Sample records for oxygen functional groups

  1. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  2. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  3. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite.

    PubMed

    Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li

    2018-05-07

    Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

  4. Multifunctional materials and composites

    DOEpatents

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  5. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  7. Electrical resistance behavior of oxyfluorinated graphene under oxidizing and reducing gas exposure.

    PubMed

    Im, Ji Sun; Bae, Tae-Sung; Shin, Eunjeong; Lee, Young-Seak

    2014-03-01

    The electrical resistance behavior of graphene was studied under oxidizing and reducing gas exposure. The graphene surface was modified via oxyfluorination to obtain a specific surface area and oxygen functional groups. Fluorine radicals provided improved pore structure and introduction of an oxygen functional group. A high-performance gas sensor was obtained based on enlarged target gas adsorption sites and an enhanced electron charge transfer between the target gas and carbon surface via improved pore structure and the introduction of oxygen functional groups, respectively.

  8. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  9. [Biochemical characteristics of compensation of posthemorrhagic anemia in patients presenting with nasal bleeding].

    PubMed

    Boĭko, N V; Kolmakova, T S; Bykova, V V

    2010-01-01

    This work was designed to study the development of compensatory processes during posthemorrhagic anemia in 82 patients presenting with nasal bleeding (NB). The patients were allocated to three groups. Group 1 included patients with isolated episodes of NB, group 2 was comprised of patients in a moderately severe condition with recurring NB, group 3 was composed of patients in a severe condition with recurring NB. The general medical examination was supplemented by the evaluation of factors maintaining the oxygen-transporting function of the blood (hemoglobin affinity for oxygen, erythrocyte content of 2.3-diphosphoglyceric (2.3-DPG) acid as the principal modulator of hemoglobin affinity for oxygen) and indicators of energy (carbohydrate) metabolism in plasma and erythrocytes (glucose-6-phosphate dehydrogenase (G-6-PDH) activity, pyruvic acid (PA), lactate and lactate dehydrogenase (LDH) levels). Changes of biochemical parameters in patients presenting with incidental episodes of NB (group 1) suggested a compensatory increase in functional potential of the blood oxygen-transporting system. Patients of group 2 showed evidence of development of the modulation-type adaptive and compensatory mechanisms. Those of group 3 experienced a decrease of the 2.3-DPH level in erythrocytes and enhancement of hemoglobin affinity for oxygen which slowed down its uptake by the tissues. Tissue hypoxia and accompanying acidosis aggravated the impairment of gas-transporting function of the blood. In is concluded that patients of group 3 are at risk of uncompensated hypoxic hypoxia associated with the unfavourable changes in the oxygen-transporting function and the impairment of the functional potential of erythrocytes. Taken together, these untoward factors may be responsible for the severe clinical conditions of these patients.

  10. New singlet oxygen donors based on naphthalenes: synthesis, physical chemical data, and improved stability.

    PubMed

    Klaper, Matthias; Linker, Torsten

    2015-06-01

    Singlet oxygen donors are of current interest for medical applications, but suffer from a short half-life leading to low singlet oxygen yields and problems with storage. We have synthesized more than 25 new singlet oxygen donors based on differently substituted naphthalenes in only a few steps. The influence of functional groups on the reaction rate of the photooxygenations, thermolysis, half-life, and singlet oxygen yield has been thoroughly studied. We determined various thermodynamic data and compared them with density functional calculations. Interestingly, remarkable stabilities of functional groups during the photooxygenations and stabilizing effects for some endoperoxides during the thermolysis have been found. Furthermore, we give evidence for a partly concerted and partly stepwise thermolysis mechanism leading to singlet and triplet oxygen, respectively. Our results might be interesting for "dark oxygenations" and future applications in medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro

    2018-06-01

    The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Y.F.; Thomas, K.M.

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved inmore » the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.« less

  13. Intraoperative Oxygen Consumption During Liver Transplantation.

    PubMed

    Shibata, M; Matsusaki, T; Kaku, R; Umeda, Y; Yagi, T; Morimatsu, H

    2015-12-01

    The aim of this study was to investigate the changes in oxygen consumption during liver transplantation and to examine the relationship between intraoperatively elevated systemic oxygen consumption and postoperative liver function. This study was performed in 33 adult patients undergoing liver transplantation between September 2011 and March 2014. We measured intraoperative oxygen consumption through the use of indirect calorimetry, preoperative and intraoperative data, liver function tests, and postoperative complications and outcomes. The mean age of patients was 52 ± 9.7 years; 14 (42%) of them were women. Average Model for End-Stage Liver Disease scores were 20 ± 8.9. Oxygen consumption significantly increased after reperfusion from 172 ± 30 mL/min during the anhepatic phase to 209 ± 30 mL/min (P < .0001). We divided patients into 2 groups according to the increase in oxygen consumption after reperfusion (oxygen consumption after reperfusion minus anhepatic phase oxygen consumption: 40 mL/min increase as cutoff). The higher consumption group had a longer cold ischemia time and higher postoperative aspartate aminotransferase and alanine aminotransferase levels as compared with the lower oxygen consumption group. There were no statistically significant differences in major postoperative complications, but the higher oxygen consumption group tended to have shorter hospital stays than the lower consumption group (58 versus 95 days). We have demonstrated that oxygen consumption significantly increased after reperfusion. Furthermore, this increased oxygen consumption was associated with a longer cold ischemia time and shorter hospital stays. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Oxygen Supplementation Improves Protein Milieu Supportive of Protein Synthesis and Antioxidant Function in the Cortex of Alzheimer's Disease Model Mice-a Quantitative Proteomic Study.

    PubMed

    Wang, Hao; Hong, Xiaoyu; Li, Shuiming; Wang, Yong

    2017-10-01

    Protein synthesis has been reported to be impaired in early-stage Alzheimer's disease (AD). Previously, we found that oxygen supplementation improved cognitive function and reduced mitochondrial damage in AD model mice. In the present study, we examined the effects of supplemental oxygen treatment on protein synthesis and oxidative damage. The synthesis of numerous proteins involved in mRNA splicing, transcription regulation, and translation was found to be significantly upregulated in cortex tissues of AD model mice given a supplemental oxygen treatment (OT group), relative to those of non-treated control AD model mice (Ctrl group), suggesting that impairment in protein synthesis may be alleviated by increased oxygen inhalation. Methionine oxidation and oxidation levels in general were similar between the OT and Ctrl groups, indicating that the oxygen supplementation treatment did not cause increases in peptide oxidation levels. On the contrary, the OT group exhibited upregulation of several proteins associated with antioxidant defense. These results support further exploration into the development of supplementary oxygen treatment as a potential therapy for AD.

  15. Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications.

    PubMed

    Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan

    2016-12-28

    The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.

  16. [Influence of raising oxygen content on function of platelet concentrate during preservation].

    PubMed

    Zhan, Tong; Xiao, Jian-Yu; Tao, Jing; Miao, Xi-Feng; Liu, Yan-Cun; Tang, Rong-Cai

    2006-08-01

    To explore the influence of raising oxygen (dissolved oxygen) content on function of platelet concentrate, the platelet concentrate was prepared by a CS-3000 plus blood cell separator. Experiments were divided into 2 groups: test group and control group. After raising oxygen content in platelet plasma under sterile operation, the platelet samples of two groups were preserved in oscillator with horizontal oscillation at 22 +/- 2 degrees C. The platelet count, platelet aggregation rate, lactic acid content and CD62p expression level of platelet were detected on 0, 1, 2, 3, 4, 5 days of platelet preservation. The results showed that the platelet count and platelet aggregation rate decreased with prolongation of preserved time, while the lactic acid content and CD62p expression level of platelet increased gradually. Compared with control group, there were significant differences in aggregation rate of platelet preserved for 2-3 days, and in CD62p expression level of platelet preserved for 1-3 days, while significant difference was found in lactic acid content of platelet preserved for 1-3 days. It is concluded that raising content of oxygen in platelet plasma can provide more oxygen to compensate oxygen supply deficiency for platelet metabolism and improve the efficiency of platelet oxygenic metabolism and the quality of platelet during preservation.

  17. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging.

    PubMed

    Catchlove, Sarah J; Macpherson, Helen; Hughes, Matthew E; Chen, Yufen; Parrish, Todd B; Pipingas, Andrew

    2018-01-01

    Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.

  18. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    PubMed

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  19. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    PubMed

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  20. Role of oxygen functionality on the band structure evolution and conductance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Chakrabarty, Soubhik; Jha, Arunava; Midya, Priyanka R.; Kumar, E. Mathan; Chattopadhyay, Kalyan K.

    2017-06-01

    Here we report, structural and electrical transport properties of reduced graphene oxide as a function of oxygen bonding configuration. We find that mainly epoxy (Csbnd Osbnd C) and carbonyl (Cdbnd O) functional groups remain as major residual components after reduction using three different reducing agents. We calculate the band structure in the presence of epoxy and carbonyl groups and defects. Finally, we calculate the theoretical band mobility and find that it is less for the carbonyl with epoxy system. We correlate the distortion of linear dispersion and opening of bandgap at K-point with conductance for different graphene system in presence of oxygen moieties.

  1. Neuroimaging, Pain Sensitivity, and Neuropsychological Functioning in School-Age Neonatal Extracorporeal Membrane Oxygenation Survivors Exposed to Opioids and Sedatives.

    PubMed

    van den Bosch, Gerbrich E; IJsselstijn, Hanneke; van der Lugt, Aad; Tibboel, Dick; van Dijk, Monique; White, Tonya

    2015-09-01

    Animal studies found negative long-term effects of exposure to sedatives and opioids in early life, especially when administered in the absence of pain. Around the world, children who require extracorporeal membrane oxygenation receive opioids and sedatives for extended periods, generally in the absence of major pain as extracorporeal membrane oxygenation cannulation is considered minor surgery. Therefore, our objective was to determine the long-term effects of extracorporeal membrane oxygenation treatment with respect to pain sensitivity, brain functioning during pain, brain morphology, and neuropsychological functioning in humans. Prospective follow-up study. Level III university hospital. Thirty-six extracorporeal membrane oxygenation survivors (8.1-15.5 yr) and 64 healthy controls (8.2-15.3 yr). We measured detection and pain thresholds, brain activity during pain (functional MRI), brain morphology (high-resolution structural MRI), and neuropsychological functioning and collected information regarding the subject's experience of chronic pain. We found a significant difference in the detection threshold for cold measured in a reaction time-dependent fashion (extracorporeal membrane oxygenation group, 29.9°C [SD, 1.4]; control group, 30.6°C [SD, 0.8]; p < 0.01), but no differences in other modalities or in pain sensitivity between groups. Furthermore, no differences in brain activation during pain, brain morphology, or in the occurrence of chronic pain were observed. However, extracorporeal membrane oxygenation survivors performed significantly worse on a verbal memory test compared with controls (p = 0.001). While the most critically ill newborns receive extracorporeal membrane oxygenation and, relatedly, large doses of opioids and sedatives for extended periods, global measures of pain sensitivity and neurobiological and neuropsychological development appear to have minor long-term consequences. Possible memory deficits in extracorporeal membrane oxygenation survivors require additional study, but neonatal extracorporeal membrane oxygenation treatment and associated exposure to opioids and sedatives seem less harmful to humans than expected from animal studies.

  2. [Oxygen-transport function of the blood and endothelial dysfunction in patients with angina pectoris and arterial hypertension].

    PubMed

    Iankovskaia, A V; Zinchuk, M A

    2007-01-01

    Parameters of oxygen-transport function of the blood and function of the endothelium were studied in 49 patients with stable angina pectoris of I and II functional class with or without concomitant 2nd degree arterial hypertension. All patients received pathogenetic therapy. Signs of endothelial dysfunction were found in group III in which endothelium dependent vasodilation (8.22 +/- 1.71%) was 73.4% (p1 < 0.001) lower than in control group and 47.2% (p3 < 0.05) lower than in patients with class I angina. In all groups baseline content of nitrates/nitrites was lower. Main parameters of acid-base balance were lowered in patients of group III evidencing for emergence of signs of metabolic acidosis and hypoxia. Lowering of hemoglobin affinity to oxygen and its rise after therapy was also revealed. Maximal lowering of this parameter (-10.2%, p2 < 0.05) reflecting shift of oxyhemoglobin dissociation curve to the right was noted in group II. Endothelium can participate in formation of these disturbances because its dysfunction is associated with deranged release of NO in various parts of vascular tree. This affects formation of various NO-derivatives of hemoglobin and oxygen transport system of the blood.

  3. Role of oxygen functional groups for structure and dynamics of interfacial water on low rank coal surface: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin

    2018-07-01

    Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.

  4. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui

    2018-03-01

    Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.

  5. Extracorporeal membrane oxygenation as a bridge to lung transplantation: A single-center experience in the present era.

    PubMed

    Todd, Emily M; Biswas Roy, Sreeja; Hashimi, A Samad; Serrone, Rosemarie; Panchanathan, Roshan; Kang, Paul; Varsch, Katherine E; Steinbock, Barry E; Huang, Jasmine; Omar, Ashraf; Patel, Vipul; Walia, Rajat; Smith, Michael A; Bremner, Ross M

    2017-11-01

    Extracorporeal membrane oxygenation has been used as a bridge to lung transplantation in patients with rapid pulmonary function deterioration. The reported success of this modality and perioperative and functional outcomes are varied. We retrospectively reviewed all patients who underwent lung transplantation at our institution over 1 year (January 1, 2015, to December 31, 2015). Patients were divided into 2 groups depending on whether they required extracorporeal membrane oxygenation support as a bridge to transplant; preoperative characteristics, lung transplantation outcomes, and survival were compared between groups. Of the 93 patients, 12 (13%) received bridge to transplant, and 81 (87%) did not. Patients receiving bridge to transplant were younger, had higher lung allocation scores, had lower functional status, and were more often on mechanical ventilation at listing. Most patients who received bridge to transplant (n = 10, 83.3%) had pulmonary fibrosis. Mean pretransplant extracorporeal membrane oxygenation support was 103.6 hours in duration (range, 16-395 hours). All patients who received bridge to transplant were decannulated immediately after lung transplantation but were more likely to return to the operating room for secondary chest closure or rethoracotomy. Grade 3 primary graft dysfunction within 72 hours was similar between groups. Lung transplantation success and hospital discharge were 100% in the bridge to transplant group; however, these patients experienced longer hospital stays and higher rates of discharge to acute rehabilitation. The 1-year survival was 100% in the bridge to transplant group and 91% in the non-bridge to transplant group (log-rank, P = .24). The 1-year functional status was excellent in both groups. Extracorporeal membrane oxygenation can be used to safely bridge high-acuity patients with end-stage lung disease to lung transplantation with good 30-day, 90-day, and 1-year survival and excellent 1-year functional status. Long-term outcomes are being studied. Copyright © 2017. Published by Elsevier Inc.

  6. Influence of perioperative oxygen fraction on pulmonary function after abdominal surgery: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background A high perioperative inspiratory oxygen fraction (FiO2) may reduce the frequency of surgical site infection. Perioperative atelectasis is caused by absorption, compression and reduced function of surfactant. It is well accepted, that ventilation with 100% oxygen for only a few minutes is associated with significant formation of atelectasis. However, it is still not clear if a longer period of 80% oxygen results in more atelectasis compared to a low FiO2. Our aim was to assess if a high FiO2 is associated with impaired oxygenation and decreased pulmonary functional residual capacity (FRC). Methods Thirty-five patients scheduled for laparotomy for ovarian cancer were randomized to receive either 30% oxygen (n = 15) or 80% oxygen (n = 20) during and for 2 h after surgery. The oxygenation index (PaO2/FiO2) was measured every 30 min during anesthesia and 90 min after extubation. FRC was measured the day before surgery and 2 h after extubation by a rebreathing method using the inert gas SF6. Results Five min after intubation, the median PaO2/FiO2 was 69 kPa [53-71] in the 30%-group vs. 60 kPa [47-69] in the 80%-group (P = 0.25). At the end of anesthesia, the PaO2/FiO2 was 58 kPa [40-70] vs. 57 kPa [46-67] in the 30%- and 80%-group, respectively (P = 0.10). The median FRC was 1993 mL [1610-2240] vs. 1875 mL [1545-2048] at baseline and 1615 mL [1375-2318] vs. 1633 mL [1343-1948] postoperatively in the 30%- and 80%-group, respectively (P = 0.70). Conclusion We found no significant difference in oxygenation index or functional residual capacity between patients given 80% and 30% oxygen for a period of approximately 5 hours. Trial registration ClinicalTrials.gov Identifier: NCT00637936. PMID:22840231

  7. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Functionalization and characterization of pyrolyzed polymer based carbon microstructures for bionanoelectronics platforms

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Mieko; Mehta, Beejal; Vahidi, Nasim W.; Khosla, Ajit; Kassegne, Sam

    2013-11-01

    In this study, the investigation of surface-treatment of chemically inert graphitic carbon microelectrodes (derived from pyrolyzed photoresist polymer) for improving their attachment chemistry with DNA molecular wires and ropes as part of a bionanoelectronics platform is reported. Polymer microelectrodes were fabricated on a silicon wafer using standard negative lithography procedures with negative-tone photoresist. These microelectrode structures were then pyrolyzed and converted to a form of conductive carbon that is referred to as PP (pyrolyzed polymer) carbon throughout this paper. Functionalization of the resulting pyrolyzed structures was done using nitric, sulfuric, 4-amino benzoic acids (4-ABA), and oxygen plasma etching and the surface modifications confirmed with Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and electron dispersion x-ray spectroscopy (EDS). Post surface-treatment analysis of microelectrodes with FTIR and Raman spectroscopy showed signature peaks characteristics of carboxyl functional groups while EDS showed an increase in oxygen content in the surface-treatment procedures (except 4-ABA) indicating an increase in carboxyl functional group. These functional groups form the basis for peptide bond with aminated oligonucleotides that in turn could be used as molecular wires and interconnects in a bionanoelectronics platform. Post-pyrolysis analysis using EDS showed relatively higher oxygen concentrations at the edges and location of defects compared to other locations on these microelectrodes. In addition, electrochemical impedance measurements showed metal-like behavior of PP carbon with high conductivity (|Z| <1 KΩ) and no detectable detrimental effect of oxygen plasma surface-treatment on electrical characteristic. In general, characterization results—taken together—indicated that oxygen plasma surface-treatment produced more reliable, less damaging, and consistently repeatable generation of carboxyl functional groups than diazonium salt and strong acid treatments.

  9. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    PubMed

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  10. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  11. Graphene quantum dots as the electrolyte for solid state supercapacitors

    PubMed Central

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  12. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    PubMed

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The effects of Pilates exercise on cardiopulmonary function in the chronic stroke patients: a randomized controlled trials.

    PubMed

    Lim, Hee Sung; Yoon, Sukhoon

    2017-05-01

    [Purpose] The purpose of this study was to examine the effect of modified Pilates exercise on cardiopulmonary function in chronic stroke patients. [Subjects and Methods] Twenty participants (age, 62.7 ± 7.3 years; height, 163.3 ± 8.5 cm; weight, 68.8 ± 10.3 kg) were recruited for this study, and randomly allocated to the modified Pilates exercise group (n=10) or the control group (n=10). Graded submaximal treadmill exercise test was used to examine the status of patients' cardiopulmonary function, based on maximal oxygen intake, at the end of a patient's exercise tolerance limit. [Results] The resting heart rates, maximal oxygen intake, and maximal oxygen intake per kilogram were significantly different after 8 weeks of modified Pilates exercise. In addition, these variables were also significantly different between the Pilates and control groups after 8 weeks. [Conclusion] This study has demonstrated that 8 weeks of modified Pilates exercise program can have a positive influence on patients with chronic stroke, potentially by enhancing the cardiopulmonary function, which may have positive implications for increasing their functional ability.

  14. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials.

    PubMed

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-08

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  15. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-01

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  16. Utilization of oxygen difluoride for syntheses of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S. (Inventor)

    1976-01-01

    The reaction oxygen difluoride, OF2, with ethylenically unsaturated fluorocarbon compounds is examined. Depending upon the fluorocarbon material and reaction conditions, OF2 can chain extend fluoropolyenes, convert functional perfluorovinyl groups to acyl fluoride and/or epoxide groups, and act as a monomer for an addition type copolymerization with diolefins.

  17. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery

    PubMed Central

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Background Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. Methods We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). Results In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); p<0.05) and both the P/F ratio and oxygenation index (OI: kPa/cm H2O=PaO2/mean airway pressure×FiO2) demonstrated sustained improvement to day 5 (P/F day 5: 39.85 (12.8); OI day 0: 2.88 (1.10) vs day 5: 4.06 (1.73); both p<0.01). The drain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Conclusions Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation. PMID:26339492

  18. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    PubMed

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A NEW NON-AMBIGUOUS ANALYTICAL TECHNIQUE FOR THE IDENTIFICATION OF AEROSOL OXYGENATED COMPOUNDS

    EPA Science Inventory

    The most important organic products identified in the particle phase from field samples and from smog chamber experiments are polar oxygenated compounds containing one, two, three or more oxygenated functional groups (e.g. hydroxyl, carboxylic acid, ketone). Current procedures ...

  20. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Haiyan; Song, Huaihe; Chen, Xiaohong; Zhang, Su; Zhou, Jisheng; Ma, Zhaokun

    2015-07-01

    A kind of nitrogen- and oxygen-containing activated carbon nanotubes (ACNTs) has been prepared by carbonization and activation of polyaniline nanotubes obtained by rapidly mixed reaction. The ACNTs show oxygen content of 15.7% and nitrogen content of 2.97% (atomic ratio). The ACNTs perform high capacitance and good rate capability (327 F g-1 at the current density of 10 A g-1) when used as the electrode materials for supercapacitors. Hydrogen reduction has been further used to investigate the effects of surface functional groups on the electrochemical performance. The changes for both structural component and electrochemical performance reveal that the quinone oxygen, pyridinic nitrogen, and pyrrolic nitrogen of carbon have the most obvious influence on the capacitive property because of their pseudocapacitive contributions.

  1. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    PubMed

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  2. Harmful Effects of Hyperoxia in Postcardiac Arrest, Sepsis, Traumatic Brain Injury, or Stroke: The Importance of Individualized Oxygen Therapy in Critically Ill Patients.

    PubMed

    Vincent, Jean-Louis; Taccone, Fabio Silvio; He, Xinrong

    2017-01-01

    The beneficial effects of oxygen are widely known, but the potentially harmful effects of high oxygenation concentrations in blood and tissues have been less widely discussed. Providing supplementary oxygen can increase oxygen delivery in hypoxaemic patients, thus supporting cell function and metabolism and limiting organ dysfunction, but, in patients who are not hypoxaemic, supplemental oxygen will increase oxygen concentrations into nonphysiological hyperoxaemic ranges and may be associated with harmful effects. Here, we discuss the potentially harmful effects of hyperoxaemia in various groups of critically ill patients, including postcardiac arrest, traumatic brain injury or stroke, and sepsis. In all these groups, there is evidence that hyperoxia can be harmful and that oxygen prescription should be individualized according to repeated assessment of ongoing oxygen requirements.

  3. Long-Term Cognitive Outcome and Brain Imaging in Adults After Extracorporeal Membrane Oxygenation.

    PubMed

    von Bahr, Viktor; Kalzén, Håkan; Hultman, Jan; Frenckner, Björn; Andersson, Christin; Mosskin, Mikael; Eksborg, Staffan; Holzgraefe, Bernhard

    2018-05-01

    To investigate the presence of cognitive dysfunction and brain lesions in long-term survivors after treatment with extracorporeal membrane oxygenation for severe respiratory failure, and to see whether patients with prolonged hypoxemia were at increased risk. A single-center retrospective cohort study. Tertiary referral center for extracorporeal membrane oxygenation in Sweden. Long-term survivors treated between 1995 and July 2009. Seven patients from a previously published study investigated with a similar protocol were included. Brain imaging, neurocognitive testing, interview. Thirty-eight patients (i.e., n = 31 + 7) were enrolled and investigated in median 9.0 years after discharge. Only memory tests were performed in 10 patients, mainly due to a lack of formal education necessary for the test results to be reliable. Median full-scale intelligence quotient, memory index, and executive index were 97, 101, and 104, respectively (normal, 100 ± 15). Cognitive function was not reduced in the group with prolonged hypoxemia. Brain imaging showed cerebrovascular lesions in 14 of 38 patients (37%), most commonly in the group treated with venoarterial extracorporeal membrane oxygenation (7/11, 64%). In this group, memory function and executive function were significantly reduced. Patients treated with extracorporeal membrane oxygenation for respiratory failure may have normal cognitive function years after treatment, if not affected by cerebrovascular lesions. Permissive hypoxemia was not correlated with long-term cognitive dysfunction in the present study. Further prospective studies with minimal loss to follow-up are direly needed to confirm our findings.

  4. Probing the interactions of phenol with oxygenated functional groups on curved fullerene-like sheets in activated carbon.

    PubMed

    Yin, Chun-Yang; Ng, Man-Fai; Goh, Bee-Min; Saunders, Martin; Hill, Nick; Jiang, Zhong-Tao; Balach, Juan; El-Harbawi, Mohanad

    2016-02-07

    The mechanism(s) of interactions of phenol with oxygenated functional groups (OH, COO and COOH) in nanopores of activated carbon (AC) is a contentious issue among researchers. This mechanism is of particular interest because a better understanding of the role of such groups in nanopores would essentially translate to advances in AC production and use, especially in regard to the treatment of organic-based wastewaters. We therefore attempt to shed more light on the subject by employing density functional theory (DFT) calculations in which fullerene-like models integrating convex or concave structure, which simulate the eclectic porous structures on AC surface, are adopted. TEM analysis, EDS mapping and Boehm titration are also conducted on actual phenol-adsorbed AC. Our results suggest the widely-reported phenomenon of decreased phenol uptake on AC due to increased concentration of oxygenated functional groups is possibly attributed to the increased presence of the latter on the convex side of the curved carbon sheets. Such a system effectively inhibits phenol from getting direct contact with the carbon sheet, thus constraining any available π-π interaction, while the effect of groups acting on the concave part of the curved sheet does not impart the same detriment.

  5. Functional significance of cardiac reinnervation in heart transplant recipients.

    PubMed

    Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C

    1999-09-01

    There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p < .05). In transplant recipients with reinnervation, heart rate at maximum exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation-perfusion mismatching.

  6. Dual Functioning Thieno-Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance.

    PubMed

    Watley, Ryan L; Awuah, Samuel G; Bio, Moses; Cantu, Robert; Gobeze, Habtom B; Nesterov, Vladimir N; Das, Sushanta K; D'Souza, Francis; You, Youngjae

    2015-06-01

    We discovered a rare phenomenon wherein a thieno-pyrrole fused BODIPY dye (SBDPiR690) generates singlet oxygen without heavy halogen atom substituents. SBDPiR690 generates both singlet oxygen and fluorescence. To our knowledge, this is the first example of such a finding. To establish a structure-photophysical property relationship, we prepared SBDPiR analogs with electron-withdrawing groups at the para-position of the phenyl groups. The electron-withdrawing groups increased the HOMO-LUMO energy gap and singlet oxygen generation. Among the analogs, SBDPiR688, a CF3 analog, had an excellent dual functionality of brightness (82290 m(-1)  cm(-1) ) and phototoxic power (99170 m(-1)  cm(-1) ) comparable to those of Pc 4, due to a high extinction coefficient (211 000 m(-1)  cm(-1) ) and balanced decay (Φflu =0.39 and ΦΔ =0.47). The dual functionality of the lead compound SBDPiR690 was successfully applied to preclinical optical imaging and for PDT to effectively control a subcutaneous tumor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    PubMed Central

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Reed, David; Nie, Zimin

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  9. Persistent Postconcussive Symptoms Are Accompanied by Decreased Functional Brain Oxygenation.

    PubMed

    Helmich, Ingo; Saluja, Rajeet S; Lausberg, Hedda; Kempe, Mathias; Furley, Philip; Berger, Alisa; Chen, Jen-Kai; Ptito, Alain

    2015-01-01

    Diagnostic methods are considered a major concern in the determination of mild traumatic brain injury. The authors examined brain oxygenation patterns in subjects with severe and minor persistent postconcussive difficulties and a healthy control group during working memory tasks in prefrontal brain regions using functional near-infrared spectroscopy. The results demonstrated decreased working memory performances among concussed subjects with severe postconcussive symptoms that were accompanied by decreased brain oxygenation patterns. An association appears to exist between decreased brain oxygenation, poor performance of working memory tasks, and increased symptom severity scores in subjects suffering from persistent postconcussive symptoms.

  10. The effects of Pilates exercise on cardiopulmonary function in the chronic stroke patients: a randomized controlled trials

    PubMed Central

    Lim, Hee Sung; Yoon, Sukhoon

    2017-01-01

    [Purpose] The purpose of this study was to examine the effect of modified Pilates exercise on cardiopulmonary function in chronic stroke patients. [Subjects and Methods] Twenty participants (age, 62.7 ± 7.3 years; height, 163.3 ± 8.5 cm; weight, 68.8 ± 10.3 kg) were recruited for this study, and randomly allocated to the modified Pilates exercise group (n=10) or the control group (n=10). Graded submaximal treadmill exercise test was used to examine the status of patients’ cardiopulmonary function, based on maximal oxygen intake, at the end of a patient’s exercise tolerance limit. [Results] The resting heart rates, maximal oxygen intake, and maximal oxygen intake per kilogram were significantly different after 8 weeks of modified Pilates exercise. In addition, these variables were also significantly different between the Pilates and control groups after 8 weeks. [Conclusion] This study has demonstrated that 8 weeks of modified Pilates exercise program can have a positive influence on patients with chronic stroke, potentially by enhancing the cardiopulmonary function, which may have positive implications for increasing their functional ability. PMID:28603381

  11. Polyimides containing pendent siloxane groups

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); St.clair, Terry L. (Inventor); Hergenrother, Paul M. (Inventor)

    1994-01-01

    Novel polyimides containing pendent siloxane groups (PISOX) were prepared by the reaction of functionalized siloxane compounds with hydroxy containing polyimides (PIOH). The pendent siloxane groups on the polyimide backbone offer distinct advantages such as lowering the dielectric constant and moisture resistance and enhanced atomic oxygen resistance. The siloxane containing polyimides are potentially useful as protective silicon oxide coatings and are useful for a variety of applications where atomic oxygen resistance is needed.

  12. Deep breathing exercises with positive expiratory pressure at a higher rate improve oxygenation in the early period after cardiac surgery--a randomised controlled trial.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenström, Hans; Tenling, Arne; Breidenskog, Marie; Westerdahl, Elisabeth

    2011-07-01

    In addition to early mobilisation, a variety of breathing exercises are used to prevent postoperative pulmonary complications after cardiac surgery. The optimal duration of the treatment is not well evaluated. The aim of this study was to determine the effect of 30 versus 10 deep breaths hourly, while awake, with positive expiratory pressure on oxygenation and pulmonary function the first days after cardiac surgery. A total of 181 patients, undergoing cardiac surgery, were randomised into a treatment group, performing 30 deep breaths hourly the first postoperative days, or into a control group performing 10 deep breaths hourly. The main outcome measurement arterial blood gases and the secondary outcome pulmonary function, evaluated with spirometry, were determined on the second postoperative day. Preoperatively, both study groups were similar in terms of age, SpO(2), forced expiratory volume in 1s and New York Heart Association classification. On the second postoperative day, arterial oxygen tension (PaO(2)) was 8.9 ± 1.7 kPa in the treatment group and 8.1 ± 1.4 kPa in the control group (p = 0.004). Arterial oxygen saturation (SaO(2)) was 92.7 ± 3.7% in the treatment group and 91.1 ± 3.8% in the control group (p = 0.016). There were no differences in measured lung function between the groups or in compliance to the breathing exercises. Compliance was 65% of possible breathing sessions. A significantly increased oxygenation was found in patients performing 30 deep breaths the first two postoperative days compared with control patients performing 10 deep breaths hourly. These results support the implementation of a higher rate of deep breathing exercises in the initial phase after cardiac surgery. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  13. Oxygen desaturation during night sleep affects decision-making in patients with obstructive sleep apnea.

    PubMed

    Delazer, Margarete; Zamarian, Laura; Frauscher, Birgit; Mitterling, Thomas; Stefani, Ambra; Heidbreder, Anna; Högl, Birgit

    2016-08-01

    This study assessed decision-making and its associations with executive functions and sleep-related factors in patients with obstructive sleep apnea. Thirty patients with untreated obstructive sleep apnea and 20 healthy age- and education-matched controls performed the Iowa Gambling Task, a decision-making task under initial ambiguity, as well as an extensive neuropsychological test battery. Patients, but not controls, also underwent a detailed polysomnographic assessment. Results of group analyses showed that patients performed at the same level of controls on the Iowa Gambling Task. However, the proportion of risky performers was significantly higher in the patient group than in the control group. Decision-making did not correlate with executive functions and subjective ratings of sleepiness, whereas there was a significant positive correlation between advantageous performance on the Iowa Gambling Task and percentage of N2 sleep, minimal oxygen saturation, average oxygen saturation and time spent below 90% oxygen saturation level. Also, the minimal oxygen saturation accounted for 27% of variance in decision-making. In conclusion, this study shows that a subgroup of patients with obstructive sleep apnea may be at risk of disadvantageous decision-making under ambiguity. Among the sleep-related factors, oxygen saturation is a significant predictor of advantageous decision-making. © 2016 European Sleep Research Society.

  14. POLAR ORGANIC OXYGENATES IN PM2.5 AT A SOUTHEASTERN SITE IN THE UNITED STATES

    EPA Science Inventory

    A field study was undertaken in Research Triangle Park, NC, USA, during the summer of 2000 to identify classes of polar oxygenates in PM2.5 containing carbonyl and/or hydroxyl functional groups and, to the extent possible, determine the individual particle-bound oxygenates that m...

  15. Structure Evolution of Graphene Oxide during Thermally Driven Phase Transformation: Is the Oxygen Content Really Preserved?

    PubMed Central

    Sun, Pengzhan; Wang, Yanlei; Liu, He; Wang, Kunlin; Wu, Dehai; Xu, Zhiping; Zhu, Hongwei

    2014-01-01

    A mild annealing procedure was recently proposed for the scalable enhancement of graphene oxide (GO) properties with the oxygen content preserved, which was demonstrated to be attributed to the thermally driven phase separation. In this work, the structure evolution of GO with mild annealing is closely investigated. It reveals that in addition to phase separation, the transformation of oxygen functionalities also occurs, which leads to the slight reduction of GO membranes and furthers the enhancement of GO properties. These results are further supported by the density functional theory based calculations. The results also show that the amount of chemically bonded oxygen atoms on graphene decreases gradually and we propose that the strongly physisorbed oxygen species constrained in the holes and vacancies on GO lattice might be responsible for the preserved oxygen content during the mild annealing procedure. The present experimental results and calculations indicate that both the diffusion and transformation of oxygen functional groups might play important roles in the scalable enhancement of GO properties. PMID:25372142

  16. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    PubMed

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (p<0.01) and longer than that of sham-operated group. The piercing indexes of 3 treated groups were higher than that of HIBD control group (p<0.01). Hyperbaric oxygen and nerve growth factor treatments may improve learning and memory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  17. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    NASA Astrophysics Data System (ADS)

    Almarri, Masoud S.

    The ultimate goal of this thesis is to develop a fundamental understanding of the role of surface oxygen functional groups on carbon-based adsorbents in the adsorption of nitrogen compounds that are known to be present in liquid fuels. N2 adsorption was used to characterize pore structures. The surface chemical properties of the adsorbents were characterized by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a mass spectrometer to identify and quantify the type and concentration of oxygen functional groups on the basis of CO2 and CO evolution profiles. It was found that although surface area and pore size distribution are important for the adsorption process, they are not primary factors in the adsorption of nitrogen compounds. On the other hand, both the type and concentration of surface oxygen-containing functional groups play an important role in determining adsorptive denitrogenation performance. Higher concentrations of the oxygen functional groups on the adsorbents resulted in a higher adsorption capacity for the nitrogen compounds. A fundamental insight was gained into the contributions of different oxygen functional groups by analyzing the changes in the monolayer maximum adsorption capacity, qm, and the adsorption constant, K, for nitrogen compounds on different activated carbons. Acidic functional groups such as carboxylic acids and carboxylic anhydrides appear to contribute more to the adsorption of quinoline, while the basic oxygen functional groups such as carbonyls and quinones enhance the adsorption of indole. Despite the high number of publications on the adsorptive desulfurization of liquid hydrocarbon fuels, these studies did not consider the presence of coexisting nitrogen compounds. It is well-known that, to achieve ultraclean diesel fuel, sulfur must be reduced to a very low level, where the concentrations of nitrogen and sulfur compounds are comparable. The adsorptive denitrogenation and desulfurization of model diesel fuel, which contains equimolar concentrations of nitrogen (i.e., quinoline and indole), sulfur (i.e., dibenzothiophene and 4,6-dimethyldibenzothiophene), and aromatic compounds (naphthalene, 1-methylnaphthalene, and fluorene), was examined. The results revealed that when both nitrogen and sulfur compounds coexist in the fuel, the type and density of oxygen functional groups on the surface of the activated carbon are crucial for selective adsorption of nitrogen compounds but have negligible positive effects for sulfur removal. The adsorption of quinoline and indole is largely governed by specific interactions. There is enough evidence to support the importance of dipole--dipole and acid-base-specific interactions for the adsorption of both quinoline and indole. Modified carbon is a promising material for the efficient removal of the nitrogen compounds from light cycle oil (LCO). Adsorptive denitrogenation of LCO significantly improved the hydrodesulfurization (HDS) performance, especially for the removal of the refractory sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. An essential factor in applying activated carbon for adsorptive denitrogenation and desulfurization of liquid hydrocarbon streams is regeneration after saturation. The regeneration method of the saturated adsorbents consisted of toluene washing followed by heating to remove the remaining toluene. The results show that the spent activated carbon can be regenerated to completely recover the adsorption capacity. The high capacity and selectivity of activated carbon for nitrogen compounds, along with their ability to be regenerated, indicate that activated carbon is a promising adsorbent for the deep denitrogenation of liquid hydrocarbon streams.

  18. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  19. Normal muscle oxygen consumption and fatigability in sickle cell patients despite reduced microvascular oxygenation and hemorheological abnormalities.

    PubMed

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.

  20. Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Golbon Haghighi, Mohsen; Jafari-Asl, Mehdi

    2018-01-01

    Here, a new approach for the synthesis of phosphine-functionalized graphene oxide (GO-PPh2) was developed. Using a simple method, diphenylphosphine group was linked to the hydroxyl group of OH-functionalized graphene that existing at the graphene surface. The electrochemical activity of GO-PPh2 for electrochemical oxygen reduction was checked. The results demonstrated that the new carbon hybrid material has a powerful potential for electrochemical oxygen reduction reaction (ORR). Moreover, GO-PPh2 as an electrocatalyst for ORR exhibited tolerance for methanol or ethanol as a result of crossover effect. In comparison with commercial Pt/C and Pt/rGO electrocatalysts, results showed that GO-PPh2 has a much higher selectivity, better durability, and much better electrochemical stability towards the ORR. The proposed method based on GO-PPh2 introduce an efficient electrocatalyst for further application in fuel cells.

  1. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups

    NASA Astrophysics Data System (ADS)

    Dang, Yong; Zhao, Lianming; Lu, Xiaoqing; Xu, Jing; Sang, Pengpeng; Guo, Sheng; Zhu, Houyu; Guo, Wenyue

    2017-11-01

    The CO2/CH4 adsorption behaviors in brown coal at the temperatures of 298, 313, and 373 K and in the pressure range of 0.005-10 MPa were investigated by molecular dynamics (MD), density functional theory (DFT), and grand canonical Monte Carlo (GCMC) simulations. The absolute adsorption isotherms of single-component CH4 and CO2 exhibit type-I Langmuir adsorption behavior showing a negative influence of temperature. For the binary CO2/CH4 mixture, brown coal shows super high selectivity of CO2 over CH4 at pressures below 0.2 MPa, which then decreases quickly and finally tends to be constant when the pressure increases. The high competitive adsorption of CO2 originates from the effects of (i) the large electrostatic contributions, (ii) the conducive micropore environment with pore sizes below 0.56 nm, and (iii) the stronger adsorption of CO2 with respect to CH4. These effects are strengthened by the high-density oxygen-containing, pyridine, and thiophene functional groups contained in brown coal, which provide abundant and strong adsorption sites for CO2, but show weaker affinity to CH4. Furthermore, the influence of various nitrogen- and sulfur-containing functional groups on the CO2 adsorption capacity was also investigated. The results indicate that the basicity of the oxygen- and nitrogen-containing groups has a large influence on the CO2 adsorption, while for the sulfur functional groups the determining factor is the polarity.

  2. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  3. Vacuum ultraviolet trimming of oxygenated functional groups from oxidized self-assembled hexadecyl monolayers in an evacuated environment

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki

    2017-09-01

    Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.

  4. Silicon nitride boundary lubrication: Effect of oxygenates

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.; Hsu, Stephen M.

    1995-07-01

    A ball-on-three-flat (BTF) wear tester was used to investigate the boundary lubricating characteristics of oxygenates on a commercial silicon nitride. A wide variety of oxygen-containing compounds containing hydroxyl functioal groups were more effective compared to a base case of neat paraffin oil. Decreases of up to 58% in friction coefficient, and 95% in wear were obtained. In most cases, films were obseved in and around the wear scar, suggesting chemical reactions had taken place in the contact. Additional wear tests, conducted using neat shorter-chain linear primary alcohols, i.e., 6-10 carbons, demonstrated boundary lubrication protection, with longer chain length providing better antiwear performance. A study of several C8 compounds with specific oxygen-containing functional groups (primary alcohol, secondary alcohols, acid, aldehyde, and ketone) demonstrated that the primary alcohol had the strongest boundary lubricating effect. Varying the amount of water in the alcohols had little effect on friction and wear, suggesting that the boundary lubrication effects observed were not merely due to dissolved water in these fluids, but some characteristic chemical interaction with the hydroxyl functional group of the alcohols and acids.

  5. The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-11-05

    The objective of this study is to determine the contribution of surface oxygen groups to irreversible adsorption (aka heel formation) during cyclic adsorption/regeneration of organic vapors commonly found in industrial systems, including vehicle-painting operations. For this purpose, three chemically modified activated carbon samples, including two oxygen-deficient (hydrogen-treated and heat-treated) and one oxygen-rich sample (nitric acid-treated) were prepared. The samples were tested for 5 adsorption/regeneration cycles using a mixture of nine organic compounds. For the different samples, mass balance cumulative heel was 14 and 20% higher for oxygen functionalized and hydrogen-treated samples, respectively, relative to heat-treated sample. Thermal analysis results showed heel formation due to physisorption for the oxygen-deficient samples, and weakened physisorption combined with chemisorption for the oxygen-rich sample. Chemisorption was attributed to consumption of surface oxygen groups by adsorbed species, resulting in formation of high boiling point oxidation byproducts or bonding between the adsorbates and the surface groups. Pore size distributions indicated that different pore sizes contributed to heel formation - narrow micropores (<7Å) in the oxygen-deficient samples and midsize micropores (7-12Å) in the oxygen-rich sample. The results from this study help explain the heel formation mechanism and how it relates to chemically tailored adsorbent materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Adaptive servoventilation versus oxygen therapy for sleep disordered breathing in patients with heart failure: a randomised trial

    PubMed Central

    Murase, Kimihiko; Ono, Koh; Yoneda, Tomoya; Iguchi, Moritake; Yokomatsu, Takafumi; Mizoguchi, Tetsu; Izumi, Toshiaki; Akao, Masaharu; Miki, Shinji; Nohara, Ryuji; Ueshima, Kenji; Mishima, Michiaki; Kimura, Takeshi; White, David P; Chin, Kazuo

    2016-01-01

    Background Both adaptive servoventilation (ASV) and nocturnal oxygen therapy improve sleep disordered breathing (SDB), but their effects on cardiac parameters have not been compared systematically. Methods and results 43 patients with chronic heart failure (CHF; left ventricular ejection fraction (LVEF) ≤50%) with SDB were randomly assigned to undergo ASV (n=19, apnoea hypopnoea index (AHI)=34.2±12.1/h) or oxygen therapy (n=24, 36.9±9.9/h) for 3 months. More than 70% of SDB events in both groups were central apnoeas or hypopnoeas. Although nightly adherence was less for the ASV group than for the oxygen group (4.4±2.0 vs 6.2±1.8 h/day, p<0.01), the improvement in AHI was larger in the ASV group than in the oxygen group (−27.0±11.5 vs −16.5±10.2/h, p<0.01). The N-terminal pro-brain natriuretic peptide (NT-proBNP) level in the ASV group improved significantly after titration (1535±2224 to 1251±2003 pg/mL, p=0.01), but increased slightly at follow-up and this improvement was not sustained (1311±1592 pg/mL, p=0.08). Meanwhile, the level of plasma NT-proBNP in the oxygen group did not show a significant change throughout the study (baseline 1071±1887, titration 980±1913, follow-up 1101±1888 pg/mL, p=0.19). The significant difference in the changes in the NT-proBNP level throughout the study between the 2 groups was not found (p=0.30). Neither group showed significant changes in echocardiographic parameters. Conclusions Although ASV produced better resolution of SDB in patients with CHF as compared with oxygen therapy, neither treatment produced a significant improvement in cardiac function in the short term. Although we could not draw a definite conclusion because of the small number of participants, our data do not seem to support the routine use of ASV or oxygen therapy to improve cardiac function in patients with CHF with SDB. Trial registration number NCT01187823 (http://www.clinicaltrials.gov). PMID:27099761

  7. Which side of the balance determines the frequency of vaso-occlusive crises in children with sickle cell anemia: Blood viscosity or microvascular dysfunction?

    PubMed

    Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe

    2016-01-01

    Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond

    PubMed Central

    Chang, Thomas M. S.

    2013-01-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymermembrane. Extensions in to oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  9. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO 2 (111) surfaces

    DOE PAGES

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; ...

    2016-05-12

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO 2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO 2(111) surface was obtained by annealing the thin film under 2.0 × 10 –5 Torr of oxygen at ~550 °C for 30 min. In order to reduce the CeO 2(111) surface, the thin film was annealed under ~5.0 × 10 –10 Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface.more » The saturated TMAA coverage on the CeO 2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. Furthermore, XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO 2–δ(111) surface through dissociative adsorption.« less

  10. Functional group composition of organic aerosol from combustion emissions and secondary processes at two contrasted urban environments

    NASA Astrophysics Data System (ADS)

    El Haddad, Imad; Marchand, Nicolas; D'Anna, Barbara; Jaffrezo, Jean Luc; Wortham, Henri

    2013-08-01

    The quantification of major functional groups in atmospheric organic aerosol (OA) provides a constraint on the types of compounds emitted and formed in atmospheric conditions. This paper presents functional group composition of organic aerosol from two contrasted urban environments: Marseille during summer and Grenoble during winter. Functional groups were determined using a tandem mass spectrometry approach, enabling the quantification of carboxylic (RCOOH), carbonyl (RCOR‧), and nitro (RNO2) functional groups. Using a multiple regression analysis, absolute concentrations of functional groups were combined with those of organic carbon derived from different sources in order to infer the functional group contents of different organic aerosol fractions. These fractions include fossil fuel combustion emissions, biomass burning emissions and secondary organic aerosol (SOA). Results clearly highlight the differences between functional group fingerprints of primary and secondary OA fractions. OA emitted from primary sources is found to be moderately functionalized, as about 20 carbons per 1000 bear one of the functional groups determined here, whereas SOA is much more functionalized, as in average 94 carbons per 1000 bear a functional group under study. Aging processes appear to increase both RCOOH and RCOR‧ functional group contents by nearly one order of magnitude. Conversely, RNO2 content is found to decrease with photochemical processes. Finally, our results also suggest that other functional groups significantly contribute to biomass smoke and SOA. In particular, for SOA, the overall oxygen content, assessed using aerosol mass spectrometer measurements by an O:C ratio of 0.63, is significantly higher than the apparent O:C* ratio of 0.17 estimated based on functional groups measured here. A thorough examination of our data suggests that this remaining unexplained oxygen content can be most probably assigned to alcohol (ROH), organic peroxides (ROOH), organonitrates (RONO2) and/or organosulfates (ROSO3H).

  11. Carbon-based composite electrocatalysts for low temperature fuel cells

    DOEpatents

    Popov, Branko N [Columbia, SC; Lee, Jog-Won [Columbia, SC; Subramanian, Nalini P [Kennesaw, GA; Kumaraguru, Swaminatha P [Honeoye Falls, NY; Colon-Mercado, Hector R [Columbia, SC; Nallathambi, Vijayadurga [T-Nagar, IN; Li, Xuguang [Columbia, SC; Wu, Gang [West Columbia, SC

    2009-12-08

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  12. Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration.

    PubMed

    Pan, Hung-Chuan; Chin, Chun-Shih; Yang, Dar-Yu; Ho, Shu-Peng; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-07-01

    Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS in a sciatic nerve injury model. Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated 7 and 28 days after injury. Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve. However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated, and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration.

  13. MOLECULAR OXYGEN AND THE ADSORPTION OF PHENOLS - EFFECT OF FUNCTIONAL GROUPS

    EPA Science Inventory

    This study reveals that the presence of molecular oxygen (oxic conditions) has a significant impact on the exhibited adsorptive capacity of granular activated carbon (GAC) for several phenolic compounds. The increase in the GAC adsorptive capacity under oxic conditions results f...

  14. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  15. Effects of a preemptive alveolar recruitment strategy on arterial oxygenation during one-lung ventilation with different tidal volumes in patients with normal pulmonary function test.

    PubMed

    Jung, Jong Dal; Kim, Sang Hun; Yu, Byung Sik; Kim, Hye Ji

    2014-08-01

    Hypoxemia during one-lung ventilation (OLV) remains a major concern. The present study compared the effect of alveolar recruitment strategy (ARS) on arterial oxygenation during OLV at varying tidal volumes (Vt) with or without positive end-expiratory pressure (PEEP). In total, 120 patients undergoing wedge resection by video assisted thoracostomy were randomized into four groups comprising 30 patients each: those administered a 10 ml/kg tidal volume with or without preemptive ARS (Group H and Group H-ARS, respectively) and those administered a 6 ml/kg tidal volume and a 8 cmH2O PEEP with or without preemptive ARS (Group L and Group L-ARS, respectively). ARS was performed using pressure-controlled ventilation with a 40 cmH2O plateau airway pressure and a 15 cmH2O PEEP for at least 10 breaths until OLV began. Preemptive ARS significantly improved the PaO2/FiO2 ratio compared to the groups that did not receive ARS (P < 0.05). The H-ARS group showed a highest PaO2/FiO2 ratio during OLV, the L-ARS and H groups showed similarly improved arterial oxygenation, which was significantly higher than in group L (P < 0.05). The plateau airway pressure in group H-ARS was significantly higher than in group L-ARS (P < 0.05). Preemptive ARS can improve arterial oxygenation during OLV. Furthermore, a 6 ml/kg tidal volume combined with 8 cmH2O PEEP after preemptive ARS may reduce the risk of pulmonary injury caused by high tidal volume during one-lung ventilation in patients with normal pulmonary function.

  16. Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life® in pig lung transplantation model.

    PubMed

    Glorion, M; Polard, V; Favereau, F; Hauet, T; Zal, F; Fadel, E; Sage, E

    2017-10-25

    We describe the results of adding a new biological agent HEMO 2 life ® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO 2 life ® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex ® ) was compared with Perfadex ® associated with HEMO 2 life ® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO 2 life ® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO 2 life ® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex ® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex ® solution by an innovative oxygen carrier HEMO 2 life ® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.

  17. Normal Muscle Oxygen Consumption and Fatigability in Sickle Cell Patients Despite Reduced Microvascular Oxygenation and Hemorheological Abnormalities

    PubMed Central

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Background/Aim Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. Methods We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Results Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Conclusions Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow. PMID:23285055

  18. Right heart function during simulated altitude in patients with pulmonary arterial hypertension

    PubMed Central

    Seccombe, Leigh M; Chow, Vincent; Zhao, Wei; Lau, Edmund M T; Rogers, Peter G; Ng, Austin C C; Veitch, Elizabeth M; Peters, Matthew J; Kritharides, Leonard

    2017-01-01

    Objective Patients with pulmonary arterial hypertension (PAH) are often recommended supplemental oxygen for altitude travel due to the possible deleterious effects of hypoxia on pulmonary haemodynamics and right heart function. This includes commercial aircraft travel; however, the direct effects and potential risks are unknown. Methods Doppler echocardiography and gas exchange measures were investigated in group 1 patients with PAH and healthy patients at rest breathing room air and while breathing 15.1% oxygen, at rest for 20 min and during mild exertion. Results The 14 patients with PAH studied were clinically stable on PAH-specific therapy, with functional class II (n=11) and III (n=3) symptoms when tested. Measures of right ventricular size and function were significantly different in the PAH group at baseline as compared to 7 healthy patients (p<0.04). There was no evidence of progressive right ventricular deterioration during hypoxia at rest or under exertion. Pulmonary arterial systolic pressure (PASP) increased in both groups during hypoxia (p<0.01). PASP in hypoxia correlated strongly with baseline PASP (p<0.01). Pressure of arterial oxygen correlated with PASP in hypoxia (p<0.03) but not at baseline, with three patients with PAH experiencing significant desaturation. The duration and extent of hypoxia in this study was tolerated well despite a mild increase in symptoms of breathlessness (p<0.01). Conclusions Non-invasive measures of right heart function in group 1 patients with PAH on vasodilator treatment demonstrated a predictable rise in PASP during short-term simulated hypoxia that was not associated with a deterioration in right heart function. PMID:28123765

  19. Surface Chemical Conversion of Organosilane Self-Assembled Monolayers with Active Oxygen Species Generated by Vacuum Ultraviolet Irradiation of Atmospheric Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jong; Lee, Kyung-Hwang; Sano, Hikaru; Han, Jiwon; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki

    2008-01-01

    The chemical conversion of the top surface of n-octadecyltrimethoxy silane self-assembled monolayers (ODS-SAMs) on oxide-covered Si substrates using active oxygen species generated from atmospheric oxygen molecules irradiated with vacuum ultraviolet (VUV) light at 172 nm in wavelength has been studied on the basis of water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy. An ODS-SAM whose water contact angle was 104° on average was prepared using chemical vapor deposition with substrate and vapor temperatures of 150 °C. The VUV treatment of an ODS-SAM sample was carried out by placing the sample in air and then irradiating the sample surface with a Xe-excimer lamp. The distance between the lamp and the sample was regulated so that the VUV light emitted from the lamp was almost entirely absorbed by atmospheric oxygen molecules to generate active oxygen species, such as ozone and atomic oxygen before reaching the sample surface. Hence, the surface chemical conversion of the ODS-SAM was primarily promoted through chemical reactions with the active oxygen species. Photochemical changes in the ODS-SAM were found to be the generation of polar functional groups, such as -COOH, -CHO, and -OH, on the surface and the subsequent etching of the monolayer. Irradiation parameters, such as irradiation time, were optimized to achieve a better functionalization of the SAM top surface while minimizing the etching depth of the ODS-SAM. The ability to graft another SAM onto the modified ODS-SAM bearing polar functional groups was demonstrated by the formation of alkylsilane bilayers.

  20. Photoemission studies of fluorine functionalized porous graphitic carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated,more » PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.« less

  1. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment.

    PubMed

    Thomas, Binu P; Sheng, Min; Tseng, Benjamin Y; Tarumi, Takashi; Martin-Cook, Kristen; Womack, Kyle B; Cullum, Munro C; Levine, Benjamin D; Zhang, Rong; Lu, Hanzhang

    2017-04-01

    Amnestic mild cognitive impairment represents an early stage of Alzheimer's disease, and characterization of physiological alterations in mild cognitive impairment is an important step toward accurate diagnosis and intervention of this condition. To investigate the extent of neurodegeneration in patients with mild cognitive impairment, whole-brain cerebral metabolic rate of oxygen in absolute units of µmol O 2 /min/100 g was quantified in 44 amnestic mild cognitive impairment and 28 elderly controls using a novel, non-invasive magnetic resonance imaging method. We found a 12.9% reduction ( p = 0.004) in cerebral metabolic rate of oxygen in mild cognitive impairment, which was primarily attributed to a reduction in the oxygen extraction fraction, by 10% ( p = 0.016). Global cerebral blood flow was not found to be different between groups. Another aspect of vascular function, cerebrovascular reactivity, was measured by CO 2 -inhalation magnetic resonance imaging and was found to be equivalent between groups. Therefore, there seems to be a global, diffuse diminishment in neural function in mild cognitive impairment, while their vascular function did not show a significant reduction.

  2. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  3. Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections.

    PubMed Central

    Wenisch, C; Parschalk, B; Hasenhündl, M; Wiesinger, E; Graninger, W

    1995-01-01

    Thirty patients with severe bacterial infections were treated with 50 mg of cefodizime per kg of body weight once daily or 50 mg of ceftriaxone per kg once daily for 10 +/- 3 days. The effect of cefodizime and ceftriaxone on the phagocytic capacity and generation of reactive oxygen intermediates after phagocytosis by granulocytes was assessed prior to, during, and after therapy. Flow cytometry was used to study phagocytic capacity by measuring the uptake of fluorescein-labeled bacteria. The generation of reactive oxygen intermediates after phagocytosis was estimated by the quantification of the intracellular conversion of dihydrorhodamine 123 to rhodamine 123. Prior to therapy, patients in both groups exhibited a decreased capacity to phagocytize Escherichia coli and subsequently to generate reactive oxygen intermediates. Granulocyte function increased after the initiation of therapy and normalized within 7 days for the ceftriaxone-treated patients and within 3 days for the cefodizime group (P < 0.05). In the cefodizime group, an enhancement of phagocytic capacity was observed 14 days after the initiation of therapy (P < 0.05). Prior to therapy, phagocytic capacity was significantly correlated with the generation of reactive oxygen products (r = 0.674 and P < 0.005). PMID:7793871

  4. Ex vivo rehabilitation of non-heart-beating donor lungs in preclinical porcine model: delayed perfusion results in superior lung function.

    PubMed

    Mulloy, Daniel P; Stone, Matthew L; Crosby, Ivan K; Lapar, Damien J; Sharma, Ashish K; Webb, David V; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2012-11-01

    Ex vivo lung perfusion (EVLP) is a promising modality for the evaluation and treatment of marginal donor lungs. The optimal timing of EVLP initiation and the potential for rehabilitation of donor lungs with extended warm ischemic times is unknown. The present study compared the efficacy of different treatment strategies for uncontrolled non-heart-beating donor lungs. Mature swine underwent hypoxic arrest, followed by 60 minutes of no-touch warm ischemia. The lungs were harvested and flushed with 4°C Perfadex. Three groups (n = 5/group) were stratified according to the preservation method: cold static preservation (CSP; 4 hours of 4°C storage), immediate EVLP (I-EVLP: 4 hours EVLP at 37°C), and delayed EVLP (D-EVLP; 4 hours of CSP followed by 4 hours of EVLP). The EVLP groups were perfused with Steen solution supplemented with heparin, methylprednisolone, cefazolin, and an adenosine 2A receptor agonist. The lungs then underwent allotransplantation and 4 hours of recipient reperfusion before allograft assessment for resultant ischemia-reperfusion injury. The donor blood oxygenation (partial pressure of oxygen/fraction of inspired oxygen ratio) before death was not different between the groups. The oxygenation after transplantation was significantly greater in the D-EVLP group than in the I-EVLP or CSP groups. The mean airway pressure, pulmonary artery pressure, and expression of interleukin-8, interleukin-1β, and tumor necrosis factor-α were all significantly reduced in the D-EVLP group. Post-transplant oxygenation exceeded the acceptable clinical levels only in the D-EVLP group. Uncontrolled non-heart-beating donor lungs with extended warm ischemia can be reconditioned for successful transplantation. The combination of CSP and EVLP in the D-EVLP group was necessary to obtain optimal post-transplant function. This finding, if confirmed clinically, will allow expanded use of nonheart-beating donor lungs. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  5. Vibrational Excitations and Low Energy Electronic Structure of Epoxide-decorated Graphene.

    PubMed

    Mattson, E C; Johns, J E; Pande, K; Bosch, R A; Cui, S; Gajdardziska-Josifovska, M; Weinert, M; Chen, J H; Hersam, M C; Hirschmugl, C J

    2014-01-02

    We report infrared studies of adsorbed atomic oxygen (epoxide functional groups) on graphene. Two different systems are used as a platform to explore these interactions, namely, epitaxial graphene/SiC(0001) functionalized with atomic oxygen (graphene epoxide, GE) and chemically reduced graphene oxide (RGO). In the case of the model GE system, IR reflectivity measurements show that epoxide groups distort the graphene π bands around the K-point, imparting a finite effective mass and contributing to a band gap. In the case of RGO, epoxide groups are found to be present following the reduction treatment by a combination of polarized IR reflectance and transmittance measurements. Similar to the GE system, a band gap in the RGO sample is observed as well.

  6. Vibrational Excitations and Low Energy Electronic Structure of Epoxide-decorated Graphene

    PubMed Central

    Mattson, E.C.; Johns, J.E.; Pande, K.; Bosch, R.A.; Cui, S.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J.H.; Hersam, M.C.; Hirschmugl, C.J.

    2014-01-01

    We report infrared studies of adsorbed atomic oxygen (epoxide functional groups) on graphene. Two different systems are used as a platform to explore these interactions, namely, epitaxial graphene/SiC(0001) functionalized with atomic oxygen (graphene epoxide, GE) and chemically reduced graphene oxide (RGO). In the case of the model GE system, IR reflectivity measurements show that epoxide groups distort the graphene π bands around the K-point, imparting a finite effective mass and contributing to a band gap. In the case of RGO, epoxide groups are found to be present following the reduction treatment by a combination of polarized IR reflectance and transmittance measurements. Similar to the GE system, a band gap in the RGO sample is observed as well. PMID:24563725

  7. Surface Functionalization of WO3 Thin Films with (3-Aminopropyl)triethoxysilane and Succinic Anhydride

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Tran, Thi Nhu Hoa; Tran, Quang Minh Nhat; Pham, Duy Phong; Pham, Kim Ngoc; Cao, Thi Thanh; Kim, Yong Soo; Tran, Dai Lam; Ju, Heongkyu; Phan, Bach Thang

    2017-06-01

    We report effects of oxygen plasma treatment on the surface functionalization of WO3 thin films with (3-aminopropyl)triethoxysilane (APTES) and succinic anhydride (SA). X-ray diffraction and x-ray photoelectron spectroscopy results indicate the existence of the WO3 phase. Fourier transform infrared spectroscopy measurement shows clear bands at 1040 cm-1 (Si-O-Si), 1556 cm-1 (N-H), 1655 cm-1 (C=O), 2937 cm-1 (C-H) and 3298 cm-1 (N-H), confirming the surface functionalization efficiency enhanced by prior treatment of oxygen plasma. It thus follows that the prior oxygen plasma treatment activates hydroxylation with more -OH groups on the WO3 surface, which can pave a highly efficient way to the surface functionalization by APTES and SA.

  8. Computed Regioselectivity and Conjectured Biological Activity of Ene Reactions of Singlet Oxygen with the Natural Product Hyperforin.

    PubMed

    Abramova, Inna; Rudshteyn, Benjamin; Liebman, Joel F; Greer, Alexander

    2017-03-01

    Hyperforin is a constituent of St. John's wort and coexists with the singlet oxygen sensitizer hypericin. Density functional theory, molecular mechanics and Connolly surface calculations show that accessibility in the singlet oxygen "ene" reaction favors the hyperforin "southwest" and "southeast" prenyl (2-methyl-2-butenyl) groups over the northern prenyl groups. While the southern part of hyperforin is initially more susceptible to oxidation, up to 4 "ene" reactions of singlet oxygen can take place. Computational results assist in predicting the fate of adjacent hydroperoxides in hyperforin, where the loss of hydrogen atoms may lead to the formation of a hydrotrioxide and a carbonyl instead of a Russell reaction. © 2017 The American Society of Photobiology.

  9. DFT studies on the heterogeneous oxidation of SO2 by oxygen functional groups on graphene.

    PubMed

    He, Guangzhi; He, Hong

    2016-11-23

    The heterogeneous oxidation of SO 2 has been the subject of intense scrutiny in atmospheric chemistry because of the adverse effects of sulfate particles. Although it has been found that the soot particles with a graphene-like structure play an important role in the oxidation of SO 2 , little is known about the atomic-level mechanism involved. Here, we studied the oxidation of SO 2 on oxygen-functionalized graphene using density functional theory (DFT) calculation. The results showed that SO 2 is oxidized by the epoxide group via a two-step mechanism, where the C-O bond away from the SO 2 is broken first, followed by the breaking of the other C-O bond and the synchronous formation of a new S-O bond. The energy barriers are significantly decreased when solvation free energies are involved, suggesting that humidity is favorable for promoting the oxidation by reducing the reaction barrier. The energy barriers for H 2 SO 3 oxidation are much higher than that for SO 2 oxidation, indicating that the direct conversion of SO 2 to SO 3 is the main pathway for the oxidation of SO 2 by oxygen-functionalized graphene sheets in both the gas phase and solution. The reduced density gradient (RDG) analysis showed that the hydrogen bond formed between H 2 SO 3 and epoxide groups enhances the stability of the reaction complex, and is responsible for the high energy barrier that has to be overcome for the reaction to proceed. These atomistic studies proposed a two-step mechanism for the oxidation of SO 2 on the oxygen-functionalized graphene-like carbonaceous surfaces under ambient conditions.

  10. Leveraging zinc interstitials and oxygen vacancies for sensitive biomolecule detection through selective surface functionalization

    NASA Astrophysics Data System (ADS)

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini

    2015-03-01

    In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.

  11. [Blood oxygen transport, prooxidant -- antioxidant status, and vasoactive characteristics of vascular endothelium in rats treated with endotoxin and taurine].

    PubMed

    Milosh, T S; Maksimovich, N E

    2014-01-01

    Experiments on a group of 74 pregnant rats upon intramuscular introduction of E. coli lipopolysaccharides during pregnancy revealed the correction effect of taurine on the blood oxygen transport function, prooxidant - antioxidant status, and vasoactive characteristics of vascular endothelium.

  12. Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules

    DOE PAGES

    Ciesielski, Peter N.; Robichaud, David J.; Kim, Seonah; ...

    2017-07-05

    Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less

  13. Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciesielski, Peter N.; Robichaud, David J.; Kim, Seonah

    Oxygenated biofuels provide a renewable, domestic source of energy that can enable adoption of advanced, high-efficiency internal combustion engines, such as those based on homogeneously charged compression ignition (HCCI). Of key importance to such engines is the cetane number (CN) of the fuel, which is determined by the autoignition of the fuel under compression at relatively low temperatures (550-800 K). For the plethora of oxygenated biofuels possible, it is desirable to know the ignition delay times and the CN of these fuels to help guide conversion strategies so as to focus efforts on the most desirable fuels. For alkanes, themore » chemical pathways leading to radical chain-branching reactions giving rise to low-temperature autoignition are well-known and are highly coincident with the buildup of reactive radicals such as OH. Key in the mechanisms leading to chain branching are the addition of molecular oxygen to alkyl radicals and the rearrangement and dissociation of the resulting peroxy radials. Prediction of the temperature and pressure dependence of reactions that lead to the buildup of reactive radicals requires a detailed understanding of the potential energy surfaces (PESs) of these reactions. In this study, we used quantum mechanical modeling to systematically compare the effects of oxygen functionalities on these PESs and associated kinetics so as to understand how they affect experimental trends in autoignition and CN. The molecules studied here include pentane, pentanol, pentanal, 2-heptanone, methylpentyl ether, methyl hexanoate, and pentyl acetate. All have a saturated five-carbon alkyl chain with an oxygen functional group attached to the terminal carbon atom. The results of our systematic comparison may be summarized as follows: (1) Oxygen functionalities activate C-H bonds by lowering the bond dissociation energy (BDE) relative to alkanes. (2) The R-OO bonds in peroxy radicals adjacent to carbonyl groups are weaker than corresponding alkyl systems, leading to dissociation of ROO radicals and reducing reactivity and hence CN. (3) Hydrogen atom transfer in peroxy radicals is important in autoignition, and low barriers for ethers and aldehydes lead to high CN. (4) Peroxy radicals formed from alcohols have low barriers to form aldehydes, which reduce the reactivity of the alkyl radical. In conclusion, these findings for the formation and reaction of alkyl radicals with molecular oxygen explain the trend in CN for these common biofuel functional groups.« less

  14. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621

  15. Functional electrolyte for lithium-ion batteries

    DOEpatents

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  16. Effects of exercise program on physiological functions in postmenopausal women with metabolic syndrome.

    PubMed

    Heli, Valkeinen; Ihab, Hajjar; Kun, Hu; Brad, Manor; Jessica, Wisocky; Vera, Novak

    2013-12-01

    The purpose of this study was to examine effects of mixed interval aerobic and strength training (MAST) program on physiological functions in older women with metabolic syndrome. 12 subjects were randomly assigned to the exercise group (16-week MAST program) or the control group. Outcomes included oxygen uptake (VO 2max ), cerebral blood flow velocity (BFV) and cognitive functions. The exercise group demonstrated increased VO 2max and certain improvements in cognitive functions. No changes were observed in BFV for both groups. These results can be used as a preliminary data for planning larger studies.

  17. Effects of Hyperbaric Oxygen Treatment on Renal System.

    PubMed

    Tezcan, Orhan; Caliskan, Ahmet; Demirtas, Sinan; Yavuz, Celal; Kuyumcu, Mahir; Nergiz, Yusuf; Guzel, Abdulmenap; Karahan, Oguz; Ari, Seyhmus; Soker, Sevda; Yalinkilic, Ibrahim; Turkdogan, Kenan Ahmet

    2017-01-01

    Hyperbaric oxygen (HBO) treatment is steadily increasing as a therapeutic modality for various types of diseases. Although good clinical outcomes were reported with HBO treatment for various diseases, the multisystemic effects of this modality are still unclear. This study aimed to investigate the renal effects of HBO experimentally. Fourteen New Zealand White rabbits were divided into 2 groups randomly as the control group and the study group. The study group received HBO treatment for 28 days (100% oxygen at 2.5 atmospheres for 90 minutes daily) and the control group was used to obtain normal renal tissue of the animal genus. After the intervention period, venous blood samples were obtained, and renal tissue samples were harvested for comparisons. Normal histological morphology was determined with Masson trichrome staining and periodic acid-Schiff staining in the control group. Atrophic glomerular structures, vacuolated tubule cells, and degeneration were detected in the renal samples of the study group with Masson trichrome staining. Additionally, flattening was observed on the brush borders of the proximal tubules, and tubular dilatation was visualized with periodic acid-Schiff staining. The histopathologic disruption of renal morphology was verified with detection of significantly elevated kidney function laboratory biomarkers in the study group. Our findings suggests that HBO has adverse effects on renal glomerulus and proximal tubules. However, the functional effects of this alteration should be investigated with further studies.

  18. Impact of chronic obstructive pulmonary disease on family functioning.

    PubMed

    Kanervisto, Merja; Paavilainen, Eija; Astedt-Kurki, Päivi

    2003-01-01

    The purpose of this study was to ascertain family dynamics of Finnish patients with severe chronic obstructive pulmonary disease (COPD) on the basis of Barnhill's framework for healthy family functioning. This study used description and comparison and an interview-administered questionnaire and survey. Participants were patients with COPD and their family members (n = 65) living in the Tampere University Hospital catchment area. The sample consisted of families of home oxygen therapy patients (n = 36) and families of inpatients (n = 29). Families consisted of patients and their family members. Data were collected from patients by interview-administered questionnaires and from family members by survey. The instrument used was the Family Dynamics Measure 2, operationalized and tested by the American Family Research Group. Families of home oxygen therapy patients experienced significantly more mutuality (P =.03) and made decisions about their illness and life significantly more independently (P =.05) than families of inpatients. Families of home oxygen therapy patients handled change significantly more flexibly (P =.03) than families of inpatients. For the most part, families of both patient groups functioned well, but overall family functioning was clearly better in families of home oxygen therapy patients. The sample included some dysfunctional and even severely dysfunctional families. The results of this study cannot be generalized beyond the study sample because of the small sample size, but they provide suggestions for developing the care of patients with COPD and their families.

  19. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    PubMed

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. [Hemoglobin, from microorganisms to man: a single structural motif, multiple functions].

    PubMed

    Wajcman, Henri; Kiger, Laurent

    2002-12-01

    Haemoglobins from unicellular organisms, plants or animals, share a common structure, which results from the folding, around the heme group, of a polypeptide chain made from 6-8 helices. Nowadays, deciphering the genome of several species allows one to draw the evolutionary tree of this protein going back to 1800 millions of years, at a time when oxygen began to accumulate in the atmosphere. This permits to follow the evolution of the ancestral gene and of its product. It is likely that, only in complex multicellular species, transport and storage of oxygen became the main physiological function of this molecule. In addition, in unicellular organisms and small invertebrates, it is likely that the main function of this protein was to protect the organism from the toxic effect of O2, CO and NO*. The very high oxygen affinity of these molecules, leading them to act rather as a scavenger as an oxygen carrier, supports this hypothesis. Haemoglobins from microorganisms, which may probably be the closest vestiges to the ancestral molecules, are divided into three families. The first one is made from flavohaemoglobins, a group of chimerical proteins carrying a globin domain and an oxido-reduction FAD-dependant domain. The second corresponds to truncated haemoglobins, which are hexacoordinated with very high oxygen-affinity molecules, 20-40 residues shorter than classical haemoglobins. The third group is made from bacterial haemoglobins such as that of Vitreoscilla. Some specific structural arrangements in the region surrounding the heme are cause of their high oxygen affinity. In plants, two types of haemoglobins are present (non-symbiotic and symbiotic), that arose from duplication of an ancestral vegetal gene. Non-symbiotic haemoglobins, which are probably the oldest, are scarcely distributed within tissues having high energetic consumption. Conversely, symbiotic haemoglobins (also named leghaemoglobins) are present at a high concentration (mM) mostly in the rhizomes of legumes, where they are involved in nitrogen metabolism. In some species, haemoglobin was proposed to be an oxygen sensor bringing to the organism information to adjust metabolism or biosynthesis to the oxygen requirement. Elsewhere haemoglobin may act as final electron acceptors in oxido-reduction pathways. Evolution of haemoglobin in invertebrates followed a large variety of scenarios. Some surprising functions as sulphide acquisition in invertebrates living near hydrothermal vents, or a role in the phototrophism of worm need to be mentioned. In invertebrates, the size of haemoglobin varies from monomers to giant molecules associating up to 144 subunits, while in vertebrates it is always a tetramer. In some species, several haemoglobins, with completely different structure and function, may coexist. This demonstrates how hazardous may be to extrapolate the function of a protein from only structural data.

  1. Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation

    PubMed Central

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods and Results Nineteen immature piglets (9.1–15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon (13C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by 13C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning. PMID:25421230

  2. IDENTIFICATION AND QUANTIFICATION OF AEROSOL POLAR OXYGENATED COMPOUNDS BEARING CARBOXYLIC AND/OR HYDROXYL GROUPS. 1. METHOD DEVELOPMENT

    EPA Science Inventory

    In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) ...

  3. Drug abusers have impaired cerebral oxygenation and cognition during exercise

    PubMed Central

    Soares Rachetti, Vanessa; Quirino Alves da Silva, Weslley; Aranha Rego Cabral, Daniel; Gomes da Silva Machado, Daniel; Caldas Costa, Eduardo; Forti, Rodrigo Menezes; Mesquita, Rickson Coelho; Elsangedy, Hassan Mohamed; Hideki Okano, Alexandre; Bodnariuc Fontes, Eduardo

    2017-01-01

    Background Individuals with Substance Use Disorder (SUD) have lower baseline metabolic activity of the prefrontal cortex (PFC) associated with impairment of cognitive functions in decision-making and inhibitory control. Aerobic exercise has shown to improve PFC function and cognitive performance, however, its effects on SUD individuals remain unclear. Purpose To verify the cognitive performance and oxygenation of the PFC during an incremental exercise in SUD individuals. Methods Fourteen individuals under SUD treatment performed a maximum graded exercise test on a cycle ergometer with continuous measurements of oxygen consumption, PFC oxygenation, and inhibitory control (Stroop test) every two minutes of exercise at different intensities. Fifteen non-SUD individuals performed the same protocol and were used as control group. Results Exercise increased oxyhemoglobin (O2Hb) and total hemoglobin (tHb) by 9% and 7%, respectively. However, when compared to a non-SUD group, this increase was lower at high intensities (p<0.001), and the inhibitory cognitive control was lower at rest and during exercise (p<0.007). In addition, PFC hemodynamics during exercise was inversely correlated with inhibitory cognitive performance (reaction time) (r = -0.62, p = 0.001), and a lower craving perception for the specific abused substance (p = 0.0189) was reported immediately after exercise. Conclusion Despite SUD individuals having their PFC cerebral oxygenation increased during exercise, they presented lower cognition and oxygenation when compared to controls, especially at elevated intensities. These results may reinforce the role of exercise as an adjuvant treatment to improve PFC function and cognitive control in individuals with SUD. PMID:29125875

  4. Athletes and Sedentary Individuals: An Intergroup Comparison Utilizing a Pulmonary Function Ratio Obtained During Submaximal Exercise.

    ERIC Educational Resources Information Center

    Maud, Peter J.

    A pulmonary function ratio describing oxygen extraction from alveolar ventilation was used for an intergroup comparison between three groups of athletes (rugby, basketball, and football players) and one group of sedentary subjects during steady-state submaximal exercise. The ratio and its component parts are determined from only three gas…

  5. Physical origins of weak H 2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE PAGES

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; ...

    2014-05-05

    Here, we have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH 2, COOH, NO 2, or H 2PO 3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. Furthermore, the largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strongmore » functionalization” by H 2PO 3 (115 meV/H 2 versus 52 meV/H 2 on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. These results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen in porous carbon materials, such as activated carbons.« less

  6. Understanding Defect-Stabilized Noncovalent Functionalization of Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.

    2015-09-01

    The noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The findings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. The structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogen bonding with terminalmore » hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. These results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less

  7. Understanding Defect-Stabilized Noncovalent Functionalization of Graphene

    DOE PAGES

    Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.; ...

    2015-09-01

    For the noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The fi ndings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. Moreover, the structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogenmore » bonding with terminal hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. Finally, these results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less

  8. Updating of working memory in ecstasy polydrug users: Findings from fNIRS.

    PubMed

    Montgomery, Catharine; Fisk, John E; Roberts, Carl A

    2017-05-01

    Cognitive deficits are now well documented in ecstasy (MDMA) users with type and relative demand of task emerging as important factors. The updating component of executive processes appears to be particularly affected. The study reported here used functional near infrared spectroscopy imaging to investigate changes in cortical haemodynamics during memory updating. Twenty ecstasy users and 20 non-users completed verbal and spatial memory updating tasks and brain blood oxygenation and deoxygenation change was measured using functional near infrared spectroscopy. There was no interaction between group and difficulty on the updating tasks, though there was a significant main effect of difficulty on both tasks. The effects of group approached significance on the verbal updating task. There were significant differences in blood oxygenation and deoxygenation change at optodes centred over the right and left dorsolateral prefrontal cortex, with ecstasy users showing greater blood oxygenation than the other groups. The lack of a behavioural difference on both tasks but presence of blood oxygenation and deoxygenation changes in letter updating provides support for the notion that ecstasy-polydrug users are investing more effort to achieve the same behavioural output. Total lifetime dose was high, and recency of use was significantly related to most changes, suggesting that heavy and recent use may be particularly detrimental. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  10. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yongjun; Tang, Pei; Zhou, Hu

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giantmore » π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.« less

  11. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.

    PubMed

    Miner, Elise M; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.

  12. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

    PubMed Central

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea

    2016-01-01

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications. PMID:26952523

  13. [Association between oxygen saturation and cognitive function in older adults from longevity areas in China].

    PubMed

    Su, L Q; Yin, Z X; Xu, N; Lyu, Y B; Luo, J S; Shi, X M

    2016-07-06

    To explore the relationship between oxygen saturation (SpO2) and cognitive function in older adults from longevity areas in China. A total of 2 285 participants aged ≥65 years according to the 2012 Chinese Longitudinal Healthy Longevity Survey were included in this study. Among them, 1 739 participants aged 65-99 years were randomly selected, and 546 participants aged ≥100 years were totally involved. A standardized questionaire was used to collect the information of demographic characteristics, life styles, disease history, etc. Cognitive function was evaluated using the Mini Mental State Examination Scale. Arterial oxygen saturation and heart rate were measured by pulse oximetry. Differences in cognitive function between the low SpO2 group (<0.94) and normal SpO2 group (≥0.94) were analyzed, and logistic regression models were used to analyze the relationship between SpO2 and cognitive function. The total score of cognitive function was 22.6±9.7 for the 1 922 participants in the normal SpO2 group, and 18.8 ± 11.0 for the 363 participants in the low SpO2 group (t=6.11, P<0.001). The proportion of cognitive impairment in the low SpO2 group was 36.6% (n=133), and 22.9% (n=441) in the normal SpO2 group (χ(2)=30.44, P<0.001). RESULTS from stepwise logistic regression analysis showed that the risk of cognitive impairment increased with each year of increased age (OR 1.07; (95% CI: 1.05-1.09), P<0.001). Low SpO2, vision disorders, impaired activities of daily living, dyslipidemia, unmarried status, and lack of exercise were also associated with increased risk of cognitive impairment (OR 1.64; (95% CI: 1.11-2.43), OR 1.73; (95% CI: 1.27-2.35), OR 3.54; (95% CI: 2.62-4.79), OR 1.38; (95% CI: 1.02-1.86), OR 2.05; (95% CI: 1.34-3.13), OR 1.83; (95% CI: 1.13-2.97), respectively, P<0.05). Stratified analysis by age group showed that the association between SpO2 and cognitive impairment was most significant in participants aged ≥90 years (OR 1.58; (95% CI: 1.09-2.28), P=0.016). Low oxygen saturation was associated with higher risk of cognitive impairment in our population of elderly adults.

  14. Effects of group exercise on functional abilities: Differences between physically active and physically inactive women.

    PubMed

    Cokorilo, Nebojsa; Mikalacki, Milena; Satara, Goran; Cvetkovic, Milan; Marinkovic, Dragan; Zvekic-Svorcan, Jelena; Obradovic, Borislav

    2018-03-30

    Aerobic exercises to music can have a positive effect on functional and motor skills of an exerciser, their health, as well as an aesthetic and socio-psychological component. The objective of this study was to determine the effects of reactive exercising in a group on functional capabilities in physically active and physically inactive women. A prospective study included 64 healthy women aged 40-60 years. The sample was divided into the experimental group (n= 36), i.e. physically active women who have been engaged in recreational group exercises at the Faculty of Sport and Physical Education, University of Novi Sad, Serbia, and the control group (n= 28), which consisted of physically inactive women. All the participants were monitored using the same protocol before and after the implementation of the research. All women had their height, weight, body mass index measured as well as spiroergometric parameters determined according to the Bruce protocol. A univariate analysis of variance has shown that there is a statistically significant difference between the experimental group and the control group in maximum speed, the total duration of the test, relative oxygen consumption, absolute oxygen consumption and ventilation during the final measurement. After the training intervention, the experimental group showed improvements in all the parameters analyzed compared with pretest values. The recreational group exercise model significantly improves aerobic capacity and functioning of the cardiovascular system. Therefore, it is essential for women to be involved more in any form of recreational group exercising in order to improve functional capacity and health.

  15. Absolute iron deficiency without anaemia in patients with chronic systolic heart failure is associated with poorer functional capacity.

    PubMed

    Pozzo, Joffrey; Fournier, Pauline; Delmas, Clément; Vervueren, Paul-Louis; Roncalli, Jérôme; Elbaz, Meyer; Galinier, Michel; Lairez, Olivier

    2017-02-01

    Functional status is one of the main concerns in the management of heart failure (HF). Recently, the FAIR-HF and CONFIRM-HF trials showed that correcting anaemia using intravenous iron supplementation improved functional variables in patients with absolute or relative iron deficiency. Relative iron deficiency is supposed to be a marker of HF severity, as ferritin concentration increases with advanced stages of HF, but little is known about the impact of absolute iron deficiency (AID). To study the impact of AID on functional variables and survival in patients with chronic systolic HF. One hundred and thirty-eight non-anaemic patients with chronic systolic HF were included retrospectively. Patients were divided into two groups according to iron status: the AID group, defined by a ferritin concentration<100μg/L and the non-AID group, defined by a ferritin concentration≥100μg/L. Functional, morphological and biological variables were collected, and survival was assessed. Patients in the AID group had a poorer 6-minute walking test (342 vs. 387m; P=0.03) and poorer peak exercise oxygen consumption (13.8 vs. 16.0mL/min/kg; P=0.01). By multivariable analysis, ferritin<100μg/L was associated with impaired capacity of effort, assessed by peak exercise oxygen consumption. By multivariable analysis, there was no difference in total mortality between groups, with a mean follow-up of 5.1±1.1 years. The poorer functional evaluations in iron-deficient patients previously reported are not caused by the merging of two different populations (i.e. patients with absolute or relative iron deficiency). Our study has confirmed that non-anaemic HF patients with AID have poorer peak oxygen consumption. However, AID has no impact on the survival of these patients. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-03-01

    The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.

  17. Divergent Effects of Hypertonic Fluid Resuscitation on Renal Pathophysiological and Structural Parameters in Rat Model of Lower Body Ischemia/Reperfusion-Induced Sterile Inflammation.

    PubMed

    Ergin, Bulent; Zuurbier, Coert J; Kapucu, Aysegul; Ince, Can

    2017-12-27

    The pathogenesis of acute kidney injury (AKI) is characterized by the deterioration of tissue perfusion and oxygenation and enhanced inflammation. The purpose of this study was to investigate whether or not the hemodynamic and inflammatory effects of hypertonic saline (HS) protect the kidney by promoting renal microcirculatory oxygenation and possible deleterious effects of HS due to its high sodium content on renal functional and structural injury following ischemia/reperfusion. Mechanically ventilated and anesthetized rats were randomly divided into four groups (n = 6 per group): a sham-operated control group; a group subjected to renal ischemia for 45 min by supra-aortic occlusion followed by 2 h of reperfusion (I/R); and I/R group treated with a continuous i.v. infusion (5 mL/kg/h) of either % 0.9 NaCl (IR+NS) or %10 NaCl (I/R+HS) after releasing the clamp. Systemic and renal hemodynamic, renal cortical (CμPO2), and medullar microcirculatory pO2 (MμPO2) are measured by the oxygen-dependent quenching of the phosphorescence lifetime technique. Renal functional, inflammatory, and tissues damage parameters were also assessed. HS, but not NS, treatment restored I/R-induced reduced mean arterial pressure, CμPO2, renal oxygen deliver (DO2ren), and consumption (VO2ren). HS caused a decrease in tubular sodium reabsorption (TNa) that correlated with an elevation of fractional sodium excretion (EFNa) and urine output. HS had an anti-inflammatory effect by reducing the levels TNF-α, IL-6, and hyaluronic acid in the renal tissue samples as compared with the I/R and I/R+NS groups (P < 0.05). HS treatment was also associated with mild acidosis and an increased renal tubular damage. Despite HS resuscitation improving the systemic hemodynamics, microcirculatory oxygenation, and renal oxygen consumption as well as inflammation, it should be limited or strictly controlled for long-term use because of provoking widespread renal structural damage.

  18. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  19. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Singh, R.; Ingole, B. S.

    2016-01-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata, Daptonema sp. 1, Trissonchulus sp. 1, and Minolaimus sp. 1. Correlation with a number of environmental variables indicated that food quantity (measured as the organic-carbon content and chlorophyll content) and oxygen level were the major factors that influenced nematode community structure and function.

  20. Oxygenated Interface on Biomass Burn Tar Balls Determined bySingle Particle Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tivanski, A.V.; Hopkins, R.J.; Tyliszczak, T.

    2007-06-21

    Carbonaceous particles originating from biomass burning canaccount for a large fraction of organic aerosols in a local environment.Presently, their composition, physical and chemical properties, as wellas their environmental effects are largely unknown. Tar balls, a distincttype of highly spherical carbonaceous biomass burn particles, have beenobserved in a number of field campaigns. The Yosemite AerosolCharacterization Study that took place in summer 2002 occurred during anactive fire season in the western United States; tar balls collectedduring this field campaign are described in this article. Scanningtransmission X-ray microscopy and near-edge X-ray absorption finestructure spectroscopy are used to determine the shape, structure, andsize-dependent chemicalmore » composition of ~;150 individual sphericalparticles ranging in size from 0.15 to 1.2mu m.The elemental compositionof tar balls is ~;55 percent atomic carbon and ~;45 percent atomicoxygen. Oxygen is present primarily as carboxylic carbonyls andoxygen-substituted alkyl (O-alkyl-C) functional groups, followed bymoderate amounts of ketonic carbonyls. The observed chemical composition,density, and carbon functional groups are distinctly different from sootor black carbon and more closely resemble high molecular weight polymerichumic-like substances, which could account for their reported opticalproperties. A detailed examination of the carboxylic carbonyl andO-alkyl-C functional groups as a function of particle size reveals a thinoxygenated interface layer. The high oxygen content, as well as thepresence of water-soluble carboxylic carbonyl groups, could account forthe reported hygroscopic properties of tar balls. The presence of theoxygenated layer is attributed to atmospheric processing of biomass burnparticles.« less

  1. Removal of hexavalent Cr by coconut coir and derived chars--the effect of surface functionality.

    PubMed

    Shen, Ying-Shuian; Wang, Shan-Li; Tzou, Yu-Min; Yan, Ya-Yi; Kuan, Wen-Hui

    2012-01-01

    The Cr(VI) removal by coconut coir (CC) and chars obtained at various pyrolysis temperatures were evaluated. Increasing the pyrolysis temperature resulted in an increased surface area of the chars, while the corresponding content of oxygen-containing functional groups of the chars decreased. The Cr(VI) removal by CC and CC-derived chars was primarily attributed to the reduction of Cr(VI) to Cr(III) by the materials and the extent and rate of the Cr(VI) reduction were determined by the oxygen-containing functional groups in the materials. The contribution of pure Cr(VI) adsorption to the overall Cr(VI) removal became relatively significant for the chars obtained at higher temperatures. Accordingly, to develop a cost-effective method for removing Cr(VI) from water, the original CC is more advantageous than the carbonaceous counterparts because no pyrolysis is required for the application and CC has a higher content of functional groups for reducing Cr(VI) to less toxic Cr(III). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Surface chemical structure of poly(ethylene naphthalate) films during degradation in low-pressure high-frequency plasma treatments

    NASA Astrophysics Data System (ADS)

    Kamata, Noritsugu; Yuji, Toshifumi; Thungsuk, Nuttee; Arunrungrusmi, Somchai; Chansri, Pakpoom; Kinoshita, Hiroyuki; Mungkung, Narong

    2018-06-01

    The surface chemical structure of poly(ethylene naphthalate) (PEN) films treated with a low-pressure, high-frequency plasma was investigated by storing in a box at room temperature to protect the PEN film surface from dust. The functional groups on the PEN film surface changed over time. The functional groups of –C=O, –COH, and –COOH were abundant in the Ar + O2 mixture gas plasma-treated PEN samples as compared with those in untreated PEN samples. The changes occurred rapidly after 2 d following the plasma treatment, reaching steady states 8 d after the treatment. Hydrophobicity had an inverse relationship with the concentration of these functional groups on the surface. Thus, the effect of the low-pressure high-frequency plasma treatment on PEN varies as a function of storage time. This means that radical oxygen and oxygen molecules are clearly generated in the plasma, and this is one index to confirm that radical reaction has definitely occurred between the gas and the PEN film surface with a low-pressure high-frequency plasma.

  3. DELAYING BLOOD TRANSFUSION IN EXPERIMENTAL ACUTE ANEMIA WITH A PERFLUOROCARBON EMULSION

    PubMed Central

    Cabrales, Pedro; Briceño, Juan Carlos

    2011-01-01

    Background To avoid unnecessary blood transfusions, physiologic transfusion triggers, rather than exclusively hemoglobin-based transfusion triggers have been suggested. The objective of this study was to determine systemic and microvascular effects of using a perfluorocarbon-based oxygen carrier (PFCOC) to maintaining perfusion and oxygenation during extreme anemia. Methods The hamster (weight 55-65 g) window chamber model was used. Two isovolemic hemodilution steps were performed using 10% hydroxyethyl starch at normoxic conditions to hematocrit of 19% (5.5 gHb/dl), point where the transfusion trigger was reached. Two additional hemodilution exchanges using the PFCOC (Oxycyte™, Synthetic Blood International, Inc. Costa Mesa, CA) and increasing fraction of inspired oxygen to 1.0 were performed to reduce hematocrit to 11% (3.8 gHb/dl) and 6% (2.0 gHb/dl), respectively. No control group was used in the study, as this level of hemodilution is lethal with conventional plasma expanders. Systemic parameters, microvascular perfusion, functional capillary density and oxygen tensions across the microvascular network were measured. Results At 6% hematocrit, the PFCOC maintained mean arterial pressure, cardiac output, systemic oxygen delivery and consumption. As hematocrit was lowered from 11% to 6%, functional capillary density, calculated microvascular oxygen delivery and consumption decreased, and oxygen extraction ratio was close to 100%. Peripheral tissue oxygenation was not predicted by systemic oxygenation. Conclusions PFCOC in conjunction with hyperoxia was able to sustain organ function, and partially provide systemic oxygenation during extreme anemia over the observation period. The PFCOC can work as a bridge until red blood cells are available for transfusion, or where additional oxygen is required, notwithstanding possible limitations in peripheral tissue oxygenation. PMID:21326091

  4. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes.

    PubMed

    Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu

    2014-01-01

    Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.

  5. Dyspnea on exertion in obese women: association with an increased oxygen cost of breathing.

    PubMed

    Babb, Tony G; Ranasinghe, Kamalini G; Comeau, Laurie A; Semon, Trisha L; Schwartz, Belinda

    2008-07-15

    Although exertional dyspnea in obesity is an important and prolific clinical concern, the underlying mechanism remains unclear. To investigate whether dyspnea on exertion in otherwise healthy obese women was associated with an increase in the oxygen cost of breathing or cardiovascular deconditioning. Obese women with and without dyspnea on exertion participated in two independent experiments (n = 16 and n = 14). All participants underwent pulmonary function testing, hydrostatic weighing, ratings of perceived breathlessness during cycling at 60 W, and determination of the oxygen cost of breathing during eucapnic voluntary hyperpnea at 40 and 60 L/min. Cardiovascular exercise capacity, fat distribution, and respiratory mechanics were determined in 14 women in experiment 2. Data were analyzed between groups by independent t test, and the relationship between the variables was determined by regression analysis. In both experiments, breathlessness during 60 W cycling was markedly increased in over 37% of the obese women (P < 0.01). Age, height, weight, lung function, and %body fat were not different between the groups in either experiment. In contrast, the oxygen cost of breathing was significantly (P < 0.01) and markedly (38-70%) greater in the obese women with dyspnea on exertion. The oxygen cost of breathing was significantly (P < 0.001) correlated with the rating of perceived breathlessness obtained during the 60 W exercise in experiment 1 (r(2) = 0.57) and experiment 2 (r(2) = 0.72). Peak cardiovascular exercise capacity, fat distribution, and respiratory mechanics were not different between groups in experiment 2. Dyspnea on exertion is prevalent in otherwise healthy obese women, which seems to be strongly associated with an increased oxygen cost of breathing. Exercise capacity is not reduced in obese women with dyspnea on exertion.

  6. Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton

    NASA Astrophysics Data System (ADS)

    Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.

    2012-12-01

    Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.

  7. Plasma enhancement of in vitro attachment of rat bone-marrow-derived stem cells on cross-linked gelatin films.

    PubMed

    Prasertsung, I; Kanokpanont, S; Mongkolnavin, R; Wong, C S; Panpranot, J; Damrongsakkul, S

    2012-01-01

    In this work, nitrogen, oxygen and air glow discharges powered by 50 Hz AC power supply are used for the treatment of type-A gelatin film cross-linked by a dehydrothermal (DHT) process. The properties of cross-linked gelatin were characterized by contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that the water contact angle of gelatin films decrease with increasing plasma treatment time. The treatment of nitrogen, oxygen and air plasma up to 30 s had no effects on the surface roughness of the gelatin film as revealed by AFM results. The XPS analysis showed that the N-containing functional groups generated by nitrogen and air plasma, and O-containing functional groups generated by oxygen and air plasmas were incorporated onto the film surface, the functional groups were found to increase with increasing treatment time. An in vitro test using rat bone-marrow-mesenchym-derived stem cells (MSCs) revealed that the number of cells attached on plasma-treated gelatin films was significantly increased compared to untreated samples. The best enhancement of cell attachment was noticed when the film was treated with nitrogen plasma for 15-30 s, oxygen plasma for 3 s, and air plasma for 9 s. In addition, among the three types of plasmas used, nitrogen plasma treatment gave the best MSCs attachment on the gelatin surface. The results suggest that a type-A gelatin film with water contact angle of 27-28° and an O/N ratio of 1.4 is most suitable for MSCs attachment.

  8. Graphene oxide papers with high water adsorption capacity for air dehumidification.

    PubMed

    Liu, Renlong; Gong, Tao; Zhang, Kan; Lee, Changgu

    2017-08-29

    Graphene oxide (GO) has shown a high potential to adsorb and store water molecules due to the oxygen-containing functional groups on its hydrophilic surface. In this study, we characterized the water absorbing properties of graphene oxide in the form of papers. We fabricated three kinds of graphene oxide papers, two with rich oxygen functional groups and one with partial chemical reduction, to vary the oxygen/carbon ratio and found that the paper with high oxygen content has higher moisture adsorption capability. For the GO paper with reduction, the overall moisture absorbance was reduced. However, the absorbance at high humidity was significantly improved due to direct formation of multilayer water vapor in the system, which derived from the weak interaction between the adsorbent and the adsorbate. To demonstrate one application of GO papers as a desiccant, we tested grape fruits with and without GO paper. The fruits with a GO paper exhibited longer-term preservation with delayed mold gathering because of desiccation effect from the paper. Our results suggest that GO will find numerous practical applications as a desiccant and is a promising material for moisture desiccation and food preservation.

  9. Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System

    PubMed Central

    Calunga, José Luis; Zamora, Zullyt B.; Borrego, Aluet; del Río, Sarahí; Barber, Ernesto; Menéndez, Silvia; Hernández, Frank; Montero, Teresita; Taboada, Dunia

    2005-01-01

    Chronic renal failure (CRF) represents a world health problem. Ozone increases the endogenous antioxidant defense system, preserving the cell redox state. The aim of this study is to evaluate the effect of ozone/oxygen mixture in the renal function, morphology, and biochemical parameters, in an experimental model of CRF (subtotal nephrectomy). Ozone/oxygen mixture was applied daily, by rectal insufflation (0.5 mg/kg) for 15 sessions after the nephrectomy. Renal function was evaluated, as well as different biochemical parameters, at the beginning and at the end of the study (10 weeks). Renal plasmatic flow (RPF), glomerular filtration rate (GFR), the urine excretion index, and the sodium and potassium excretions (as a measurement of tubular function) in the ozone group were similar to those in Sham group. Nevertheless, nephrectomized rats without ozone (positive control group) showed the lowest RPF, GFR, and urine excretion figures, as well as tubular function. Animals treated with ozone showed systolic arterial pressure (SAP) figures lower than those in the positive control group, but higher values compared to Sham group. Serum creatinine values and protein excretion in 24 hours in the ozone group were decreased compared with nephrectomized rats, but were still higher than normal values. Histological study demonstrated that animals treated with ozone showed less number of lesions in comparison with nephrectomized rats. Thiobarbituric acid reactive substances were significantly increased in nephrectomized and ozone-treated nephrectomized rats in comparison with Sham group. In the positive control group, superoxide dismutase (SOD) and catalase (CAT) showed the lowest figures in comparison with the other groups. However, ozone/oxygen mixture induced a significant stimulation in the enzymatic activity of CAT, SOD, and glutathione peroxidase, as well as reduced glutathione in relation with Sham and positive control groups. In this animal model of CRF, ozone rectal administrations produced a delay in the advance of the disease, protecting the kidneys against vascular, hemorheological, and oxidative mechanisms. This behavior suggests ozone therapy has a protective effect on renal tissue by downregulation of the oxidative stress shown in CRF. PMID:16192672

  10. Dietary glutamine supplementation partly reverses impaired macrophage function resulting from overload training in rats.

    PubMed

    Xiao, Weihua; Chen, Peijie; Dong, Jingmei; Wang, Ru; Luo, Beibei

    2015-04-01

    The aim of this study was to evaluate the effect of overload training on the function of peritoneal macrophages in rats, and to test the hypothesis that glutamine in vivo supplementation would partly reverse the eventual functional alterations induced by overload training in these cells. Forty male Wistar rats were randomly divided into 5 groups: control group (C), overload training group (E1), overload training and restore one week group (E2), glutamine-supplementation group (EG1), and glutamine-supplementation and restore 1-week group (EG2). All rats, except those placed on sedentary control were subjected to 11 weeks of overload training protocol. Blood hemoglobin, serum testosterone, and corticosterone of rats were measured. Moreover, the functions (chemotaxis, phagocytosis, cytokines synthesis, reactive oxygen species generation) of peritoneal macrophages were determined. Data showed that blood hemoglobin, serum testosterone, corticosterone and body weight in the overload training group decreased significantly as compared with the control group. Meanwhile, the chemotaxis capacity (decreased by 31%, p = .003), the phagocytosis capacity (decreased by 27%, p = .005), the reactive oxygen species (ROS) generation (decreased by 35%, p = .003) and the cytokines response capability of macrophages were inhibited by overload training. However, the hindering of phagocytosis and the cytokines response capability of macrophages induced by overload training could be ameliorated and reversed respectively, by dietary glutamine supplementation. These results suggest that overload training impairs the function of peritoneal macrophages, which is essential for the microbicidal actions of macrophages. This may represent a novel mechanism of immunodepression induced by overload training. Nonetheless, dietary glutamine supplementation could partly reverse the impaired macrophage function resulting from overload training.

  11. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone.

    PubMed

    Beman, J Michael; Carolan, Molly T

    2013-01-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  12. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  13. The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt

    NASA Technical Reports Server (NTRS)

    Pawley, Alison R.; Holloway, John R.; Mcmillan, Paul F.

    1992-01-01

    The solubility of CO2-CO fluids in a midocean ridge basalt have been measured at 1200 C, 500-1500 bar, and oxygen fugacities between NNO and NNO-4. In agreement with results of previous studies, the results reported here imply that, at least at low pressures, CO2 dissolves in basaltic melt only in the form of carbonate groups. The dissolution reaction is heterogeneous, with CO2 molecules in the fluid reacting directly with reactive oxygens in the melt to produce CO3(2-). CO, on the other hand, is insoluble, dissolving neither as carbon, molecular CO, nor CO3(2-). It is shown that, for a given pressure and temperature, the concentration of dissolved carbon-bearing species in basaltic melt in equilibrium with a carbon-oxygen fluid is proportional to the mole fraction of CO2 in the fluid, which is a function of fO2. At low pressures CO2 solubility is a linear function of CO2 fugacity at constant temperatures.

  14. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    NASA Technical Reports Server (NTRS)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  15. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    USGS Publications Warehouse

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  16. Crown oxygen-doping graphene with embedded main-group metal atoms

    NASA Astrophysics Data System (ADS)

    Wu, Liyuan; Wang, Qian; Yang, Chuanghua; Quhe, Ruge; Guan, Pengfei; Lu, Pengfei

    2018-02-01

    Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene's stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.

  17. Assessment of cognitive impairment in long-term oxygen therapy-dependent COPD patients.

    PubMed

    Karamanli, Harun; Ilik, Faik; Kayhan, Fatih; Pazarli, Ahmet Cemal

    2015-01-01

    A number of studies have shown that COPD, particularly in its later and more severe stages, is associated with various cognitive deficits. Thus, the primary goal of the present study was to elucidate the extent of cognitive impairment in patients with long-term oxygen therapy-dependent (LTOTD) COPD. In addition, this study aimed to determine the effectiveness of two cognitive screening tests, the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), for COPD patients and the ability of oxygen therapy to mitigate COPD-related deficits in cognitive function. The present study enrolled 45 subjects: 24 nonuser and 21 regular-user LTOTD-COPD patients. All subjects had a similar grade of education, and there were no significant differences regarding age or sex. The MoCA (cutoff: <26 points) and MMSE (cutoff: ≤24 points) scores were compared between these two groups. The nonuser LTOTD-COPD group had a significantly lower MoCA score than that of the regular-user LTOTD-COPD group (19.38±2.99 vs 21.68±2.14, respectively) as well as a significantly lower MMSE score. Moreover, the absence of supplemental oxygen therapy increased the risk of cognitive impairment (MoCA, P=0.007 and MMSE, P=0.014), and the MoCA and MMSE scores significantly correlated with the number of emergency admissions and the number of hospitalizations in the last year. In the present study, the nonuser LTOTD-COPD group exhibited a significant decrease in cognitive status compared with the regular-user LTOTD-COPD group. This suggests that the assessment of cognitive function in nonuser LTOTD-COPD patients and the use of protective strategies, such as continuous supplemental oxygen treatment, should be considered during the management of COPD in this population. In addition, the MoCA score was superior to the MMSE score for the determination of cognitive impairment in the nonuser LTOTD-COPD patients.

  18. Physical origins of weak H{sub 2} binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.

    2014-05-07

    We have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH{sub 2}, COOH, NO{sub 2}, or H{sub 2}PO{sub 3}. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. The largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strong functionalization” bymore » H{sub 2}PO{sub 3} (115 meV/H{sub 2} versus 52 meV/H{sub 2} on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. Our results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen in porous carbon materials, such as activated carbons.« less

  19. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  20. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    PubMed

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effects of Oxygen Supply During Training on Subjects With COPD Who Are Normoxemic at Rest and During Exercise: A Blinded Randomized Controlled Trial.

    PubMed

    Spielmanns, Marc; Fuchs-Bergsma, Chantal; Winkler, Aurelia; Fox, Gabriele; Krüger, Stefan; Baum, Klaus

    2015-04-01

    It is well established that physical training enhances functionality and quality of life in patients with COPD. However, little data exist concerning the effects of the usefulness of oxygen supply during exercise training for > 3 months in patients with COPD who are normoxemic at rest and during exercise. We hypothesized that oxygen supply during training sessions enables higher training intensity and thus optimizes training results in patients with COPD. In this blinded randomized controlled study, we carried out a 24-week training program with progressively increasing loads involving large muscle groups. In addition, we compared the influences of oxygen supplementation. Thirty-six subjects with moderate-to-severe COPD who were not dependent on long-term oxygen therapy trained under supervision for 24 weeks (3 times/week at 30 min/session). Subjects were randomized into 2 groups: oxygen supply via nasal cannula at a flow of 4 L/min and compressed air at the same flow throughout the training program. Lung function tests at rest (inspiratory vital capacity, FEV1, Tiffeneau index), cycle spiroergometry (peak ventilation, peak oxygen uptake, peak respiratory exchange rate, submaximal and peak lactic acid concentrations), 6-min walk tests, and quality-of-life assessments (Medical Outcomes Study 36-Item Short Form questionnaire) were conducted before and after 12 and 24 weeks. Independent of oxygen supplementation, statistically significant improvements occurred in quality of life, maximal tolerated load during cycling, peak oxygen uptake, and 6-min walk test after 12 weeks of training. Notably, there were no further improvements from 12 to 24 weeks despite progressively increased training loads. Endurance training 3 times/week resulted in significant improvements in quality of life and exercise capacity in subjects with moderate-to-severe COPD within the initial 12 weeks, followed by a stable period over the following 12 weeks with no further benefits of supplemental oxygen. Copyright © 2015 by Daedalus Enterprises.

  2. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.

    PubMed

    Solevåg, Anne Lee; Schmölzer, Georg M; O'Reilly, Megan; Lu, Min; Lee, Tze-Fun; Hornberger, Lisa K; Nakstad, Britt; Cheung, Po-Yin

    2016-09-01

    Despite the minimal evidence, neonatal resuscitation guidelines recommend using 100% oxygen when chest compressions (CC) are needed. Uninterrupted CC in adult cardiopulmonary resuscitation (CPR) may improve CPR hemodynamics. We aimed to examine 21% oxygen (air) vs. 100% oxygen in 3:1 CC:ventilation (C:V) CPR or continuous CC with asynchronous ventilation (CCaV) in asphyxiated newborn piglets following cardiac arrest. Piglets (1-3 days old) were progressively asphyxiated until cardiac arrest and randomized to 4 experimental groups (n=8 each): air and 3:1 C:V CPR, 100% oxygen and 3:1 C:V CPR, air and CCaV, or 100% oxygen and CCaV. Time to return of spontaneous circulation (ROSC), mortality, and clinical and biochemical parameters were compared between groups. We used echocardiography to measure left ventricular (LV) stroke volume at baseline, at 30min and 4h after ROSC. Left common carotid artery blood pressure was measured continuously. Time to ROSC (heart rate ≥100min(-1)) ranged from 75 to 592s and mortality 50-75%, with no differences between groups. Resuscitation with air was associated with higher LV stroke volume after ROSC and less myocardial oxidative stress compared to 100% oxygen groups. CCaV was associated with lower mean arterial blood pressure after ROSC and higher myocardial lactate than those of 3:1 C:V CPR. In neonatal asphyxia-induced cardiac arrest, using air during CC may reduce myocardial oxidative stress and improve cardiac function compared to 100% oxygen. Although overall recovery may be similar, CCaV may impair tissue perfusion compared to 3:1 C:V CPR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    PubMed

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Refining of fossil resin flotation concentrates from Western coal. Final fifth quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, G.F.; Miller, J.D.

    1994-05-07

    Fossil resins occurring in the Wasatch Plateau coal field are composed mainly of aliphatic components, partially aromatized multi-cyclic terpenoids and a few oxygen functional groups (such as {minus}OH and {minus}COOH). The solvent extracted resins show the presence of a relatively large number of methyl groups when compared to the methylene groups, and this indicates the presence of extensive tertiary carbon and/or highly branching chains. In contrast coal consists primarily of aromatic ring structures, various oxygen functional groups ({minus}OH, >C=O, {minus}C{minus}O) and few aliphatic chains. The color difference observed among the four resin types is explained by the presence of chromophoresmore » (aromatized polyterpenoid) and also by the presence of finely dispersed coal particle inclusions in the resin matrix. The hexane soluble resin fraction has few aromatic compounds when compared to the hexane insoluble but toluene soluble resin fraction.« less

  5. Digital image analysis of fingernail colour in cadavers comparing carbon monoxide poisoning to controls.

    PubMed

    Langlois, Neil E I

    2010-03-01

    Carbon monoxide is a component of motor vehicle exhaust fumes, provided a functional catalytic converter is not present. This gas binds avidly to the hemoglobin molecule in red blood cells preventing its oxygen transport function, effectively poisoning the body by starving it of oxygen. In binding to hemoglobin, carbon monoxide forms carboxyhemoglobin, which has a characteristic bright pink color. It has been remarked that the fingernails of victims of carbon monoxide tend to exhibit pink color, otherwise fingernails of deceased bodies tend towards a dark red to blue color. This study sought to objectively determine by using digital image analysis if a color difference occurred between the fingernails of a group of cadavers with carbon monoxide poisoning compared to a group of controls. The fingernails of the carbon monoxide group did tend to be more red than the controls, but due to overlap between the two groups assessment of the fingernails cannot be recommended as a rapid screening test.

  6. The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools.

    PubMed

    Rees, J F; de Wergifosse, B; Noiset, O; Dubuisson, M; Janssens, B; Thompson, E M

    1998-04-01

    Bioluminescence, the emission of ecologically functional light by living organisms, emerged independently on several occasions, yet the evolutionary origins of most bioluminescent systems remain obscure. We propose that the luminescent substrates of the luminous reactions (luciferins) are the evolutionary core of most systems, while luciferases, the enzymes catalysing the photogenic oxidation of the luciferin, serve to optimise the expression of the endogenous chemiluminescent properties of the luciferin. Coelenterazine, a luciferin occurring in many marine bioluminescent groups, has strong antioxidative properties as it is highly reactive with reactive oxygen species such as the superoxide anion or peroxides. We suggest that the primary function of coelenterazine was originally the detoxification of the deleterious oxygen derivatives. The functional shift from its antioxidative to its light-emitting function might have occurred when the strength of selection for antioxidative defence mechanisms decreased. This might have been made possible when marine organisms began colonising deeper layers of the oceans, where exposure to oxidative stress is considerably reduced because of reduced light irradiance and lower oxygen levels. A reduction in metabolic activity with increasing depth would also have decreased the endogenous production of reactive oxygen species. Therefore, in these organisms, mechanisms for harnessing the chemiluminescence of coelenterazine in specialised organs could have developed, while the beneficial antioxidative properties were maintained in other tissues. The full range of graded irradiance in the mesopelagic zone, where the majority of organisms are bioluminescent, would have provided a continuum for the selection and improvement of proto-bioluminescence. Although the requirement for oxygen or reactive oxygen species observed in bioluminescent systems reflects the high energy required to produce visible light, it may suggest that oxygen-detoxifying mechanisms provided excellent foundations for the emergence of many bioluminescent systems.

  7. Cardiopulmonary function and oxygen delivery during total liquid ventilation.

    PubMed

    Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P

    2011-10-01

    Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.

  8. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.

    PubMed

    Fan, Zixi; Zhang, Qian; Li, Meng; Niu, Dongyuan; Sang, Wenjiao; Verpoort, Francis

    2018-03-01

    In this work, a KMnO 4 -modified-biochar-based composite material with manganese oxide produced at 600 °C was fabricated to investigate the sorption mechanism of Cd(II) and to comprehensively evaluate the effect of the modification on biochar properties. Cd(II) adsorption mechanisms were mainly controlled by interaction with minerals, complexation with oxygen-containing functional groups, and cation-π interaction. The sorption capacity was significantly reduced after a deash treatment of biochar, almost shrunk by 3 and 3.5 times for pristine biochar (PBC) and modified biochar (MBC). For deashed PBC, oxygen-containing functional groups were the main contributor toward Cd(II) adsorption while interaction with minerals was significantly compromised and became negligible. The sorption capacity was also apparently decreased after the deash treatment of MBC; however, for deashed MBC, interaction with minerals still was the main contributor to the sorption ability, which could be attributed to the mechanism of interaction of Cd(II) with loaded MnO x on biochar. Cation-π interaction in MBC was notably enhanced compared to PBC due to the oxidation of KMnO 4 on biomass. Also, sorption performance by oxygen-containing functional groups was also enhanced. Hence, the modification by KMnO 4 has a significant effect on the Cd(II) sorption performance of biochar.

  9. Milrinone, dobutamine or epinephrine use in asphyxiated newborn pigs resuscitated with 100% oxygen.

    PubMed

    Joynt, Chloë; Bigam, David L; Charrois, Gregory; Jewell, Laurence D; Korbutt, Gregory; Cheung, Po-Yin

    2010-06-01

    After resuscitation, asphyxiated neonates often develop poor cardiac function with hypotension, pulmonary hypertension and multiorgan ischemia. In a swine model of neonatal hypoxia-reoxygenation, effects of epinephrine, dobutamine and milrinone on systemic, pulmonary and regional hemodynamics and oxygen transport were compared. Controlled, block-randomized study. University research laboratory. Mixed breed piglets (1-3 days, 1.5-2.3 kg). In acutely instrumented piglets, normocapnic alveolar hypoxia (10-15% oxygen) was induced for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). At 2 h of reoxygenation, after volume loading (Ringer's lactate 10 ml/kg), either saline (placebo), epinephrine (0.5 microg/kg/min), dobutamine (20 microg/kg/min) or milrinone (0.75 microg/kg/min) were infused for 2 h in a blinded, block-randomized fashion (n = 6/group). All medications similarly improved cardiac output, stroke volume and systemic oxygen delivery (vs. placebo-controls, p < 0.05). Epinephrine and dobutamine significantly increased, while milrinone maintained, mean arterial pressure over pretreatment values while placebo-treated piglets developed hypotension and shock. The mean arterial to pulmonary arterial pressures ratio was not different among groups. All medications significantly increased carotid and intestinal, but not renal, arterial blood flows and oxygen delivery, whereas milrinone caused lower renal vascular resistance than epinephrine and dobutamine-treated groups. Plasma troponin I, plasma and myocardial lactate levels, and histologic ischemic features were not different among groups. In newborn piglets with hypoxia-reoxygenation, epinephrine, dobutamine and milrinone are effective inotropes to improve cardiac output, carotid and intestinal perfusion, without aggravating pulmonary hypertension. Milrinone may also improve renal perfusion.

  10. Effects of a helium/oxygen mixture on individuals' lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases.

    PubMed

    Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle

    2015-01-01

    Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications.

  11. Are soluble factors relevant for polymorphonuclear leukocyte dysregulation in septicemia?

    PubMed Central

    Wenisch, C; Graninger, W

    1995-01-01

    Polymorphonuclear leukocytes (PMNs) of twelve patients with gram-negative septicemia exhibited a decreased capacity to phagocytize Escherichia coli and generate reactive oxygen products which normalized within 7 days of treatment. Ex vivo exchange of plasma from age-, sex-, and blood-group-identical normal controls resulted in an increase of both phagocytic capacity and reactive oxygen intermediate generation in PMNs of septicemic patients and transiently reduced phagocytosis and reactive oxygen intermediate production in PMNs of normal controls. These results suggest that extrinsic factors are crucial for PMN function. PMID:7697538

  12. Impact of Plasma Surface Treatment on Bamboo Charcoal/silver Nanocomposite

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Vijayalakshmi, K. A.; Karthikeyan, N.

    2016-10-01

    Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol-gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag+) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20-40nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area (SBET) and UV-Vis spectroscopy.

  13. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H 2 generation and evolution of CO 2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO 2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C 3–C 6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonylmore » group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.« less

  14. Polymer composites with graphene nanofillers: electrical properties and applications.

    PubMed

    Tjong, Sie Chin

    2014-02-01

    Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.

  15. Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Liang, Jiyuan; Qu, Tingting; Kun, Xiang; Zhang, Yu; Chen, Shanyong; Cao, Yuan-Cheng; Xie, Mingjiang; Guo, Xuefeng

    2018-04-01

    Biomass-derived carbon (BDCs) materials are receiving extensive attention as electrode materials for energy storage because of the considerable economic value offering possibility for practical applications, but the electrochemical capacitance of BDCs are usually relatively low resulted from limited electric double layer capacitance. Herein, an oxygen-rich porous carbon (KMAC) was fabricated through a rapid and convenient microwave assisted carbonization and KOH activation of camellia oleifera shell. The obtained KMAC possesses three-dimensional porous architecture, large surface area (1229 m2/g) and rich oxygen functionalities (C/O ratio of 1.66). As the electrode materials for supercapacitor, KMAC exhibits superior supercapacitive performances as compared to the activated carbon (KAC) derived from direct carbonization/KOH activation method in 2.0 M H2SO4 (315 F/g vs. 202 F/g) and 6.0 M KOH (251 F/g vs. 214 F/g) electrolyte due to the rich oxygen-containing functional groups on the surface of porous carbon resulted from the developed microwave-assisted carbonization/activation approach.

  16. Basic analytical investigation of plasma-chemically modified carbon fibers1

    NASA Astrophysics Data System (ADS)

    Bubert, H.; Ai, X.; Haiber, S.; Heintze, M.; Brüser, V.; Pasch, E.; Brandl, W.; Marginean, G.

    2002-10-01

    The background of the present investigation is to enhance the overall adherence of vapor grown carbon fibers (VGCF) to the surrounding polymer matrix in different applications by forming polar groups at their surfaces and by modifying the surface morphology. This has been done by plasma treatments using a low-pressure plasma with different gases, flow rates, pressures and powers. Two different types of carbon fibers were investigated: carbon microfibers and carbon nanofibers. The characterization of fiber surfaces was achieved by photoelectron spectroscopy (XPS), contact angle measurements and titration. These investigations were accompanied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The oxygen plasma treatment of the fibers changes the surfaces by forming a layer with a thickness of the order of one nanometer mainly consisting of functional groups like hydroxyl, carbonyl and carboxyl. After functionalization of the complete surface, a further plasma treatment does not enhance the superficial oxygen content but changes slightly the portions of the functional groups. A comparison of the methods applied provides a largely consistent image of the effect of plasma treatment.

  17. Influence of atmospheric plasma on physicochemical properties of vapor-grown graphite nanofibers.

    PubMed

    Seo, Min-Kang; Park, Soo-Jin; Lee, Sang-Kwan

    2005-05-01

    Vapor-grown graphite nanofibers (GNFs) were modified by plasma treatments using low-pressure plasmas with different gases (Ar gas only and/or Ar/O2 gases), flow rates, pressures, and powers. Surface characterizations and morphologies of the GNFs after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS), contact angle, titration, and transmission electron microscopy (TEM) measurements. Also, the investigation of thermomechanical behavior and impact strengths of the GNFs/epoxy composites was performed by dynamic-mechanical thermal analysis (DMTA) and Izod impact testing, respectively. The plasma treatment of the fibers changed the surface morphologies by forming a layer with a thickness on the order of 1 nm, mainly consisting of oxygen functional groups such as hydroxyl, carbonyl, and carboxyl groups. After functionalization of the complete surfaces, further plasma treatment did not enhance the superficial oxygen content but slightly changed the portions of the functional groups. Also, the composites with plasma-treated GNFs showed an increase in T(g) and impact strength compared to the composites containing the same amount of plasma-untreated GNFs.

  18. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning.

    PubMed

    Lu, Pei-Gang; Hu, Sheng-Li; Hu, Rong; Wu, Nan; Chen, Zhi; Meng, Hui; Lin, Jiang-Kai; Feng, Hua

    2012-12-01

    It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.

  19. Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness.

    PubMed

    Kempny, Agnieszka M; James, Leon; Yelden, Kudret; Duport, Sophie; Farmer, Simon; Playford, E Diane; Leff, Alexander P

    2016-01-01

    Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.

  20. Off-pump versus on-pump coronary artery revascularization: effects on pulmonary function.

    PubMed

    e Silva, Ana M R P; Saad, Roberto; Stirbulov, Roberto; Rivetti, Luiz A

    2010-07-01

    Many studies have shown important changes in lung function tests after coronary artery surgeries. It is controversial if off-pump surgery can give a better and shorter recovery than the on-pump. A prospective study was conducted on 42 patients submitted to coronary artery surgery and divided into two groups: 21 off-pump using intraluminal shunt (G (I)) and 21 on-pump (G (II)), matched by the anatomical location of the coronary arteries lesions. All patients had spirometric evaluation, blood gas measurements and alveolo-arterial oxygen gradient (A-aDO(2)), at the fourth and 10th postoperative days (PO(4) and PO(10)). Preoperatively, G(I) and G(II) had similar results (P>0.372). Spirometry showed decreases at PO(4) and remained decreased until PO(10) for both groups, with significant differences between the groups. The blood gas measurements showed reduction in arterial oxygen pressure (PaO(2)) and carbon dioxide pressure (PaCO(2)), while there was an increase in A-aDO(2) at PO(4) and PO(10) in both groups. The results suggest that different changes occur in pulmonary function when the surgery is performed with or without cardiopulmonary bypass. The off-pump patients showed significantly greater improvement than the on-pump group.

  1. Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: kinetics, isotherms and thermodynamics.

    PubMed

    Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi

    2013-01-01

    The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citricmore » acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.« less

  3. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio.

    PubMed

    Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2015-07-16

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.

  4. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial.

    PubMed

    Belda, F Javier; Aguilera, Luciano; García de la Asunción, José; Alberti, Javier; Vicente, Rosario; Ferrándiz, Lucía; Rodríguez, Rafael; Company, Roque; Sessler, Daniel I; Aguilar, Gerardo; Botello, Stephanie García; Ortí, Rafael

    2005-10-26

    Supplemental perioperative oxygen has been variously reported to halve or double the risk of surgical wound infection. To test the hypothesis that supplemental oxygen reduces infection risk in patients following colorectal surgery. A double-blind, randomized controlled trial of 300 patients aged 18 to 80 years who underwent elective colorectal surgery in 14 Spanish hospitals from March 1, 2003, to October 31, 2004. Wound infections were diagnosed by blinded investigators using Centers for Disease Control and Prevention criteria. Baseline patient characteristics, anesthetic treatment, and potential confounding factors were recorded. Patients were randomly assigned to either 30% or 80% fraction of inspired oxygen (FIO2) intraoperatively and for 6 hours after surgery. Anesthetic treatment and antibiotic administration were standardized. Any surgical site infection (SSI); secondary outcomes included return of bowel function and ability to tolerate solid food, ambulation, suture removal, and duration of hospitalization. A total of 143 patients received 30% perioperative oxygen and 148 received 80% perioperative oxygen. Surgical site infection occurred in 35 patients (24.4%) administered 30% FIO2 and in 22 patients (14.9%) administered 80% FIO2 (P=.04). The risk of SSI was 39% lower in the 80% FIO2 group (relative risk [RR], 0.61; 95% confidence interval [CI], 0.38-0.98) vs the 30% FIO2 group. After adjustment for important covariates, the RR of infection in patients administered supplemental oxygen was 0.46 (95% CI, 0.22-0.95; P = .04). None of the secondary outcomes varied significantly between the 2 treatment groups. Patients receiving supplemental inspired oxygen had a significant reduction in the risk of wound infection. Supplemental oxygen appears to be an effective intervention to reduce SSI in patients undergoing colon or rectal surgery. Trial Registration ClinicalTrials.gov Identifier: NCT00235456.

  5. [EzPAP® therapy of postoperative hypoxemia in the recovery room : experiences with the new compact system of end-expiratory positive airway pressure].

    PubMed

    Rieg, A D; Stoppe, C; Rossaint, R; Coburn, M; Hein, M; Schälte, G

    2012-10-01

    Postoperative hypoxemia is a common complication in the anesthesia recovery room (ARR), which is predominantly based on the development of atelectasis, excessive intraoperative fluid shift and insufficient ventilation. The goal of this prospective observational study was to compare the effect of standard oxygen administration via a face mask with oxygen administration using the EzPAP® system, a device which additionally provides a positive end-expiratory pressure (PEEP). This study included 210 patients with postoperative hypoxemia (S(p)O(2) < 93%) subdivided into the control group (105 patients) and the EzPAP group (105 patients). Postoperative residual paralysis was excluded using relaxometry and a train of four (TOF) ratio of 0.9 was assumed to ensure sufficient recovery of respiratory function from neuromuscular blockade. Patients who received a reversal of neuromuscular blockade were excluded. In cases of hypoxemia (S(p)O(2) < 93%) control patients were treated with oxygen (6 l/min) using a face mask, whereas the EzPAP group received oxygen using the EzPAP® system. In order to adjust the PEEP in the EzPAP group, the O(2) flow was verified and measured by a manometer. After 1 h of oxygen therapy, the oxygen supply was stopped. In cases of reoccurring hypoxemia (S(p)O(2) < 93%, persistence > 5 min), the oxygen therapy was restarted in both groups via a facemask. Both groups were compared using repeat measurement analysis of variance (ANOVA), the unpaired t-test, the Mann-Whitney U-test, Fisher's exact test and the χ(2)-test. The correlation of O(2) flow and PEEP was evaluated by regression analysis and p < 0.05 was considered to be statistically significant. Apart from this a subgroup analysis was performed depending on body-mass index (BMI), American Society of Anesthesiologists (ASA) classification, intraoperative airway management, the use of neuromuscular blocking agents and co-existing disorders, e.g. chronic obstructive lung disease (COLD), obesity and chronic heart failure. All patients were equally distributed between both groups with respect to demographic data, ASA classification, BMI, co-existing disorders and surgical procedures. The S(p)O(2) values did not differ between the EzPAP patients and the control group, except for 0.5 min after initiation of oxygen therapy: EzPAP group 96 ± 3.7% (mean ± standard deviation) versus the control group 93.8 ± 4.4% (p < 0.001). However, restarting oxygen therapy was less common in the EzPAP group (EzPAP group 25 versus control group 41, p = 0.03), as well as the occurrence of postoperative complications (EzPAP group 13 versus control group 25, p = 0.02), e.g. nosocomial pneumonia (0 versus 4) and wound infections (2 versus 3). Furthermore, patients with obesity and pulmonary disorders, such as COLD had a benefit from oxygen administration using the EzPAP device and showed higher postoperative than preoperative S(p)O(2) values. In contrast, the subgroup analysis of patients with heart failure did not reveal any differences between both groups and both groups did not differ in terms of time spent in the recovery room (EzPAP group 113 min versus control group 174.8 min, p = 0.2). In this observational study oxygen supply using the EzPAP® system appeared to be at least equally as effective in the therapy of postoperative hypoxemia compared to standard oxygen supply using a face mask. In patients with a high risk of postoperative hypoxemia, such as patients with obesity and/or pulmonary disorders, oxygen administration using the EzPAP® system possibly improves pulmonary oxygenation more effectively and is longer lasting compared to standard oxygen supply via a face mask. Hence, the EzPAP® system represents a well-tolerated, effective, cost-effective and easily operated tool to improve postoperative oxygenation. In order to investigate the possibilities of this promising tool more intensively, randomized clinical trials are warranted.

  6. Performance of lignin derived compounds as octane boosters

    DOE PAGES

    Tian, Miao; McCormick, Robert L.; Ratcliff, Matthew A.; ...

    2016-11-01

    The performance of spark ignition engines is highly dependent on fuel anti-knock quality, which in turn is governed by autoignition chemistry. In this study, we explore this chemistry for various aromatic oxygenates (i.e., anisole, 4-methyl anisole, 4-propyl anisole, guaiacol, 4-methyl guaiacol, 4-ethyl guaiacol) that can be produced from lignin, a low value residual biomass stream that is generated in paper pulping and cellulosic ethanol plants. All compounds share the same benzene ring, but have distinct oxygen functionalities and degrees of alkylation. The objective of this study is to ascertain what the impact is of said side groups on anti-knock qualitymore » and, by proxy, on fuel economy in a modern Volvo T5 spark ignition engine. To better comprehend the variation in behavior amongst the fuels, further experiments have been conducted in a constant volume autoignition device. In conclusion, the results demonstrate that alkylation has a negligible impact on anti-knock quality, while the addition of functional oxygen groups manifests as a deterioration in anti-knock quality.« less

  7. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  8. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  9. Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS

    PubMed Central

    Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro

    2017-01-01

    A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885

  10. Electrochemical oxygen reduction catalysed by Ni 3(hexaiminotriphenylene) 2

    DOE PAGES

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; ...

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni 3(HITP) 2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni 3(HITP) 2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N 4 sites are structurally reminiscent of the highly active and widely studied non-platinum groupmore » metal electrocatalysts containing M-N 4 units. Ni 3(HITP) 2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. As a result, such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.« less

  11. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    PubMed Central

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis. PMID:21106446

  12. Micro-oxidation treatment to improve bonding strength of Sr and Na co-substituted hydroxyapatite coatings for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian

    2016-08-01

    To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.

  13. Quantitative study of interactions between oxygen lone pair and aromatic rings: substituent effect and the importance of closeness of contact.

    PubMed

    Gung, Benjamin W; Zou, Yan; Xu, Zhigang; Amicangelo, Jay C; Irwin, Daniel G; Ma, Shengqian; Zhou, Hong-Cai

    2008-01-18

    Current models describe aromatic rings as polar groups based on the fact that benzene and hexafluorobenzene are known to have large and permanent quadrupole moments. This report describes a quantitative study of the interactions between oxygen lone pair and aromatic rings. We found that even electron-rich aromatic rings and oxygen lone pairs exhibit attractive interactions. Free energies of interactions are determined using the triptycene scaffold and the equilibrium constants were determined by low-temperature 1H NMR spectroscopy. An X-ray structure analysis for one of the model compounds confirms the close proximity between the oxygen and the center of the aromatic ring. Theoretical calculations at the MP2/aug-cc-pVTZ level corroborate the experimental results. The origin of attractive interactions was explored by using aromatic rings with a wide range of substituents. The interactions between an oxygen lone pair and an aromatic ring are attractive at van der Waals' distance even with electron-donating substituents. Electron-withdrawing groups increase the strength of the attractive interactions. The results from this study can be only partly rationalized by using the current models of aromatic system. Electrostatic-based models are consistent with the fact that stronger electron-withdrawing groups lead to stronger attractions, but fail to predict or rationalize the fact that weak attractions even exist between electron-rich arenes and oxygen lone pairs. The conclusion from this study is that aromatic rings cannot be treated as a simple quadrupolar functional group at van der Waals' distance. Dispersion forces and local dipole should also be considered.

  14. [Effect of verapamil and nitroglycerin on transplanted lung function in canines].

    PubMed

    Jiang, Zhibin; Hu, Ping; Liu, Jianxin; Wang, Dianjun; Jin, Longyu; Hong, Chao

    2014-08-01

    To investigate the protective effect of combined administration of verapamil and nitroglycerin on the function of canine transplanted lungs. Twenty orthotopic left lung transplantations were performed in 40 canines, which were randomly divided into 4 groups. In group I (control), the donor lungs were perfused and preserved with LPD solution, while group II with LPD solution plus verapamil 0.1 g/L, group III with LPD solution plus nitroglycerin 0.1g/L, and group IV with LPD solution plus verapamil 0.1 g/L and nitroglycerin 0.1 g/L. Hemodynamics and graft gas exchange were assessed 0, 2 and 4 h after the operation. The lung grafts were harvested to measure the wet/dry weight ratio, malondialdehyde (MDA) contents and superoxide dismutase (SOD) activity. Compared with group I, II and III, the mean pulmonary artery pressure (MPAP), pulmonary vascular resistance index (PVRI), partial pressure of oxygen in arterial blood (PaO₂), dynamic compliance (Cdyn) and alveolar-arterial oxygen tension volume [P(A- a)O₂] in group IV were improved significantly (P<0.05). No significant difference in the partial pressure of carbondioxide (PaCO₂) and peak inspiratory pressure (PIP) was observed in the 4 groups (P>0.05). In group IV, the wet/dry weight ratio and MDA contents were lower than those in the other 3 groups, and the SOD activity was significantly higher than that of the other 3 groups (P<0.05). Verapamil and nitroglycerin in LPD solution can protect the respiratory function of canine lung grafts by attenuating pulmonary edema and oxidative stress.

  15. [Evaluation of different oxygen therapies on therapeutic effects in rats with acute carbon dioxide poisoning].

    PubMed

    Niu, Ying-mei; Hao, Feng-tong; Xue, Chang-jiang; Xia, Yu-jing; Zhou, Shuo; Lu, Qing-sheng; Liu, Jian-zhong; Zhang, Peng

    2011-03-01

    To study therapeutic effects by using different oxygen therapies in rats with acute carbon dioxide poisoning, to select the best oxygen therapy technology for patients with acute carbon dioxide poisoning on the spot. Sixty healthy male Sprague-Dawley rats were randomized into normal control group, carbon dioxide exposure group, hyperbaric oxygen treatment group (pressure 2 ATA, FiO(2)100%), high concentration of atmospheric oxygen treatment group (FiO(2)50%), low concentration of atmospheric oxygen treatment group (FiO(2)33%). After treated with different oxygen in rats with acute carbon dioxide poisoning, arterial pH, PO2 and PCO2 of rats were detected, in addition observe pathological changes of lung tissue and brain tissue. The arterial pH (7.31 ± 0.06) and PO2 [(68.50 ± 15.02) mm Hg] of carbon dioxide exposure group were lower than those of control group [pH (7.42 ± 0.02) and PO2 (92.83 ± 8.27) mm Hg], PCO2 [(71.66 ± 12.10) mm Hg] was higher than that of control group [(48.25 ± 2.59) mm Hg] (P < 0.05); the arterial pH (hyperbaric oxygen treatment group 7.37 ± 0.02, high concentration of atmospheric oxygen treatment group 7.39 ± 0.03, low concentration of atmospheric oxygen treatment group 7.38 ± 0.02) and PO2 of oxygen treatment groups [hyperbaric oxygen treatment group, high concentration of atmospheric oxygen treatment group, low concentration of atmospheric oxygen treatment group were (82.25 ± 12.98), (84.75 ± 11.24), (83.75 ± 16.77) mm Hg, respectively] were higher than that of carbon dioxide exposure group, PCO2 [hyperbaric oxygen treatment group, high concentration of atmospheric oxygen treatment group, low concentration of atmospheric oxygen treatment group were (52.25 ± 4.95), (51.75 ± 4.82), (52.66 ± 5.61) mm Hg, respectively] was lower than that of carbon dioxide exposure group (P < 0.05); there was no significant difference of the arterial pH, PO2 and PCO2 between oxygen treatment groups and control group (P > 0.05); there was no significant difference of the arterial pH, PO2 and PCO2 among oxygen treatment groups (P > 0.05). There was large area of bleeding of lungs in rats with carbon dioxide poisoning, the bleeding of lungs in rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment was better than the rats with carbon dioxide poisoning, there was no abnormal appearance of lungs in rats with hyperbaric oxygen treatment. The light microscope observation showed that there were diffuse bleeding and exudation of lungs in rats with carbon dioxide poisoning, the bleeding and exudation of lungs in rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment were better than the rats with carbon dioxide poisoning, there were only minor bleeding and exudation of lungs in rats with hyperbaric oxygen treatment. There was no difference of brain in anatomy and microscopy among all groups, there were no significant bleeding, edema, cell degeneration and necrosis. Lung pathology in acute carbon dioxide poisoning rats with hyperbaric oxygen treatment is better than the rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment, there is no significant difference of effect between high concentration of atmospheric oxygen treatment group and low concentration of atmospheric oxygen treatment group, however, the results of blood gas analysis and lung pathology than the exposure group improved, so qualified medical unit for hyperbaric oxygen therapy as soon as possible, hyperbaric oxygen treatment facilities in the absence of circumstances, the emergency treatment of early oxygen is also a good measure.

  16. Effects of hyperbaric oxygen therapy on depression and anxiety in the patients with incomplete spinal cord injury (a STROBE-compliant article).

    PubMed

    Feng, Juan-Juan; Li, You-Hui

    2017-07-01

    Little research has been done on the effects of hyperbaric oxygen (HBO) on depression and anxiety after spinal cord injury (SCI). The aim of this study was to investigate the effects of HBO on psychological problems and never function, especially on depression and anxiety in the patients with incomplete SCI (ISCI).Sixty patients with ISCI combined with depression and anxiety were randomly divided into HBO group (20 cases), psychotherapy group (20 cases), and conventional rehabilitation control group (20 cases). All patients received routine rehabilitation therapy. However, in HBO group and psychotherapy group, patients also received HBO and psychotherapy, respectively. These therapies lasted for a total of 8 weeks (once a day and 6 days per week). Before and after 8 weeks of treatment, depression and anxiety, nerve function, and activities of daily living were, respectively, evaluated according to Hamilton Depression (HAMD) scale, Hamilton Anxiety (HAMA) scale, American Spinal Injury Association score, and functional independence measure score in all patients.After 8 weeks of treatment, HAMD score was significantly lower in both HBO group and psychotherapy group than in control group (all P < .05), but there was no statistical difference in HAMD score between HBO group and psychotherapy group (P > .05). HAMA score was significantly lower in HBO group than in control group (P < .05), but there was no statistical difference in HAMA score between HBO group and psychotherapy group, and between psychotherapy group and control group (all P > .05). After 8 weeks of treatment, American Spinal Injury Association and functional independence measure scores were significantly higher in HBO group than in both psychological and control groups, and also higher in psychotherapy group than in control group (all P < .05).The effects of HBO on depression and anxiety are similar to that of psychotherapy. HBO can significantly improve nerve function and activities of daily living in the patients with ISCI, which either psychotherapy or routine rehabilitation therapy can not substitute.

  17. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  18. Comparison of functional group selective ion-molecule reactions of trimethyl borate in different ion trap mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habicht, S C; Vinueza, Nelson R; Amundson, Lucas M

    2011-02-01

    We report here a comparison of the use of diagnostic ion–molecule reactions for the identification of oxygen-containing functional groups in Fourier-transform ion cyclotron resonance (FTICR) and linear quadrupole ion trap (LQIT) mass spectrometers. The ultimate goal of this research is to be able to identify functionalities in previously unknown analytes by using many different types of mass spectrometers. Previous work has focused on the reactions of various boron reagents with protonated oxygen-containing analytes in FTICR mass spectrometers. By using a LQIT modified to allow the introduction of neutral reagents into the helium buffer gas, this methodology has been successfully implementedmore » to this type of an ion trap instrument. The products obtained from the reactions of trimethyl borate (TMB) with various protonated analytes are compared for the two instruments. Finally, the ability to integrate these reactions into LC-MS experiments on the LQIT is demonstrated.« less

  19. Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study.

    PubMed

    Liu, Liuxie; Li, Kai; Chen, Xiao; Liang, Xiaoqin; Zheng, Yan; Li, Laicai

    2018-03-29

    The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO 2 , while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO 2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O-H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials. Graphical abstract The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory.

  20. Effect on lung function of continuous positive airway pressure administered either by infant flow driver or a single nasal prong.

    PubMed

    Kavvadia, V; Greenough, A; Dimitriou, G

    2000-04-01

    The aim of this study was to assess if continuous positive airways pressure (CPAP) delivered by an infant flow driver (IFD) was a more effective method of improving lung function than delivering CPAP by a single nasal prong. A total of 36 infants (median gestational age 29 weeks, range 25-35 weeks) were studied, 12 who received CPAP via an IFD, 12 who received CPAP via a single nasal prong and 12 without CPAP. CPAP was administered post extubation if apnoeas and bradycardias or a respiratory acidosis developed or electively if the infant was of birth weight <1.0 kg. Lung function was assessed by the supplementary oxygen requirement and measurement of compliance of the respiratory system using an occlusion technique. Assessments were made immediately prior to and after 24 h of CPAP administration and at similar postnatal ages in the non-CPAP group. The infants who did not require CPAP had better lung function (non significant) than the other two groups before they received CPAP. After 24 h, lung function had improved in both CPAP groups to the level of the non CPAP infants. The supplementary oxygen requirements of all three groups decreased over the 24 h period, but this only reached significance in the single nasal prong group (P<0.05). Four infants supported by the IFD, but none with a single nasal prong, became hyperoxic. Continuous positive airways pressure administration via the infant flow driver appears to offer no short-term advantage over a single nasal prong system when used after extubation in preterm infants.

  1. Superior Electrocatalytic Activity of a Robust Carbon-Felt Electrode with Oxygen-Rich Phosphate Groups for All-Vanadium Redox Flow Batteries.

    PubMed

    Kim, Ki Jae; Lee, Heon Seong; Kim, Jeonghun; Park, Min-Sik; Kim, Jung Ho; Kim, Young-Jun; Skyllas-Kazacos, Maria

    2016-06-08

    A newly prepared type of carbon felt with oxygen-rich phosphate groups is proposed as a promising electrode with good stability for all-vanadium redox flow batteries (VRFBs). Through direct surface modification with ammonium hexafluorophosphate (NH4 PF6 ), phosphorus can be successfully incorporated onto the surface of the carbon felt by forming phosphate functional groups with -OH chemical moieties that exhibit good hydrophilicity. The electrochemical reactivity of the carbon felt toward the redox reactions of VO(2+) /VO2 (+) (in the catholyte) and V(3+) /V(2+) (in the anolyte) can be effectively improved owing to the superior catalytic effects of the oxygen-rich phosphate groups. Furthermore, undesirable hydrogen evolution can be suppressed by minimizing the overpotential for the V(3+) /V(2+) redox reaction in the anolyte of the VRFB. Cell-cycling tests with the catalyzed electrodes show improved energy efficiencies of 88.2 and 87.2 % in the 1(st) and 20(th)  cycles compared with 83.0 and 81.1 %, respectively, for the pristine electrodes at a constant current density of 32 mA cm(-2) . These improvements are mainly attributed to the faster charge transfer allowed by the integration of the oxygen-rich phosphate groups on the carbon-felt electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy.

    PubMed

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J

    2017-05-01

    Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min -1 ·kg body wt -1 , maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt -1 ·day -1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31 P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.

  3. Formation of Supported Graphene Oxide: Evidence for Enolate Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, Zbynek; Nguyen, Manh-Thuong; Netzer, Falko P.

    Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the oxygen binding on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites. We employ scanning tunneling microscopy and density functional theory to map out the chemical identity and stability of prepared oxygen functionalities in different Gr regions. We demonstrate that in the regions that are close to the metal substrate, the terminally-bonded enolate groups are strongly preferred over bridge-bonded epoxy configurations.more » No oxygen species are observed on the graphene regions that are far from the underlying Ru, indicating their low relative stability. This study provides a clear fundamental basis for understanding the structural and electronic factors that affect the stability of enolate and epoxy species as a function of Gr/Ru interactions.« less

  4. Gene cloning and in vivo characterization of a dibenzothiophene dioxygenase from Xanthobacter polyaromaticivorans.

    PubMed

    Hirano, Shin-Ichi; Haruki, Mitsuru; Takano, Kazufumi; Imanaka, Tadayuki; Morikawa, Masaaki; Kanaya, Shigenori

    2006-02-01

    Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)< or = 0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557-564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO< or = 0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.

  5. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury - randomized prospective trial.

    PubMed

    Boussi-Gross, Rahav; Golan, Haim; Fishlev, Gregori; Bechor, Yair; Volkov, Olga; Bergan, Jacob; Friedman, Mony; Hoofien, Dan; Shlamkovitch, Nathan; Ben-Jacob, Eshel; Efrati, Shai

    2013-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. The trial population included 56 mTBI patients 1-5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. "Mindstreams" was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. ClinicalTrials.gov NCT00715052.

  6. Effects of Intermittent Positive Pressure Ventilation on Cardiopulmonary Function in Horses Anesthetized with Total Intravenous Anesthesia Using Combination of Medetomidine, Lidocaine, Butorphanol and Propofol (MLBP-TIVA)

    PubMed Central

    ISHIZUKA, Tomohito; TAMURA, Jun; NAGARO, Tsukasa; SUDO, Kanako; ITAMI, Takaharu; UMAR, Mohammed Ahamed; MIYOSHI, Kenjirou; SANO, Tadashi; YAMASHITA, Kazuto

    2014-01-01

    Effects of intermittent positive pressure ventilation (IPPV) on cardiopulmonary function were evaluated in horses anesthetized with total intravenous anesthesia using constant rate infusions of medetomidine (3.5 µg/kg/hr), lidocaine (3 mg/kg/hr), butorphanol (24 µg/kg/hr) and propofol (0.1 mg/kg/min) (MLBP-TIVA). Five horses were anesthetized twice using MLBP-TIVA with or without IPPV at 4-week interval (crossover study). In each occasion, the horses breathed 100% oxygen with spontaneous ventilation (SB-group, n=5) or with IPPV (CV-group, n=5), and changes in cardiopulmonary parameters were observed for 120 min. In the SB-group, cardiovascular parameters were maintained within acceptable ranges (heart rate: 33–35 beats/min, cardiac output: 27–30 l/min, mean arterial blood pressure [MABP]: 114–123 mmHg, mean pulmonary arterial pressure [MPAP]: 28–29 mmHg and mean right atrial pressure [MRAP]: 19–21 mmHg), but severe hypercapnea and insufficient oxygenation were observed (arterial CO2 pressure [PaCO2]: 84–103 mmHg and arterial O2 pressure [PaO2]: 155–172 mmHg). In the CV-group, normocapnea (PaCO2: 42–50 mmHg) and good oxygenation (PaO2: 395–419 mmHg) were achieved by the IPPV without apparent cardiovascular depression (heart rate: 29–31 beats/min, cardiac output: 17–21 l /min, MABP: 111–123 mmHg, MPAP: 27–30 mmHg and MRAP: 15–16 mmHg). MLBP-TIVA preserved cardiovascular function even in horses artificially ventilated. PMID:25649938

  7. Effect of melatonin on motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S

    2014-06-06

    Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. [Effects of combined natural hirudin and hyperbaric oxygen therapy on survival of transplanted random-pattern skin flap in rats].

    PubMed

    Cai, Jieyun; Lin, Bojie; Pan, Xinyuan; Cui, Jia; Pradhan, Rohan; Yin, Guoqian

    2018-04-01

    To investigate the effect of natural hirudin combined with hyperbaric oxygen therapy on the survival of transplanted random-pattern skin flap in rats. A random-pattern skin flap in size of 10.0 cm×2.5 cm was elevated on the dorsum of 72 Sprague Dawley rats. Then the 72 rats were randomly divided into 4 groups ( n =18) according to the therapy method. At immediate and within 4 days after operation, the rats were treated with normal saline injection in control group, normal saline injection combined with hyperbaric oxygen treatment in hyperbaric oxygen group, the natural hirudin injection in natural hirudin group, and the natural hirudin injection combined with hyperbaric oxygen treatment in combined group. The flap survival was observed after operation, and survival rate was evaluated at 6 days after operation. The skin samples were collected for histological analysis, microvessel density (MVD) measurement, and evaluation of tumor necrosis factor α (TNF-α) expression level by the immunohistochemical staining at 2 and 4 days after operation. Partial necrosis occurred in each group after operation, and the flap in combined group had the best survival. The survival rate of flap was significantly higher in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group, and in combined group than in hyperbaric oxygen group and natural hirudin group ( P <0.05). There was no significant difference between hyperbaric oxygen group and natural hirudin group ( P >0.05). At 2 days, more microvascular structure was observed in hyperbaric oxygen group, natural hirudin group, and combined group in comparison with control group; while plenty of inflammatory cells infiltration in all groups. At 4 days, the hyperbaric oxygen group, natural hirudin group, and the combined group still showed more angiogenesis. Meanwhile, there was still infiltration of inflammatory cells in control group, inflammatory cells in the other groups were significantly reduced when compared with at 2 days. At 2 days, the MVD was significantly higher in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group ( P <0.05); the expression of TNF-α was significantly lower in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group ( P <0.05). There was no significant difference in above indexes between hyperbaric oxygen group, natural hirudin group, and combined group ( P >0.05). At 4 days, the MVD was significantly higher in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group, in natural hirudin group and combined group than in hyperbaric oxygen group ( P <0.05). The expression of TNF-α was significantly lower in hyperbaric oxygen group, natural hirudin group, and combined group than that in control group, in combined group than in natural hirudin group and hyperbaric oxygen group ( P <0.05). Hyperbaric oxygen and natural hirudin therapy after random-pattern skin flap transplantation can improve the survival of flaps. Moreover, combined therapy is seen to exhibit significant synergistic effect. This effect maybe related to promotion of angiogenesis and the reduction of inflammation response.

  9. Carotenoids, versatile components of oxygenic photosynthesis.

    PubMed

    Domonkos, Ildikó; Kis, Mihály; Gombos, Zoltán; Ughy, Bettina

    2013-10-01

    Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming

    2018-05-01

    Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.

  11. Exploring the Origin of Blue and Ultraviolet Fluorescence in Graphene Oxide.

    PubMed

    Kozawa, Daichi; Miyauchi, Yuhei; Mouri, Shinichiro; Matsuda, Kazunari

    2013-06-20

    We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.

  12. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance.

    PubMed

    Zhao, Yufeng; Ran, Wei; He, Jing; Song, Yanfang; Zhang, Chunming; Xiong, Ding-Bang; Gao, Faming; Wu, Jinsong; Xia, Yongyao

    2015-01-21

    In this study, three-dimensional (3D) hierarchical porous carbon with abundant functional groups is produced through a very simple low-cost carbonization of Artemia cyst shells. The unique hierarchical porous structure of this material, combining large numbers of micropores and macropores, as well as reasonable amount of mesopores, is proven favorable to capacitive behavior. The abundant oxygen functional groups from the natural carbon precursor contribute stable pseudocapacitance. As-prepared sample exhibits high specific capacitance (369 F g(-1) in 1 M H2SO4 and 349 F g(-1) in 6 M KOH), excellent cycling stability with capacitance retention of 100% over 10 000 cycles, and promising rate performance. This work not only describes a simple way to produce high-performance carbon electrode materials for practical application, but also inspires an idea for future structure design of porous carbon.

  13. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    PubMed

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  14. Nonintrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study.

    PubMed

    Lewander, Märta; Bruzelius, Anders; Svanberg, Sune; Svanberg, Katarina; Fellman, Vineta

    2011-12-01

    A feasibility study on noninvasive, real-time monitoring of gases in lungs of preterm infants is reported, where a laser-spectroscopic technique using diode lasers tuned to oxygen and water vapor absorption lines was employed on realistic tissue phantoms. Our work suggests that the technique could provide a new possibility for surveillance of the lung function of preterm infants, in particular the oxygenation, which is of prime importance in this patient group.

  15. Running, swimming and diving modifies neuroprotecting globins in the mammalian brain

    PubMed Central

    Williams, Terrie M; Zavanelli, Mary; Miller, Melissa A; Goldbeck, Robert A; Morledge, Michael; Casper, Dave; Pabst, D. Ann; McLellan, William; Cantin, Lucas P; Kliger, David S

    2007-01-01

    The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic–hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17–1.62 g Hb 100 g brain wet wt−1) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain. PMID:18089537

  16. Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy

    PubMed Central

    Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter

    2015-01-01

    Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809

  17. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-05-01

    Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  18. Short Oxygenated Warm Perfusion With Prostaglandin E1 Administration Before Cold Preservation as a Novel Resuscitation Method for Liver Grafts From Donors After Cardiac Death in a Rat In Vivo Model.

    PubMed

    Maida, Kai; Akamatsu, Yorihiro; Hara, Yasuyuki; Tokodai, Kazuaki; Miyagi, Shigehito; Kashiwadate, Toshiaki; Miyazawa, Koji; Kawagishi, Naoki; Ohuchi, Noriaki

    2016-05-01

    We previously demonstrated that short oxygenated warm perfusion (SOWP) prevented warm ischemia-reperfusion injury in rat livers from donors after cardiac death (DCDs) in an ex vivo model. In the present study, we aimed to examine the in vivo effects of SOWP and SOWP with prostaglandin E1 (PGE1) in DCD rat liver transplants. We performed liver transplantation after 6-hour cold preservation using grafts retrieved from DCD rats, divided into nontreatment (NT), SOWP, and SOWP with PGE1 (SOWP + PG) treatment groups. The SOWP grafts were perfused with oxygenated buffer at 37°C for 30 minutes before cold preservation. Prostaglandin E1 was added to the SOWP + PG group perfusate. Eleven liver transplants from each group were performed to evaluate graft function and survival; 5 rats were used for data collection after 1-hour reperfusion, and 6 rats were used for the survival study. As a positive control, the same experiment was performed in a heart-beating donor group. In both the SOWP and SOWP + PG groups, serum liver enzymes, intercellular adhesion molecule 1 levels, and cellular damage were significantly decreased compared with the NT group. In the SOWP + PG group, bile production and energy status were significantly improved compared with the NT group. The 4-week survival was 0% (0/6), 67% (4/6), 83% (5/6), and 100% (6/6) in the NT, SOWP, SOWP + PG, and heart-beating donor group, respectively. Short oxygenated warm perfusion before cold preservation and the addition of PGE1 to SOWP were thus beneficial in an in vivo rat model.

  19. Kinetics of Organic Transformations Under Mild Aqueous Conditions: Implications for the Origin of Life and Its Metabolism

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2003-01-01

    The rates of thermal transformation of organic molecules containing carbon, hydrogen, and oxygen were systematically examined in order to identify the kinetic constraints that governed origin-of-life organic chemistry under mild aqueous conditions. Arrhenius plots of the kinetic data were used to estimate the reaction half-life at 50 C, and to reveal the effect of functional groups on reactivity. This survey showed that hydrocarbons and organic substances containing a single oxygenated group were kinetically the most stable (i. e. acetate decarboxylation half-life was l0(exp 18) years at 50 C); whereas, organic substances containing two oxygenated groups in which one group was a beta-positioned carbonyl group were the most reactive (i. e. acetoacetate decarboxylation half-life was l0(exp-2) years at 50 C). Of all functional groups the beta-positioned carbonyl group (aldehyde or ketone) was the strongest activating group, giving rates of reaction that were up to 10(exp 24)-times faster than rates of similar molecules lacking the beta-carbonyl group. From this knowledge of organic reactivity and the inherent constraints of autocatalytic processes, we concluded that an origins-of-life process based on autocatalytic transformation of C,H,O-substrates was constrained to using the most reactive organic molecules that contain alpha- or beta-carbonyl groups, since small autocatalytic domains of plausible catalytic power that used less reactive substrates could not carry out chemical transformations fast enough to prevent catastrophic efflux (escape) of reaction intermediates. Knowledge of the kinetics of organic transformations is useful, not only in constraining the chemistry of the earliest autocatalytic process related to the origin of life, but also in establishing the relative reactivity of organic molecules on the early Earth and other planets that may or may not be related to the origin of life.

  20. Effect of sleep-wake reversal and sleep deprivation on the circadian rhythm of oxygen toxicity seizure susceptibility.

    NASA Technical Reports Server (NTRS)

    Dexter, J. D.; Hof, D. G.; Mengel, C. E.

    1972-01-01

    Albino Sprague-Dawley rats were exposed in a previously O2 flushed, CO2 free chamber. The exposure began with attainment of 60 psi (gauge) and the end point was the first generalized oxygen toxicity seizure. Animals were exposed to reversal diurnal conditions since weanlings until their sleep-wake cycles had completely reversed, and then divided into four groups of 20 based on the time of day exposed. The time of exposure to oxygen at high pressure prior to seizure was now significantly longer in the group exposed from 1900 to 2000 hr and a reversal of the circadian rhythm of oxygen toxicity seizure susceptibility was noted. Animals maintained on normal diurnal conditions were deprived of sleep on the day of exposure for the 12 hours prior to exposure at 1900 hr, while controls were allowed to sleep. There was no significant differences in the time prior to seizure between the deprived animals and the controls with an n = 40. Thus the inherent threshold in susceptibility to high-pressure oxygen seizures seems not to be a function of sleep itself, but of some biochemical/physiologic event which manifests a circadian rhythm.

  1. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.

    PubMed

    Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian

    2018-05-01

    Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection: A pilot study.

    PubMed

    Jin, Mu; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Zhang, Zhiquan; Cheng, Weiping

    2017-03-01

    The goal of this study was to investigate the effects of pulmonary static inflation with 50% xenon on postoperative oxygen impairment during cardiopulmonary bypass (CPB) for Stanford type A acute aortic dissection (AAD). This prospective single-center nonrandomized controlled clinical trial included 100 adult patients undergoing surgery for Stanford type A AAD at an academic hospital in China. Fifty subjects underwent pulmonary static inflation with 50% oxygen from January 2013 to January 2014, and 50 underwent inflation with 50% xenon from January 2014 to December 2014. During CPB, the lungs were inflated with either 50% xenon (xenon group) or 50% oxygen (control group) to maintain an airway pressure of 5 cm H2O. The primary outcome was oxygenation index (OI) value after intubation, and 10 minutes and 6 hours after the operation. The second outcome was cytokine and reactive oxygen species levels after intubation and 10 minutes, 6 hours, and 24 hours after the operation. Patients treated with xenon had lower OI levels compared to the control group before surgery (P = 0.002); however, there was no difference in postoperative values between the 2 groups. Following surgery, mean maximal OI values decreased by 18.8% and 33.8%, respectively, in the xenon and control groups. After surgery, the levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and thromboxane B2 decreased by 23.5%, 9.1%, and 30.2%, respectively, in the xenon group, but increased by 10.8%, 26.2%, and 26.4%, respectively, in the control group. Moreover, IL-10 levels increased by 28% in the xenon group and decreased by 7.5% in the control group. There were significant time and treatment-time interaction effects on methane dicarboxylic aldehyde (P = 0.000 and P = 0.050, respectively) and myeloperoxidase (P = 0.000 and P = 0.001 in xenon and control groups, respectively). There was no difference in hospital mortality and 1-year survival rate between the 2 groups. Pulmonary static inflation with 50% xenon during CPB could attenuate OI decreases at the end of surgery for Stanford type A AAD. Thus, xenon may function by triggering anti-inflammatory responses and suppressing pro-inflammatory and oxidative effects.

  3. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection

    PubMed Central

    Jin, Mu; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Zhang, Zhiquan; Cheng, Weiping

    2017-01-01

    Abstract Background: The goal of this study was to investigate the effects of pulmonary static inflation with 50% xenon on postoperative oxygen impairment during cardiopulmonary bypass (CPB) for Stanford type A acute aortic dissection (AAD). Methods: This prospective single-center nonrandomized controlled clinical trial included 100 adult patients undergoing surgery for Stanford type A AAD at an academic hospital in China. Fifty subjects underwent pulmonary static inflation with 50% oxygen from January 2013 to January 2014, and 50 underwent inflation with 50% xenon from January 2014 to December 2014. During CPB, the lungs were inflated with either 50% xenon (xenon group) or 50% oxygen (control group) to maintain an airway pressure of 5 cm H2O. The primary outcome was oxygenation index (OI) value after intubation, and 10 minutes and 6 hours after the operation. The second outcome was cytokine and reactive oxygen species levels after intubation and 10 minutes, 6 hours, and 24 hours after the operation. Results: Patients treated with xenon had lower OI levels compared to the control group before surgery (P = 0.002); however, there was no difference in postoperative values between the 2 groups. Following surgery, mean maximal OI values decreased by 18.8% and 33.8%, respectively, in the xenon and control groups. After surgery, the levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and thromboxane B2 decreased by 23.5%, 9.1%, and 30.2%, respectively, in the xenon group, but increased by 10.8%, 26.2%, and 26.4%, respectively, in the control group. Moreover, IL-10 levels increased by 28% in the xenon group and decreased by 7.5% in the control group. There were significant time and treatment-time interaction effects on methane dicarboxylic aldehyde (P = 0.000 and P = 0.050, respectively) and myeloperoxidase (P = 0.000 and P = 0.001 in xenon and control groups, respectively). There was no difference in hospital mortality and 1-year survival rate between the 2 groups. Conclusion: Pulmonary static inflation with 50% xenon during CPB could attenuate OI decreases at the end of surgery for Stanford type A AAD. Thus, xenon may function by triggering anti-inflammatory responses and suppressing pro-inflammatory and oxidative effects. PMID:28272227

  4. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution

    DOE PAGES

    Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen; ...

    2017-11-17

    While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less

  5. Structural evaluation of reduced graphene oxide in graphene oxide during ion irradiation: X-ray absorption spectroscopy and in-situ sheet resistance studies

    NASA Astrophysics Data System (ADS)

    Saravanan, K.; Jayalakshmi, G.; Suresh, K.; Sundaravel, B.; Panigrahi, B. K.; Phase, D. M.

    2018-03-01

    We report the structural evolution of reduced graphene oxide (rGO) in graphene oxide (GO) flakes during 1 MeV Si+ ion irradiation. In-situ electrical resistivity measurements facilitate monitoring the sheet resistance with the increase in the fluence. The electrical sheet resistance of the GO flake shows the exponential decay behaviour with the increasing ion fluence. Raman spectra of the GO flake reveal the increase in the ID/IG ratio, indicating restoration of the sp2 network upon irradiation. The C/O ratio estimated from resonant Rutherford backscattering spectrometry analysis directly evidenced the reduction of oxygen moieties upon irradiation. C K-edge X-ray absorption near edge structure spectra reveal the restoration of C=C sp2-hybridized carbon atoms and the removal of oxygen-containing functional groups in the GO flake. STM data reveal the higher conductance in the rGO regime in comparison with the regime, where the oxygen functional groups are present. The experimental investigation demonstrates that the ion irradiation can be employed for efficient reduction of GO with tunable electrical and structural properties.

  6. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen

    While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less

  7. Removal of copper by oxygenated pyrolytic tire char: kinetics and mechanistic insights.

    PubMed

    Quek, Augustine; Balasubramanian, Rajashekhar

    2011-04-01

    The kinetics of copper ion (Cu(II)) removal from aqueous solution by pyrolytic tire char was modeled using five different conventional models. A modification to these models was also developed through a modified equation that accounts for precipitation. Conventional first- and second-order reaction models did not fit the copper sorption kinetics well, indicating a lack of simple rate-order dependency on solute concentration. Instead, a reversible first-order rate reaction showed the best fit to the data, indicating a dependence on surface functional groups. Due to the varying solution pH during the sorption process, modified external and internal mass transfer models were employed. Results showed that the sorption of copper onto oxygenated chars was limited by external mass transfer and internal resistance with and without the modification. However, the modification of the sorption process produced very different results for unoxygenated chars, which showed neither internal nor external limitation to sorption. Instead, its slow sorption rate indicates a lack of surface functional groups. The sorption of Cu(II) by oxygenated and unoxygenated chars was also found to occur via three and two distinct stages, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Ping; Mu, Jujie; Yu, Qi; Lu, Chun

    2011-05-01

    The improved interfacial adhesion of PBO fiber-reinforced bismaleimide composite by oxygen plasma processing was investigated in this paper. After treatment, the maximum value of interlaminar shear strength was 57.5 MPa, with an increase of 28.9%. The oxygen concentration of the fiber surface increased, as did the surface roughness, resulting in improvement of the surface wettability. The cleavage and rearrangement of surface bonds created new functional groups O dbnd C sbnd O, N sbnd C dbnd O and N sbnd O, thereby activating the fiber surface. And long-time treatment increased the reaction degree of surface groups while destroyed the newly-created physical structures. The enhancement of adhesion relied primarily on the strengthening of chemical bonding and mechanical interlocking between the fiber and the matrix. The composite rupture planes indicated that the fracture failure shifted from the interface to the matrix or the fiber.

  9. Molecular tools for investigating microbial community structure and function in oxygen-deficient marine waters.

    PubMed

    Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J

    2013-01-01

    Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.

  10. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    NASA Astrophysics Data System (ADS)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  11. [Effect of Electroacupuncture Stimulation of Acupoints at the Distal Limbs on Heart Function of Volunteers with Acute Hypoxia].

    PubMed

    Dong, Ya-qin; Xiu, Chun-ying; Sa, Zhe-yan; Xu, Jin-sen

    2015-10-01

    To observe the effect of electroacupuncture (EA) stimulation of different acupoints at the distal ends of the limbs on cardiac function in volunteers with acute hypoxia, so as to determine if its actions are realized by way of segmental innervations or meridians. Twenty healthy volunteers were divided into control, Quze (PC 3), Shousanli (LI 10), Guangming (GB 37) and Zusanli (ST 36) groups (both PC 3 and LI 10 are innervated by spinal C3-C6, and both ST 36 and GB 37 innervated by L5-S1). Acute hyoxia (simulating the conditions of about 5,000 m height above the sea level) was induced by asking the volunteers to inhale low-oxygen gas mixture (10.8% O2 + 89.2% N2) for 30 min, when, the participants' cardiac output (CO), heart rate (HR), left cardiac work (LOW), left ventricular ejection time (LVET)were measured using a ICG Monitor and EA stimulation (10 Hz/20 Hz, 1-2 V) was also conducted for 20 min following inhaling low-oxygen for 10 min. Before low-oxygen inhale, the levels of CO, HR, LCW and LVET ratios (test value/basic value) of the control, PC 3, LI 10, ST 36 and GB 37 groups were comparable (P > 0.05). After inhaling low-oxygen gas mixture for 10 min, the levels of CO, HR, and LCW ratios were significantly increased, and the LVET ratios were notably decreased in the five groups (P < 0.05). Compared with the 10 min-low-oxygen inhale of the same one group, CO and HR ratios at both EA 10 min and 20 min in the PC 3 and ST 36 groups, LCW ratios at EA 10 min in both PC 3 and ST 36 groups were notably down-regulated (P < 0.05), while the LVET ratios of both PC 3 and ST 36 groups was significantly prolonged (P < 0.05). No significant changes of CO, HR, LCW and LVET ratios were found in the LI 10 and GB 37 groups after EA for 10 min and 20 min (P > 0.05). EA stimulation of Quze (PC 3) and Zusanli (ST 36), but not Shousanli (LI 10) and Guangming (GB 37) can lower CO, HR and LCW levels and increase LVET in volunteer subjects undergoing acute hypoxia, suggesting that the therapeutic effect of EA maybe not rely on the segmental innervations, but rather, depend on the meridians to which the acupoints belong.

  12. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    NASA Astrophysics Data System (ADS)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  13. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures.

    PubMed

    Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A

    2007-02-01

    End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.

  14. Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections.

    PubMed

    Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2018-05-17

    Carbon nanotubes (CNTs) and their derivatives have emerged as a series of efficient biocatalysts to mimic the function of natural enzymes in recent years. However, the unsatisfiable enzymatic efficiency usually limits their practical usage ranging from materials science to biotechnology. Here, for the first time, we present the synthesis of several oxygenated-group-enriched carbon nanotubes (o-CNTs) via a facile but green approach, as well as their usage as high-performance peroxidase mimics for biocatalytic reaction. Exhaustive characterizations of the enzymatic activity of o-CNTs have been provided by exploring the accurate effect of various oxygenated groups on their surface including carbonyl, carboxyl, and hydroxyl groups. Because of the "competitive inhibition" effect among all of these oxygenated groups, the catalytic efficiency of o-CNTs is significantly enhanced by weakening the presence of noncatalytic sites. Furthermore, the admirable enzymatic activity of these o-CNTs has been successfully applied in the treatment of bacterial infections, and the results of both in vitro and in vivo nanozyme-mediated bacterial clearance clearly demonstrate the feasibility of o-CNTs as robust peroxidase mimics to effectively decrease the bacterial viability under physiological conditions. We believe that the present study will not only facilitate the construction of novel efficient nanozymes by rationally adjusting the degree of the "competitive inhibition" effect, but also broaden the biological usage of o-CNT-based nanomaterials via their satisfactory enzymatic activity.

  15. Enhancement of neutrophil function by in vivo filgrastim treatment for prophylaxis of sepsis in surgical intensive care patients.

    PubMed

    Weiss, M; Gross-Weege, W; Schneider, M; Neidhardt, H; Liebert, S; Mirow, N; Wernet, P

    1995-03-01

    To determine the kinetics of leukocyte counts and of oxygen radical production of neutrophils from postoperative/posttraumatic patients with or without infusion of filgrastim (recombinant human granulocyte colony-stimulating factor, rhG-CSF) as prophylaxis against sepsis. Twenty postoperative/posttraumatic patients with a Therapeutic Intervention Scoring System (TISS) score greater than 30 were included in this study. In the 10 patients of the study group, filgrastim (1 microgram/kg/d) was infused continuously within the first 3 days and tapered to 0.5 microgram/kg/d on the following 4 days or until discharge from the surgical intensive care unit. Ten patients without administration of filgrastim served as controls. Oxygen radical production of isolated neutrophils of these patients was tested by N-formyl-methionyl-leucyl-phenylalanine (FMLP)- and zymosan-induced chemiluminescence from serial blood samples, taken until the 16th postoperative day. Compared with the first postoperative day, in vitro FMLP-induced neutrophil chemiluminescence was significantly increased during the following 4 postoperative days in the patients with filgrastim infusion; however, only during the first 2 postoperative days in the control group. The increase in the FMLP-induced neutrophil chemiluminescence was significantly greater (P < .05) in the study group than in the control group on the third and on the fourth postoperative day. Tapering of filgrastim by 0.5 microgram/kg/d in the study group resulted in a reduction of FMLP-induced neutrophil oxygen radical production within 48 hours. In contrast, zymosan-induced neutrophil chemiluminescence was not measurably affected in both groups. Leukocyte count of the study group significantly (P < .05) exceeded the leukocyte count of the control group from the third up to the 10th postoperative day. None of the patients treated with filgrastim developed sepsis; however, three patients within the control group did. Prolonged enhancement of neutrophil count and function induced by rhG-CSF may be useful in the prophylaxis of sepsis in posttraumatic/postoperative patients at high risk of sepsis.

  16. Hemofiltration in ex vivo lung perfusion-a study in experimentally induced pulmonary edema.

    PubMed

    Nilsson, Tobias; Hansson, Christoffer; Wallinder, Andreas; Malm, Carl-Johan; Silverborn, Martin; Ricksten, Sven-Erik; Dellgren, Göran

    2016-02-01

    Ex vivo lung perfusion (EVLP) can potentially reduce pulmonary edema. In a pig model with induced pulmonary edema, we evaluated the effect of hemofiltration (HF) during EVLP on lung function, perfusate oncotic pressure, and lung weight. In anesthetized pigs (n = 14), pulmonary edema was induced by a balloon in the left atrium, combined with crystalloid infusion (20 mL/kg), for 2 hours. The lungs were harvested, stored cold for 2 hours, and randomized to EVLP, with or without a hemofilter (HF and noHF groups, respectively, n = 7 for each). EVLP was performed with cellular perfusate at a hematocrit of 10% to 15%. Oncotic pressure, lung performance, and weight were measured before and after 180 minutes of EVLP reconditioning with or without HF. After in vivo induction of edema, arterial oxygen tension (Pao2)/inspired oxygen fraction (Fio2), and compliance decreased by 63% and 16%, respectively. Pao2/Fio2 was considerably improved at first evaluation ex vivo in both groups. HF increased oncotic pressure by 43% and decreased lung weight by 15%. The effects were negligible in the noHF group. Compliance decreased in both groups during reconditioning, although less so in the HF group (P < .05). Pao2/Fio2, shunt fraction, and oxygen saturation remained unchanged in both groups. Pulmonary flow index decreased in both groups, and was partially reversed by nitroglycerin. Dorsal atelectatic consolidations were seen in both groups. In this lung-edema model, EVLP reconditioning with hyperoncotic solution did not affect the degree of lung edema. HF during EVLP increased perfusate oncotic pressure, decreased lung weight with beneficial effects on compliance, but did not improve lung oxygenation capacity. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease.

    PubMed

    Keymel, Stefanie; Schueller, Benedikt; Sansone, Roberto; Wagstaff, Rabea; Steiner, Stephan; Kelm, Malte; Heiss, Christian

    2018-03-01

    Epidemiological studies have shown increased morbidity and mortality in patients with coronary artery disease (CAD) and chronic obstructive pulmonary disease (COPD). We aimed to characterize the oxygen dependence of endothelial function in patients with CAD and coexisting COPD. In CAD patients with and without COPD ( n = 33), we non-invasively measured flow-mediated dilation (FMD) and intima-media thickness (IMT) of the brachial artery (BA), forearm blood flow (FBF), and perfusion of the cutaneous microcirculation with laser Doppler perfusion imaging (LDPI). In an experimental setup, vascular function was assessed in healthy volunteers ( n = 5) breathing 12% oxygen or 100% oxygen in comparison to room air. COPD was associated with impaired FMD (3.4 ±0.5 vs. 4.2 ±0.6%; p < 0.001) and increased IMT (0.49 ±0.04 vs. 0.44 ±0.04 mm; p <0.01), indicating functional and structural alterations of the BA in COPD. Forearm blood flow and LDPI were comparable between the groups. Flow-mediated dilation correlated with capillary oxygen pressure (pO 2 , r = 0.608). Subgroup analysis in COPD patients with pO 2 > 65 mm Hg and pO 2 ≤ 65 mm Hg revealed even lower FMD in patients with lower pO 2 (3.0 ±0.5 vs. 3.7 ±0.4%; p < 0.01). Multivariate analysis showed that pO 2 was a predictor of FMD independent of the forced expiratory volume and pack years. Exposure to hypoxic air led to an acute decrease in FMD, whereby exposure to 100% oxygen did not change vascular function. Our data suggest that in CAD patients with COPD, decreased systemic oxygen levels lead to endothelial dysfunction, underlining the relevance of cardiopulmonary interaction and the potential importance of pulmonary treatment in secondary prevention of vascular disease.

  18. Application of thiol-olefin co-oxygenation methodology to a new synthesis of the 1,2,4-trioxane pharmacophore.

    PubMed

    O'Neill, Paul M; Mukhtar, Amira; Ward, Stephen A; Bickley, Jamie F; Davies, Jill; Bachi, Mario D; Stocks, Paul A

    2004-09-02

    [reaction: see text] Thiol-olefin co-oxygenation (TOCO) of substituted allylic alcohols generates alpha-hydroxyperoxides that can be condensed in situ with various ketones to afford a series of functionalized 1,2,4-trioxanes in good yields. Manipulation of the phenylsulfenyl group in 4a allows for convenient modification to the spiro-trioxane substituents, and we describe, for the first time, the preparation of a new class of antimalarial prodrug.

  19. Stiffness and strength of oxygen-functionalized graphene with vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu

    2014-11-14

    The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less

  20. Relationship between dynapenia and cardiorespiratory functions in healthy postmenopausal women: novel clinical criteria.

    PubMed

    Barbat-Artigas, Seébastien; Dupontgand, Sophie; Fex, Annie; Karelis, Antony D; Aubertin-Leheudre, Mylène

    2011-04-01

    Muscle strength seems to be a better indicator of physical limitations than skeletal muscle mass is. The purpose of this study was to investigate, using a new developed clinical tool, the relationship between type I dynapenia and cardiorespiratory functions in postmenopausal women. Forty-six postmenopausal women were recruited and divided into two groups (dynapenic vs nondynapenic). Body composition (bioelectrical impedancemetry), muscle strength (dynamometer), cardiorespiratory functions (maximum oxygen consumption and forced expiratory volume in 1 second), resting energy expenditure (indirect calorimetry), and dietary intake (3-d dietary journal) were measured. Type I dynapenia was defined as less than 1.53 kg per skeletal muscle mass (kg) based on handgrip dynamometer. Significant differences were found between dynapenic (n=23) and nondynapenic (n=23) postmenopausal women for cardiorespiratory functions (maximum oxygen consumption, P=0.003; and forced expiratory volume in 1 second, P=0.046). We observed no differences between groups for age, age at menopause, use of hormone therapy, body mass index, waist circumference, fat mass, resting energy expenditure, and total energy intake, which are known to be potential confounders. No differences were observed for cardiorespiratory functions when our population was divided into sarcopenic and nonsarcopenic groups. Type I dynapenic women have significantly poorer cardiorespiratory functions that do nondynapenic women even if they presented the same skeletal muscle mass index. Thus, based on our results, dynapenia could potentially be used as a marker of cardiorespiratory functions. The clinical method developed to identify dynapenic women could be used by health professionals. © 2011 by The North American Menopause Society

  1. Oxygen With Cold Bubble Humidification Is No Better Than Dry Oxygen in Preventing Mucus Dehydration, Decreased Mucociliary Clearance, and Decline in Pulmonary Function.

    PubMed

    Franchini, Michelle Lisidati; Athanazio, Rodrigo; Amato-Lourenço, Luis Fernando; Carreirão-Neto, Waldir; Saldiva, Paulo Hilario Nascimento; Lorenzi-Filho, Geraldo; Rubin, Bruce K; Nakagawa, Naomi Kondo

    2016-08-01

    Little is known about the effects of long-term nasal low-flow oxygen (NLFO) on mucus and symptoms and how this variable is affected by dry or cold humidified gas. The aim of this study was to investigate the effects of dry-NLFO and cold bubble humidified-NLFO on nasal mucociliary clearance (MCC), mucus properties, inflammation, and symptoms in subjects with chronic hypoxemia requiring long-term domiciliary oxygen therapy. Eighteen subjects (mean age, 68 years; 7 male; 66% with COPD) initiating NLFO were randomized to receive dry-NLFO (n = 10) or humidified-NLFO (n = 8). Subjects were assessed at baseline, 12 h, 7 days, 30 days, 12 months, and 24 months by measuring nasal MCC using the saccharin transit test, mucus contact angle (surface tension), inflammation (cells and cytokine concentration in nasal lavage), and symptoms according to the Sino-Nasal Outcome Test-20. Nasal MCC decreased significantly (40% longer saccharin transit times) and similarly in both groups over the study period. There was a significant association between impaired nasal MCC and decline in lung function. Nasal lavage revealed an increased proportion of macrophages, interleukin-8, and epidermal growth factor concentrations with decreased interleukin-10 during the study. No changes in the proportion of ciliated cells or contact angle were observed. Coughing and sleep symptoms decreased similarly in both groups. There were no outcome differences comparing dry vs cold bubble humidified NLFO. In subjects receiving chronic NLFO, cold bubble humidification does not adequately humidify inspired oxygen to prevent deterioration of MCC, mucus hydration, and pulmonary function. The unheated bubble humidification performed no better than no humidification. ClinicalTrials.gov; No.: NCT02515786; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Interfacial Connection Mechanisms in Calcium-Silicate-Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study.

    PubMed

    Zhou, Yang; Hou, Dongshuai; Manzano, Hegoi; Orozco, Carlos A; Geng, Guoqing; Monteiro, Paulo J M; Liu, Jiaping

    2017-11-22

    Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential-based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium-silicate-hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double-bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium-silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic-inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.

  3. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  4. Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase

    DOE PAGES

    Abergel, Rebecca J.; de Jong, Wibe A.; Deblonde, Gauthier J. -P.; ...

    2017-10-11

    Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U 6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theorymore » (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.« less

  5. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    PubMed

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from preserving mitochondrial function during reperfusion and increasing mitochondrial tolerance to Ca(2+) loading at end-RP. Activation of mitochondrial K(ATP) channels by IPC and their improvement in Ca(2+) homeostasis during RP may be the mechanism underlying this protection.

  6. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    PubMed

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  7. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  8. Dexamethasone therapy for preventing delayed encephalopathy after carbon monoxide poisoning.

    PubMed

    Li, Q; Song, J J; Zhang, H Y; Fu, K; Lan, H B; Deng, Y

    2015-01-01

    We investigated dexamethasone therapy for preventing delayed encephalopathy after carbon monoxide (CO) poisoning. Eighty healthy male rats were exposed to CO and randomly divided into four groups: hyperbaric oxygen treatment (H), treatment (D), combined hyperbaric and dexamethasone treatment (C), and a control (M) group in which the rats inhaled CO to coma in the hyperbaric oxygen chamber, then were removed without further treatment. Twelve rats were put into the hyperbaric oxygen chamber and treated with air for 60 min (N) group. An eight arm maze was used to evaluate cognitive and memory abilities of these mice. Serum myelin basic protein (MBP) levels were evaluated using ELISA, and magnetic resonance imaging was used to observe brain demyelination and morbidity associated with delayed encephalopathy. A sample of the hippocampus from each group was examined by light microscopy. Cognitive and memory functions decreased in the control group M. Three days after CO poisoning, the serum MBP level of each group increased significantly. On Day 10 after CO poisoning, the MBP levels in groups C and D decreased significantly, but returned to normal on Day 18. MBP levels in the M and H groups were elevated at all time points. Brain MRIs showed significant differences among C, D, H and control M groups. Hematoxylin & eosin staining of the hippocampus showed greater damage in the control M and H groups. Early dexamethasone treatment may be useful for preventing delayed encephalopathy after CO poisoning and may reduce serum MBP levels.

  9. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

    NASA Astrophysics Data System (ADS)

    Hill, Christopher K.; Hartwig, John F.

    2017-12-01

    Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

  10. Electron Paramagnetic Resonance Studies of Spin-Labeled Hemoglobins and Their Implications to the Nature of Cooperative Oxygen Binding to Hemoglobin*

    PubMed Central

    Ho, Chien; Baldassare, Joseph J.; Charache, Samuel

    1970-01-01

    The spin label technique has been used to study human hemoglobins A, F, Zürich, and Chesapeake as a function of carbon monoxide saturation. The experimental results suggest that the changes in the electron paramagnetic resonance spectra of hemoglobin labeled with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide depend on the state of ligation of more than one heme group. For those hemoglobins with full or large cooperative ligand binding (such as A, F, and Zürich), there is a lack of isosbestic points in the spectra as a function of CO saturation. However, for those hemoglobins with little or no cooperative ligand binding (such as Chesapeake and methemoglobins), there is a sharp set of isosbestic points. These findings confirm and extend the early work of McConnell and co-workers. The absence of a set of isosbestic points in those hemoglobins with full cooperative ligand binding is consistent with the sequential model of Koshland, Némethy, and Filmer for cooperative oxygen binding to hemoglobin. The present results, with hemoglobin variants having known amino acid substitutions, also focus on the importance of the interactions among the amino acid residues located at α1-β2 or α2-β1 subunit contacts for the functioning of hemoglobin as an oxygen carrier. In addition, the resonance spectra of the spin label are very sensitive to small structural variations around the heme groups in the β- or γ-chains where the labels are attached. The results of the spin label experiment are discussed in relation to recent findings on the mechanism of oxygenation of hemoglobin from the nuclear magnetic resonance studies of this laboratory and the x-ray crystallographic analysis of Perutz and co-workers. PMID:4316679

  11. Variations of the blood gas levels and thermodilutional parameters during ICP monitoring after severe head trauma in children.

    PubMed

    Lubrano, Riccardo; Elli, Marco; Stoppa, Francesca; Di Traglia, Mario; Di Nardo, Matteo; Perrotta, Daniela; David, Piero; Paoli, Sara; Cecchetti, Corrado

    2015-08-01

    The purpose of this study was to define, in children following head trauma and GSC ≤ 8, at which level of intracranial pressure (ICP), the thermodilutional, and gas analytic parameters implicated in secondary cerebral insults shows initial changes. We enrolled in the study 56 patients: 30 males and 26 females, mean age 71 ± 52 months. In all children, volumetric hemodynamic and blood gas parameters were monitored following initial resuscitation and every 4 h thereafter or whenever a hemodynamic deterioration was suspected. During the cumulative hospital stay, a total of 1050 sets of measurements were done. All parameters were stratified in seven groups according to ICP (group A1 = 0-5 mmHg, group A2 = 6-10 mmHg, group A3 = 11-15 mmHg, group A4 16-20 mmHg, group A5 21-25 mmHg, group A6 26-30 mmHg, group A7 >31 mmHg). Mean values of jugular oxygen saturation (SJO2), jugular oxygen partial pressure (PJO2), extravascular lung water (EVLWi), pulmonary vascular permeability (PVPi), fluid overload (FO), and cerebral extraction of oxygen (CEO2) vary significantly from A3 (11-15 mmHg) to A4 (16-20 mmHg). They relate to ICP in a four-parameter sigmoidal function (4PS function with: r(2) = 0.90), inflection point of 15 mmHg of ICP, and a maximum curvature point on the left horizontal asymptote at 13 mmHg of ICP. Mean values of SJO2, PJO2, EVLWi, PVPi, FO, and CEO2 become pathologic at 15 mmHg of ICP; however, the curve turns steeper at 13 mmHg, possibly a warning level in children for the development of post head trauma secondary insult.

  12. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene

    NASA Astrophysics Data System (ADS)

    Dolinskii, I. Yu.; Katin, K. P.; Grishakov, K. S.; Prudkovskii, V. S.; Kargin, N. I.; Maslov, M. M.

    2018-04-01

    This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.

  13. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients.

    PubMed

    Cai, Baiqiang; Zhu, Yuanjue; Ma, Y i; Xu, Zuojun; Zao, Y i; Wang, Jinglan; Lin, Yaoguang; Comer, Gail M

    2003-03-01

    One of the goals in treating patients with chronic obstructive pulmonary disease (COPD) who suffer from hypoxemia, hypercapnia, and malnutrition is to correct the malnutrition without increasing the respiratory quotient and minimize the production of carbon dioxide. This 3-wk study evaluated the efficacy of feeding a high-fat, low-carbohydrate (CHO) nutritional supplement as opposed to a high-carbohydrate diet in COPD patients on parameters of pulmonary function.S METHODS: Sixty COPD patients with low body weight (<90% ideal body weight) were randomized to the control group, which received dietary counseling for a high-CHO diet (15% protein, 20% to 30% fat, and 60% to 70% CHO), or the experimental group, which received two to three cans (237 mL/can) of a high-fat, low-CHO oral supplement (16.7% protein, 55.1% fat, and 28.2% CHO) in the evening as part of the diet. Measurements of lung function (forced expiratory volume in 1 s or volume of air exhaled in 1 s of maximal expiration, minute ventilation, oxygen consumption per unit time, carbon dioxide production in unit time, and respiratory quotient) and blood gases (pH, arterial carbon dioxide tension, and arterial oxygen tension) were taken at baseline and after 3 wk. Lung function measurements decreased significantly and forced expiratory volume increased significantly in the experimental group. This study demonstrates that pulmonary function in COPD patients can be significantly improved with a high-fat, low-CHO oral supplement as compared with the traditional high-CHO diet.

  14. The effects of ventilation with high density oxygen on the strength of gastrointestinal anastomosis

    PubMed Central

    Eker, Tevfik; Sevim, Yusuf; Cumaogullari, Ozge; Ozcelik, Menekse; Kocaay, Akin Firat; Ensari, Cemal Özben; Pasaoglu, Ozge Tugce

    2015-01-01

    Purpose The aim of our study is to evaluate the effects of administration of perioperative supplemental oxygen on anastomoses. Methods Forty male Wistar albino rats were used in the study and randomized into 4 groups. Ischemia-reperfusion models were built in groups 3 and 4. Jejunojejunostomy was performed in all rats and assigned to an oxygen/nitrous oxide mixture with a fraction of inspired oxygen of 30% in groups 1 and 3 and 80% in groups 2 and 4. The measurements of perianastomotic tissue oxygen pressure, bursting pressure, level of hydroxyproline were evaluated and compared in all groups. Results The perianastomotic tissue oxygen pressures, bursting pressures and levels of hydroxyproline were identified as significantly high in groups 2 and 4, administered a fraction of inspired oxygen of 80%, compared to groups 1 and 3, administered a fraction of inspired oxygen of 30%. Conclusion Perioperative supplemental oxygen contributes positively to the anastomotic healing. PMID:26131440

  15. Marked elevation of hepatic transaminases in recipients of an orthotopic liver transplant from a brain-dead donor receiving extracorporeal membrane oxygenation.

    PubMed

    Teng-Wei, Chen; Chung-Bao, Hsieh; Chan, De-Chuan; Yu, Jyh-Cherng; Kuo, Shih-Ming; Tsai, Chien-Sung; Fan, Hsiu-Lung

    2014-12-29

    Hemodynamic instability can lead to failure of donor organ procurement in brain-dead donors. Extracorporeal membrane oxygenation (ECMO) has been used in non-heart-beating donors to increase the donor pool, but the use of ECMO to salvage donor organs has been rarely used. We aimed to analyze postoperative liver function test results in patients receiving orthotopic liver transplants from ECMO-supported brain-dead donors. We retrospectively reviewed the records of 43 recipients of orthotopic liver transplantation from May 2009 to June 2012. Six recipients received liver grafts from ECMO-maintained donors designated as the ECMO group (n=6). The remaining patients were assigned to the non-ECMO group (n=37). Complication and mortality rates and liver function test results on postoperative days 1, 3, 5, 7, and 14 were compared between the 2 groups. Serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase levels were significantly elevated on postoperative Day 1 in the ECMO group. There were no significant differences in the complication and overall survival rates between the 2 groups (P=0.411). Although serum transaminases markedly elevated on postoperative Day 1, ECMO successfully preserved potential liver grafts in hemodynamically unstable brain-dead donors.

  16. High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers.

    PubMed

    Hostler, David; Northington, William E; Callaway, Clifton W

    2009-08-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, cardiac arrest, or exertional heat illness. While infusion of cold normal saline is a simple and inexpensive method for reducing core temperature, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesized that intravenous administration of diazepam during a rapid infusion of 30 mL.kg-1 of cold (4 degrees C) 0.9% saline to healthy subjects would be more comfortable and reduce core body temperature more than the administration of cold saline alone. Fifteen subjects received rapidly infused cold (4 degrees C) 0.9% saline. Subjects were randomly assigned to receive, intravenously, 20 mg diazepam (HIGH), 10 mg diazepam (LOW), or placebo (CON). Main outcomes were core temperature, skin temperature, and oxygen consumption. Data for the main outcomes were analyzed with generalized estimating equations to identify differences in group, time, or a group x time interaction. Core temperature decreased in all groups (CON, 1.0 +/- 0.2 degrees C; LOW, 1.4 +/- 0.2 degrees C; HIGH, 1.5 +/- 0.2 degrees C), while skin temperature was unchanged. Mean (95% CI) oxygen consumption was 315.3 (253.8, 376.9) mL.kg-1.min-1 in the CON group, 317.9 (275.5, 360.3) in the LOW group, and 226.1 (216.4, 235.9) in the HIGH group. Significant time and group x time interaction was observed for core temperature and oxygen consumption (p < 0.001). Administration of high-dose diazepam resulted in decreased oxygen consumption during cold saline infusion, suggesting that 20 mg of intravenous diazepam may reduce the shivering threshold without compromising respiratory or cardiovascular function.

  17. Synthesis of antiviral tetrahydrocarbazole derivatives by photochemical and acid-catalyzed C-H functionalization via intermediate peroxides (CHIPS).

    PubMed

    Gulzar, Naeem; Klussmann, Martin

    2014-06-20

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.

  18. Cardiopulmonary effects of thiopental versus propofol as an induction agent prior to isoflurane anesthesia in chair trained rhesus macaques (Macaca mulatta).

    PubMed

    Choi, Yun-Jung; Park, Hye-Jin; Kim, Hyeon-Ho; Lee, Yun-Jin; Jung, Kyeong-Cheon; Park, Seong-Hoe; Lee, Jae-Il

    2016-03-01

    The purpose of this study was to evaluate the effects of thiopental versus propofol on cardiopulmonary functions, when used as an induction agent prior to isoflurane anesthesia in rhesus monkeys. Eight healthy rhesus monkeys weighing 3.72 to 5.7 kg, 4-5 years old, were used in the study. Anesthesia was induced with thiopental or propofol intravenous injection, and then maintained with isoflurane in oxygen for 45 minutes. Cardiopulmonary measurements were obtained before and 5, 15, 30, 45, and 60 minutes after induction. The induction doses of thiopental and propofol were 19.41±0.54 and 9.33±1.02 mg/kg, respectively. In both groups, the values of heart rate, respiratory rate, temperature, systolic blood pressure, mean blood pressure, diastolic blood pressure, pH, and lactate were decreased, while the values of partial pressure of carbon dioxide, partial pressure of oxygen, total carbon dioxide, bicarbonate, oxygen saturation, and base excess in the extracellular fluid were increased, as compared with baseline. Systolic blood pressure was significantly lower in thiopental group compare to propofol group. Induction time was very short in both agents but not revealed a significant difference between both groups. However, recovery time was extremely faster in the propofol group. Our results demonstrated that propofol provides a minor suppression in systolic arterial blood pressure than thiopental sodium. In addition, propofol have a fast recovery effect from the anesthesia as well. Furthermore, it is suggested that thiopental sodium could also be used to induce anesthesia instead of propofol, despite slight more suppression of cardiopulmonary function compared to thiopental sodium.

  19. Oxygen uptake and body composition after aquatic physical training in women with fibromyalgia: a randomized controlled trial.

    PubMed

    Andrade, Carolina P; Zamunér, Antonio R; Forti, Meire; França, Thalita F; Tamburús, Nayara Y; Silva, Ester

    2017-10-01

    Aquatic physical training (APT) has been strongly recommended to improve symptoms in fibromyalgia syndrome (FMS). However, its effects on body composition and whether lean body mass (LBM) directly influences the aerobic functional capacity of this population are still not clear. To investigate whether APT can help improve body composition and increase the aerobic functional capacity in women with FMS, and whether oxygen uptake (VO2) related to LBM can better quantify the functional capacity of this population. Randomized controlled trial. The Federal University of São Carlos, São Paulo, Brazil. Fifty-four women with FMS were randomly assigned to trained group (TG, N.=27) or control group (CG, N.=27). All women underwent cardiopulmonary exercise test (CPET) to assess oxygen consumption at ventilatory anaerobic threshold (VAT) and at peak exercise, and also to assess body composition. The TG was submitted to APT program, held twice a week for 16 weeks. The exercise intensity was adapted throughout the sessions in order to keep heart rate and ratings of perceived exertion achieved at VAT. After APT, body composition was not significantly different between groups (TG and CG). In VAT only TG showed increased VO2 related to LBM, since in peak CPET, VO2 in absolute units, VO2 related to total body mass (TBM), VO2 related to LBM and power showed significant differences. Significant difference between VO2 related to TBM and VO2 related to baseline LBM and after 16 weeks of follow-up, both in VAT as in peak CPET in both groups. Significant difference between VO2 related to TBM and VO2 related to LBM at VAT and at peak CPET in both groups at baseline and after 16 weeks of follow-up was observed. APT with standardized intensities did not cause significant changes in body composition, but was effective in promoting increased VO2 at peak CPET in women with FMS. However, VO2 related to LBM more accurately reflected changes in aerobic functional capacity at VAT level after to APT. APT with standardized intensities at VAT level is of great interest, since VAT reflects better aerobic functional capacity of patients with FMS than maximum VO2.

  20. Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia.

    PubMed

    Hernandez-Mijares, Antonio; Bañuls, Celia; Rovira-Llopis, Susana; Diaz-Morales, Noelia; Escribano-Lopez, Irene; de Pablo, Carmen; Alvarez, Angeles; Veses, Silvia; Rocha, Milagros; Victor, Victor M

    2016-04-01

    Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Adapting BODIPYs to singlet oxygen production on silica nanoparticles.

    PubMed

    Epelde-Elezcano, Nerea; Prieto-Montero, Ruth; Martínez-Martínez, Virginia; Ortiz, María J; Prieto-Castañeda, Alejandro; Peña-Cabrera, Eduardo; Belmonte-Vázquez, José L; López-Arbeloa, Iñigo; Brown, Ross; Lacombe, Sylvie

    2017-05-31

    A modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φ fl ≥ 0.3), allowing fluorescence tracking of the particles. Various photosensitizers of singlet oxygen (PS) were covalenty coupled to the shell, allowing singlet oxygen production. The stability of NP suspensions strongly deteriorated upon grafting the PS, affecting their apparent singlet oxygen quantum yields. Agglomeration of NPs depends both on the type and on the amount of grafted photosensitizer. New, lab-made, halogenated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) grafted to the NPs achieved higher singlet oxygen quantum yields (Φ Δ ∼ 0.35-0.40) than Rose Bengal (RB) grafted NPs (Φ Δ ∼ 0.10-0.27). Finally, we combined both fluorescence and PS functions in the same NP, namely a rhodamine in the silica core and a BODIPY or RB grafted in the shell, achieving the performance Φ fl ∼ 0.10-0.20, Φ Δ ∼ 0.16-0.25 with a single excitation wavelength. Thus, proper choice of the dyes, of their concentrations inside and on the NPs and the grafting method enables fine-tuning of singlet oxygen production and fluorescence emission.

  2. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats.

    PubMed

    Meng, Chao; Ma, Liangjuan; Niu, Li; Cui, Xiaoguang; Liu, Jinfeng; Kang, Jiyu; Liu, Rongfang; Xing, Jingchun; Jiang, Changlin; Zhou, Huacheng

    2016-04-15

    Lung ischemia-reperfusion injury (IRI) may be attenuated through carbon monoxide (CO)'s anti-inflammatory effect or hydrogen (H2)'s anti-oxidant effect. In this study, the effects of lung inflation with CO, H2, or both during the cold ischemia phase on graft function were observed. Rat donor lungs, inflated with 40% oxygen (control group), 500ppm CO (CO group), 3% H2 (H2 group) or 500ppm CO+3% H2 (COH group), were kept at 4°C for 180min. After transplantation, the recipients' artery blood gas and pressure-volume (P-V) curves were analyzed. The inflammatory response, oxidative stress and apoptosis in the recipients were assessed at 180min after reperfusion. Oxygenation in the CO and H2 groups were improved compared with the control group. The CO and H2 groups also exhibited significantly improved P-V curves, reduced lung injury, and decreased inflammatory response, malonaldehyde content, and cell apoptosis in the grafts. Furthermore, the COH group experienced enhanced improvements in oxygenation, P-V curves, inflammatory response, lipid peroxidation, and graft apoptosis compared to the CO and H2 groups. Lung inflation with CO or H2 protected against IRI via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in a model of lung transplantation in rats, which was enhanced by combined treatment with CO and H2. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Graphene electrochemical supercapacitors: the influence of oxygen functional groups.

    PubMed

    Deng, Wentao; Ji, Xiaobo; Gómez-Mingot, Maria; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2012-03-14

    We have critically compared graphene and graphene oxide as materials for utilisation as supercapacitors indicating that the former exhibits a larger capacitance over the latter which has implications for those fabricating supercapacitors. This journal is © The Royal Society of Chemistry 2012

  4. Disposition and Mechanisms of Toxicities of Metals and Metalloids

    EPA Science Inventory

    Dr. Hughes will provide a concise overview of general disposition (e.g., absorption) and mechanisms of toxicity of metal toxicity (e.g., direct interaction with functional groups of critical proteins, generation of reactive oxygen species, and alteration of cell signaling pathway...

  5. Anatomic Location of Tumor Predicts the Accuracy of Motor Function Localization in Diffuse Lower-Grade Gliomas Involving the Hand Knob Area.

    PubMed

    Fang, S; Liang, J; Qian, T; Wang, Y; Liu, X; Fan, X; Li, S; Wang, Y; Jiang, T

    2017-10-01

    The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger ( P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller ( P = .003) in the overlapping group than in the nonoverlapping group. This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex localization with blood oxygen level-dependent fMRI. Preoperative fMRI data for surgical planning should be used cautiously when the shortest distance from the tumor to the hand knob is ≤4 mm, especially for lower-grade gliomas anterior to the central sulcus. © 2017 by American Journal of Neuroradiology.

  6. Off-pump grafting does not reduce postoperative pulmonary dysfunction.

    PubMed

    Izzat, Mohammad Bashar; Almohammad, Farouk; Raslan, Ahmad Fahed

    2017-02-01

    Objectives Pulmonary dysfunction is a recognized postoperative complication that may be linked to use of cardiopulmonary bypass. The off-pump technique of coronary artery bypass aims to avoid some of the complications that may be related to cardiopulmonary bypass. In this study, we compared the influence of on-pump or off-pump coronary artery bypass on pulmonary gas exchange following routine surgery. Methods Fifty patients (mean age 60.4 ± 8.4 years) with no preexisting lung disease and good left ventricular function undergoing primary coronary artery bypass grafting were prospectively randomized to undergo surgery with or without cardiopulmonary bypass. Alveolar/arterial oxygen pressure gradients were calculated prior to induction of anesthesia while the patients were breathing room air, and repeated postoperatively during mechanical ventilation and after extubation while inspiring 3 specific fractions of oxygen. Results Baseline preoperative arterial blood gases and alveolar/arterial oxygen pressure gradients were similar in both groups. At both postoperative stages, the partial pressure of arterial oxygen and alveolar/arterial oxygen pressure gradients increased with increasing fraction of inspired oxygen, but there were no statistically significant differences between patients who underwent surgery with or without cardiopulmonary bypass, either during ventilation or after extubation. Conclusions Off-pump surgery is not associated with superior pulmonary gas exchange in the early postoperative period following routine coronary artery bypass grafting in patients with good left ventricular function and no preexisting lung disease.

  7. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  8. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    PubMed

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Atomic Oxygen Durability Evaluation of a UV Curable Ceramer Protective Coating

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Karniotis, Christina A.; Dworak, David; Soucek, Mark

    2004-01-01

    The exposure of most silicones to atomic oxygen in low Earth orbit (LEO) results in the oxidative loss of methyl groups with a gradual conversion to oxides of silicon. Typically there is surface shrinkage of oxidized silicone protective coatings which leads to cracking of the partially oxidized brittle surface. Such cracks widen and branch crack with continued atomic oxygen exposure ultimately allowing atomic oxygen to reach any hydrocarbon polymers under the silicone coating. A need exists for a paintable silicone coating that is free from such surface cracking and can be effectively used for protection of polymers and composites in LEO. A new type of silicone based protective coating holding such potential was evaluated for atomic oxygen durability in an RF atomic oxygen plasma exposure facility. The coating consisted of a UV curable inorganic/organic hybrid coating, known as a ceramer, which was fabricated using a methyl substituted polysiloxane binder and nanophase silicon-oxo-clusters derived from sol-gel precursors. The polysiloxane was functionalized with a cycloaliphatic epoxide in order to be cured at ambient temperature via a cationic UV induced curing mechanism. Alkoxy silane groups were also grafted onto the polysiloxane chain, through hydrosilation, in order to form a network with the incorporated silicon-oxo-clusters. The prepared polymer was characterized by H-1 and Si-29 NMR, FT-IR, and electrospray ionization mass spectroscopy. The paper will present the results of atomic oxygen protection ability of thin ceramer coatings on Kapton H as evaluated over a range of atomic oxygen fluence levels.

  10. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  11. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  12. Corneal and conjunctival sensory function: the impact on ocular surface sensitivity of change from low to high oxygen transmissibility contact lenses.

    PubMed

    Golebiowski, Blanka; Papas, Eric B; Stapleton, Fiona

    2012-03-09

    Deprivation of oxygen to the ocular surface during contact lens wear has been implicated in the alteration of sensory function. This study investigates whether increasing oxygen availability through discontinuation of contact lens wear or transfer into highly oxygen transmissible (high Dk/t) lenses leads to a change in corneal or conjunctival sensitivity. Twenty-seven long-term extended wearers of low Dk/t soft contact lenses ceased lens wear for 1 week and were refitted with high Dk/t silicone hydrogel lenses. A control group of 25 nonwearers matched for age and sex was also recruited. Central corneal and inferior conjunctival sensitivity were measured using an air-jet aesthesiometer. Threshold was determined using a staircase technique. Measurements were taken during low Dk/t lens wear; after 1 week of no wear; and after 1, 3, 6, and 12 months of high Dk/t lens wear. Measurements were carried out on one occasion on the nonwearers. Corneal sensitivity decreased 1 week after discontinuation of low Dk/t lenses and no further change in sensitivity occurred with high Dk/t lens wear. Conjunctival sensitivity did not change over the same time frame. Ocular surface sensitivity in long-term low Dk/t soft lens wearers was similar to that of nonwearers. Sensitivity was higher in females than males in the nonwearers, but not in the lens-wearing group. An interaction of sex on change in conjunctival threshold was found in the lens wearers. These findings indicate that factors other than oxygen availability alone determine sensitivity of the ocular surface. Silicone hydrogel contact lenses appear to have only a minor impact on ocular surface sensitivity in previous lens wearers.

  13. Efficacy of N-Butylphthalide and Hyperbaric Oxygen Therapy on Cognitive Dysfunction in Patients with Delayed Encephalopathy After Acute Carbon Monoxide Poisoning.

    PubMed

    Xiang, Wenping; Xue, Hui; Wang, Baojun; Li, Yuechun; Zhang, Jun; Jiang, Changchun; Pang, Jiangxia

    2017-03-29

    BACKGROUND Delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) is one of the most serious complications after CO poisoning. This study was conducted to explore the efficacy of the combined application of N-Butylphthalide and hyperbaric oxygenation therapy (HBO) on cognitive dysfunction in patients with DEACMP. MATERIAL AND METHODS A total of 184 patients with DEACMP were randomly assigned to either receive HBO or N-Butylphthalide and HBO. Meanwhile, all patients received conventional treatment. The total remission rate (RR) was used to assess the clinical efficacy. The Mini-Mental State Examination (MMSE) was used to assess the cognitive function, and the National Institutes of Health Stroke Scale (NIHSS) was used to assess the neurological function. RESULTS Finally, there were 90 and 94 patients in the control and experimental groups, respectively. After eight weeks of treatment, the total RR in the experimental group (47.9%) was significantly higher than that in the control group (33.3%). Compared to the control group, significantly more patients in the experimental group had MMSE scores of 24-30. The lower NIHSS score in the experimental group showed that N-Butylphthalide had the effect of preservation and restoration of neurological function. No obvious drug toxicity or liver and kidney dysfunction was observed, and there was no significant change in the level of blood glucose and blood lipids. CONCLUSIONS These results indicated that the combined application of N-Butylphthalide and HBO could significantly improve the cognitive dysfunction of patients with DEACMP and have great clinical efficacy, which should be further studied.

  14. Exercise Increases Markers of Spermatogenesis in Rats Selectively Bred for Low Running Capacity.

    PubMed

    Torma, Ferenc; Koltai, Erika; Nagy, Enikő; Ziaaldini, Mohammad Mosaferi; Posa, Aniko; Koch, Lauren G; Britton, Steven L; Boldogh, Istvan; Radak, Zsolt

    2014-01-01

    The oxidative stress effect of exercise training on testis function is under debate. In the present study we used a unique rat model system developed by artificial selection for low and high intrinsic running capacity (LCR and HCR, respectively) to evaluate the effects of exercise training on apoptosis and spermatogenesis in testis. Twenty-four 13-month-old male rats were assigned to four groups: control LCR (LCR-C), trained LCR (LCR-T), control HCR (HCR-C), and trained HCR (HCR-T). Ten key proteins connecting aerobic exercise capacity and general testes function were assessed, including those that are vital for mitochondrial biogenesis. The VO2 max of LCR-C group was about 30% lower than that of HCR-C rats, and the SIRT1 levels were also significantly lower than HCR-C. Twelve weeks of training significantly increased maximal oxygen consumption in LCR by nearly 40% whereas HCR remained unchanged. LCR-T had significantly higher levels of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1α), decreased levels of reactive oxygen species and increased acetylated p53 compared to LCR-C, while training produced no significant changes for these measures in HCR rats. BAX and Blc-2 were not different among all four groups. The levels of outer dense fibers -1 (Odf-1), a marker of spermatogenesis, increased in LCR-T rats, but decreased in HCR-TR rats. Moreover, exercise training increased the levels of lactate dehydrogenase C (LDHC) only in LCR rats. These data suggest that rats with low inborn exercise capacity can increase whole body oxygen consumption and running exercise capacity with endurance training and, in turn, increase spermatogenesis function via reduction in ROS and heightened activity of p53 in testes.

  15. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  16. Central adaptations in aerobic circuit versus walking/jogging trained cardiac patients.

    PubMed

    Goodman, L S; McKenzie, D C; Nath, C R; Schamberger, W; Taunton, J E; Ammann, W C

    1995-06-01

    This study was done to determine (a) whether in coronary artery disease (CAD) left ventricular (LV) adaptations differed after 6 months of walking/jogging (legs-only, LO) versus aerobic circuit training (arms and legs, AL) versus a control group, and (b) whether a transfer of fitness to the untrained arms in the LO group was related to superior LV adaptations. Peak oxygen uptake for arm and leg ergometry and for cycle ergometry using radionuclide cardiac angiography were performed before and after training. Leg and arm VO2peak increased significantly by 13% in the AL group, and by 13% and 7%, respectively, for the LO group. LV function was greater after training for the LO versus the AL group. Improvements in systolic and diastolic function and a speculated hypervolemia explain these LV adaptations. In CAD patients, walking/jogging produces greater LV function improvements versus circuit training, possibly due to differences in the exercised muscle mass.

  17. DFT-based ab initio MD simulation of the ionic conduction in doped ZrO₂ systems under epitaxial strain.

    PubMed

    Oka, M; Kamisaka, H; Fukumura, T; Hasegawa, T

    2015-11-21

    The oxygen ionic conduction in ZrO2 systems under tensile epitaxial strain was investigated by performing ab initio molecular dynamics (MD) calculations based on density functional theory (DFT) to elucidate the essential factors in the colossal ionic conductivity observed in the yttria stabilized ZrO2 (YSZ)/SrTiO3 heterostructure. Three factors were evaluated: lattice strain, oxygen vacancies, and dopants. Phonon calculations based on density functional perturbation theory (DFPT) were used to obtain the most stable structure for nondoped ZrO2 under 7% tensile strain along the a- and b-axes. This structure has the space group Pbcn, which is entirely different from that of cubic ZrO2, suggesting that previous ab initio MD calculations assuming cubic ZrO2 may have overestimated the ionic conductivity due to relaxation from the initial structure to the stable structure (Pbcn). Our MD calculations revealed that the ionic conductivity is enhanced only when tensile strain and oxygen vacancies are incorporated, although the presently obtained diffusion constant is far below the range for the colossal ionic conduction experimentally observed. The enhanced ionic conductivity is due to the combined effects of oxygen sublattice formation induced by strain and deformation of this sublattice by oxygen vacancies.

  18. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions

    PubMed Central

    Yoshioka, Miki; Fukazawa, Aya; Nishizawa, Naoko K.

    2017-01-01

    Reactive oxygen species (ROS) produced by the NADPH oxidase, respiratory burst oxidase homolog (RBOH), trigger signal transduction in diverse biological processes in plants. However, the functions of RBOH homologs in rice (Oryza sativa) and other gramineous plants are poorly understood. Ethylene induces the formation of lysigenous aerenchyma, which consists of internal gas spaces created by programmed cell death of cortical cells, in roots of gramineous plants under oxygen-deficient conditions. Here, we report that, in rice, one RBOH isoform (RBOHH) has a role in ethylene-induced aerenchyma formation in roots. Induction of RBOHH expression under oxygen-deficient conditions was greater in cortical cells than in cells of other root tissues. In addition, genes encoding group I calcium-dependent protein kinases (CDPK5 and CDPK13) were strongly expressed in root cortical cells. Coexpression of RBOHH with CDPK5 or CDPK13 induced ROS production in Nicotiana benthamiana leaves. Inhibitors of RBOH activity or cytosolic calcium influx suppressed ethylene-induced aerenchyma formation. Moreover, knockout of RBOHH by CRISPR/Cas9 reduced ROS accumulation and inducible aerenchyma formation in rice roots. These results suggest that RBOHH-mediated ROS production, which is stimulated by CDPK5 and/or CDPK13, is essential for ethylene-induced aerenchyma formation in rice roots under oxygen-deficient conditions. PMID:28351990

  19. Intermittent Oxygen Inhalation with Proper Frequency Improves Overall Health Conditions and Alleviates Symptoms in a Population at High Risk of Chronic Mountain Sickness with Severe Symptoms

    PubMed Central

    Feng, Bin; Xu, Wei-Hao; Gao, Yu-Qi; Liu, Fu-Yu; Li, Peng; Zheng, Shan-Jun; Gai, Lu-Yue; Zhang, Gang

    2016-01-01

    Background: Oxygen inhalation therapy is essential for the treatment of patients with chronic mountain sickness (CMS), but the efficacy of oxygen inhalation for populations at high risk of CMS remains unknown. This research investigated whether oxygen inhalation therapy benefits populations at high risk of CMS. Methods: A total of 296 local residents living at an altitude of 3658 m were included; of which these were 25 diagnosed cases of CMS, 8 cases dropped out of the study, and 263 cases were included in the analysis. The subjects were divided into high-risk (180 ≤ hemoglobin (Hb) <210 g/L, n = 161) and low-risk (Hb <180 g/L, n = 102) groups, and the cases in each group were divided into severe symptom (CMS score ≥6) and mild symptom (CMS score 0-5) subgroups. Severe symptomatic population of either high- or low-risk CMS was randomly assigned to no oxygen intake group (A group) or oxygen intake 7 times/week group (D group); mild symptomatic population of either high- or low-risk CMS was randomly assigned to no oxygen intake group (A group), oxygen intake 2 times/week group (B group), and 4 times/week group (C group). The courses for oxygen intake were all 30 days. The CMS symptoms, sleep quality, physiological biomarkers, biochemical markers, etc., were recorded on the day before oxygen intake, on the 15th and 30th days of oxygen intake, and on the 15th day after terminating oxygen intake therapy. Results: A total of 263 residents were finally included in the analysis. Among these high-altitude residents, CMS symptom scores decreased for oxygen inhalation methods B, C, and D at 15 and 30 days after oxygen intake and 15 days after termination, including dyspnea, palpitation, and headache index, compared to those before oxygen intake (B group: Z = 5.604, 5.092, 5.741; C group: Z = 4.155, 4.068, 4.809; D group: Z = 6.021, 6.196, 5.331, at the 3 time points respectively; all P < 0.05/3 vs. before intake). However, dyspnea/palpitation (A group: Z = 5.003, 5.428, 5.493, both P < 0.05/3 vs. before intake) and headache (A group: Z = 4.263, 3.890, 4.040, both P < 0.05/3 vs. before intake) index decreased significantly also for oxygen inhalation method A at all the 3 time points. Cyanosis index decreased significantly 30 days after oxygen intake only in the group of participants administered the D method (Z = 2.701, P = 0.007). Tinnitus index decreased significantly in group A and D at 15 days (A group: Z = 3.377, P = 0.001, D group: Z = 3.150, P = 0.002), 30 days after oxygen intake (A group: Z = 2.836, P = 0.005, D group: Z = 5.963, P < 0.0001) and 15 days after termination (A group: Z = 2.734, P = 0.006, D group: Z = 4.049, P = 0.0001), and decreased significantly in the group B and C at 15 days after termination (B group: Z = 2.611, P = 0.009; C group: Z = 3.302, P = 0.001). In the population at high risk of CMS with severe symptoms, oxygen intake 7 times/week significantly improved total symptom scores of severe symptoms at 15 days (4 [2, 5] vs. 5.5 [4, 7], Z = 2.890, P = 0.005) and 30 days (3 [1, 5] vs. 5.5 [2, 7], Z = 3.270, P = 0.001) after oxygen intake compared to no oxygen intake. In the population at high risk of CMS with mild symptoms, compared to no oxygen intake, oxygen intake 2 or 4 times/week did not improve the total symptom scores at 15 days (2 [1, 3], 3 [1, 4] vs. 3 [1.5, 5]; χ2= 2.490, P = 0.288), and at 30 days (2 [0, 4], 2 [1, 4.5] vs. 3 [2, 5]; χ2= 3.730, P = 0.155) after oxygen intake. In the population at low risk of CMS, oxygen intake did not significantly change the white cell count and red cell count compared to no oxygen intake, neither in the severe symptomatic population nor in the mild symptomatic population. Conclusions: Intermittent oxygen inhalation with proper frequency might alleviate symptoms in residents at high altitude by improving their overall health conditions. Administration of oxygen inhalation therapy 2–4 times/week might not benefit populations at high risk of CMS with mild CMS symptoms while administration of therapy 7 times/week might benefit those with severe symptoms. Oxygen inhalation therapy is not recommended for low-risk CMS populations. PMID:27231170

  20. Assessment of oxygen supplementation during air travel.

    PubMed Central

    Cramer, D.; Ward, S.; Geddes, D.

    1996-01-01

    BACKGROUND: The aim of this study was to simulate an in flight environment at sea level with a fractional inspired concentration of oxygen (FiO2) of 0.15 to determine how much supplemental oxygen was needed to restore a subject's oxygen saturation (SaO2) to 90% or to the level previously attained when breathing room air (FiO2 of 0.21). METHODS: Three groups were selected with normal, obstructive, and restrictive lung function. Using a sealed body plethysmograph an environment with an FiO2 of 0.15 was created and mass spectrometry was used to monitor the FiO2. Supplemental oxygen was administered to the patient by nasal cannulae. SaO2 was continuously monitored and recorded at an FiO2 of 0.21, 0.15, and 0.15 + supplemental oxygen. RESULTS: When given 2 l/m of supplemental oxygen all patients in the 15% environment returned to a similar SaO2 value as that obtained using the 21% oxygen environment. One patient with airways obstruction needed 3 l/m of supplemental oxygen to raise his SaO2 above 90%. CONCLUSIONS: This technique, which simulates an aircraft environment, enables an accurate assessment to be made of supplemental oxygen requirements. PMID:8711658

  1. Limited effects of micronutrient supplementation on strength and physical function after abdominal aortic aneurysmectomy.

    PubMed

    Watters, James M; Vallerand, Andrew; Kirkpatrick, Susan M; Abbott, Heather E; Norris, Sonya; Wells, George; Barber, Graeme G

    2002-08-01

    Tissue injury following ischemia-reperfusion is mediated in part by free oxygen radicals. We hypothesized that perioperative micronutrient supplementation would augment antioxidant defenses, minimize muscle injury, and minimize postoperative decreases in muscle strength and physical function following abdominal aortic aneurysmectomy. A university-affiliated hospital and regional referral center. A randomized, double-blind, placebo-controlled trial of supplementation with beta-carotene, vitamins C and E, zinc, and selenium for a period of 2-3 weeks prior to surgery and 1 week thereafter. Patients undergoing elective abdominal aortic aneurysmectomy (n=18 per group). Handgrip and other measures of strength and physical function. Handgrip and quadriceps strength decreased following surgery, but not to a significantly different extent in the placebo and supplemented groups. Self-rated physical function decreased following surgery in the placebo group and was preserved in the supplemented group. Perioperative supplementation with micronutrients with antioxidant properties has limited effects on strength and physical function following major elective surgery.

  2. The efficacy and safety of whole-body electromyostimulation in applying to human body: based from graded exercise test.

    PubMed

    Jee, Yong-Seok

    2018-02-01

    Recently, whole body-electromyostimulation (WB-EMS) has upgraded its functions and capabilities and has overcome limitations and inconveniences from past systems. Although the efficacy and safety of EMS have been examined in some studies, specific guidelines for applying WB-EMS are lacking. To determine the efficacy and safety of applying it in healthy men to improve cardiopulmonary and psychophysiological variables when applying WB-EMS. Sixty-four participants were randomly grouped into control group (without electrical stimuli) or WB-EMS group after a 6-week baseline period. The control group (n=33; female. 15; male, 18) wore the WB-EMS suit as much as the WB-EMS group (n=31; female, 15; male, 16). There were no abnormal changes in the cardiopulmonary variables (heart rate, systolic blood pressure [SBP], diastolic blood pressure, and oxygen uptake) during or after the graded exercise test (GXT) in both groups. There was a significant decrease in SBP and an increase of oxygen uptake from stages 3 to 5 of the GXT in the WB-EMS group. The psychophysiological factors for a WB-EMS group, which consisted of soreness, anxiety, fatigability, and sleeplessness were significantly decreased after the experiment. The application of WB-EMS in healthy young men did not negatively affect the cardiopulmonary and psychophysiological factors. Rather, the application of WB-EMS improved SBP and oxygen uptake in submaximal and maximal stages of GXT. This study also confirmed that 6 weeks of WB-EMS training can improve psychophysiological factors.

  3. Short-term effects of stored homologous red blood cell transfusion on cardiorespiratory function and inflammation: an experimental study in a hypovolemia model

    PubMed Central

    Biagini, S.; Dale, C.S.; Real, J.M.; Moreira, E.S.; Carvalho, C.R.R.; Schettino, G.P.P.; Wendel, S.; Azevedo, L.C.P.

    2017-01-01

    The pathophysiological mechanisms associated with the effects of red blood cell (RBC) transfusion on cardiopulmonary function and inflammation are unclear. We developed an experimental model of homologous 14-days stored RBC transfusion in hypovolemic swine to evaluate the short-term effects of transfusion on cardiopulmonary system and inflammation. Sixteen healthy male anesthetized swine (68±3.3 kg) were submitted to controlled hemorrhage (25% of blood volume). Two units of non-filtered RBC from each animal were stored under blood bank conditions for 14 days. After 30 min of hypovolemia, the control group (n=8) received an infusion of lactated Ringer's solution (three times the removed volume). The transfusion group (n=8) received two units of homologous 14-days stored RBC and lactated Ringer's solution in a volume that was three times the difference between blood removed and blood transfusion infused. Both groups were followed up for 6 h after resuscitation with collection of hemodynamic and respiratory data. Cytokines and RNA expression were measured in plasma and lung tissue. Stored RBC transfusion significantly increased mixed oxygen venous saturation and arterial oxygen content. Transfusion was not associated with alterations on pulmonary function. Pulmonary concentrations of cytokines were not different between groups. Gene expression for lung cytokines demonstrated a 2-fold increase in mRNA level for inducible nitric oxide synthase and a 0.5-fold decrease in mRNA content for IL-21 in the transfused group. Thus, stored homologous RBC transfusion in a hypovolemia model improved cardiovascular parameters but did not induce significant effects on microcirculation, pulmonary inflammation and respiratory function up to 6 h after transfusion. PMID:29185590

  4. Formation of Supported Graphene Oxide: Evidence for Enolate Species.

    PubMed

    Novotny, Zbynek; Nguyen, Manh-Thuong; Netzer, Falko P; Glezakou, Vassiliki-Alexandra; Rousseau, Roger; Dohnálek, Zdenek

    2018-04-18

    Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the atomic oxygen (AO) binding and mobility on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites. We employ scanning tunneling microscopy and density functional theory to map out the chemical identity and stability of prepared AO functionalities in different Gr regions. The AO diffusion is utilized to establish that in the regions that are close to the metal substrate the terminally bonded enolate groups are strongly preferred over bridge-bonded epoxy groups. No oxygen species are observed on the graphene regions that are far from the underlying Ru, indicating their low relative stability. This study provides a clear fundamental basis for understanding the local structural, electronic factors and C-Ru bond strengthening/weakening processes that affect the stability of enolate and epoxy species.

  5. Fabrication of hierarchical core-shell polydopamine@MgAl-LDHs composites for the efficient enrichment of radionuclides

    NASA Astrophysics Data System (ADS)

    Zhu, Kairuo; Lu, Songhua; Gao, Yang; Zhang, Rui; Tan, Xiaoli; Chen, Changlun

    2017-02-01

    Novel hierarchical core/shell structured polydopamine@MgAl-layered double hydroxides (PDA@MgAl-LDHs) composites involving MgAl-layered double hydroxide shells and PDA cores were fabricated thought one-pot coprecipitation assembly and methodically characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, scanning/transmission electron microscopy, selected area electron diffraction, elemental mapping, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. U(VI) and Eu(III) sorption experiments showed that the PDA@MgAl-LDHs exhibited higher sorption ability with a maximum sorption capacity of 142.86 and 76.02 mg/g at 298 K and pH 4.5, respectively. More importantly, according to XPS analyses, U(VI) and Eu(III) were sorbed on PDA@MgAl-LDHs via oxygen-containing functional groups, and the chemical affinity of U(VI) by oxygen-containing functional groups is higher than that of Eu(III). These observations show great expectations in the enrichment of radionuclides from aquatic environments by PDA@MgAl-LDHs.

  6. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.

    PubMed

    Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang

    2015-01-01

    Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effect of 50% compared to 100% inspired oxygen fraction on brain oxygenation and post cardiac arrest mitochondrial function in experimental cardiac arrest.

    PubMed

    Nelskylä, Annika; Nurmi, Jouni; Jousi, Milla; Schramko, Alexey; Mervaala, Eero; Ristagno, Giuseppe; Skrifvars, Markus B

    2017-07-01

    We hypothesised that the use of 50% compared to 100% oxygen maintains cerebral oxygenation and ameliorates the disturbance of cardiac mitochondrial respiration during cardiopulmonary resuscitation (CPR). Ventricular fibrillation (VF) was induced electrically in anaesthetised healthy adult pigs and left untreated for seven minutes followed by randomisation to manual ventilation with 50% or 100% oxygen and mechanical chest compressions (LUCAS ® ). Defibrillation was performed at thirteen minutes and repeated if necessary every two minutes with 1mg intravenous adrenaline. Cerebral oxygenation was measured with near-infrared spectroscopy (rSO 2 , INVOS™5100C Cerebral Oximeter) and with a probe (NEUROVENT-PTO, RAUMEDIC) in the frontal brain cortex (PbO 2 ). Heart biopsies were obtained 20min after the return of spontaneous circulation (ROSC) with an analysis of mitochondrial respiration (OROBOROS Instruments Corp., Innsbruck, Austria), and compared to four control animals without VF and CPR. Brain rSO 2 and PbO 2 were log transformed and analysed with a mixed linear model and mitochondrial respiration with an analysis of variance. Of the twenty pigs, one had a breach of protocol and was excluded, leaving nine pigs in the 50% group and ten in the 100% group. Return of spontaneous circulation (ROSC) was achieved in six pigs in the 50% group and eight in the 100% group. The rSO 2 (p=0.007) was lower with FiO 2 50%, but the PbO 2 was not (p=0.93). After ROSC there were significant interactions between time and FiO 2 regarding both rSO 2 (p=0.001) and PbO 2 (p=0.004). Compared to the controls, mitochondrial respiration was decreased, with adenosine diphosphate (ADP) levels of 57 (17)pmols -1 mg -1 compared to 92 (23)pmols -1 mg -1 (p=0.008), but there was no difference between different oxygen fractions (p=0.79). The use of 50% oxygen during CPR results in lower cerebral oximetry values compared to 100% oxygen but there is no difference in brain tissue oxygen. Cardiac arrest disturbs cardiac mitochondrial respiration, but it is not alleviated with the use of 50% compared to 100% oxygen (Ethical and hospital approvals ESAVI/1077/04.10.07/2016 and HUS/215/2016, §7 30.3.2016, Funding Helsinki University and others). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holby, Edward F.; Zelenay, Piotr

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by thesemore » materials.« less

  9. Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts

    DOE PAGES

    Holby, Edward F.; Zelenay, Piotr

    2016-05-17

    Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. We found that quantum chemical modeling is a path forward for understanding of these materials and how they catalyze the ORR. Here, we demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by thesemore » materials.« less

  10. Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC.

    PubMed

    Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi

    2017-11-08

    The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.

  11. Benthic Marine Cyanobacterial Mat Ecosystems: Biogeochemistry and Biomarkers

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Cyanobacterial mats are complete ecosystems that can include processes of primary production, diagenesis and lithification. Light sustains oxygenic photosynthesis, which in turn provides energy, organic matter and oxygen to the community. Due to both absorption and scattering phenomena, incident light is transformed with depth in the mat, both in intensity and spectral composition. Mobile photo synthesizers optimize their position with respect to this light gradient. When photosynthesis ceases at night, the upper layers of the mat become reduced and sulfidic. Counteracting gradients of oxygen and sulfide combine to provide daily-contrasting environments separated on a scale of a few mm. The functional complexity of mats, coupled with the highly proximal and ordered spatial arrangement of biota, offers the potential for a staggering number of interactions. At a minimum, the products of each functional group of microorganisms affect the other groups both positively and negatively. For example, cyanobacteria generate organic matter (potential substrates) but also oxygen (a toxin for many anaerobes). Anaerobic activity recycles nutrients to the photosynthesizers but also generates potentially toxic sulfide. The combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods, and to various depths in the mat. Observations of mats have produced numerous surprises. For example, obligately anaerobic processes can occur in the presence of abundant oxygen, highly reduced gases are produced in the presence of abundant sulfate, meiofauna thrive at high sulfide concentrations, and the mats' constituent populations respond to environmental changes in complex ways. While photosynthetic bacteria dominate the biomass and productivity of the mat, nonphotosynthetic, anaerobic processes constitute the ultimate biological filter on the ecosystem's emergent biosignatures, including those sedimentary textures, organic compounds, and minerals that enter the fossil record. The ability of cyanobacterial mats to channel abundant solar energy into the creation and maintenance of complex structures and processes has created a multitude of consequences, both for sedimentation and for the early evolution of our biosphere.

  12. Conformation-dependent chemical reaction of formic acid with an oxygen atom.

    PubMed

    Khriachtchev, Leonid; Domanskaya, Alexandra; Marushkevich, Kseniya; Räsänen, Markku; Grigorenko, Bella; Ermilov, Alexander; Andrijchenko, Natalya; Nemukhin, Alexander

    2009-07-23

    Conformation dictates many physical and chemical properties of molecules. The importance of conformation in the selectivity and function of biologically active molecules is widely accepted. However, clear examples of conformation-dependent bimolecular chemical reactions are lacking. Here we consider a case of formic acid (HCOOH) that is a valuable model system containing the -COOH carboxyl functional group, similar to many biomolecules including the standard amino acids. We have found a strong case of conformation-dependent reaction between formic acid and atomic oxygen obtained in cryogenic matrices. The reaction surprisingly leads to peroxyformic acid only from the ground-state trans conformer of formic acid, and it results in the hydrogen-bonded complex for the higher-energy cis conformer.

  13. Effect of free radical scavenger, edaravone, for patients with carbon monoxide poisoning.

    PubMed

    Mori, Kiyofumi; Beppu, Takaaki; Fujisawa, Yutaka; Onodera, Makoto; Ogasawara, Kuniaki; Sasaki, Makoto; Ehara, Shigeru; Sakai, Akio; Endo, Shigeatsu

    2015-12-01

    Chronic neurological symptoms after carbon monoxide (CO) poisoning are caused by various biological processes in the damaged brain, with free radicals playing roles as mediators in establishing pathological processes leading to chronic neurological symptoms under CO poisoning. This study aimed to clarify the effects of a free radical scavenger, edaravone, in patients with CO poisoning. We retrospectively compared two groups comprising patients treated with hyperbaric oxygenation alone (Group A, n=25) or edaravone in addition to hyperbaric oxygenation (Group B, n=25). Edaravone was administrated intravenously at 30 mg every 12h for 7 days. Patient characteristics, general conditions on admission, and frequency of chronic neurological symptoms were compared between groups. Among patients showing chronic neurological symptoms, cognitive function and daily activity were also compared between groups. No significant differences in characteristics or general conditions on admission were identified between groups. In Group B, no patients presented with marked complications caused by edaravone. Although chronic persisting symptoms were less frequent in Group B (n=1, 0.04%) than in Group A (n=5, 20%), this difference was not significant. In the 11 patients showing chronic symptoms, scores for cognitive function and daily activity in the chronic phase were better in Group B than in Group A, but no significant differences were apparent. The present results suggest that edaravone represents a tolerable and feasible treatment for CO-poisoned patients. Further studies are needed to clarify whether edaravone can favorably influence chronic neurological symptoms caused by CO poisoning. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Safety in the use of compressed air versus oxygen for the ophthalmic patient.

    PubMed

    Rodgers, Laura A; Kulwicki, Anahid

    2002-02-01

    Oxygen, routinely administered during surgery to avoid hypoxia, poses risks including increased likelihood of surgical room fires and predisposition to retinal phototoxicity in patients. Compressed air to supplement ventilation may be safer than oxygen. The purpose of this study was to determine whether hypoxia occurs more frequently when compressed air replaces supplemental oxygen during ophthalmic surgery. A convenience sample of 111 patients was randomly assigned to receive supplemental oxygen (group 1) or compressed air (group 2). Patients with serious cardiac or pulmonary disease were excluded. Blood oxygen levels were monitored during surgery by pulse oximetry. Oxygen was administered to all group 2 patients whose oxygen saturation fell to less than 90% or by more than 5% below baseline. No differences were observed between groups in age, ASA classification, type of surgery, or anesthetic drugs or doses. Minor, but statistically higher oxygen values were observed in group 1. The frequency with which oxygen saturation decreased below 90% or below 5% of baseline was similar in both groups. Supplemental oxygen is not required routinely in selected patients undergoing ophthalmic surgery. By using compressed air, the risk of operating room fires and retinal phototoxicity may be reduced.

  15. Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumatic Brain Injury - Randomized Prospective Trial

    PubMed Central

    Fishlev, Gregori; Bechor, Yair; Volkov, Olga; Bergan, Jacob; Friedman, Mony; Hoofien, Dan; Shlamkovitch, Nathan; Ben-Jacob, Eshel; Efrati, Shai

    2013-01-01

    Background Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. Methods and Findings The trial population included 56 mTBI patients 1–5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. “Mindstreams” was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. Conclusions HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. Trial Registration ClinicalTrials.gov NCT00715052 PMID:24260334

  16. [Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change].

    PubMed

    Dong, Qing; Li, Xia; Wan, Yungao; Lu, Gaoquan; Wang, Xinxin; Zhang, Kuan

    2016-02-01

    By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n = 24, (44.6 ± 9.0) years] and subjects with cardiovascular diseases [group B, n = 33, (57.2 ± 9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function.

  17. Hyperbaric treatment for children with autism: a multicenter, randomized, double-blind, controlled trial

    PubMed Central

    Rossignol, Daniel A; Rossignol, Lanier W; Smith, Scott; Schneider, Cindy; Logerquist, Sally; Usman, Anju; Neubrander, Jim; Madren, Eric M; Hintz, Gregg; Grushkin, Barry; Mumper, Elizabeth A

    2009-01-01

    Background Several uncontrolled studies of hyperbaric treatment in children with autism have reported clinical improvements; however, this treatment has not been evaluated to date with a controlled study. We performed a multicenter, randomized, double-blind, controlled trial to assess the efficacy of hyperbaric treatment in children with autism. Methods 62 children with autism recruited from 6 centers, ages 2–7 years (mean 4.92 ± 1.21), were randomly assigned to 40 hourly treatments of either hyperbaric treatment at 1.3 atmosphere (atm) and 24% oxygen ("treatment group", n = 33) or slightly pressurized room air at 1.03 atm and 21% oxygen ("control group", n = 29). Outcome measures included Clinical Global Impression (CGI) scale, Aberrant Behavior Checklist (ABC), and Autism Treatment Evaluation Checklist (ATEC). Results After 40 sessions, mean physician CGI scores significantly improved in the treatment group compared to controls in overall functioning (p = 0.0008), receptive language (p < 0.0001), social interaction (p = 0.0473), and eye contact (p = 0.0102); 9/30 children (30%) in the treatment group were rated as "very much improved" or "much improved" compared to 2/26 (8%) of controls (p = 0.0471); 24/30 (80%) in the treatment group improved compared to 10/26 (38%) of controls (p = 0.0024). Mean parental CGI scores significantly improved in the treatment group compared to controls in overall functioning (p = 0.0336), receptive language (p = 0.0168), and eye contact (p = 0.0322). On the ABC, significant improvements were observed in the treatment group in total score, irritability, stereotypy, hyperactivity, and speech (p < 0.03 for each), but not in the control group. In the treatment group compared to the control group, mean changes on the ABC total score and subscales were similar except a greater number of children improved in irritability (p = 0.0311). On the ATEC, sensory/cognitive awareness significantly improved (p = 0.0367) in the treatment group compared to the control group. Post-hoc analysis indicated that children over age 5 and children with lower initial autism severity had the most robust improvements. Hyperbaric treatment was safe and well-tolerated. Conclusion Children with autism who received hyperbaric treatment at 1.3 atm and 24% oxygen for 40 hourly sessions had significant improvements in overall functioning, receptive language, social interaction, eye contact, and sensory/cognitive awareness compared to children who received slightly pressurized room air. Trial Registration clinicaltrials.gov NCT00335790 PMID:19284641

  18. Co-regulation of Primary Mouse Hepatocyte Viability and Function by Oxygen and Matrix

    PubMed Central

    Buck, Lorenna D.; Inman, S. Walker; Rusyn, Ivan; Griffith, Linda G.

    2014-01-01

    Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed 2 methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. PMID:24222008

  19. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.

    Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Groupmore » 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.« less

  20. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    PubMed

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  1. Oxygen concentrators performance with nitrous oxide at 50:50 volume.

    PubMed

    Moll, Jorge Ronaldo; Vieira, Joaquim Edson; Gozzani, Judymara Lauzi; Mathias, Lígia Andrade Silva Telles

    2014-01-01

    Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293) or of oxygen from concentrators and nitrous oxide (O293N2O). The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p<0.001) for O293 group while a significant decline (p<0.001) for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments.

    PubMed

    Larson, B J; Gillmor, S D; Braun, J M; Cruz-Barba, L E; Savage, D E; Denes, F S; Lagally, M G

    2013-10-22

    Poly(dimethylsiloxane), PDMS, a versatile elastomer, is the polymer of choice for microfluidic systems. It is inexpensive, relatively easy to pattern, and permeable to oxygen. Unmodified PDMS is highly hydrophobic. It is typically exposed to an oxygen plasma to reduce this hydrophobicity. Unfortunately, the PDMS surface soon returns to its original hydrophobic state. We present two alternative plasma treatments that yield long-term modification of the wetting properties of a PDMS surface. An oxygen plasma pretreatment followed by exposure to a SiCl4 plasma and an oxygen-CCl4 mixture plasma both cause a permanent reduction in the hydrophobicity of the PDMS surface. We investigate the properties of the plasma-treated surfaces with X-ray photoelectron spectroscopy (XPS) and contact angle measurements. We propose that the plasma treated PDMS surface is a dynamic mosaic of high- and low-contact-angle functionalities. The SiCl4 and CCl4 plasmas attach polar groups that block coverage of the surface by low-molecular-weight groups that exist in PDMS. We describe an application that benefits from these new plasma treatments, the use of a PDMS stencil to form dense arrays of DNA on a surface.

  3. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.

    PubMed

    Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P

    2008-04-15

    As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.

  4. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG)

    PubMed Central

    Yazdannik, Ahmadreza; Bollbanabad, Hiva Mohammadi; Mirmohammadsadeghi, Mohsen; Khalifezade, Asghar

    2016-01-01

    Background: After coronary artery bypass surgery, pulmonary complications and oxygenation disorders are common, which have an important role in mortality and morbidity. Different methods are used for the improvement of pulmonary function and oxygenation, of which incentive spirometry (IS) has been investigated here. The aim of this study is to evaluate the effects of IS on arterial blood gases after coronary artery bypass graft (CABG). Materials and Methods: This was a clinical trial. Fifty patients who were candidates for CABG were chosen. The patients had been allocated to two random groups of intervention and control. The intervention was done through IS. These two groups were compared for the arterial blood gases’ preoperative level, and the levels on first (after extubation), second, and third postoperative days. Results: The study findings showed that on the third postoperative day, there was a significant difference between the intervention and control groups in the mean amount of arterial blood oxygen (82.3 ± 4.7 vs. 72.7 ± 7.1, respectively, P = 0.02), arterial blood carbon dioxide (36.8 ± 2 vs. 43.7 ± 3.2, respectively, P = 0.007), and oxygen saturation (96.8 ± 1.4 vs. 90.5 ± 1.4, respectively, P = 0.03). Conclusions: This investigation shows that using IS is significantly effective in the improvement of blood arterial gas parameters. PMID:26985228

  5. The effect of incentive spirometry on arterial blood gases after coronary artery bypass surgery (CABG).

    PubMed

    Yazdannik, Ahmadreza; Bollbanabad, Hiva Mohammadi; Mirmohammadsadeghi, Mohsen; Khalifezade, Asghar

    2016-01-01

    After coronary artery bypass surgery, pulmonary complications and oxygenation disorders are common, which have an important role in mortality and morbidity. Different methods are used for the improvement of pulmonary function and oxygenation, of which incentive spirometry (IS) has been investigated here. The aim of this study is to evaluate the effects of IS on arterial blood gases after coronary artery bypass graft (CABG). This was a clinical trial. Fifty patients who were candidates for CABG were chosen. The patients had been allocated to two random groups of intervention and control. The intervention was done through IS. These two groups were compared for the arterial blood gases' preoperative level, and the levels on first (after extubation), second, and third postoperative days. The study findings showed that on the third postoperative day, there was a significant difference between the intervention and control groups in the mean amount of arterial blood oxygen (82.3 ± 4.7 vs. 72.7 ± 7.1, respectively, P = 0.02), arterial blood carbon dioxide (36.8 ± 2 vs. 43.7 ± 3.2, respectively, P = 0.007), and oxygen saturation (96.8 ± 1.4 vs. 90.5 ± 1.4, respectively, P = 0.03). This investigation shows that using IS is significantly effective in the improvement of blood arterial gas parameters.

  6. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.

    PubMed

    Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang

    2014-05-01

    A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel.

    PubMed

    Esfandbod, Maryam; Merritt, Christopher R; Rashti, Mehran Rezaei; Singh, Balwant; Boyd, Sue E; Srivastava, Prashant; Brown, Christopher L; Butler, Orpheus M; Kookana, Rai S; Chen, Chengrong

    2017-01-01

    Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu 2+ ) and nickel (Ni 2+ ) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu 2+ (∼11 times) and Ni 2+ (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) 13 C NMR spectroscopies showed that forest fire chars have higher woody components (aromatic functional groups) and lower polar groups (e.g. O-alkyl C) compared with the pyrolytic chars. The polarity index was greater in the pyrolytic chars (0.99-1.34) than in the fire-generated chars (0.98-1.15), while aromaticity was lower in the former than in the latter. Fourier transform infrared (FTIR) and Raman spectroscopies indicated the binding of carbonate and phosphate with both Cu 2+ and Ni 2+ in all chars, but with a greater extent in pyrolytic than forest fire-generated chars. These findings have demonstrated the key role of char's oxygen-containing functional groups in determining their sorption capacity for the Cu 2+ and Ni 2+ in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cortical oxygenation suggests increased effort during cognitive inhibition in ecstasy polydrug users.

    PubMed

    Roberts, C A; Montgomery, Catharine

    2015-11-01

    It is understood that 3,4-methylenedioxymethamphetamine (ecstasy) causes serotonin dysfunction and deficits in executive functioning. When investigating executive function, functional neuroimaging allows the physiological changes underlying these deficits to be investigated. The present study investigated behavioural and brain indices of inhibition in ecstasy-polydrug users. Twenty ecstasy-polydrug users and 20 drug-naïve participants completed an inhibitory control task (Random Letter Generation (RLG)) while prefrontal haemodynamic response was assessed using functional near infrared spectroscopy (fNIRS). There were no group differences on background measures including sleep quality and mood state. There were also no behavioural differences between the two groups. However, ecstasy-polydrug users displayed significant increases in oxygenated haemoglobin (oxy-Hb) from baseline compared to controls at several voxels relating to areas of the inferior right medial prefrontal cortex, as well the right and left dorsolateral prefrontal cortex. Regression analysis revealed that recency of ecstasy use was a significant predictor of oxy-Hb increase at two voxels over the right hemisphere after controlling for alcohol and cannabis use indices. Ecstasy-polydrug users show increased neuronal activation in the prefrontal cortex compared to non-users. This is taken to be compensatory activation/recruitment of additional resources to attain similar performance levels on the task, which may be reversible with prolonged abstinence. © The Author(s) 2015.

  9. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients.

    PubMed

    Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard

    2003-11-01

    Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.

  10. Origin of the Chemical and Kinetic Stability of Graphene Oxide

    PubMed Central

    Zhou, Si; Bongiorno, Angelo

    2013-01-01

    At moderate temperatures (≤ 70°C), thermal reduction of graphene oxide is inefficient and after its synthesis the material enters in a metastable state. Here, first-principles and statistical calculations are used to investigate both the low-temperature processes leading to decomposition of graphene oxide and the role of ageing on the structure and stability of this material. Our study shows that the key factor underlying the stability of graphene oxide is the tendency of the oxygen functionalities to agglomerate and form highly oxidized domains surrounded by areas of pristine graphene. Within the agglomerates of functional groups, the primary decomposition reactions are hindered by both geometrical and energetic factors. The number of reacting sites is reduced by the occurrence of local order in the oxidized domains, and due to the close packing of the oxygen functionalities, the decomposition reactions become – on average – endothermic by more than 0.6 eV. PMID:23963517

  11. Origin of the chemical and kinetic stability of graphene oxide.

    PubMed

    Zhou, Si; Bongiorno, Angelo

    2013-01-01

    At moderate temperatures (≤ 70°C), thermal reduction of graphene oxide is inefficient and after its synthesis the material enters in a metastable state. Here, first-principles and statistical calculations are used to investigate both the low-temperature processes leading to decomposition of graphene oxide and the role of ageing on the structure and stability of this material. Our study shows that the key factor underlying the stability of graphene oxide is the tendency of the oxygen functionalities to agglomerate and form highly oxidized domains surrounded by areas of pristine graphene. Within the agglomerates of functional groups, the primary decomposition reactions are hindered by both geometrical and energetic factors. The number of reacting sites is reduced by the occurrence of local order in the oxidized domains, and due to the close packing of the oxygen functionalities, the decomposition reactions become - on average - endothermic by more than 0.6 eV.

  12. Effects of topical oxygen therapy on ischemic wound healing.

    PubMed

    Rao, Congqiang; Xiao, Liling; Liu, Hongwei; Li, Shenghong; Lu, Jinqiang; Li, Jiangxuan; Gu, Shixing

    2016-01-01

    [Purpose] This study evaluated the effects of topical oxygen therapy on the hind limb wounds of rats under ischemic conditions. [Subjects and Methods] Twelve injured rats were treated with topical oxygen on skin wounds located on the hind limb and compared with twelve injured control rats. Indexes including gross morphology of the wound, wound healing time, wound healing rate, and histological and immunohistochemical staining of sections of wound tissue were examined at different time points after intervention. [Results] The wound healing time was shorter in the topical oxygen therapy group than the control group. The wound healing rate and granulation tissue formation in the topical oxygen therapy group showed significant improvement on days 3, 7, and 14. Through van Gieson staining, the accumulation of collagen fiber in the topical oxygen therapy group was found to have improved when compared with the control group on day 7. Through semiquantitative immunohistochemical staining, many more new vessels were found in the topical oxygen therapy group compared with the model control group on day 7. [Conclusion] The results of the experiment showed that topical oxygen therapy improved ischemic wound healing.

  13. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source

    NASA Astrophysics Data System (ADS)

    Zhang, Xucai; Zhang, Jianmei

    2018-02-01

    Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.

  14. Type 2 diabetes affects sleep quality by disrupting the respiratory function.

    PubMed

    Colbay, Gulcan; Cetin, Mustafa; Colbay, Mehmet; Berker, Dilek; Guler, Serdar

    2015-09-01

    The effects of diabetes on the respiratory system were investigated with arterial blood gas, sleep quality index and respiratory functions tests. Fifty-three patients with type II diabetes and 41 healthy cases were included. Their biochemical data, demographic characteristics, anthropometric measurements and echocardiographic findings were collected from polyclinic records. Respiratory function tests were performed for all subjects and Pittsburgh Sleep Quality Index questionnaire was conducted. Aforementioned data were compared between these two groups. The age, body weight and body mass index were similar but oxygen pressure, oxygen saturation, forced vital capacity (FVC; %), and sleep quality were decreased in patients with diabetes. Sleep quality was correlated with the presence of diabetes and hypertension, duration of diabetes, fasting and postprandial blood glucose levels, homeostasis model of assessment-insulin resistance, Glycosylated hemoglobin levels, and FVC. Half of the diabetic patients exhibited respiratory failure during sleep. Especially diabetic patients with autonomic neuropathy, experienced a more severe and prolonged decrease in oxygen saturation. Blood gas, respiratory functions and sleep quality, which need to be evaluated as a whole, were affected in patients with diabetes. Assessment of sleep and its quality requires special attention in patients with diabetes. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  15. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.

    PubMed

    Park, Sungjin; Lee, Kyoung-Seok; Bozoklu, Gulay; Cai, Weiwei; Nguyen, Sonbinh T; Ruoff, Rodney S

    2008-03-01

    Significant enhancement in mechanical stiffness (10-200%) and fracture strength (approximately 50%) of graphene oxide paper, a novel paperlike material made from individual graphene oxide sheets, can be achieved upon modification with a small amount (less than 1 wt %) of Mg(2+) and Ca(2+). These results can be readily rationalized in terms of the chemical interactions between the functional groups of the graphene oxide sheets and the divalent metals ions. While oxygen functional groups on the basal planes of the sheets and the carboxylate groups on the edges can both bond to Mg(2+) and Ca(2+), the main contribution to mechanical enhancement of the paper comes from the latter.

  16. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix.

    PubMed

    Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan; Griffith, Linda G

    2014-05-01

    Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. © 2014 Wiley Periodicals, Inc.

  17. Levofloxacin capped Ag-nanoparicles: A new highly selective sensor for cations under joint experimental and DFT investigation

    NASA Astrophysics Data System (ADS)

    Mondal Roy, Sutapa; Roy, Debesh Ranjan

    2017-05-01

    A very new and alternate function of an antibiotic drug levofloxacin (Lv), as a highly selective, colorimetric turn-OFF/turn-ON chemosensor for metal-ions Hg2+ and Fe3+, has been reported in this study. An extremely easy, very less time consuming, economical one-pot method of synthesis has been developed for the production of silver nanoparticles (AgNPs). The AgNPs that are stabilized and surface functionalized by Lv. Functionalization of AgNPs by antibiotic drug Lv has been thoroughly confirmed using FTIR spectrophotometry. Two carbonyl oxygen moieties, one belongs to the pyridine oxygen group and another one from the carboxylate oxygen group of Lv together form the binding site over the nanoparticle surface. The Lv-AgNPs system has shown naked eye detectable colour change, as well as significant change via both UV-Vis and fluorescence spectroscopy. The limits of detection (LODs) are predicted to be 6.86 × 10-8 M for Hg2+ and 2.52 × 10-9 M for Fe3+ using UV-Vis spectroscopy and 2.35 × 10-9 M for Fe3+ using fluorescence spectroscopy. UV-Vis spectroscopy, fluorescence spectroscopy, FTIR, TEM, DLS etc. have been used for the physico-chemical characterization of Lv-AgNPs system and the nanoparticle mediated sensing process. Detailed experimental and theoretical studies employing FTIR spectrophotometry and density functional theory (DFT) studies have been used for the elucidation of drug-nanoparticle based sensing mechanism. It is also demonstrated that the Lv-AgNPs system can show real time application using Test-Paper Kit to establish the drug-nanoparticle assembly as a potential colorimetric turn-OFF/turn-ON sensing system for Hg2+ and Fe3+ respectively.

  18. Development and clinical evaluation of noninvasive near-infrared monitoring of cerebral oxygenation

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Yappa A.; Rolfe, Peter J.; Palmer, Keith; Watkins, S.; Spencer, S. A.; Doyle, M.; O'Brien, S.; Walker, A.; Rice, C.; Smallpeice, C.

    1994-02-01

    Near infrared spectroscopy (NIRS) is a relatively new method which is suitable for monitoring oxygenation in blood and tissue in the brain of the fetus and the neonate. The technique involves in-vivo determination of the absorption of light in the wavelength range 775 to 900 nm through such tissue and converting such changes in absorbance to provide information about the changes in the concentration of oxygenated and de-oxygenated haemoglobin (HbO2 and Hb). Recent developments of the methodology now enable the calculation of changes in cerebral blood volume (CBV) as well as absolute CBV and cerebral blood flow (CBF). The attraction of this method is its applicability to monitor cerebral function in a wide variety of patient groups. Although primarily developed for neonatal use it is today applied on the fetus to investigate fetal hypoxia and on adults undergoing surgery.

  19. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  20. fMRI: blood oxygen level-dependent activation during a working memory-selective attention task in children born extremely preterm.

    PubMed

    Griffiths, Silja Torvik; Gundersen, Hilde; Neto, Emanuel; Elgen, Irene; Markestad, Trond; Aukland, Stein M; Hugdahl, Kenneth

    2013-08-01

    Extremely preterm (EPT)/extremely low-birth-weight (ELBW) children attaining school age and adolescence often have problems with executive functions such as working memory and selective attention. Our aim was to investigate a hypothesized difference in blood oxygen level-dependent (BOLD) activation during a selective attention-working memory task in EPT/ELBW children as compared with term-born controls. A regional cohort of 28 EPT/ELBW children and 28 term-born controls underwent functional magnetic resonance imaging (fMRI) scanning at 11 y of age while performing a combined Stroop n-back task. Group differences in BOLD activation were analyzed with Statistical Parametric Mapping 8 analysis software package, and reaction times (RTs) and response accuracy (RA) were compared in a multifactorial ANOVA test. The BOLD activation pattern in the preterm group involved the same areas (cingulate, prefrontal, and parietal cortexes), but all areas displayed significantly less activation than those in the control group, particularly when the cognitive load was increased. The RA results corresponded with the activation data in that the preterm group had significantly fewer correct responses. No group difference was found regarding RTs. Children born EPT/ELBW displayed reduced working memory and selective attention capacity as compared with term-born controls. These impairments had neuronal correlates with reduced BOLD activation in areas responsible for online stimulus monitoring, working memory, and cognitive control.

  1. Reactive oxygen species alteration of immune cells in local residents at an electronic waste recycling site in northern China.

    PubMed

    Li, Ran; Yang, Qiaoyun; Qiu, Xinghua; Li, Keqiu; Li, Guang; Zhu, Ping; Zhu, Tong

    2013-04-02

    The health effects of exposure to pollutants from electronic waste (e-waste) pose an important issue. In this study, we explored the association between oxidative stress and blood levels of e-waste-related pollutants. Blood samples were collected from individuals living in the proximity of an e-waste recycling site located in northern China, and pollutants, as well as reactive oxygen species (ROS), were measured in comparison to a reference population. The geometric mean concentrations of PCBs, dechlorane plus, and 2,2',4,4',5,5'-hexabromobiphenyl in plasma from the exposure group were 60.4, 9.0, and 0.55 ng g(-1) lipid, respectively, which were 2.2, 3.2, and 2.2 times higher than the corresponding measurement in the reference group. Correspondingly, ROS levels in white blood cells, including in neutrophil granulocytes, from the exposure group were significantly higher than in those from the reference group, suggesting potential ROS related health effects for residents at the e-waste site. In contrast, fewer ROS were generated in the respiratory burst of neutrophil granulocytes for the exposure group, indicating a depressed innate immune function for the individuals living at the e-waste site. These findings suggest a potential linkage between exposure to pollutants from e-waste recycling and both elevated oxidative stress and altered immune function.

  2. Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.

    PubMed

    Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il

    2010-05-01

    Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC < or =0.015%, 10 min at BAC < or =0.010%, and 5 min at BAC < or =0.006%. The high dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p < 0.05). In analyzing pharmacokinetic parameters, AUC(inf) and K(el) of the high oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.

  3. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    EPA Science Inventory

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  4. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous and evergreen oaks constitute two clearly differentiated functional groups in terms of their carbon and water economies, despite co-existing in a wide range of environments. In contrast, deciduous oaks form a rather homogeneous group in terms of climate sensitivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Importance of Unimolecular HO 2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol

    DOE PAGES

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    2016-07-09

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this paper investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4H 6O 6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time)more » coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4H 4O 6) and three C 3 fragmentation products (C 3H 4O 4, C 3H 2O 4, and C 3H 2O 5). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4H 4O 6), the major reaction product. While in general, C–C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). Finally, these results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  6. Natural dyeing and UV protection of plasma treated cotton

    NASA Astrophysics Data System (ADS)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  7. Effects of HMX exposure upon metabolic rate of northern bobwhite quail (Colinus virginianus) in ovo.

    PubMed

    Liu, Jun; Cox, Stephen B; Beall, Blake; Brunjes, Kristina J; Pan, Xiaoping; Kendall, Ronald J; Anderson, Todd A; McMurry, Scott T; Cobb, George P; Smith, Philip N

    2008-05-01

    We evaluated the use of the gas exchange rate as an ecologically relevant indicator of chemical stress in avian embryos/eggs. Northern bobwhite quail (Colinus virginianus) were exposed to octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) via feed containing nominal concentrations of 0, 12.5, 50.0, and 125.0 mg kg(-1). Metabolic rates (oxygen consumption) of developing quail eggs were then measured via respirometry to examine potential effects of HMX exposure. Metabolic rates were examined on 5, 9, and 21 d of incubation. Next, concentrations of HMX in embryos/eggs were determined by liquid chromatography-mass spectrometry. Mean (+/-SE) concentrations of HMX in eggs were 21.0+/-5.9, 1113+/-79.0, 3864+/-154.0, and 7426+/-301.1 ng g(-1) in control, low, medium and high dose groups, respectively. There were significant differences in oxygen consumption among the three embryo ages, however differences among the ages were not consistent among dose groups (age x dose group interaction p<0.0001). Oxygen consumption rates did not vary as a function of HMX in embryos (p=0.18). No evidence was observed for alterations of in ovo metabolic rates associated with HMX exposure.

  8. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; ...

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  9. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.

    PubMed

    Schneider, Artur; Janek, Jürgen; Brezesinski, Torsten

    2017-03-22

    The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a measure of the interaction strength between the intermediate lithium polysulfide species and the carbon - was found to scale almost linearly with the nitrogen level. Likewise, the discharge capacity of lithium-sulfur cells increased linearly. This positive correlation can be explained by the favorable effect of nitrogen on both the chemical and electronic properties of the carbon host. The incorporation of additional oxygen-containing surface groups into highly nitrogen-functionalized carbon helped to further enhance the polysulfide adsorption efficiency, and therefore the reversible cell capacity. Overall, the areal capacity could be increased by almost 70% to around 3 mA h cm -2 . We believe that the design parameters described here provide a blueprint for future carbon-based nanocomposites for high-performance lithium-sulfur cells.

  10. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    NASA Astrophysics Data System (ADS)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  11. Minimizing atelectasis formation during general anaesthesia—oxygen washout is a non-essential supplement to PEEP

    PubMed Central

    Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart

    2017-01-01

    Background Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. Methods We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6–8 cmH2O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). Results The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5–2.7) (median [interquartile range]) and 1.8 (1.4–3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Conclusion Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients. PMID:28434271

  12. Minimizing atelectasis formation during general anaesthesia-oxygen washout is a non-essential supplement to PEEP.

    PubMed

    Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart

    2017-06-01

    Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6-8 cmH 2 O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5-2.7) (median [interquartile range]) and 1.8 (1.4-3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients.

  13. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun

    2017-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.

  14. Functional assignment to JEV proteins using SVM.

    PubMed

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  15. Functional assignment to JEV proteins using SVM

    PubMed Central

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658

  16. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.

    PubMed

    Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Ferguson, Scott K; McCullough, Danielle J; Behnke, Bradley J; Musch, Timothy I; Poole, David C

    2014-03-01

    Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.

  17. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function

    PubMed Central

    Copp, Steven W.; Holdsworth, Clark T.; Ferguson, Scott K.; McCullough, Danielle J.; Behnke, Bradley J.; Musch, Timothy I.; Poole, David C.

    2014-01-01

    Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6–8 wk, final workload of 60 min/day at 35 m/min; −14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and NG-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF. PMID:24414070

  18. Late-Stage Functionalization of Arylacetic Acids by Photoredox-Catalyzed Decarboxylative Carbon-Heteroatom Bond Formation.

    PubMed

    Sakakibara, Yota; Ito, Eri; Fukushima, Tomohiro; Murakami, Kei; Itami, Kenichiro

    2018-05-02

    The rapid transformation of pharmaceuticals and agrochemicals enables access to unexplored chemical space and thus has accelerated the discovery of novel bioactive molecules. Because arylacetic acids are regarded as key structures in bioactive compounds, new transformations of these structures could contribute to drug/agrochemical discovery and chemical biology. This work reports carbon-nitrogen and carbon-oxygen bond formation through the photoredox-catalyzed decarboxylation of arylacetic acids. The reaction shows good functional group compatibility without pre-activation of the nitrogen- or oxygen-based coupling partners. Under similar reaction conditions, carbon-chlorine bond formation was also feasible. This efficient derivatization of arylacetic acids makes it possible to synthesize pharmaceutical analogues and bioconjugates of pharmaceuticals and natural products. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reverse effects of DPI administration combined with glutamine supplementation on function of rat neutrophils induced by overtraining.

    PubMed

    Dong, Jingmei; Chen, Peijie; Liu, Qing; Wang, Ru; Xiao, Weihua; Zhang, Yajun

    2013-04-01

    To examine the excessive reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the combined effect of glutamine supplementation and diphenyleneiodonium (DPI) on the function of neutrophils induced by overtraining. Fifty male Wistar rats were randomly divided into 5 groups: control group (C), overtraining group (E), DPI-administration group (D), glutamine-supplementation group (G), and combined DPI and glutamine group (DG). Blood was sampled from the orbital vein after rats were trained on treadmill for 11 wk. Cytokine and lipid peroxidation in blood plasma were measured by enzyme-linked immunosorbent assay. The colocalization between gp91phox and p47phox of the NADPH oxidase was detected using immunocytochemistry and confocal microscopy. The activity of NADPH oxidase was assessed by chemiluminescence. Neutrophils' respiratory burst and phagocytosis function were measured by flow cytometry. NADPH oxidase was activated by overtraining. Cytokine and lipid peroxidation in blood plasma and the activity of NADPH oxidase were markedly increased in Group E compared with group C. Neutrophil function was lower in group E than group C. Both lower neutrophils function and higher ROS production were reversed in Group DG. The glutamine and DPI interference alone in group D and group G was less effective than DPI and glutamine combined in group DG. Activation of NADPH oxidase is responsible for the production of superoxide anions, which leads to excessive ROS and is related to the decrease in neutrophil function induced by overtraining. The combined DPI administration and glutamine supplementation reversed the decreased neutrophil function after overtraining.

  20. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    PubMed

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  1. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis.

    PubMed

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M

    2004-09-01

    In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.

  2. Polymer blend compositions and methods of preparation

    DOEpatents

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  3. A C–H oxidation approach for streamlining synthesis of chiral polyoxygenated motifs

    PubMed Central

    Covell, Dustin J.; White, M. Christina

    2013-01-01

    Chiral oxygenated molecules are pervasive in natural products and medicinal agents; however, their chemical syntheses often necessitate numerous, wasteful steps involving functional group and oxidation state manipulations. Herein a strategy for synthesizing a readily diversifiable class of chiral building blocks, allylic alcohols, through sequential asymmetric C—H activation/resolution is evaluated against the state-of-the-art. The C—H oxidation routes’ capacity to strategically introduce oxygen into a sequence and thereby minimize non-productive manipulations is demonstrated to effect significant decreases in overall step-count and increases in yield and synthetic flexibility. PMID:25013239

  4. Carefully designed oxygen-containing functional groups and defects of porous carbon spheres with UV-O3 treatment and their enhanced catalytic performance

    NASA Astrophysics Data System (ADS)

    Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng

    2018-04-01

    In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.

  5. Normothermic cardiopulmonary bypass increases cerebral tissue oxygenation during combined valve surgery: a single-centre, randomized trial.

    PubMed

    Lenkin, Andrey I; Zaharov, Viktor I; Lenkin, Pavel I; Smetkin, Alexey A; Bjertnaes, Lars J; Kirov, Mikhail Y

    2013-05-01

    In cardiac surgery, the choice of temperature regimen during cardiopulmonary bypass (CPB) remains a subject of debate. Hypothermia reduces tissue metabolic demands, but may impair the autoregulation of cerebral blood flow and contribute to neurological morbidity. The aim of this study was to evaluate the effect of two different temperature regimens during CPB on the systemic oxygen transport and the cerebral oxygenation during surgical correction of acquired heart diseases. In a prospective study, we randomized 40 adult patients with combined valvular disorders requiring surgical correction of two or more valves into two groups: (i) a normothermic (NMTH) group (n = 20), in which the body core temperature was maintained at 36.6°C during CPB and (ii) a hypothermic (HPTH) group (n = 20), in which the body was cooled to a core temperature of 32°C maintained throughout the period of CPB. The systemic oxygen transport and the cerebral oxygen saturation (SctO2) were assessed by means of a PiCCO2 haemodynamic monitor and a cerebral oximeter, respectively. All the patients received standard perioperative monitoring. We assessed haemodynamic and oxygen transport parameters, the duration of mechanical ventilation and the length of the ICU and the hospital stays. During CPB, central venous oxygen saturation was significantly higher in the HPTH group but SctO2 was increased in the NMTH group (P < 0.05). Cardiac index, systemic oxygen delivery and consumption increased postoperatively in both groups. However, oxygen delivery and consumption were significantly higher in the NMTH group (P < 0.05). The duration of respiratory support and the length of ICU and hospital stays did not differ between the groups. During combined valve surgery, normothermic CPB provides lower central venous oxygen saturation, but increases cerebral tissue oxygenation when compared with the hypothermic regimen.

  6. [Effects of different oxygen inhalation modes on retinal vessels development in neonatal mice].

    PubMed

    Wang, Yu-Huan; Chen, Chao; Shi, Wen-Jing; Xiao, Hong-Lei; Tong, Bei-Yan; Zhou, Guo-Min

    2006-04-01

    This study was designed to investigate the effects of different oxygen inhalation modes on retinal vessels development in neonatal mice in order to provide experimental data for proper oxygen therapy for premature infants. A total of 144 postnatal day (P) 7 C57BL/6J mice were randomly assigned into 6 groups according to different oxygen inhalation modes (n=24). Experimental group 1 was exposed to 30%, 40%, 50%, 60% and 75% oxygen in turn for one day respectively, followed by room air exposure for 5 days. Experimental group 2 was exposed to 75%, 60%, 50%, 40% and 30% oxygen in turn for one day respectively, followed by room air exposure for 5 days. Experimental group 3 was exposed to 75% oxygen for 5 days, followed by room air exposure for 5 days. Experimental group 4 was exposed to 75% oxygen for 5 days, 50% oxygen for 2 days and 30% oxygen for 2 days, then room air exposure for 6 days. The supplemental 75% oxygen and room air recovering was performed alternately for the mice in Experimental group 5 for 3 times and then room air exposure for 5 days. The Control group was exposed to room air for consecutive 10 days. The retinal vascular development and proliferation were evaluated by the retinal flat-mounts (ADPase stained retina) and cross-section. The peripheral vascular pattern was clear, and a few avascular areas were seen in the Control group at P12. At P14 the avascular area disappeared. At P17, the entire vascular pattern became completely normal. In the Experimental groups 1, 3 and 5, the central vessels became tortuous and constricted and the central avascular area increased at P12. At P14, neovascularization was seen peaking at P17 in the Experimental groups 1, 3 and 5. In the Experimental group 4, the central avascular area increased and neovascularization was seen at P14, but the central avascular area was reduced and abnormal neovascularization disappeared, with slight constriction of the deep vessels, at P17. Five days later the vascular pattern became almost normal in the Experimental group 4. The retinal vascular form of the Experimental group 2 was similar to that of the Control group. The average number of neovascular nuclei extending into the vitreous per cross-section in the Experimental groups 1, 2, 3, 4, and 5 and the Control group was 49.50 +/- 1.36, 5.17 +/- 0.67, 47.68 +/- 4.70, 5.74 +/- 2.37, 29.15 +/- 2.48, and 1.22 +/- 0.20 respectively. There were significant differences between the Experimental groups 1, 3, 5 and the Control group (P < 0.05). The effects of different oxygen inhalation modes on the retinal vessels development in neonatal mice were different. The obvious fluctuation of inhaled oxygen concentration and abrupt stop of supplemental oxygen after high levels of supplemental oxygen may severely affect the development of retina vascular, leading to the pathologic changes similar to retinopathy of prematurity.

  7. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    PubMed

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  8. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors.

    PubMed

    Dong, Boming; Stewart, Paul W; Egan, Thomas M

    2013-08-01

    We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  9. Neonatal extracorporeal membrane oxygenation: impaired health at 5 years of age.

    PubMed

    Madderom, Marlous J; Gischler, Saskia J; Duivenvoorden, Hugo; Tibboel, Dick; Ijsselstijn, Hanneke

    2013-02-01

    Children treated with neonatal extracorporeal membrane oxygenation may show physical and mental morbidity at a later age. We compared the health-related quality of life of these children with normative data. Prospective longitudinal follow-up study. Outpatient clinic of a level III university hospital. Ninety-five 5-yr-old children who had received neonatal extracorporeal membrane oxygenation support between January 1999 and December 2005. None. The pediatric quality of life inventory was administered at 5 yrs of age. The mothers (n = 74) as proxy-reporters assigned significantly lower health-related quality of life scores for their children than did the parents in the healthy reference group for the total functioning scale of the pediatric quality of life inventory (mean difference: 8.1; p < 0.001). Mothers' scores for 31 children (42%) were indicative of impaired health-related quality of life (≥-1 SD below the reference norm). The children (n = 78) themselves scored significantly lower than did their healthy peers on total functioning (mean difference: 11.0; p < 0.001). Thirty-two children (41%) indicated an impaired health-related quality of life themselves. For the mother proxy- reports, the duration of extracorporeal membrane oxygenation support (R = 0.009; p = 0.010) and the presence of chronic lung disease (R = 0.133; p = 0.002) were negatively related to total functioning. Children with a disabled health status for neuromotor functioning, maximum exercise capacity, behavior, and cognitive functioning at 5 yrs of age had a higher odds ratio of also having a lower health-related quality of life. Health status had no influence on reported emotional functioning. Overall, children treated with extracorporeal membrane oxygenation in the neonatal period reported low health-related quality of life at 5 yrs of age. Because only emotional health-related quality of life was not associated with health status, the pediatric quality of life inventory might be a measure of health status rather than of health-related quality of life. In contrast with conclusions from others, we found that 5-yr-old children might be too young to rate their own health-related quality of life.

  10. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy.

    PubMed

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. [Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy].

    PubMed

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Effect of glutamine supplementation on neutrophil function in male judoists.

    PubMed

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity.

    PubMed

    Bakkehaug, Jens Petter; Kildal, Anders Benjamin; Engstad, Erik Torgersen; Boardman, Neoma; Næsheim, Torvind; Rønning, Leif; Aasum, Ellen; Larsen, Terje Steinar; Myrmel, Truls; How, Ole-Jakob

    2015-07-01

    Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure-volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase. © 2015 American Heart Association, Inc.

  14. Direct growth of high crystallinity graphene from water-soluble polymer powders

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Zhong, Yujia; Huang, Meirong; Zhao, Guoke; Zhen, Zhen; Zhu, Hongwei

    2018-07-01

    The use of solid-state carbon sources is effective to produce graphene by safe and low-cost chemical vapor deposition (CVD) process. Water-soluble polymers are generally environmentally friendly and have great potential on large-scale green production of graphene. Here, we systematically study the growth of graphene from water-soluble polymers on copper foils. Two different conversion ways are adopted to investigate the growth mechanism of graphene from water-soluble polymers. We find that the metal-binding functional group hydroxyl strongly influences the vaporization of water-soluble polymers on Cu foils, which hinders the formation of graphene films by rapid thermal treatment. In direct CVD process using water-soluble polymer powders as precursors, oxygenated functional groups in polymers can enhance the crystallinity of as-grown graphene in contrast to solid hydrocarbons without containing oxygen (e.g. polyethylene). Large and continuous graphene films of high quality are synthesized from polyvinyl alcohol and polyethylene glycol. Nitrogen doping in graphene can be easily realized by using nitrogen-containing water-soluble polymers (e.g. polyvinyl pyrrolidone).

  15. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats.

    PubMed

    Yang, Y W; Cheng, W P; Lu, J K; Dong, X H; Wang, C B; Zhang, J; Zhao, L Y; Gao, Z F

    2014-07-01

    This study was designed to assess the neuroprotective effect of xenon-induced delayed postconditioning on spinal cord ischaemia-reperfusion injury (IRI) and to determine the time of administration for best neuroprotection in a rat model of spinal cord IRI. Fifty male rats were randomly divided equally into a sham group, control group, and three xenon postconditioning groups (n=10 per group). The control group underwent spinal cord IRI and immediately inhaled 50% nitrogen/50% oxygen for 3 h at the initiation of reperfusion. The three xenon postconditioning groups underwent the same surgical procedure and immediately inhaled 50% xenon/50% oxygen for 3 h at the initiation of reperfusion or 1 and 2 h after reperfusion. The sham operation group underwent the same surgical procedure without aortic occlusion, and inhaled 50% nitrogen/50% oxygen. Neurological function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h of reperfusion. Histological examination was performed using Nissl staining and immunohistochemistry, and apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling staining. Compared with the control group, the three xenon postconditioning groups showed improvements in neurological outcomes, and had more morphologically normal neurones at 48 h of reperfusion. Apoptotic cell death was reduced and the ratio of Bcl-2/Bax immunoreactivity increased in xenon-treated rats compared with controls. Xenon postconditioning up to 2 h after reperfusion provided protection against spinal cord IRI in rats, but the greatest neuroprotection occurred with administration of xenon for 1 h at reperfusion. © The Author [2013]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Comparison of Aerobic Preservation by Venous Systemic Oxygen Persufflation or Oxygenated Machine Perfusion of Warm-Ischemia-Damaged Porcine Kidneys.

    PubMed

    Kalenski, Julia; Mancina, Elina; Paschenda, Pascal; Beckers, Christian; Bleilevens, Christian; Tóthová, Ľubomíra; Boor, Peter; Gross, Dominik; Tolba, René H; Doorschodt, Benedict M

    2016-01-01

    The global shortage of donor organs for transplantation has necessitated the expansion of the organ pool through increased use of organs from less ideal donors. Venous systemic oxygen persufflation (VSOP) and oxygenated machine perfusion (OMP) have previously demonstrated beneficial results compared to cold storage (CS) in the preservation of warm-ischemia-damaged kidney grafts. The aim of this study was to compare the efficacy of VSOP and OMP for the preservation of warm-ischemia-damaged porcine kidneys using the recently introduced Ecosol preservation solution compared to CS using Ecosol or histidine-tryptophan-ketoglutarate solution (HTK). Kidneys from German Landrace pigs (n = 5/group) were retrieved and washed out with either Ecosol or HTK after 45 min of clamping of the renal pedicle. As controls, kidneys without warm ischemia, cold stored for 24 h in HTK, were employed. Following 24 h of preservation by VSOP, OMP, CS-Ecosol, or CS-HTK, renal function and damage were assessed during 1 h using the isolated perfused porcine kidney model. During reperfusion, urine production was significantly higher in the VSOP and OMP groups than in the CS-HTK group; however, only VSOP could demonstrate lower urine protein concentrations and fractional excretion of sodium, which did not differ from the non-warm-ischemia-damaged control group. VSOP, CS-Ecosol, and controls showed better maintenance of the acid-base balance than CS-HTK. Reduced lipid peroxidation, as reflected in postreperfusion tissue thiobarbituric acid-reactive substance levels, was observed in the VSOP group compared to the OMP group, and the VSOP and CS-Ecosol groups had concentrations similar to the controls. The ratio of reduced to oxidized glutathione was higher in the VSOP, OMP, and CS-Ecosol groups than in the CS-HTK group and controls, with a higher ratio in the VSOP than in the OMP group. VSOP was associated with mitigation of oxidative stress in comparison to OMP and CS. Preservation of warm-ischemia-damaged porcine kidneys by VSOP was improved compared to OMP and CS, and was comparable to preservation of non-warm-ischemia-damaged cold-stored kidneys. © 2016 S. Karger AG, Basel.

  17. Inverse correlation between reactive oxygen species in unwashed semen and sperm motion parameters as measured by a computer-assisted semen analyzer.

    PubMed

    Takeshima, Teppei; Yumura, Yasushi; Yasuda, Kengo; Sanjo, Hiroyuki; Kuroda, Shinnosuke; Yamanaka, Hiroyuki; Iwasaki, Akira

    2017-01-01

    This study investigated the correlation between sperm motion parameters obtained by a computer-assisted semen analyzer and levels of reactive oxygen species in unwashed semen. In total, 847 patients, except for azoospermic patients were investigated. At the time of each patient's first consultation, semen parameters were measured using SMAS™ or CellSoft 3000™, and production of reactive oxygen species was measured using a computer-driven LKB Wallac Luminometer 1251 Analyzer. The patients were divided into two groups: reactive oxygen species - positive and negative. The semen parameters within each group were measured using one of the two computer-assisted semen analyzer systems and then compared. Correlations between reactive oxygen species levels and sperm motion parameters in semen from the reactive oxygen species - positive group were also investigated. Reactive oxygen species were detected in semen samples of 282 cases (33.3%). Sperm concentration (P < 0.01; P < 0.01), motility (P < 0.01; P < 0.05), and progressive motility (P < 0.01; P < 0.01) were markedly lower in the reactive oxygen species - positive group than in the reactive oxygen species - negative group. Among the sperm motion parameters in the reactive oxygen species - positive group, sperm concentration (P < 0.01; P < 0.01), motility (P < 0.05; P < 0.01), mALH (P < 0.05; P < 0.01), and progressive motility (P < 0.05; P < 0.01) also showed inverse correlations with the logarithmic transformed reactive oxygen species levels. Therefore, this study demonstrated that excessive reactive oxygen species in semen damage sperm concentration, motility, and other sperm motion parameters.

  18. Effects of two fractions of inspired oxygen during anesthesia on early postanesthesia oxygenation in healthy dogs.

    PubMed

    Martin-Flores, Manuel; Tseng, Chia T; Robillard, Steven D; Abrams, Brittany E; Campoy, Luis; Harvey, H Jay; Gleed, Robin D

    2018-02-01

    OBJECTIVE To evaluate the effects of 2 fractions of inspired oxygen (Fio 2 s) during anesthesia on postanesthesia Pao 2 and other measures of oxygen exchange. ANIMALS 22 healthy adult sexually intact female dogs undergoing ovariohysterectomy by ventral midline celiotomy. PROCEDURES Dogs were randomly assigned to receive either oxygen (Fio 2 > 0.9 [100% oxygen]; n = 11; control group) or a mixture of nitrogen and oxygen (Fio 2 = 0.4; 11; 40% oxygen group) as the carrier gas for isoflurane while anesthetized. All dogs were allowed to breathe spontaneously while anesthetized. For each dog, the Pao 2 , Paco 2 , other indices of oxygenation, and extent of sedation were monitored at predetermined times during and for 1 hour after anesthesia. Measured variables were compared between the 2 treatment groups and over time within each treatment group. RESULTS None of the measured variables differed significantly between the control and 40% oxygen groups at any time during the postanesthesia period. Within each treatment group, the Paco 2 and extent of sedation decreased over time during the postanesthesia period. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that indices of oxygenation did not differ significantly between healthy dogs in which the Fio 2 was maintained at > 0.9 and those in which the Fio 2 was maintained at 0.4 while anesthetized for ovariohysterectomy. Thus, the addition of nitrogen to the carrier gas for an inhalant anesthetic conferred neither an advantage nor disadvantage in regard to oxygenation during the first hour of anesthesia recovery.

  19. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments.

    PubMed

    Balazs, D J; Triandafillu, K; Wood, P; Chevolot, Y; van Delden, C; Harms, H; Hollenstein, C; Mathieu, H J

    2004-05-01

    Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra-hydrophobic (>120 degrees ) surface. The chemical modifications using NaOH and AgNO(3) wet treatments completely inhibited bacterial adhesion of four strains of P. aeruginosa to both native and oxygen-pre-functionalized PVC, and efficiently prevented colonization over longer periods (72 h). Our results suggest that surface modifications that incorporate silver ions would be extremely effective at reducing bacterial colonization to medical devices.

  20. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature.

    PubMed

    Barvitenko, Nadezhda N; Aslam, Muhammad; Filosa, Jessica; Matteucci, Elena; Nikinmaa, Mikko; Pantaleo, Antonella; Saldanha, Carlota; Baskurt, Oguz K

    2013-08-01

    The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed. © 2013 John Wiley & Sons Ltd.

  1. Efficacy of surfactant at different gestational ages for infants with respiratory distress syndrome

    PubMed Central

    Wang, Li; Chen, Long; Li, Renjun; Zhao, Jinning; Wu, Xiushuang; Li, Xue; Shi, Yuan

    2015-01-01

    Since exogenous surfactant replacement therapy was first used to prevent respiratory distress syndrome (RDS), it has become the main method for treatment of RDS. However, in some infants, death is inevitable despite intensive care and surfactant replacement therapy, especially in near-term and term infants. The main purpose of this study was to compare the therapeutic effect of pulmonary surfactant for infants at different gestational ages and to investigate whether exogenous surfactant replacement therapy is effective for all newborns with RDS. Data on surfactant replacement therapy, including blood gas, oxygenation function parameters and therapy results, were collected from 135 infants who were diagnosed with RDS during three years at a tertiary neonatal intensive care unit. According to gestational age, the subjects were classified into three groups as follows: group 1: gestational age <35 weeks (n=54); group 2: 35 weeks ≤ gestational age <37 weeks (n=35); group 3: gestational age ≥37 weeks (n=46). Six hours after surfactant was given, there were significantly better blood gas results in group 1 and worse results in groups 2 and 3. Similar oxygenation function parameter results were observed in the three groups. In addition, there was a trend toward an increased rate of repeated surfactant administration with increasing gestational age. For near-term and term infants, the efficacy of surfactant therapy was not as good as it was for preterm infants. The causes of RDS in near-term and term infants might be different from those in preterm infants and should be studied further. PMID:26550326

  2. Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations

    NASA Astrophysics Data System (ADS)

    Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.

    2009-11-01

    Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.

  3. Understanding PGM-free Catalysts by Linking Density Functional Theory Calculations and Structural Analysis: Perspectives and Challenges

    DOE PAGES

    Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen

    2018-03-13

    Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.

  4. Understanding PGM-free Catalysts by Linking Density Functional Theory Calculations and Structural Analysis: Perspectives and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen

    Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.

  5. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  6. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance.

    PubMed

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P; Garduno-Garcia, Jose de Jesus; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas

    2011-08-01

    Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria.

  7. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans.

    PubMed

    Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M

    2015-08-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. Copyright © 2015 the American Physiological Society.

  8. Effect of Oxygen-containing Functional Groups on Protein Stability in Ionic Liquid Solutions

    NASA Technical Reports Server (NTRS)

    Turner, Megan B.; Holbrey, John D.; Spear, Scott K.; Pusey, Marc L.; Rogers, Robin D.

    2004-01-01

    The ability of functionalized ionic liquids (ILs) to provide an environment of increased stability for biomolecules has been studied. Serum albumin is an inexpensive, widely available protein that contributes to the overall colloid osmotic blood pressure within the vascular system. Albumin is used in the present study as a marker of biomolecular stability in the presence of various ILs in a range of concentrations. The incorporation of hydroxyl functionality into the methylimidazolium-based cation leads to increased protein stability detected by fluorescence spectroscopy and circular dichroic (CD) spectrometry.

  9. Trans sodium crocetinate: functional neuroimaging studies in a hypoxic brain tumor.

    PubMed

    Sheehan, Jason P; Popp, Britney; Monteith, Stephen; Toulmin, Sushila; Tomlinson, Jennifer; Martin, Jessica; Cifarelli, Christopher P; Lee, Dae-Hee; Park, Deric M

    2011-10-01

    Intratumoral hypoxia is believed to be exhibited in high-grade gliomas. Trans sodium crocetinate (TSC) has been shown to increase oxygen diffusion to hypoxic tissues. In this research, the authors use oxygen-sensitive PET studies to evaluate the extent of hypoxia in vivo in a glioblastoma model and the effect of TSC on the baseline oxygenation of the tumor. The C6 glioma cells were stereotactically implanted in the right frontal region of rat brains. Formation of intracranial tumors was confirmed on MR imaging. Animals were injected with Copper(II) diacetyl-di(N4-methylthiosemicarbazone) (Cu-ATSM) and then either TSC or saline (6 rats each). Positron emission tomography imaging was performed, and relative uptake values were computed to determine oxygenation within the tumor and normal brain parenchyma. Additionally, TSC or saline was infused into the animals, and carbonic anhydrase 9 (CA9) and hypoxia-inducing factor-1α (HIF-1α) protein expression were measured 1 day afterward. On PET imaging, all glioblastoma tumors demonstrated a statistically significant decrease in uptake of Cu-ATSM compared with the contralateral cerebral hemisphere (p = 0.000002). The mean relative uptake value of the tumor was 3900 (range 2203-6836), and that of the contralateral brain tissue was 1017 (range 488-2304). The mean relative hypoxic tumor volume for the saline group and TSC group (6 rats each) was 1.01 ± 0.063 and 0.69 ± 0.062, respectively (mean ± SEM, p = 0.002). Infusion of TSC resulted in a 31% decrease in hypoxic volume. Immunoblot analysis revealed expression of HIF-1α and CA9 in all tumor specimens. Some glioblastomas exhibit hypoxia that is demonstrable on oxygen-specific PET imaging. It appears that TSC lessens intratumoral hypoxia on functional imaging. Further studies should explore relative hypoxia in glioblastoma and the potential therapeutic gains that can be achieved by lessening hypoxia during delivery of adjuvant treatment.

  10. Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and (31)P-MRS.

    PubMed

    Mark, F C; Bock, C; Pörtner, H O

    2002-11-01

    The hypothesis of an oxygen-limited thermal tolerance was tested in the Antarctic teleost Pachycara brachycephalum. With the use of flow-through respirometry, in vivo (31)P-NMR spectroscopy, and MRI, we studied energy metabolism, intracellular pH (pH(i)), blood flow, and oxygenation between 0 and 13 degrees C under normoxia (PO(2): 20.3 to 21.3 kPa) and hyperoxia (PO(2): 45 kPa). Hyperoxia reduced the metabolic increment and the rise in arterial blood flow observed under normoxia. The normoxic increase of blood flow leveled off beyond 7 degrees C, indicating a cardiovascular capacity limitation. Ventilatory effort displayed an exponential rise in both groups. In the liver, blood oxygenation increased, whereas in white muscle it remained unaltered (normoxia) or declined (hyperoxia). In both groups, the slope of pH(i) changes followed the alpha-stat pattern below 6 degrees C, whereas it decreased above. In conclusion, aerobic scope declines around 6 degrees C under normoxia, marking the pejus temperature. By reducing circulatory costs, hyperoxia improves aerobic scope but is unable to shift the breakpoint in pH regulation or lethal limits. Hyperoxia appears beneficial at sublethal temperatures, but no longer beyond when cellular or molecular functions become disturbed.

  11. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury

    PubMed Central

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun

    2015-01-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure–volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure–volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. PMID:26290141

  12. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury.

    PubMed

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun; Zhou, Huacheng

    2016-02-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. © 2015 by the Society for Experimental Biology and Medicine.

  13. Two-photon absorption in conjugated energetic molecule

    DOE PAGES

    Bjorgaard, Josiah August; Sifain, Andrew; Nelson, Tammie Renee; ...

    2016-06-03

    Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities aremore » significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.« less

  14. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  15. The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure.

    PubMed

    Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D

    2014-09-06

    Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an exacerbation of lung injury. The trophic functions of macrophages in lung development requires further elucidation in order to explore macrophage modulation as a strategy for promoting lung maturation.

  16. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver.

    PubMed

    Shimada, Shingo; Wakayama, Kenji; Fukai, Moto; Shimamura, Tsuyoshi; Ishikawa, Takahisa; Fukumori, Daisuke; Shibata, Maki; Yamashita, Kenichiro; Kimura, Taichi; Todo, Satoru; Ohsawa, Ikuroh; Taketomi, Akinobu

    2016-12-01

    Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H 2 (+) and H 2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H 2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H 2 (+) group, these harmful changes were significantly suppressed [vs. H 2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.

    PubMed

    Tay, Nicholas E S; Nicewicz, David A

    2017-11-15

    Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.

  18. Promiscuous anaerobes: new and unconventional metabolism in methanogenic archaea.

    PubMed

    Grochowski, Laura L; White, Robert H

    2008-03-01

    The development of an oxygenated atmosphere on earth resulted in the polarization of life into two major groups, those that could live in the presence of oxygen and those that could not-the aerobes and the anaerobes. The evolution of aerobes from the earliest anaerobic prokaryotes resulted in a variety of metabolic adaptations. Many of these adaptations center on the need to sustain oxygen-sensitive reactions and cofactors to function in the new oxygen-containing atmosphere. Still other metabolic pathways that were not sensitive to oxygen also diverged. This is likely due to the physical separation of the organisms, based on their ability to live in the presence of oxygen, which allowed for the independent evolution of the pathways. Through the study of metabolic pathways in anaerobes and comparison to the more established pathways from aerobes, insight into metabolic evolution can be gained. This, in turn, can allow for extra- polation to those metabolic pathways occurring in the Last Universal Common Ancestor (LUCA). Some of the unique and uncanonical metabolic pathways that have been identified in the archaea with emphasis on the biochemistry of an obligate anaerobic methanogen, Methanocaldococcus jannaschii are reviewed.

  19. Comparison of the effectiveness of high flow nasal oxygen cannula vs. standard non-rebreather oxygen face mask in post-extubation intensive care unit patients.

    PubMed

    Brotfain, Evgeni; Zlotnik, Alexander; Schwartz, Andrei; Frenkel, Amit; Koyfman, Leonid; Gruenbaum, Shaun E; Klein, Moti

    2014-11-01

    Optimal oxygen supply is the cornerstone of the management of critically ill patients after extubation, especially in patients at high risk for extubation failure. In recent years, high flow oxygen system devices have offered an appropriate alternative to standard oxygen therapy devices such as conventional face masks and nasal prongs. To assess the clinical effects of high flow nasal cannula (HFNC) compared with standard oxygen face masks in Intensive Care Unit (ICU) patients after extubation. We retrospectively analyzed 67 consecutive ventilated critical care patients in the ICU over a period of 1 year. The patients were allocated to two treatment groups: HFNC (34 patients, group 1) and non-rebreathing oxygen face mask (NRB) (33 patients, group 2). Vital respiratory and hemodynamic parameters were assessed prior to extubation and 6 hours after extubation. The primary clinical outcomes measured were improvement in oxygenation, ventilation-free days, re-intubation, ICU length of stay, and mortality. The two groups demonstrated similar hemodynamic patterns before and after extubation. The respiratory rate was slightly elevated in both groups after extubation with no differences observed between groups. There were no statistically significant clinical differences in PaCO2. However, the use of HFNC resulted in improved PaO2/FiO2 post-extubation (P < 0.05). There were more ventilator-free days in the HFNC group (P< 0.05) and fewer patients required reintubation (1 vs. 6). There were no differences in ICU length of stay or mortality. This study demonstrated better oxygenation for patients treated with HFNC compared with NRB after extubation. HFNC may be more effective than standard oxygen supply devices for oxygenation in the post-extubation period.

  20. Density functional theory study of the mechanism and origins of stereoselectivity in the asymmetric Simmons-Smith cyclopropanation with Charette chiral dioxaborolane ligand.

    PubMed

    Wang, Tao; Liang, Yong; Yu, Zhi-Xiang

    2011-06-22

    Asymmetric Simmons-Smith reaction using Charette chiral dioxaborolane ligand is a widely applied method for the construction of enantiomerically enriched cyclopropanes. The detailed mechanism and the origins of stereoselectivity of this important reaction were investigated using density functional theory (DFT) calculations. Our computational studies suggest that, in the traditional Simmons-Smith reaction conditions, the monomeric iodomethylzinc allyloxide generated in situ from the allylic alcohol and the zinc reagent has a strong tendency to form a dimer or a tetramer. The tetramer can easily undergo an intramolecular cyclopropanation to give the racemic cyclopropane product. However, when a stoichiometric amount of Charette chiral dioxaborolane ligand is employed, monomeric iodomethylzinc allyloxide is converted into an energetically more stable four-coordinated chiral zinc/ligand complex. The chiral complex has the zinc bonded to the CH(2)I group and coordinated by three oxygen atoms (one from the allylic alcohol and the other two oxygen atoms from the carbonyl oxygen and the ether oxygen in the dioxaborolane ligand), and it can undergo the cyclopropanation reaction easily. Three key factors influencing the enantioselectivity have been identified through examining the cyclopropanation transition states: (1) the torsional strain along the forming C-C bond, (2) the 1,3-allylic strain caused by the chain conformation, and (3) the ring strain generated in the transition states. In addition, the origin of the high anti diastereoselectivity for the substituent on the zinc reagent and the hydroxymethyl group of the allylic alcohol has been rationalized through analyzing the steric repulsion and the ring strain in the cyclopropanation transition states.

  1. Aggregate Formation of Oligonucleotides that Assist Molecular Imaging for Tracking of the Oxygen Status in Tumor Tissue.

    PubMed

    Yoshihara, Kazuki; Takagi, Kohei; Son, Aoi; Kurihara, Ryohsuke; Tanabe, Kazuhito

    2017-08-17

    The use of DNA aggregates could be a promising strategy for the molecular imaging of biological functions. Herein, phosphorescent oligodeoxynucleotides were designed with the aim of visualizing oxygen fluctuation in tumor cells. DNA-ruthenium conjugates (DRCs) that consisted of oligodeoxynucleotides, a phosphorescent ruthenium complex, a pyrene unit for high oxygen responsiveness, and a nitroimidazole unit as a tumor-targeting unit were prepared. In general, oligonucleotides have low cell permeability because of their own negative charges; however, the DRC formed aggregates in aqueous solution due to the hydrophobic pyrene and nitroimidazole groups, and smoothly penetrated the cellular membrane to accumulate in tumor cells in a hypoxia-selective manner. The oxygen-dependent phosphorescence of DRC in cells was also observed. In vivo experiments revealed that aggregates of DRC accumulated in hypoxic tumor tissue that was transplanted into the left leg of mice, and showed that oxygen fluctuations in tumor tissue could be monitored by tracking of the phosphorescence emission of DRC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Assessment of cerebral oxygen saturation using near infrared spectroscopy under driver fatigue state].

    PubMed

    Li, Zeng-yong; Dai, Shi-xun; Zhang, Xiao-yin; Li, Yue; Yu, Xing-xin

    2010-01-01

    The objective of the present study is to assess the cerebral saturation under driver fatigue based on the near infrared spectroscopy (NIRS) signals. Twenty healthy male subjects were randomly divided into two groups: A-group (study group) and B-group (control group). All subjects were required to be well rested before the experiment. In A-group the subjects were required to perform the simulated driving task for 3 hours. Cerebral oxygenation signal was monitored for 20 minutes prior to and after the prescribed task period from the left frontal lobe. The results show that cerebral oxygen saturation was found to be significantly lower following 3-hour driving in the task group compared to that in the control group (F = 15.92, p < 0.001). Also a significant difference in selective reaction time was observed between the task group and control group during the post task period (p = 0.021). These findings showed that the cerebral blood oxygen saturation was closely related to the driver fatigue. The decline of the cerebral oxygen saturation might indicate a reduced cerebral oxygen delivery. This suggests that NIRS could provide a non-invasive method to detect driver fatigue.

  3. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    PubMed

    Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  4. Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses

    PubMed Central

    Ferreira, Ari J. S.; Siam, Rania; Setubal, João C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  5. Structure and reactivity of hexacoordinate hemoglobins

    PubMed Central

    Kakar, Smita; Hoffman, Federico G.; Storz, Jay F.; Fabian, Marian; Hargrove, Mark S.

    2015-01-01

    The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called “pentacoordinate” hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called “hexacoordinate hemoglobins”, which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal. PMID:20933319

  6. Rationale and study design for an individualised perioperative open-lung ventilatory strategy with a high versus conventional inspiratory oxygen fraction (iPROVE-O2) and its effects on surgical site infection: study protocol for a randomised controlled trial.

    PubMed

    Ferrando, Carlos; Soro, Marina; Unzueta, Carmen; Canet, Jaume; Tusman, Gerardo; Suarez-Sipmann, Fernando; Librero, Julian; Peiró, Salvador; Pozo, Natividad; Delgado, Carlos; Ibáñez, Maite; Aldecoa, César; Garutti, Ignacio; Pestaña, David; Rodríguez, Aurelio; García Del Valle, Santiago; Diaz-Cambronero, Oscar; Balust, Jaume; Redondo, Francisco Javier; De La Matta, Manuel; Gallego, Lucía; Granell, Manuel; Martínez, Pascual; Pérez, Ana; Leal, Sonsoles; Alday, Kike; García, Pablo; Monedero, Pablo; Gonzalez, Rafael; Mazzinari, Guido; Aguilar, Gerardo; Villar, Jesús; Belda, Francisco Javier

    2017-07-31

    Surgical site infection (SSI) is a serious postoperative complication that increases morbidity and healthcare costs. SSIs tend to increase as the partial pressure of tissue oxygen decreases: previous trials have focused on trying to reduce them by comparing high versus conventional inspiratory oxygen fractions (FIO 2 ) in the perioperative period but did not use a protocolised ventilatory strategy. The open-lung ventilatory approach restores functional lung volume and improves gas exchange, and therefore it may increase the partial pressure of tissue oxygen for a given FIO 2 . The trial presented here aims to compare the efficacy of high versus conventional FIO 2 in reducing the overall incidence of SSIs in patients by implementing a protocolised and individualised global approach to perioperative open-lung ventilation. This is a comparative, prospective, multicentre, randomised and controlled two-arm trial that will include 756 patients scheduled for abdominal surgery. The patients will be randomised into two groups: (1) a high FIO 2 group (80% oxygen; FIO 2 of 0.80) and (2) a conventional FIO 2 group (30% oxygen; FIO 2 of 0.30). Each group will be assessed intra- and postoperatively. The primary outcome is the appearance of postoperative SSI complications. Secondary outcomes are the appearance of systemic and pulmonary complications. The iPROVE-O2 trial has been approved by the Ethics Review Board at the reference centre (the Hospital Clínico Universitario in Valencia). Informed consent will be obtained from all patients before their participation. If the approach using high FIO 2 during individualised open-lung ventilation decreases SSIs, use of this method will become standard practice for patients scheduled for future abdominal surgery. Publication of the results is anticipated in early 2019. NCT02776046; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Effects of transcutaneous topical injection of oxygen on vascular endothelial growth factor gene into the healing ligament in rats.

    PubMed

    Ishii, Yoshimasa; Ushida, Takashi; Tateishi, Tetsuya; Miyanaga, Yutaka

    2003-11-01

    The effects of intermittent exposure to oxygen injection on an experimentally induced ligament tear were studied in the right hind limb of 17 male Sprague-Dawley rats. Two rats were used for monitoring the partial oxygen pressure (pO(2)) of subcutaneous tissue and 15 rats were divided into the following three groups of 5 after an experimentally induced ligament tear: Group A, control group; Group B, injection of 0.5 ml hyaluronan to the wound transcutaneously; Group C, injection of 0.5 ml hyaluronan mixed with haemoglobin and oxygen (n=5). At 7 days post-ligament injury, we compared the ligaments of the three treatment groups for gross appearance, histology and expression of vascular endothelial growth factor (VEGF) mRNA by RT-PCR. Our results indicate that the pO(2) was immediately elevated to 334.6 mmHg by topical oxygen injection and this method was effective in promoting vessel formation in comparison to the control group (p<0.01). However, the expression of VEGF mRNA in the topical oxygen injection group (Group C) was lower than that in control group (p<0.05). Our results suggest that oxygen is able to accelerate vessel formation in spite of its effect of decreasing VEGF mRNA. Our method of using topical injection proved to be useful in healing the ligament and the wound.

  8. Evaluation of Lung Function in Liver Transplant Candidates.

    PubMed

    Roque, L; Sankarankutty, A K; Silva, O C; Mente, E D

    2018-04-01

    A wide variety of pulmonary conditions are found in cirrhotic patients and may compromise the pleura, diaphragm, parenchyma, and pulmonary vasculature, influencing the results of liver transplantation. To evaluate the pulmonary function (lung capacities, volumes, and gasometric study) of patients with liver cirrhosis awaiting liver transplantation. Cirrhotic patients, subdivided into 3 groups stratified by liver disease severity using the Child-Pugh-Turcotte score, were compared with a control group of healthy volunteers. In spirometry, the parameters evaluated were total lung capacity, forced volume in the first second, and the relationship between forced volume in the first minute and forced vital capacity. Blood gas analysis was performed. In the control group, arterial oxygenation was evaluated by peripheral oxygen saturation by pulse oximetry. Of the 55 patients (75% men, 51 ± 12.77 years), 11 were Child A (73% men, 52 ± 14.01 years), 23 were Child B (75% men, 51 ± 12.77 years), and 21 were Child C (95% men, 50 ± 12.09 years). The control group had 20 individuals (50% men, 47 ± 8.15 years). Pulmonary capacities and volumes by the parameters evaluated were within the normal range. Arterial blood gas analysis detected no hypoxemia, but a tendency to low partial gas pressure was noted. In this population of cirrhotic patients the parameters of spirometry were normal in relation to the lung capacities and volumes in the different groups. No hypoxemia was detected, but a tendency to hypocapnia in the blood gas was noted. Copyright © 2018. Published by Elsevier Inc.

  9. Beneficial effects of warmed humidified oxygen combined with nebulized albuterol and ipratropium in pediatric patients with acute exacerbation of asthma in winter months.

    PubMed

    Nibhanipudi, Kumara; Hassen, Getaw Worku; Smith, Arthur

    2009-11-01

    The objective of this study was to determine whether a combination of nebulized albuterol and ipratropium with warmed humidified oxygen would be more beneficial when compared to the same combination with humidified oxygen at room temperature. Albuterol alone was tested in the same settings. All patients between 6 and 17 years of age who presented to a pediatric emergency department in the winter months with acute exacerbation of bronchial asthma were given a combination of nebulized albuterol and ipratropium with warmed or room temperature humidified oxygen. Peak flow was measured before and after the treatment. Sixty patients were enrolled in the study, with 15 subjects in each group. The mean increase in peak flow in the albuterol-ipratropium with warm humidified oxygen group was 52.6, and in the albuterol-ipratropium with humidified oxygen at room temperature group, it was 26.2. The results of the albuterol with warmed humidified oxygen and with humidified oxygen at room temperature groups were 20.6 and 34.3, respectively. The differences between the groups were statistically significant. Our study shows that warmed humidified oxygen given along with the combination of nebulized albuterol and ipratropium is more beneficial for pediatric patients having an acute exacerbation of bronchial asthma in the winter months when compared to nebulized albuterol alone with warmed humidified oxygen, nebulized albuterol alone with room temperature humidified oxygen, or a combination of nebulized albuterol and ipratropium with room temperature humidified oxygen.

  10. Association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults.

    PubMed

    Hwang, Jungyun; Kim, Kiyoung; Brothers, R Matthew; Castelli, Darla M; Gonzalez-Lima, F

    2018-05-01

    Studies of the effects of physical activity on cognition suggest that aerobic fitness can improve cognitive abilities. However, the physiological mechanisms for the cognitive benefit of aerobic fitness are less well understood. We examined the association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Participants aged 18-29 years underwent measurements of cerebral vasomotor reactivity (CVMR) in response to rebreathing-induced hypercapnia, maximal oxygen uptake (VO 2 max) during cycle ergometry to voluntary exhaustion, and simple- and complex-neurocognitive assessments at rest. Ten subjects were identified as having low-aerobic fitness (LF < 15th fitness percentile), and twelve subjects were identified as having high-aerobic fitness (HF > 80th fitness percentile). There were no LF versus HF group differences in cerebrovascular hemodynamics during the baseline condition. Changes in middle cerebral artery blood velocity and CVMR during hypercapnia were elevated more in the HF than the LF group. Compared to the LF, the HF performed better on a complex-cognitive task assessing fluid reasoning, but not on simple attentional abilities. Statistical modeling showed that measures of VO 2 max, CVMR, and fluid reasoning were positively inter-correlated. The relationship between VO 2 max and fluid reasoning, however, did not appear to be reliably mediated by CVMR. In conclusion, a high capacity for maximal oxygen uptake among healthy, young adults was associated with greater CVMR and better fluid reasoning, implying that high-aerobic fitness may promote cerebrovascular and cognitive functioning abilities.

  11. Myocardial blood flow and its transit time, oxygen utilization, and efficiency of highly endurance-trained human heart.

    PubMed

    Heinonen, Ilkka; Kudomi, Nobuyuki; Kemppainen, Jukka; Kiviniemi, Antti; Noponen, Tommi; Luotolahti, Matti; Luoto, Pauliina; Oikonen, Vesa; Sipilä, Hannu T; Kopra, Jaakko; Mononen, Ilkka; Duncker, Dirk J; Knuuti, Juhani; Kalliokoski, Kari K

    2014-07-01

    Highly endurance-trained athlete's heart represents the most extreme form of cardiac adaptation to physical stress, but its circulatory alterations remain obscure. In the present study, myocardial blood flow (MBF), blood mean transit time (MTT), oxygen extraction fraction (OEF) and consumption (MVO2), and efficiency of cardiac work were quantified in highly trained male endurance athletes and control subjects at rest and during supine cycling exercise using [(15)O]-labeled radiotracers and positron emission tomography. Heart rate and MBF were lower in athletes both at rest and during exercise. OEF increased in response to exercise in both groups, but was higher in athletes (70 ± 21 vs. 63 ± 11 % at rest and 86 ± 13 vs. 73 ± 10 % during exercise). MTT was longer and vascular resistance higher in athletes both at rest and during exercise, but arterial content of 2,3-diphosphoglycerate (oxygen affinity) was unchanged. MVO2 per gram of myocardium trended (p = 0.08) lower in athletes both at rest and during exercise, while myocardial efficiency of work and MVO2 per beat were not different between groups. Arterial levels of free fatty acids were ~twofold higher in athletes likely leading to higher myocardial fatty acid oxidation and hence oxygen cost, which may have blunted the bradycardia-induced decrease in MVO2. Finally, the observed group differences in MBF, OEF, MTT and vascular resistance remained significant also after they were controlled for differences in MVO2. In conclusion, in highly endurance-trained human heart, increased myocardial blood transition time enables higher oxygen extraction levels with a lower myocardial blood flow and higher vascular resistance. These physiological adaptations to exercise training occur independently of the level of oxygen consumption and together with training-induced bradycardia may serve as mechanisms to increase functional reserve of the human heart.

  12. Feasibility study of oxygen-dispensing emitters for thermionic converters, phase 1

    NASA Technical Reports Server (NTRS)

    Desteese, J. G.

    1972-01-01

    A metal/ceramic Marchuk tube was used to measure work functions of oxygen-doped tantalum, to determine applicability of the material to plasma-mode thermionic converters. Oxygen-doped tantalum was shown to increase in work function monotonically with oxygen doping in the range 0.1 to 0.3 atomic percent. Oxygenated test emitters were run at an average temperature of 2165 K and a T/T sub Cs ratio -5.8 to observe the influence of oxygen depletion. Bare work function decreased with outgassing of oxygen. Projections were made based on outgassing kinetics and area/volume ratios to calculate the longevity of oxygen doping in a practical converter. Calculations indicated that the program goal of 10,000 hr could be achieved at 1800 K with an initial oxygen doping of 1 atomic percent and a practical emitter area/volume ratio.

  13. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875

  14. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    PubMed

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  15. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance state. This study illustrated the microbial nitrogen transformation accompanying the early diagenesis of organic matter in marine sediments, which scenario might be occurring in a wide range of stratified environments on Earth.

  16. Surface modification of Polycaprolactone (PCL) microcarrier for performance improvement of human skin fibroblast cell culture

    NASA Astrophysics Data System (ADS)

    Samsudin, N.; Hashim, Y. Z. H.; Arifin, M. A.; Mel, M.; Salleh, H. Mohd; Sopyan, I.; Hamid, M. Abdul

    2018-01-01

    Polycaprolactone (PCL) has many advantages for use in biomedical engineering field. In the present work PCL microcarriers of 150-200 μm were fabricated using oil-in-water (o/w) emulsification coupled with solvent evaporation method. The surface charge of PCL microcarrier was then been improved by using ultraviolet/ozone treatment to introduce oxygen functional group. Immobilisation of gelatin onto PCL microspheres using zero-length crosslinker provides a stable protein-support complex, with no diffusional barrier which is ideal for mass processing. The optimum concentration of carboxyl group (COOH) absorbed on the surface was 1495.9 nmol/g and the amount of gelatin immobilized was 1797.3 μg/g on UV/O3 treated microcarriers as compared to the untreated (320 μg/g) microcarriers. The absorption of functional oxygen groups on the surface and the immobilized gelatin was confirmed with Fourier Transformed Infrared spectroscopy and the enhancement of hydrophilicity of the surface was confirmed using water contact angle measurement which decreased (86.93° - 49.34°) after UV/O3 treatment and subsequently after immobilisation of gelatin. The attachment and growth kinetics for human skin fibroblast cell (HSFC) showed that adhesion occurred much more rapidly for gelatin immobilised surface as compared to untreated PCL and UV/O3 PCL microcarrier.

  17. Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes.

    PubMed

    Naruto, Masayuki; Agrawal, Santosh; Toda, Katsuaki; Saito, Susumu

    2017-06-13

    Carboxylic acids (CAs) are one of the most ubiquitous and important chemical feedstocks available from biorenewable resources, CO 2 , and the petrochemical industry. Unfortunately, chemoselective catalytic transformations of CH n CO 2 H (n = 1-3) groups into other functionalities remain a significant challenge. Herein, we report rhenium V complexes as extremely effective precatalysts for this purpose. Compared to previously reported heterogeneous and homogeneous catalysts derived from high- or low-valent metals, the present method involves a α-C-H bond functionalization, a hydrogenation, and a hydrogenolysis, which affords functionalized alcohols with a wide substrate scope and high chemoselectivity under relatively mild reaction conditions. The results represent an important step toward a paradigm shift from 'low-valent' to 'high-valent' metal complexes by exploring a new portfolio of selective functional group transformations of highly oxygenated organic substrates, as well as toward the exploitation of CAs as a valuable biorenewable feedstock.

  18. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    PubMed

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  19. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon.

    PubMed

    Xie, Ruzhen; Jin, Yan; Chen, Yao; Jiang, Wenju

    2017-12-01

    In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N 2 /77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.

  20. The carbon functional group budget of a peatland

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth; Apperley, David

    2016-04-01

    Organic matter samples were taken from each organic matter reservoir and fluvial flux found in a peatland and analysed by elemental analysis for carbon, hydrogen, nitrogen and oxygen content, and by 13C solid state nuclear magnetic resonance (NMR) for functional group composition. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, four different depths from a peat core, and monthly samples of fluvial particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK. The proportion of carbon atoms from each of the eight carbon functional groups (C-alkyl, N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C, aromatic/unsaturated C, phenolic C, aldehyde/ketone C and amide/carboxyl C) from each type of organic matter were combined with an existing carbon budget from the same site, to give a functional group carbon budget. The budget results show that the ecosystem is accumulating N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C and phenolic C groups, but losing C-alkyl, aromatic/unsaturated C, amide/carboxyl C and aldehyde/ketone C. Comparing the functional group compositions between the sampled organic matter pools shows that DOM arises from two distinct sources; from the peat itself and from a vegetation source.

  1. Reversible and irreversible reactions of three oxygen precursors on InAs(0 0 1)-(4 × 2)/ c(8 × 2)

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Droopad, Ravi; Kummel, Andrew C.

    2010-10-01

    The substrate reactions of three common oxygen sources for gate oxide deposition on the group III rich InAs(0 0 1)-(4 × 2)/ c(8 × 2) surface are compared: water, hydrogen peroxide (HOOH), and isopropyl alcohol (IPA). Scanning tunneling microscopy reveals that surface atom displacement occurs in all cases, but via different mechanisms for each oxygen precursor. The reactions are examined as a function of post-deposition annealing temperature. Water reaction shows displacement of surface As atoms, but it does not fully oxidize the As; the reaction is reversed by high temperature (450 °C) annealing. Exposure to IPA and subsequent low-temperature annealing (100 °C) show the preferential reaction on the row features of InAs(0 0 1)-(4 × 2)/ c(8 × 2), but higher temperature anneals result in permanent surface atom displacement/etching. Etching of the substrate is observed with HOOH exposure for all annealing temperatures. While nearly all oxidation reactions on group IV semiconductors are irreversible, the group III rich surface of InAs(0 0 1) shows that oxidation displacement reactions can be reversible at low temperature, thereby providing a mechanism of self-healing during oxidation reactions.

  2. Effects of carbogen on cochlear blood flow and hearing function following acute acoustic trauma in guinea pigs.

    PubMed

    Zhao, Jing; Sun, Jianjun; Liu, Yang

    2012-10-01

    Disturbances of microcirculation and hemorheological changes in the inner ear are the results of noise-induced hearing loss (NIHL). Both the disturbances of microcirculation and hemorheological changes are the etiologies of NIHL development, but they are also the results. Although previous reports that inhalation of high concentration of CO(2) may increase cochlear blood flow (CoBF), the effects of carbogen on the cochlear microcirculation and NIHL remain unclear. Changes induced by noise, carbogen and pure oxygen within the cochlear lateral wall microvasculature and in hearing thresholds were observed in guinea pigs using intravital microscopy and the auditory brainstem response. At the same time, arterial oxygen saturation and morphologic changes of cochlear hair cells were observed. Carbogen inhalation increased vessel diameters and blood flow velocities. Hearing thresholds elevation in the carbogen group was smaller than those in the control and oxygen group (p <0.05). Carbogen inhalation produced a trend toward less threshold shift after noise exposure, which reached statistical significance after day 3 (p <0.01). Respiratory acidosis was not found in our study. The segmented basal membranes of Corti in three groups indicated that no losses or discorders of hair cells were found. Carbogen inhalation can preserve hearing in animal models after acute acoustic trauma. Copyright © 2012 IMSS. All rights reserved.

  3. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    PubMed

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [Effects of trimetazidine on serum oxygen free radicals in congestive heart failure].

    PubMed

    Ma, Qi-lin; Xie, Yong; Zhang, Sai-dan

    2002-12-28

    To investigate the level of serum superoxide dismutase (SOD) and maiondialdehyde (MDA) and left ventricular systolic function in congestive heart failure (CHF) and to evaluate the influence of trimetazidine on them. Serum SOD and MDA were measured in 50 patients with heart function from grade two to four and 15 normal subjects. All the persons underwent echocardiography to determine the left ventricular end-systolic volume index (LVESVI) and the left ventricular ejection fraction (EF). The patients with CHF were randomly treated with trimetazidine plus routine therapy (n = 25) or routine therapy only (n = 25) for 8 weeks with evaluations made before and after the treatment. The SOD level and EF in the patients with CHF significantly decreased and the MDA level and LVESVI in those patients significantly increased compared with the normal subjects (P < 0.05); the severer the CHF, the greater the changes. After the treatment, the SOD level and EF increased significantly and MDA and LVESVI decreased significantly (P < 0.01) in both the trimetazidine and the conventional groups. And these changes were more obvious in the trimetazidine group than in the conventional group(P < 0.01). Oxygen free radicals play an important role in the pathophysiologic changes of CHF. The level of serum SOD and MDA can indicate the degree of CHF. Trimetazidine not only increases the level of SOD and decreases the level of MDA, but also improves the left ventricular systolic function.

  5. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.

    PubMed

    Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  6. Contralateral cerebral hemoglobin oxygen saturation changes in patients undergoing thoracotomy with general anesthesia with or without paravertebral block: a randomized controlled trial.

    PubMed

    Mukaihara, Keika; Hasegawa-Moriyama, Maiko; Kanmura, Yuichi

    2017-12-01

    Perioperative analgesia during thoracotomy is often achieved by combining paravertebral block (PVB) with general anesthesia (GA). Functional near-infrared spectroscopy (NIRS) can detect changes in cerebral oxygenation resulting from nociceptive stimuli in the awake state or under sedation. We used NIRS to measure changes in cerebral blood flow provoked by thoracotomy incision made under GA and determine how these changes were influenced by supplementation of GA with PVB. Thirty-four patients undergoing elective thoracotomy were enrolled. Patients were randomly assigned to a group receiving only GA, or GA combined with PVB (GA + PVB). Changes in cerebral oxygenated hemoglobin (ΔO 2 Hb), deoxygenated-Hb (ΔHHb), and total-Hb (ΔtotalHb) were evaluated by NIRS as surgery began. In the GA group, ΔO 2 Hb was significantly higher in the hemisphere contralateral to the side of surgery when the incision was made and 2 min after incision compared with the ipsilateral side (start of surgery, P < 0.01; 2 min, P < 0.05). In contrast, there were no significant changes in the ΔO 2 Hb at any of the time points in the GA + PVB group. Comparable with ΔO 2 Hb, the concentration of ΔtotalHb was significantly higher in the contralateral hemisphere in the GA group at the start of surgery (P < 0.05). Changes in the cerebral O 2 Hb concentration were detected by NIRS immediately after surgical incision under GA, but not in the presence of a PNB. NIRS could be used to monitor surgical pain. PVB inhibited changes in oxygenation induced by incision-provoked pain.

  7. Reliability of the five-repetition sit-to-stand test in patients with chronic obstructive pulmonary disease on domiciliary oxygen therapy.

    PubMed

    Cani, Katerine Cristhine; Silva, Isabela Julia Cristiana Santos; Karloh, Manuela; Gulart, Aline Almeida; Matte, Darlan Laurício; Mayer, Anamaria Fleig

    2018-06-01

    To evaluate the reliability and learning effect of the five-repetition sit-to-stand test (5STSt) in severe and very severe chronic obstructive pulmonary disease (COPD) patients on domiciliary oxygen therapy compare the results with those of COPD patients not on such therapy. Twenty-eight COPD patients were included in the domiciliary oxygen therapy group (DOTG) and 17 in the control group (CG). The participants of the groups were paired by age, sex, body mass index, and lung function. The groups performed two 5STSt (5STSt 1 and 5STSt 2 ). In total, 96% of the patients in the DOTG performed better on the second 5STSt (5STSt 2 ) (17.1 ± 4.63s), with an average reduction of 3.87 ± 3.50 s (p < 0.001) and a learning effect of 18.4%. In the CG, 82.3% of patients had better performance on the 5STSt 2 (15.06 ± 3.45 s), with an average reduction of 1.38 ± 2.51 s (p = 0.035) and a learning effect of 8.39%. The 5STSt had an ICC of 0.79 (95%CI: 0.02-0.93; p < 0.001) in the DOTG and of 0.89 (95%CI: 0.65-0.96; p < 0.001) in the CG. The 5STSt is reliable in patients with severe and very severe COPD on domiciliary oxygen therapy, with learning effect of nearly 18% in the DOTG. Thus, performing two tests is recommended to achieve the patient´s best performance in this population.

  8. [Specialties of singlet oxygen and ozone inhalations action on lipoperozydation and antioxidant system of rats blood and tissues].

    PubMed

    Martusevich, A A; Martusevich, A K; Peretiagin, S P

    2013-09-01

    The aim of this work was the analysis of singlet oxygen and the ozone effect on lipid peroxidation and antioxidant activity of rat organs and blood. Wistar rats were randomly divided into five groups: control group (without any manipulations; n = 10) and four main groups (n = 10 in each group) with inhalations by dry, moisture and oil-processed ozone-oxygen mixture (ozone concentration 60 micro g/l) or singlet oxygen, respectively. Activity of pro- and antioxidant systems was estimated in blood and tissues (lungs, heart, liver and kidney) by inducing biochemiluminescence. Singlet oxygen was shown to exert the "mildest" effect with stimulation of blood antioxidant potential and saving tissue oxidative potential without hyperactivation of lipid peroxidation. Use of moistened ozone-oxygen mixture caused moderate stimulating action on antioxidant re serves of blood and tissues. Dry ozone-oxygen mixture clearly decreased lipid peroxidation intensity.

  9. Self-propagated combustion synthesis of few-layered graphene: an optical properties perspective.

    PubMed

    Mohandoss, Manonmani; Sen Gupta, Soujit; Kumar, Ramesh; Islam, Md Rabiul; Som, Anirban; Mohd, Azhardin Ganayee; Pradeep, T; Maliyekkal, Shihabudheen M

    2018-04-26

    This paper describes a labour efficient and cost-effective strategy to prepare few-layered of reduced graphene oxide like (RGOL) sheets from graphite. The self-propagated combustion route enables the bulk production of RGOL sheets. Microscopic and spectroscopic analyses confirmed the formation of few-layer graphene sheets of an average thickness of ∼3 nm and the presence of some oxygen functional groups with a C/O ratio of 8.74. A possible mechanistic pathway for the formation of RGOL sheets is proposed. The optical properties of the RGOL sample were studied in detail by means of Spectroscopic Ellipsometry (SE). The experimental abilities of SE in relating the optical properties with the number of oxygen functionalities present in the samples are explored. The data were analysed by a double-layered optical model along with the Drude-Lorentz oscillatory dispersion relation. The refractive index (n = 2.24), extinction coefficient (k = 2.03), and dielectric functions are obtained using point-by-point analysis and are also checked for Kramers-Kronig (KK) consistency.

  10. Hyperbaric oxygen therapy for Bell's palsy.

    PubMed

    Holland, N Julian; Bernstein, Jonathan M; Hamilton, John W

    2012-02-15

    Bell's palsy is an idiopathic, acute unilateral facial weakness that evolves rapidly and is maximal within two days. Moderate ear discomfort, sensitivity to sound and reduced tearing may occur. To assess the effects of hyperbaric oxygen therapy on recovery of facial function in adults with moderate to severe Bell's palsy. We searched the Cochrane Neuromuscular Disease Group Specialized Register (January 2012), CENTRAL (2011, Issue 4), MEDLINE (January 1966 to January 2012), EMBASE (January 1980 to January 2012), CINAHL (1937 to January 2012), AMED (1985 to January 2012), LILACS (January 1982 to January 2012). In addition we made a systematic search for relevant controlled trials in specific hyperbaric literature sources. Randomised controlled trials or quasi-randomised controlled trials of adults (over 16 years of age) undergoing hyperbaric oxygen therapy for moderate to severe Bell's palsy. We considered studies to be of sufficient quality for inclusion in the review only if there was blinding in the assessment of the facial palsy grade. We planned to include studies of HBOT used as adjuvant therapy, or in addition to routine medical therapy (including corticosteroids or antivirals, or both). Both treatment and control groups were to receive the same baseline therapy. HBOT had to be delivered at concentrations greater than or equal to 1.2 ATA in a hyperbaric oxygen chamber as a series of dives of 30 to 120 minutes. Two reviewers independently assessed eligibility and study quality and extracted data. We contacted study authors for additional information. Our searches found no randomised controlled trials or quasi-randomised controlled trials that met the eligibility criteria for this review.There is very low quality evidence from one randomised trial involving 79 participants with acute Bell's palsy, but this study was excluded as the outcome assessor was not blinded to treatment allocation and thus did not meet pre-defined eligibility criteria. The trial compared 42 people who received hyperbaric oxygen therapy (2.8 atmospheres for 60 minutes twice daily, five days per week until the facial palsy resolved; maximum 30 'dives') and placebo tablets with 37 people who received placebo hyperbaric oxygen therapy (achieving only a normal partial pressure of oxygen) and prednisone (40 mg twice daily, reducing over eight days). Facial function recovered in more participants treated with hyperbaric oxygen therapy than with prednisone (hyperbaric oxygen therapy, 40/42 (95%); prednisone, 28/37 (76%); risk ratio 1.26, 95% CI 1.04 to 1.53). There were no reported major complications and all participants completed the trial. Very low quality evidence from one trial suggests that hyperbaric oxygen therapy may be an effective treatment for moderate to severe Bell's palsy, but this study was excluded as the outcome assessor was not blinded to treatment allocation. Further randomised controlled trials are needed.

  11. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    NASA Astrophysics Data System (ADS)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  12. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications

    USGS Publications Warehouse

    Lyons, P.C.; Mastalerz, Maria; Orem, W.H.

    2009-01-01

    A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell and Yallourn fossil resins from brown coal (lignite B) Australia do not have some of the FTir characteristics of the New Zealand resins, which most likely indicates they have a different plant source because different degrees of oxidation and weathering and changes due to fires (i.e., charring) can be ruled out. Our results have implications for studies of the maturation, provenance, and botanical sources of fossil resins and resinites in Eocene and Miocene coals and sediments of New Zealand and Australia. ?? 2009 Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  14. Learning from data to design functional materials without inversion symmetry

    PubMed Central

    Balachandran, Prasanna V.; Young, Joshua; Lookman, Turab; Rondinelli, James M.

    2017-01-01

    Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ∼3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities. PMID:28211456

  15. Combined application of dexamethasone and hyperbaric oxygen therapy yields better efficacy for patients with delayed encephalopathy after acute carbon monoxide poisoning.

    PubMed

    Xiang, Wenping; Xue, Hui; Wang, Baojun; Li, Yuechun; Zhang, Jun; Jiang, Changchun; Liang, Furu; Pang, Jiangxia; Yu, Lehua

    2017-01-01

    Delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) commonly occurs after recovering from acute CO poisoning. This study was performed to assess the efficacy of the combined application of dexamethasone and hyperbaric oxygen (HBO) therapy in patients with DEACMP. A total of 120 patients with DEACMP were recruited and randomly assigned into the experimental group (receiving dexamethasone 5 mg/day or 10 mg/day plus HBO therapy) and control group (HBO therapy as monotherapy). Meanwhile, the conventional treatments were provided for all the patients. We used the Mini-Mental State Examination (MMSE) scale to assess the cognitive function, the National Institutes of Health Stroke Scale (NIHSS) to assess the neurological function and the remission rate (RR) to assess the clinical efficacy. Myelin basic protein (MBP) in the cerebrospinal fluid (CSF) was also measured. After 4 weeks of treatment, compared to the control group, the experimental group had a significantly higher remission rate ( P =0.032), a significantly higher average MMSE score ( P =0.037) and a significantly lower average NIHSS score ( P =0.002). Meanwhile, there was a trend toward better improvement with dexamethasone 10 mg/day, and the level of MBP in the CSF of patients was significantly lower in the experimental group than in the control group ( P <0.0001). The addition of dexamethasone did not significantly increase the incidence of adverse events. These results indicate that the combined application of dexamethasone and HBO therapy could yield better efficacy for patients with DEACMP and should be viewed as a potential new therapy.

  16. Effect of Ultrafiltration on Pulmonary Function and Interleukins in Patients Undergoing Cardiopulmonary Bypass.

    PubMed

    Kosour, Carolina; Dragosavac, Desanka; Antunes, Nilson; Almeida de Oliveira, Rosmari Aparecida Rosa; Martins Oliveira, Pedro Paulo; Wilson Vieira, Reinaldo

    2016-08-01

    To evaluate the effect of ultrafiltration on interleukins, TNF-α levels, and pulmonary function in patients undergoing coronary artery bypass grafting (CABG). Prospective, randomized, controlled trial. University hospital. Forty patients undergoing CABG were randomized into a group assigned to receive ultrafiltration (UF) during cardiopulmonary bypass (CPB) or into another group (control) that underwent the same procedure but without ultrafiltration. Interleukins and TNF-α levels, pulmonary gas exchange, and ventilatory mechanics were measured in the preoperative, intraoperative, and postoperative periods. Interleukins and TNF-α also were analyzed in the perfusate of the test group. There were increases in IL-6 and IL-8 at 30 minutes after CPB and 6, 12, 24, and 36 hours after surgery, along with an increase in TNF-α at 30 minutes after CPB and 24, 36, and 48 hours after surgery in both groups. IL-1 increased at 30 minutes after CPB and 12 hours after surgery, while IL-6 increased 24 and 36 hours after surgery in the UF group. The analysis of the ultrafiltrate showed the presence of TNF-α and traces of IL-1β, IL-6, and IL-8. There were alterations in the oxygen index, alveolar-arterial oxygen difference, deadspace, pulmonary static compliance and airway resistance after anesthesia and sternotomy, as well as in airway resistance at 6 hours after surgery in both groups, with no difference between them. Ultrafiltration increased the serum level of IL-1 and IL-6, while it did not interfere with gas exchange and pulmonary mechanics in CABG. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Surface Coverage and Metallicity of ZnO Surfaces from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre; The Schleife research Group Team

    Zinc oxide (ZnO) surfaces are widely used in different applications such as catalysis, biosensing, and solar cells. These surfaces are, in many cases, chemically terminated by hydroxyl groups. In experiment, a transition of the ZnO surface electronic properties from semiconducting to metallic was reported upon increasing the hydroxyl coverage to more than approximately 80 %. The reason for this transition is not well understood yet. We report on first-principles calculations based on density functional theory for the ZnO [ 10 1 0 ] surface, taking different amounts of hydroxyl coverage into account. We calculated band structures for fully relaxed configurations and verified the existence of this transition. However, we only find the fully covered surface to be metallic. We thus explore the possibility for clustering of the surface-terminating hydroxyl groups based on total-energy calculations. We also found that the valence band maximum consists of oxygen p states from both the surface hydroxyl groups and the surface oxygen atoms of the material. The main contribution to the metallicity is found to be from the hydroxyl groups.

  18. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  19. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Wenlong; Xiao, Dan; Wang, Xinhui

    2017-09-01

    Oxygen-rich hierarchical porous carbon has been fabricated using pomelo peel fiber as a carbon source via an improved KOH activation method. The morphology and chemical composition of the obtained carbon materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), electron microscopy (EM), Raman spectra and elemental analysis. The unique porous structure with abundant oxygen functional groups is favorable to capacitive behavior, and the as-prepared carbon material exhibits high specific capacitance of 222.6 F g-1 at 0.5 A g-1 in 6 M KOH and superior stability over 5000 cycles. This work not only describes a simple way to prepare high-performance carbon material from the discarded pomelo peel, but also provides a strategy for its disposal issue and contributes to the environmental improvement.

  20. Cardio-respiratory function during exercise in the cobia, Rachycentron canadum: The impact of crude oil exposure.

    PubMed

    Nelson, Derek; Stieglitz, John D; Cox, Georgina K; Heuer, Rachael M; Benetti, Daniel D; Grosell, Martin; Crossley, Dane A

    2017-10-01

    Aerobic exercise capacity is dependent on the cardiorespiratory system's ability to supply oxygen at a rate that meets energetic demands. In teleost fish crude oil exposure, with the associated polycyclic aromatic hydrocarbons (PAH's), reduces exercise performance and this has been hypothesized to be due to compromised cardiovascular function. In this study, we test this hypothesis by simultaneously measuring cardiovascular performance, oxygen consumption, and swim performance in a pelagic teleost, the cobia (Rachycentron canadum). Metabolic rate increased over 300% in both groups during the swim trial but as the fish approached the critical swim speed (U crit ) MO 2 was 12% lower in the oil exposed fish. Further, stroke volume was initially 35% lower while heart rate was 15% higher in the oil exposed compared to control fish. Our findings suggested, while aspects of cardiovascular and metabolic function are altered by oil exposure, additional studies are needed to further understand the homeostatic mechanisms that may sustain cardiovascular function at higher exercise intensities in cobia. Copyright © 2017. Published by Elsevier Inc.

  1. Chemical composition of asphaltenes of crude oil from Baradero field in Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platonov, V.V.; Proskuryakov, V.A.; Klyavina, O.A.

    Asphaltenes of crude oil from Baradero field in Cuba have been studied by physical and physicochemical methods. Dynamics of distribution of nitrogen, sulfur, and oxygen and also various functional groups in asphaltenes has been described. These data can be used for the proper deasphalting of crude oil and further treatment of asphaltenes.

  2. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    NASA Astrophysics Data System (ADS)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  3. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    PubMed Central

    Abdou, Elias; Jiménez de Bagüés, María P.; Martínez-Abadía, Ignacio; Ouahrani-Bettache, Safia; Pantesco, Véronique; Occhialini, Alessandra; Al Dahouk, Sascha; Köhler, Stephan; Jubier-Maurin, Véronique

    2017-01-01

    For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen. PMID:28573107

  4. Age Effects on Cerebral Oxygenation and Behavior in Children with Sleep-disordered Breathing.

    PubMed

    Tamanyan, Knarik; Walter, Lisa M; Weichard, Aidan; Davey, Margot J; Nixon, Gillian M; Biggs, Sarah N; Horne, Rosemary S C

    2018-06-01

    Childhood sleep-disordered breathing ranges in severity from primary snoring to obstructive sleep apnea and is associated with behavioral and neurocognitive deficits. It remains unknown why children with primary snoring, who do not experience peripheral oxygen desaturation or sleep fragmentation, experience similar daytime deficits as those with obstructive sleep apnea or why effects are age-dependent. To examine cerebral tissue oxygenation and oxygen extraction as an explanation for daytime deficits in children with primary snoring. Children referred for suspected sleep-disordered breathing and nonsnoring control subjects underwent overnight polysomnography with near-infrared spectroscopy. Children were categorized into 3- to 6-year (n = 87) and 7- to 12-year (n = 72) old groups, and according to the obstructive apnea-hypopnea index into primary snoring (≤1 event/h), mild (>1-5 events/h), and moderate/severe obstructive sleep apnea (>5 events/h). Cognitive and behavioral performance were assessed. In the 3- to 6-year group, there were no differences in cerebral oxygenation or oxygen extraction between severity groups. In the 7- to 12-year group, cerebral oxygenation was significantly lower, although these differences were small, in control subjects versus primary snoring during quiet wakefulness before sleep onset, N1, and REM. Oxygen extraction was significantly higher in control subjects versus primary snoring during N1 sleep, with no differences between primary snoring and obstructive sleep apnea groups. Cerebral oxygenation was not associated with cognitive performance in either age group or behavior in the 3- to 6-year group; however, it was associated with behavior in the school-aged children. Children with sleep-disordered breathing are able to maintain cerebral oxygenation, and the small changes observed are not related to cognitive deficits. However, in older children these differences were related to behavioral measures.

  5. Oxygen administration to hypoxic children in Ethiopia: a randomized controlled study comparing complications in the use of nasal prongs with nasopharyngeal catheters.

    PubMed

    Muhe, L; Degefu, H; Worku, B; Oljira, B; Mulholland, E K

    1997-09-01

    Oxygen administration is one of the most important therapeutic interventions for a child with severe acute lower respiratory tract infection (ALRI). Inexpensive and efficient methods of oxygen administration are highly desirable in hospitals in developing countries. The objectives of this study were to compare the frequency and nature of complications when nasopharyngeal catheters or nasal prongs are used to deliver oxygen. One hundred and twenty-one children between the ages of 2 weeks and 5 years with hypoxia due to ALRI were randomized to receive oxygen via a catheter (61 children) or via nasal prongs (60 children). The two groups were similar in terms of diagnoses, clinical severity, oxygen saturation on admission and case fatality rates. There was no difference in the incidence of hypoxaemic episodes between the two groups. The oxygen flow rates required on the day of admission for adequate oxygenation (SaO2 > 90%) ranged from 0.8 litres per minute to 1.2 litres per minute. The required oxygen flow rate decreased during the course of treatment. Mucus production was more of a problem in the catheter group, and nasal blockage, intolerance of the method of oxygen administration and nursing effort were generally higher amongst the catheter group, but none of these differences was significant. Ulceration or bleeding of the nose was significantly more common in the catheter group (19.7% vs 6.7%, p < 0.05). Abdominal distension and nasal perforation were not seen in either group. This study suggests that nasal prongs are safer, more comfortable and require less nursing expertise than nasopharyngeal catheters for administration of oxygen to children.

  6. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemicalmore » reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.« less

  7. Cognitive function in patients with stable coronary heart disease: Related cerebrovascular and cardiovascular responses.

    PubMed

    Gayda, Mathieu; Gremeaux, Vincent; Bherer, Louis; Juneau, Martin; Drigny, Joffrey; Dupuy, Olivier; Lapierre, Gabriel; Labelle, Véronique; Fortier, Annik; Nigam, Anil

    2017-01-01

    Chronic exercise has been shown to prevent or slow age-related decline in cognitive functions in otherwise healthy, asymptomatic individuals. We sought to assess cognitive function in a stable coronary heart disease (CHD) sample and its relationship to cerebral oxygenation-perfusion, cardiac hemodynamic responses, and [Formula: see text] peak compared to age-matched and young healthy control subjects. Twenty-two young healthy controls (YHC), 20 age-matched old healthy controls (OHC) and 25 patients with stable CHD were recruited. Cognitive function assessment included short term-working memory, perceptual abilities, processing speed, cognitive inhibition and flexibility and long-term verbal memory. Maximal cardiopulmonary function (gas exchange analysis), cardiac hemodynamic (impedance cardiography) and left frontal cerebral oxygenation-perfusion (near-infra red spectroscopy) were measured during and after a maximal incremental ergocycle test. Compared to OHC and CHD, YHC had higher [Formula: see text] peak, maximal cardiac index (CI max), cerebral oxygenation-perfusion (ΔO2 Hb, ΔtHb: exercise and recovery) and cognitive function (for all items) (P<0.05). Compared to OHC, CHD patients had lower [Formula: see text] peak, CI max, cerebral oxygenation-perfusion (during recovery) and short term-working memory, processing speed, cognitive inhibition and flexibility and long-term verbal memory (P<0.05). [Formula: see text] peak and CI max were related to exercise cerebral oxygenation-perfusion and cognitive function (P<0.005). Cerebral oxygenation-perfusion (exercise) was related to cognitive function (P<0.005). Stable CHD patients have a worse cognitive function, a similar cerebral oxygenation/perfusion during exercise but reduced one during recovery vs. their aged-matched healthy counterparts. In the all sample, cognitive functions correlated with [Formula: see text] peak, CI max and cerebral oxygenation-perfusion.

  8. Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for extracorporeal membrane oxygenation circuit/membrane oxygenator change: a retrospective pediatric study.

    PubMed

    Irby, Katherine; Swearingen, Christopher; Byrnes, Jonathan; Bryant, Joshua; Prodhan, Parthak; Fiser, Richard

    2014-05-01

    Investigate whether anti-Factor Xa levels are associated with the need for change of circuit/membrane oxygenator secondary to thrombus formation in pediatric patients. Retrospective single institution study. Retrospective record review of 62 pediatric patients supported with extracorporeal membrane oxygenation from 2009 to 2011. Data on standard demographic characteristics, indications for extracorporeal membrane oxygenation, duration of extracorporeal membrane oxygenation, activated clotting time measurements, anti-Factor Xa measurements, and heparin infusion rate were collected. Generalized linear models were used to associate anti-Factor Xa concentrations and need for change of either entire circuit/membrane oxygenator secondary to thrombus formation. Sixty-two patients met study inclusion criteria. No-circuit change was required in 45 of 62 patients. Of 62 patients, 17 required change of circuit/membrane oxygenator due to thrombus formation. Multivariate analysis of daily anti-Factor Xa measurements throughout duration of extracorporeal membrane oxygenation support estimated a mean anti-Factor Xa concentration of 0.20 IU/mL (95% CI, 0.16, 0.24) in no-complete-circuit group that was significantly higher than the estimated concentration of 0.13 IU/mL (95% CI, 0.12, 0.14) in complete-circuit group (p = 0.001). A 0.01 IU/mL decrease in anti-Factor Xa increased odds of need for circuit/membrane oxygenator change by 5% (odds ratio = 1.105; 95% CI, 1.00, 1.10; p = 0.044). Based on the observed anti-Factor Xa concentrations, complete-circuit group had 41% increased odds for requiring circuit/membrane oxygenator change compared with no-complete-circuit group (odds ratio = 1.41; 95% CI, 1.01, 1.96; p = 0.044). Mean daily activated clotting time measurement (p = 0.192) was not different between groups, but mean daily heparin infusion rate (p < 0.001) was significantly different between the two groups. Higher anti-Factor Xa concentrations were associated with freedom from circuit/membrane oxygenator change due to thrombus formation in pediatric patients during extracorporeal membrane oxygenation support. Activated clotting time measurements did not differ significantly between groups with or without circuit/membrane oxygenator change. This is the first study to link anti-Factor Xa concentrations with a clinically relevant measure of thrombosis in pediatric patients during extracorporeal membrane oxygenation support. Further prospective study is warranted.

  9. Safety and effectiveness of alveolar recruitment maneuvers and positive end-expiratory pressure during general anesthesia for cesarean section: a prospective, randomized trial.

    PubMed

    Aretha, D; Fligou, F; Kiekkas, P; Messini, C; Panteli, E; Zintzaras, E; Karanikolas, M

    2017-05-01

    During cesarean section, the supine position reduces functional residual capacity and worsens lung compliance. We tested the hypothesis that alveolar recruitment maneuvers and positive end-expiratory pressure improve lung compliance in women undergoing general anesthesia for cesarean section. Ninety women undergoing cesarean section were randomly assigned to one of two groups in a prospective, double-blind trial. In the alveolar recruitment maneuver group, pressure-control ventilation was used and inspiratory time was increased to 50% after delivery; positive end-expiratory pressure was increased to 20cmH 2 O and peak airway inspiratory pressure gradually increased to 45-50cmH 2 O. Volume-control ventilation was then used with low tidal volumes (6mL/kg) and positive end-expiratory pressure was reduced stepwise to 8cmH 2 O. In the control group, alveolar recruitment maneuvers were not used. Data were collected before and 3, 10 and 20min after the alveolar recruitment maneuver, before extubation and postoperatively at 10 and 20min. Dynamic compliance, peak airway inspiratory pressure, PaO 2 and PaO 2 /FiO 2 were significantly different in the alveolar recruitment maneuver group compared to controls at all time points during surgery except at baseline. Oxygen saturation was significantly greater in the alveolar recruitment maneuver group at 10 and 20min and before extubation. Dynamic compliance was 29.7-42.5% higher and peak airway inspiratory pressure 3.6-10.2% lower in the alveolar recruitment maneuver group compared to controls. The PaO 2 , PaO 2 /FiO 2 and oxygen saturation were higher (9.4-12%, 10.3-11.9% and 0.4-1.3%, respectively) in the alveolar recruitment maneuver group. Postoperatively, PaO 2 and oxygen saturation were significantly higher in the alveolar recruitment maneuver group compared to controls (PaO 2 9.2% at 10min and 8.4% at 20min, oxygen saturation 0.8% at 10min and 1.1% at 20min). There were no significant differences in hemodynamic stability or adverse events between groups. Compared to standard care, the alveolar recruitment maneuver with positive end-expiratory pressure and low tidal volumes appears safe and effective in improving lung compliance and both intraoperative and postoperative oxygenation in women undergoing general anesthesia for elective cesarean section. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Efficacy of combined electrostimulation in patients with acute exacerbation of COPD: randomised clinical trial.

    PubMed

    Lopez Lopez, Laura; Granados Santiago, Maria; Donaire Galindo, Maria; Torres Sanchez, Irene; Ortiz Rubio, Araceli; Valenza, Marie Carmen

    2018-04-25

    Muscle dysfunction is very common in patients with chronic obstructive pulmonary disease (COPD). Muscular strength depletion is a result of numerous hospitalisations and this causes an increase in the symptomatology. Numerous interventions have been used in these patients, but there is no consensus on the best. The main objective of this study is to compare the effectiveness of two physiotherapy interventions during hospitalisation in COPD patients. In this clinical trial, we included 39 patients who were randomised into three groups. A control group received standard medical treatment (oxygen therapy and pharmacotherapy), and two groups received, in addition to standard medical treatment, a physiotherapy intervention, one with functional electrostimulation and one with calisthenic exercises. The main variables were the ability to exercise using the Five-time sit-to-stand test as well as the functionality associated with symptomatology, as measured by the London Chest Activity of Daily Living Scale. After comparing the results, there was a significant improvement in dyspnea on discharge versus admission in all three groups. In addition, we found significant differences in functionality, exercise capacity, and fatigue in both intervention groups, being better in the electrostimulation with calisthenic exercises group than in the functional group. An electrostimulation treatment improves the exercise capacity, functionality and fatigue in hospitalised AECOPD patients. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  11. The Effects of Direct Oxygen Supply During Static Cold Preservation of Rat Livers: An Experimental Study.

    PubMed

    Zumrutdal, Emin; Karateke, Faruk; Eser, Pınar Eylem; Turan, Umit; Ozyazici, Sefa; Sozutek, Alper; Gulkaya, Mustafa; Kunt, Mevlut

    2016-12-01

    We aimed to determine the biochemical and histopathologic effects of direct oxygen supply to the preservation fluid of static cold storage system with a simple method on rat livers. Sixteen rats were randomly divided into 2 groups: the control group, which contained Ringer's lactate as preservation fluid; and the oxygen group, which contained oxygen and Ringer's lactate for preservation. Each liver was placed in a bag containing 50 mL Ringer's lactate and placed in ice-filled storage containers. One hundred percent oxygen supplies were given via a simple, inexpensive system created in our laboratory, to the livers in oxygen group. We obtained samples for histopathologic evaluation in the 12th hour. In addition, 3 mL of preservation fluid was subjected to biochemical analysis at 0, sixth, and twelfth hours. Aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and pH levels were measured from the preservation fluid. In oxygen-supplemented group, the acceleration speed of increase in alanine aminotransferase and lactate dehydrogenase levels at sixth hour and lactate dehydrogenase, alanine aminotransferase, and lactate dehydrogenase levels at 12th hour were statistically significantly reduced. In histopathologic examination, all parameters except ballooning were statistically significantly better in the oxygen-supplemented group. This simple system for oxygenation of liver tissues during static cold storage was shown to be effective with good results in biochemical and histopathologic assessments. Because this is a simple, inexpensive, and easily available method, larger studies are warranted to evaluate its effects (especially in humans).

  12. Impact of sildenafil on survival of patients with idiopathic pulmonary arterial hypertension.

    PubMed

    Zeng, Wei-Jie; Sun, Yun-Juan; Gu, Qing; Xiong, Chang-Ming; Li, Jian-Jun; He, Jian-Guo

    2012-09-01

    It has been reported that short-term sildenafil therapy is safe and effective for patients with pulmonary arterial hypertension. However, data regarding the impact of sildenafil on the survival of patients with idiopathic pulmonary arterial hypertension remain limited. The study was conducted on 77 patients with newly diagnosed idiopathic pulmonary arterial hypertension at Fu Wai Hospital between September 2005 and September 2009. Patients were divided into 2 groups: the sildenafil group and the conventional group. Nine patients treated with sildenafil were re-evaluated by right heart catheterization after 3 months. Our data demonstrated that the 6-minute walk distance, World Health Organization functional class, mixed venous oxygen saturation, and hemodynamics significantly improved after 3 months of sildenafil therapy (P < .05). The baseline characteristics of the sildenafil group were similar to those of the conventional group. The 1-, 2-, and 3-year survival rates in the sildenafil group were 88%, 72%, and 68% compared with 61%, 36%, and 27% in the conventional group (P < .001). The absence of sildenafil therapy, lower body mass index, and lower mixed venous oxygen saturation were found to be independent predictors of mortality. In conclusion, sildenafil therapy was found to be associated with improved survival in patients with idiopathic pulmonary arterial hypertension.

  13. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans.

    PubMed

    Hou, Qingjie; Fang, Di; Liang, Jianru; Zhou, Lixiang

    2015-01-01

    Jarosite [(Na+, K+, NH4+, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO42--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation.

  14. Significance of Oxygen Supply in Jarosite Biosynthesis Promoted by Acidithiobacillus ferrooxidans

    PubMed Central

    Liang, Jianru; Zhou, Lixiang

    2015-01-01

    Jarosite [(Na+, K+, NH4 +, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO4 2--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation. PMID:25807372

  15. Controlled lung reperfusion to reduce pulmonary ischaemia/reperfusion injury after cardiopulmonary bypass in a porcine model.

    PubMed

    Slottosch, Ingo; Liakopoulos, Oliver; Kuhn, Elmar; Deppe, Antje; Lopez-Pastorini, Alberto; Schwarz, David; Neef, Klaus; Choi, Yeong-Hoon; Sterner-Kock, Anja; Jung, Kristina; Mühlfeld, Christian; Wahlers, Thorsten

    2014-12-01

    Ischaemia/reperfusion (I/R) injury of the lungs contributes to pulmonary dysfunction after cardiac surgery with cardiopulmonary bypass (CPB), leading to increased morbidity and mortality of patients. This study investigated the value of controlled lung reperfusion strategies on lung ischaemia-reperfusion injury in a porcine CPB model. Pigs were subjected to routine CPB for 120 min with 60 min of blood cardioplegic cardiac arrest (CCA). Following CCA, the uncontrolled reperfusion (UR, n = 6) group was conventionally weaned from CPB. Two groups underwent controlled lung reperfusion strategies (CR group: controlled reperfusion conditions, n = 6; MR group: controlled reperfusion conditions and modified reperfusate, n = 6) via the pulmonary artery before CPB weaning. Sham-operated pigs (n = 7) served as controls. Animals were followed up until 4 h after CPB. Pulmonary function, haemodynamics, markers of inflammation, endothelial injury and oxidative stress as well as morphological lung alterations were analysed. CPB (UR group) induced deterioration of pulmonary function (lung mechanics, oxygenation index and lung oedema). Also, controlled lung reperfusion groups (CR and MR) presented with pulmonary dysfunction after CPB. However, compared with UR, controlled lung reperfusion strategies (CR and MR) improved lung mechanics and reduced markers of oxidative stress, but without alteration of haemodynamics, oxygenation, inflammation, endothelial injury and lung morphology. Both controlled reperfusion groups were similar without relevant differences. Controlled lung reperfusion strategies attenuated a decrease in lung mechanics and an increase in oxidative stress, indicating an influence on CPB-related pulmonary injury. However, they failed to avoid completely CPB-related lung injury, implying the need for additional strategies given the multifactorial pathophysiology of postoperative pulmonary dysfunction. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. OXYGEN UPTAKE BEFORE AND AFTER THE ONSET OF CLAUDICATION DURING A 6-MINUTE WALK TEST

    PubMed Central

    Gardner, Andrew W.; Ritti-Dias, Raphael M.; Stoner, Julie A.; Montgomery, Polly S.; Khurana, Aman; Blevins, Steve M.

    2011-01-01

    Purposes To compare oxygen uptake before and after the onset of claudication in subjects with peripheral artery disease (PAD) during a 6-minute walk test, and to identify predictors of the change in oxygen uptake following the onset of claudication pain Methods Fifty subjects with PAD were studied, in which 33 experienced claudication (Pain Group) during a 6-minute walk test, and 17 were pain-free during this test (Pain-Free Group). Oxygen uptake and ambulatory cadence were primary outcomes obtained during the 6-minute walk test. Results The Pain Group experienced onset of claudication pain at 179 ± 45 meters (mean ± standard deviation) and continued to walk to achieve a 6-minute walk distance of 393 ± 74 meters, which was similar (p = 0.74) to the Pain-Free Group (401 ± 76 meters). Oxygen uptake increased (p < 0.0001) after the onset of pain in the Pain Group, and this change was greater (p = 0.025) than the increase in oxygen uptake from the second to fifth minute of walking in the Pain-Free Group. Furthermore, ambulatory cadence decreased after the onset of pain in the Pain Group (p = 0.0003). The change in oxygen uptake was associated with metabolic syndrome (p = 0.0023), 6-minute walk distance (p = 0.0037), age, (p = 0.0041), and the oxygen uptake during the second minute of the test (p = 0.012). Conclusion Claudication increases oxygen uptake of self-paced, over-ground ambulation despite a decrease in cadence. The pain-mediated increase in oxygen uptake was blunted in subjects with metabolic syndrome, suggesting that they have an impaired ability to increase oxygen uptake during ambulation. The clinical significance is that claudication increases metabolic cost of ambulation, thereby increasing the relative intensity of exercise and reducing the tolerance to sustain ambulation. PMID:21890308

  17. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption.

    PubMed

    Wan, Zeqing; Li, Kunquan

    2018-03-01

    A convenient effective microwave pre-pyrolysis treatment to synthesize biomass-based mesoporous carbon with higher nitrogen/oxygen-chelating adsorption for Cu(II) is reported here, in which phosphoric acid impregnated bagasse was used as a microwave absorber and porogen. For comparison, conventional electric-heating pyrolyzed carbon was prepared and doped with nitrogen/oxygen groups. Nitrogen adsorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and batch adsorption were employed to investigate the effects of the two pre-pyrolysis modes on the sample physicochemical and Cu(II) adsorptive properties. The 22-min-microwave-pyrolyzed bagasse mesoporous activated carbon (MBAC, 85.32% mesoporosity) contained 10.52% O, which is 3.94% more than electric-heating pyrolyzed mesoporous activated carbon (89.52% mesoporosity). After electrophilic aromatic substitutions of N/O doping, the former possessed more N (5.83%) and more O (21.40%), confirming that time-saving energy-efficient microwave pyrolysis favors the formation of defective C/O atoms in or at the edges of the graphite layer of MBAC, which are highly active and tend to act as preferred reactive positions for the doping of N/O-containing groups simultaneously compared with conventional electric-heating pyrolysis. These N and O species existed mainly as COOH, OH, NH and NH 2 functional groups, and were confirmed by XPS to be active sites for metal binding via electrostatic attraction, hydrogen bonding, a chelate effect and complexation, resulting in the great enhancement of Cu(II) adsorption. Langmuir isotherm and pseudo-second-order kinetic fitting further proved that Cu(II) adsorption by N/O-doped MBAC is ascribed mainly to chemisorption. Therefore, rapid microwave pre-pyrolysis provides a promising route to prepare excellent-performance N/O-doped carbon adsorbents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The clinical relevance of selecting resting data at different points in an energy cost of walking test in cerebral palsy.

    PubMed

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2011-03-01

    Energy cost of walking (ECOW) is defined as 'walking oxygen consumption minus resting oxygen consumption divided by speed', where 'resting' data can be obtained either at the start or cessation of a test. This study aimed to ascertain when resting data should be taken during an ECOW test in children with cerebral palsy (CP). Resting oxygen consumption per unit mass (VO(2) ) and heart rate were recorded in children without physical impairment (18 males, 13 females; mean age 11 y [SD 2 y 1 mo]) and children with diplegic CP (18 males, 13 females; mean age 11 y [SD 2 y 6 mo, Gross Motor Function Classification System levels I and II]) at three stages, namely pre- and posttest sitting and pretest standing before and after an 8-minute ECOW test using the Cosmed K4b. Heart rate and VO(2) differed significantly between groups and stages (p ≤ 0.05) except for heart rate in standing and posttest sitting in the unimpaired children and for VO(2) during pretest sitting between groups. These differences impacted on the calculation of non-dimensional net oxygen cost (NDNOC) and physiological cost index (PCI) in CP but not in the unimpaired group. PCI was correlated with NDNOC in CP but not in the unimpaired cohort. Pretest sitting resting data appear to be the most appropriate for use in the calculation of NDNOC and PCI. PCI may still have relevance in pathology where walking efficiency is compromised. © The Authors. Journal compilation © Mac Keith Press 2010.

  19. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy.

    PubMed

    Egawa, Tsuyoshi; Yeh, Syun-Ru

    2005-01-01

    Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.

  20. Surface Modification of Direct-Current and Radio-Frequency Oxygen Plasma Treatments Enhance Cell Biocompatibility

    PubMed Central

    Wang, Rex C.-C.; Liu, Cheng; Yang, Chyun-Yu

    2017-01-01

    The sand-blasting and acid etching (SLA) method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant, but can not achieve early bone healing. This study used two kinds of plasma treatments (Direct-Current and Radio-Frequency plasma) to modify the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. The results show that the plasma treatments do not change the micron scale topography, and plasma-treated specimens presented super hydrophilicity. The X-ray photoelectron spectroscopy (XPS)-examined result showed that the functional OH content of the RF plasma-treated group was higher than the control (SLA) and DC treatment groups. The biological responses (protein adsorption, cell attachment, cell proliferation, and differentiation) promoted after plasma treatments, and the cell responses, have correlated to the total content of amphoteric OH groups. The experimental results indicated that plasma treatments can create functional OH groups on SLA-treated specimens, and the RF plasma-treated SLA implant thus has potential for achievement of bone healing in early stage of implantation. PMID:29068417

  1. Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity.

    PubMed

    Gehring, Julia; Trepka, Bastian; Klinkenberg, Nele; Bronner, Hannah; Schleheck, David; Polarz, Sebastian

    2016-03-09

    Colonization of surfaces by microorganisms is an urging problem. In combination with the increasing antibiotic resistance of pathogenic bacteria, severe infections are reported more frequently in medical settings. Therefore, there is a large demand to explore innovative surface coatings that provide intrinsic and highly effective antibacterial activity. Materials containing silver nanoparticles have been developed in the past for this purpose, but this solution has come into criticism due to various disadvantages like notable toxicity against higher organisms, the high price, and low abundance of silver. Here, we introduce a new, sunlight-mediated organosilica nanoparticle (NP) system based on silver-free antibacterial activity. The simultaneous release of nitric oxide (NO) in combination with singlet oxygen and superoxide radicals (O2(•-)) as reactive oxygen species (ROS) leads to the emergence of highly reactive peroxynitrite molecules with significantly enhanced biocidal activity. This special cooperative effect can only be realized, if the ROS-producing moieties and the functional entities releasing NO are spatially separated from each other. In one type of particle, Rose Bengal as an efficient singlet oxygen ((1)O2) producer was covalently bound to SH functionalities applying thiol-ene click chemistry. "Charging" the second type of particles with NO was realized by quantitatively transferring the thiol groups into S-nitrosothiol functionalities. We probed the oxidation power of ROS-NP alone and in combination with NO-NP using sunlight as a trigger. The high antibacterial efficiency of dual-action nanoparticles was demonstrated using disinfection assays with the pathogenic bacterium Pseudomonas aeruginosa.

  2. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing

    PubMed Central

    Neves, Paulo César Fagundes; de Campos Vieira Abib, Simone; Neves, Rogério Fagundes; Pircchio, Oronzo; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Simões, Ricardo Santos; Moreira, Marcia Bento; de Souza Laurino, Cristiano Frota

    2013-01-01

    OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6–8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each): control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model. PMID:24141841

  3. Theoretical study of interactions between cysteine and perfluoropropanoic acid in gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Holmes, Tiffani M.; Doskocz, Jacek; Wright, Terrance; Hill, Glake A.

    The interaction of perfluoropropanoic acid (PFPA) with the amino acid cysteine was investigated using density functional theory. Previous studies suggest that the peroxisome proliferator chemical, perfluorooctanoic acid, is circulated throughout the body by way of sulfur-containing amino acids. We present conformational analysis of the interactions of PFPA, a small model of perfluorooctanoic acid, with the sulfur-containing amino acid which occur by the process of hydrogen bonding, in which the hydrogen of the sulfhydryl group interacts with the carboxyl oxygen, and the amino nitrogen forms a hydrogen bond with the hydrogen of the bond OH group of the fluorinated alkyl. We also show in our structures a recently characterized weak nonbonded interaction between divalent sulfur and a main chain carboxyl oxygen in proteins. B3LYP calculated free energies and interaction energies predict low-energy, high-interaction conformations for complex systems of perfluorinated fatty acid interactions with cysteine.

  4. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    PubMed

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  5. Quantifying Additive Interactions of the Osmolyte Proline with Individual Functional Groups of Proteins: Comparisons with Urea and Glycine Betaine, Interpretation of m-Values

    PubMed Central

    Diehl, Roger C.; Guinn, Emily J.; Capp, Michael W.; Tsodikov, Oleg V.; Record, M. Thomas

    2013-01-01

    To quantify interactions of the osmolyte L-proline with protein functional groups and predict its effects on protein processes, we use vapor pressure osmometry to determine chemical potential derivatives dµ2/dm3 = µ23 quantifying preferential interactions of proline (component 3) with 21 solutes (component 2) selected to display different combinations of aliphatic or aromatic C, amide, carboxylate, phosphate or hydroxyl O, and/or amide or cationic N surface. Solubility data yield µ23 values for 4 less-soluble solutes. Values of µ23 are dissected using an ASA-based analysis to test the hypothesis of additivity and obtain α-values (proline interaction potentials) for these eight surface types and three inorganic ions. Values of µ23 predicted from these α-values agree with experiment, demonstrating additivity. Molecular interpretation of α-values using the solute partitioning model yields partition coefficients (Kp) quantifying the local accumulation or exclusion of proline in the hydration water of each functional group. Interactions of proline with native protein surface and effects of proline on protein unfolding are predicted from α-values and ASA information and compared with experimental data, with results for glycine betaine and urea, and with predictions from transfer free energy analysis. We conclude that proline stabilizes proteins because of its unfavorable interactions with (exclusion from) amide oxygens and aliphatic hydrocarbon surface exposed in unfolding, and that proline is an effective in vivo osmolyte because of the osmolality increase resulting from its unfavorable interactions with anionic (carboxylate and phosphate) and amide oxygens and aliphatic hydrocarbon groups on the surface of cytoplasmic proteins and nucleic acids. PMID:23909383

  6. Formation and emission of large furans and oxygenated hydrocarbons from flames

    PubMed Central

    Johansson, K. Olof; Dillstrom, Tyler; Monti, Matteo; El Gabaly, Farid; Campbell, Matthew F.; Schrader, Paul E.; Popolan-Vaida, Denisia M.; Richards-Henderson, Nicole K.; Wilson, Kevin R.; Violi, Angela; Michelsen, Hope A.

    2016-01-01

    Many oxygenated hydrocarbon species formed during combustion, such as furans, are highly toxic and detrimental to human health and the environment. These species may also increase the hygroscopicity of soot and strongly influence the effects of soot on regional and global climate. However, large furans and associated oxygenated species have not previously been observed in flames, and their formation mechanism and interplay with polycyclic aromatic hydrocarbons (PAHs) are poorly understood. We report on a synergistic computational and experimental effort that elucidates the formation of oxygen-embedded compounds, such as furans and other oxygenated hydrocarbons, during the combustion of hydrocarbon fuels. We used ab initio and probabilistic computational techniques to identify low-barrier reaction mechanisms for the formation of large furans and other oxygenated hydrocarbons. We used vacuum-UV photoionization aerosol mass spectrometry and X-ray photoelectron spectroscopy to confirm these predictions. We show that furans are produced in the high-temperature regions of hydrocarbon flames, where they remarkably survive and become the main functional group of oxygenates that incorporate into incipient soot. In controlled flame studies, we discovered ∼100 oxygenated species previously unaccounted for. We found that large alcohols and enols act as precursors to furans, leading to incorporation of oxygen into the carbon skeletons of PAHs. Our results depart dramatically from the crude chemistry of carbon- and oxygen-containing molecules previously considered in hydrocarbon formation and oxidation models and spearhead the emerging understanding of the oxidation chemistry that is critical, for example, to control emissions of toxic and carcinogenic combustion by-products, which also greatly affect global warming. PMID:27410045

  7. Formation and emission of large furans and oxygenated hydrocarbons from flames.

    PubMed

    Johansson, K Olof; Dillstrom, Tyler; Monti, Matteo; El Gabaly, Farid; Campbell, Matthew F; Schrader, Paul E; Popolan-Vaida, Denisia M; Richards-Henderson, Nicole K; Wilson, Kevin R; Violi, Angela; Michelsen, Hope A

    2016-07-26

    Many oxygenated hydrocarbon species formed during combustion, such as furans, are highly toxic and detrimental to human health and the environment. These species may also increase the hygroscopicity of soot and strongly influence the effects of soot on regional and global climate. However, large furans and associated oxygenated species have not previously been observed in flames, and their formation mechanism and interplay with polycyclic aromatic hydrocarbons (PAHs) are poorly understood. We report on a synergistic computational and experimental effort that elucidates the formation of oxygen-embedded compounds, such as furans and other oxygenated hydrocarbons, during the combustion of hydrocarbon fuels. We used ab initio and probabilistic computational techniques to identify low-barrier reaction mechanisms for the formation of large furans and other oxygenated hydrocarbons. We used vacuum-UV photoionization aerosol mass spectrometry and X-ray photoelectron spectroscopy to confirm these predictions. We show that furans are produced in the high-temperature regions of hydrocarbon flames, where they remarkably survive and become the main functional group of oxygenates that incorporate into incipient soot. In controlled flame studies, we discovered ∼100 oxygenated species previously unaccounted for. We found that large alcohols and enols act as precursors to furans, leading to incorporation of oxygen into the carbon skeletons of PAHs. Our results depart dramatically from the crude chemistry of carbon- and oxygen-containing molecules previously considered in hydrocarbon formation and oxidation models and spearhead the emerging understanding of the oxidation chemistry that is critical, for example, to control emissions of toxic and carcinogenic combustion by-products, which also greatly affect global warming.

  8. Formation and emission of large furans and oxygenated hydrocarbons from flames

    DOE PAGES

    Johansson, K. Olof; Dillstrom, Tyler; Monti, Matteo; ...

    2016-07-07

    Many oxygenated hydrocarbon species formed during combustion, such as furans, are highly toxic and detrimental to human health and the environment. These species may also increase the hygroscopicity of soot and strongly influence the effects of soot on regional and global climate. However, large furans and associated oxygenated species have not previously been observed in flames, and their formation mechanism and interplay with polycyclic aromatic hydrocarbons (PAHs) are poorly understood. We report on a synergistic computational and experimental effort that elucidates the formation of oxygen-embedded compounds, such as furans and other oxygenated hydrocarbons, during the combustion of hydrocarbon fuels. Wemore » used ab initio and probabilistic computational techniques to identify low-barrier reaction mechanisms for the formation of large furans and other oxygenated hydrocarbons. We used vacuum-UV photoionization aerosol mass spectrometry and X-ray photoelectron spectroscopy to confirm these predictions. We show that fura ns are produced in the high- Temperature regions of hydrocarbon flames, where they remarkably survive and become the main functional group of oxygenates that incorporate into incipient soot. In controlled flame studies, we discovered ~100 oxygenated species previously unaccounted for. We found that large alcohols and enols act as precursors to furans, leading to incorporation of oxygen into the carbon skeletons of PAHs. Our results depart dramatically from the crude chemistry of carbonand oxygen-containing molecules previously considered in hydrocarbon formation and oxidation models and spearhead the emerging understanding of the oxidation chemistry that is critical, for example, to control emissions of toxic and carcinogenic combustion by-products, which also greatly affect global warming.« less

  9. Reduction in Reactive Oxygen Species Production by Mitochondria From Elderly Subjects With Normal and Impaired Glucose Tolerance

    PubMed Central

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P.; de Jesus Garduno-Garcia, Jose; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A.; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas

    2011-01-01

    OBJECTIVE Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. RESEARCH DESIGN AND METHODS Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. RESULTS ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. CONCLUSIONS Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria. PMID:21677280

  10. Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas

    NASA Astrophysics Data System (ADS)

    Song, Xin; Li, Kai; Ning, Ping; Wang, Chi; Sun, Xin; Tang, Lihong; Ruan, Haotian; Han, Shuang

    2017-12-01

    The influences of different preparation conditions for surface characteristics on removing organic sulfur were studied. From BET, XRD, FTIR, DRIFTS, TG/DTA, CO2-TPD results, it can be seen that these preparation conditions had great influences on the pore structure, specific surface area, crystal structure and surface functional groups. The micropore volume, amorphous structure and alkalinity site strength played major roles in desulfurization process. H2S was oxidized by oxygen containing functional groups, such as sbnd COO, sbnd Cdbnd O. H2O molecule could be converted into some groups, such as sbnd CH and Csbnd OH groups, and promoted the hydrolysis reaction. The strong alkalinity site was the key factor for chemical adsorption and hydrolysis. H2O molecule, sbnd CH, Csbnd OH groups promoted the hydrolysis reaction and sbnd COO, sbnd Cdbnd O groups promoted the oxidation of H2S on the surface of WSB. Meanwhile, the main desulfurization process over WSB after carbonization was adsorption and it changed to hydrolysis reaction after activation on the surface of WSB. Furthermore, the reaction mechanism was investigated by DRIFTS measurement according to the change of surface functional groups.

  11. Early hyperbaric oxygen treatment for nonarteritic central retinal artery obstruction.

    PubMed

    Menzel-Severing, Johannes; Siekmann, Ullrich; Weinberger, Andreas; Roessler, Gernot; Walter, Peter; Mazinani, Babac

    2012-03-01

    To compare hyperbaric oxygen treatment combined with hemodilution with hemodilution only in central retinal artery obstruction. Retrospective, nonrandomized case series. We reviewed records of all our patients diagnosed with central retinal artery obstruction between 1997 and 2010. In these patients, hyperbaric oxygen and hemodilution therapy had been administered routinely (oxygen group). Where hyperbaric oxygenation could not be performed, patients were underwent hemodilution only (control group). Patients with presenting visual acuity (VA) of up to 20/200 within 12 hours of onset were included in our analysis. Exclusion criteria included cilioretinal vessels or arteritic occlusion. The oxygen group comprised 51 patients, and the control group comprised 29 patients. Mean baseline VA was counting fingers (oxygen group) and 20/1000 (control group; P = .1). Most other potential confounders, including duration of symptoms, also did not differ significantly at baseline. In the oxygen group, mean VA improvement was 3 lines (P < .0001). This was sustained over a follow-up of 3 months (P = .01). In the control group, mean improvement was 1 line (P = .23 at discharge, P = .17 at follow-up). Differences between both groups were not significant (P = .07 at discharge, P = .26 at follow-up). The number of patients gaining 3 lines or more was 38.0% versus 17.9% at discharge (P = .06) and 35.7% versus 30.8% at follow-up (P = .76). We saw significant VA improvement after the combined treatment, but not when using hemodilution only. Confirming superiority of the combination treatment requires a randomized, prospective trial. A high number of nonresponders highlights the need to improve our understanding and treatment of hypoxia-related metabolic insults after central retinal artery obstruction. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. 2,3-diphosphoglycerate and oxygen supply of tissues in cardiosurgical diabetics.

    PubMed

    Beder, I; Mataseje, A; Kittova, M; Carsky, J; Fischer, V

    2005-01-01

    The oxygen supply of tissues was studied under haemodilution in cardiosurgical diabetic and non-diabetic patients. There were 30 cardiosurgery patients examined, 9 were patients with diabetes mellitus.and 21 were non-diabetic patients. Venous blood samples were examined preoperatively, intraoperatively and for 10 days after operation. Haemodilution caused a decrease in haematocrit values in both groups, as well as in the erythrocyte count and haemoglobin concentration. Postoperatively, an increase was recorded in haematological values in both groups, the values had not reached the baseline even by 10th day. Increased values of blood oxygen saturation and partial oxygen pressure during the operation returned to baseline in both groups in the postoperative days. Values of p50 did not change in both groups for the period of observation. The obtained data suggest that sufficient oxygen supply to tissues was ensured under haemodilution in cardiosurgery patients in both groups. These results confirm multifactorial dependence of blood oxygen transport to tissues (Tab. 1, Fig. 3, Ref. 13).

  13. British Thoracic Society guidelines for home oxygen use in adults.

    PubMed

    Hardinge, Maxine; Annandale, Joe; Bourne, Simon; Cooper, Brendan; Evans, Angela; Freeman, Daryl; Green, Angela; Hippolyte, Sabrine; Knowles, Vikki; MacNee, William; McDonnell, Lynn; Pye, Kathy; Suntharalingam, Jay; Vora, Vandana; Wilkinson, Tom

    2015-06-01

    The British Thoracic Society (BTS) Home Oxygen Guideline provides detailed evidence-based guidance for the use of home oxygen for patients out of hospital. Although the majority of evidence comes from the use of oxygen in patients with chronic obstructive pulmonary disease, the scope of the guidance includes patients with a variety of long-term respiratory illnesses and other groups in whom oxygen is currently ordered, such as those with cardiac failure, cancer and end-stage cardiorespiratory disease, terminal illness or cluster headache. It explores the evidence base for the use of different modalities of oxygen therapy and patient-related outcomes such as mortality, symptoms and quality of life. The guideline also makes recommendations for assessment and follow-up protocols, and risk assessments, particularly in the clinically challenging area of home oxygen users who smoke. The guideline development group is aware of the potential for confusion sometimes caused by the current nomenclature for different types of home oxygen, and rather than renaming them, has adopted the approach of clarifying those definitions, and in particular emphasising what is meant by long-term oxygen therapy and palliative oxygen therapy. The home oxygen guideline provides expert consensus opinion in areas where clinical evidence is lacking, and seeks to deliver improved prescribing practice, leading to improved compliance and improved patient outcomes, with consequent increased value to the health service. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy.

    PubMed

    Blake, E; Allen, J; Thorn, C; Shore, A; Curnow, A

    2013-05-01

    Methyl aminolevulinate photodynamic therapy (MAL-PDT) (a topical treatment used for a number of precancerous skin conditions) utilizes the combined interaction of a photosensitizer (protoporphyrin IX (PpIX)), light of the appropriate wavelength, and molecular oxygen to produce singlet oxygen and other reactive oxygen species which induce cell death. During treatment, localized oxygen depletion occurs and is thought to contribute to decreased efficacy. The aim of this study was to investigate whether an oxygen pressure injection (OPI) device had an effect on localized oxygen saturation levels and/or PpIX fluorescence of skin lesions during MAL-PDT. This study employed an OPI device to apply oxygen under pressure to the skin lesions of patients undergoing standard MAL-PDT. Optical reflectance spectrometry and fluorescence imaging were used to noninvasively monitor the localized oxygen saturation and PpIX fluorescence of the treatment area, respectively. No significant changes in oxygen saturation were observed when these data were combined for the group with OPI and compared to the group that received standard MAL-PDT without OPI. Additionally, no significant difference in PpIX photobleaching or clinical outcome at 3 months between the groups of patients was observed, although the group that received standard MAL-PDT demonstrated a significant increase (p<0.05) in PpIX fluorescence initially and both groups produced a significant decrease (p<0.05) after light irradiation. In conclusion, with this sample size, this OPI device was not found to be an effective method with which to improve tissue oxygenation during MAL-PDT. Further investigation is therefore required to find a more effective method of MAL-PDT enhancement.

  15. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  16. Functionalization of carbon nanotubes by water plasma.

    PubMed

    Hussain, S; Amade, R; Jover, E; Bertran, E

    2012-09-28

    Multiwall carbon nanotubes grown by plasma enhanced chemical vapour deposition were functionalized by H(2)O plasma treatment. Through a controlled functionalization process of the carbon nanotubes (CNTs) we were able to modify and tune their chemical reactivity, expanding the range of potential applications in the field of energy and environment. In particular, different oxygen groups were attached to the surfaces of the nanotubes (e.g. carboxyl, hydroxyl and carbonyl), which changed their physicochemical properties. In order to optimize the main operational parameters of the H(2)O plasma treatment, pressure and power, a Box-Wilson experimental design was adopted. Analysis of the morphology, electrochemical properties and functional groups attached to the surfaces of the CNTs allowed us to determine which treatment conditions were suitable for different applications. After water plasma treatment the specific capacitance of the nanotubes increased from 23 up to 68 F g(-1) at a scan rate of 10 mV s(-1).

  17. Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    PubMed Central

    2011-01-01

    Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS. PMID:21711881

  18. Preparation and surface functionalization of MWCNTs: study of the composite materials produced by the interaction with an iron phthalocyanine complex

    NASA Astrophysics Data System (ADS)

    Asedegbega-Nieto, Esther; Pérez-Cadenas, María; Carter, Jonathan; Anderson, James A.; Guerrero-Ruiz, Antonio

    2011-04-01

    Carbon nanotubes [CNTs] were synthesized by the catalytic vapor decomposition method. Thereafter, they were functionalized in order to incorporate the oxygen groups (OCNT) and subsequently the amine groups (ACNT). All three CNTs (the as-synthesized and functionalized) underwent reaction with an iron organometallic complex (FePcS), iron(III) phthalocyanine-4,4",4",4""-tetrasulfonic acid, in order to study the nature of the interaction between this complex and the CNTs and the potential formation of nanocomposite materials. Transmission electronic microscopy, N2 adsorption at 77 K, thermogravimetric analysis, temperature-programmed desorption, and X-ray photoelectron spectroscopy were the characterization techniques employed to confirm the successful functionalization of CNTs as well as the type of interaction existing with the FePcS. All results obtained led to the same conclusion: There were no specific chemical interactions between CNTs and the fixed FePcS.

  19. as response to seasonal variability

    PubMed

    Badano, Ernesto I; Labra, Fabio A; Martínez-Pérez, Cecilia G; Vergara, Carlos H

    2016-03-01

    Ecologists have been largely interested in the description and understanding of the power scaling relationships between body size and abundance of organisms. Many studies have focused on estimating the exponents of these functions across taxonomic groups and spatial scales, to draw inferences about the processes underlying this pattern. The exponents of these functions usually approximate -3/4 at geographical scales, but they deviate from this value when smaller spatial extensions are considered. This has led to propose that body size-abundance relationships at small spatial scales may reflect the impact of environmental changes. This study tests this hypothesis by examining body size spectra of benthic shrimps (Decapoda: Caridea) and snails (Gastropoda) in the Tamiahua lagoon, a brackish body water located in the Eastern coast of Mexico. We mea- sured water quality parameters (dissolved oxygen, salinity, pH, water temperature, sediment organic matter and chemical oxygen demand) and sampled benthic macrofauna during three different climatic conditions of the year (cold, dry and rainy season). Given the small size of most individuals in the benthic macrofaunal samples, we used body volume, instead of weight, to estimate their body size. Body size-abundance relationships of both taxonomic groups were described by tabulating data from each season into base-2 logarithmic body size bins. In both taxonomic groups, observed frequencies per body size class in each season were standardized to yield densities (i.e., individuals/m(3)). Nonlinear regression analyses were separately performed for each taxonomic group at each season to assess whether body size spectra followed power scaling functions. Additionally, for each taxonomic group, multiple regression analyses were used to determine whether these relationships varied among seasons. Our results indicated that, while body size-abundance relationships in both taxonomic groups followed power functions, the parameters defining the shape of these relationships varied among seasons. These variations in the parameters of the body size-abundance relationships seems to be related to changes in the abundance of individuals within the different body size classes, which seems to follow the seasonal changes that occur in the environmental conditions of the lagoon. Thus, we propose that these body size-abundance relation- ships are influenced by the frequency and intensity of environmental changes affecting this ecosystem.

  20. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements.

    PubMed

    Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W

    2015-06-01

    What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  1. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation.

    PubMed

    Cui, Xiaoyan; Fu, Zhenqiang; Wang, Menghan; Nan, Xiaofei; Zhang, Boai

    2018-05-01

    Along with their lipid-lowering effect, statins have been reported to have neuroprotective function in both in vivo and in vitro models of neurodegenerative diseases. We conducted this study in order to uncover the he neuroprotective effect of the lipophilic statin pitavastatin (PTV) and investigate the underlying molecular mechanisms using primary cultured cerebral neurons exposed to oxygen-glucose deprivation (OGD). The primary cultured cerebral neurons were randomly assigned into four groups: the control group, the pitavastatin treatment group, the OGD group and the OGD + pitavastatin treatment group. The pitavastatin's concentration were set as follows: 1μM, 15μM, 30μM. After 3 hours OGD treatment, we use MTT method to assessment cell viability, immunofluorescence to observe neuron morphology and western blot method analysis the BDNF, TrkB. PTV at concentrations of 1 μM and 15 μM elevated the survival rate of cortical neurons exposed to OGD, whereas 30 μM PTV did not show such an effect. Moreover, PTV promoted neuronal dendrite growth at concentrations of 1 μM and 15 μM. Increased expression levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were observed in both of the following two scenarios: when neurons were treated with PTV for 48 hours and when PTV was added after the OGD procedure. Pitavastatin treatment induces neuroprotection in cultured cerebral neurons after oxygen-glucose deprivation this neuroprotection induced by PTV involves the BDNF-TrkB signalling pathway.

  2. Noninvasive ventilation improves sleep in amyotrophic lateral sclerosis: a prospective polysomnographic study.

    PubMed

    Vrijsen, Bart; Buyse, Bertien; Belge, Catharina; Robberecht, Wim; Van Damme, Philip; Decramer, Marc; Testelmans, Dries

    2015-04-15

    To evaluate the effects of noninvasive ventilation (NIV) on sleep in patients with amyotrophic lateral sclerosis (ALS) after meticulous titration with polysomnography (PSG). In this prospective observational study, 24 ALS patients were admitted to the sleep laboratory during 4 nights for in-hospital NIV titration with PSG and nocturnal capnography. Questionnaires were used to assess subjective sleep quality and quality of life (QoL). Patients were readmitted after one month. In the total group, slow wave sleep and REM sleep increased and the arousal-awakening index improved. The group without bulbar involvement (non-bulbar) showed the same improvements, together with an increase in sleep efficiency. Nocturnal oxygen and carbon dioxide levels improved in the total and non-bulbar group. Except for oxygen saturation during REM sleep, no improvement in respiratory function or sleep structure was found in bulbar patients. However, these patients showed less room for improvement. Patient-reported outcomes showed improvement in sleep quality and QoL for the total and non-bulbar group, while bulbar patients only reported improvements in very few subscores. This study shows an improvement of sleep architecture, carbon dioxide, and nocturnal oxygen saturation at the end of NIV titration and after one month of NIV in ALS patients. More studies are needed to identify the appropriate time to start NIV in bulbar patients. Our results suggest that accurate titration of NIV by PSG improves sleep quality. A commentary on this article appears in this issue on page 511. © 2015 American Academy of Sleep Medicine.

  3. Impact of an autologous oxygenating matrix culture system on rat islet transplantation outcome.

    PubMed

    Schaschkow, A; Mura, C; Bietiger, W; Peronet, C; Langlois, A; Bodin, F; Dissaux, C; Bruant-Rodier, C; Pinget, M; Jeandidier, N; Juszczak, M T; Sigrist, S; Maillard, E

    2015-06-01

    Disruption of the pancreatic islet environment combined with the decrease in oxygen supply that occurs during isolation leads to poor islet survival. The aim of this study was to validate the benefit of using a plasma-based scaffold supplemented with perfluorodecalin to improve islet transplantation outcome. Rat islets were cultured in three conditions: i) control group, ii) plasma based-matrix (P-matrix), and iii) P-matrix supplemented with emulsified perfluorodecalin. After 24 h culture, matrix/cell contacts (Integrinβ1, p-FAK/FAK, p-Akt/Akt), survival (caspase 3, TUNEL, FDA/PI), function, and HIF-1α translocation were assessed. Afterwards, P-matrices were dissolved and the islets were intraportally transplanted. Graft function was monitored for 31 days with glycaemia and C-peptide follow up. Inflammation was assessed by histology (macrophage and granulocyte staining) and thrombin/anti-thrombin complex measurement. Islet survival correlated with an increase in integrin, FAK, and Akt activation in P-matrices and function was maintained. Perfluorodecalin supplementation decreased translocation of HIF-1α in the nucleus and post-transplantation islet structure was better preserved in P-matrices, but a quicker activation of IBMIR resulted in early loss of graft function. "Oxygenating" P-matrices provided a real benefit to islet survival and resistance in vivo. However, intraportal transplantation is not suitable for this kind of culture due to IBMIR; thus, alternative sites must be explored. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection].

    PubMed

    Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E

    2010-01-01

    We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.

  5. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and carboxyl groups, on the polymer surface after plasma treatment. The resulting strength of the bond based on lap-shear and T-peel tests correlates well with the concentration of oxygen on the polymer surface. The failure modes observed for lap-shear and T-peel tests changed from interfacial to cohesive after the plasma activation. Treating carbon-fiber-reinforced epoxy composites with the atmospheric plasma resulted in the removal of fluorinated contaminants in shallow surface layers. For contaminants that diffused deeply into the composite surface, mechanical abrasion was needed in addition to the plasma treatment to remove the impurities. While cleaning the composite, plasma also generated active oxygen groups on the substrate surface. The presence of these groups improved the adhesive bonding strength of the composite even in the presence of residual fluorine contaminants. Thus, it was speculated that plasma treatment can promote better polymer adhesion with or without fluorine contamination. Carbon nanotube sheets were also treated by the helium oxygen plasma, and the CNT surface turn from super hydrophobic to hydrophilic after a few seconds of exposure. The nanotube surface contained 15% of oxygen in the form of hydroxyl groups. Chemical coupling agents were added to the plasma activated CNT surfaces in order to crosslink the CNTs and to create bonding sites for the resin matrix. Stretched, activated and functionalized CNT was cured with dicyclopentadiene (DCPD) to produce a sheet composite with a tensile strength of 636 MPa, a modulus of 28 GPa, and a density of 1.4 g/cm 3. This may be compared to aerospace-grade aluminum with tensile strength of 572 MPa, modulus of 72 GPa, and density of 2.7 g/cm3. This work demonstrates that new high-strength composite can be produced with the use of atmospheric plasma activation and chemical crosslinking of the fiber matrix.

  6. The effects of exercise under hypoxia on cognitive function.

    PubMed

    Ando, Soichi; Hatamoto, Yoichi; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2013-01-01

    Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.

  7. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    PubMed

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  8. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization.

    PubMed

    da Silva, Elsa F F; Pimenta, Frederico M; Pedersen, Brian W; Blaikie, Frances H; Bosio, Gabriela N; Breitenbach, Thomas; Westberg, Michael; Bregnhøj, Mikkel; Etzerodt, Michael; Arnaut, Luis G; Ogilby, Peter R

    2016-02-01

    Selected singlet oxygen photosensitizers have been examined from the perspective of obtaining a molecule that is sufficiently stable under conditions currently employed to study singlet oxygen behavior in single mammalian cells. Reasonable predictions about intracellular sensitizer stability can be made based on solution phase experiments that approximate the intracellular environment (e.g., solutions containing proteins). Nevertheless, attempts to construct a stable sensitizer based solely on the expected reactivity of a given functional group with singlet oxygen are generally not sufficient for experiments in cells; it is difficult to construct a suitable chromophore that is impervious to all of the secondary and/or competing degradative processes that are present in the intracellular environment. On the other hand, prospects are reasonably positive when one considers the use of a sensitizer encapsulated in a specific protein; the local environment of the chromophore is controlled, degradation as a consequence of bimolecular reactions can be mitigated, and genetic engineering can be used to localize the encapsulated sensitizer in a given cellular domain. Also, the option of directly exciting oxygen in sensitizer-free experiments provides a useful complementary tool. These latter systems bode well with respect to obtaining more accurate control of the "dose" of singlet oxygen used to perturb a cell; a parameter that currently limits mechanistic studies of singlet-oxygen-mediated cell signaling.

  9. Experimental and Theoretical Study of Thermodynamics of the Reaction of Titania and Water at High Temperatures

    NASA Technical Reports Server (NTRS)

    Nguyen, Quynhgiao N.; Myers, Dwight L.; Jacobson, Nathan S.; Opila, Elizabeth J.

    2014-01-01

    The transpiration method was used to determine the volatility of titanium dioxide (TiO2) in water vapor-containing environments at temperatures between 1473 and 1673 K. Water contents ranged from 0 to 76 mole % in oxygen or argon carrier gases for 20 to 250 hr exposure times. Results indicate that oxygen is not a key contributor to volatilization and the primary reaction for volatilization in this temperature range is: TiO2(s) + H2O(g) = TiO(OH)2(g). Data were analyzed with both the second and third law methods to extract an enthalpy and entropy of formation. The geometry and vibrational frequencies of TiO(OH)2(g) were computed using B3LYP density functional theory, and the enthalpy of formation was computed using the coupled-cluster singles and doubles method with a perturbative correction for connected triple substitutions [CCSD(T)]. Thermal functions are calculated using both a structure with bent and linear hydroxyl groups. Calculated second and third heats show closer agreement with the linear hydroxyl group, suggesting more experimental and computational spectroscopic and structural work is needed on this system.

  10. A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst

    PubMed Central

    Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian

    2014-01-01

    A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620

  11. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  12. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  13. Thiolation mediated pegylation platform to generate functional universal red blood cells.

    PubMed

    Nacharaju, Parimala; Manjula, Belur N; Acharya, Seetharama A

    2007-01-01

    The PEGylation that adds an extension arm on protein amino groups with the conservation of their positive charge masks the A and D antigens of erythrocytes efficiently. In the present study, the efficiency of masking the antigens of RBC by PEGylation protocols that do not conserve the charge with and without adding extension arms is compared. The conjugation of PEG-5000 to RBCs through the addition of extension arms masked the D antigen more efficiently than the other protocol. A combination of PEG-5 K and PEG-20 K is needed to mask the A antigen, irrespective of the PEGylation approach. The oxygen affinity of the PEGylated RBCs increased by the extension arm facilitated PEGylation. The protocol involving the conjugation of PEG-chains without adding extension arm did not alter the oxygen affinity of RBCs. A combination of PEGylation protocols is an alternate strategy to generate universal red blood cells with good levels of oxygen affinity.

  14. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    NASA Astrophysics Data System (ADS)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  15. Antioxidant Carbocysteine Treatment in Obstructive Sleep Apnea Syndrome: A Randomized Clinical Trial.

    PubMed

    Wu, Kang; Su, Xiaofen; Li, Guihua; Zhang, Nuofu

    2016-01-01

    This study aimed to examine the effects of carbocysteine in OSAS patients. A total of 40 patients with moderate to severe obstructive sleep apnea syndrome (OSAS) were randomly divided into two groups. One group was treated with 1500 mg carbocysteine daily, and the other was treated with continuous positive airway pressure (CPAP) at night. Before treatment and after 6 weeks of treatment, all patients underwent polysomnography and completed questionnaires. Treatment compliance was compared between the two groups. Plasma was collected for various biochemical analyses. Endothelial function was assessed with ultrasound in the carbocysteine group. The proportion of patients who fulfilled the criteria for good compliance was higher in the carbocysteine group (n = 17) than in the CPAP group (n = 11; 100% vs. 64.7%). Compared with baseline values, the carbocysteine group showed significant improvement in their Epworth Sleepiness Scale score (10.18 ± 4.28 vs. 6.82 ± 3.66; P ≤ 0.01), apnea-hypopnea index (55.34 ± 25.03 vs. 47.56 ± 27.32; P ≤ 0.01), time and percentage of 90% oxygen desaturation (12.66 (2.81; 50.01) vs. 8.9 (1.41; 39.71); P ≤ 0.01), and lowest oxygen saturation level (65.88 ± 14.86 vs. 70.41 ± 14.34; P ≤ 0.01). Similar changes were also observed in the CPAP group. The CPAP group also showed a decreased oxygen desaturation index and a significant increase in the mean oxygen saturation after treatment, but these increases were not observed in the carbocysteine group. Snoring volume parameters, such as the power spectral density, were significantly reduced in both groups after the treatments. The plasma malondialdehyde level decreased and the superoxide dismutase and nitric oxide levels increased in both groups. The endothelin-1 level decreased in the CPAP group but did not significantly change in the carbocysteine group. Ultrasonography showed that the intima-media thickness decreased (0.71 ± 0.15 vs. 0.66 ± 0.15; P ≤ 0.05) but that flow-mediated dilation did not significantly change in the carbocysteine group. Oral carbocysteine slightly improves sleep disorders by attenuating oxidative stress in patients with moderate to severe OSAS. Carbocysteine may have a role in the treatment of OSAS patients with poor compliance with CPAP treatment. However, the efficiency and feasibility of carbocysteine treatment for OSAS needs further evaluation. ClinicalTrials.gov NCT02015598.

  16. Antioxidant Carbocysteine Treatment in Obstructive Sleep Apnea Syndrome: A Randomized Clinical Trial

    PubMed Central

    Wu, Kang; Su, Xiaofen; Li, Guihua; Zhang, Nuofu

    2016-01-01

    Objective This study aimed to examine the effects of carbocysteine in OSAS patients. Methods A total of 40 patients with moderate to severe obstructive sleep apnea syndrome (OSAS) were randomly divided into two groups. One group was treated with 1500 mg carbocysteine daily, and the other was treated with continuous positive airway pressure (CPAP) at night. Before treatment and after 6 weeks of treatment, all patients underwent polysomnography and completed questionnaires. Treatment compliance was compared between the two groups. Plasma was collected for various biochemical analyses. Endothelial function was assessed with ultrasound in the carbocysteine group. Results The proportion of patients who fulfilled the criteria for good compliance was higher in the carbocysteine group (n = 17) than in the CPAP group (n = 11; 100% vs. 64.7%). Compared with baseline values, the carbocysteine group showed significant improvement in their Epworth Sleepiness Scale score (10.18±4.28 vs. 6.82±3.66; P≤0.01), apnea-hypopnea index (55.34±25.03 vs. 47.56±27.32; P≤0.01), time and percentage of 90% oxygen desaturation (12.66 (2.81; 50.01) vs. 8.9 (1.41; 39.71); P≤0.01), and lowest oxygen saturation level (65.88±14.86 vs. 70.41±14.34; P≤0.01). Similar changes were also observed in the CPAP group. The CPAP group also showed a decreased oxygen desaturation index and a significant increase in the mean oxygen saturation after treatment, but these increases were not observed in the carbocysteine group. Snoring volume parameters, such as the power spectral density, were significantly reduced in both groups after the treatments. The plasma malondialdehyde level decreased and the superoxide dismutase and nitric oxide levels increased in both groups. The endothelin-1 level decreased in the CPAP group but did not significantly change in the carbocysteine group. Ultrasonography showed that the intima-media thickness decreased (0.71±0.15 vs. 0.66±0.15; P≤0.05) but that flow-mediated dilation did not significantly change in the carbocysteine group. Conclusions Oral carbocysteine slightly improves sleep disorders by attenuating oxidative stress in patients with moderate to severe OSAS. Carbocysteine may have a role in the treatment of OSAS patients with poor compliance with CPAP treatment. However, the efficiency and feasibility of carbocysteine treatment for OSAS needs further evaluation. Trial Registration ClinicalTrials.gov NCT02015598 PMID:26849119

  17. Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain.

    PubMed

    Roche-Labarbe, Nadège; Fenoglio, Angela; Aggarwal, Alpna; Dehaes, Mathieu; Carp, Stefan A; Franceschini, Maria Angela; Grant, Patricia Ellen

    2012-03-01

    Little is known about cerebral blood flow, cerebral blood volume (CBV), oxygenation, and oxygen consumption in the premature newborn brain. We combined quantitative frequency-domain near-infrared spectroscopy measures of cerebral hemoglobin oxygenation (SO(2)) and CBV with diffusion correlation spectroscopy measures of cerebral blood flow index (BF(ix)) to determine the relationship between these measures, gestational age at birth (GA), and chronological age. We followed 56 neonates of various GA once a week during their hospital stay. We provide absolute values of SO(2) and CBV, relative values of BF(ix), and relative cerebral metabolic rate of oxygen (rCMRO(2)) as a function of postmenstrual age (PMA) and chronological age for four GA groups. SO(2) correlates with chronological age (r=-0.54, P value ≤0.001) but not with PMA (r=-0.07), whereas BF(ix) and rCMRO(2) correlate better with PMA (r=0.37 and 0.43, respectively, P value ≤0.001). Relative CMRO2 during the first month of life is lower when GA is lower. Blood flow index and rCMRO(2) are more accurate biomarkers of the brain development than SO(2) in the premature newborns.

  18. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier.

    PubMed

    Luo, Guozhi; Li, Li; Liu, Qian; Xu, Guimei; Tan, Hongxin

    2014-11-01

    The effect of dissolved oxygen (DO) on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier was evaluated in a lab-scale experiment. Aerated, low-oxygen, and anoxic treatment groups were set up, which had average DO concentrations of 5.2±1.0, 1.4±1.2, and 0.5±0.3 mg L(-1), respectively. The NO3(-)-N and total nitrogen (TN) removal rates in the aerated group (37.44±0.24 and 36.24±0.48 g m(-3) d(-1), respectively) were higher than those in the other two groups. There was no significant difference between the low-oxygen and anoxic groups for the NO3(-)-N or TN removal rate. Accumulation of NO2(-)-N reached 5.0 mg L(-1) in the aerated group; no nitrite accumulation was found in the other two treatment groups. Bacterial communities of the low-oxygen and anoxic groups showed high similarity and were significantly different from those of the aerated group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ocular oxygen consumption during vitreoperfusion in the cat.

    PubMed

    Blair, N P

    2000-01-01

    Little is known about the total ocular oxygen consumption rate (QO2) in human diseases. Reductions in QO2 may indicate the amount of tissue loss produced by conditions such as retinal ischemia. We sought a method to estimate QO2 that eventually could be used in patients during vitrectomy surgery. We performed vitreoperfusion (perfusion of the vitreous cavity after vitrectomy) in 22 cat eyes with no ocular blood flow. The solution contained nutrients and a high partial pressure of oxygen (PO2). In 8 eyes we placed an oxygen electrode on the sclera, choroid, or outer retina to evaluate oxygen delivery from the vitreoperfusion solution (group 1). In 8 eyes the retinas were undisturbed (group 2), and in 6 eyes we excised the retinas (group 3). In groups 2 and 3 we estimated QO2 from the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. Group 1 demonstrated oxygenation of the entire retina. The means and standard deviations of QO2 were 3.2 +/- 0.8 and 0.4 +/- 0.7 microL/min in groups 2 and 3, respectively, the difference being the retinal contribution, 88%. In group 2, metabolism accounted for an average of 82% of the oxygen loss from the vitreoperfusion solution, whereas flow and diffusion accounted for 13% and 5%, respectively. Ocular oxygen consumption can be estimated by means of vitreoperfusion. Further developments may allow measurements in patients during vitreous surgery to clarify the pathophysiology of their diseases and assess the amount of retinal tissue that has been lost.

  20. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  1. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs.

    PubMed

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply.

  2. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    PubMed Central

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  3. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    PubMed

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  4. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  5. Anthropogenic Sulfur Perturbations on Biogenic Oxidation: SO2 Additions Impact Gas-Phase OH Oxidation Products of α- and β-Pinene.

    PubMed

    Friedman, Beth; Brophy, Patrick; Brune, William H; Farmer, Delphine K

    2016-02-02

    In order to probe how anthropogenic pollutants can impact the atmospheric oxidation of biogenic emissions, we investigated how sulfur dioxide (SO2) perturbations impact the oxidation of two monoterpenes, α-and β-pinene. We used chemical ionization mass spectrometry to examine changes in both individual molecules and gas-phase bulk properties of oxidation products as a function of SO2 addition. SO2 perturbations impacted the oxidation systems of α-and β-pinene, leading to an ensemble of products with a lesser degree of oxygenation than unperturbed systems. These changes may be due to shifts in the OH:HO2 ratio from SO2 oxidation and/or to SO3 reacting directly with organic molecules. Van Krevelen diagrams suggest a shift from gas-phase functionalization by alcohol/peroxide groups to functionalization by carboxylic acid or carbonyl groups, consistent with a decreased OH:HO2 ratio. Increasing relative humidity dampens the impact of the perturbation. This decrease in oxygenation may impact secondary organic aerosol formation in regions dominated by biogenic emissions with nearby SO2 sources. We observed sulfur-containing organic compounds following SO2 perturbations of monoterpene oxidation; whether these are the result of photochemistry or an instrumental artifact from ion-molecule clustering remains uncertain. However, our results demonstrate that the two monoterpene isomers produce unique suites of oxidation products.

  6. Effects of dehydration on immune functions after a judo practice session.

    PubMed

    Chishaki, Takeharu; Umeda, Takashi; Takahashi, Ippei; Matsuzaka, Masashi; Iwane, Kaori; Matsumoto, Hidehiko; Ishibashi, Goshi; Ueno, Yuichi; Kashiwa, Naohiro; Nakaji, Shigeyuki

    2013-01-01

    We investigated the effects of dehydration after a judo practice session on player muscle and immune functions. Subjects included 25 female university judoists. Investigations were performed before and after 2.5 h of regular judo practice. Body composition, serum enzymes (myogenic enzymes, immunoglobulins and complements), neutrophils counts, reactive oxygen species (ROS) production capability, and phagocytic activity (PA) were measured. Subjects were divided into two groups according to level of dehydration after practice (mild dehydration and severe dehydration groups) and results were compared. Creatine kinase was found to increase significantly after practice. In addition, neutrophil count also increased significantly after practice in both groups. The changing ratios of IgA, IgG and C3 observed in the mild dehydration group were significantly higher than those in the severe dehydration group. In the severe dehydration group, post-practice PA/neutrophil had decreased significantly. Significant positive correlations were found between severity of dehydration and changing ratios of IgA, IgG, IgM, C3, C4 and ROS production capabilities, whereas no significant association was seen with PA and/or serum SOD activity. These results suggest that dehydration resulted in immunosuppression, including decreased neutrophil function. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.

  8. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.

    PubMed

    Kwan, Patrick; McIntosh, Chelsea L; Jennings, David P; Hopkins, R Chris; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Jones, Anne K

    2015-10-28

    We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 °C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 °C, following short (<200 s) exposure to 14 μM O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 °C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 °C, up to 32% of the enzyme's oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states.

  9. Kidney Function after Methoxyflurane Analgesia during Labour

    PubMed Central

    Rosen, Michael; Latto, P.; Asscher, A. W.

    1972-01-01

    In a study of the effects of methoxyflurane on renal function, the urinary and blood urea concentrations, the urinary and plasma osmolalities, and the packed cell volume were studied in each of 50 mothers before and after delivery. Methoxyflurane 0·35% was used as an analgesic in 25 patients and the other 25 had 50% nitrous oxide and 50% oxygen (Entonox). There was no evidence of renal dysfunction in either group, nor were there any significant differences between the groups. In a further 200 mothers, of whom 100 had methoxyflurane and 100 had nitrous oxide analgesia, the urinary and blood urea concentrations were measured on the morning of discharge from hospital. There were no significant differences between the groups. These results suggest that methoxyflurane is not nephrotoxic when used as a self-administered analgesic. PMID:5007074

  10. Mitochondrial Respiratory Function Induces Endogenous Hypoxia

    PubMed Central

    Prior, Sara; Kim, Ara; Yoshihara, Toshitada; Tobita, Seiji; Takeuchi, Toshiyuki; Higuchi, Masahiro

    2014-01-01

    Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2′-benzothienyl) pyridinato-kN, kC3’] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions. PMID:24586439

  11. Ultrasonic monitoring in the assessment of pulmonary recruitment and the best positive end-expiratory pressure.

    PubMed

    Tang, Ke-Qiang; Yang, Shao-Ling; Zhang, Bin; Liu, Hong-Xiang; Ye, Dong-Ying; Zhang, Hong-Ze; Ma, Shuang

    2017-09-01

    The aim of this study was to explore the clinical value of ultrasonic monitoring in the assessment of pulmonary recruitment and the best positive end-expiratory pressure (PEEP).Between January 2015 and June 2017, 40 patients with acute respiratory distress syndrome in our hospital were randomly divided into 2 groups: ultrasound group (ULS group; n = 20) and oxygenation group (OXY group; n = 20). The PEEP incremental method was used to perform recruitment maneuvers. Ultrasound scoring and the oxygenation method were used to evaluate the pulmonary recruitment endpoint. The best PEEP was chosen by ultrasound scoring and the oxygenation method after achieving the pulmonary recruitment endpoint and sustaining it for 15 minutes.The oxygenation index, PEEP, peak airway pressure (Ppeak), mean airway pressure (Pmean), and dynamic compliance (Cdyn) in the OXY group were significantly lower than those in the ULS group (P < .05) at the pulmonary recruitment endpoint; however, there was no statistical significance in the mean arterial blood pressure (MAP) or heart rate (HR) (P > .05). The best PEEPs in the OXY and ULS groups were 13.1 ± 3.1 and 15.7 ± 4.2 cmH2O, respectively, with a significant difference between the 2 groups (t = 2.227, P = .016). Compared with the basal state, the Cdyn, oxygenation index, Pmean, and Ppeak in both groups significantly increased after pulmonary recruitment (P < .05). Furthermore, the Cdyn and oxygenation index in the ULS group were significantly higher than those in the OXY group after pulmonary recruitment (P < .05). The HR in both groups significantly increased, and the MAP significantly decreased. Two hours after recruitment, the HR and MAP returned to near basal levels without a significant difference between the 2 groups (P > .05).Lung ultrasound can be used to detect the endpoint of lung recruitment and the best PEEP, with good effects on lung compliance and oxygenation improvement.

  12. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart †.

    PubMed

    Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.

  13. One-Lung Ventilation with Additional Ipsilateral Ventilation of Low Tidal Volume and High Frequency in Lung Lobectomy

    PubMed Central

    Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan

    2016-01-01

    Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086

  14. Oxygen enrichment and its application to life support systems for workers in high-altitude areas

    PubMed Central

    Li, Yongling; Liu, Yingshu

    2014-01-01

    Background: Workers coming from lowland regions are at risk of developing acute mountain sickness (AMS) when working in low oxygen high-altitude areas. Objectives: The aim of this study was to improve the conditions that lead to hypoxia and ensure the safety of the high-altitude workers. We analyzed the influence of low atmospheric pressure on the oxygen enrichment process in high-altitude areas using an engineering method called low-pressure swing adsorption (LPSA). Methods: Fourteen male subjects were screened and divided into three groups by type of oxygen supply system used: (1) oxygen cylinder group; (2) LPSA oxygen dispersal group; and (3) control group. These tests included arterial oxygen saturation (SaO2), pulse rate (PR), breaths per minute (BPM), and blood pressure (BP). Results: The results showed that after supplying oxygen using the LPSA method at the tunnel face, the SaO2 of workers increased; the incidence of acute mountain sickness, PR, and BPM significantly decreased. Conclusions: The LPSA life support system was found to be a simple, convenient, efficient, reliable, and applicable approach to ensure proper working conditions at construction sites in high-altitude areas. PMID:25000108

  15. Catalytic biomass conversion methods, catalysts, and methods of making the same

    DOEpatents

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  16. [Oxygen-transporting function of the blood circulation system in sevoflurane anesthesia during myocardial revascularization under extracorporeal circulation].

    PubMed

    Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V

    2009-01-01

    The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.

  17. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    NASA Astrophysics Data System (ADS)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  18. Role of chemical functional groups on thermal and electrical properties of various graphene oxide derivatives: a comparative x-ray photoelectron spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Balaji Mohan, Velram; Jakisch, Lothar; Jayaraman, Krishnan; Bhattacharyya, Debes

    2018-03-01

    In recent years, graphene and its derivatives have become prominent subject matter due to their fascinating combination of properties and potential applications in a number application. While several fundamental studies have been progressed, there is a particular need to understand how different graphene derivatives are influenced in terms of their electrical and thermal conductivities by different functional groups they end up with through their manufacturing and functionalisation methods. This article addresses of the role of different functional groups present of different of reduced graphene oxides (rGO) concerning their electrical and thermal properties, and the results were compared with elemental analyses of functionalised reduced graphene oxide (frGO) and graphene. The results showed that electrical and thermal conductivities of the rGO samples, highly dependent on the presence of residual functional groups from oxidation, reduction and functionalisation processes. The increase in reduction of oxygen, hydroxyl, carboxylic, epoxide moieties and heterocyclic compounds increase the specific surface area of the samples through which the mean electron path has increased. This improved both electrical and thermal conductivities together in all the samples which were highly dependent on the efficiency of different reductant used in this study.

  19. Failure Analysis Techniques for the Evaluation of Electrical and Electronic Components in Aircraft Accident Investigations

    DTIC Science & Technology

    1990-08-01

    of the review are presented in Tables 1 and 2 by aircraft and type of component. The totals for each component are combined in Table 3. Adjusted...of Table 3 have been grouped according to basic system functions and combined percentages for each of the basic functions have been computed as shown...and the free oxygen combines with the tungsten to form 29 Fig. 2.5 Notching of lamp aged 77 hours at 28 Volts DC. 2000X. (Reference 2.1) 30 DAMAGE

  20. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    PubMed

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-09

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  1. Overcoming the “Oxidant Problem”: Strategies to Use O2 as the Oxidant in Organometallic C–H Oxidation Reactions Catalyzed by Pd (and Cu)

    PubMed Central

    Campbell, Alison N.; Stahl, Shannon S.

    2012-01-01

    Oxidation reactions are key transformations in organic chemistry because they can increase chemical complexity and incorporate heteroatom substituents into carbon-based molecules. This principle is manifested in the conversion of petrochemical feedstocks into commodity chemicals and in the synthesis of fine chemicals, pharmaceuticals, and other complex organic molecules. The utility and function of such molecules correlate directly with the presence and specific placement of oxygen and nitrogen heteroatoms and other functional groups within the molecules. PMID:22263575

  2. Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr 5BiNi 2O 9.6

    NASA Astrophysics Data System (ADS)

    Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre

    2011-12-01

    A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.

  3. Aerobic Physical Exercise Improved the Cognitive Function of Elderly Males but Did Not Modify Their Blood Homocysteine Levels

    PubMed Central

    Antunes, Hanna Karen M.; De Mello, Marco Túlio; de Aquino Lemos, Valdir; Santos-Galduróz, Ruth Ferreira; Camargo Galdieri, Luciano; Amodeo Bueno, Orlando Francisco; Tufik, Sergio; D'Almeida, Vânia

    2015-01-01

    Background Physical exercise influences homocysteine (Hcy) concentrations, cognitive function and the metabolic profile. The purpose of this study was to investigate the influence of regular physical exercise on Hcy levels, the metabolic profile and cognitive function in healthy elderly males before and after an endurance exercise program. Methods Forty-five healthy and sedentary volunteers were randomized into 2 groups: (1) a control group asked not to change their normal everyday activities and not to start any regular physical exercise program and (2) an experimental group trained at a heart rate intensity corresponding to ventilatory threshold 1 (VT-1) for 60 min/day 3 times weekly on alternate days for 6 months using a cycle ergometer. All volunteers underwent cognitive evaluations, blood sample analyses and ergospirometric assessments. Results A significant improvement in cognitive function was observed in the experimental group compared with the control group (p < 0.05). No significant changes in Hcy levels were observed in the experimental group (p > 0.05), but there was a significant increase in peak oxygen consumption and workload at VT-1 as well as a significant improvement in cholesterol, triglycerides, HDL, glucose, alkaline phosphatase, urea, T3, T4 and prostate-specific antigen compared with the control group (p < 0.05). Conclusion The data suggest that a physical exercise program does not reduce Hcy levels in healthy elderly males, although it improves the cardiovascular and metabolic profile as well as cognitive function. PMID:25759715

  4. Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ni, Dan; Sun, Wang; Xie, Liqiang; Fan, Qinghua; Wang, Zhenhua; Sun, Kening

    2018-01-01

    Bismuth oxyfluoride impregnated CMK-3 nanocomposite is synthesized by a facile nanocasting approach. Mesoporous carbon CMK-3 can suppress the aggregation and growth of bismuth oxyfluoride particles and offer rapid electron and Li ion passageways. Bismuth oxyfluoride nanoparticles are embedded in the mesoporous channels with particle size less than 20 nm. The bismuth oxyfluoride@CMK-3 nanocomposite maintains 148 mA h g-1 after 40 cycles with the capacity from both the bismuth oxyfluoride and the functional groups on the mesoporous carbon. The hybrid with confined bismuth oxyfluoride nanoparticles, conductive carbon network, and oxygen functional groups on the carbon matrix exhibits higher capacity and cycling stability than bulk bismuth oxyfluoride particles when used as lithium ion batteries cathode.

  5. Oxygen therapy for corneal edema after cataract surgery.

    PubMed

    Sharifipour, Farideh; Panahi-Bazaz, Mahmoodreza; Idani, Esmaeil; Hajizadeh, Maryam; Saki, Azadeh

    2015-07-01

    To evaluate the effects of oxygen therapy on corneal edema after cataract surgery. Imam Khomeini Hospital, Ahvaz, Iran. Randomized controlled trial. Patients with severe corneal edema were randomized into 3 groups. Group 1 (control) received conventional therapy including topical sodium chloride, timolol, and betamethasone. Group 2 received the same therapy in addition to systemic normobaric oxygen at a flow rate of 10 L/min for 1 hour twice daily for 3 weeks. Group 3 received conventional therapy and transcorneal oxygen at a flow rate of 5 L/min for 1 hour twice daily for 3 weeks. Preoperative pachymetry and specular microscopy were performed. Pachymetry was performed 1, 3, 5, 7, 10, and 14 days postoperatively. At 1, 3 and 12 months, pachymetry and specular microscopy were performed. The study enrolled 45 patients. Preoperatively, there was no significant difference between the groups. Pachymetry was more than 1000 μm 1 day postoperatively in all patients. The preoperative pachymetry was restored in 14 days in Group 3 only. After 1 year, the endothelial cell count (ECC) was 1603 cells/mm(2), 1693 cells/mm(2), and 1911 cells/mm(2) with a loss of 37%, 32%, and 25% in Group 1, Group 2, and Group 3, respectively (P = .034, Groups 1 and 3). Group 3 had a higher ECC than the control group at 3 months (P = .037) and 1 year (P = .025). One patient in Group 1 and 1 patient in Group 2 developed bullous keratopathy. Transcorneal oxygen decreased corneal edema more rapidly than conventional and systemic oxygen therapies and preserved more endothelial cells than conventional therapy. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4 H 6 O 6 ) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysismore » in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4 H 4 O 6 ) and three C 3 fragmentation products (C 3 H 4 O 4 , C 3 H 2 O 4 , and C 3 H 2 O 5 ). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4 H 4 O 6 ), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C ), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  7. Cell adhesion pattern created by OSTE polymers.

    PubMed

    Liu, Wenjia; Li, Yiyang; Ding, Xianting

    2017-04-24

    Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.

  8. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells.

    PubMed

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-02-20

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells ( NF-κB ) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  9. Research on a new type of additive for CWS from low temperature pyrolysis tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Guoguang; Wang Zuna

    1997-12-31

    In this paper, coal tar from flash pyrolysis of Ping Zhuang lignite with solid heat carrier was used as raw material, which was directly synthesized a new type of additive for coal water slurry (CWS) in the laboratory. The wetting heat between the lignite and distilled water and solution of additive has been determined. It is evident that the wetting heat between the lignite and distilled water is very high, up to 44.56 J/g, which is harmful to preparing CWS. The wetting heat between the lignite and a solution of additive is reduced, which is related to its characteristics suchmore » as surface properties, oxygen functional groups and structure. The effect of coal properties on preparing CWS has also been analyzed systematically. It is suggested that the concentration of CWS is regularly changed with oxygen content of coal based on moisture and ash content. It is emphasized that when the influence of macerals on slurriability of coal is observed, inherent properties of each maceral such as pore structure, porosity, oxygen functional groups, grindability must be tightly combined to evaluate comprehensively. The structural characteristics of the additive matches well the molecular structure and surface properties of the coal. It is seen by synthetic experiments that suitable a degree of sulphonating and condensation are beneficial to preparing CWS. The rheology and stability of CWS have also been investigated. The result indicates that the stability of CWS using the new type of additive is improved, and the production cost of the additive synthesized from low temperature pyrolysis coal tar can be reduced.« less

  10. Molecular Structures and Sorption Mechanisms of Biochars as Heterogeneous Carbon Materials

    NASA Astrophysics Data System (ADS)

    Chen, Baoliang; Chen, Zaiming; Xiao, Xin; Fang, Qile

    2015-04-01

    Surface functional groups such as carboxyl play a vital role in the environmental applications of biochar as a soil amendment. However, the quantification of oxygen-containing groups on a biochar surface still lacks systematical investigation. An integrated method combining chemical and spectroscopic techniques was established to quantitatively identify the chemical states, dissociation constants (pKa), and contents of oxygen-containing groups on dairy manure-derived biochars prepared at 100-700 °C. The dissociation pH of carboxyl groups on the biochar surface covered a wide range of pH values (pH 2-11), due to the varied structural micro-environments and chemical states. For low temperature biochars (≤350 °C), carboxyl existed not only as hydrogen-bonded carboxyl and unbonded carboxyl groups but also formed esters at the surface of biochars. The esters consumed OH‒ via saponification in the alkaline pH region and enhanced the dissolution of organic matter from biochars. For high temperature biochars (≥500 °C), esters came from carboxyl were almost eliminated via carbonization (ester pyrolysis), while lactones were developed. The surface density of carboxyl groups on biochars decreased sharply with the increase of the biochar-producing temperature, but the total contents of the surface carboxyls for different biochars were comparable (with a difference < 3-fold) as a result of the expanded surface area at high pyrolytic temperatures. Understanding the wide pKa ranges and the abundant contents of carboxyl groups on biochars is a prerequisite to recognition of the multi-functional applications and biogeochemical cycling of biochars. A schematic diagram for the dissociation of acid/base groups on biochar surfaces and their related functions was depicted. The protonated biochars favor inorganic anion adsorption and ionizable organic chemical sorption, while the deprotonated biochars favor cationic nutrient retention, heavy metal immobilization, and the release of dissolved materials. For low temperature biochars (i.e., DM100, DM250 and DM350), the acid/base group dissociation directly controls the pH buffering properties of biochars. The resulting surface charges regulate biochars in nutrient retention, sorption/immobilization of hazardous pollutants and biochar particle dispersing properties. Meanwhile, dissociation of acid/base groups affects carbon and silica biogeochemical cycling by regulating the release of organic matter from the cleavage of esters and dissolution of the Si-containing minerals. For high temperature biochars (i.e., DM500 and DM700), the effect of acid/base dissociation on organic matter dissolution is eliminated, but other functions are similar. CGs are the major acid/base groups on biochar surfaces. In field applications, such abundant CGs are worthy of concern in terms of multiple functions of biochars, such as soil pH adjustment, soil nutrient retention, and toxic metals immobilization.

  11. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    PubMed Central

    Galasso, Christian; Corinaldesi, Cinzia; Sansone, Clementina

    2017-01-01

    As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production. PMID:29168774

  12. [Clinical observation of basic fibroblast growth factor combined with topical oxygen therapy in enhancing burn wound healing].

    PubMed

    Nie, Kaiyu; Li, Pengcheng; Zeng, Xueqin; Sun, Guangfeng; Jin, Wenhu; Wei, Zairong; Wang, Bo; Qi, Jianping; Wang, Yuming; Wang, Dali

    2010-06-01

    To investigate the efficacy of basic fibroblast growth factor (bFGF) combined with topical oxygen therapy for deep II degree burn wounds, by comparing the effects of bFGF combined with topical oxygen therapy and bFGF with routine therapy. From February 2004 to July 2009, 85 patients with deep II degree burn wounds (117 wounds) were enrolled and divided into 4 groups randomly according to different treatments. There was no significant difference in sex, age, disease course, wound size, and wound treatment size among 4 groups (P > 0.05). In group A, 18 patients (28 wounds) were treated routinely; in group B, 23 patients (30 wounds) were treated with routine methods and topical oxygen therapy; in group C, 19 patients (25 wounds) were treated with routine methods and bFGF therapy; and in group D, 25 patients (34 wounds) were treated with routine methods and bFGF/topical oxygen therapy. Topical oxygen therapy was administered to the wound for 90 minutes per day for 3 weeks. The bFGF therapy was applied everyday (150 U/cm2) for 3 weeks. All cases were followed up 6-12 months (9 months on average). The wound healing times in groups A, B, C, and D were (27.3 +/- 6.6), (24.2 +/- 5.8), (22.2 +/- 6.8), and (18.2 +/- 4.8) days, respectively; showing significant difference between group A and group D (P < 0.05). The wound healing rates in groups A, B, C, and D were 67.8% +/- 12.1%, 85.1% +/- 7.5%, 89.2% +/- 8.3%, and 96.1% +/- 5.6%, respectively; showing significant differences between group A and groups B, C, D (P < 0.05). The therapic effective rates in groups A, B, C, and D were 75%, 90%, 92%, and 100%, respectively; showing significant difference between group A and group D (P < 0.05). The Vancouver scar scale scoring of group D 6 months after treatment was better than that of group A (P < 0.05). The bFGF combined with topical oxygen therapy can enhance deep II degree burn wound healing. Furthermore, the therapy method is simple and convenient.

  13. Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis

    PubMed Central

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-01-01

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases. PMID:25941362

  14. Tiotropium Respimat Soft Mist Inhaler versus HandiHaler to improve sleeping oxygen saturation and sleep quality in COPD.

    PubMed

    Bouloukaki, Izolde; Tzanakis, Nikolaos; Mermigkis, Charalampos; Giannadaki, Katerina; Moniaki, Violeta; Mauroudi, Eleni; Michelakis, Stylianos; Schiza, Sophia E

    2016-05-01

    Patients with chronic obstructive pulmonary disease (COPD) have poor sleep quality as a result of various alterations in oxygenation parameters and sleep macro- and micro-architecture. There is a shortage of data to support the efficacy of long-acting inhaled anticholinergic agents in improving these adverse effects, which are known to have a negative impact on clinical outcomes. We aimed to compare the tiotropium Respimat Soft Mist Inhaler and the HandiHaler in terms of their effects on sleeping oxygen saturation (SaO2) and sleep quality in patients with COPD. In a randomized, open-label, parallel-group trial involving 200 patients with mild to moderate COPD (resting arterial oxygen tension >60 mmHg while awake), we compared the effects of 6 months' treatment with the two devices on sleeping SaO2 and sleep quality. Overnight polysomnography and pulmonary function testing were performed at baseline and after 6 months' treatment. A total of 188 patients completed the trial. Both groups showed significant improvement in minimum sleep SaO2 and time of sleep spent with SaO2 below 90 (TST90) compared to baseline. The patients using the Respimat had significantly better TST90 than did those using the HandiHaler. Sleep disturbance was highly variable in these patients, but the sleep stage durations were significantly better in the Respimat group. Sleeping SaO2 can be improved by tiotropium delivered using either the HandiHaler device or the Respimat Soft Mist Inhaler. However, the patients who used the Respimat device had significantly better TST90 and sleep architecture parameters.

  15. The negative effect of hyperbaric oxygen therapy at the acute phase of electrochemical esophageal burn induced by button battery ingestion.

    PubMed

    Aydin, Atakan; Aktas, Samil; Hafiz, Gunter; Kabakas, Fatih; Erer, Metin; Bilgic, Bilge

    2004-07-01

    Ingestion of button battery, if lodges in esophagus, causes mucosal destruction in esophagus and may damage surrounding tissues due to electrochemical reactions which may lead to esophagus perforation, tracheosefageal fistula and other serious problems. We designed an experimental study to test the effect of hyperbaric oxygen therapy on battery induced electrochemical tissue damage in the esophagus of a rabbit model and possible change with duration of contact time. Button batteries were inserted in esophagus of 40 rabbits which were divided into four groups. Groups 1 and 2 had 15 min of duration of contact time of battery in esophagus, while Groups 3 and 4 had 30 min. Groups 1 and 3 had hyperbaric oxygen therapy for 3 days; Groups 2 and 4 did not. At the end of 3rd day all animals were sacrified and samples were taken from the esophagus for determination of malondialdehyde levels and for histopathological examination to compare: mucosal destruction, muscular layer involvement, perforation and tracheal involvement between groups. Malondialdehyde levels, mucosal destruction, muscular layer involvement, perforation and tracheal involvement were significantly higher in groups which had 30 min of contact time compared to groups which had 15 min. The same assessments were significantly higher in Group 1 (15 min of contact time with hyperbaric oxygen therapy) compared to Group 2 (15 min of contact time without hyperbaric oxygen therapy). However, the difference between Group 3 (30 min of contact time with hyperbaric oxygen therapy) and Group 4 (30 min of contact time, no hyperbaric oxygen therapy) was not significant. Our study demonstrated that if contact time is 15 min HBO had an additive adverse effect to electrochemically burned esophagus by increasing free radicals and eventually tissue damage. However, if the contact time is 30 min its adverse effect is shielded by huge electrochemical destruction due to long contact time.

  16. Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.N.; Lidstrom, M.E.

    Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less

  17. Plasma functionalization of powdery nanomaterials using porous filter electrode and sample circulation

    NASA Astrophysics Data System (ADS)

    Lee, Deuk Yeon; Choi, Jae Hong; Shin, Jung Chul; Jung, Man Ki; Song, Seok Kyun; Suh, Jung Ki; Lee, Chang Young

    2018-06-01

    Compared with wet processes, dry functionalization using plasma is fast, scalable, solvent-free, and thus presents a promising approach for grafting functional groups to powdery nanomaterials. Previous approaches, however, had difficulties in maintaining an intimate sample-plasma contact and achieving uniform functionalization. Here, we demonstrate a plasma reactor equipped with a porous filter electrode that increases both homogeneity and degree of functionalization by capturing and circulating powdery carbon nanotubes (CNTs) via vacuum and gas blowing. Spectroscopic measurements verify that treatment with O2/air plasma generates oxygen-containing groups on the surface of CNTs, with the degree of functionalization readily controlled by varying the circulation number. Gas sensors fabricated using the plasma-treated CNTs confirm alteration of molecular adsorption on the surface of CNTs. A sequential treatment with NH3 plasma following the oxidation pre-treatment results in the functionalization with nitrogen species of up to 3.2 wt%. Our approach requiring no organic solvents not only is cost-effective and environmentally friendly, but also serves as a versatile tool that applies to other powdery micro or nanoscale materials for controlled modification of their surfaces.

  18. [Nocturnal hypoxemia and arrhythmia in patients with chronic obstructive lung diseases (COLD)].

    PubMed

    Skwarski, K

    1989-05-01

    A decrease in the arterial blood saturation by oxygen in patients with POChP is a frequent phenomenon. It is more serious in patients type blue boaters and less frequent among patients type pink puffers. The aim of the paper was to compare the arterial blood saturation by oxygen in the groups examined during two nights: during the first night the patients breathed atmospheric air whereas during the second night they were given oxygen. The author also studied the influence of oxygenation of an organism on the frequency of cardiac rhythm disorders (ZRS). The author examined a group of 20 patients with the predominance of chronic bronchitis--blue boaters (average VC was 1.95 l, FEV1--0.81 l, PaO2 while breathing atmospheric air 52 mm Hg and 68 mm Hg after giving oxygen, PaCO2 47 and 51 mm Hg respectively) and 20 patients with the predominance of emphysema--pink puffers (average VC--2.30 l, FEV1--0.86 l, PaO2 while breathing atmospheric air 60 mm Hg and 70 mm Hg after giving oxygen, PaCO2 39 and 40 mm respectively). It was found that the patients with heavy hypoxaemia and hypercapnia had worse arterial blood saturation by oxygen during the two nights of investigation in comparison with the other group. The author also found more frequent cardiac rhythm disorders in this group of patients. Giving oxygen improved blood oxygenation in the two groups and lowered the frequency of cardiac rhythm disorders. The results obtained indicate to the need of oxygen therapy in patients with advanced POChP, especially during the night so as to avoid nocturnal hypoxaemia of an organism.

  19. Extra permeability is required to model dynamic oxygen measurements: evidence for functional recruitment?

    PubMed Central

    Barrett, Matthew JP; Suresh, Vinod

    2013-01-01

    Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433

  20. Relationship between pre-extubation positive endexpiratory pressure and oxygenation after coronary artery bypass grafting

    PubMed Central

    Lima, Reijane Oliveira; Borges, Daniel Lago; Costa, Marina de Albuquerque Gonçalves; Baldez, Thiago Eduardo Pereira; Silva, Mayara Gabrielle Barbosa e; Sousa, Felipe André Silva; Soares, Milena de Oliveira; Pinto, Jivago Gentil Moreira

    2015-01-01

    Introduction After removal of endotracheal tube and artificial ventilation, ventilatory support should be continued, offering oxygen supply to ensure an arterial oxygen saturation close to physiological. Objective The aim of this study was to investigate the effects of positive-end expiratory pressure before extubation on the oxygenation indices of patients undergoing coronary artery bypass grafting. Methods A randomized clinical trial with seventy-eight patients undergoing coronary artery bypass grafting divided into three groups and ventilated with different positive-end expiratory pressure levels prior to extubation: Group A, 5 cmH2O (n=32); Group B, 8 cmH2O (n=26); and Group C, 10 cmH2O (n=20). Oxygenation index data were obtained from arterial blood gas samples collected at 1, 3, and 6 h after extubation. Patients with chronic pulmonary disease and those who underwent off-pump, emergency, or combined surgeries were excluded. For statistical analysis, we used Shapiro-Wilk, G, Kruskal-Wallis, and analysis of variance tests and set the level of significance at P<0.05. Results Groups were homogenous with regard to demographic, clinical, and surgical variables. There were no statistically significant differences between groups in the first 6 h after extubation with regard to oxygenation indices and oxygen therapy utilization. Conclusion In this sample of patients undergoing coronary artery bypass grafting, the use of different positive-end expiratory pressure levels before extubation did not affect gas exchange or oxygen therapy utilization in the first 6 h after endotracheal tube removal. PMID:27163418

Top