addition to butane, a number of oxidation products including diethyl ether, ethanol, acetaldehyde, surface acetate, ethylene, carbon dioxide and water were formed on the oxygen-dosed Ag(110) surface. Diethyl ether was the major oxygenate produced at all ethyl:oxygen ratios, and the peak temperature for ether evolution varied from 220 to 266 K depending on the relative coverages of these reactants. The total combustion products, CO 2 and H 2O, were primarily formed at low ethyl coverages in the presence of excess oxygen. The formation of ethylene near 240 K probably involves an oxygen-assisted dehydrogenation pathway since ethylene is not formed from ethyl groups on the clean surface. Acetaldehyde and ethanol evolve coincidentally with a peak centered at 270-280 K, and are attributed to the reactions of surface ethoxide species. The surface acetate which decomposes near 620 K is formed from subsequent reactions of acetaldehyde with oxygen atoms. The addition of ethyl to oxygen to form surface ethoxides was verified by HREELS results. The yields of all products exhibited a strong dependence on the relative coverages of ethyl and oxygen.

  4. Characterization and reactivity of a terminal nickel(III)-oxygen adduct.

    PubMed

    Pirovano, Paolo; Farquhar, Erik R; Swart, Marcel; Fitzpatrick, Anthony J; Morgan, Grace G; McDonald, Aidan R

    2015-02-23

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A simplified concept for controlling oxygen mixtures in the anaesthetic machine--better, cheaper and more user-friendly?

    PubMed

    Berge, J A; Gramstad, L; Grimnes, S

    1995-05-01

    Modern anaesthetic machines are equipped with several safety components to prevent delivery of hypoxic mixtures. However, such a technical development has increased the complexity of the equipment. We report a reconstructed anaesthetic machine in which a paramagnetic oxygen analyzer has provided the means to simplify the apparatus. The new machine is devoid of several components conventionally included to prevent hypoxic mixtures: oxygen failure protection device, reservoir O2 alarm, N2O/air selector, and proportioning system for oxygen/nitrous oxide delivery. These devices have been replaced by a simple safety system using a paramagnetic oxygen analyzer at the common gas outlet, which in a feed-back system cuts off the supply of nitrous oxide whenever the oxygen concentration falls below 25%. The simplified construction of the anaesthetic machine has important consequences for safety, cost and user-friendliness. Reducing the complexity of the construction also simplifies the pre-use checkout procedure, and an efficient 5-point check list is presented for the new machine.

  6. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  7. The Use of Extracorporeal Membrane Oxygenation-Cardiopulmonary Resuscitation in Prolonged Cardiac Arrest in Pediatric Patients: Is it Time to Expand It?

    PubMed

    Absi, Mohammed; Kumar, Susheel Tk; Sandhu, Hitesh

    2017-09-01

    Extracorporeal membrane oxygenation was instituted as an aid to in-hospital cardiopulmonary resuscitation (E-CPR) nearly 23 years ago, this led to remarkable improvement in survival considering the mortality rate associated with conventional cardiopulmonary resuscitation (CPR). Given this success, one begins to wonder whether the time has come for expanding the use of E-CPR to outside hospital cardiac arrests especially in the light of development of newer extracorporeal life support devices that are small, mobile, and easy to assemble. This editorial will review recent studies on this subject and address some key guidelines and limitations of this evolving and promising technology.

  8. Bioflumology: Microbial mat growth in flumes

    NASA Astrophysics Data System (ADS)

    Airo, A.; Weigert, S.; Beck, C.

    2014-04-01

    The emergence of oxygenic photosynthesis resulted in a transformational change of Earth's geochemical cycles and the subsequent evolution of life. However, it remains vigorously debated when this metabolic ability had evolved in cyanobacteria. This is largely because studies of Archean microfossil morphology, molecular biomarkers, and isotopic characteristics are frequently ambiguous. However, the high degree of morphological similarities between modern photosynthetic and Archean fossil mats has been interpreted to indicate phototactic microbial behavior or oxygenic photosynthesis. In order to better evaluate the relationship between mat morphology and metabolism, we here present a laboratory set-up for conducting month-long experiments in several sterilizable circular flumes designed to allow single-species cyanobacterial growth under adjustable fluid-flow conditions and protected from contamination.

  9. Pulverized coal burner

    DOEpatents

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  10. Pulverized coal burner

    DOEpatents

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  11. Eyes on the prize: reflections on the impact of the evolving digital ecology on the librarian as expert intermediary and knowledge coach, 1969–2009*

    PubMed Central

    Homan, J. Michael

    2010-01-01

    Objective: The 2009 Janet Doe Lecture reflects on the continuing value and increasing return on investment of librarian-mediated services in the constantly evolving digital ecology and complex knowledge environment of the health sciences. Setting: The interrelationship of knowledge, decision making based on knowledge, technology used to access and retrieve knowledge, and the important linkage roles of expert librarian intermediaries is examined. Methodology: Professional experiences from 1969 to 2009, occurring during a time of unprecedented changes in the digital ecology of librarianship, are the base on which the evolving role and value of librarians as knowledge coaches and expert intermediaries are examined. Conclusion: Librarian-mediated services linking knowledge and critical decision making in health care have become more valuable than ever as technology continues to reshape an increasingly complex knowledge environment. PMID:20098655

  12. Photosystems and global effects of oxygenic photosynthesis.

    PubMed

    Nelson, Nathan

    2011-08-01

    Because life on earth is governed by the second law of thermodynamics, it is subject to increasing entropy. Oxygenic photosynthesis, the earth's major producer of both oxygen and organic matter, is a principal player in the development and maintenance of life, and thus results in increased order. The primary steps of oxygenic photosynthesis are driven by four multi-subunit membrane protein complexes: photosystem I, photosystem II, cytochrome b(6)f complex, and F-ATPase. Photosystem II generates the most positive redox potential found in nature and thus capable of extracting electrons from water. Photosystem I generates the most negative redox potential found in nature; thus, it largely determines the global amount of enthalpy in living systems. The recent structural determination of PSII and PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. This newly available structural information complements knowledge gained from genomic and proteomic data, allowing for a more precise description of the scenario in which the evolution of life systems took place. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism

    PubMed Central

    Blockley, Nicholas P.; Griffeth, Valerie E. M.; Simon, Aaron B.; Buxton, Richard B.

    2013-01-01

    The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented. PMID:22945365

  14. How Mentoring Relationships Evolve: A Longitudinal Study of Academic Pediatricians in a Physician Educator Faculty Development Program

    ERIC Educational Resources Information Center

    Balmer, Dorene; D'Alessandro, Donna; Risko, Wanessa; Gusic, Maryellen E.

    2011-01-01

    Introduction: Mentoring is increasingly recognized as central to career development. Less attention has been paid, however, to how mentoring relationships evolve over time. To provide a more complete picture of these complex relationships, the authors explored mentoring from a mentee's perspective within the context of a three-year faculty…

  15. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.

    2017-05-01

    There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.

  16. Energized Oxygen : Speiser Current Sheet Bifurcation

    NASA Astrophysics Data System (ADS)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs significantly from previous investigations involving heavy ions in that they are energized as opposed to being simply thermal. This is a variation based firmly on published in-situ measurements. It also differs in that a complete population is used as opposed to simply test particles in a magnetic field model.

  17. Eye evolution at high resolution: the neuron as a unit of homology.

    PubMed

    Erclik, Ted; Hartenstein, Volker; McInnes, Roderick R; Lipshitz, Howard D

    2009-08-01

    Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.

  18. Editorial. Introduction to the regional assessments: Climate change, wildfire, and forest ecosystem services in the USA

    Treesearch

    Monique E. Rocca; Chelcy Ford Miniat; Robert J. Mitchell

    2014-01-01

    Fires have influenced and shaped vegetation ever since the climate evolved to provide both ignition sources and oxygen (Bowman et al., 2009). Fire has been one of the most frequent and impactful disturbances to ecosystems globally, and thus one of the major regulators of forest composition, function and dynamics (Spurr and Barnes, 1973 and Bond and Keeley, 2005). Any...

  19. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs

    PubMed Central

    Carere, Carlo R; Hards, Kiel; Houghton, Karen M; Power, Jean F; McDonald, Ben; Collet, Christophe; Gapes, Daniel J; Sparling, Richard; Boyd, Eric S; Cook, Gregory M; Greening, Chris; Stott, Matthew B

    2017-01-01

    Aerobic methanotrophic bacteria have evolved a specialist lifestyle dependent on consumption of methane and other short-chain carbon compounds. However, their apparent substrate specialism runs contrary to the high relative abundance of these microorganisms in dynamic environments, where the availability of methane and oxygen fluctuates. In this work, we provide in situ and ex situ evidence that verrucomicrobial methanotrophs are mixotrophs. Verrucomicrobia-dominated soil communities from an acidic geothermal field in Rotokawa, New Zealand rapidly oxidised methane and hydrogen simultaneously. We isolated and characterised a verrucomicrobial strain from these soils, Methylacidiphilum sp. RTK17.1, and showed that it constitutively oxidises molecular hydrogen. Genomic analysis confirmed that this strain encoded two [NiFe]-hydrogenases (group 1d and 3b), and biochemical assays revealed that it used hydrogen as an electron donor for aerobic respiration and carbon fixation. While the strain could grow heterotrophically on methane or autotrophically on hydrogen, it grew optimally by combining these metabolic strategies. Hydrogen oxidation was particularly important for adaptation to methane and oxygen limitation. Complementary to recent findings of hydrogenotrophic growth by Methylacidiphilum fumariolicum SolV, our findings illustrate that verrucomicrobial methanotrophs have evolved to simultaneously utilise hydrogen and methane from geothermal sources to meet energy and carbon demands where nutrient flux is dynamic. This mixotrophic lifestyle is likely to have facilitated expansion of the niche space occupied by these microorganisms, allowing them to become dominant in geothermally influenced surface soils. Genes encoding putative oxygen-tolerant uptake [NiFe]-hydrogenases were identified in all publicly available methanotroph genomes, suggesting hydrogen oxidation is a general metabolic strategy in this guild. PMID:28777381

  20. Complex Adaptive Schools: Educational Leadership and School Change

    ERIC Educational Resources Information Center

    Kershner, Brad; McQuillan, Patrick

    2016-01-01

    This paper utilizes the theoretical framework of complexity theory to compare and contrast leadership and educational change in two urban schools. Drawing on the notion of a complex adaptive system--an interdependent network of interacting elements that learns and evolves in adapting to an ever-shifting context--our case studies seek to reveal the…

  1. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates

    PubMed Central

    Dibrova, Daria V.; Cherepanov, Dmitry A.; Galperin, Michael Y.; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2013-01-01

    This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. PMID:23871937

  2. 114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Genetic constraints predict evolutionary divergence in Dalechampia blossoms

    PubMed Central

    Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott

    2014-01-01

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  4. Reactions of small organic molecules on silver(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayre, C.R.

    1992-01-01

    The interaction of two pairs of molecules (1) acetone (CH[sub 3])[sub 2]C=O and isobutylene (CH[sub 3])[sub 2] C=CH[sub 2] and (2) 1,2-propanediol CH[sub 3] CH (OH)CH[sub 2]OH and 1,3-propanediol HOCH[sub 2]CH[sub 2]CH[sub 2]OH with clean and oxygen-activated Ag(110) has been explored to investigate the effects of molecular structure on reactivity. Experimental techniques employed include temperature programmed reaction spectroscopy, isotopic labelling, surface displacement reactions, and electron energy loss spectroscopy. Acetone and isobutylene were studied to explore the relative importance of C=O and C=C bonds in governing the reactivity of structurally similar compounds. Nucleophilic attack by oxygen at the electron-deficient carbonyl carbonmore » in acetone results in reversible formation of the metallacycle (CH[sub 3])[sub 2]COO[sub (a)] at 110 K. Upon heating C-H bond activation by O[sub (a)] occurs near 215 K to yield acetone enolate CH[sub 2]=C(CH[sub 3])O[sub (a)] and evolve H[sub 2]O[sub (g)]. Atomic oxygen activates methyl C-H bonds in isobutylene via an acid-base mechanism. Although the major products are CO[sub 2(g)] and H[sub 2]O[sub (g)], a small amount of (CH[sub 3])[sub 2]C=CH[sub 2(g)] evolves near 310 K. Evidence for the formation of [pi]-2-methylallyl CH[sub 3]C(CH[sub 2])[sub 2(a)] and trimethylenementhane C(CH[sub 2])[sub 3(a)] is presented. The reaction of 1,2-propanediol CH[sub 3] CH(OH)CH[sub 2] OH with oxygen-activated Ag(110) has been compared with that of 1,3-propanediol HOCH[sub 2]CH[sub 2]CH[sub 2]OH to evaluate the effects of varying the position of O-H bonds in both diols to produce the corresponding dialkoxides.« less

  5. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  6. Electronic structure and vibrational analysis of AHA⋯HX complexes

    NASA Astrophysics Data System (ADS)

    Joshi, Kaustubh A.; Gejji, Shridhar P.

    2005-10-01

    Electronic structures of the binary complexes of acetohydroxamic acid (AHA) and hydrogen halides, HX (X = F, Cl, Br) have been investigated using the second order perturbation theory. In the lowest energy structure of AHA⋯HF complex, hydrogen fluoride acts as a proton-donor with carbonyl oxygen and simultaneously as a proton-acceptor with the hydroxyl group. For chloro- and bromo-substituted derivatives, however, the lowest minimum possesses hydrogen-bonded interactions with the carbonyl oxygen in addition to those from the methyl proton of AHA. Frequency shifts of NH and CN stretching vibrations enable one to distinguish different conformers of AHA⋯HX complexes.

  7. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  8. Sulfur and oxygen isotopic study of Paleozoic sediment-hosted Zn-Pb(-Ag-Au-Ba-F) deposits and associated hydrothermal alteration zones in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Shanks, W.C. Pat; Slack, John F.; Till, Alison B.; Thurston, Roland; Gemery-Hill, Pamela

    2014-01-01

    The stratabound Nelson deposit, and the deformed veins at the Galena and Quarry deposits, may be older than the Aurora Creek-Christophosen and Wheeler North deposits. The Nelson deposit has a lower and narrower range of δ34S values (1.9 to 10.4‰), averaging about 8‰. The Galena and Quarry veins display δ34S values that are similar to those of the stratabound Nelson deposit. Barite samples from the Aurora Creek-Christophosen, Wheeler North, and Quarry deposits have 34S-enriched δ34S values between 25 and 30‰ that are consistent with derivation of the sulfur from coeval (Paleozoic) seawater sulfate. Given their δ34S values, it is likely that the Aurora Creek-Christophosen and Wheeler North deposits formed in closed sub-basins with euxinic conditions that led to extreme Rayleigh distillation to produce the very large range and very high δ34S values. The Nelson deposit probably formed within an anoxic but not euxinic sub-basin. At Nelson, sulfide was likely derived by a subsurface thermochemical sulfate reduction (TSR) reaction, similar to reactions that are inferred to have produced the sulfides in the Galena and Quarry deposits, which are interpreted as feeder veins for the stratabound deposits. Calculations of oxygen isotope temperatures are based on the assumption that evolved seawater with δ18O of 3‰ was the mineralizing and altering fluid related to the formation of the sulfide deposits. Temperatures of aluminous alteration and sulfide mineralization were between 109 and 209 °C, determined on the basis of oxygen isotope fractionations between the mineralizing fluid and proportionate amounts of quartz and muscovite in the rocks. These temperature estimates agree well with known temperatures of SEDEX mineralization worldwide. Sulfur isotope values also are generally consistent with the known ranges in SEDEX deposits worldwide (δ34S ≈ -5 to 25‰).

  9. Reaction Gradients Viewed Inside Single Photoactive Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P.; Corral Arroyo, P.; Dou, J.; Kreiger, U.; Luo, B.; Peter, T.; Ammann, M.

    2017-12-01

    In terms of chemical selectivity and spatial resolution, a technique known as scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) is unmatched and will remain so for years into the future. We present a recent development coupling STXM/NEXAFS to a custom-built photochemical environmental reactor in which aerosol particles reside allowing for in situ chemical imaging. A laboratory investigation of metal-organic complex photochemistry was conducted. Transition metals are of great importance to atmospheric chemistry and aerosol photochemical aging due to their ability to catalyze oxidation reactions. Aerosol particles composed of mixtures of citric acid and iron citrate were probed for their organic carbon composition and iron oxidation state under atmospherically relevant conditions. At 40% relative humidity, oxygen diffusion and reaction was severely limited. Fe was reoxidized in the first 200 nm of the particle surface leaving reduced iron in the core. Similar gradients were observed at 60% RH, however waiting approximately 2 hours in the dark resulted in a recovery of the initial Fe(III) concentration. We draw two main conclusions from our findings. Frist, the oxidation gradients must have been the result of anoxic conditions at the interior of aerosol particles. This was predicted using a newly developed model for molecular diffusion through multiple layers with a reaction framework describing the photochemical processing of the metal organic matrix. Second, the lifetime of organic radicals in an anoxic diffusion limited organic matrix must be considerably long ( hours) to completely reoxidize iron as they wait for molecular oxygen. Long radical lifetimes in viscous organic aerosol in turn, could create high radical concentrations or favor radical-radical reactions in particles typically not considered when oxygen is plentiful. Our results impact predictions of aerosol physiochemical properties, e.g. aerosol toxicity, hygroscopicity, lifetime and light scattering properties over time which may be limited and evolve at different rates at the surface or core of particles.

  10. Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner.

    PubMed

    Simonin, Vagner; Galina, Antonio

    2013-01-01

    NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.

  11. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution.

    PubMed

    Rantamäki, Susanne; Meriluoto, Jussi; Spoof, Lisa; Puputti, Eeva-Maija; Tyystjärvi, Taina; Tyystjärvi, Esa

    2016-12-01

    The Earth has had a permanently oxic atmosphere only since the great oxygenation event (GOE) 2.3-2.4 billion years ago but recent geochemical research has revealed short periods of oxygen in the atmosphere up to a billion years earlier before the permanent oxygenation. If these "whiffs" of oxygen truly occurred, then oxygen-evolving (proto)cyanobacteria must have existed throughout the Archaean aeon. Trapping of oxygen by ferrous iron and other reduced substances present in Archaean oceans has often been suggested to explain why the oxygen content of the atmosphere remained negligible before the GOE although cyanobacteria produced oxygen. We tested this hypothesis by growing cyanobacteria in anaerobic high-CO 2 atmosphere in a medium with a high concentration of ferrous iron. Microcystins are known to chelate iron, which prompted us also to test the effects of microcystins and nodularins on iron tolerance. The results show that all tested cyanobacteria, especially nitrogen-fixing species grown in the absence of nitrate, and irrespective of the ability to produce cyanotoxins, were iron sensitive in aerobic conditions but tolerated high concentrations of iron in anaerobicity. This result suggests that current cyanobacteria would have tolerated the high-iron content of Archaean oceans. However, only 1 % of the oxygen produced by the cyanobacterial culture was trapped by iron, suggesting that large-scale cyanobacterial photosynthesis would have oxygenated the atmosphere even if cyanobacteria grew in a reducing ocean. Recent genomic analysis suggesting that ability to colonize seawater is a secondary trait in cyanobacteria may offer a partial explanation for the sustained inefficiency of cyanobacterial photosynthesis during the Archaean aeon, as fresh water has always covered a very small fraction of the Earth's surface. If oxygenic photosynthesis originated in fresh water, then the GOE marks the adaptation of cyanobacteria to seawater, and the late-Proterozoic increase in oxygen concentration of the atmosphere is caused by full oxidation of the oceans.

  12. Biological robustness.

    PubMed

    Kitano, Hiroaki

    2004-11-01

    Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.

  13. Intelligent systems engineering methodology

    NASA Technical Reports Server (NTRS)

    Fouse, Scott

    1990-01-01

    An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.

  14. Towards a Framework for Evolvable Network Design

    NASA Astrophysics Data System (ADS)

    Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed

    The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.

  15. Quantum-Chemical Simulation of the Solvent Effect on Spontaneous Emission of Singlet Oxygen

    NASA Astrophysics Data System (ADS)

    Ivashin, N. V.; Shchupak, E. E.

    2018-01-01

    A molecular simulation of the solvent effect on radiative rate constant k r of singlet oxygen is carried out. This study included a search for the most probable conformations of the complexes of molecules of singlet oxygen and ten solvents and calculation of dipole moments M of transitions a 1Δ g -b1Σ g + ( M a-b ) and a 1Δ g - X 3Σ g - ( M a-X ) of the oxygen molecule for them. Averaging of M a-b by conformations, taking into account the probability of their formation for complexes without atoms with a large atomic number (Cl, S), yields values that, as a rule, correlate well with the behavior of k r in the experiment. Taking into account the possibility of decreasing the distance (compared to equilibrium) between molecules in a collision complex at room temperature made it possible to achieve satisfactory agreement of the calculated and experimental data also for complexes with CCl4, C2Cl4, and CS2. The obtained data indicate that a number of factors affect k r . The correlation of k r with molecular polarizability in a number of cases is due, on the one hand, to its effect on the strength of dispersion interactions in the complex and, on the other hand, to the fact that it to some extent reflects the position of the upper filled orbitals of the solvent molecule. Both factors affect the degree of mixing of the π orbitals of the singlet oxygen molecule with the orbitals of the solvent molecule, which, as was found earlier, facilitates the activation of the a 1Δ g -b1Σ g + transition and the borrowing of its intensity by the a 1Δ g - X 3Σ g - transition.

  16. Evolving Communicative Complexity: Insight from Rodents and Beyond

    DTIC Science & Technology

    2012-01-01

    Group size in animal societies: the potential role of social and ecological limitations in the group-living fish , Paragobiodon xanthosomus. Ethology... Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA 2Human Research and Engineering Directorate, Perceptual Sciences...evolve is an active question in behavioural ecology . Sciurid rodents (ground squirrels, prairie dogs and marmots) provide an excellent model system for

  17. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  18. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation.

    PubMed

    Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S

    2012-01-21

    A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the crystal structure of 8 was also determined. A comparison of the structures of planar Ni(II) complexes containing cis-dithiolate ligands, strongly suggests that the differences in reactivity are determined in part by the degree of flexibility that is allowed by the NN' chelate ring.

  19. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.

  20. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant.

    PubMed

    Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti

    2017-01-03

    A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic iron(II) hydroperoxides are proposed to generate in situ in the reaction pathways. The difference in reactivity of the complexes toward external substrates could be attributed to the geometry of the O 2 -derived iron-oxygen oxidant. DFT calculations suggest that, among all possible geometries and spin states, high-spin side-on iron(II) hydroperoxides are energetically favorable for the complexes of 6-Me 3 -TPA, 6-Me 2 -iso-BPMEN, BPMEN, and 6-Me 2 -BPMEN ligands, while high spin end-on iron(II) hydroperoxides are favorable for the complexes of TPA, iso-BPMEN, and TBimA ligands.

Top